

Missouri University of Science and Technology Scholars' Mine

International Specialty Conference on Cold-Formed Steel Structures

(1973) - 2nd International Specialty Conference on Cold-Formed Steel Structures

Oct 22nd, 12:00 AM

Behavior of Light Gage Diaphragms Coupled with X-bracing

James M. Fisher

Donald L. Johnson

Follow this and additional works at: https://scholarsmine.mst.edu/isccss

Part of the Structural Engineering Commons

Recommended Citation

Fisher, James M. and Johnson, Donald L., "Behavior of Light Gage Diaphragms Coupled with X-bracing" (1973). International Specialty Conference on Cold-Formed Steel Structures. 4. https://scholarsmine.mst.edu/isccss/2iccfss/2iccfss-session5/4

This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been accepted for inclusion in International Specialty Conference on Cold-Formed Steel Structures by an authorized administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

BEHAVIOR OF LIGHT GAGE DIAPHRAGMS COUPLED WITH X-BRACING James M. Fisher¹ and Donald L. Johnson²

Introduction

An experimental program was conducted to determine the behavior of a coupled system of cross bracing and light gage steel diaphragms in resisting lateral forces. The program was specifically conducted to determine if such systems would "work" together, and if so, could the load sharing and ultimate strength behavior be predicted analytically. Three sets of tests using different size tie rods (3/8", 1/2", 5/8") and the same gage diaphragm were conducted. Each set consisted of two tests using the same size rod, but pre-tensioned to different levels (5% and 20% of the bar yield strength). Since normal field installations would result in different preloaded situations, it was imperative to know if this would affect the behavior.

It was felt that the coupled system could result in economic savings in a number of ways. These would include the use of smaller tie rods or lighter gage steel in the panels of these coupled systems.

Description of Tests

The cantilever test frame method (Figure 1) as prescribed by the American Iron and Steel Institute* for testing light gage steel diaphragms was used throughout the test program. The test panel was 10.0 feet in length by 12.0 feet in width. The frame was constructed using $6 \times 6 \times 5/16$ angles. All corner connections were pinned to provide minimum resistance

Assistant Professor of Structural Engineering, University of Wisconsin-Milwaukee.

Senior Engineering Consultant, Butler Manufacturing Company, Kansas City, Missouri.

^{* &}quot;Design of Light Gage Steel Diaphragms", American Iron and Steel Institute.

of the bare frame to deformation. The frame was secured at corner (D) to prevent lateral movement. A roller was provided at corner (C). Rollers were also placed under the frame to reduce friction forces between the test frame and the structural test floor on which it was resting.

The test specimens were constructed by first bolting .07 inch thick base angles to the frame along lines A-B and C-D. A center girt was connected to the frame using bolted clip angle connections. The tie rod was then placed between points D and B and tightened to its prescribed preload. The panels were then positioned on the frame. Panel-to-panel connections were made on 30 inch centers, and panel-to-structural connections on 6 inch centers. All connections were made using rivet-type fasteners.

In all six tests 24 gage galvanized cold rolled panels were used in combination with the three different tie rods. The load deflection curve for the panel is shown in Figure 2. The rods have rolled threads and the nominal size was based on the root diameter. The 3/8" and 1/2" rods were cold drawn and had body diameters of 0.331 inches and 0.435 inches. The 5/8" rod was hot rolled and had a shaft diameter of 0.544 inches. The physical properties of the rods are shown in Table 1.

The rods were welded to 3/8" x 14" x 3" steel plates with a punched hole, so that a pinned connection could be made into the pinned joints at corners B and D of the test frame, Figure 1.

The load was applied using a hydraulic jack. The loads were measured using a load cell which was connected to a digital voltmeter. The strains in the tie bars were obtained from two foil type strain gages mounted diametrically from one another on the rod. Loads were applied in 200 pound

increments from zero to 1000 pounds and in 500 pound increments from 1000 pounds to failure. Strains and deflections were recorded after each load increment.

lest Results

The load deflection curves for the six tests are shown in Figures 2 through 4. The ultimate load and maximum deflection for the six tests are shown in Table 2

- Ultimate Strength

Comparing the ultimate loads obtained for equal size tie rods, it appears that the greater preload reduces the ultimate capacity for the $^{3/8}\mbox{``and }1/2\mbox{``tie rods.}$ This result is due to the fact that these rods to not have a strain hardening capability. In each of these cases, the specimens failed in the root of the threads at the turnbuckle location. The stress concentration at that point and the lack of strain hardening Caused a relatively brittle type behavior at failure. The stress in the rods at the gage location was only 88,000 psi and 84,000 psi respectively at failure. Thus away from the stress concentration area neither of the bars yielded prior to failure. The hot rolled 5/8 inch bars behaved quite differently. The preload did not appear to effect the ultimate strength. In fact the 5/8 inch bars were never failed. The system simply kept on deforming. The tests were finally discontinued at a deflection of 5 inches. The strains in the tie rods were well into the plastic region at that time. Thus, for bar exhibiting strain hardening characteristics, one can calculate the ultimate strength quite easily. The capacity of the tie rod can be computed and its proper

force component added to the ultimate capacity of the diaphragm. This can be done since both have compatible load deflection curves. This procedure is analogous to finding the ultimate moment capacity of a structural column assemblage knowing the M-O relationships for the columns entering the joint.

For the cold drawn rods the ultimate strength cannot be predicted unless the complete load-deformation characteristics of the bar is known. That is, if the nominal strain in the rod is known at failure (failure occurring in the thread root) the deformation at failure of the bar could then be determined. The capacity of the diaphragm could then be determined for this deformation by using the load-deformation curve for the diaphragm. The two capacities could then be added to obtain the ultimate capacity.

- Stiffness Behavior

Shown in Tables 3 to 8 are the load distribution results obtained from the tests. The results are tabulated only for the elastic portion of each test. Shown in the second column are the experimentally obtained forces (horizontal component) for the rods. The predicted forces in the rods are shown in column four. These forces were calculated by a simple stiffness analysis of the system, i.e., knowing the stiffnesses of the panels and bars the force is distributed. The portion of the load in the panel is shown in column three. Generally, at all load levels the percent error as shown in column five was less than 15 per cent. Test number two gave erroneous results. One of the gages was damaged during construction of the panel assembly, thus, the bending effects could

not be eliminated. The stiffness ratios (bar to panel) were 1.7, 3.0, and 4.7 for the 3/8", 1/2" and 5/8" bars. Many metal diaphragms have shear stiffnesses in excess of 5000 pounds per inch and thus better load sharing capabilities could be expected.

Conclusions

It is assumed in conclusions 1 and 2 listed below that the loaddeformation curve for the light gage diaphragm has been previously determined.

- The distribution of applied shear load between metal diaphragms and the tie rod braces can be analytically determined with sufficient accuracy for design purposes.
- 2. An ultimate strength design approach of coupled diaphragm I-braced systems can be used for systems using hot rolled tie bars. The ultimate strength for these systems can be accurately predicted. However, for systems using cold drawn tie bars an elastic design procedure would be necessary since the ultimate strength of such systems is not easily predicted.
- 3. Initial tightness of tie bars between 0 and 20% of the bar yield load does not affect load distribution in systems using either hot rolled or cold drawn ties. Greater preload does appear to detrimentally affect the ultimate strength of the coupled system using cold drawn bars. This same detrimental affect would, however, be expected in uncoupled systems, i.e., simple tie rod action.

Acknowledgements

The authors wish to express their thanks to Butler Manufacturing Company for supplying the materials for this test program and to Messrs. Tom LaPorte, Gary Kiser and Tom Lukaszewicz, students at the University of Wisconsin-Milwaukee, for their help in conducting these tests.

BAR TYPE	YIELD STRESS (KSI)	TENSILE STRENGTH (KSI)	PERCENT ELONGATION
3/8" •	102.75	103.00	6,9
1/2" •	94.00	95.00	7.1
/8" •	46.35	78,00	22

Table 1. Physical Test Results of the Rod Steels.

TEST	ULTIMATE LOAD POUNDS	MAXIMUM DEFLECTION INCHES
3/8" _{\$\$\phi\$ Rod \$\$\preload\$}	8,480	0.800
3/8" o Rod 20% Preload	7,000	0.860
1/2" o Road 5% Preload	11,500	0.750
1/2" ¢ Road 20% Preload	10,200	0.697
5/8" Road 5% Preload	14,000	Test Discontinued at 5.00" Displacemen
5/8" Rod 20% Preload	14,500	Test Discontinued at 5.00" Displacement

Table 2. Ultimate Loads and Maximum Deflections.

APPLIED LOAD	HORIZONTAL COMPONENT OF BAR FORCE (MEA- SURED)	LOAD IN DIAPHRAGM	HORIZONTAL COMPONENT OF BAR FORCE (CALCULATED)	PERCENT ERROR
POUNDS	POUNDS	POUNDS	POUNDS	
200	144	56	127	+13,38
004	240	160	254	- 5.51
009	349	251	381	- 8.40
800	#S#	346	508	-10.63
1000	573	427	635	9.16
1500	832	899	953	-12.91
2000	1132	898	1270	-10.87
2500	3474	1026	1590	- 7.30
3000	1829	1711	1905	- 3.99
3200	2211	1289	2220	- 0.41
0004	2564	1436	2540	+ 0.95
4500	2992	1508	2860	+ 4.62
2000	3490	1510	3180	+ 9.75
5500	3795	1705	3500	+ 8.43

Table 3. Percent Error between Measured and Calculated Bar Forces

(3/8" Bar, 5% Preload)

POUNDS	HORIZONTAL COMPONENT OF BAR FORCE (MEASURED) POUNDS	LOAD IN DIAPHRAGM POUNDS	HORIZONTAL COMPONENT OF BAR FORCE (CALCULATED) POUNDS	PERCENT ERROR
004	75	325	254	-70.47
600	242	358	381	-36.48
800	401	399	508	-21.06
1000	565	435	635	-11.02
1500	796	536	953	+ 1.15
2000	1402	598	1270	+10.39
2500	1885	615	1590	+18.55
3000	2294	706	1905	+20.42
3500	2717	783	2220	+22.39
000#	3168	832	2540	+24.72
4500	3623	877	2860	+26.68

Table 4. Percent Error between Measured and Calculated Bar Forces

*Errors based on the results of one strain gage, i.e., bending of the bar was uncompensated. (3/8" Bar, 20% Preload)

PERCENT ERROR	-24,89	-41.00	- 6.53	+ 2.04	+ 6.80	+ 8.27	+ 9.73	+10.90	+13.43	+14.79	+13.68	+12.46	+13.36	+13.89	+13.73	+14.72
HORIZONTAL COMPONENT OF BAR FORCE (CALCULATED) POUNDS	450	009	750	1125	1500	1875	2250	2625	3000	3375	3750	4125	4500	4875	5250	5625
LOAD IN DIAPHRAGM POUNDS	262	456	299	352	398	470	521	583	597	626	737	861	668	846	1029	1047
HORIZONTAL COMPONENT OF BAR FORCE (MEASURED) POUNDS	338	344	701	1148	1602	2030	2469	2911	3403	3874	4263	4639	5101	5552	5971	6453
APPLIED LOAD POUNDS	009	800	1000	1500	2000	2500	3000	3500	0004	4500	2000	2500	0009	6500	7000	7500

Table 5. Percent Error between Measured and Calculated Bar Forces

(1/2" Bar, 5% Preload)

			_		_												
PERCENT ERROR	+19.33	+10.33	+10.66	+ 6.83	+13.86	+11.20	+13.86	+14.40	+14.98	+15.20	+17.23	+15.88	+15.97	+16.85	+29.73	+20.02	+20.10
HORIZONTAL COMPONENT OF BAR FORCE (CALCULATED) POUNDS	150	300	#50	009	750	1125	1500	1875	2250	2625	3000	3375	3750	4125	4200	4875	5250
LOAD IN DIAPHRAGM POUNDS	21	69	102	159	146	249	292	355	413	476	483	586	651	680	672	649	695
HORIZOMTAL COMPONENT OF BAR FORCE (MEASURED) POUNDS	179	331	864	641	854	1251	1708	2145	2587	3024	3517	3911	1349	4820	5338	5851	6305
APPLIED LOAD POUNDS	200	004	009	800	1000	1500	2000	2500	3000	3500	0004	4500	2000	2500	0009	6500	2000

Table 6. Percent Error between Measured and Calculated Bar Forces (1/2" Bar, 20% Preload)

VT PERCENT ERROR	-12.12	+ 0.61	+ 5.66	+ 5.31	+ 8.62	+11.50	+11.34	+10.29	+11.19	+11.74	+12.88	+13.64	+13.52	+13.86	+15.39
HORIZONTAL COMPONENT OF BAR FORCE (CALCULATED)	165	329	961	629	824	1235	1649	2060	2475	2880	3300	3710	4120	4530	4950
LOAD IN DIAPHRAGM	55	69	77	106	105	123	164	238	248	282	275	284	323	342	288
HORIZONTAL COMPONENT OF BAR FORCE (MEASURED)	145	331	523	469	895	1377	1836	2272	2752	3218	3725	4216	4677	5158	5712
APPLIED LOAD	200	400	009	800	1000	1500	2000	2500	3000	3500	0004	4500	2000	2500	0009

Table 7. Percent Error between Measured and Calculated Bar Forces (5/8" Bar, 5% Preload)

PERCENT ERROR	-62.42	-40.12	-23,84	-18.36	-15,78	- 7.85	- 3.9u	0.0	+ 3.31	+ 2.26	+ 5.06	+ 5,71	+ 9.20	+ 6.56	+ 7.82	+ 8.67
HORIZONTAL COMPONENT OF BAR FORCE (CALCULATED)	165	329	495	659	824	1235	1649	2060	2475	2880	3300	3710	4120	4530	#850	5350
LOAD IN DIAPHRAGM POUNDS	138	203	223	262	306	362	416	#39	1443	555	533	578	501	673	663	989
HORIZONTAL COMPONENT OF BAR FORCE (MEASURED)	62	197	377	538	ħ69	1138	1584	2061	2557	2945	3467	3922	6611	4827	5337	5814
APPLIED LOAD POUNDS	200	001	600	800	1000	1500	2000	2500	3000	3500	0004	#200	2000	2500	0009	6500

Table 8. Percent Error between Measured and Calculated Bar Forces

(5/8" Bar, 20% Preload)

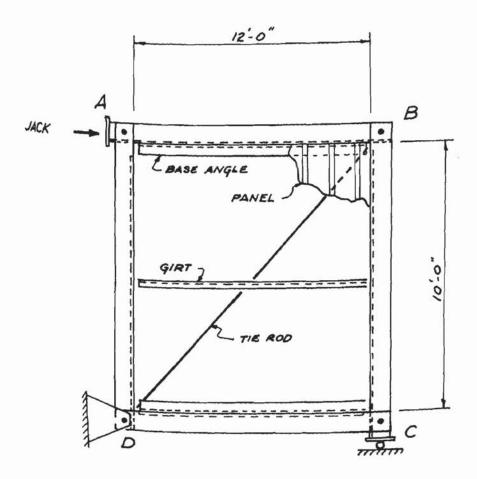
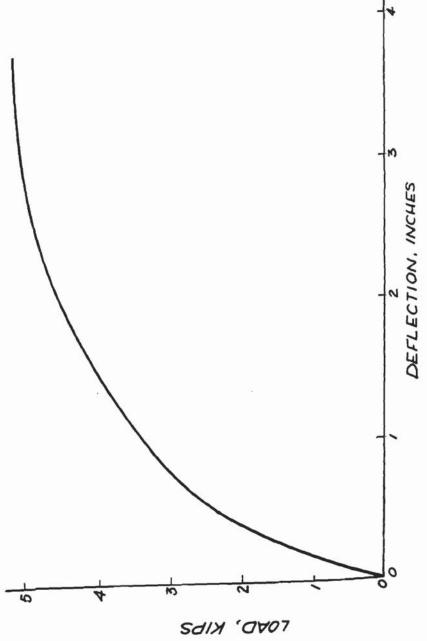



FIG. 1 TEST FRAME

P-A CURVE 24 GA. DIAPHRAGM

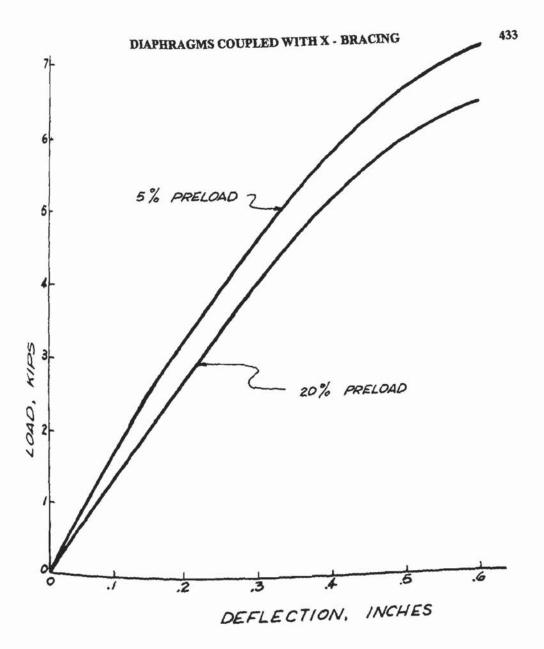


FIG. 3 P-A CURVES 3/8" ROD

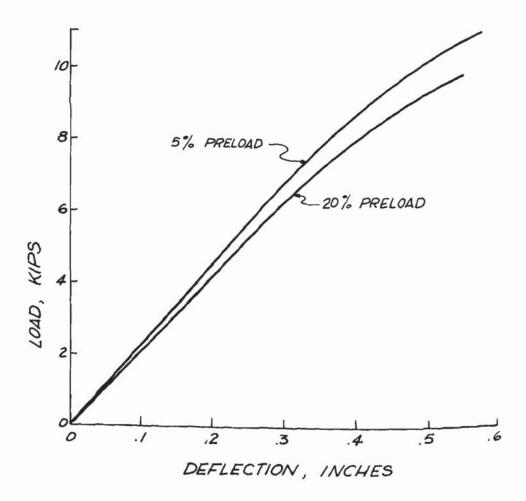


FIG.4 P-A CURVES 1/2" ROD

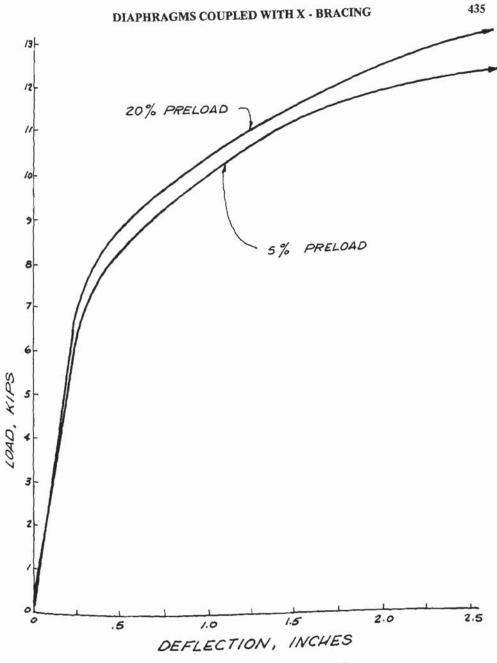


FIG. 5 P-A CURVES 5/8 ROD