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Sixteenth International Specialty Conference on Cold-Formed Steel Structures 
Orlando, Florida USA, October 17-18, 2002 

OPTIMUM DESIGN OF COLD-FORMED STEEL Z-SHAPE PURLINS 
USING A GENETIC ALGORITHM 

Wei LUI, Pentti Miikeliiinen2 and Jyrki Keste 

Abstract 

In this paper, a genetic algorithm is applied to optimize the dimensions of cold-formed Z-shape 
purl ins continuous over two spans under gravity load. The optimization criterion is to maximize 
the load resistance per cross-section and the design variables are chosen from the discrete values 
based on the manufacturing requirements. Purlins are designed in accordance with Eurocode 3, 
Part 1.3. In addition, the modified Eurocode 3 method, in which the elastic local buckling stress 
and distortional buckling stress calculated using Finite Strip Method (FSM) are integrated into 
the design process, is used to determine the effective section properties. The results are compared 
with those obtained using Eurocode 3 method. 

Introduction 

Many folds along the flange and web, and the use of multiple lip stiffeners in the cross-section of 
cold-formed purlins make the section very resistant to local buckling and less prone to twist 
under uplift wind load and gravity load. The multiple choices of the cross-section raise the 
question of the optimal shape. In this paper, a Genetic Algorithm (GA) is used to optimize the 
dimensions of the Z-shape purlins continuous over two spans under gravity load. 

GA is a general-purpose, derivative-free, stochastic search algorithm (Cogan, 2001 and Mitchell, 
1998) and starts by randomly choosing an initial population that consists of candidate solutions 
to the problem at hand. Each individual in the population is characterized by a fixed length 
binary bit string, which is called chromosome. These chromosomes are evaluated by means of a 
fitness function. Combining the fittest individuals from the previous population, a new 
generation of chromosomes is created. Evolutionary operators such as selection, crossover, and 
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mutation are used to create this new population. Besides, Elitism, which is a method that copies 
the best chromosome or a few better chromosomes to the new population, might be incorporated 
into the algorithm to avoid losing the best individual. This process continues until the specified 
level of fitness is reached. 

In this paper, purl ins are designed in accordance with Eurocode 3, Part 1.3 (ENV, 1996). In 
addition, the modified Eurocode 3 method, in which the elastic local buckling stress and 
distortional buckling stress calculated using Finite Strip Method (FSM) are integrated into the 
process, is used to determine the effective section properties. The results based on these two 
design methods are compared. 

GA-Based Design 

The Z-shape purl in is assumed to be continuous over two spans and under the gravity load. The 
purlin is connected to a sheeting at the wider flange and the dimensions of the cross-section are 
shown in Figure 1 where bl is the width of top (wider) flange; b2 is the width of the bottom 
flange; c is the depth of the lip; h is the height of the cross-section; t is the thickness of the 
cross-section and L is the span of the purlin. The width of top flange is assumed to be 6 mm 
(0.24 in.) wider than that of the bottom flange. 

In 

1 

h% 

J71 
I 

I f 

L 

Figure 1 Dimensions of Z-shape purlin continuous over two spans under gravity load 

In the optimization process, the width of the top flange, bl , and the ratio of c to b2 are chosen as 
the design variables. The possible values for the design variables are given in Table 1. 
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Table 1 Values for design variables 

Design variables Possible values 
Width of the top flange bl from 40 mm (1.57 in.) to 100 mm (3.94 in.) with step 1 mm 

(0.04 in.) 
Ratio of c to b2 from .2 to .6 with step .01 

In Eurocode 3, Part 1.3, the free flange is considered as a beam on an elastic foundation. When 
the purlin is continuous over two spans, it should satisfy the following criteria for cross-section 
resistance. For the restrained flange 

(1) 

and for the free flange 

(2) 

The stability of the free flange at the internal support should be checked using the following 
equation: 

(3) 

where M y •Sd is the in-plane bending moment; W~ff.Y is the effective section modulus of the 

cross-section for bending about y-y axis; M fz is the bending moment in the free flange due to 

the lateral load; Wfz is the gross elastic section modulus of the free flange plus 1/6 of the web 

height, for bending about the z-z axis; X is the reduction factor for flexural buckling of the free 

flange and r M , r MI are the partial safety factors. 

Since the bending moments in the above formulas are functions of distributed load q, the 
objective of the optimization is to obtain the optimum dimensions that maximize the distributed 
load per cross section when the material reaches its yield strength, i.e. 

(4) 
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subjected to the geometrical constraints, which are specified in Eurocode 3, and fabrication 
constraints as following 

hit::; 500, bJt::; 60, 

200 mm::; bl + b2 + 2· c + h ::; 625 mm 
(5) 

where Ag is the area of the gross cross-section. Since in the further optimization process, the 

span of the purlin is set to a fixed value for each case, the span of the purl in is not included into 
the objective function. 

Because a GA is directly used for solving an unconstrained optimization problem, the 
constrained optimization problem mentioned above should be transformed into an unconstrained 
problem by including a penalty function. In this analysis, a quadratic penalty function is used, 
and the corresponding unconstrained optimization problem becomes 

{
q/A -KK ·n·CC 

Maximize F = ° g 

whenq/A g > KK ·n·CC 

otherwise 
(6) 

where F is the fitness function and CC = L c, is the constraint violation function, in which c, 

are the constraint violations given by 

c, = {o 2 

a, 

ifa, ::;0 

otherwise 

where a, are the normalized constraints provided by 

(7) 

(8) 

In addition, n is the coefficient that makes the values of q/ Ag and CC at the same order to 

avoid one value dominating the other. In this analysis, the value of n is defined as 10Lrl-L, so as 
to keep the order of CC one degree lower than that of q/ Ag , in which Lf and Le are the orders 
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of q/ Ag and CC, respectively. Moreover, KK;::: 0 is a coefficient and the solution of the 

penalty problem can be made arbitrarily close to the solution of the original problem by choosing 
KK sufficiently large (Bazaraa et aI., 1993). 

Figure 2 shows how the purlin design is integrated into the GA optimization process. GA-based 
design starts by randomly generating an initial population that is composed of candidate 
solutions to the problem. Each individual in the population is a binary string of fixed length. 
After decoding, these individuals that represent the dimensions of the purlins are sent to the 
purlin design program. The constraints are checked and if the constraints are violated, the penalty 
is applied. By combining the fittest individuals in the previous population, the new generation is 
created using such operators as selection, crossover and mutation. In order to keep the best 
individuals in each generation, the elitism may also be used. This process is continued until the 
specified stopping criteria are satisfied. 

Yes 

Initialization of the f---~ Randomly generate the initial 
parameters population 

L-____________ -. __ ~ 

Purl in design program: 
Calculation of effective section modulus 
Stability of free flange 
Strength of restraint flange 

Check if the constraints are satisfied 

Check if the max. generation is reached 

No ~ 

Output the results 
and stop 

Apply the GA operators 
selection, crossover and mutation 

Figure 2 Integrating purlin design into GA optimization 
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Optimization Based on Eurocode 3 Method 

The GA, which is based on a binary representation, two-point crossover, bit-flip mutation, and 
tournament selection with elitism, is used to optimize the Z-shape purlin with a height of 150 
mm (5.90 in.), a thickness of 1.5 mm (0.06 in.) and a span of 4.5 m (14.76 ft.). The yield strength 
is 350 MPa (50.76 ksi) and the modulus of elasticity is 210 GPa (30457.92 ksi). After the 
parameter analysis, the population size is set to 30, the crossover rate to 0.8 and the mutation rate 
to 0.001. Using these parameters, 10 runs of optimization analysis are performed, in which one 
run is defined as the complete running of the GA. The optimization results are shown in Table 2. 
The optimum dimensions are chosen as those corresponding to the largest value of q/ Ag in the 

10 runs. In addition, Table 2 also lists the value of My / Ag where My is the moment that causes 

the first yield and is defined as My = W.tr,y , fy /r M • 

Table 2 Optimization results for 10 runs 

No. of bl C q/Ag My/Ag Ag 
run (mm) (mm) 

(N/mm/mm 2 ) (N.mm/mm 2 ) (mm 2 ) 

(in.) (in.) 
(lb/in./ sq. in.) (lb. in/sq. in.) (sq. in.) 

1 53 25.38 0.003375 12515.32 430.58 
(2.09) (1.00) Jl2.43:3) (71461.22) (0.667) 

2 56 26.50 0.003370 12428.26 442.61 
(2.20) (1.04) (12.414) (70964.12) (0.686) 

3 53 23.97 0.003373 12551.13 426.47 
(2.09) (0.94) (12.426) (71665.70) (0.661) 

4 54 24.48 0.003375 12527.59 430.88 
(2.12) (0.96) (12.433) (71531.29) (0.668) 

5 54 25.44 0.003376 12503.55 433.68 
(2.12) (1.00) (l2.43~ (71394.02) (0.672) 

6 56 25.50 0.003369 12454.37 439.69 
(2.20) (1.00) (12.411) (71113.21) (0.682) 

7 53 23,97 0.003373 12551.13 426.47 
(2.09) (0.94) J)2.42~ (71665.70) (0.661) 

8 53 25.38 0.003375 12515.32 430.58 
(2.09) (1.00) (12.433) (71461.22) (0.667) 

9 54 25.92 0.003376 12489.93 435.08 
(2.12) (1.02) (12.436) (71316.25) (0.674) 

10 54 24.48 0.003375 12527.59 430.88 
(2.12) (0.96) 112.43:3) (71531.29) (0.668) 
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The optimization results are verified by investigating the load resistance of the same pUrlin with 
the variation of the width of the flange and the depth of the lip. The width of the wider flange is 
varied from 40 mm (1.57 in.) to 100 mm (3.97 in.) with a step of 1 mm (0.039 in.) and the ratio 
of the depth of the lip to the width ofthe shorter flange is varied from .2 to .6 with a step of .01. 
The dimensions corresponds to the maximum value of q/ Ag are chosen as the optimums during 

this variation and are compared with those obtained using GA in Table 3. 

Table 3 Comparison of optimization results by calculation to that by GA 

Calculation bl b2 a = c/b2 c q/Ag 

methods (mm) (mm) (mm) 
(N/mm/mm2 ) 

(in.) (in.) (in.) 
Opt-Cal 54 48 0.54 25.92 0.003376 

(2.12) (1.89) (1.02) (12.436) 
Opt-GA 54 48 0.54 25.92 0.003376 

(2.12) (1.89) (1.02) (12.436) 
\ 

In the table, the 'Opt-Cal' represents the calculation based on parameter variations and 'Opt-GA' 
represents the calculation based on GA. The maximum value of q/ Ag for Opt-GA is the same as 

that of Opt-Cal. Thus, the computer source code for optimization and the selected parameters for 
GA are verified and can be used for further analysis. 

Integrating the Modified Eurocode 3 Method into Optimization 

The modified Eurocode 3 method integrates elastic local and distortional buckling stresses 
calculated using the FSM analysis into the design procedure based on Eurocode 3. In this 
process, the reduction factor, p, is calculated according to the elastic local buckling stress from 
the FSM analysis. The effective width of the lip, flange and web are all calculated based on this 
value. Similarly, the reduction factor, X , for reduced thickness due to the partially effective of 
edge or intermediate stiffener is calculated using the distortional buckling stress from the FSM 
analysis. By doing so, the interaction between the lip, the flange and the web are integrated due 
to the treatment of the section as a whole. 

The elastic local and distortional buckling stresses are calculated using the computer program 
CUFSM, which is developed by Schafer (Schafer, 2002) and can be freely downloaded from the 
website. However, there might exist an indistinct buckling mode for some sections, i.e. there is 
no obvious minimum in the buckling curve for the local buckling mode or the distortional 
buckling mode. Thus, in either of these cases the design procedure is based on Eurocode 3. 
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The elastic buckling stresses calculated using Finite Strip Method (FSM) are shown in Table 4 
and are compared to those calculated using the EC3 method (EC 3) in Table 5. The comparison 
is based on the ratio ofEC 3 to FSM with a web height of 100 mm (3.94 in.) and a thickness of2 
mm (0.08 in.). The elastic local buckling stress for the flange, lip and web are all compared to the 
same local buckling stress in FSM. 

Table 4 Elastic buckling stresses obtained using FSM 

Width of flange c/b2 = 0.2 c/b2 = 0.4 c/b2 = 0.6 
(mm) (MPa) (MPa) (MPa) 
(in.) (hi) (hi) (hi) 

local dist. local dist. local dist. 
34 -- 835.00 2093.10 1263.90 2055.00 1438.80 

(1.34) (121.10) (303.57) (183.31) (298.04) (208.67) 

44 -- 657.80 1751.80 1091.00 1458.50 1340.80 
(1.73) (95.40) (254.07) (158.23) (211.53) (194.46) 

54 1214.60 549.42 1244.50 982.36 1084.20 1258.80 
(2.12) (176.16) (79.68) (180.49) (142.47) (157.24) (182.57) 

64 893.07 480.33 902.26 895.11 860.12 1223.00 
(2.52) (129.52) (69.66) (130.86) (129.82) (124.74) (177.37) 

74 676.79 432.23 684.97 835.45 693.64 1213.00 
(2.91) (98.16) (62.69) (99.34) (121.17) (100.60) (175.92) 

84 529.81 388.53 538.66 788.94 555.51 1223.00 
(3.31) (76.84) (56.35) (78.12) (114.42) (80.57) (177.37) 

94 425.06 358.14 434.68 751.75 448.49 --
(3.70) (61.65) (51.94) (63.04) (109.03) (65.04) 

Table 4 shows that when the ratio of c to b2 is .2 and the width of the bottom flange is varied 
from 34 mm (1.34 in.) to 44 mm (1.73 in.), the distortional buckling mode is the critical failure 
mode and there is no local mode occurred. When the width of the flange is varied from 34 mm 
(1.34 in.) to 64 mm (2.52 in.), the web buckling is the critical local mode. Thus, the increasing 
the ratio of c to b2 from .2 to .4 does not improve the elastic local buckling stress and if this 
ratio is further increased .6, lip buckling becomes the critical local mode. When the width of the 
flange exceeds 64 mm (2.52 in.), the local mode starts to transform from web buckling to flange 
buckling. As far as the distortional buckling stress is concerned, the decrease of the depth of the 
lip and the increase of the width of the flange decrease its value. If the depth of the lip and the 
width of the flange are not large enough, distortional buckling is the critical failure mode. 
However, when the width of the flange is increased too much, the flange buckling will become 
critical. In addition, when the ratio of c to b2 is .6 and the width of the flange is 94 mm (3.70 
in.), the distortional buckling is not distinct. 
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Table 5 Comparison of elastic buckling stress of Eurocode 3 with FSM (EC3/ FSM) 

Width of flange 
c/b2 = 0.2 c/b2 = 0.4 c/b2 = 0.6 (mm) 

(in.) flanae lip web dist. flanae lip web dist. flanlle lip web dist. 
34 -- -- -- 0.49 1.36 1.32 0.78 0.69 1.38 0.78 0.81 0.88 

(1.34) 
44 -- -- -- 0.53 0.94 0.91 0.92 0.68 1.13 0.64 1.14 0.79 

(1.73) 
54 0.89 3.11 1.16 0.55 0.87 0.84 1.29 0.65 0.99 0.56 1.51 0.71 

(2.12) 
64 0.85 2.92 1.51 0.56 0.84 0.81 1.75 0.65 0.88 0.50 1.88 0.60 

(2.52) 
74 0.83 2.82 1.89 0.57 0.82 0.79 2.20 0.60 0.81 0.46 2.24 0.51 

(2.91) 
84 0.82 2.75 2.29 0.58 0.80 0.77 2.64 0.56 0.78 0.45 2.66 0.44 

(3.31) 
94 0.81 2.70 2.73 0.59 0.79 0.76 3.10 0.52 0.77 0.44 3.16 --

(3.70) 

In Eurocode 3, the interactions between the elements are not considered. Thus, Table 5 shows 
that for most of the cases, the elastic buckling stresses calculated using EC 3 are lower than those 
obtained using FSM except for the elastic buckling stress of the web when the width of the 
flange is larger than 44 mm (1.73 in.). For these sections, the elastic buckling stresses of the web 
calculated using EC 3 are higher. This is due to the fact that the local failure mode in FSM is 
flange buckling and this same value is chosen as the elastic buckling stress for the web. For the 
same reason, the elastic buckling stress of the lip calculated using EC 3 is higher when the ratio 
of c to b2 is .2. 

Figure 3 illustrates the comparison of the moment efficiency, My / Ag , and load 

efficiency, q/ Ag , calculated using Eurocode 3 to those obtained using the modified Eurocode 3 

method. For both moment efficiency and load efficiency, the modified Eurocode 3 shows higher 
values. 

Table 6 lists the comparison of optimization results obtained using GA based on Eurocode 3 
(EC3) to those on modified Eurocode 3 method (EC3_M). Table 5 indicates that optimum 
dimensions for 'EC3_M' are different from those for 'EC3' but the difference for this case is not 
too large and the value of q/ Ag for 'EC3_M' is about 0.85 % higher than that of 'EC3'. 
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Figure3 Comparison of Eurocode 3 method (EC3) with modified Eurocode 3 method 
(EC3_M) 

Table 6 Comparison of optimization results 

Design b, c c q/Ag M y/Ag - (mm) methods (mm) b2 (N/mm/mm 2 ) (N.mm/mm 2 ) 

(in.) (in.) (lb/in.j sq. in.) Vb . in/sq. in.) 
EC3 46 0.44 17.60 0.009161 9484,060 

(1,81) (0.693) (33.75) (54153.33) 

EC3 M 48 0.42 17.64 0.009239 9682.177 
(1.89) (0.694) (34.03) (55284.57) 

Conclusions 

As demonstrated in this paper, the Genetic Algorithm (GA) can be used as an optimization tool 
to obtain the optimum dimensions of the Z-shape purl ins under gravity load. This GA-based 
design method can also be applied to the optimization of other shapes of cold-formed steel 
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purl ins and other cold-formed steel members. In addition, the comparison of the modified 
Eurocode 3 method to the Eurocode 3 method indicates that the modified Eurocode 3 method 
shows higher values due to the inclusion of the interaction between the elements. However, there 
is no big difference in the optimum dimension in the given example. For other cross-sections, 
further analyses need to be carried out. 
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Appendix.-N otations 

Ag Gross area of cross-section 

bl Width of top flange 

b2 Width of bottom flange 

CC Sum of constraint violation function 

c Depth of the lip 

c; Constraint violation function 

F Fitness function 

fy Yield stress 

h Height of the cross-section 

L Span of the purlin 



Mfz 

q 

x 

p 
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Bending moment about z-z axis in the free flange due to lateral load 

In-plane bending moment 

Applied load 

Thickness of the cross-section 

Effective section modulus for bending about y-y axis 

Gross section modulus of the free flange plus 1/6 web height for bending 

about z-z axis 

Normalized constraints 

Reduction factor for flexural buckling of the free flange 

Partial safety factor 

Reduction factor to determine the effective width 
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