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Abstract 

 

Roof deck construction often incorporates cold-formed steel panels that are 

connected to the underlying framing with the use of arc-spot welds. The welds 

are commonly located in areas where multiple layers of roof deck exist, such as 

at sidelaps or endlaps. CSA S136 restricts the use of multi-layer connections to 

being less than 2.5 mm thick; as well, the thickness of the supporting steel must 

exceed 2.5 times the aggregate thickness of the deck. In effect, the standard does 

not allow for the use of arc-spot welds for 18 ga (1.21 mm) and 16 ga (1.52 mm) 

roof deck panels. Nonetheless, it is not unusual for these deck panels to be used 

in construction; a solution to the arc-spot weld restrictions and a new welding 

protocol was needed. This situation led to the initiation of a research program on 

the shear resistance and tension resistance of multi-layer arc spot welds. The 

paper describes the welding protocol that was developed to obtain adequate 

quality and size arc-spot welds in up to four layers of 16 ga. deck. Weld test 

specimens were fabricated through one, two or four layers of steel sheets with 

thicknesses ranging from 22 ga. (0.76 mm) to 16 ga. (1.52 mm). Various sheet 

steel / weld configurations found in roof deck construction were included. A 

total of 72 tension tests and 107 shear tests were completed. Adequate weld 

quality could be achieved in all cases except that welds were undersized when 

the total sheet thickness becomes twice as large as the thickness of the 

underlying material. The results were compared with the current provisions of 

CSA S136 and modifications to the existing design equations are recommended. 
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Introduction 

 

In North America roof deck diaphragms are commonly used as part of the lateral 

load resisting system. These diaphragms are composed of corrugated steel 

panels that may be connected to the underlying structure by arc-spot welds. Due 

to uplift actions caused by wind loads the welded connections must also resist 

tension forces. At the perimeter of each panel, the sidelap and endlap fasteners 

connect adjacent panels to the structure; this can result in connections 

comprising two and four layers of deck (Fig. 1).  

Deck
Sheet

Ext. Pressure

Int. Pressure
Weld at 4 deck
panel overlap

 (typ.)

In-Plane Shear

Weld at 2 deck
panel overlap (typ.)End Lap

Joint

Side Lap
Joint

Joist
(typ.)

Weld at 1 deck
panel (typ.)

Weld at 2 deck
panel (typ.)

Weld

Deck Sheet

 
Figure 1: Steel deck panel connections and loading  

CSA S136 (2007) contains provisions to determine the shear resistance and 

tensile resistance of arc-spot welds. These provisions, mainly based on tests that 

were carried out using thin deck (22 & 20 ga. (0.76 mm & 0.91 mm)), can be 

traced to the work of Peköz & McGuire (1979) and LaBoube & Yu (1991). CSA 

S136 limits the total thickness of sheet steel (deck thickness times the number of 

deck layers) for an arc spot weld connection to 3.81 mm. Section E2.2a of 

Appendix B (Canada) states that the maximum single sheet thickness shall be 

2.0 mm and that the maximum aggregate sheet thickness of double sheets shall 

be 2.5 mm. The thickness of the supporting member must be at least 2.5 times 

the aggregate steel sheet thickness. Furthermore, the 2005 NBCC (NRCC, 2005) 

and CSA S16 (2001) necessitate the use of a capacity based seismic design 

approach which requires the roof deck diaphragm to have a shear resistance 

greater than the probable resistance of the vertical bracing system (Rogers & 

Tremblay, 2010). Consequently, the use of 18 (1.21 mm) and 16 ga. (1.52 mm) 

deck has become more common as stronger diaphragms are required. 

Snow & Easterling (2008) performed shear tests on single, double and four-layer 

arc-spot weld connections for deck ranging from 0.76 mm to 1.52 mm. These 

deck-to-frame connections were fabricated using a shielded metal arc welding 

(SMAW) procedure that involved an E4310 (E6010) electrode. It was concluded 

that arc-spot welds can be adequately fabricated in single and double layers of 

sheet steel if the total thickness does not exceed 3.81 mm. It was also reported 
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that welds with sufficient penetration could not be fabricated in four layers of 

sheet steel. The 3.81 mm limit is exceeded when 16 and 18 ga. deck panels in 

the four layer sidelap/endlap configuration are required.  

This research was initiated due to the lack of Canadian design information for 

arc-spot weld connections for the thicker deck panels. The scope of research was 

set to address the performance of multi-layer connections. The objective was to 

first identify a procedure that could be used to weld the connections, and to then 

verify if the current design provisions in CSA S136 for arc-spot welds are 

applicable to these thick deck sheet assemblies. The scope of research involved 

the testing of arc-spot weld connections fabricated through one, two or four 

layers of steel sheets with thicknesses ranging from 22 ga. (0.76 mm) to 16 ga. 

(1.52 mm). The findings of this research project are summarized herein; details 

on the test program can be found in Guenfoud et al. (2010). 

Experimental Program 

Welding Protocol and Procedure 

In collaboration with a welding engineer and experienced certified welders a 

SMAW procedure for multi-overlap deck connections was first established; the 

key parameters affecting weld quality were identified as being the electrode 

type, the current setting and the welding technique. E4311 (E6011) electrodes 

were selected because they provided better penetration than other commonly 

used electrodes as observed by Peuler et al. (2002). Preliminary welding 

sessions were organized to verify the quality of welds fabricated and to refine 

the welding procedure. The final parameters used for the fabrication of the test 

specimens were: a) Circular welds having a visible diameter from 16 mm to 19 

mm, b) 3.2 mm (1/8 in.) diameter E4311 (E6011) electrodes, and c) AC current 

set at 195 A when welding 16 and 18 ga. steel sheets, and 160 A when welding 

20 and 22 ga. steel sheets. The welding procedure, similar to that elaborated by 

Peuler (2002), was selected because it facilitated piercing through thicker sheets 

while minimizing porosity. The weld was performed in the flat position. Once 

the arc was sparked, the electrode was pushed down vertically through the 

material to drill through the sheets until proper fusion of the underlying hot 

rolled steel was obtained. The electrode was then gradually withdrawn with a 

circular motion to allow the hole to be filled with molten metal. The arc was 

then broken vertically. The proposed settings represent laboratory conditions; 

field conditions might use this as a starting point but the final choice for 

optimum methods can vary depending on ambient conditions, welding 

equipment and the preferences of the welder.  
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Test Specimens and Set-up 

The test program (Fig. 2) involved the two loading conditions encountered in 

roof deck construction, i.e. in-plane shear due to lateral loads and tension due to 

uplift wind pressure. Shear and tension connection test specimens were 

fabricated using four nominal sheet steel thicknesses: 0.76, 0.91, 1.21 and 1.52 

mm. All specimens were made from galvanized ASTM A653 SS230 sheet steel 

with zinc thickness corresponding to Z275 (275 g/m
2
, total of two faces).  

            

Weld
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Pretensioned
12.7 mm Bolts

Moveable
L-shaped

Part

P

Guide

Brass
Shim

Specimen

Guide

 A

Section A

Fixed
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Figure 2: Steel deck panel shear and tension test set-up  

 
Figure 3: Steel deck panel shear test specimens 

 
Figure 4: Steel deck panel tension test specimens 
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The shear specimens were made of two 102 x 280 mm overlapped steel sheets 

connected by a single weld (Fig. 3). To represent the underlying joist top chord 

or beam top flange, a 51 mm x 76 mm plate with thicknesses of 6.4 mm and 3.2 

mm was used. These plates were made of CSA G40.21-350W steel with a one-

coat primer. The set-up used to test the tension strength of the arc-spot welds 

was similar to that developed by LaBoube & Yu (1991). Steel sheets (100 mm 

long) were cut and cold bent to model one flute from the common 38 mm deep x 

914 mm wide trapezoidal deck profile with flutes spaced 152 mm o/c (Fig. 4). 

At the bottom flange of the simulated flute, the sheets were welded to hot rolled 

CSA G40.21-350W steel L63x63 angles (one-coat primer) with thicknesses of 

6.4 mm (1/4") and 3.2 mm (1/8") representing typical steel joist top chords.  

Loading and Displacement Protocols 

A monotonic loading protocol was used for all tension tests and 76 shear tests. 

The remaining 31 shear tests were carried out using a reversed cyclic loading 

protocol. Prior to running the cyclic tests, the data from the monotonic shear 

tests were compiled to provide an estimate of the average ultimate shear strength 

(Pu,avg.) for each connection configuration from which a loading protocol 

specific to each configuration was then determined.  

Test Matrix 

A listing of the connection test configurations is provided in Table 1. The first 

letter of the specimen number relates to the loading (M = monotonic, C = cyclic, 

and T = tension), “xx” is the gauge, followed by the number of plies, and “z” is 

the specimen number in a series. The letter “P” or “T” is added to identify the 

shear specimens at the perimeter of the diaphragm and when the thinner (3.2 

mm) underlying material is used, respectively. The number of specimens is 

associated with a letter that gives the observed failure mode, as discussed below.  

Test Results 

Failure Modes 

Three different failure modes were observed during the shear tests: weld shear 

failure (W), sheet tearing failure (T) and sheet bearing failure (B). Weld shear 

failure is characterized by fracture of the specimen through the weld nugget. 

Small displacements, a sudden loss in resistance and overall brittle behaviour are 

associated with this failure mode. Weld shear occurs mainly for the 

configurations that have a low weld diameter to total thickness ratio. When the 

effective diameter is relatively small compared to the thickness of the sheet steel 
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the critical load causing failure through the weld plane is reached before the 

sheet steel can exhibit significant deformations. When sheet tearing occurs (high 

d/t ratios), the failure initiates on the tension side of the weld and then spreads 

on a line perpendicular to the applied load. Out-of-plane deformations occur in 

the sheet steel on the compression side of the weld. Sheet bearing failure is 

characterized by piling of the steel in front of the weld nugget and by shearing 

of the sheet around the contour of the weld on lines parallel to the applied load.  

During tension strength tests, two failure modes were encountered: weld failure 

(W) and sheet tearing failure (T). Weld failure, associated with small 

displacements, occurred for configurations with low d/t ratios. Sheet tearing is 

characterized by tearing of the sheet steel along the contour of the weld. A 

peeling effect caused by the geometry of the overlap connection was also 

observed.  

Table 1 Test matrix and observed failure modes
1
 

Specimen 

No. 

Sheet thickness (mm) / Gauge 

0.76 / 22 0.91 / 20 1.21 / 18 1.52 / 16 

Mxx2z 

Mxx4z 

4T 

2W+1T+1B 

4T 

2W+1T+1B 

4T 

4W 

4B 

4W 

Mxx2zP 2W+2T 1W+3T 4W 4W 

Mxx2zT 

Mxx4zT 

4T 

2W+1T+1B 

3T 

1W+1T+2B 

4T 

3W 

3W 

3W 

Cxx2z 

Cxx4z 

4T 

1W+1T+2B 

4T 

1W+1T+2B 

4T 

3W 

4B 

4W 

Txx1z 

Txx2z 

Txx4z 

3T 

4T 

3T 

4T 

4T 

1W+3T 

4T 

4T 

1W+3T 

4T 

3W+1T 

3W 

Txx2zT 

Txx4zT 

5T 

4T 

3T 

1W+2T 

3W 

3W 

3T 

3W 
1Note: W = Weld failure, T = Sheet tearing failure, B = Bearing failure. 

Effective Weld Diameter  

In CSA 136 the resistance of welds subject to shear or tension is related to the 

effective weld diameter, deff. The cross-section of the weld nugget typically has a 

conical shape and, therefore, the diameter of the weld decreases over its depth. 

The visual weld diameter, dvis, is measured at the surface of the weld whereas deff 

is located at the failure plane of the weld. The effective weld diameter is 

measured along the mid-thickness of the steel sheets for the four- and two-ply 
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shear specimens. Conversely, deff is at the interface between the cold-formed 

steel sheets and the hot rolled steel for the two-ply shear specimens representing 

an end lap connection to the perimeter beams and for the four-, two- and single-

ply tension specimens. The difference between the visual diameter and the 

effective diameter increases as the total thickness of sheet steel above the 

expected failure plane, t, is increased:  
 

deff = 0.7dvis – 1.5t ≤ 0.55dvis [E2.2.1.2-5] (1) 
 

The effective weld diameter was determined for all shear and tension specimens 

where weld failure occurred. A measure of pitting and porosity was deducted 

from the effective gross weld area to calculate the effective net weld area, Ane, 

which was then used to obtain deff : 
 

4 /eff ned A   (2) 

 
 

a)
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Figure 5 a) Effective weld diameter results; b) Influence of the thickness of the 

underlying plate on the shear strength of two-ply and four-ply specimens  

Equation 1 has previously been found to be conservative because the measured 

effective weld diameters by Peuler (2002) were on average 50% higher than 

predicted. More recently, Snow & Easterling measured effective weld diameters that 

were on average 30% higher than those calculated using Eq. 1. It must be noted that 

the values published by Peuler as well as Snow & Easterling did not include a 

reduction to account for the porosity of the welds. A plot of the data recorded from 

the shear and tension specimens of this test program and the data reported from 

previous studies by Peköz & McGuire, Peuler and Snow & Easterling is provided in 

Fig. 5a. Specimens with “full-time welds” were plotted for the study by Snow & 

Easterling, the time spent making “full-time welds” being the minimum time 

541



required to produce visual, average and effective diameters consistent with the 

dimensions required by the 2001 AISI Specification (AISI 2001). The measured 

values of dvis were used to plot the data from this study. 

The results show that Eq. E2.2.1.2-5 of CSA S136 accurately predicts deff for the 

t/dvis range where tests had previously been carried out. This study also provided 

data in a t/dvis range where few tests had previously been done. Figure 5a shows 

that Eq. E2.2.1.2-5 becomes overly conservative as t/d increases; a lower limit 

should be added if welds are fabricated with a welding procedure using an 

E4311 (E6011) penetrating electrode: 
 

deff = 0.7dvis – 1.5t ,  with  0.4dvis ≤ deff ≤ 0.55dvis  (3) 

 
Influence of the Thickness of the Underlying Framing Material 

The failure modes and ultimate resistance of the shear and tension specimens 

fabricated with 3.2 mm and 6.4 mm framing material were compared. For the 

shear specimens, the failure mode was not influenced by the plate thickness. For 

two-layer specimens, the strength was found not to be affected by the thickness 

of the supporting material, regardless of the sheet thickness (Fig. 5b). The same 

holds true for the four-layer connections made with 22 to 18 ga. steel sheets. 

However, for the 4-layer specimens fabricated with 16 ga. (1.52 mm) material 

and 3.2 mm thick plates, the average measured shear resistance was 32% lower 

than the average measured shear resistance of the 4-layer specimens with 6.4 

mm thick plates (Fig. 5b). The measured dvis and deff were respectively 13% and 

28% lower for specimens fabricated with 3.2 mm thick plates. These results 

show that when the plate material to total sheet steel thickness ratio is less than 

0.5 the welder may experience more difficulty in producing welds with 

consistent effective weld diameters, which can result in reduced and more 

variable connection strength. No shear strength reduction was observed when 

the plate material to total sheet steel thickness ratio was equal to or greater than 

0.7 (four 1.21 mm thick sheets on 3.2 mm plate), which is significantly less than 

the current minimum value of 2.5 specified in Appendix B of CSA S136. 

The thickness of the angle had no influence on the behaviour and strength of the 

tension specimens fabricated with 22 and 20 ga. steel sheets. For specimens with 

18 and 16 ga. steel sheets, a decrease in resistance was observed when 3.2 mm 

thick angles were used. It was observed that the angles deformed upon loading, 

causing stress concentrations along the perimeter of the weld thereby reducing 

the tension resistance of the weld. Such deformations did not occur with the 6.4 

mm thick angles. In OWSJs the local flexibility of top chord angles will depend 

on several factors such as the angle size, the spacing and the stiffness of the joist 
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web members, etc., and it is therefore not possible to prevent angle deformations 

on the sole basis of a minimum angle to total sheet thickness ratio. Further 

research is needed to properly address this issue. In the test specimens, however, 

the average measured visible weld diameter of the 18 and 16 ga. steel sheet 

specimens with 3.2 mm thick angles was 17% smaller than for specimens 

fabricated with thicker underlying angles, leading to a smaller effective weld 

size and reduced capacity, similar to the shear tests. For the 4-layer specimens 

with 3.2 mm thick angles, the average measured Ane of 16 ga. specimens was 

20% less than that of the specimens composed of 18 ga. steel sheets. As such, 

welders may experience difficulty producing quality welds through 4 layers of 

16 ga. (1.52 mm) steel sheet if the angle does not provide an adequate heat sink. 

Analysis of CSA S136 Shear Resistance Equations 

The results of the 76 monotonic shear tests were used to validate the CSA S136 

equations. In tests with weld fracture, the resistance of the specimen is governed 

by the effective diameter of the weld. For sheet failure, the thickness of the steel 

sheets above the plane of maximum shear, and the visible weld diameter 

influence the shear strength. When considering the 33 shear tests with weld 

failure, the comparison of the measured effective weld diameter with the values 

predicted by Eq. E2.2.1.2-5 from CSA S136 provided an average test-to-

predicted ratio of 1.13 with a coefficient of variation of 0.15. Equation E2.2.1.2-

5 accurately predicts the deff for the range of t/dvis corresponding to the shear 

specimens (0.06 < t/dvis < 0.2). Equation 4 is used to evaluate the resistance of 

the connection specimens with regard to the weld shear failure mode: 
 

2

0.75
4


eff

u xx

d
P F


 [E2.2.1.2-1] (4) 

 

Using the nominal tensile strength of the weld metal (Fxx = 430 MPa) and the 

measured deff, the average test-to-predicted resistance ratio for the shear 

specimens that failed due to weld fracture is 1.42 with a coefficient of variation 

of 0.15. This trend is consistent with that obtained by Peköz & McGuire who 

reported an average test-to-predicted ratio of 1.22 with a coefficient of variation 

of 0.30 for similar tests. The relationship between Pu and Eq. E2.2.1.2-1 is 

plotted in Fig. 6. The comparison shows that Eq. 4 consistently under-predicts 

the shear resistance of welded connections for the range of deff examined. This is 

likely caused by the difference between the actual and nominal values of the 

tensile strength of the weld metal. It is difficult to measure Fxx of the weld metal 

as it can vary significantly over the weld failure plane. The results show that Eq. 

E2.2.1.2-1 can safely be used to determine the shear resistance for arc spot weld 

failures in multi-overlap configurations. 
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Figure 6 Relationship between Pu and deff
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Figure 7 Relationship between measured arc spot weld shear strength and t×da 

for: a) Bearing failure; b) Tearing failure  

Equations E2.2.1.2-2 to E2.2.1.2-4 in CSA 136 are used to predict the shear 

strength when shear failure occurs in the sheet material: 

 

( / ) 0.815 :a ufor d t E F  

2.20u a uP td F  [E2.2.1.2-2] (5) 

0.815 ( / ) 1.397 :u a ufor E F d t E F   

0.280 1 5.59
 

  
  

u
u a u

a

E F
P td F

d t
 [E2.2.1.2-3] (6) 

( / ) 1.397 :a ufor d t E F  

1.40u a uP td F  [E2.2.1.2-4] (7) 
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In these equations, da = dvis – t, where t is the thickness of steel above the plane 

of maximum shear in the weld, i.e. the plane where deff was measured for the 

specimen with weld failure, and Fu is the tensile strength of the steel sheet. The 

test data was compared to the predicted values using the measured values of dvis 

and Fu. Of all monotonic shear specimens, 35 were governed by Eq. 5. This 

equation is associated with a bearing failure mode. In Fig. 7a, Eqs. 5 to 7 are 

plotted with the test results and the data by Peköz & McGuire. 

A trend can be observed where the measured resistance is generally higher than 

the predicted resistance. The average test-to-predicted resistance ratio was 1.44 

with a coefficient of variation of 0.14 for the group of specimens tested in this 

experimental program. Likewise, Peköz & McGuire reported an average test-to-

predicted resistance ratio of 1.15 with a coefficient of variation of 0.17 while 

Snow & Easterling reported a ratio of 1.28 with a coefficient of variation of 0.09 

for similar specimens. The difference between the three ratios may be attributed 

to differences in weld quality. Although this data was not recorded, some 

specimens may not have had efficient connectivity along the entire perimeter of 

the weld, which would inevitably lower the resistance of the specimen. When 

analysing the data collected during this experimental program the best fit 

formula to replace equation E2.2.1.2-2 was found to be: 
 

2.40 ( / ) 0.815 : u a u a uP td F  ,  for d t E F   (8) 

 

This proposed equation was analyzed in accordance with Section F.1 of CSA 

S136 which specifies the statistical treatment to determine the structural 

performance for limit states design. The average test-to-predicted ratio was 1.32 

with a coefficient of variation of 0.14. A reliability index of 4.0 can be attained 

with a resistance factor  = 0.6. 

A total of 8 specimens were governed by Eq. 6 because of the da/t range. The 

average test-to-predicted resistance ratio for specimens governed by this 

equation is 1.58 with a coefficient of variation of 0.04. The data measured in this 

study and the data by Peköz & McGuire are compared to the predicted values in 

Fig. 7b. Equation 6 generally underestimates the resistance of the tested 

specimens. However, too few specimens were governed by this equation during 

this test program to warrant the modification of the current CSA S136 equation. 

Based on the available test data, it seems that Eq. 6 can safely be used to predict 

the shear resistance of specimens with multi-overlap configurations 

when 0.815 ( / ) 1.397u a uE F d t E F  . Further research targeting this 

specific range of specimens should however be carried out to validate the 

accuracy of Eq. E2.2.1.2-3. Of all the specimens tested during this experimental 
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program, none presented a da/t ratio indicating that Eq. E2.2.1.2-4 would 

govern, hence no conclusions have been drawn regarding its accuracy. 

Analysis of CSA S136 Tension Resistance Equations  

The results showed that when the specimen behaviour was governed by weld 

fracture deff influenced the tension resistance. When the tension specimens were 

governed by sheet failure, the total thickness of sheet steel above the underlying 

material and the average weld diameter influenced the tension resistance. As 

discussed, the thickness of the underlying joist angle also influenced the 

resistance of the specimens as thinner supporting material can distort upon 

loading and create stress concentrations that can adversely affect the resistance 

of the specimen. The deformation of the support can be avoided by using hot 

rolled angles with a minimum thickness of 6.4 mm. Section E2.2.2 of CSA S136 

is used by designers to determine the tensile resistance of arc-spot welds: 
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Equation 9 is related to weld failure in tension whereas Eq. 10 addresses the 

sheet tearing failure mode. CSA S136 specifies a 30% reduction for welds 

fabricated in sidelap joints. This reduction applies to sheet tearing when part of 

the weld connects to the overlapped sheet; this was not the case as the 

unstiffened flange width was larger than the visible weld diameter in all tests. 

A total of 16 tension specimens failed due to weld fracture. The majority of 

these specimens (14) were fabricated with 1.21 and 1.52 mm thick steel sheets, 

the remaining two being made with 0.91 mm sheets. The resistance of such 

specimens is related to the effective weld diameter of each specimen. Figure 8a 

contains a plot of Eq. 9 without the 30% reduction in resistance. The data set is 

divided into two groups: 9 specimens where bending of the underlying angle 

was observed (3.2 mm thick angle with 18 ga. and thicker sheets) and 7 

specimens where bending of the angles was not observed (6.4 mm thick angle or 

20 ga. and thinner sheet steels). Test data for weld failure in tension reported by 

LaBoube & Yu (1991) for 4 non sidelap connections are also shown. Good 

match is found between Eq. E2.2.2-1 and the test data by LaBoube & Yu. The 

data produced in this test program is generally lower, with average test-to-

predicted ratios of 0.50 and 0.56 for the entire data set and the subset where 

angle bending was not observed, respectively. Test specimens by LaBoube & 
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Yu had smaller effective diameters and washers were used in the welds, which 

favoured uniform stress distribution over the weld area. In this test program, the 

larger effective weld diameters and the absence of washer likely led to tensile 

stress concentrations along the perimeter of the welds, resulting in lower 

capacities; this phenomenon was probably accentuated when bending of the 

angle legs occurred. Considering that steel joists with thin angles are not 

uncommon in practice, it is proposed that Eq. 9 [E2.2.2-1] be modified based on 

the entire test data set by introducing a reduction factor of 0.5: 
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Figure 8 Relationship between measured arc spot weld tension strength and: a) 

deff
2
 for weld failure; b) t×da for sheet tearing failure. 

 

Using Eq. 11 (Fig. 8a), the average test-to-predicted ratio is equal to 1.0 with a 

coefficient of variation of 0.27; the resistance factor must be lowered to 0.32 to 

attain a reliability index of 4.0. If only the subset of 7 specimens for which angle 

bending was not observed is considered, a reduction factor of 0.56 is needed to 

achieve a test-to-predicted ratio of 1.0. The coefficient of variation is then equal 

to 0.26 and a resistance factor of 0.29 is required to obtain a reliability index of 

4.0. In practice, Eq. [E2.2.2-1] will be used with effective diameter values 

obtained from Eq. (3). In this equation, the total thickness of sheet steel was 

used as the failure plane was located between the steel sheets and the steel angle. 

On average over the 16 test specimens, the so-computed effective weld diameter 

from Eq. 3 was equal to 1.22 times the measured effective diameters. 

A total of 40 tension specimens with 2-layer and 4-layer configurations failed 

due to sheet failure. Equation 10 predicts the tensile resistance of specimens 

when sheet failure is involved and Section E2.2.2 specifies that this resistance be 
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reduced by 30% for arc-spot welds fabricated in sidelap configurations. Figure 

8b illustrates Eq. E2.2.2-2 with and without the 30% reduction in capacity. The 

results obtained during the testing program are also plotted in Fig. 8b as a 

function of the measured visible weld diameter determined with the sheet steel 

thickness equal to half of the total thickness as failure always occurred at the 

mid-thickness of the steel sheets. The test data indicates that the 30% reduction 

does not apply to the specimens examined in this study. LaBoube & Yu (1991) 

proposed the 30% reduction to account for the fact that the unstiffened flange 

width of their specimens was small compared to dvis. Using the measured 

specimen properties and the non reduced resistance from Eq. E2.2.2-2, the 

average test-to-predicted resistance ratio is equal to 1.17 with a coefficient of 

variation of 0.28. On this basis, a resistance factor of 0.38 must be applied to 

attain the reliability index of 4.0. 

Conclusions 

The type of electrode (E4311 (E6011)), high current setting and proper welding 

technique affect the quality of arc-spot welds in multi-layer connections. A 

lower limit for the net effective weld diameter was proposed. The shear 

resistance of arc-spot welds that are governed by weld failure are influenced by 

the net effective diameter of the weld. For specimens that are governed by sheet 

failure the total thickness of the steel sheets and the average weld diameter 

influence the shear resistance of the specimen. The tests also revealed that the 

shear strength of arc spot welds was not reduced when the thickness of the 

underlying material to the total sheet thickness was greater than 0.7. The data 

obtained during the shear resistance tests showed that Eq. E2.2.1.2-2 (bearing 

failure) was generally conservative; as such a modification to the coefficient was 

proposed.  

Tension test specimens governed by weld fracture are influenced by the net 

effective weld diameter of the weld. The thickness of the underlying joist angle 

can also influence the resistance of the specimens if the loading causes 

deformations in the support. The resistance of tension specimens governed by 

sheet failure is influenced by the total thickness of sheet steel and the average 

weld diameter.  

When tension weld failure governs, the results indicate that a 50% reduction in 

capacity should be applied to the resistance obtained from Eq. E2.2.2-1. A 

resistance factor  = 0.32 is proposed. These recommendations should apply to 

all connections, including those made of single sheets, because there is no 

evidence to suggest that the multi-overlap configuration influences the 

resistance of specimens governed by this failure mode. Test data for tension 
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failure by sheet tearing suggests that a reduced resistance factor  = 0.38 should 

be used in Eq. E2.2.2-2.  
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