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MAXIMUM LOAD DESIGN OF COLD FORMED STLEL SIIAPES

A. lascgawa' A. M. ASCE, W. B. llall?, and N. €. Lind® M, ASCE

SUMMARY

The advantoges of maximum load capacity design for constant material, as com-
pared with the more common minimum woight design for prescribed load capacity,
are explained. Equivalance of the two approaches is proved under very general
conditions. Application is illustrated on design of channels and lipped
channols of cold formod steel undor the Canadian or similar Standards.

1. INTRODUCTION

The subject of this paper is the optimization of structural cross-sections,
based on load carrying capacity. It is worthwhile to have a practical way to
find a set of optimal membor profiles (of cold formed stecl channels, for ex-
ample) given a building code, a design standard, and also the conditions of
structural geomeirry and loading. This type of problem has led to the much
studied "minimum weight" optimization of structural members [8.2]. Develop-
monts in mathomatical optimization methods [4] have resulted in a remarkable
progress in this and othor approaches to structural optimization [3,6].
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liowever, minimm weoight design is mot always sppropriste. Soveral aspocts

of tho production of cold formed stcel shapes make minimm wolght design un-
mapagoablo. The producer obtalns the raw materlal by scloction from a dis-
crete set of sheot steel roll sizes with particular widths and thicknossos.
Extra width can be trimmed off - involving some cost and waste, cumtrary to
the minimum woight assumptiom, while the thickness must remain comstant.
Furthersore, the unit cost by weight increasos as thickness docreases. There-
fore, ono cannot make the simplifying assusption that minimm cost occurs

for minimum weight. Even without these comploxities, current minimum weight
formulations involve necessarily complicated nomlinear characteristics, both
in the objective fimction and in the comstraints, which lead to time-comsuming
and tedious solutiom procedures.

Nazimes Load Design is an alternative to sinimm weight design. Rather than
minimizing the cost of a product subject to a specified domand (locad), the
producer chooses to maximize the market acceptabllity (load carrying capacity)
of the product for a specified row material of Jowam sizo and cost. One simply
maxinizes the load carrying capacity of a paremt sheet, for the structural
conditions specified. If cost is proportiomal to weight, or even just a momo-
tonically increasing function of weight, the two approaches will lead to the
same result. This equivalence is proved in Appendix 1.

Minisum woight and meximm load design are not equivalent in other respects.
Maximm load design omploys constant volume as & comstraint; volume is a com-
venient geometrical quantity like the state variobles of the problem. It is
represented by a simple constraimt surface in stato space. Minimum weight
design, in comtrast, follow a comstent load surface which in the same space
Trepresents & moro cusbersomo comstraint and roquires gemorally more computing
effort.
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Morcovor, maximum load Jdesign leads to a wore conspicuous solution, indicate
ing immodlately which Is the active factor that limits the load carrying
capacity of a member. This indlcation is of decisive importance. Optimization
to a fixed sct of rules is often not the most productive approach to a pro-
blom. As alrcady shown by Alexander the Great (at Gordia), it may be more
fertile to ask: how can the rules of the game (i.0., the code and design
standard provisions) be changed such that routine optimization leads to o
bottor optimum? Conventional optimization is not the end, but merely a part
of the total optimization process.

The soctions which follow describe the rudiments of maximum load dosign, and
its application to two simple problems: single span, unlipped and lipped
channel beams under uniform loading.

When the cost relationship to thickness, say, is known (i.e., when a price list
for paront shoots is available), the method can be used to determine cost
optimal, rather than weight optimal, section gcometry.

When cost is proportional to weight, the optimal relatiomships can be expressed
compactly as in Figures 8 to 10. By virtue of a dimensionless representation,

the figures throw light on many aspects of structural optimality and behaviour

of cold formed steel boams. These aspects are discussed in the concluding

section.

2. MAXIMUM LOAD DESIGN
2.1 General Formulation
Maximum load design reflects the viewpoint of a producer, whose task it is to
transform a row material into a specific finished product. The producer tries
to make the best possible use of material. That is, for a given level of cost

or welght of material, ho maximizes tho utility of the finished product. In
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the structurnl contoxt, utility may bo moasurced by the facility of the product
to carry a load. The raw material may oftcon bo steel sheet or plate of various
strongths. llonce the rationalo of maximum load deisgn. From the set of bcam
profiles which can be produced at equal cost, the optimal is the one which

will support the maximum load intensity.

For any particular thickness and width the unit weight of a parent sheet and

its progeny 1s constant. Also, within a class of like shapes it may be reason-
able to assume that the unit cost is also constant. For cxample, for two channcl
beams formed from the same size of sheet, with two corner bends each, the

costs are likely to bo the same. This is vory close to the truth if the booms
are produced in large numbers, possibly as standord sizes for inventory. It

is cloar that the two boam shapes will differ only in their aspect ratios.

And it is equally clear that the optimal aspect ratio is the one for which

tho maximm load can be carried by the soction under the specified loading

type, span longth, and so on.

For a general formulation, it is neceossary to define several terms. An
tnoident, j, is any design condition that must be checked. An incident may
be a limiL state, such as a flange yielding or local buckling, or it may be
an “arbitrary" code provision dictated by fabrication requirements, etc. A
design function, Ilj. is defined as the variable choscn to represont the bo-
haviour of the structural section for incident j (e.g-, calculatod compressive
bending stress). A code function, c’ 1s a proscribed limit sot by the appropr-
iate standard (e.g., ollowable stress), which must not be excecded by the
design function Dj. n, and l:‘1 are defined for j = 1, 2, ..., n incidonts.
A satisfactory design is ome which for all incidents meets the following
condition:

D, £ € R [58 yney ¥ (1)
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In general, both design function and code function depend on applied load (P),
geometry of the structural member Ly, i=1, 2, ..., m), and material pro-

perties (Y):
Dj - nj(’l I'].’ Y) (2)
€y = Cy(Py Ly, ) ()

The spplied load (P) may be a pure load, a load intensity, a load factor or
even any monotonic function of the load parsmeter. The explicit forms of
these functions are to bo found by pertinemt structural analysis and in anm
sppropriate design code, respectively. Specific examples are givem in Appen-

dix 3. It must be noted that they do not follow from the optimization analysis.
An analyeia funotiom, A,. is defined by
Ay = Djll' “4)

Finally, the incident capacity fumotion, P’. is dofined as:

Py = Cy/Ay (s)
In general, the incident capacity function dopends on applicd lomd, geo-
motry and material as do Cj and Dj:

Pj - ’j(’. I'i’ Y) (6)

From oquations (1), (4) and (5) a satisfactory design may be redefined as
ono which has,
Pi’j j-l. :. sssy N {,)

The compact statemont of maximum load design is therefore,

Maximize: P, (8)
Subject to: P < Pj

In many structural problems, the incident capacity is indepondont of spplied
load. That is,
B - 9
P’ Pj"’i Y) ®
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Such systems are callod Iimear and are simple to optimize. The more general
systems, equation (6), are called non-Ilimear since the load capacity may vary
with the applied load. Non-linear capacity functions ’j are often insonsitive
to a change in applied load P within a limited range. A linear solution may
therefore provide a good initial point for the iterative solution of a non-
linear system. Figure 1 depicts typical linear (solid lines) and non-linear
(dashed lines) characteristics for the respective system types.

For either kind of system, in equation (8), P is limited by each P,. Thus,

'“'ml{’ij-l. 2. ansgy ‘} - (10)

that is, the maximum feasible load is equal to the minimum capacity, for
specified geometric and material parameters “"i' Y).

2.2 Sclection of yariables
The optimization procedure is facilitated by the use of independent dimension-
less parameters.

Figure 2 illustrates a parent sheet of a typical cold formed steel structural
member of length L, width a and & thickness t. In the formed member, the span
will be L, the thickness t, and the sum of the widths of the component elements
will be a. There are two independent dimensionless geometric shoet parameters,
for example, v and s givem by

r = L%/at (83}
s = aft . (12)
These generalined slendsrness ratios, relstod to sheet longth and width res-

peoctively, play an important part in this study, governing overall and local
bohaviour of a momber, rospoctively.
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The resaining parameters necessary to determine uniquely the geometric propertios
of a member are thoso of its cross soctional shape. These are also chosen in
dimensionless form and arc denotcd by:
s k=1, 2, ... m

for m independent dimensionless shape parameters. For example, if corner radii
are deemed negligible, in the case of unlipped channel sections, there exists
only one indcpendent variable (c.g., the aspect ratio of flange width to web
depth).
Dimensionless forms of spplied load and material strength are easily found
end are donoted by a bar over the previous notations. For example, the following
are used in the section on applications:

P= P/F L as)

Y= 8y (14)
in which P is load per unit length, P,, is the material yield stress, L is span
length and g, is characteristic function of the etress, a convenient dimension-
loss material property usod in the Canadian Standard CSA S136-1974 (g, = -‘B?F;)
The optimization statomont, cquation (8), may now be writtom,

Maximjze: P

Subject to tha implicit relationship:

Firj(r.s.i)(qt'v)‘ 1 By owins BB 3y 2y sy Mo (15)

In a wide sense, thercfore, optimization Is the determination of the rolation-
ships botween the shopo paramcters a and sheet slenderness ratios r and s,

which maximize a foasible dimensionless load, P,

2.3 Spocial Cascs
The simplicity of maximum load design allows groat floxibility in solving

problems of various types. It all dopends on how the producer envisagoes the
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role of his product. The simplest problem type is ono for which a product

is "made to order”. Specifiod are the length, width and thickness of sheet,
material properties, typo of loading and shape classification (o.g., channel
beam). The optimal solution for this problem is found by simply finding the
set of shapc parameters, Qs which has the largest governing load capacity l.'ja

Max Juin. {7, (q,) ae)
% { i { grs }}
whorein the only variables manipulated are the shape parametors -

A variation of this problem is constant weight optimal design. An example is
given in the soction on applications. From a set of optimal solutions of the
type mentioned sbove, it is easy to obtain curves of optimal geometry for com-
stant weight (for any specific valuc of spam length L, the cross sectiomal area
is constant for r constant). Weight-optimal design is them accomplishod by
selecting for constant r the appropriate values of s and hence a9 which maximize

the dimensionless load P overall.

If unit cost varies with a shcet parameter (e.g., thickness and/or yield point),
maximum load design can be employed in stages (such as for diffcrent typical
thicknesses), to yield the least cost optimum. Contours of optimal geometr,
for different constant cost levels may then be constructed by esploying the
known cost relationship. The final step in the optimizarion procedure is to
seloct the cost-optimal design In tho some mannor as for welght-optimal design,
just described, excopt by deallng with curves of constant cost rather than

curves of constant r.

A further variastion is optimization with rospect to a slote of span lengths L
with corrcsponding froquencies of demand. Such a slate might approximate the
distribution of lengths that a producer oxpeets to cncounter, Optimality may

then be moasured by a woighted avernge unit load, based on the frequencies for
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vach span longth. Weight is easily assesscod by susming tho lengths (times
frequencies) for constant cross sectional area (at). The optimal rolation-
ships aro then those which maximize this new mcasurc of load for constant cost

levels.

If the choice of material is also free to be made (although it is typical to
take the material as given) the optimization can be changed to include this as
well. It is likely that the unit cost is differemt for each material strongth.
From weight optimal design, for example, a section for the requirod load
capacity can be obtained for each material stremgth value. Then one simply
picks the cheapest. An alternative might be to include a factor for each
material strength in the weights of the cross sectioms.

3. APPLICATIONS: COLD FORMED STEEL BEAMS

This section discusses two applicetions: plain and lipped simply supported
channel beams. The former is reprosentative of a linear systcem, the lattor of
a2 nonlincar systom, since it involves an cffective wldth calculation for the
compression flange. Both beams are subjocted to & uniformly distributed load
(Figure 3) actine through the shoar center.

As explained and defined in the previcus section, the sheet slenderness

ratios r and s are usod. The dimensionless load is taken to be P = I'Il"l. in
which l', is the matorial yiold stross, P is tho load intensity and I is the
span length. The only shapo parametor uscd in both applications is the aspect

ratio, q = w/h In which w ls the flange wildth and h the depth of scctliom.

Simplifications of the snalysis include the (conscorvative) neglect of the St.
Vonant torsions] resistance for the casc of lnternl-torsional buckling which
iz usual, for cxumple, in the AIS] spocification. And for the lipped channcl

application, tho woment of imertia about the minor (y) axis (Figure 3b) is not
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reduced in accordance with tho effective width of the comprossion flange.
The lip sti{fenor length is not treated as- an optimization variasble, since
its merit is in the stiffening of the compression flange and not in its own
mechanical contribution. This does not affect optimality as explained in
Appendix 2. Comrnmer radii, if trested as optimization variables, lead to a
solution with large, impractical radii [8). This study treats corners as
perfect right-angles, leaving the mctual value to be set by the producer.
The corner radius to thickness ratio is expected to have little effect on
the optimality of the other shape parameters. The material stremngth com-

sidered is l” = 50ksi.

Code functions for the applications are cbtained from the limit state design
provisions of Canadian Standard CSA S136-1974 [7] for cold formed steel
structural mombers. Analysis functions are chosen with respect to each code
provision based on accepted procedures of structural analysis. The total de-
flection limit, which is not prescribed by the standard, is set arbitrarily

at §/L = 1/240 for this study, § being the limit of midspan deflection and L
«the span length. This is very conservative, since it is based on & total limit
load rather than a service live load level. As will be seen, deflection is
not a controlling incident, even for this conservative case. The pertinent
code and analysis functions are listed in Appendix 3.

3.1 Optimization of Plain Channels

This application is concerned with the following design incidents: flange
yiolding and local buckling (j=1), web buckling in bending (j=2), lateral-
torsional buckling (j=3), shear yielding and wob buckling in shear (j=4),
elastic doflection (j=5) and, optiomally, web crippling (j=6).

Because the section propertics of plain channols are not reduced according to

stress level, the incident capacitics are roadily determinod over a wide
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range for all design paramoters.

3.2 Optimization of Lipped Channels

The design incidents for this part of the study are, flange yielding and web
buckling in bending (j=1), lateral-torsional buckling (j=2), shear yielding
and web buckling in shear (j=3), elastic doflection limited by flange yielding
(j=4), and web crippling as an option (j=5). To assess the effective width
of the compression flange and hence the effective section (a function of the
stress level) the method of successive inverse interpolation [5] is employed.

3.3 Results

The incident relationships between dimensiomless load (P) and aspoct ratio (q)
for certain fixed values of the sheet parameters (r and s) are given in Figure
4. The dashod line represents the incident locus for wob crippling, which may
be active in certain ranges if the web of the beam is unreinforced. For plain
channcls (Figure 4 ) o dosign is likely to be governed by local buckling of the
comprossion flange (j=1) or lateral buckling (j=3). For the most part, web
crippling (j=6) can be kopt inactive by providing the meximum bearing length,
as in this study. It may also be noted that the thinner the parent sheet (the
larger s), the more sensitive is the load capacity to the aspect ratio (q).

In contrast, for lipped channels (Figure 5) the incident curves oftean lie
close togetheor, depending on the valucs of the indopendont paramcters. Lateral
buckling (j=2) usually governs, but not by a great margin. Wob crippling is
of great importance in this casc, and cannot be ignored in the practical
middle range for q and s. Howover, load capacity [i} appears to be relatively
inscensitive to aspect ratio (q). If wob crippling can be oliminated, it is
noted that the limit of w/t = 60 is active for large values of s, ond seoms

to interrupt n potentinl increase in tho maximum loaod capacity.
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By ollowing tho aspoct ratio (q) to vary, the governing incident capacity (eg.,
in Figure 4) con be maximlized For fixed valucs of the sheet paramoters. The
resulting viluos of fm and qopt aro optimal, theroforo, for prescribed values
of r and s. These relationships oro given in Figure 6 and Figure 7 for plain
and lipped channels respectively. Weight-optimal design may easily be accom-
plished by the use of this figure, since the contours of constant r represent
constant welght curves for a given span longth. For fixed cross sectional
arca (fixed r) optimality ls achicved by allowing s to vary and maximizing the
now load parameter F-“ to give finally the optimal values Pq“. Ypt* Sopt’

r This information ls presontod concisoly im Figurc 8 and Figure 9.

opt’
Figure 6 permits somc obscorvations concerning somsitivity of the optimum and
the effects of web crippling. For plain channels without considering web
crippling, the maximum point is very insonsitivo to the value of s. The intro-
ductlon of the weh crippling criterion, while having negligiblo effect on the
value of tho meiximum, incrcases lts sensitivily somewhat. For lipped channels
(Figure 7) the optimum is alwnys more sensitive to paramoter values and,
notably, the consideration of web crippling produces a remarkable relative

drop in the optimal load capacity. Tho compact form of Figure 8 and Figure 9
doos not illustrate these factors, giving simply the final optimal relationship.

Thoe effect is apparent, howover in Filgures 6 and 7,

From n compurison of Figurcs 4 and 6 (or 5 aml 7) it is clear that the nspect
rutio ¢ requires more precise dotermination than the sheet paromoter s, to

which the optimul lond capacity Is relatively Insoensitive, lience, the dif-
ferem'e in uncortainty intervals in Figures 8 and % 20 for s in a rango of

60 to 320, and .05 fFor 4 in a range of about 0 to 1.0, This procision is likoly
to ho satisfactory for most purpusus. For smoother graphs (such as Figures 10 ond

11) the intcrvals may he decreased to about 2 for 5 and .01 for q, ot o cost of

about double the computation time.
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The optimal design charts (Figures 8 to 10) can easily be intorproted as
follows: for a specified load, span length and matcrial strength, tho
paramcter I is calculatod. Proceeding with this value horizontally to the
left and right, the sppropriate curves arc intorsected and, procceding down
to tho horizontal axis Yopt and 1-“"t are obtained. The value of sq“ is
obtalned in a similar way, completoly defining the optimal cross section for
the prescribed load, span ond matorial. It should be noted that the charts
given are valid only for a steel with yield strength F_ = 50 ksi. Appendix 4

y
illustrates numerically how a producor might use the optimal design charts.

Fluctuation in the optimal values of q, s, and r rosult from shifts in domin-
anco of local maxima with respect to P (Figure 5). This is accentuated by the
dopendcnce of the optimum upon a combination of two parameters, q and s, rathor
than a single parameter. The practical implicatlons of setting a constant or
average valuc for one or morc of the paramcters is discussed in the next

soction.

3.4 Proctical Implications

Engincering does not nocessarily domand rigorous optimality, particularly whon
the real probleom may not be as proecise as the mathematical model which can be
solved. It may be a practical objective that the optimal s or q should not
dopond on the specified lood. Figure 8 and Flgurc 9 show one examplo (dasheod
linos) of an alternative to the strictly optimal curve. For plain channcls
the valuv of s is fixed at 120, and for lipped channels 200. [If web crippling
is included in the optimization, s could be set at about 120 for both lipped
and unlipped chonnels. The resulting deviations from the true optimum

(

opt curve) dJdoes not appoar to bo oxcessive.
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Similarly, the aspect ratio, 4, might be sot at a constant valuo (about 0.4
for lipped channels and 0.25 for unlipped channels) which ls lndepondont of
tho specified load intonsity und span length. This would secem to be of groat
practical significanco, since the producer doos not often have exact knowlodgo
of tho demandod structural configuration, and since it is efficiont to produce

several thicknesses of the same beam profile.

Of course, other manipulations arc also possible. For example, it may bo
preferable to consider discrete thicknesses, since this is the onc paraomoter
over which the cold formed steel producer has not control. Another feature
might be to consider groups of thicknesses with a common cross-scctional
shape, since it is economical to run several thicknesses through the same
operation of roll-forming.

The results seem to imply that dospite its rigorous approach, "“storeotype"
optimization (in other words, point optimization) may be inadecquate from a
practical standpoint. Any optimization procedure applied to cold formed steol
products should allow considerable interpretation of the results, and manipula-
tion in order to reflect reality. These objectives are met by maximum load
design. "Range Optimization", since it allows for parameter insensitivity and
the possibility of local maxima (which msy be close to the point optimum and
much more stable) may offeor a better approach.

Finally, it is noted from the applications that the optimal dimcnsionless load
(for fixed r) increcases significantly when a lipped channcl 1s used. The
additional strongth thus provided is mostly lost, however, unless web crippling
is romoved from the dosign procedure. The following soction discusses this
very important aspect of tho optimization.
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3.5 Effect of Wob Crippling

From Figurc 6 and Figure 7, it is apparont that web crippling as a design
incidont has littlé cffect on the optimal profile of plain channel beams, but

a great effoct on that of lipped channcl boams. In fact, less than half the
bencfit occurs with the addition of a lip as would occur if web rcinforcement
were addod also. The increase in load capacity from unlipped to lipped, and

to lipped plus wob-reinforced beams is in the order of 20% for the first chango,
and sn additional 40% for the second.

Web crippling, then, has been identified as a very important active
constraint uncovered in the optimization analysis. Especially for small boaring
lengths (the maximum was assumed in this example) and small values of the
shoet parameter r(=L?/at) the likelihood of dominance of the design by web
crippling is high. Furthermore, as noted before, the benefits of flange
stiffoning can be almost completely lost in such cascs, even if a rigorous
optimization takes place. Finally, it is probably undesirable from the view-
point of efficient design that such a local phenomenon governs tho optimal
design of e global system. Although web stiffening may invoive some expense
in material and construction costs, it is clear from the optimal design
charts that a considerable benefit results.

3.6 Comparison with Available Products

For comparison, the products of a Canadion manufacturer were cxamined to sce

how much deviation from the optimal geoomotry occur. Tho producoer practically
ignored plain channels, providing standard profiles of lipped channels from

6 % 2-3/4 to 18 x 3 1/2 (depth x width in inches). Groups of sizes were arranged
so that only the thickness was a variable in many cases. This indicated that

tho nspect ratio (q is constant whonover thicknoss is the only changing para-
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meter) should be of prime concern for optimization. Howover, the valuoc of g
ranged from 0.19 for tho large sections to 0.46 for the small onos, This
sppcared to be too groat a range, sccording to this study, although the
average (0.31) was not blatantly non-optimal.

Similarly, the parameter r showed much too great & variability and the value
of s, although not as variable, was ofton far from optimal. To achiove con-
clusive results, however, a much more detailed comparison would have to be
made.

3.7 Continuous Boams

Two and throe equal-span continuous beams woro optimized as for single span
beams. The extra design incidents included wore web crippling at an interior
support, and combined bonding and shear stresses in the web. The results are
largely consistent with those for the simplo caso., Figures 10 and 11 show the
effect of the number of spans on optional load intensity and geometry for plain
and lipped channcls respectivaly. The optimal load intensities are somewhat
larger or smaller for the above cases respectively, whereas the optimal section
parameters are not greatly changed. The same trends were observed in general,
1t may be that optimal section geometry is not significantly a funcrion of

the number of spana.

4. CONCLUSIONS

The rationale of muximum load design has boon prosented s an altornative to
that of conventional minimum weight design. A simple and efficient optimiza-
tion procedure is possible in this approach, which features (i) a simple con-
copt of structural optimization in torms of design, (ii) isolation of struct-

ural analysis and code provisions from the optimization algorithm, (1ii) ease
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of manipulation and interprotation of results in a very broad sense and (iv)
dimcnsionless formulation.

The procedure has beon applied to simple cold formed stecl channcl-shaped
beams, with and without lip stiffonors. Although obtainoed by virtue of maxi-
mum load design, the rosults are the equivalent of weight-optimnl design.

An optimal shape is a function of both load intonsity and span length from
the view of strict point optimization. Howover, when some allowance is made
with rogard to the maximum load, tho optimal shape may be determined without
respect for load intensity or span length. This seems of great practical
importance. The optimal lipped channel has a stiffener depth prescribed by
the code minimum.

The most important possiblc active constraint has boon found to be web
crippling. Significant gains in strength by the stiffening of the flange are

seen to be lost unless web reinforcoment is added.

Common manufactured products do not appear to be far from optimal, on the
average, but exhibit too great a variation in geometric parameters, nccording
to the resulis of this particular study.

A study of continuous equal-span beams indicates that the number of spans
is not 1lkely to be a sipgnificant factor in tho optimization procedure. It
may be sufficient to optimize a sot of structural beam shapos for a single

simply-supported span, insofar as rolative scction geomotry is concorned.
If support costs aroc neglected, in wome cases several simple spans are

preferable to one continuous multiple span.
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APPENDIX 1
EQUIVALENCE OF MINIMUM COST (WEIGIHT) AND MAXIMUM LOAD DESIGNS

For the two basic approaches to optimal design to be cquivalent, the fol lowing

conditions must be met concerning load capacity, P, and cost, C:

(i) %:r 0. That is, an extra exponditure of monoy can always
be used to increaso load capacity, and
(ii) C is = single-valued and pioccewise differontiable continucus

function in P.

Figurc 12 illustrates (in three dimensions for simplicity only) a sectiom of

the structural configuration space:
P= r(c.x’]. or alternatively, (a)
C = C(r.Xy) )

wherein xj represents the geomotrical parameter(s) for which the optimizer
socks to identify the optimal values. Part (a) of the figure indicates the
maximization of load capacity and part (b) minimization of cost. The equili-
brium point A is the same for both cases unde the above conditions.

The proof is by contradiction. We show that if the cost were not minimum the
load-carrying capacity could not be maximum. Assume, for the sake of argument,
that the cost has not the smallost possible valuo for a given maximum load
capacity. We roduce this cost, then, keeping the load-carrying capacity

constant.

By taking the moncy just obtained, and expending it asppropriately we can in-
crease the load-carrying capacity (recall 9P/3C > 0) to & new value, The
systom is returned to the original cost, but has a higher load-carrying capacity.
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The original assusption of a maximum load-carrying capacity is violated.
Therefore, it is concluded that the state of minimum cost must exist for the
stete of maximum load capacity.

Morc should be said regarding conditions (i) and (ii) which are necessary for
equivalence. Thoy are mot in themselves sufficient to dofine a mansgeable
optimization problem. To obtain the optimal point A, particularly in minimum
weight design, the Kuhn-Tucker conditions are used [1] as follows:
For a Lagrangian function L(Q,V) formed from a maximization problem with n
variables and m constraints, the Kuhn-Tucker conditions are,
1) SI.(Q.V)ISQ:Iio J=1,2,...,m)

(11) Q,SL('Q,’I)ISQ, =0 (=1,2,...,n)

(I1I) 3L(Q,V)/av >0 (i=1,2,...,m)

() viat.(Q.\rJ/arvi =0 (i=1,2,...,m)

Q 20, Vg0

In words, the Kuhn-Tucker conditions may be interpreted as: "The ncgative
gradient of the objoctive function must 1ié" within the cono spanned by tho
gradients of the active constraints”,

In order for the Kuhn-Tucker conditions to be both necessary and sufficient

to define the optimal point, the following further conditions must be met:
(1i1) The set of comstraints must define a feasible region which is

overywhere convex. That is, the function P(C.Kj) or C(l'.xj) must be convex.
(iv) The original objective function must be concave (convex) in

the neighbourhood of the maximum (minimum) point.

If these conditions are mot, the extreme point will be a global maxiwum
(minimsum). Maximum load dosign, as presented in this paper, takes on a
simple form, such as to mako these conditions trivial.
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APPENDIX 2
OPTIMALITY OF THE LIP STIFFENER

With respoct to every design incident, cortain section properties can be id-
entifiod for which the maximization thereof accomplishes maximum load design.
Thus, for the caso of flange yielding, the optimal goometry is that which
maximizes section modulus, and so on. This appondix is intended to show that
the lip stiffencr will nover be increased boyond the minimum depth required
by the appropriate standard. In this way, the lip dimension is removed from
the optimization snalysis.

An optimal shape, for a given sheet of width s, thickness t and length L, will

have an optimal web height h, flange width w and lip depth d. Let us suppose,

since the optimal depth can be achieved either at the expense of the flange or

of the web, that we achieve the maximum in two steps: (i) the sheet is bent

st the optimal dopth h*, leaving all remaining matorial in the flanges and (ii)
a portion of esch flango is bont to form tho optimal 1ip depth d* and resulting
flango width w* (Figure 13).

It is now shown that for every incident it is either meaningless or detri-
mental (in terms of maximizing load capacity) to perform step (ii):

J = 1: Flange yielding and web buckling in bending.

The first criterion involves the scction modulus, S,. Tt is apparcont that

this property can only be reduced by porforming step (ii).

Tho sccond criterion involves the scctlon modulus dividod by the squarc of
the hoight, S,lh’ (t is a constant for a given shect). Step (ii) reduces S
while maintaining h* as a constant. Hence, no benofit from such a move would

result.
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J = 2: Latoral-torsional buckling

This design incident is related to the paramoter hl,e. that is the height
times the moment of inertia of the compression portion of the cross section.
Where no flange width reduction is made, lyc
of inortia of the full section about the minor axis uy/z). Again, it is

» while maintaining h*

is equal to one-half the moment

apparent that performing stop (ii) can only reduce l’
constant. Even if the flange width were greater than the effective width,

the material would be removed from the cemtre of the flange, so that the assusp-
tion l’,c = !vjz would remain nearly exact. It scems that there is again no

reason to perform step (ii).

Jd = 3: Shear yielding and web buckling in shear.
The only geometric property pertinent to this incident is the web depth, h.
Since h* is set by step (i) it is pointless to carry out step (ii).

J = 4: Elastic deflection.

The relevant property for this incident is the moment of inertia about the
major axis, 1. It is clear that step (ii) reduces 1. In fact it is clear
that even step (i) does so as well.

§ = §: Web crippling.
The pertinont variables for this incident are entircly indepondent of lip
depth. The important one, h*, can be set in step (i), making step (ii) in-

ratorial.

Zonolusion: Becausc it is nover clearly beoneficlal to provide any stiffenor
Jepth at all, the optimal dopth will be exactly the minimum called for in tie
sppropriate standard. The benefit of the lip is only in the stiffening of the
:ompression flange and is not otherwisc due to the prosence of the lip stiffoner

itself,
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APPENDIX 3
ANALYSIS AND CODE FUNCTIONS FOR THE APPLICATIONS

The following analysis and code functions were found in terms of dimensionless
ratios, based on s parent sheet of width a, thickness t and length L. The
formed cross sectlon is comprised of a flange width w, web height h and in
the case of lipped chamnels, lip depth d.

(t) Amalyesile Funotions
1) For plain chamnels,
Incidents j=1,2,3: @& dimensionless bending stress for flange yielding,
web bending snd lateral buckling respectively,

R T SR b W 1 R, |

Moehesho= 322 =

j=4: a dimensionless shoar stress parameter,
;“_lg_a_l.
Zath

j=S5: for elastic deflectiom,
AL

Ag = o5 La(Ly
j=6: for wel crippling,

Ao =112 8

Ae =Zatt

To modify thoe functions for continuous beams, the following multipliers

were dotermined for two and three equal spans rospectively:
ll: 1. , 0.93
A: 1. , 0,93
I’: 0.76 , 0.808
A: 1,25, 1.234
A: 0.74 , 0.82

K : 0.876, 0.9
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Two additional incidents considered for continuous beams are,
§=7: for web crippling st an interior support,

K, = 2.5k (2-span), 2.4 A, (3-span)
§=8: for combined web bending and shear,

K. = 1, (2 and 3-span)

b) For lipped channels the corresponding expressions are,

A =Ay= %% o for flange ylelding end lateral buckling
i. = -;-i‘-:—-:— for shear

Ay -3';’;-]"4%7}." for deflectiom
and As = Ag in 8) for web crippling
and for continuous beams,
As = K, in a)
Ay = 1.
The multipliers for 2 and 3 span cases are as in a) except that X; and A;
are condensed into one multiplier.
In the above equations, ;y is the dimensionless material charactoristic,

= YE/P_ in which E is Young's modulus,
By Y

t- [ 4D OO ¢ 9] R ajer g g
I'R'H
%.[é(?z)’* PO OO ERE-0N0 - 252D - DG -8

in which b = effective width of compression flange.
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({1) Code Functions
a) The respective code functions for plain channels are given by,

=gk
vy
€= £,

Ci=k

Cy = £,

&s = 8/L

t‘..'c - (’m)m,t." = f(v, H, n, K)

and for continuous beanms,
c, ” (’-’)m,t’ry = f(v, H, n, K)

2,-%
C. = [(l’h‘.")’ + (K‘ICJ 1

b) and correspondingly for lipped channels,
C o= £,
C =k
Cy=f,
Cy = &/L
E. = E. in a)
and for continuous beams,
Cs = (Musx)csa’t'Fy
Cr = [((K/T1)E + (R/Ty)' )™
in which
q=1.0 for ¥<u.37g
1.37(1 = 0.725 W/g,) 0.7 g, <W<o0.84 g
0.378 ."m 0.84g <W<2s
8,"(1 - 0.015 W)/1000 25 <W<60
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£, = Min(F/Py , ¢, 21.7 gy:ﬁl’)
£, = Min(F /Fy , $,1.5 g /M, §.4.81 gy'ﬂl’}
k = B/Fy - 0.25 F/Fy, * (F/F, )? Fy/F * F, [P, > 0.5

Fuo/Fy Fy/F * Fb.ﬂ'.r < 0.5

In tho above (P }m is tho limit reaction prescribed by the CSA code, v is
the ratio of length of bearing to wob depth, H is the width to thickness ratio
of the web, K = I'y(l:sijlss. and n is the ratio of inside bond radius to web
thickness. The explicit form of the function f is given in the CSA standard.
¢, is the porformanco factor (0.9) for temsion, compression and shear, F is the
basic normal design stress (= O.I",). l" is the basic shear design stress

(= 0.577 O.I'.‘). W is the flat width ratio of the flange (= Y/e), and

’7“' b gt (')()u.z “my1 6 /m

for plain channels, and

"oy - 07 2N @

for lipped channols, in which 0‘: is the performance factor (= 0.75) for latcral

buckling, and
2
G (eEeD - Gyt
1 w_d
F Rl Y
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APPENDIX 4
OPTIMAL DESIGN EXAMPLE

To illustrate the usc of the optimal design charts for specific desligns,
consider tho following example in conjunction with Figure 14:

A producer has a large order for a single spen simply supportcd stiffoned
channel beam. At a span length of 100 in., the beam must support a uniform
load of 100 1b/in, and the producer intonds to use cold formod stool having
F_ = 50,000 psi. As a guidelinc for production, the optimal cross-section

Yy
is found from Figure 14.

P is evaluated:
Fe= Pﬂyl- = 100/50,000(100) = 20 x 100% . (1)

From the chart the optimal values of sheot slonderness, scction slonderncss

and aspect ratlos are road:

r = L¥/at = (100)*/at = 6500 , (2)
s = a/t = 153 , (3)
q=whe= 0537 . 4)

Solving (2) and (3) simultaneously:
@ = 15.3 in. sheet width required
t = 0.100 in. shoot thickness.

Fquation (4) must be solved in conjunction with the minimum lip stiffonor
requircemont (from CSA S136):

d/t = (24 w/t - 156)V ¢ 4.8 (5)
and with the additional compatibility requircment:

2d + 2w + h = o = 15.3 in. (&)
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Since t has already becn determined, equations (4), (5) and (6) may be solved
simultancously. This is somewhat laborious by hand, so a design aid is pro-
vided in the q - s quadrant of Figure 14. It is important to note that thesc
contours of 4/t do not change from chart to chart. 4/t is the same function
of q and s for all cases. The contours are drawn in Figure 14 only for

compactness.

Using this aid, for q = 0.37 and s = 153:
d/t = 8.2 . (2]

Equations (4), (6) and (7) are now easily solved, knowing t = 0.100 in.:
d= (d/t)t = 8.2(0.100) = 0.82 in.

w = gh = 0.37h

2d + 2w + h = 2(0.82) + 2(0.37h) + h = 15.3 in.

h = 7.86 in.

w = 0.37(7.86) = 2.90 in.

Therefore, the optimal beam has flange width 2.90 in., web height 7.86 in.,
1ip depth 0.82 in. and thickness 0.100 in.
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APPENDIX 6
NOTATION

The following symbols arc usod in this poper:

"j = analysis function for jth state

a = width of stoel sheet

b = effective width of comprossion flange
l‘:.1 = code function for jth state

s design function for jth state.
4 = 1ip depth

5 - dinensionless property of steel

h = web depth

Ly = goomotrical parameter

L = length of steel sheot = span of beam
P’ = incident capacity function for jth state
P = load

t = thickness of steel sheet

w = width of flange

8 = soction slenderness = a/t

r = membor slendornoss = 12/at

9 = shapo parameter such as w/h

()= symbol for dimensionloss property
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