
Missouri University of Science and Technology Missouri University of Science and Technology 

Scholars' Mine Scholars' Mine 

International Specialty Conference on Cold-
Formed Steel Structures 

(2004) - 17th International Specialty Conference 
on Cold-Formed Steel Structures 

Oct 26th, 12:00 AM 

Seismic Performance of Sheathed Cold-formed Shear Walls Seismic Performance of Sheathed Cold-formed Shear Walls 

Raffaele Landolfo 

Luigi Fiorino 

Gaetano Della Corte 

Follow this and additional works at: https://scholarsmine.mst.edu/isccss 

 Part of the Structural Engineering Commons 

Recommended Citation Recommended Citation 
Landolfo, Raffaele; Fiorino, Luigi; and Della Corte, Gaetano, "Seismic Performance of Sheathed Cold-
formed Shear Walls" (2006). International Specialty Conference on Cold-Formed Steel Structures. 7. 
https://scholarsmine.mst.edu/isccss/17iccfss/17iccfss-session8/7 

This Article - Conference proceedings is brought to you for free and open access by Scholars' Mine. It has been 
accepted for inclusion in International Specialty Conference on Cold-Formed Steel Structures by an authorized 
administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including 
reproduction for redistribution requires the permission of the copyright holder. For more information, please 
contact scholarsmine@mst.edu. 

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/isccss
https://scholarsmine.mst.edu/isccss
https://scholarsmine.mst.edu/isccss/17iccfss
https://scholarsmine.mst.edu/isccss/17iccfss
https://scholarsmine.mst.edu/isccss?utm_source=scholarsmine.mst.edu%2Fisccss%2F17iccfss%2F17iccfss-session8%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/256?utm_source=scholarsmine.mst.edu%2Fisccss%2F17iccfss%2F17iccfss-session8%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/isccss/17iccfss/17iccfss-session8/7?utm_source=scholarsmine.mst.edu%2Fisccss%2F17iccfss%2F17iccfss-session8%2F7&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu


Seventeenth International Specialty Conference on Cold-Formed Steel Structures 
Orlando, Florida, U.S.A, November 4-5, 2004 

Seismic Performance of 
Sheathed Cold-Formed Shear Walls 

Raffaele Landolfol, Luigi Fiorin02 and Gaetano Della Corte2 

Abstract 

The paper presents and discusses the results of a research on the seismic 
behaviour of cold-formed steel stud shear walls, sheathed with wood-based 
(oriented strand board) and gypsum-based (wallboard) panels. Within this 
activity, this paper provides the outcomes of the results of experimental 
(capacity evaluation) and theoretical (demand evaluation) phases of the research. 
Moreover, a contribution is given for the .evaluation of the strength reduction 
factor of this structural typology. 

Introduction 

The design of building structures according to standard design philosophy is 
based on force-reduction factors that, exploiting the structure own ductility, 
avoid collapse, safeguard human lives and allow a relatively less expensive 
structural design. In case of light-gauge cold-formed steel framed structures, the 
building seismic weight is significantly smaller, allowing the design to be 
carried out with relatively low values of the force reduction factors. This event is 
particularly favourable, because of the relatively small ductility of this type of 
structures. 
The study presented in the current paper is the core of a research effort being 
carried out at the University of Naples "Federico II". The paper provides the 
outcomes of the results of experimental (capacity evaluation) and theoretical 
(demand evaluation) phases of the research. Moreover, a contribution is given 
for the evaluation of the strength reduction factor for this structural typology. 

I Department of Constructions and Mathematical Methods in Architecture, University of Naples 
"Federico II", Naples, Italy 
2 Department of Structural Analysis and Design, University of Naples "Federico II", Naples, Italy 
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Experimental results 

Physical tests have been designed starting from a typical one-family one-story 
dwelling. The plan dimensions of the house were about 7 x 11m, while its total 
height about the ground level was about 6m. The structure was a stick-built 
construction in which both horizontal (roof and floors) and vertical (walls) 
diaphragms were cold-formed frames sheathed with structural panels. 
The experimental program was based on two nominally identical wall sub
assemblages (Della Corte et al. 2003, Fiorino 2003, Fiorino et al. 2004). One 
sub-assemblage was tested under monotonic loading, the other was instead 
subjected to a purposely developed cyclic loading history. The generic stud 
shear wall sub-assemblage is shown in Figure 1. 

joist 

end stud 

intermediate stud 

Figure 1. Global 3D view of the tested prototype. 

The generic wall framing, which was 2400mm long and 2500mm height, 
consisted of single top and bottom tracks, single intermediate studs and double 
back-to-back end studs, spaced 600mm on centre. The floor framing consisted of 
joists spaced 600mm on centre, with single span of 2000mm. The foundation 
was simulated by two 280x380mm (depth x width) rectangular concrete beams. 
The walls were connected to the foundation by intermediate shear anchors and 
purposely-designed steel hold-down connectors placed in correspondence of the 
end studs. The main details of the specimen components are reported in Table 1. 
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All the specimen components (members, panels and connections) were designed 
according to capacity design principles, in such a way to promote the 
development of the full shear strength of sheathing-to-wall framing connections. 
Two types of load were applied: gravity and racking loads. A gravity load of 
45kN was applied on the floor of the prototype. Racking loads were applied to 
the floor panels by means of two programmable servo-hydraulic actuators. 
Fourteen potentiometers were used for measuring displacements of the 
specimens during tests, as shown in Figure 2. In particular, five potentiometers 
(wI through w5) were installed for each wall (Fig. 2a); one potentiometer (fl) 
was installed for each foundation beam (Fig. 2a); and two potentiometers (dl, 
d2) were installed on the specimen floor (Fig. 2b). The load was measured 
through the actuators' load cells. Figure 3 shows a global view and some details 
of specimen and testing apparatus. 
Two load regimes were applied: monotonic and cyclic. In the monotonic regime, 
the specimen was loaded up to a displacement of 150mm. In the cyclic test, the 
specimen was subjected to a specific loading sequence based on the results of a 
numerical study on the probable deformation histories the structure would be 
subjected to, as better illustrated in the next Section. 
The following symbols will be used in the following: Vj and V2 forces measured 
by actuators al and a2, respectively; d j and d2 displacements measured by 
actuators al and a2, respectively; Lr=4800mm total length of walls. 
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Table 1. Full-scale specimen materials and construction data. 
Cold formed steel members 

Steel grade FeE350G (S350GD+ZJZF) hot dipped galvanized (zinc coated) steel 

Wall 
members 

Floor 
members 

Sheathings 

Studs 

Tracks 

Joists 

tracks 
Bearing 
stiffeners 

C (lipped channel section) IOOx50xlOxl.00mm (web depth x 
flange size x lip size x thickness) 

U (unlipped channel section) IOOx40xl.00mm (web depth x 
flange size x thickness) 

C 260x40xlOxl.50mm 

U 260x40xl.00mm 

C 100x50xlOxl.00mm 

Wall Interior 1200x2500x12.5mm (width x height x thickness) 
sheathings --:E""x-t-er-:-io-r---:-12,-,5:-::0-x-=-25=-0,-,0,--x""9--:.0-mm--=T:'-y-pe----::-3--:0,..,S=B:--"'-----'------

Floor sheathing 1250x2500xlS.0mm Type 3 OSB 

Frame-to-foundation connections 
Hold-down connector Purposely-designed welded steel hold-down 
Hold-down anchors HIT-RE 500 with HIS-N(S.S) M20 adhesive-bonded anchors 
Shear anchors HST MS mechanical anchors spaced at 100mm 

Steel-to-steel connections 

CFSmembers 

CFS members-to-hold 
down connector 

4.2x13mm (diameter x lenght) modified truss head self drilling 
screws 

6mm diameter bolts 

Steel-to-Sheathing connections 

Walls 

Floor 

Interior 
3.5x25mm bugle head self drilling screws spaced at 150mm at 
the perimeter and at 300mm in the field 

Exterior 4.2x25mm Hat head self drilling screws spaced at 150mm at the 
perimeter and at 300mm in the field 
4.2x32mm flat head self drilling screws spaced at 150mm for 
sheathing-to-track connections and at 250mm for sheathing-to
joist connections 

The global behaviour of the sub-assemblage may be synthesized by means of the 
relationship between the unit shear resistance v=(V1 + V2)ILt and the mean lateral 
displacement d=(d1+d2)12. The v-d response curve is shown in Figure 4. 
During the monotonic test different behaviours were identified: 
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For a lateral displacement equal to lOmm, tilting of the screws in the 
oriented strand board (OSB) sheathing-to-frame connections started, while 
bearing of the gypsum wallboard (GWB) panels begun. 
For a lateral displacement equal to 36mm (maximum shear resistance), 
tilting of screws in the OSB connections, as well as bearing in the GWB 
panels, were evident (see Figures 5 a and c). 
For a lateral displacement equal to 80mm, in both the OSB and GWB-to
frame connections screw heads initiated to pull through the sheathings and 
when the lateral displacement was equal to 130mm the screw heads 
completely pulled through the sheathings (see Figures 5 b and d). As a 
consequence, the sheathings were completely unzipped along the panel 
edges. 

For all displacement levels, the wall framing deformed into a parallelogram and 
the sheathings had rigid body rotation (Fig. 5e). 

a2 Wall 2 
d2 

I 

L dl 

al Wafll 

(a) Walls (b) Floor 
~ actuator ---= potentiometer 'j>- inclinometer 

Figure 2. Instrument arrangements. 

-------(a) Global 3D -~iew (d) Close up view on the load actuator 

Figure 3. Global view and some details of specimen and testing apparatus. 
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Figure 4. v vs. d curve for monotonic test. 

Deformation of the (e) Deformation of the wall 

Figure 5. Specimen condition during the cyclic test. 

The global cyclic response in terms of unit shear resistance (v) vs. mean 
displacement (d) curve is shown in Figure 6. In this Figure, VMAX+l represents the 
maximum (positive) unit shear measured during the whole loading history; 
VMAX+3 represents the positive unit shear measured at the third cycle of 
displacement corresponding to VMAX+l; VMAX-l and VMAX-3 are the analogous 
quantities measured in the opposite direction of loading. 
During the cyclic test, for lateral displacements less than the ones corresponding 
to the maximum shear resistance, the behaviour of OSB sheathing-to-frame 
connections resulted from a combination of the tilting of the screws and the 
screw heads pulling through the OSB sheathings. The response of the GWB 
sheathing-to-frame connections was characterized by a combination of the 
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bearing of the GWB panels and the screws' heads pulling through the GWB 
panels. 
For lateral displacements larger that one corresponding to the maximum shear 
resistance, heads of the end screws completely pulled through the sheathings in 
the upper half of the walls or, in some cases, the screws caused the rupture of the 
sheathing edges. For these displacement levels the deformation of the wall 
framing still had the shape of a parallelogram, while due to the rupture of 
sheathing-to-frame connections, the rotation of the sheathings was limited. 
Strength degradation after the achievement of the peak strength was more 
pronounced in the cyclic loading test, with respect to the monotonic case. This is 
well evidenced by the comparison between the unstable part of response in the 
monotonic and cyclic regimes of loading (Fig. 6). 
More details about these experimental results can be found in Landolfo et al. 
(2004). 

20 

15 
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5 

o 

-5 
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-15 

-80 -70 -60 -50 -40 -30 -20 -10 0 10 20 30 40 50 60 70 80 

Figure 6. v vs. d curve for cyclic test. 

Numerical results 

An experiment can provide only information on capacities, but, because of the 
strong interrelation between capacity and demand, due consideration must be 
given to seismic demand issues (Krawinkler 1996). 
A fully nonlinear with pinching mathematical model of the hysteretic response 
has been adopted in this numerical study (Della Corte et al. 2000). The model 
has been calibrated using both the experimental results obtained in the current 
study and existing experimental cyclic tests (Serrette et al. 1996a, b; Serrette et 
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al. 1997; COLA-UCI 2001). Figure 7a illustrates the comparison between the 
experimental monotonic lateral load-displacement relationship and the 
numerical model simulation, while Figure 7b illustrates the adopted hysteretic 
model simulating one of the selected cyclic tests. Only the stable part of the 
response has been simulated. 
Analyses were carried out using 26 far field records from Central Italy and 
adopting the incremental dynamic analysis (IDA) procedure (FEMA 350 2001). 
Figure 8 shows the obtained IDA curves. In this Figure the elastic (5% damped) 
spectral acceleration (Sa .• ) is plotted versus the maximum required inter-story 
drift angle (dlh). The ultimate value of the inter-story drift angle (djh) and the 
design value of the elastic spectral acceleration (Sa .•. d) are also reported in Figure 
8. 

10 

5 

o~~~~~~~~~~~~~ 

15 20 25 30 40 '------'------'-----'-_-'---....L.:.=----'_-"---'----' 

(a) Simulating of the monotonic response (b) Simulating of a selected cyclic test 
Figure 7. Model calibration 

6 

5 

4 

3 

2 

o~~--~~--~-+--~~--~~--~~--~~----~ 

0.000 0.005 0.010 du/h 0.015 

Figure 8. IDA curves. 
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The following parameters are introduced in the following discussion: 
S",e,i design value (10~) probability of being exceeded in 50 years) of the 
elastic (5% damped) spectral acceleration; 
S",e,u: the elastic (5% damped) spectral acceleration corresponding to the 
ultimate value of the inter-story drift angle; 

Besides, the following displacement-controlled limit states are defined: 
.: Damage-limiting limit state: it is the attainment of a limiting value of the 

inter-story drift angle beyond which plastic deformations are so large to 
produce appreciable damage to the structure. This limiting value of the inter
story drift angle is set equal to 0.0035, on an empirical basis. 
Collapse limit state: it is the attainment of a limiting value of the inter-story 
drift angle beyond which the residual safety of the structure against collapse 
is assumed negligible. This limiting inter-story drift angle is set equal to 
0.013, which corresponds to the attainment of the maximum lateral strength 
on the static pushover curve. 

On the basis of the obtained numerical data, the following comments can be 
made: 

Under the design earthquake intensity (S", e, ,[), damage is negligible, the 
maximum inter-story drift angle demand being 0.33%<0.35%. 
The average Sa,e,JSa,e,cl ratio is relatively large «Sa,e,JSa,e,cl)av=5.4), but 
dispersion of data is also large. The minimum value of the ratio is 1.7, which 
results acceptable according to modern code suggestions for very rare 
earthquakes (prEN 1998-12003, ATC-40 1996). 

The obtained numerical results have also been used for selecting an appropriate 
loading history for cyclic testing. It has been based on the following seismic 
demand parameters: 

Maximum normalised displacement (ductility): flmax=(dldy)max 
Number of plastic deformation excursions: Np 
Sum of normalised plastic deformation ranges: 71='Lf:!.dp,/dy 

Average over maximum plastic deformation range ratio: 
Pp= I 'Lf:!.dpl avll'Lf:!.dpl max 

For a given value of flmax, the parameters Np and 71 give a measure of the 

cumulative damage effects produced by the earthquake. The value of PI' gives, 
instead, information about the distribution of the plastic deformation ranges. 
Starting from the monotonic pushover physical test carried out in this research, 
the maximum normalised displacement capacity has been fixed equal to 6 
(flmllx,c=6). Then, peak ground accelerations of considered natural records have 
been artificially scaled up to values corresponding to the attainment of a 
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ductility demand equal to 6. Results of these analyses are summarised in Figures 
9a through 9d. Figures 9b and 9c show the required number of inelastic 
excursions (Np) and the required sum of normalised plastic deformation ranges 
erI). Figure 9d illustrates instead the computed values of the ratio (PI') between 

the average and the maximum plastic deformation ranges. 
More details on the seismic demand numerical study can be found in Della Corte 
et al. (2004). 
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Figure 9. Some characteristics of the inelastic deformation demand. 

Average values of NIH Jl and PI' have been adopted as the basis for deriving the 

cyclic loading history to be applied in the physical test. Values of ~H 71 and PI' 

characterizing the first part of the loading history (f1<!1max) have been derived 
on a trial-and-error basis, by searching the best possible matching of the average 
values derived from the numerical analysis of demand, under the constraint to 
have a loading protocol similar to that suggested by ATC-24 (1992). The 
remaining part of the loading history (f1>f1max,J has been defined strictly 
following the ATC-24 (1992) suggestion. This subdivision between the ranges 
f1<!1mllx,c and f1>!1mllX,C derives from the limitations of the numerical model, which 
is able to simulate only the stable part of the physical response. 
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Strength reduction factors 

Current standard design philosophy is based on the strength-reduction factor 
("behaviour factor" (q) using the European terminology or "response 
modification factor" (R), according to the USA terminology) taking into account 
the structural ductility. In particular, the strength-reduction factor is usually 
subdivided into ductility factor (qf.1 or Rf.1) and over-strength factor (qn or Rn), 
and expressed as follows: 

or R = Rf.1Rn (1) 

In Zhao & Rogers (2002) a method for the evaluation of the response from 
quasi-static reversed cyclic test results is presented. Following this method, the 
experimental backbone curve based on the highest strength hysteretic response 
is considered. In particular, the backbone curve is schematised through an 
equivalent bilinear elasto-plastic curve in which the elastic response has the 
same initial stiffness of the envelope curve and the plateau (plastic response) 
intersects the peak load in the backbone curve. The ductility factor (Rf.1) is then 
evaluated through the following equations: 

Rf.1 = Ji for T;::: 0.5 s or RfJ = ~2Ji-l for T < 0.5 s (2) 

where T is the fundamental period of vibration and the ductility demand factor 
(Ji) can be determined as J1=AmaxiAy , in which Ay and Amax are evaluated from the 
bilinear idealization (Ay is the displacement corresponding to the intersection of 
the two segments and Amax is the displacement corresponding to the peak load). 
These relationships are well known expressions of the equal displacement and 
equal energy approximations, respectively. The over-strength factor (Rn) is 
defined as the ratio of nominal (Fn) and first significant yield (F,r> strengths: 

(3) 

where the nominal strength (Fn) is obtained considering the stable loops 
(decreasing of strength in successive cycles of a given displacement amplitude 
less than 5%) and the yield strength (F".) is defined as the value of lateral load for 
which the ideal elastic response deviates significantly from the backbone curve. 
In particular, in Zhao & Rogers (2002) an over-strength factor (Rn) equal to 1.82 
is assumed, based on the design provisions of Uniform Building Code (ICBO, 
1997). 
Based on the cyclic response of the specimen tested in this research and 
considering the Zhao & Rogers' methodology, ductility factors (Rf.1) of 2.66 and 
2.46 are obtained, considering the positive and negative cycles, respectively. It is 
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interesting to observe that these results are very close to those obtained by Zhao 
& Rogers (2002) with reference to walls having similar characteristics 
(specimens AISI-OSB1, -OSB2, -E1, -E2 and Group 14). In fact, the average 
value of RJi for the tests examined by Zhao and Rogers is 2.6, which is very 
close to the average value obtained using the experimental test results presented 
in this paper «2.66+2.46)/2=2.56). 
As far as the evaluation of the over-strength factor is concerned, from the cyclic 
test results obtained in the current research, over-strength factors (RQ) of 2.69 
and 2.45 are obtained, considering the positive and negative cycles, respectively. 
Consequently, the resulting average R-value, according to formula (1), is R=2.56 
x 2.57=:6.6. This value appears to be too much large if compared with the ratios 
Sa,e,ufSa,e,d obtained by the dynamic inelastic analysis results previously presented 
(minimum value of Sa,e,ufSa,e,d equal to 1.7). Then, this (static) methodology 
seems to be unconservative. 

Conclusions 

Some results of a research program aiming to study the seismic performance of 
cold-formed steel stud shear walls and being carried out at the University of 
Naples "Federico II" have been presented and discussed throughout the current 
paper. 
The obtained results allow the following conclusions to be drawn: 

All the components of this structural system can be designed according to 
capacity design principles, imposing collapse in the shear walls' sheathing
to-frame connections (most ductile collapse mechanism), without significant 
increase of the cost. 
In the monotonic test, the collapse mechanism was invariant during the 
increasing lateral displacement, whilst in the cyclic test some modifications 
(more brittle collapse mechanism) occurred after that the peak lateral load 
was achieved. These modifications produced strength degradation, after 
attainment of the peak load, in the cyclic test stronger than in the monotonic 
test. 
The horizontal diaphragm can adequately transfer the horizontal loads to the 
vertical shear walls, without any appreciable damage. 
The maximum inter-story drift angle demand, under the whole set of 
considered acceleration records and for the design value of the spectral 
acceleration, was equal to 0.33%, which is smaller than the damage-limiting 
value (0.35%) coming from the experimental tests carried out. 
The minimum value of the ratio between the ultimate elastic spectral 
acceleration and its design value was equal to 1.7. This value satisfy the 
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minimum requirement of several different seismic codes (e.g. Eurocode 8, 
ATC-40) for very rare earthquakes. 
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