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IMPACT LOADING OF THIN-WALLED BEAMS

By Edward A. zanont!

and Charles G. Culver,2

Assoc. Members, ASCE

INTRODUCTION

The behavior of individuel thin compression elements subjJected to a
time varying load applied in the middle plane was discussed in a previous
paper (2)3. The purpose of this paper is to present an analytical method for
determining the dynamic response of thin-walled flexural members subjected to
short duration impact loading. Results obtained from this mathematical model
are compared with experimental values obtained from beams subJected to impact

loading.
BEHAVIOR OF THIN-WALLED BEAMS

For illustrative purposes in this paper, the thin-walled beam with a
"hat" shaped cross section shown in Fig. 1 will be considered. Note, however,
that the general mathematical method described herein is also applicable to any
thin-walled beam with singly symmetric cross section loaded in the plane of
symmetry.

The sign convention used for positive bending moment is shown ;t the
top of Fig. l‘r In the following, the term "as built" will be used when refer-
ring to the cross sectional properties {moment of inertia, section modulus,
etc.) of this initial unstressed cross section. When the compressive bending
stresses reach a certain value, the plate element comprising the top flange of
the cross section buckles and the concept of "effective width" is used to eval-
uate the properties of the buckled cross section, Referring to Fig., 1, the
cross sectional dimensions such as w and f, referred to as "fla; widths" are
used to establish the stress level at which this buckling occurs.

For the specific c;oss section in Fig., 1, it will be assumed that only
a positive bending moment will cause buckling; i.e., the f£/h ratio is so small
[{t/n) < (w/h)lim ... Ref, 9] that any compressive bending stress in the bottom
flange duc to a negative bending moment will not exceed the buckling stress dcr.
An empirical formulaticn of acr is available:

s o (1.6556) E
cr (v/h)2 A 68}

Eq. 1 is usually expressed in the form of a limiting width-to-thickness ratio,

(w/h} below which the plate will not buckle,

lim?>
Above this stress level, an effective width, b, must be calculated according

s
to the following formula:

b=19n/E [1.0 - o.uistn) [ E ] . (2)
Omax Omax

In Egqs. 1, 2, all dimensions are in inches and the stress and modulus of elas-
ticity are in ksi, Substituting E = 29.5 x 103 ksi. and Emnx = 1,670, 1.67 be-
ing the factor of safety, in Egq. 2 gives the formula for the effective design
width of stiffened compression elements in the current specification (9). Thus
two distinct stress conditions are possible, depending on the magnitude of
the moment as noted at the bottom of Fig. 1. Computation of the section prop-
erties using Eqs. 1,2 requires some iteration since the actual stress must
reflect the reduced cross sectional properties {(12).

If the same type of cross section is used often enough, it may be de-
sirable to develop nondimensional curves for the section yroperties a8 shown
in Fig. 2. 1In plotting these curves, the as built cross sectional properties,

I SBO‘ were used as reference values, The reduction in the crose sec-
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tional properties as the stress level increases above dcr, M’ > "'L.B' is appar-
ent, Since the flat width ratio for the bottom flange clements was assumed to
be small such that these elements do not buckle, the cross sectiocnal properties
of the beam subjected to negative bending are the same as the &s built properties,
M/MLB <0, I/Io = 1, etc, Note that despite that fact that the crosa section

buckles, the stress levels in the range where g, > ccr are within the elastic

T
range of the material and yielding does not commence until the internal moments
exceed the values indicated by the termination of the curves in Fig. 2, Since
only a limited amount of rotation capacity is available after initial yield,

the present specification for cold-formed beams does not take into account any
redistribution of moments or plastic design. The analysis presented herain is
o
Y
As noted previously, the relationship for Ucr presented in Ref. 9 and

also limited to the elastic range of the material, am <
Eq. 1 is based on extensive static tests (11), However, a recent analytical

study (2) indicated that the time duration of the stress level may be an important
factor when considering the dynsmic response of thin plates. Direct application of
these results to beam response, however, would be difficult and was not considered
in the development of the mathematical model herein.

The concept of a dynamic

effective width will be considered, however, in evaluating the test results,

MATHEMATICAL MODEL

Consider the simply supported beam in Fig. 3a subjected to a system of r

external forces Pi’ The continuous system is idealized by a series of lumped
masses connected by flexible elements. This idealization is advantegeous since
the resulting mathematical model consists of & system of simultaneous ordinary
differential equations rather than a partial differential equation. Neglecting
damping, the equations of motion of the system of mass points can be written

in matrix form us:

RIGRINRO RO R

For a linear elastic system, the mstrix[A ] B* referred to as the beam flexibil-

ity matrix, remains constant with time.

The basic difficulty with using Eq. 3 for thin-walled members subject
to dynamic loading is that the flexibility matrix becomes time dependent and
is continously changing eince the moment of inertia changes with the stress
level. This difficulty was overcome by using an incremental form of solution.
For each small time increment, 1t was sssumed that the stiffness characteris-
tics of the beam could be represented bv stationary nonlinear relationships of
the form shown in Fig. 2. For a particular time increment the beam flexibility
metrix was assumed to remain constant and was evaluated using the distribution
of moments from the preceding time step.

Since the moment of inertia varies along the beam according to the
stress level, the beam is a nonprismatic structure. The beam flexibility ma-
trix[ A ]B was therefore computed by subdividing the portions of the beam be-
twveen the lumped masses in Fig. 3& into a series of flexible elements. The
moment of inertia was assumed to vary linearly over the length of each element,
Treating an individual element as a cantilever beam, assuming the moment of

inertia at the free end x = 0, I{0}, is larger than that at the fixed end, I(%),

and using the principle of virtual work (1), the flexibility coeffieients for
deflection and rotation due to a shear force Ve and moment Me applied at the

free end become:

§

v

Y

by

where:

3
a, = (1/}:)}0 [le(I(O)-mx)] ax « ¢+« (5a)
.74

3
2t (1/1-:)S° [x/(I(O) - nx)] gx . . . . (5B)

2
= (1/5} 1/(1(0) - mx)| @x . . . . (5¢)
Ban R [ ]

.. (5a)

n =100 - . oo
Note that shearing deflections were neglected in establishing Faqs. 5. Similar
expressions may be obtained for the case in which I(2) > I(0) by redefining m.

In general Eq. 4 may be written as:

(6)

e
where the subscript e is used to denote element and the element flexibility
[A] . The flexibility matrix for the entire beam is

e
then computed in the following manner.

@J-[A]BCPQ B ¢ 8

applied loads on the beam

matrix is denoted as

By definition:

where

Py

s

The moment and shear at the

working deflections of Pi

beanm flexibility matrix

end of each beam element can be expressed as:

:,-[CLCPD' S ()

The matrix [C]e is determined from static equilibrium principles. The beam

flexibdility matrix is finally computed as:

[A]n-il[c]r[,x] [c]e R )

where the beam is made up of J elements. The above procedure mey be applied
to the idealized lumped mass beam shown in Fig'. 3a., As indicated in Fig. 3b,
variable element lengths XlL, A2L, ...etc. may be used between the discrete

mass points., This variation is permitted in the event thet it is necessary to
have more elements in one location of the model than another. For example, in

reglons where steep stress gradient: are expected, more elements may be required
than in regions where the stress is expected to be more uniform. If the moment
of inertia at the ends of the elements, 8s well as the element length, are ex-

pressed in nondimensional form as I/IO and ) regpectively, and the element flex-
ibility coefficlents as well ags the matrix [.C]e are evaluated accordingly, {:Iq. 9
will not yield [.A]B but a nondimensional matrix [F‘]B . However, the properties

of this matrix are such that the following relationship is true:

(13/m1) [F]B=[A]B R A1),

Nondimensional Equations for Lumped Mass Model

In order to illustrate the influence of the significant parameters gov-
eﬁing the dynemic response, it is advantageous to nondimensionalize Eq. 3.
For example, any load pulse acting at the mass points can be defined as a funce

tion of a characteristic magnitude. That is, the dimension of force may be

factored put so that each load pulse is represented by a common load factor mul-

tiplied by the appropriate time verying coefficient. An example of a character-

ietic load pulse is shown in Fig. 3c. The characteristics of the pulse are the

magnitude Pn, and the duration td In the following development the foreing

functions acting on the lumped mass model will always be expressed in this form.
Also, since the lumped masses m represent some fraction of the total beam mass

M, the disgonal mass matrix has a common factor. Considering Eq. 10, the fol-

loving relationships are obtained:

AR T R
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(Pi> = (Pm) <};> . B . . . . . (11e)
Substituting kqs. 11 into Eq. 3 and rearranging terms pgives:
. -1 -1 -1

G0 = @ {biJ (a) - (m1 /003 fbij [F‘]B 679 R ¢t

Since shearing deflections were neglected, a characteristic deflec-

tion 6p may be defined as:

6p=(PmL3)/(nEI°) S )

A pseudo fundamental natural period of the beam, to’ based on the as built

properties is defined as:

~ fion 3
t, = @mJeLH/(er ) Lo e L L k)

Introducing the following nondimensionzl parameters:

x, = yi/ép . .. . .. . {15a)
Tet/t, .. ... .. .sb)
Pxyrar® = x = (e )Py 0y = 6hs )5 . L L Gse)

expressing the time coefficients 8 in nondimensional form

ai,[ai = r(t/td)], and using Eqs. 13, 14, Eq. 12 becomes:

Q- lllnd-BALT IR - o

2 .
C2 = k/5°

where

¢, =nc, [ $ 1 8]

The internal moment Me acting at any elemcnt along the beam can also

be nondimensionalized. This moment can be cxpressed as:

M= wWilerl, Q) . . . . . . a8

where the matrix ICR)e is determined on the basis of the nondimensional ele-
ment lengths A. Noting that the net force Qi acting at a mass point is the
difference betwecen the external force P1 and the inertia force, Eq. 18

becomes:

(%, /p,L) = [CR], [li-(biiii)/(clﬂz)} B 4 )

4

75

8ince the nonlinearity of the beam wvas expressed in nondimensional form in,
terms of I/Io vs M/M__, Fig. 2, the moment Me vill be nondimenaionalized with

respect to M Introducing the parameter a = Mc/MLB vhere Mc is some char-

LB
acteristic moment of the beam given by:
M =PL/E . . . . . . . (20

Eq. 19 becomes:

(4 M g) = (€a) [cR], {‘i - (bisg)/(cle?ﬁ t21)
Note that the coefficient £ is introduced only as & matter of convenience so
that the characteristic moment Mc can be specified as any fraction of a max-
imum static moment. The calculation of Me/MLB is not affected by the choice
of this parameter.

The equations of motion, Eq. 16, were solved by a numerical integra-
tion technique developed by Newmark { 5) using the assumption that the mccel-
lerations vary linearly within each time increment. Instead of an iterative
type soclution, appropriate recurrence relationships
were employed {10). The number of lumped masses used to idealize the
beam and the size of the time increment required to obtain the desired degree
of accuracy were determined ( 5) from comparisons with existing solutions.

A seven mass model and a time increment equal to 10% of the lovest natural
period of the system (13 ) were found to yield excellent results. Note that
the time increment used remained constant throughout a particular dynamic
response calculation. These equations were solved using a computer program
written in FORTRAN V for a UNIVAC 1108 digital computer. In sddition to the
digital output from this program, a plotting routine available with the com-
puter was employed to obtain a graphicsl presentation of the time variation of
the stresses and deflections for each problem. A listing of this program

and the complete mathematical development of the equations presented herein

is available elsewhere (13).

EXPERIMENTAL PROGRAM

In order to check the mathematical model, a series of static and
dynamic beam tests were conducted. A total of eight beams cold-formed from
sheet material (AISI HR-1008) using the press-brake method were tested. The
virgin sheet material had a sharp yielding type stress strain behavior.

Two different values were selected for the flat width ratios of the compres-
sion flange of the specimens (Group A, Group B)., These values vere well above
the limiting ratio, (v/h)lim. , in order to insure that the dynamic response
of the beams would be in the postbuckling or nonlinear elastic range.

The nominal as ordered dimensions of the specimens are shown in Fig.
he Average values of the cross sectional dimensions obtained from measure-
ments at five locations along the span length of each beam wvere usged for cal-
culation purposes. The mechanical properties of the specimens were determined
from tension and compression coupons cut from extra lengths of the fabricated

beams as shown in Fig. Ub.

Staiic Teats

Four of the eight specimens, two from each group, were tested stati-
cally to determine the relationship between the applied moment and the section
properties, Fig. 2. The setup and instrumentation for these tests was nimi}ar
to that employed in previous studies (3), Solid plate
web stiffeners of the same thickness as the beams wvere ugsed at the load points
and end supports. In order to insure that the buckling pattern of the com-
pression flange was not inhibited by any local restraint, the stiffeners were
cut short of the compression flange and tack welded to tie webs. Both positive

and negative moment tests were conducted for each group of specimens,
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b. Location of tension and compression coupons.

FIG. & - Dimensions of Test Specimens

All the strain gages, SR-L Type Al, were located at the center of the
test span and were read individually. Mid plane strains were determined by
averaging the two gage readings at each location, Dial gages were located on
both sides of the cross section at intervals in the constant moment region.
These gages as well as those at the end supports were used to determine the
beam deflections, The strain gages and dial gages permitted an evaluation
of any tending of the beam to twist under load.

A 60 Kip Baldwin hydrsulic testing machine was used for the static
tests, Load was applied in small increments, approximately 500 1lbs., and suf-
ficient time was taken to allow the strain gages to stabilize before readings
were recorded, Near ultimate, increments of deflection rather than load were
used and the dial gage readings were stabilized before recording the data,
Visual observation of local buckling and yielding was facilitated by white-
washing the specimens,

The data from the tensile and compressive coupons indicated that the
yield stress and modulus of elasticity did not vary significantly over the beam
cross section due to cold working effects (less then 2% variastion), Values for
the modulus of elasticity and yield stress for the Group B specimens were, how-
ever, lower than expected for the sheet material used. The tensile and com-
pressive yield stresses were also approximately the same (within 3%), These
properties did vary between the two groups of specimens, A and B, and it vas
apparent that different virgin sheet material had been used to fabricate each
group. For calculation purposes, the following average values vere used:

3

Group A - E = 29,5 x 10~ ksi,, Gy = 31,2 ksi{; Group B « Ew 27.0 x 103 kai,,

o = 28,7 kai,
Y

Typical results from the static beam tests are shown in Fig. 5. Using
the strain gage readings to determine the location of the neutral axis and
equilibrium considerations for the cross section under pure bending (11), the

effective width, internal resisting moment and effective moment of inertia

were determined for each value of the external load. Since there was a slight

amount of twisting of the specimens, as indicated by the dial gages and strain
gages, the calculated internal moment differed slightly (less than 5 X) from .
the external moment computed from the testing machine load. This unavoidable
twisting did not significantly affect the effective width determination, how-
ever. The moment indicated for the test points corresponds to the internaf
moment based on the calculations using the strain gage data,

For comparison purposes the calculated moment of inertia based on Eq.
2 and the average mechanical properties is also shown in Fig. 5. As shownm,
the section was slightly stiffer than indicated by Eq. 2. As the moment in-
creased, however, the test values spproached those determined from £q. 2.
Since negative moment did not produce local buckling, no reduction in the mo-
ment of inertia occurred as indicated. The same general trend shown in Fig.
5 was observed for the specimens in group B.

The load deflection curve for the beama subjected to positive moment
was nonlinear -( 3) due to local buckling effects. Attempts were made to de-
termine whethar this curve had a horizontal plateau or if any rotation capac-
ity was available similar to that of the heavier hot roliled wide flange shapes.
No rotation capacity was present and the load deflection curve began to de-
crease and the section unloaded after reaching a load approximately 6X higher
than the load at which initial yielding of the beam was indicated by the strain

Dynamio Taats
Two loading conditions were used for the dynamic tests, centerline
loading and quarter point loading. For quarter point loading, a considerably

longer length of the beam was subjected to moment greater than the local

38
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FIG. 5 - Moment of Inertis vas. Moment - Experimental

buckling moment than in the centerline loading case, A sketch of the dynamic

test setup for centerline loading is shown in Fig, 6,

The dynamic loads for these tests were developed by dropring a cali-
75
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brated weight from a predetermined height on a load ring attached to the beam.
After impact, the weight was immediately removed and the beam was permitted
to vibrate freely. For quarterpoint loading, two load rings and a spreader
beam were employed. The magnitude and time variation of the applied loads were
obtained from photographic records of the oscilloscope traces produced by the
strain gages attached to the loading rings. Dynamic strains in the beam were
recorded in the same manner. All the strain gages used in the dynamic tests
were SR-4 Type C8 dynamic gages. Dynamic deflections were measured by means
of a linear variable differential transformer, The photocells shown in Fig. 6
were used to actuate the electric recording circuit as the weight struck the
loading ring or spreader beam, Complete details of the test setup and test
procedure are available elsewhere (13).

Typical dynamic test results are shown for centerline loading in Fig.
7 and quarterpoint loading in Fig. 9. The midplane stresses at the middle and
edge of the compression flange, the midplane stress in the tension flange, the
centerline deflection and the variastion of the load as recorded by the loading
rings are shown, There figures were obtained by enlarging and tracing photo-
graphs of the oscilloscope records, Stresses were obtained by multiplying the
recorded strains by the average modulus of elaéticity.

For the particular test shown in Fig, 7, the stress level was so low
that very little if any local buckling occurred and the beam response was es-
sentially linear elastic, For the test in Fig. 9, however, considerable
local buckling occurred and the beam response was not linear as indicated,
The variation of the top flange stress at the edge of the compression flange,
and the bottom flange stress,

in Fig. 9 are smooth curves during

Crop* Ipops
the duration of the applied load and the response is similar to the variation

of the external loasdpulses. The time variation for the stress at the center

of the top flange, however, is irregular and is not similar to the time

%uip?

variation of the external load pulse, The presence of the dip in this stress

trace is an indication that the top flange has buckled. Also, the reduced mag-
nitude of stress at this point compared to the magnitude of stress at the edge
of the top flange is an indication that a reduction in effective width has

taken place. Note that the top flange buckled while the edge stress was in-
creasing and recovered while this edge stress was decreasing. Records similar
to those ehown in Fig., 9 for other teets at higher stress levels 1ndicateq

that the stress in the center of the top flange oscillated several times vhile

the edge stress increased and decreased. These oscillations are a result of
the vibrations of the individual plate elements which comprise the cross section
and are superimposed on the oscillations of the overall beam vibrating as a
unit.

Calculated response curves for the tests in Figs, 7, 9 obtained using
the computer program and plotting routine discussed earlier are shown in Figs.
8 , 10. The load pulses obtained from the oscilloscopes and the relationship
betwveen the moment and moment of inertia in the static tests were used as input
to the program. Approximately fifty discrete values of the load were used at
equal time intervals {0.50 milliseconds) over the duration of the bosiiive
phase of the load pulse. Since the maximum beam response, which is of primary
interest, occurs in this time interval, only the positive portion of the load
pulse was considered, Since the computer program replotted the input load pulse,
it was possible to compare this with the oscilloscope trace in order to insure
that a sufficient number of discrete points had been selected to adequately
represent the experimental load pulse, Note that the added mass of the loading
rings which vibrated with the beam was taken into account in these calculations.

Comparison of Figs.7 , 9 and 8, 10 indicate that the calculated maximum
stresses and deflections are of the same order of magnitude as the experimental
values. The calculated values were much larger than the experimental values
after the load pulse was removed, however. This difference is due to the in-
fluence of structural demping and the negative portion of the load pulse which
vere neglected in the mathematical model. Note also that the oscillations of
the stress at the middle of the compression flange in Fig., 9 are not present
in Fig. 10 since the plate vibrations were not included in the mathematical
model.

Additional comparisons between calculated and .experimental values.of
the midplane maximum top flange stress,

» bottom flange stress, , and

Opop Bor
midspan deflection occuring during the positive phase of the load pulse are given
in Tables 1, 2. Calculated values based on the relationship between the moment
and moment of inertia obtained in the static tests, the relationship using Eq, 2
and a linear elastic analysis neglecting local buckling, I/Io = constant = 1,
are given. Note that the calculated deflections obtained from the mathematical
model account for the variation of the moment of inertia due to local buckling

over the entire length of the beam by means of the discrete elements described

] previocusly,
77
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Referring to the calculated stresses in Tables 1, 2, note that the re-

sulting values differ for the three methods of analysis. The internal monents,
not presented, obtained from the three methods, however, did not differ appre-
ciably. Thus the method of computing the stress rather than the method used
to calculate the internal moment is the more significant factor in these com-
pariscn studies. Also, the reduction in the effective width of the top flange
has a greater influence on the top flange section modulus than on the bottom
flange section modulus. This was indicated by the fact éhat in general the
three methods of analysis predicted essentially the same bottom flange stress,
The predicted top flange stresses, however, differed considersbly.

The reduction in section modulus is influenced by the I/Io curve, As
indicated previously, the I/Io curve based on test properties is stiffer than
the I/IO curve based on Eq. 2. Thus the analysis based on Eq. 2 generally pre-
dicted higher stresses than those predicted using the test properties, Since
the internal moment predicted by all three enalyses is approximately the same
for a given case, the stresses in the top flange predicted by the linear elas-
tic analysis were generally lower than those predicted using either test prop-
erties or Eq. 2, The differences between the predicted bottom flange stress
and midspan deflection obtained from the three enalyses were very small.

‘ The tests in Tables 1, 2 are arranged in order of increasing stress
level, The time durations of the load pulses varied between 0.0185 sec.
and 0,0L4% sec, Note that since the stresses were within the elastic range of

the material, several tests were conducted on each beam. The calculated local

for beams A3 and Bl respectively. For those tests in which the meximum top

flange stress was below the value of O the beam response is linear, For

LB*

the tests in which the top flange stress exceeds ¢ the degree of nonlinearity

LB®
is reflected by the differences between the calculated stresses based on the
linear analysis and on the test properties,
For beam A3, the percentage difference between the calculated values

using the static test properties and the test values for both the top and bbt-
tom flange stresses was less than 10% up to & stress level of 23,000 psi in the
top flange, As the stress level increased above this value the percentage dif-
ference also increased. In general the percent difference was the same for both
top and bottom flange stress. The percent difference for the deflections however,
was usually larger than that for the stresses. This may have been due to experi-
mental error since any deflection due to twisting of the beam was also recorded
by the single linear differential transformer.

For beam Bl the percent difference between the values noted above was
less than 10% up to a stress level of approximately 10,000 psi in the top flange.
Above this stress level, the percent difference increased and was generally larger
than that for beam A3, Also the percent difference was different for the top
and bottom flange stress. The velues in Table 2 indicate that in some cases the
test values agreed more closely with those based on a linear analysis even though
the beam was obviously in the postbuckling range. The poor agreement between

calculated and measured values for beam Bl is due to the form of +the I/lo curve in

TABLE 2 SUMMARY OF TEST RESULTS QUARTER POINT LOADING - BEAM

buckling stress based on the static tests was O = 6200 psi and Op = 14000 psi ’ Calculated Values Difference &s a 7
. LB Beam Test Test Linear Eq. 2 Test Linear Eq, 2
Value Prop. Analysis Prop. [Analysis
TABLE 1  SUMMARY OF TEST RESULTS - MIDSPAN LOADING i (1} (2) (3) W) (s) (6) M (8)
(a) Top Flange Stress- opnp (psi)
Calculated Values Difference As % T ~-2080 -2283 -2283 -2300 +10 +10 +11
8 -5320 -5382 -5382 -6185 +1 +1 +16
Beam Test Test Linear Eq, 2 Test Linear |} Eq. 2 9 -5700 -6011 -6011 -7035 +5 +5 +22
Value Prop. Analysis Prop. |Analysis 10 -~10000 -97h7 -8851 -11750 -3 -13 +18
. . 11 -12k00 -11k60 ~9950 ~13300 -8 ~25 +7
(1) (2) (3) (W) (5) (6) (7) (8) > 14200 14700 _116k0 1980 wh Y +20
A3 13 -16500 -17790 ~13475 -206h0 +8 22 +25
(&) Top F1 . Ser . 1h -22100 -23660 -16L00 -26240 +7 _135 +19
L op Flange Stress - a.., (psi) 15 -22300 -24610 ~16810 -27150 +10 -33 +22
i 16 -23000 -27670 -18050 -30260 +20 -28 +32
1 | -3000 -?233 '2202 ‘igc% 7 o a 17 26700 -32170 -199k0 -33740 +20 -3k +26
2 -3}30 —2»_7,1 -3[;71 -é 71 :5 5 P 18 -28600 ~35L00 ~21800 -37090 +2L -31 +30
A3 E -é_ggg :Ef?ai.(, :2'735 :7319 2 Pt s 19 -32900 -L0390 -2L100 ~11920 +22 37 +27
5 _83ko 9182 _8U00 ~10290 +10 +1 +23 ~9000 ~11330 ~11330 ~13LLo +26 +26 +L§
6 G200 —985L -8870 10930 +7 -5 +19 6 -9200 -113950 -11390 -13620 +24 +2h +48
BL 7 -13koo -17090 -16060 -20870 +28 +20 +56
8 -18400 -22580 ~19390 -26320 +23 +5 +43
-4 -5261 -5261 -5261 +7 +7 +7
L ; —Tgcs)g -209? _?3022 -81L5 +1 +1 +2 9 -20600 -26850 -22190 -30010 +30 +8 +51
B 3 9800 10560 10560 -11550 +8 +8 +18 10 ~23200 -32000 -25730 -369L0 +38 +11 +59
i 10200 ~13780 _13780 _16160 +13 +13 +32 11 -29000 -35990 -28600 L1710 +2h -1 +Ll
(b) Bottom Flange Stress - Opgm {(pet)
b) Bottom Flange Stress . a_..  (psi)
(o) Borton s il T 3500 3602 3602 3638 +3 +3 +}
1 3450 Lh32 Ly32 ul 32 +2 +2 +2 8 7900 8hg2 8lg2 8620 +7 +7 +9
2 5000 9172 s172 51712 +3 +3 +3 9 9200 9485 9L 86 9538 +3 +3 +1
A 3 5800 6066 6266 6266 +8 +8 +8 10 13750 13740 13970 14260 0 +2 +4
3 h 10000 10570 10620 10270 +6 +6 +3 11 15400 15390 15700 15720 0 +2 +2
5 11700 13170 13300 12860 +12 +1L +10 12 17500 18300 188Lo 19050 +5 +8 +9
3 12550 13860 14050 13480 +10 +12 +7 A3 13 17600 21100 21260 22240 +20 +21 +26
14 23000 25630 25580 26900 +12 +13 +17
15 22300 26290 26530 27660 +18 +19 42l
; ;;88 %ﬁo fgéio g:’(ég :ﬂ :i? :és 16 24200 281400 28480 30160 +17 +18 +25
oS T | e | NS | B | e e | e I |z o | om | me | om o | o
L 15300 17590 17590 17050 +15 +15 +11 19 28300 378k0 38030 39280 +3k +3h +39
(c) Midspan Deflection . 6% (in.) 5 11000 1L470 14470 14680 +31 +31 +3h
6 11500 14550 14550 14830 +26 +26 +29
7 15300 201k0 20500 21020 +32 +3L +37
1 0.037 0.033 0.033 0.033 -12 -12 -12 BL 8 19100 2LoT70 2L760 25420 +26 +29 +33
2 0,0L1 0,037 0.037 0.037 ~-11 -1 -11 9 20900 27650 2830 29100 +33 +36 +40
A 3 0.048 0.0kL5 0.0k5 0,0k5 -7 -7 -7 10 23L00 234k0 32060 33650 +39 +37 +4)
3 0,085 0.078 0.078 0.0L5 -9 -9 -2 11 29500 36420 36500 37220 +23 +24 +26
ool e e | s | 5] D] B (&) _thdnpen rerictiont - 5, oo
7 0.035 0.030 0.030 0.030 -17 -17 =17
) 0.060 0.059 0.059 0.059 2 _2 -2 8 0,075 0.070 0.070 0,072 =7 -7 ~h
B 5 9% 5% 02089 0090 o +s +6 9 0.081 0.077 0.076 0.080 -7 -6 -1
3 0.115 0118 0118 0,123 43 +3 +7 A3 10 0.115 0.116 0,114 0.126 +1 -1 410
i 0 138 o 15k 0.15k 0,166 e +12 +20 1n 0,125 0.133 0.125 0.136 4 0 +9
' N : . 12 0.1k5 0.165 . 0.156 0.179 +1h +7 +23
13 0.175 0.186 0.170 0.204 +6 -3 +16

Difference as a percentage = Test

®Deflection date not obtained for Tests 1L thru 19



the nonlinear range, Bean Bl was gonlidoubly stiffer than beam A3 and the slope
of the l!/!o curve in the postbuckling range for BL was much steeper than that for
A3 (Fig., 5). The stiffness of beam Bl, therefore, was considerably more sensi-
tive than beam A3 to slight changes in the internal moment, At the higher stress
levels, agreement between celculated and measured values were similar for both
beaxns .

The percent difference between the calculated values using Eq. 2 and the
test values vas larger than that obtained using the atatic test values due to !
the differences between the moment versus moment of inertia relationship mentioned
previously (Fig. s).

A presentation of all the static and dynamic test results obtained in
this investigation is given in Fig, 11. The form of this graph is the same as
that used by Winter (11) in establishing existing requirements for cal-
culating effective vidth‘. Reduction of the static test data for this graph vas
the same as that used by Winter, For the dynamic tests, calculation of the ef-
fective width b, and GT in Fig. 11 vere based on the maximum midplane top flange
stresa which occurred during the positive phase of the loat pulse. The dynamic
test points therefore represent the minimum effective width which occurred during
each test, The values of the sbsciem ebove which the full width of the compression
flange .il effective and alsoc the values for vhich the maximum top flange stress ’
is less than the yleld stress are also shown,

Ae noted previously, earlier studies (2 ) indicated that the effective
width in & dynamic test would be influenced by the vibration of the plate elements
comprising the croas section., In order to determine vhe;her any trend existed,
the dynamic data in Fig. llwas grouped according to the value of B'
or the ratio of the time duration of the stress pulse {Fig. 9 } to the fundamen-
tal period of the compression flange treated as a simply supported plate. The

dynamic test results in Fig. 1ldo not indicate any such trend, The scatter of

the dynamic data is similar to that in the static %ests, Also, with the excep-
tion of a few of the dynamic teste for beam A3 at high stress levels, the rela-
tionship in Eq. 2 fits both the static and dynamic results to the same degree of
accuracy obtained in earlier studies {11). Based on these results, the use of
Eq. 2 for calculating the moment versus moment of inertia relationship to be
used for dynamic response calculations of thin-walledbeams subjected to impact
loading appears Jjustified.

In discussing the calculated values presented in Tables 1, 2, it was noted
that although the stresses and deflecticns obtained by the three methods differ

substantially when the beam is in the postbuckling range, the internal moments,

however, did not differ appreciably. This fact suggests that for design pur-
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P10, 11 - #tasic and Dypemic Test Results

‘pOIQI. 1t may be possible to forego the complicated incrementsl type solution of
the equations of motion presented herein and simply use the as bulilt section
properties of the beam and vell eptablished linear elastic response techniques
such as normal mode superposition, etc., to determine the internal moments pro-
duced by the impact loads. Using these moments and the appropriate reduced sec-
tion properties based on Eq. 2, the internal stresses and deflections could then
be caleulated in the same manner as is presently used for cold-fonned beams sub-
Jected to static loads., The adequacy of this technique for design purposes

as well as the influence of the various nondimensional parameters on the dynamic

response will be considered in & forthcoming paper based on completed studies (8).
.

SUMMARY AWD CONCLUSIONS

The behavior of thin-walled, cold-formed beams subjected

to impact loading vas studied both analyticelly and experimentally. The experi-
mental study consisted of static and dynemic testa. The results of this investi-
gation indicated that in order to determine the stresses and deflections of thin
walled beams subjected to impact, it is necessary to take into account the post-
buckling behavior and include the concept of effective width. The use of exist-
ing expressions for this effective width which are based on static test results
appear adequate ‘for calculeting the dynamic response., Preliminary calculations
indicate that it may be possible to use linear elastic response techniques to

determine the internal forces in structures of this type.
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APPERDIX II - NQTATION

The following symbols are used in this paper:

a;, = time coefficient at load point;

a{ = nondimensional time coefficient at load point;

a1 8y, = flexibility coefficient;

b = effective width of top flange of beam;

bi = nondimensional mass coefficient for mass point i;

¢ = distance from the neutral axis to extreme top flange fiber
of beam;

e, T ¢ computed from the original cross section properties;

E = modulus of elasticity;

e = subscript used to denote element;

f = flat width of bottom flange of beam;

h = thickness of beam element;

I = moment of inertia;

Io = I computeéd from the original cross section properties;

1 = mass point designation; ’

J = number of beam elements;

L = span length of beam;

1 = 1length of beam element;

M ; total mass of beam;

Mc = characteristic moment;

He = moment at element location ej

MLB = local buckling moment

mi = magnitude of lumped mass at point i;
P1 = magnitude of applied load at point i;
characteristic load magnitude;

net internal force at point i;

BB =
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section modulus for bottom flange of beam;

section modulus for bottam flange of beam computed from

original cross sectional properties;
section modulus for top flange of beam;

section modulus for top flange of beam
original cross sectional properties;

initial imperfection parameter - Fig. 3;
time;

time duration of load pulse;

time duration of stress pulse;
fundemental natural period of beanm;
shear at element location e;

flat width of top flange of beam;
nondimensional displacement of mass

point i;

nondimensional acceleration of mass point i;
absolute displacement of mass point i;

abaolute acceleration of mass point 1;

nondimensional beam loading;

nondimensional load duration for beam response;

nondimensional load duration for plate response;

midspan deflection;

characteristic deflection;
strain;
= maximum dynamic strain in plate;
e maximum static strain in plate;
characteristic deflection coefficient;
nondimensional length coefficient;
coeffieient for characteristic moment;
maximum edge stress;

maximum bottom flange stress in beam;

critical stress for restrained plate element;

local buckling stress for beam;
maximum top flange beam stress;
yield stress;

nondimensional time

Matrix Notation

= matrix;

= diagonal matrix;

= transposed matrix;

= inverted matrix;

= column vector;

Specially Defined Matrices

= beam flexibility matrix;

= element flexibility matrix;

= element connection matrix for shear and moment;

= nondimensional element connection matrix for moment;

= nondimensional beam flexibility matrix;

= jdentity matrix

computed from
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