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IMPACT WADING OF THIN-WALLED BEAMS 

By Edward A. Zanoni1 and Cborlea G, Culver,2 Assoc. Membera, ASCE 

INTRODUCTION 

The behavior of individual thin compression elements subjected to a 

time varying load applied in the middle plane was discussed in a previous 

paper ( 2) 3• The purpose of this paper is to present an analytical method for 

determining the dynamic response of thin-walled flexural members subjected to 

short duration impact loading. Results obtained f'rom this mathematical model 

are compared with experimental values obtained from beams subjected to impact 

loading. 

BEHAVIOR OF THIN-WALLED BEAMS 

For illustrative purposes in this paper, the thin-walled beam with a 

"hat" shaped cross section shown in Fig. 1 will be considered. Note, however, 

that the general mathematical method described herein is also applicable to any 

thin-walled beam with singly symmetric cross section loaded in the plane of 

symmetry. 

The sign convention used for positive bending moment is shown at the 

top of Fig. 1. In the :following, the term "as built" will be used when refer-

ring to the cross ~ectional properties (moment of inertia, section modulus, 

etc.) of this initial uns.;tressed cross section. When the compressive bending 

stresses reach a certain value, the plate element comprising the top flange of 

the cross section buckles and the concept of "effective width" is used to eval-

uate the properties of the buckled cross section, Referring to Fig. 1, the 

cross sectional dimensions such as w and f, referred to &f; "fla;;. widths" are 

used to establish the stress level at which this buckling occurs. 

For the specific cross section in Fig. 1, it will be assumed that only 

a positive bend.i.ng moment will cause buckling; i.e., the f/h ratio is so small 

[(f/h) < (w/h)lim .. , Ref, 9] that any compressive bending stress in the bottom 

flange due to a negative bending moment will not exceed the buckling stress crcr" 

An empirical formulation of crcr is available: 

0 
cr 

(1.6556) E 

(w/h) 2 (1) 

Eq. 1 is usually expressed in the form of a limiting width-to-thickness ratio, 

(w/h)lim' below which the plate will not buckle. 

Above this stress level, an effective width, b, must be calculated according 

to the following formula: 

b = 1.9 h ~ ~ [1.0 - 0.415(h/w)-. ~]. , (2) 
V5~x va.x 

In 1-:qs. 1, 2, all dimE"nsions are in inches and the stress and modulus of elas-

ticity are in ksi, Substituting E = 29.5 x 103 ksi. and Omax = 1.670, 1.67 be­

ing the factor of safety, in Eq. 2 gives the formula for the effective design 

width of stiffened compression elements in the cw-rent specification (9). Thus 

two distinct stress conditions are possible, depending on the magnitude of 

the moment as noted at the bottom of Fig. 1. Computation of the section prop-

erties using Eqs. 1,2 requires some iteration since the actual stress must 

reflect the reduced cross sectional properties ( 12). 

If the same type of cross section is used often enough, it may be de-

airable to develop nondimensional curves for the section ,Properties aa shown 

in Fig, 2, In plotting these cw-ves, the as built cross sectional properties, 

1 0 , STO' Sao• vere used as reference values. The reduction in the cross sec-
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tional propertiea aa the atreaa level increases above O'er• M+ > Mx.J• 11 &p,par­

ent, Sinoe t.he tle.t vidt.h re.Uo tor the bottom !lanse oleunto vu uoWDed to 

be ame.ll auoh that theoe element• do not buckle, the oroao aeotione.l propertie' 

ot the beam aubJeoted to nesative bendins are the seme u the as built properties, 

M/"x,8 < 0, I/10 • 1, eto. Note that despite that taot th&t the oroaa aeotion 

buckles, the stress levels in the range vhere aT > a0 r are within the elastic 

ranse or the u.aterial and :yieldins does not commence \Ultil the internal momenta 

exceed the values indicated by the termination or the curves in Fis. 2. Since 

only a limited amount ot rotation oapaoity is available &tter initial :yield, 

the present specification for cold-formed beams does not take into account any 

redistribution of momenta or plutic desisn. The analysis presente!l he;r<~in is 

also limited to the elaatio ranse ot t.he material, limax ~ a:Y , 

As not.ed previous~, the relationship tor a cr presented in Ref. 9 and 

Eq. l is baaed on extensive static tests (11). However, a recent analytical 

~ • (1/E~: [ 1/(I(O) - mx)) dx 

m • [ I(O) - I(1)) /1 , 

(5b) 

(5o) 

(5d) 

llote t.hat shearing dethctiona were neglected in eatablishing Eq_s, 5. Similar 

expreoaiono ma,r be obtained tor the case in which ILl.) > I(O) b:y redefining m, 

In seneral Eq. 4 IIIIi)' be written u: 

{~. [·J.~l (6) 

where the aul>aoript e is used to 4enote el-nt a,nd the el.~~ent flexibility 

Ol&trix is denoted aa [ A J . The f'lexibili t:y matrix for the entire be8111 is 
, e 

then computed in the fol10Ying manner. B7 definition: 

(7) 

study (2) indicated that the time duration or the streso level mq be an import&llt where 

factor when considering the dynamic response ot thin plates. Direct application of P f. • applied loads on the 'beam 

these results to beam response, however, would be difficult and was not considered 6i • working deflections of Pi 

in the development of the mathematical model herein. The concept of' a dynamic [A)B • beam flexibility _..,trix 

etfecti ve width will be considered, however, in evaluating the teat results. 'l'he .,...nt Uld shear 11t the end ot eaoh beam element ·ca.n be exprea"ed as: 

MATHEMATICAL MODEL 
(8) 

Consider the simpl:y supported beam in Fig. 3a subjected to a e:ystem of 

external forces P1 • The continuous system is idealized 1»Y a series of' lumped 

m&sses connected by flexible elements. This idealization is advantageous since 

{*e •[cJe (PJ. 
"' The ,...trf.x [C) e f.a determined from otatf.c equllibrl.um principles. 

tlexibl.li ~)' metri:¥ is tiDally computed as: 

The beem 

the resulting mathematical model consists of a system of simultaneous ordinary 

differential equations rather than a partial differential equation. Neglecting 

damping, the equations of motion of the system of mass points can be written 

in r~atrix form u.s: 

(3) 

For a linear elastic system, the matrix (A] B' referred to as the beam flexibil-

1 ty matrix, remains constant vi th time. 

The basic difficulty with using Eq. 3 for thin-valled members subject 

to dynamic loading is that the flexibility matrix becomes time dependent and 

is continously changing since the moment of inertia changes with the stress 

level. This difficulty was overcome by using an incremental form of solution. 

l''or each small time increment, it was assumed that the stiffness characteris-

tics or the beam could be represented by stationary nonlinear relationships of 

the form shown in Fig. 2. For a particular time increment the beam flexibility 

matrix was assumed to remain constant and vas evaluated usin~ the distribution 

of moments from the precedins time step. 

Since the moment of inertia varies along the beam according to the 

stress level, the beam is a nonprismatic structure. The beam flexibility ma­

trix [ A ] B vas therefore computed b:v subdi vidinl!' the portions of the beam be­

tween the lumped masses in Fig. 3a into a series of flexible elements. The 

moment of inertia was assumed to vary linearly over the lensth of each element. 

Treating an individual element as a cantilever beam, assuming the moment of 

inertia at the free end x = 0, I(O), is larger than that at t.he fixed end, I(!), 

and using the principle of virtuel vork ( l ) , the flexibility ooeftieienta for 

deflection and rotation due to a shear force V e and moment Me applied at the 

free end become: 

(~) 

where: (5a) 

• (9) 

where the beam 1a made up or J element a, The above procedure may be applied 

to the idee.lized lumped mesa beam ahovn in Fig·. 3a. As indicated in Fig. 3bo 

variable element lenstha A1L, A2L, ••• etc. may be used between the discrete 

mass points. This variation is permitted in the event that it is necessary to 

have more elements in one location of the model than another. For example, in 

regions where steep stress gradientt are expected, more elements ma.v be required 

than in regions where the stress is expected to be more uniform. If the moment 

of inertia ~t the endliS of the elements, tt,s well as the element len~h, are ex­

pressed ill nondimensional form as I/10 and l, respectively, and the element flex­

ibili t:y coefficienta 011 well as th~ matri~ [ C Je are ev11luated aocordingl~, Eq. 9 

will no~ yield [A]B but a nondimensional matrix [r)B . However, the properties 

of this matrix are auoh that the following relationshiP is true: 

(10) 

In or~Jer to illustrate the influence Of the significant parameters gov­

erning the ~namic response, it is advantageous to nondimensionalize Eq. 3. 

Por example, any load pulse acting at the mass points ~an 'be defined as & func­

tion ot a characteristic ~!tude. That is, the dime:ns;i.on of force may be 

tactor,d .,ut ao th~~ot each load pulse is represented by a c·cmmon load factor mul­

tiplied b:y the appropriate time var:ying ooeffioient, An example of a oharacter­

iotic load pulse io shown in Fig. 3o. The oharaoterhtioo of' tbe pulse are the 

In the following development the forcing 

:!'unctions aotins on ,the lumped masa model vill e.lw-.vs be expreBBed in this fonn. 

Also, since the lumped maseee mi represent some traction of the tote.l beam mass 

M, the diqone.l ••• matrix heo a •- taotor, Conaiderins Eq. 10, the fol­

lwing relationship& are 'ollt&ined: 

t•J • (M) t'bf.J 

[A r: • (Eio/L3) [ F r~ 
(lla) 

(llb) 



Lumped mau 
Fluible element 

a. Lumped Mall Idealization Of Beam 

J:).,•l 

••t f. J, I 

"'' 
Q, 

Fr .. bodr of mau poiAt 

b. Beam Havin9 Elementt Of Varible Lentth 

'·h 
I· ~ t. 

c. Characteriatic Load Pul11 

FIG. 3 - T)<pical Limped IC&u Noclela 

Substitutine l::qs. 11 into Eq. 3 and rearraneing terms cives: 

• (llc) 

(12) 

Gince shear ins deflections were neglected, a characteristic deflee-

tion 6P may be defined as: 

6 • (P L3)/(nEI ) 
p m o 

(13) 

A pseudo funtla.Dental natural period of the beam, t 0 , based on the as built 

properties is defined as: 

Introducing the following nondimensional parameters: 

expressing the time coefficients a1 in nondiu:.cnsional form 

a:i_,(ai • f(t/t 11 ll, and using Eqs. 13, 14, Eq. 12 becomes: 

vhere 

• (14) 

(15a) 

• (15b) 

• (15c) 

• (16) 

• (17) 

The internal moment Me acting at any element along the beam can alao 

be nondimensionalized. This moment can be oxprease4 as: 

(18) 

where the matrix (CR]e iB determined on the buia ot the nondiaenaional e1e­

&ent lengths A. Noting that the net force Qi actins at a 11&11 point 1a the 

41tterence between the ezternal torce P 1 an4 the inertia force, Eq. 18 

becomes; ( 2~ 
(N.JP.L) • (Cli]•Ll - (bii1 )/(C111 J (19) 

Since the nonlinearity or the be .. wu expreaae4 in nondiaenaional to,. in. 

tenu or I/I0 n M/MLll' Fig. 2, the -nt Me vill be non4imenaional1zed vith 

reapect to NLll. Introducins the parameter· a • Mc/1-ILB where Me 1o oome char­

acteriotic moment ot the beam given by: 

.(20) 

Eq. 151 becomes : 

(MefMx.al • (tal (CR]e {ai - (bixi )/(c1e2~ (21) 

lote that the coefficient t is introduced on~ u a matter of convenience so 

that the charac:teriatic moment Me can be specified u any traction of a max­

imum static moment. The calculation ot M/'\B is not affected by the choice 

ot. thia parameter. 

'l'h.e equations or motion. Eq. 16, were solved by a numerical integra-

tion technique developed by Newmark ( 5 ) using the assumption that the accel-

lerations vary linearly within each time increment. Instead of' an iterative 

type solution, appropriate recurrence relationahipa 

vere employed ( 10) • The number or luaped muaeo used to idealize the 

beam. and the size of the time increment required to obtain the desired degree 

ot &ccurac:y were determined ( 5) from comparisons vith existing solutions. 

A seven ••• model and a time increment equal to lOJ or the lowest natural 

period of the system U3 ) vere found to yield excellent reaulta. Mote that 

the time increment used remained constant throughout a particular ~amic 

reaponse calculation. These equations were solved. uaing a computer program 

written in FORTRAN V tor a UNIVAC 1108 digital computer, In addition to the 

disit.al output fr0111 this program, a plottins routine available with the com-

puter vas empl07ed to obtain • graphical preaentation or the time variation ot 

the atreaaea and deflections for each problem. A listin« of this program 

and the complete mathematical development ot the equations presented herein 

is aveilable elsewhere ( 13) • 

EXPERIMEII'rAL PROGRAM 

In order to check the mathematical model, a series of static and 

dynamic beam teats were conducted. A total of eight beams cold-formed from 

sheet material (AISI HR-1008) using the press-brake method were tested. 'nle 

virgin sheet material had a sharp yielding type stress strain behavior . 

Two different v&lu..es were selected for the flat width ratios of the compres-

sion flange or the specimens (Group A, Group B). These values were well above 

the limiting ratio. (v/h)lim. • in order to insure that the dynamic response 

ot the beams would be in the poatbuckling or nonlinear elastic range • 

The nominal u ordered dimensions of the specimens are shovn in Fig • 

lia. Average values or the eros& sectional dimensions obtained from measure-

menta at tive location• along the span length of each beam were used tor cal-

culation purposes. The mechanical propertiea of the specimens vere determined 

trom tenaion and compression coupons cut from extra lengths or the fabricated 

beams aa shown in Fis. 4b. 

Four or the eight specimen•. tvo trom each group • vere tested atati-

cally to 4etermine the relationship between the applied moment an4 the section 

properties, Fig. 2. The setup and instrumentation tor these tests wu ahd1ar 

to that eaployed in previous atu4ies ( 3 l. Sol14 plate 

veb atitteners ot the aame thickness as the be&IU were used at the load points 

an4 en4 aupporta. In or4er to iDaure that the buckling pattern or the eom­

preaaiOD tlanse vas not inhibite4 by aey local" restraiDt, the atitfenera were 

1111t abort ot the e..,...aaion tlUISe an4 tack wel4ed to the vebs. Both positive 

an4 neptive -.nt testa were con4ucte4 tor each group ot specimens, 
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All the strain gages • SR-4 Type Al, were located at the c:enter of the 

test span and were read individually. I.fid plane strains were determined by 

averaging the two gage readings at each location, Dial gages were located on 

both sides of the cross section at intervals in the constant moment region. 

These gages as well as those at the end supports were used to determine the 

beam deflections. The strain gages and dial gages permitted an evaluation 

of any tending of the beam to twist Wlder load. 

A 60 Kip Baldwin hydraulic testing machine was used for the static 

tests, Load was applied in small increments, approximately 500 lbs., and sur-

ficient time was taken to allow the strain gages to stabilize before readings 

were recorded, Near ultimate, increments or deflection rather than load were 

wra clatarmined far each value of the external lood. Since there waa a slight 

uaunt of twisting of the 1pecillene, aa indicated by the dial gages and strain 

aaaa1, the calculated interael 11011ent differed slightly (lela than 5 %) from 

tha extenal IIDIUilt coaaputed from the testing uchine load. Thia unavoidable 

tvbtf.ag did not significantly affect the effective width determination, how­

ev.,... The 110111ent indicated for the taat points corresponds to the internai 

-..nt. baaed. on the calculations using the strain gage data. 

for co~~pariaon purposes the calculated m0118nt of inertia based on Eq. 

2 and the average mechanical propert1ea is alia shown in Fig. 5. Aa shown, 

the aect1on vaa alightly stiffer than indicated by Eq, 2, AI the moment in­

cr•aed, however, the test values approached those determined from Eq. 2, 

Since negacive IIDIUnt did not produce local buckling, no reduction in tbe mo­

-t of inertia occurred as indicated, The aame general trend shown in Fig • 

waa obaerved for the apecimens in group B. 

The load deflection curve far the beama subjected to positive moment 

va1 nonlinear.( 3) clue to local buckling effects, Attempts were made to de-

terlline whethaT this curve had a horizontal plateau or .if any rotation capac-

ity vaa available similar to that of the heavier hot rolled vide flange shapes • 

Ho rotation capacity waa present and the load deflection curve began to de-

creue end tho section unlooded after reachinB a load approximately 6% higher 

than .the lood at jrhich initial yieldilll of the b•• vaa indicated by the atuin 

aaa••· 

D/piiJirrlo Teats 

Two loatling conditions were uaed for the dynamic testa, centerline 

loading and quarter point loading. For quarter point loading, a considerably 

lonaer length of the bea11 was aubj ected to mo•ent greater than the local 

0 

0 
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- EquatiDn 2 
Mu • t 2,B50 In -lb. 

MratLUII • 39,600 in-lb 
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STATIC !!'.6M TEST At 
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used and the dial gage readings were stabilized before recording the data. i.50~---"----::-:-:--:---~---:-:,-J-----..I..----L----1-- _____j 
10,000 20,000 30,000 40,UOO 

Visual observation or local buckling and yielding waa facilitated by white- 3.5 Mlin-lb) 

washing the specimens. 

The data from the tensile and compressive coupons indicated that the 

yield stress and modul1.11 or elasticity did not vary significantly over the beam 

cross section due to cold working effects (less than 2% variation). Values f'or ;­

the modulUB of' elasticity and yield stress for the Group B specimens ·were, how- ! 
ever , lower than expected for the sheet material used. The tensile and eom-

pressive yield stresses were also approximately the same (within 3%), These 

properties did vary between the two sroupe ot specimens, A and B, and it vas 

apparent that different virsin sheet material had been 1.11ed to :l'abrioate eaoh 

aroup. For c&leulation purpoaea, the tollowina averqe values were used: 

Group A - E • 29,5 x 103 kai., a7 • 31.2 koi; Group B - E • 27,0 X 103 kai,, 

ay • 28.T kai. 

'l'ypical reaulta from the statio ba011 te1ts are sl!own in Fi&. 5, U1i111 

the strain sap reldinga to detsrmine the location ot the neutral axil Allll 

equSlibriWII ooaai4eratioril tar the crao1 eect1011 under pure be4illl (ll), tho 

affac:Uva width, intenal ra11ltilla -t alld efhc:tiva -t of 111ert1a 

Q 0 Q 
Q 

0 Tut Valuoo 

-- AI Built Value 

STATIC BEAM TEST A2 
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10,000 20,000 30,000 

Mlln-lbl 

bucklin& llOJilent than in the centerline loadins case, A oketch of the dynamic 

teet setup tor centerline loading il shown in Fis. 6, 

'l'he dynamic loads tor thOle testa vere developed by drop}:ing a cali-

__ J 

40,l)~J0 
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bratcd weight from a predetermined height on a load ring attached to the beam. 

After impact, the weight was immediately removed and the beam was permitted 

to vibrate freely. For quarterpoint loading, two load rings and a spreader 

beam were employed. The magnitude and time variation of the applied loads were 

obtained from photographic records of the oscilloscope traces produced by the 

strain gages attached to the loading rings. Dynamic strains in the beam were 

recorded in the same manner. All the strain gages used in the dynamic tests 

were SR-4 Type CB dynamic gages, Dynamic deflections were measured by means 

of a linear variable differential transformer. The photocells shown in Fig. 

were used to actuate the electric recording circuit as the weight struck the 

loading ring or spreader beam, Complete details of the test setup and test 

procedure are available elsewhere ( 13). 

Typical dynamic test results are shown for centerline loading in Fig. 

1 and quarterpoint loading in Fig. 9. The midplane stresses at the middle and 

edge of the compression flange, the midplane stress in the tension flange, the 

centerline deflection and the variation of the load as recorded by the loading 

rings are shown. There figures were obtained by enlarging and tracing photo-

graphs of the oscilloscope records, Stresses were obtained by multiplying the 

recorC.cd strains by the average modulus of elasticity, 

For the particular test shown in Fig, 7, the stress level was so low 

that very little if any local buckling occurred and the beam response was es-

sentially linear elastic. For the test in Fig. 9, however, considerable 

local buckling occurred and the beam response was not linear as indicated. 

The variation of the top flange stress at the edge of the compression flange, 

aTOP' and the bottom flange stress, crBOT' in Fig. 9 are smooth curves during 

the duration of the applied load and the response is similar to the variation 

of the external load pulses. The time variation for the stress at the center 

of the top flange, aMID' however, is irregular and is not similar to the time 

variation of the externe.l load pulse, The presence of the dip in this stress 

trace is an indication that the top flange has buckled. Also, the reduced mag-

nitude of stress at this point compared to the magnitude of stress at the edge 

of the top flange is an indication that a reduction in effective width has 

taken place. Note that the top flange buckled while the edge stress was in­

ere&& ins and recovered while this edge stress was decreasing. Records similar 

to those shown in Fig. 9 for other teats at higher stress levels indicate~ 

the edge stress increased and decreased. These oscillations are a result of 

the vibrations of the individual plate elements which comprise the cross section 

and are superimposed on the oscillations of the overall beam vibrating as a. 

Wlit. 

Calculated response curves for the tests in Figs. 7, 9 obtained using 

the computer program and plotting routine discussed earlier are shown in Figs. 

8 , 10, The load pulses obtained from the oscilloscopes and the relationship 

between the moment and moment of inertia in the static tests were used as input 

to the program. Approximately fifty discrete values of the load were used at 

equal time intervals (0.50 milliseconds) over the duration of the positive 

phase of the load pulse. Since the maximum beam response, which is of primary 

interest, occurs in this time interval, only the positive portion of the load 

pulse was considered. Since the computer program replotted the input load pulse, 

it was possible to compare this with the oscilloscope trace in order to insure 

that a sufficient munber of discrete points had been selected to adequately 

represent the experimental load vulse, Note that the added mass of the loading 

rings which vibrated with the beam vas taken into accoLUlt in these calculations. 

Comparison of Figs. 7 , 9 and 8 , 10 indicate that the calculated maximum 

stresses and deflections are of the same order of magnitude as the experimental 

values. The calculated values were much larger than the experimental values 

after the load pulse was removed, however. This difference is due to the in-

fluence of structural damping and the negative portion of the loai pulse which 

were neglected in the mathematical model. Note also that the oscillations of 

the stress at the middle of the compression flange in Fig. 9 are not present 

in Fig. 10 since the plate vibrations were not included in the mathematical 

model. 

Additional comparisons between calculated and .experimental values of 

the midplane maximum top flange stress, aToP• bottom flange stress, crBOT' and 

midspan deflection occuring during the positive phase of the load pulse are given 

in Tables 1 1 2. Calculated values based on the relationship between the moment 

and moment of inertia obtained in the static tests, the relationship using Eq. 

and a linear elastic analysis neglecting local buckling, I/!0 • constant = 1, 

are &iven. Note that the ·calculated deflections obtained from the mathematical 

aodel account for the variation of the moment of' inertia due to local buckling 

over the entire length of the beam by means of the discrete elements described 

that the stress in the cent~r of the top flange oscillated several times while previous)¥. 
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Referring to the calculated stresses in Tables 1, 2, note that the re-

sulting values differ for the three methods of analysis. The internal moments, 

not presented, obtained from the three methods, however, did not differ appre-

ciab.ly. Thus the method of computing the stress rather than the method used 

to calculate the internal moment i~ the more significant factor in these com-

parison studies, Also, the reduction in the effective width of the top flange 

has a greater influence on the top flange section modulus than on the bottom 

flange section modulus. This was indicated by the fact that in general the 

three methods of analysis predicted essentially the same bottom flange stress. 

The predicted top flange stresses, however, differed considerably, 

The reduction in section modulus is influenced by the I/10 curve. As 

indicated previously, the I/I 0 curve based on test properties is stiffer than 

the I/1 0 curve based on Eq. 2, Thus the analysis based on Eq. 2 generally pre­

dicted higher stresses than those predicted using the test properties, Since 

the internal moment predicted by all three ana~yses is approximately the same 

for a given case, the stresses in the top flange predicted by the linear elas-

tic analysis were generally lower than those predicted using either test prop-

erties or Eq. 2, The differences between the predicted bottom flange stress 

and midspan deflection obtained from the three e.~alyses were very small. 

The tests in Tables 1, 2 are arranged in order of increasing stress 

level. The time durations of the load pulses varied between 0·0185 sec. 

and 0.04~ sec, Note that since the stresses were within the elastic range of 

the material, several tests were conducted on each beam. The calculated local 

buckling stress based on the static tests .was aLB = 6200 psi and o1B = 14000 psi 

Bcwn 

( 1) 

A3 

B4 

A3 

B4 

A3 

1 
2 
3 
4 

1 
2 
3 
4 
5 
6 

1 
2 
3 
4 

1 
2 
3 
4 
5 
6 

l 
B4 2 

3 
4 

TABLE 1 SUW~RY OF TEST RESULTS - MIDSPAN LOADING 

Test 
Value 

(?) 

-3000 
-3330 
-3700 
-6100 
-83110 
-0200 

-4900 
-1950 
-9800 
-12200 

34so 
5000 
5800 
10000 
11100 
12550 

5100 
9200 
11600 
15300 

0.031 
0.041 
o.o48 
0.085 
0.105 
0.115 

0.060 
0.085 
0.115 
0.138 

Calculated Values Difference As 

Test 
Prop. 

( 3) 

Linear 
Analyfis 

( 4) 

Eq, 2 

( 5) 

Test Linear 
Prop. Analysis 

(6) (1) 

(a) Top Flange Stress - o~("'lp (psi) 

-2flJO 
-3218 
-3971 
-CR4c 
-~182 
-9864 

-5261 
-8022 
-1056o 
-13180 

(b) 

41132 
)17? 
6266 
10510 
13110 
J 3860 

6118 
10240 
13490 
11590 

0.033 
0.031 
0.045 
0.018 
0.099 
0.105 

0.059 
0.089 
0.118 
0.154 

(c) 

-2809 -28C9 
-3278 -3218 
-3971 -3971 
-6745 -1719 
-8400 -10290 
-8870 -10930 

-526J -5261 
-8022 -8145 
-10560 -ll550 
-13180 -16160 

Bottom Flange Stress - ('I'Bn'l' 

4432 
517? 
6?66 
10620 
13300 
14050 

6118 
10240 
13490 
11590 

44 32 
5172 
6266 
10270 
12860 
13480 

6n8 
9128 
12910 
11050 

-1 
-2 
+5 
+2 
+10 
+1 

+7 
+1 
+8 
+13 

(psi) 

+2 
+3 
+8 
+6 
+12 
+10 

+18 
+11 
+16 
+15 

Midspan Deflection _ 6~ (in.) 

0.033 
0.031 
0.045 
0.078 
0.091 
0.104 

0.059 
0.089 
0.118 
0.154 

0.033 
0.031 
0.0115 
0.045 
0.106 
0.112 

0.059 
0.090 
0.123 
0.166 

-12 
-11 
-1 
-9 
-6 
-9 

-2 
+5 
+3 
+12 

Calculated - Test 
Difference as a percentage • Test 

-7 
-2 
+5 
+1 
+1 

-5 

+1 
+1 
+8 
+13 

+2 
+3 
+8 
+6 
+14 
+12 

+18 
+11 
+16 
+15 

-12 
-ll 
-1 
-9 
-8 
-10 

-2 
+5 
+3 
+12 

J<.;q. 2 

(8) 

-1 
-2 
+5 
+15 
+23 
+19 

+1 
+2 
+18 
+32 

+2 
+3 
+8 
+3 
+10 
+1 

+18 
+6 
+12 
+11 

-12 
-11 
-1 
-2 
+1 
-3 

-2 
+6 
+7 
+20 

for beams A3 and B4 reapecti vely. For those testa in which the maximum top 

flange stress was below the value of aLB. the beam response is linear. For 

the tests in which the top flange stress exceeds aLB' the degree of nonlinearity 

is reflected by the differences between the calculated stresses based on the 

linear analysis and on the test properties. 

For beam A3, the percentage difference between the calculated values 

using the static test properties and the test values for both the top and bOt-

tom flange stresses was less than 10% up to a stress level of 23,000 psi in the 

top flange. As the stress level increased ab.ove this value the percentage dif-

ference also increased. In general the percent difference wa.s the same for both 

top and bottom flange stress. The percent difference for the deflections however, 

wa.s usually larger than that for the stresses. This may have been due to experi-

mental error since any deflection due to twisting of the beam was also recorded 

by the single linear differential transformer. 

For beam B4 the percent difference between the values noted above vas 

less than 10% up to a stress level of approximately 10,000 psi in the top flange. 

Above this stress level, the percent difference increased and was generally larger 

than that for beam A3. Also the percent difference was different for the top 

and bottom flange stress. The values in Table 2 indicate that in some cases the 

test values agreed more closely with those based on a linear analysis even though 

the beam was obviously in the postbuckling range. The poor agreement between 

calculated and measured values for beam B4 is due to the form of ~he I/1 (..urYe in 
0 

TABLE 2 SUMHARY OF TEST RESULTS QUARTER POINT LOADING - REAM 

~----,--------,-------~~Ca~1~c~u~1~a~te~d'"V~a'J~ue~s~-----.----~D~i'f~f~e=re~!~lc~e~A~s-a~,,r--, 

Beam 

(1) 

1 
8 
9 

10 
ll 

2 
A3 13 

14 
15 
16 
11 
18 
19 

B4 

5 
6 
1 
8 
9 

10 
ll 

7 
8 
9 

10 
11 
12 

A3 13 
14 
15 
16 
11 
18 
19 

5 
6 
1 

B4 8 

79. 

9 
10 
11 

7 
8 
9 

A3 10 
11 
12 
13 

Test 
Valu~ 

(2) 

-2080 
-5320 
-5100 
-10000 
-12400 
-14200 
-16500 
-22100 
-22300 
-23000 
-26100 
-28600 
-32900 

-9000 
-9200 
-13400 
-18400 
-20600 
-23200 
-29000 

3500 
7900 
9200 
13750 
15400 
11500 
11600 
23000 
22300 
24200 
25000 
21500 
28300 

11000 
11500 
15300 
19100 
20900 
23400 
2cl500 

0.035 
0.075 
0.081 
0.115 
0.125 
0.145 
0.175 

Test 
Prop. 

(3) 

-2283 
-5382 
-6011 
-9741 
-n46o 
-14700 
-11790 
-23660 
-24610 
-21610 
-32170 
-35400 
-40390 

-11330 
-11390 
-11090 
-22580 
-26850 
-32000 
-35990 

(a) 

(b) 

3602 
8492 
9485 
13740 
15390 
18300 
21100 
25630 
26290 
28400 
31310 
33680 
37840 

14470 
14550 
20140 
24010 
27650 
23440 
36420 

(c) 

0.030 
0.070 
o.on 
0.116 
0.133 
0.165 
0.186 

Linear Eq. ?. 
Analysis 

( 4) ( 5) 

Tt!'St 
Prop. 

(6) 

Linear 
Analysis 

(1) 

Eq. 2 

(8) 

Top Flange 

-2283 
Stress- o~Tn~P __ (p~s_i_l_,--------~-----; 

-5382 
-6011 
-8851 
-9950 
-1191.0 
-13475 
-16400 
-16810 
-18050 
-19940 
-21800 
-24100 

-ll330 
-11390 
-16060 
-19390 
-22190 
-25130 
-28600 

-2300 
-6185 
-7035 
-11150 
-13300 
-16980 
-20640 
-26240 
-21150 
-30260 
-33140 
-31090 
-41920 

-134l.o 
-13620 
-20870 
-26320 
-30010 
-36940 
-41110 

+10 
+1 
+5 
-3 
-8 
+4 
+8 
+1 
+10 
+20 
+20 
+24 
+22 

+26 
+24 
+28 
+23 
+30 
+38 
+24 

Bottom Flange Stress - O'pQ'T' (Fsl) 

3602 
8492 
9486 
13910 
15700 
18840 
21260 
25580 
26530 
28480 
31410 
34400 
38030 

14470 
14550 
20500 
24760 
28340 
32060 
36SOO 

3638 
8620 
9538 
14260 
15120 
19050 
22240 
26900 
21660 
30160 
32940 
35550 
39280 

14680 
14830 
21020 
25420 
29100 
33650 
31220 

Midspan Deflection*- 6~J 

0.030 
0.010 
0.076 
0.114 
0.125 
0.156 
0.170 

0.030 
0.012 
0.080 
0.126 
0.136 
0.119 
0.204 

+3 
+1 
+3 

0 
0 

+5 
+20 
+12 
+18 
+11 
+25 
+23 
+34 

+31 
+26 
+32 
+26 
+33 
+39 
+23 

(in.) 

-11 
-1 
-1 
+1 
+4 
+14 
+6 

+10 
+1 
+5 
-13 
-25 
-19 
-22 
-35 
-33 
-28 
-34 
-31 
-31 

+26 
+211 
+20 
+5 
+8 
+11 
-1 

+3 
+1 
+3 
+2 
+2 
+8 
+21 
+13 
+19 
+18 
+26 
+25 
+34 

+31 
+26 
+34 
+29 
+36 
+31 
+24 

-11 
-7 
-6 
-1 

0 
+7 
-3 

+ll 
+16 
+22 
+18 
+1 
+20 
+25 
+19 
+22 
+32 
+26 
+30 
+27 

+49 
+48 
+56 
+43 
+51 
+59 
+44 

+4 
+9 
+4 
+4 
+2 
+9 
+26 
+11 
+24 
+25 
+32 
+30 
+39 

+34 
+29 
+31 
+33 
+40 
+44 
+26 

-11 
-4 
-1 
+10 
+9 
+23 
+16 

*Deflection data not obtained for Tests 14 thru 19 



tho nonlinear ran1e, Beu B4 wao conei4erably atit'ter than belllll A3 and the elope 

ot the I/I 0 curve in the pcatbuckliftl ran1e tor B4 wae much oteeper than that tor 

A3 (Fis. '), The etittnou ot beam 114, therefore, wae cOilaiderably more eenai­

tive than beam A3 to olisht chansea in the internal moment, At the hi &her stress 

level• • acreement between calculated and meaaured values were similar tor both 

boamo. 

The percent di(terence between the calculated values using EQ., 2 and the 

toot valueo waa larpr than that obtained using the static teat values due to 

poaea 1 it uy be possible to forego the complicated incremental type solution of 

the eQ.U&tiona ot motion presen.ted berein and simply use the as built section 

properties ot the beam and well eatablished linear elastic response techniques 

such u norJDAl mode supeJ"P<)sition, etc. to determine the internal moments pro­

duced by the impact load&. Using these moments and the appropriate reduced sec­

tion prop,rties baaed on Eq. 2, the internal stresses and deflections could then 

be calculated in the same manner as is presently used for cold-fanned beams sub-

Jected to otatic load!!. The adeqWICY of this technique for design purposes 

the dit't'erencea between the moment veraua moment ot' inertia relationship mentioned. as vell as the influence of the various nondimensional parameters on the dynamic 

previously (Fis. ~), , response will be considered in a forthcoming paper based on completed studies (B). 

A presentation of all the atatic and "Yna.mic teet results obtained in 

thio investigation io given in Fis. 11. The form of this graph is the same as 

that used by Winter (U) in establishing exiating requirements for cal-

culatinll eftecti ve width, bduotion of the ot11tic test data tor this graph was 

the aame aa that used by Winter. For the ~namic testa, calculation of the et-

fective width b, and aT in Fig. ll were baaed en the maximUIII midplane top tla.nge 

otreoo which occurred during tho positive phase ot the 1011 pulse. The dynamic 

teat points therefore represent the minimum effective width which occurred during 

SOO!ARY AliD CONCLUSIONS 

The behavior of thin-walled, cold-formed beams subjected 

to impact loading was studied both analytically and experimentally. The experi­

mental study consisted of static a.nd dynamic tests. The results of this investi-

each teat, The values of the abaciBEIL above which the full width of the compression gation indicated that in order to determine the stresses and deflections of thin 

flanae is effective and also the values tor 'Which the maximum top flange stress walled beams subjected to impact, 1 t is necessary to take into account the 2ost-

ia lese than the yield stress are alae ahown, buckling behavior and include the con·cept of effective width. The use of exist-

As noted previously, earlier studies ( 2 ) indica~ed that the effective ins expressions for this effective width which are based on static test results 

width in a dy'namic test would be influenced by the Vibration of the plate elemel'lts appear adequate ·ror calculating the dynamic response. Preliminary calculations 

compriaing the croaa section, In order to determine whether any trend existed, 
I 

the dynamic data in Fig, llwas grouped according to the value of B 

or the ratio of the time duration of the' stress pulse (Fig, 9 ) to the fundalllen-

tal period of the compression flange treated as a simply supported plate, The 

dynamic teet results in Fig. 11 do not indicate any such trend, The scatter of 

the dynamic data is similar to that in the static "':.eats, Also, with the excep-

tion of a few of the dynamic tests for beam A3 at high stress levels, the rela-

tionship in Eq. 2 fits both the static and dynamic results to the same degree of 

accuracy obtained in earlier studies ( U), Based on these results, the use of 

Eq, 2 for calculating the moment versus moment of inertia relationship to be 

indicate tl'lat it may be possible to uese linear elastic response techniques to 

determine the internal forces in structures of this type. 
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APPE!IDIX II - NOTATION 

The following symbols are used in this paper: 

a! 
1 

time coefficient at load point; 

nondimensional time coefficient at load point; 

a 11 , a 12 = flexibility coefficient; 

b effective vidth of top flange of beam; 

b1 nondimensional mass coefficient for mass point i; 

c = distance from the neutral axis to extreme top flange fiber 
of beam; 

c computed from the original cross section properties; 

E = modulus of elasticity; 

e = subscript used to denote element; 

f • flat width of bottom flange of beam; 

h thickness of beam element; 

moment of inertia; 

! 0 = I comput~d from the original cross section properties; 

= mass point designation; 

c number of beam e lem.ents; 

L = span length of beam; 

1 ., length of beam element; 

M • total mass of beam; 

Me: • characteristic moment; 

Me • moment at element location e; 

MLB • local bucklin& moment 

.i • masni tude or lumped ..... at point i; 

pi • masni tude of applied load at point· i; 

P11 • characteriatic load masnitude; 

~ • net internal force at point 1; 

81 

SB • 1ect1on modulus tor bottom flanse ot beUii 

. .aBO • section modulus tor bottcm tlanae ot beam computed trom 
original cross sectional properties i 

ST • section modulus for top flange ot beam; 

STO • section modulus for top flange ot beam computed from 
orisinal cross sectional properties; 

80 • initial imperfection parameter - Fig. 3; 

t =- time; 

td • time duration of load pulse; 

td_ a time duration of stress pulse; 

t 0 • t'wldamental natural period of beam; 

V e = shear at element location e; 

v = flat width of top flange of beam; 

xi nondimensional displacement ot mass point 1; 

xi = nondimensional acceleration of mass point li 

y i • absolute displacement of mass point 1; 

Y i • absolute acceleration ot mass point 1 i 

a = nondimensional beam loading; 

B = nondimensional load duration tor beam response; 

B' = nondimenaiona.l lo&d duration for plate response; 

a% • lllidapan deflection; 

ISP = characteristic deflection; 

£ = strain; 

EnYN = maximum dynamic strain in plate; 

£Static • maximum static strain in plate; 

11 = characteristic deflection coefficient;. 

l • nondimensional length coefficient; 

( coefficient for characteristic moment~ 

maximum edge stress; 

OB maximum bottom flange stress in beam; 

oCH = critical stress for restrained plate element; 

local buckling stress :for beam; 

OT maximum top flange beam stress; 

a y yield stress; 

T = nondimensional time 

Matrix Notation 

• matrix; 

= diagonal matrix; 

transposed matrix; 

• inverted matrix; 

• column vector; 

Specially Defined Matrices 

[ A ]B • beu tlexibili ty matrix; 

[ A]. • element flexibility matrix; 

[ C]. • element connection matrix tor shear and moment; 

[CR ]. • noodiunoional element connection matrix tor -•nt; 

[ F ]B • nODdimenaional beaa tlexibili ty matrix; 

[ I ] • identi t;r -trix 
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