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Calculation for moment capacity of beam-to-upright 
connections of steel storage pallet racks 

Tuo Wang1, Xianzhong Zhao2 and Yiyi Chen2 

Abstract 

Steel storage pallet rack structures are three-dimensional framed structures, 
which are widely used to store different kinds of goods. For the easy 
accessibility to stored products, pallet racks are not usually braced in the 
down-aisle direction. The down-aisle stability is mostly provided by the 
characteristics of beam-to-upright connections, and the characteristics of upright 
base connections. In this paper, calculation for moment capacity of 
beam-to-upright connections is carried out. A mechanical model is presented 
firstly. Based on the model, moment capacity is related to the failure capacity, 
directly determined by the failure mode, of the topmost tab of the 
beam-end-connector and the corresponding upright wall. Different methods to 
predict the failure capacity are derived for two types of failure modes, i.e. crack 
of tab and crack of upright wall. The new method has shown a satisfactory 
agreement with experimental results demonstrating the reliability of the model 
in predicting the moment capacity of beam-to-upright connections. 

Introduction 

Beam-to-upright connection is realized by connecting the beam to the upright 
through the beam end connector which is welded onto the end of beam and 
inserted into upright perforations by boltless tabs. A safety device is used to 
avoid pulling out of beam end connector from upright perforation in the 
presence of accidental uplift force. A typical beam-to-upright connection is 
shown in Figure 1. 
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Figure 1 A typical beam-to-upright connection 

Beam-to-upright connections play a fundamental role in the structural 
performance of racks. Generally besides the initial rotational stiffness, moment 
capacity is also a necessary parameter for a suitable definition of connection 
moment-rotation relationship. In the actual design of rack structures, according 
to European Standard (EN 15512 2009), the rotational stiffness of the 
connection used for design shall be obtained as the slope of a line through the 
origin which isolates equal areas between it and the moment-rotation curve, 
below the design moment MRdc, corrected for yield and thickness, as shown in 
Figure 2. MRdc is directly related to the moment capacity. In addition, researcher 
(Aguirre 2006) has presented the concept of fuse in the design of racks. It is 
assumed that the failure of the beam-to-upright connection is controlled entirely 
by the tabs, so the failure takes place at the beam end connector. The beam is 
more easily replaced, and the tabs act as fuses to prevent unwanted column 
failure. Implementation of the concept calls for identification of different 
component failure modes, and the moment capacities based on tab failure mode 
should be designed to be the minimum. Knowledge of the moment capacity of 
beam-to-upright connection is hence of vital importance. 
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Figure 2 Derivation of connection stiffness used for design 

Several researchers have studied the moment capacity the connection through 
test (Baldassino and Zandonini 2011; Krawinkler et al. 1979; Prabha et al. 2010). 
Some attempts were also made on numerical simulation (Markazi et al. 2001; 
Prabha et al. 2010), and the reliability of the numerical models strongly depends 
on their calibration against experimental results (Baldassino and Zandonini 
2011). Comparing to experimental and numerical analysis, a convenient 
alternative is the theoretical analysis. To the authors’ knowledge, there is only 
one paper concerned with theoretical investigation of pallet rack connections 
(Ślęczka and Kozłowski 2007), applying the so-call “component method” 
(Eurocode 3) to rack connections rigidly. 

In this paper a mechanical model is established. By defining two failure modes, 
expressions are derived for the calculation of moment capacity. Comparison is 
made to a series of experimental results for a range of beam-to-upright 
connections of pallet racks. 

Mechanical model for moment capacity 

Deformation characteristics at failure 

The deformation of the connection at failure is depicted in test photo of Figure 3. 
The failed connection presents obvious deformation characteristics. The 
deformation concentrates at the intersection of beam-end-connector and bottom 
beam flange (point P in Figure 3). The part of beam-end-connector above the 
point P deviates from the upright, with the tabs only connecting the 
beam-end-connector with the upright. The tabs distort seriously, rotating from 
the plane perpendicular to one leg of beam-end-connector to the plane almost 
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parallel to it, as shown in Figure 4. 

  
Figure 3 Front and back of a connection at failure 

 

Figure 4 Distortion of the tab 

According to the observed deformation characteristics in the test, a mechanical 
model for the moment capacity is presented as shown in Figure 5. Because the 
part of beam-end-connector beyond the top beam flange is very small, the two 
parts of the beam-end-connector divided by the point P are assumed to be rigid. 
The moment of connection is substituted by a couple of force F. Forces from the 
upright acted on the tabs of beam-end-connector are simulated by springs. The 
force F from the bottom beam flange transfers to the upright through the 
beam-end-connector leading to a reaction force R at the position of point P. A 
notional triangular distributed load is applied on the part of beam-end-connector 
beyond the bottom beam flange. 

P
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Figure 5 Mechanical model 

Assumptions and principle of calculation 

The imposed basic assumptions on the theoretical analysis for moment capacity 
are the following. 

(1)The bending moments about the point P resulted from reactions of upright to 
the beam-end-connector under the point P is small enough to be neglected. 
(2)The force for each spring above the point P is proportional to the deformation 
of the spring. Then the following equation can be obtained. 

                             i i

j j

F l

F l
                             (1) 

where Fi and li are the force and the arm of the ith spring, respectively. 

The moment capacity Mu can be obtained by taking moments about the point P: 
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

                          (2) 

where nu is the number of springs (or tabs) above the point P. 

Substituting Eq. (1) into Eq. (2) can obtain the following equation for the 
moment capacity: 
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where F1 is the force of the topmost spring at the failure of connection. 

Derivation of F1 and Mu for different failure modes 

Failure modes 

The authors have carried experiment to investigate the behavior of the rack 
beam-to-upright connections (Zhao et al. 2014). All of the experimental 
moment-rotation curves reach the peak when the connection fails. The peak 
moment is then defined as moment capacity. There are two types of failure 
modes for the tested connections: crack of tab and crack of upright wall, which 
mode to occur depends on the relative strength of tab and upright wall. The tab 
construction is same for every connection specimen in the test, so the failure 
mode is decided by the thickness of upright wall. The crack of tab failure mode 
is predominant when the upright wall is 2.3mm or 2.5mm. For connections with 
a 1.8mm thickness upright, the failure mode is the crack of upright wall. If the 
thickness of upright wall is medium, i.e. 2.0mm, two types of failure modes may 
appear. The moment capacity obtained from experiment is listed in Table 1. 
Take 1.8C5-B120-4T as an example, 1.8C5 indicates the upright section is C5 
type with the thickness of 1.8mm; B120 represents the depth of beam is 120mm 
and 4T means beam end connector has 4 tabs, i.e. the height of beam end 
connector is 200mm (4 times 50mm). It is easy to find that the results of three 
nominally identical connections in a group are very close. 

Table 1 Experimental results of moment capacity 

Specimen ID No.  Failure mode Mu(kN·m) Mean 
l

1.8C5-B120-4T 

1 Crack of upright wall 2.405  

2.214 2 Crack of upright wall 2.029  

3 Crack of upright wall 2.208  

2.3C5-B120-4T 

1 Crack of tab 2.715  

2.560  2 Crack of tab 2.644  

3 Crack of tab 2.322  

2.5C5-B120-4T 

1 Crack of tab 2.702  

2.875  2 Crack of tab 2.953  

3 Crack of tab 2.971  

1.8C5-B105-4T 

1 Crack of upright wall 2.107  

2.131  2 Crack of upright wall 1.946  

3 Crack of upright wall 2.341  

1.8C5-B145-4T 
1 Crack of upright wall 2.211  

2.391  
2 Crack of upright wall 2.730  
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3 Crack of upright wall 2.232 

1.8C5-B120-3T 

1 Crack of upright wall 1.646  

1.427  2 Crack of upright wall 1.267  

3 Crack of upright wall 1.368  

1.8C5-B120-5T 

1 Crack of upright wall 2.713  

2.829  2 Crack of upright wall 2.875  

3 Crack of upright wall 2.899  

1.8C4-B105-4T 

1 Crack of upright wall 1.977  

1.999  2 Crack of upright wall 2.067  

3 Crack of upright wall 1.953  

2.0C4-B105-4T 

1 Crack of tab 2.140  

2.172  2 Crack of upright wall 2.178  

3 Crack of upright wall 2.197  

1.8C4-B120-4T 

1 Crack of upright wall 2.396  

2.419  2 Crack of upright wall 2.388  

3 Crack of upright wall 2.472  

1.8C4-B145-4T 

1 Crack of upright wall 2.517  

2.427  2 Crack of upright wall 2.586  

3 Crack of upright wall 2.179  

1.8C4-B105-3T 

1 Crack of upright wall 1.487  

1.473  2 Crack of upright wall 1.558  

3 Crack of upright wall 1.373  

1.8C4-B105-5T 

1 Crack of upright wall 2.194  

2.217  2 Crack of upright wall 2.284  

3 Crack of upright wall 2.174  

1.8C3-B105-4T 

1 Crack of upright wall 1.898  

1.969  2 Crack of upright wall 2.007  

3 Crack of upright wall 2.003  

1.8C3-B120-4T 

1 Crack of upright wall 2.210  

2.178  2 Crack of upright wall 2.175  

3 Crack of upright wall 2.148  

1.8C3-B145-4T 

1 Crack of upright wall 2.191  

2.258  2 Crack of upright wall 2.327  

3 Crack of upright wall 2.256  

1.8C3-B105-3T 

1 Crack of upright wall 1.348  

1.329  2 Crack of upright wall 1.267  

3 Crack of upright wall 1.374  

1.8C3-B105-5T 1 Crack of upright wall 2.341  2.274  
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2 Crack of upright wall 2.178  

3 Crack of upright wall 2.301  

Derivation of F1 and Mu for crack of tab failure mode 

For the failure mode of crack of tab, the mechanical analysis of the tab at the 
failure is shown in Figure 6. The crack probably appears at point C for the 
reason that point C is in the cold-formed region, material property of which has 
been changed adversely. The cross section of the tab at point C is subjected to a 
tensional effect combined with a bending moment. When the elastic theory 
applies, the strain at point C can be expressed as: 

1 11

t t

F F e

E A W


 
  

 
                         (4) 

                            t t tA h t                             (5) 

                             21

6 tt tW h t                           (6) 

where At=httt is the area of cross section, Wt is the modulus of section, e is the 
distance between the loading point of F1 and the center of the cross section, ht is 
the height of the cross section, tt is the thickness of the tab and E is the elastic 
modulus. 

                     

Figure 6 Mechanical analysis model for the tab 

In an axial tensile coupon test, the energy absorbed by the steel at the fracture 
can be express by the energy absorbed per unit volume, value of which equals to 
the area enclosed by the stress-strain curve and abscissa axis, i.e. area of OKLO 
in Figure 7. According to energy equivalence (the area of OKLO equals to the 
area of OMNO), the fracture will occur at point M, where the elastic strain 
reaches k times yielding strain εy. The material property of the cold-formed 
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region of the tab is obtained by coupon test. Stress-strain curves for three 
coupons are shown in Figure 8. It is found that the average k value approaches to 
3. So it can be assumed that the tab will crack when the elastic strain ε reaches 
3εy, i.e. 

                            
3

3 yt
y

f

E
                           (7) 

where fyt is the yielding strength of the steel at the cold-formed region of the tab. 

 

Figure 7 Stress-strain curve of a tensile test 

 

Figure 8 Coupon test results of cold-formed region of the tab 

Using Eq. (4) to Eq. (7) to eliminate unnecessary quantities, F1 can be expressed 
as: 

                            
2

1

3

6
tyt t

t

f h t
F

h e



                         (8) 
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Substituting Eq. (8) into Eq. (3), the moment capacity for the failure mode of 
crack of tab can be expressed as: 

                           
2 2

1 1

3

6

un
yt t t i

u
i t

f h t l
M

h e l


                       (9) 

The comparison between theoretical value Mu and experimental result ME is 
listed in Table 2. When the thickness of upright wall is 2.0mm, the strength of 
the tab approaches to the strength of the upright wall. Connections may fail with 
crack of tab (specimen 2.0C4-B105-4T-1) or crack of upright wall (specimens 
2.0C4-B105-4T-2/3). For the failure mode of crack of tab in the top three rows 
in Table 2, the theoretical values have a good agreement with the experimental 
results. For the failure mode of crack of upright wall in other rows in Table 2, 
although the comparison makes no sense, a conclusion can be drawn based on 
the ratio of Mu to ME greater than1.0, i.e. these connection will not fail in the 
failure mode of crack of tab, actual failure mode of which is the crack of upright 
wall, demonstrating the validity of the theoretical method in another sense. 

Table 2 Comparison of theoretical values to test results 

Specimen ID Mu(kN·m) ME(kN·m) Mu/ME 

2.3C5-B120-4T 2.640  2.560  1.031  

2.5C5-B120-4T 2.640  2.875  0.918  

2.0C4-B105-4T -1 2.165  2.140  1.012  

1.8C5-B120-4T 2.640  2.214  1.192  

1.8C5-B105-4T 2.165  2.131  1.016  

1.8C5-B145-4T 2.983  2.391  1.247  

1.8C5-B120-3T 1.884  1.427  1.320  

1.8C5-B120-5T 3.345  2.829  1.182  

1.8C4-B105-4T 2.165  1.999  1.083  

2.0C4-B105-4T -2/3 2.165  2.188  0.989  

1.8C4-B120-4T 2.640  2.419  1.091  

1.8C4-B145-4T 2.983  2.427  1.229  

1.8C4-B105-3T 1.752  1.473  1.189  

1.8C4-B105-5T 2.813  2.217  1.269  

1.8C3-B105-4T 2.165  1.969  1.100  

1.8C3-B120-4T 2.640  2.178  1.212  

1.8C3-B145-4T 2.983  2.258  1.321  
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1.8C3-B105-3T 1.752  1.329  1.318  

1.8C3-B105-5T 2.813  2.274  1.237  

Derivation of F1 and Mu for crack of upright wall failure mode 

A mechanical analysis of the upright wall at the failure is shown in Figure 9. 
The force applied on the upright wall from the hook part of the tab is simplified 
to be an evenly distributed load q. The distribution length is equal to the length 
of the hook part, hte, as shown in Figure 6. Assuming the strain of upright wall 
under the distributed load q is even in elastic range, i.e.: 

                              1

te up

F

Eh t
                         (10) 

where tup is the thickness of upright wall. 

 

Figure 9 Mechanical analysis model for the upright wall 

Similarly it is assumed that the upright wall will crack when the elastic strain ε 
reaches k times of the yielding strain εy of the steel, i.e.: 

                            yup
y

f
k k

E
                         (11) 

where fyup is the yielding strength of the steel at the cracking point of the upright 
wall as shown in Figure 9. 

The expression for F1 can be obtained from Eq. (10) and Eq. (11): 

                             1 yup te upF kf h t                        (12) 
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Substituting Eq. (12) into Eq. (3), the moment capacity for the failure mode of 
crack of upright wall can be expressed as: 

                          
2

1 1

un
i

u yup te up
i

l
M kf h t

l

                       (13) 

The value of k is difficult to determine using previous method for two reasons. 
Firstly the mechanical model in Figure9 is simple. Besides the tension effect, the 
upright wall is also subjected to a locally bearing effect from the hook part of the 
tab, which is not easy to be reflected in the model. Secondly the material 
property fyup at the cracking point of the upright wall cannot be obtained by 
performing a coupon test because of small dimension. Therefore an inversion 
method is employed to get the value of k, i.e. calculating k from Eq. (13) where 
Mu is substituted by the experimental results ME and fyup by the yield strength fyp 
of the plate part of upright profile approximately. The values of k for each 
specimen failed with crack of upright wall are listed in Table 3. The average 
value kavg is 3.664. Meanwhile, an expression for kreg is regressed as the function 
of the yield strength fyp of the plate part of upright profile: 

                       6.865 0.0096reg ypk f                        (14) 

Table 3 The values of k for specimens failed with crack of upright wall 

Specimen ID fyp(MPa) k 

1.8C5-B120-4T 290 4.219  

1.8C5-B105-4T 290 4.783  

1.8C5-B145-4T 290 3.895  

1.8C5-B120-3T 290 3.681  

1.8C5-B120-5T 290 4.110  

1.8C4-B105-4T 370 3.516  

2.0C4-B105-4T -2/3 342 3.748  

1.8C4-B120-4T 370 3.490  

1.8C4-B145-4T 370 3.099  

1.8C4-B105-3T 370 3.202  

1.8C4-B105-5T 370 3.002  

1.8C3-B105-4T 320 4.005  

1.8C3-B120-4T 320 3.633  

1.8C3-B145-4T 320 3.334  
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1.8C3-B105-3T 320 3.341  

1.8C3-B105-5T 320 3.561  

 Average 3.664  

The theoretical values of moment capacity Mu based on both kavg and kreg are 
compared with the experimental results ME as listed in Table 4. The results using 
the value of k from regression seem to have a better agreement with the 
experimental results. 

Table 4 Comparison of theoretical values to test results for different k 

Specimen ID 
Mu(kN·m) 

ME(kN·m) Mu1/ME Mu2/ME 
Mu1(kavg) Mu2(kreg) 

C5-B120-4T 1.991  2.217  2.214  0.899 1.001  

C5-B105-4T 1.633  1.819  2.131  0.766 0.853  

C5-B145-4T 2.249  2.505  2.391  0.941 1.048  

C5-B120-3T 1.420  1.582  1.427  0.995 1.109  

C5-B120-5T 2.522  2.809  2.829  0.891 0.993  

C4-B105-4T 2.083  1.884  1.999  1.042 0.942  

C4*-B105-4T -2/3 2.139  2.091  2.188  0.978 0.956  

C4-B120-4T 2.540  2.297  2.419  1.050 0.949  

C4-B145-4T 2.869  2.595  2.427  1.182 1.069  

C4-B105-3T 1.685  1.524  1.473  1.144 1.035  

C4-B105-5T 2.706  2.447  2.217  1.220 1.104  

C3-B105-4T 1.801  1.865  1.969  0.915 0.947  

C3-B120-4T 2.197  2.274  2.178  1.009 1.044  

C3-B145-4T 2.482  2.569  2.258  1.099 1.138  

C3-B105-3T 1.458  1.509  1.329  1.097 1.135  

C3-B105-5T 2.340  2.423  2.274  1.029 1.065  

  Average 1.014 1.022  

  Max 1.220 1.138  

  Min 0.766 0.853  

  Standard Deviation 0.119 0.080  

From the above, Mu can be calculated according to:     
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Conclusions 

Moment capacity is determines by the failure mode. Based on mechanical 
models, analysis expressions for the moment capacity of beam-to-upright 
connections of steel storage pallet racks have been developed theoretically. The 
expressions have been compared with a series of experimental results to 
determine their accuracy. 
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