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Summary 

Thirteenth International Specialty Conference on Cold-Formed Steel Structures 
St. Louis, Missouri U.S.A., October 17-18,1996 

COLD-FORMED STEEL DESIGN BY SPREADSHEET PROGRAM 

by Scott A. Burns * 

This paper demonstrates how to use advanced features of a spreadsheet program to design cold
formed steel members efficiently. The example presented in the paper concerns a hat section in 
flexure which is to be designed for maximum bending strength with a restriction on the total 
amount of steel that can be used. The nature of the formulas and data entered into the spreadsheet 
program are presented. 

1. Introduction 
Today's spreadsheet programs have features that go beyond standard "what-if' type analysis. 
Microsoft Excel3 for example has a "Solver" module that will automatically adjust the values of 
specified cells in order to achieve a desired condition, such as producing a minimum or 
maximum value in another cell. This module can easily be applied to the design of cold-formed 
steel members to achieve efficient designs. 

Cold-formed steel structural members are used in a wide variety of ways, such as in 
building wall systems and automobile frames. Relatively simple forming operations (brake 
pressing, stamping, or roll fom-ring) can produce a wide variety of structural shapes and sizes. 
Cold-formed sections can be very economical, particularly if production costs can be spread over 
a large number of identical units manufactured. 

The design of light-gage cold-formed members involves considerations such as local 
buckling and post"buckling behavior that can make the design process somewhat complicated 
and iterative in nature. The automated goal-seeking features of the spreadsheet program can 
assist in finding section dimensions that satisfy all design requirements, relieving the designer of 
the more tedious aspects of light gage steel design. 

In this paper, we focus on the selection of the cross-sectional dimensions of a hat section 
loaded in flexure. Previously, Seaburg and Salmon have investigated the minimum weight design 
of cold-formed flexural mernbers.4 Here, we approach the somewhat different problem of sizing 
the cross section to make the bending strength as large as possible while maintaining a fixed 
upper limit on volume of steel and depth of section. The techniques presented here are 
extendable to other section types, member types, or even to entire structural systems. 

2. Problem Statement 
The Illustrative Examples section of the AISI Cold-Formed Steel Design Manual1 presents the 
steps that one would take to analyze a hat section in flexure (see Figure 1 in this paper or 
Example 5 in the Design Manual). This example provides us with a good starting point for 
redesign by spreadsheet. Thus, our goal will be to optimize this hat section to maximize the 
allowable bending moment that it can safely support while maintaining the existing cross
sectional area (1.43 in2 or 921. mm2) and overall section depth (4 in or 102. rom). 

* Associate Professor, University oflllinois at Urbana-Champaign, 104 S. Mathews, Urbana, IL 61801, s-bums@uiuc.edu 
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3. Procedure 
The problem will be posed in the form of an optimization statement known as a "mathematical 
program." It will treat key dimensions of the hat section (e.g., flange width, web height, sheet 
thickness, etc.) explicitly as design variables that will appear within constraint expressions that 
reflect the rules of the AISI specification.2 An objective/unction that expresses the bending 
strength in terms of the design variables completes the formulation. 

Since optimization is typically an iterative procedure that requires the selection of a starting 
point, the cross-sectional dimensions provided in the AISI example will be used to initiate the 
solution process. The mathematical program will be solved using Microsoft Excel, and the 
solution will be compared to the original section to assess the increase in moment capacity 
achieved by the optimization process. 

4. Formulation 
One of the most difficult aspects of designing cold-formed steel beams is how to properly treat 
the effects of local buckling. Light-gage steel members are very likely to have compression 
elements with large width-to-thickness ratios that are susceptible to local buckling. In many 
cases, the local buckling of a compression element does not cause global failure. If the element is 
stiffened, then the section can sometimes carry additional load beyond that causing first 
buckling. The local buckling causes a redistribution of stress toward the stiffeners, and overall 
failure does not occur. This phenomenon is known as "post-buckling strength." 

The AISI specification treats local buckling by eliminating a portion from the center of 
each stiffened compression element in the modeled cross section. Each resulting compression 
element has an "effective width" that is used instead of the actual width for calculating the 
section properties. Figure 2 shows the modeled cross section of the hat section, where both the 
compression flange and the compression portion of the webs have been modified to account for 
local buckling. The magnitude of the effective width of each element depends on several factors, 
including the actual stress level in the element. This can make the design process tricky, since 
calculating the actual stress in the element requires knowing the section properties, but the 
section properties are dependent upon the effective widths of the compression elements, which in 
tum depend on the actual stress in the elements. Thus, a simple analysis of a given cross section 
can sometimes require an iterative process. 

4.1 Design Variables 
Figure 2 shows the five independent design variables: 

w, the flat width of the compression flange; 

h, the flat height of the web; 

t, the nominal thickness; 

WI' the flat width of each tension flange; 

hI' the flat height of the lip. 
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The inside bend radius, R, is not an independent variable since it usually depends on the sheet 
thickness. It will be specified to be twice the sheet thickness through an equality constraint in the 
formulation. Likewise, the effective width of the compression flange, b, the overall depth, d, and 
the distance from the neutral axis to the extreme compression fiber, y c' are also dependent 
variables that will be specified as functions of the five independent variables in the formulation. 
Other dependent variables will be introduced later to simplify the constraint expressions in the 

formulation. 
Five quantities will be specified as "design paranleters." These quantities will be assigned 

fixed values during the optimization process, yet will be represented explicitly in the constraint 
expressions. They are: 

m, the inside bend radius multiplier; 

Amax, the maximum cross-sectional area; 

~ax' the maximum overall depth of the section; 

E, the modulus of elasticity; 

F y' the yield strength. 

By representing these parameters explicitly in the formulation, we are able to extend the 
applicability of the formulation to a wider range of specific cases more easily. For example, by 
solving the optimization problem with a series of different maximum overall depth values, we 
may observe how the maximum depth requirement impacts the optimal design. 

4.2 Section Properties 
The AISI Design Manual recommends a tabular procedure to calculate the section 

properties, based on a line idealization of the cross section. The table contains six columns, as 
shown in Table 1. This table presents the section properties for the AISI example problem shown 
in Figure 1. Note that the length of element 5, the compression flange, has been given a reduced, 
effective length instead of its actual length in this table to account for local buckling. Section 4.3 
will discuss how the effective length is calculated. Also note that the web is assumed to be fully 
effective (no portion is removed for local buckling effects). This assumption must, of course, be 
checked at the end of the design process to assure that it was justified. The distance from the 
neutral axis to the extreme compression fiber is calculated as the ratio of two column totals: y c = 

l:(Ly)/l:(L) = 43.54/17.70 = 2.46 in (62.5 mm). The moment of inertia is also found from the 
column totals using the parallel axis theorem: Ix = t [l:(Ly2) + l:(Il ) - l:(L)Yc2] = 0.06 [141.4 + 
8.43 - 17.7 (2.46)2] = 2.56 in4. (107. cm4). 

To pose a mathematical program that reflects the effect that the design variables have on 
the behavior of the beam, the section properties must be expressed in terms of these design 
variables. Table 2 presents the modified section properties table. To simplify the expressions, 
five new dependent variables have been defined (dl through d5). The following set of equations 
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defines the location of the neutral axis (y J and the moment of inertia (Ix): 

R mt 

r R+t/2 

u 1.57r 

c 0.637r 

d1 t/2+r+h-htf2 

d2 t/2+r+h+c 

d3 t/2+h+2r 

d4 t/2+r+hJ2 

ds r+t/2-c 

l:(L) = 2ht + 6u + 2wt + 2h + b 

l:(Ly) = 2htd1 + 4ud2 + 2wtd3 + 2hd4 + bt/2 + 2uds 

L(Ly2) = 2htd12 + 4udl + 2wtd32 + 2hd/ + bt2/4 + 2udl 

Yc l:(Ly)/l:(L) 

~ t [l:(Ly2) + 2h t 3 112 + 2h3/12 - l:(L)y c2] 

Note that by introducing the dependent variables (R, r, u, c, d1, d2, d3, d4, ds, l:(L), l:(Ly), 
l:(Ly2), b, y C' and ~), we increase the dimensionality of the problem, but minimize the algebraic 
manipulations that we must perform. Imagine how complex the moment of inertia equation 
would be if dependent variables were not used! We reduce the chance of making algebraic errors 
and make the problem easier to formulate at the expense of shifting more of the computational 
effort to the optimization computer program. 

4.3 Effective Width 
The effective width of the compression flange, b, is the only quantity in the preceding set of 
equations which has not yet been defined in terms of the independent variables, w, h, t, w to and 
ht • If the wit ratio of the compression flange is small enough, then the effective width equals the 
actual width because local buckling will not occur. In this case, the compression flange is termed 
"fully effective." The maximum value of wit for which the flange is fully effective is expressed 
through a quantity called A in the AISI specification: 

If A :::; 0.673, then p = 1. 
If A > 0.673, then p = (l-0.22/A)(A. 
b=pw 

The value of k in this case is 4. The quantity fc is defined as the actual stress in the compression 
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flange when the section fIrst yields. Since the fIrst yielding can occur in the tension flange, fc 

might be less than Fy • Normally, fc is initially assumed to equal Fy , and once the analysis of the 
section is complete, this assumption is checked. When this assumption is used and the tension 
flange yields fIrst, then fc must be adjusted, which leads to an iterative, trial-and-error procedure. 
We can avoid this iteration in our mathematical program if we defIne another dependent variable, 

Mn, the nominal bending moment which causes fIrst yield of the section. Then fc can be defined 

as fc = ~y fix using an additional equality constraint in the mathematical program. This allows 
us to use fc directly in the expression for A without the need for iteration. The constraints 

establishing the dependent variable Mn will be developed in the following section. 

4.4 Inequality Constraints 

The beam is designed so that the nominal bending moment causes fIrst yielding at one of the 
extreme fIbers of the section. The allowable bending moment results from dividing the nominal 

bending moment by a factor of safety (=1.67 for the AISI specifIcations). We may determine the 

nominal bending moment in terms of two inequality constraints, one for the compression side 
and the other for the tension side: 

Here, we define Yt = d - Yc' where d = h + 2r + t. Since our objective is to maximize the allowable 
bending moment, Mn/1.67, one of the two inequality constraints will be forced to become active 
(become a strict equality) during the optimization process. We need not be concerned with which 
flange yields first; this will automatically be established by the optimization process. 

The original problem statement was to maximize allowable bending moment while 
maintaining the same cross-sectional area and section depth of the AISI illustrative example. 

This leads to two additional inequality constraints: 

t(2ht + 6u + 2wt + 2h + w) ~ Amax 

d~dmax' 

4.5 Complete Formulation 

The design parameters for this example, which are fixed during the optimization process, are: 

m =2, 

Amax = 1.43 in2 (921. mm2), 

dmax = 4.00 inches (102. mm), 

E = 29,000 ksi (200,000 MPa), 

F y = 50 ksi (345. MPa), 

The design variables are: 

the inside bend radius multiplier; 

the maximum cross-sectional area; 

the maximum overall depth of the section; 

the modulus of elasticity; 

the yield strength. 
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w flat width of the compression flange (independent); 

h flat height of the web (independent); 

nominal thickness (independent); 

Yc 
r 

u 

C 

d1 

d2 

d3 

d4 

ds 
~) 

LCLy) 
LCLy2) 

I,. 
A. 

p 

fc 

M" 

flat width of each tension flange (independent); 

flat height of the lip (independent); 

inside bend radius; 

effective width of the compression flange; 

overall section depth; 

distance from the neutral axis to the extreme fiber in compression flange; 

distance from the center of radius of the bend to the centerline of the bend; 

length of the bend centerline arc; 

distance from the center of radius to the center of gravity of the bend; 

distance from top fiber to c.g. of lip; 

distance from top fiber to c.g. of lower bends; 

distance from top fiber to c.g. of tension flanges; 

distance from top fiber to c.g. of webs; 

distance from top fiber to c.g. of upper bends; 

sum of column 2 of Table 2; 

sum of column 4 of Table 2; 

sum of column 5 of Table 2; 

moment of inertia of the section; 

effective width cutoff paranleter; 

effective width multiplier; 

actual stress in compression flange when fiist yielding occurs on either flange; 

nominal bending moment causing first yielding; 

distance from the neutral axis to the extreme fiber in tension flange. 

The mathematical program contains an objective function and a set of constraints: 

maximize 

M,,/1.67 

subject to 

R mt 

r R+t/2 

u 1.57r 
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c 0.637r 

d1 t/2+r+h-hJ2 

d2 t/2+r+h+c 

d3 t/2+h+2r 

d4 t/2+r+h/2 

ds r+t/2-c 

L(L) = 2ht + 6u + 2wt + 2h + b 

L(Ly) = 2htd1 + 4ud2 + 2wtd3 + 2hd4 + bt/2 + 2uds 
L(Ly2) = 2htd12 + 4udl + 2wtdl + 2hd/ + bt2/4 + 2uds2 

Y c L(Ly )/L(L) 

I" t [:E(Ly2) + 2ht3/12 + 2h3/12 - L(L)y c2] 

A. 1.052 (w) rr; 
./k tVF: 

if A.:<:; 0.673, then p = 1, otherwise p = (1-0.22/A)!A 

b pw 

fc Mnyj1x 

Mn :<:; FyIxfyc 

Mn :<:; FyIx/Yt 

Yt d- Yc 

d h+2r+t 

t(2ht + 6u + 2wt + 2h + w) :<:; Amax 

d :<:; dmax. 

5. Spreadsheet Implementation and Solution 
Figure 3 presents this problem as it might appear in spreadsheet form. The sheet has been divided 
into five regions, containing the independent variables, the parameters, the dependent variables, 
the objective function, and the constraints. The format is a matter of style; at a minimum, only 
the objective function value and independent variable values need to appear in the spreadsheet. 
The names, symbols, units shown in Figure 3 are provided to improve the readability of the 
spreadsheet. 

Figure 4 shows the formulas that were entered into the cells. There are four sets of formulas 
defined. The first set comprises the dependent variable definitions in cells C20 through C39. 
Symbolic references to other cells have been defined to make formula entry easier. For example, 
typing "ht" into a formula would refer to the value in cell D7. The objective function value is 
also a formula, referring to the value of the nominal bending moment appearing in cell D9. 

The graph of the section appearing in the sheet is produced by defining an X-Y plot using 
the values defined in cells F31 through 044. This diagram will change to reflect the new cross 
section as the optimization takes place. 

Another set of formulas appear in the constraints portion of the sheet. Two formulas are 
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defined for each constraint, and are associated with one another through either an equality or an 
inequality.relationship. The equal sign or inequality sign appearing in column C is purely 
cosmetic. The relationship is established formally in Figure 5, when the "Solver" dialog is 
invoked in Excel (under the Tools menu). In this dialog, the objective function cell is identified, 
the independent variables are identified, and the constraints are dermed. When the "Solve" 
button is pressed, Excel performs the optimization and returns the values listed below in the 
"Optimal Section" column: 

Variable Starting Value Optimal Section Final Solution 

w 8.69 in (221. mm) 3.04 in (77.3 mm) 2.62 in (66.5 mm) 

h 3.69 in (93.8 mm) 3.41 in (86.6 mm) 3.37 in (85.7 mm) 

0.06 in (1.52 mm) 0.0987 in (2.51 mm) 0.1046 in (2.66 mm) 

w t 2.69 in (68.3 mm) 1.15 in (29.2 mm) 0.918 in (23.3 mm) 

ht 0.596 in (15.1 mm) 0.00 in (0.00 mm) 0.00 in (0.00 mm) 

R 0.0938 in (2.38 mm) 0.197 in (5.00 mm) 0.209 in (5.31 mm) 

b 2.57 in (65.3 mm) 3.04 in (77.2 mm) 2.62 in (66.5 mm) 

d 4.00 in (102. mm) 4.00 in (102. mm) 4.00 in (102. mm) 

Yc 2.46 in (62.5 mm) 2.00 in (50.8 mm) 2.00 in (50.8 mm) 

r 0.124 in (3.15 mm) 0.247 in (6.27 mm) 0.262 in (6.65 mm) 

u 0.195 in (4.95 mm) 0.387 in (9.83 mm) 0.411 in (10.4 mm) 

c 0.079 in (2.01 mm) 0.157 in (3.99 mm) 0.167 in (4.24 mm) 

d1 3.55 in (90.2 mm) 3.70 in (94.0 mm) 3.69 in (93.7 mm) 

d2 3.93 in (99.8 mm) 3.86 in (98.0 mm) 3.85 in (97.8 mm) 

d3 3.97 in (101. mm) 3.95 in (100. mm) 3.95 in (100. mm) 

d4 2.00 in (50.8 mm) 2.00 in (50.8 mm) 2.00 in (50.8 mm) 

d5 0.075 in (1.91 mm) 0.139 in (3.53 mm) 0.147 in (3.73 mm) 

L(L) 17.7 in (450. mm) 14.5 in (368.mm) 13.7 in (348. mm) 

L(Ly) 43.5 in2 (281. cm2) 29.0 in2 (187. cm2) 27.3 in2 (176. cm2) 

L(Ly2) 141. in3 (2311. cm3) 86.3 in3 (1414. cm3) 80.0in3 (1311. cm3) 

Ix 2.56 in4 (107. cm4) 3.45 in4 (144. cm4) 3.32 in4 (138. cm4) 

A 3.14 0.673 0.547 

P 0.296 1.000 1.00 

fc 50.0 ksi (345 MPa) 50.0 ksi (345 MPa) 50.0 ksi (345 MPa) 

Mn 52.0 in·k (5.88 kN m) 86.3 in·k (9.75 kN m) 83.0 in·k (9.38 kN m) 

Yt 1.54 in (39.1 mm) 2.00 in (50.8 mm) 2.00 in (50.8 mm) 
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The allowable bending moment was increased 66% from the initial starting design without an 
increase in volume of steel nor depth of section. Note that the optimized section has simultaneous 
yielding in both flanges at M". Also the compression flange is as slender as it can be without 
having to sacrifice material to a reduced effective width. The lip has disappeared in the optimal 
design. 

The optimal design specifies a sheet thickness that does not match a standard gage of 
available sheets. To remedy this, the variable t was set equal to the nearest standard value (12 
gage or 0.1046 in or 2.66 rom), and the optimization process was repeated. The fmal solution is 
shown above and is presented in Figure 6. Note that the variables change considerably to 
simultaneously accoromodatethe new sheet thickness and the maximum permitted cross
sectional area. The compression flange moves away from the slendemess cutoff value (A. = 

0.673) in order to take full advantage of the maximum permissible section depth. The t1anges 
still yield simultaneously at failure. The nominal bending moment decreases 4% as a result of the 
additional restriction placed on the problem (the forced sheet thickness). 

There are a number of final checks that must be made. It was assumed that the web would 
be fully effective. Checking section B2.3 of the AISI specification confirms that the optimal 
design maintains a fully-effective web. Other checks that must be performed include maximum 
width-to-thickness ratios of each flange element (AISI section B1.l), maximum width-to
thickness ratios of each web (AISI section B 1.2), maximum allowable shearing force (AISI 
section C3.2), web crippling (AISI section C3.4), and combined bending and web crippling 
(AISI section C3.5). The optimal solution passes all of these checks. 

6. Summary and Discussion 
A spreadsheet program has been programmed to design a cold-formed steel beam to maximize its 
bending strength while maintaining a fixed volume of steel and section depth. A mathematical 
program was formulated and solved using the Solver module in Microsoft Excel. The 
formulation was posed for a general hat section, so it can be re-used for a variety of different 
applications (Le., different steel strength, allowable section depth, allowable cross-sectional area, 
etc.) With very little modification, the formulation could be changed to minimize volume of steel 
for a given applied bending moment, or to maximize or minimize any other quantity that can be 
expressed in terms of the variables. Other design considerations could be added to the 
formulation to customize it for specific applications, such as constraints that determine and limit 
the maximum displacement of the beam. By producing a series of optimal designs for a range of 
parameter values, sets of efficient standardized sections could be developed. 

Appendix-References 
1. American Iron and Steel Institute, "AISI Cold-Formed Steel Design Manual," Washington, 

D.C., 1989. 
2. American Iron and Steel Institute, "Specification for the Design of Cold-Formed Steel 

Structural Members," August 19,1986 Edition with December 11,1989 Addendum, 
Washington, D.C., 1989. 

3. Microsoft Corporation, Microsoft EXCEL, version 4.0, Redmond, W A. 
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4. Seaburg, P. A. and C. G. Salmon, "Minimum Weight Design of Light Gage Steel Members," 
ASCE J. Struct. Div., Vol. 97, No. STl, January, 1971, pp. 203-222. 

Appendix-Notation 
Amax maximum cross-sectional area; 

b effective width; 

c bend center of gravity location; 

d overall depth; 

d;. dependent variables; 

dmax maximum overall depth of the section; 

E modulus of elasticity; 

fc maximum compression at fIrst yield; 

F y yield strength; 

h flat height of the web; 

hI flat height of the lip; 

Ix moment of inertia; 

A. slenderness factor; 
m inside bend radius multiplier; 

Mn nominal bending moment; 

r midsurface bend radius; 

R inside bend radius; 

p reduction factor 
nominal thickness; 

u arc length of bend; 

w flat width of the compression flange; 

WI flat width of each tension flange; 

Yc distance from neutral axis to extreme compression fIber; 

Yt distance from neutral axis to extreme tension fIber. 
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List of Figures 

Figure 1. Example #5 of the illustrative Examples section of the AISI Cold-Formed Steel Design 

Manual. (Bending moment capacity = 52.0 in-k; cross-sectional area = 1.43 in2; 

overall depth = 4 in.) 

Figure 2. Effective section with shaded areas removed to account for local buckling. 

Figure 3. Spreadsheet structure and starting point for design. 

Figure 4. Spreadsheet formulas corresponding to Figure 3. 

Figure 5. Objective function and constraint definitions. 

Figure 6. Final optimized section. (Bending moment capacity = 83.0 in-k; cross-sectional area = 
1.43 in2; overall depth = 4 in.) 
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Effective Distance from 
Element Length, L (in *) top fiber, y, (in) 

1 1.192 3.548 

2 0.780 3.925 

3 5.384 3.970 

4 7.384 2.000 

5 2.573 0.030 

6 0.390 0.075 

sum 17.70 

Ye = 43.540 /17.70 = 2.46 in 
Ix = 0.06 [141.418 + 8.423 - 17.70 (2.46)2] = 2.56 in4 
*Note: 1 in = 25.4 mm 

Ly Ly2 
(in2) (in3) 

4.229 15.005 

3.062 12.016 

21.375 84.857 

14.768 29.536 

0.077 0.002 

0.029 0.002 

43.540 141.418 

Table 1. Section properties table for the example in Figure 1. 

Effective Distance from 
Element Length,L top fiber, y Ly Ly2 

1 2ht t/2+r+h-ht!2 (=dl ) 2h.d l 2h.d12 

2 4u t/2+r+h+c (=d0 4ud2 4udi 

3 2wt t/2+h+2r (= d3) 2wt<l3 2wt<ll 

4 2h t/2+r+h/2 (= d,.) 2hd4 2hd42 

5 b t/2 bt/2 bt2/4 

6 2u r+t/2-c (= cis) 2uds 2ucls2 

sum l:(L) l:(Ly) l:(Ly2) 

Ye = l:(Ly) / ~L) 

Ix = t [L(Ly2) + 2hN12 + 2h3/12 - L(L) Ye2] 

Table 2. Section properties table for mathematical program. 

II' about its 
own axis (in3) 

0.035 

neg!. 

neg!. 

8.388 

neg!. 

neg!. 

8.423 

II' about 
own axis 

2h.3/12 

neg!. 

neg!. 

2h3/12 

neg!. 

neg!. 
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Ii 
9.000 in 

J 8.692 in 

T ® 
.!: .!: 

'" 0 

'" 0 to 0 
M ... 

0.596 in 

1 Ll t 
~ 2.692 in ~ 

3.000 in typical 90' bend 

Figure 1. Example #5 of the illustrative Examples section of the AISI Cold-Formed Steel Design Manual. 
(Bending moment capacity = 52.0 in-k; cross-sectional area = 1.43 in2; overall depth = 4 in.) 
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1== b/2 --j 
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ht Xl +;',,+I1 1 
I--- Wt ----1 typical 90' bend 

Figure 2, Effective section with shaded areas removed to account for local buckling. 
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A B C D E F G 
1 Hat Section Scott Burns 4/5/96 
2 Independent Variables name LB symbol value UB units 
3 flat width of compression flange 0 w 8.692 20 in 
4 flat hei ht of web 0 h 3.692 20 in 
5 nominal thickness 0 t 0.060 20 in 
6 flat width of each tension flange 0 wt 2.692 20 in 
7 nat width 01 Ii 0 ht 0.596 20 in 
8 effective width 0 b 2.573 20 in 
9 nominal bending moment 0 Mn 53.000 SOO in.k 
10 
11 Parameters name symbol value units 
12 inside bend radius multiplier m 2 none 
13 maximum cross-sectional area Amax 1.428 in"2 
14 maximum overall section depth dmax 4 in 
15 modulus of elasticit E 29000 ksi 
16 ield strenqth Fy 50 ksi 

'~ 1 
17 
18 
19 Dependent Variables name svmbol eon units 
20 inside bend radius R 0.120 in 
21 height of bend rb 0.150 in 

s-L 22 arc length of bend ub 0.236 in 2 -
23 centroid of bend eb 0.096 in 
24 location of lip centroid d 1 3.574 in o -
25 location of lower bend centroid d 2 3.968 in -2 I I I I I I I I I 
26 location of tension flanos centroid d 3 4.022 in 

4 6 14 27 location of web centroid d 4 2.026 in -2 0 2 8 10 12 

28 location of upper bend centroid d 5 0.084 in 
29 sum of effective lengths sumL 17.946 in 
30 first moment of effective lengths sumLy 44.729 in"'2 x 
31 second moment of effective lengths sumLy2 147.466 in"3 0 0.746 
32 neutral axis w.r.t. top fiber ye 2.492 in 0 0.15 
33 moment of inertia Ix 2.664 in"'4 0.15 0 
34 total depth of section d 4.052 in 2.842 0 
35 neutral axis w.r.t. bottom fiber vt 1.560 in 2.992 0.15 
36 max comor stress @ first.Y!eld fe 49.581 ksi 2.992 3.842 
37 max tens stress ~firstyield It 31.024 ksi 3.142 3.992 
38 slenderness factor lambda 3.151 none 11.834 3.992 
39 effective width reduction factor rho 0.295 none 11.984 3.842 
40 11.984 0.15 
41 12.134 0 
42 Ob'ective Function name symbol eqn units 14.826 0 
43 moment capacity Mn 53.000 in.k 14.976 0.15 
44 14.976 0.746 
45 Constraints name valueJeqn <1>1= value/eqn name 
46 effective width. b 2.573 = 2.56608024 rho"w 
47 max campr stress @ first yield 49.5813404 < 50 ield stress 
48 max tens stress @ first yield 31.0243691 < SO ield stress 
49 cross~sectional area 1.4439 < 1.428 allowable area 
50 oyerall depth 4.052 < 4 max depth 

Figure 3. Spreadsheet structure and starting point for design. 
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Figure 5. Objective function and constraint definitions. 
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Figure 6. Final optimized section. (Bending moment capacity = 83.0 in-k; 
cross-sectional area = 1.43 in2; overall depth = 4 in.) 
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