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l.Department of Engineering, Glasgow Caledonian University, Glasgow, UK 

2.Department of Mechanical Engineering, University ofStrathcIyde, Glasgow, UK 
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SUMMARY 

The effects of cold forming on both carbon steel and stainless steel structural members has 

been the subject of extensive research since the early 1940's. Design code specifications for 

carbon steel members have been published in many countries around the world, including BS 

5950, Part 5 in the UK (1) the AlSI Specification in the USA (2), and the new Eurocode 3, 

Part 1.3 (3). For stainless steel members there are fewer design code specifications available, 

and those that are available, which include the ANSIIASCE in the USA (4) and the new 

Eurocode 3, Part 1.4 (5), do not give such detailed design recommendations as the carbon steel 

specifications. 

This paper describes the result~ obtained from a series of axial compression tests performed 

on short strut members of plain channel cross section cold formed from Type 304 stainless 

steel sheet. The comer radius and the material thickness are varied to examine the effects of 

cold forming on the load capacity of the channels in compression and the results are compared 

to those obtained from the relevant design specifications. Conclusions are drawn on the basis 

of the comparisons. 

INTRODUCTION 

Cold formed sections are widely used for building structures, storage racking and domestic 

equipment. This is due to various characteristics such as their high strength to weight ratio, 

their ease of manufacture and the fact that a wide range of cross-sections can be formed from 

many different materials. 

An advantage which is obtained from cold forming structural members is the increase in yield 

strength gained due to the cold working involved. Such cold working causes strain hardening 
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of the material which affects its mechanical properties, and consequently the material 

properties of a formed section may be markedly different from those of the virgin sheet 

material from which it was formed. In general, this strain hardening increases both the yield 

strength and the ultimate tensile strength. This is certainly true for mild steel as reported by 

Karren (6) and Karren and Winter (7). However, for a material such as stainless steel, these 

increases may not be the same as for mild steel and the ratio of the ultimate tensile strength to 

the yield strength may also be different. Karren and Winter demonstrated with their tensile test 

approach on carbon steel that the effect that cold forming has on structural sections is 

generally confined to the areas of formed bends and it is in these areas that increases in yield 

and ultimate strength are located. Research by VanDen Berg and VanDer Merwe (8) which 

modified the AISI carbon steel design code specification for various types of stainless steels 

including Type 304, arrived at a simple equation to predict the increase in mechanical 

properties gained at comer sections and their effect on the whole cross-section. Further 

research by Macdonald et al (9, 10) using a hardness test approach, confirmed this type of 

behaviour for carbon steel and also examined similar behaviour for stainless steel cold formed 

members. 

The localised effect of cold forming is now investigated further by examining its consequence 

on the axial compression behaviour of short struts with plain channel cross sections 

manufactured from Type 304 stainless steel sheet with relatively small bend radius/material 

thickness (rlt) ratios. 

No UK design code exists for cold formed stainless steel members, but two widely used 

design codes are the ANSIIASCE specification (4) and the new Eurocode 3, Part 1.4 

specification (5). These codes give many design recommendations which include methods of 

computing the load capacity of short structural members subjected to axial compressive 

loading, often termed "stub columns" 

AXIAL COMPRESSION LOAD CAPACITY OF STAINLESS STEEL PLAIN 

CHANNEL SHORT STRUTS - DESIGN CODE RECOMMENDATIONS 

In the formation of a profiled section, the cold working occurs in localised areas, with the 

material at the bends being strain hardened to a much greater degree than the material in the 

flat elements. Therefore the properties of the material vary-throughout the cross-section where 

at the formed bends, a higher yield strength will exist. The effect that the areas of high 

strength have on the load capacity of short struts of plain channel cross-section is considered 

here for Type 304 stainless steel. The plain channel cross-sections have constant flange widths 

and web depth with the length of the strut also being constant. To vary the amount of cold 

forming, the cold formed comers were manufactured with various sizes of inside bend radius 
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and also the materials used were of three different thicknesses hence providing a range of rlt 

ratios. The rlt ratios were kept small varying from approximately 2.5 to 8.5. The design codes 

make the assumption that cold formed bends with rlt < 5t can be treated as sharp comers. 

Hence one of the aims of this investigation was to determine if an increase in load capacity in 

compression could be gained for plain channel sections with variation in r/t. 

The lengths of the struts were kept short such that failure by Euler type buckling would be 

eliminated and that failure would occur due to local buckling effects only. Further details of 

the experimental investigation are described later. 

The load capacity for short struts subjected to axial compression loading for stainless steel 

cold formed members according to the relevant design codes are calculated -as follows: 

ANSIIASCE-8-90: 
Design Axial Strength, P n = Aefy (N) 

where Ae 

and fy 

Eurocode 3, Part 1.4: 

= effective cross-sectional area (mm2) 

= virgin material 0.2% proof stress (N/mm2) 

Design Buckling Resistance, Nb,Rd = x~AAgfy (N) 

(1) 

(2) 

where X 

~A 
Ag 

= reduction factor equal to unity for the struts examined. 

= ratio of AerlAg, 

= gross cross-sectional area (mm2) 

and fy = virgin material 0.2% proof stress (N/mm2) 

The effective area in both codes is determined on the basis of effective widths of the elements 

which are related directly to the initial elastic modulus, and do not take any account of the 

degradation of E as loading progresses. 

The results obtained from the above equations will be used for comparison with the results 

obtained from the axial compression tests described later. 

AXIAL COMPRESSION TEST EXPERIMENTAL INVESTIGATION 

A total of29 plain channel section short strut specimens were cold formed from-stainless steel 

sheet of three different thicknesses - nominally 0.7mm, 0.9mm and 1.2mm. The inside radius 

of the comer bends of the plain channels were varied with sizes of 3mm, 5mm and 6mm to 
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give a small range of rlt ratio. The cross-section dimensions were kept constant with the flange 

being of nominal width 30mm and the web being of nominal depth 60mm. The length of the 

short strut specimens was also kept constant at a nominal 180mm. Three specimens were 

manufactured for each specimen of a given thickness and bend radius so that an average load 

capacity could be used for comparison to design code specification predictions. One specimen 

was manufactured for each thickness with sharp comers to give a radius as close as possible to 

zero so that the load capacity for sections with formed comers could be compared to that 

obtained for no formed comers. 

The specimens were formed from flat sheet into plain channel sections with varying 

thicknesses and comer bend radii. This was done by using a mechanically-operated bending 

machine with slight variations in the setting of the material to account for different sizes of 

comer bend radius. However, due to different material thicknesses and machine settings, the 

bending process generated fluctuations in the overall dimensions for the specimens with the 

only exception being the specimen length which was maintained at approximately 180mm. 

Figure 1 shows a plain channel section short strut column with all the nominal dimensions 

shown. All the specimens were accurately measured to obtain the finished dimensions and all 

calculations were based on the actual dimensions measured. 

r 

= 0.7, 0.9 and 1.2mm; 

= 3, 5 and 6mm; 

L = 180mm (constant) 

= 30mm (constant) 

= 60mm (constant) 

Figure 1: Nominal Dimensions of Short Strut Plain Channel Cold F omled Sections. 
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The ends of the specimens were ground to ensure flatness and the specimens were compressed 

uniformly to failure between flat plattens in a Tinius Olsen Electro-mechanical testing 

machine, with the load-end compressive displacement path being recorded. 

RESULTS 

The specimen details and the experimental and design specification predictions for the axial 

compressive load capacity of the stainless steel short struts are shown in Table 1. The table 

shows a comparison of the experimental load capacities obtained with the load capacities 

obtained from the ANSIIASCE and Eurocode 3, Part 1.4 design specifications. Figure 2 shows 

a graph of the failure loads for short struts plotted against the rlt ratio for each different 

thickness of material. Figure 3 shows the variation of Aetrfr- at failure with variation in rlt 

ratio for the different material thicknesses. 

OBSERVATIONS 

Figure 2 indicates that the stainless steel strut test results are in good agreement with the 

ultimate load predictions of Eurocode 3: Part 1.4 and the ANSIIASCE design code. Both 

design codes are very similar in their treatment of stub column capacity, and the results only 

differ very slightly because of minor differences in the specifications, such as the value of the 

Elasticity Modulus. In the case of O.7mm thick material the failure loads obtained 

experimentally, and those of the design codes, did not show any significant variation with 

change in rlt ratios for the corners. It should be mentioned here that analysis to the codes 

assumed square corners so that the fact that the experimental results followed the same pattern 

suggests that (i)- although the high-yield corner area is increased in relation to the flat area by 

increasing the rlt ratio, this does not seem to affect the strength, and (ii) - the buckling 

resistance of the elements seems to be well described using the full width between 

intersections of elements rather than just the flat width. 

In the case of the O.95mm material the section with sharp corners took substantially less load 

than those with radii, both from test and using the design codes. This is largely because the 

thickness was rather far from the nominal value. Other than this the variation in radii did not 

seem to affect the strength to any great extent. A similar conclusion can be drawn for the 

1.19mm material. 

Figure 3 shows the variation in the ratio of total effective area to thickness squared at failure 

for the stub columns tested, and again plots the results against rlt for each of the different 

thicknesses investigated. The design code predictions are, as in Figure 2, very similar and have 
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been incorporated in the figure mainly as a control to ensure that any variations in individual 

specimen dimensions or properties which could have significantly affected the results would 

be seen. As may be observed this quantity (i.e Lbeff .t I t2 ) is approximately 70 for all 

specimens regardless of the rlt ratio, being slightly greater (71-75) for the thinner specimens, 

and slightly less ( approximately 68) for the thicker specimens. The quantity is actually the 

sum of bewt taken over the complete section, and with one stiffened element and two 

unstiffened elements the sum of effective widths should be approximately 70 at failure. The 

tests back up the design code predictions in this respect. It is, however, obvious from the test 

results that the comers do not have any significant influence on the strength, and that 

evaluation of the properties, particularly the local buckling properties, on the basis of mid-line 

dimensions assuming square comers gives a good approximation to the test results. 

CONCLUSIONS 

The main conclusion from the work is that the new Eurocode for stainless steel members, and 

the ANSII ASCE specification, give accurate predictions of the stub column strength of plain 

channel sections. The neglect of the changes in E as loading progresses does not seem to have 

resulted in any substantial errors in the evaluation of axial load capacity. 

The variation in capacity with variation in comer radii is small, and inconsistent, and for 

members with comer rlt ratios as examined here the assumption of mid-line dimensions and 

square comers is perfectly satisfactory. 
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Table 1 
Compression Test Results: Stainless Steel Plain Channel Section Short Struts 

(Nominal Dimensions: Flange-30mm; Web-60mm; Length-180mm) 

Specimen Bend Thickness Whole Virgin 0.2% Exp. Load ElU"ocode 1.4 
Ref. Radius, r t r/t C.s.A., A P.S. Capacity,P exn NhRrl 

(nun) (nun) (nun2) (N/nun2) (kN) (kN) 

Sharp Comer Specimens: 
CTSSSCI N/A 0.69 N/A 89.89 304.50 11.05 10.79 
CTSSSC2 N/A 0.84 N/A 109.41 319.10 15.81 16.04 
CTSSSC3 N/A 1.13 N/A 146.63 304.10 28.13 26.85 
Formed Comer Radius Specimeus: 
CTSSIA 3.00 0.70 4.290 90.88 304.50 10.88 11.09 
CTSSlB 3.00 0.70 4.290 90.52 304.50 10.52 11.08 
CTSS2A 5.00 0.69 7.250 88.65 304.50 11.10 10.79 
CTSS2B 5.00 0.69 7.250 87.27 304.50 10.92 10.78 
CTSS2C 5.00 0.69 7.250 89.19 304.50 11.10 10.80 

CTSS3A 6.00 0.70 8.570 90.19 304.50 10.84 11.10 
CTSS3B 6.00 0.74 8.108 95.72 304.50 10.70 12.32 
CTSS3C 6.00 0.74 8.108 96.53 304.50 10.97 12.34 

CTSS4A 3.00 0.95 3.160 123.79 319.10 18.64 19.58 

CTSS4B 3.00 0.93 3.226 121.41 319.10 18.95 19.36 

CTSS4C 3.00 0.93 3.226 121.57 319.10 18.59 19.37 

CTSS5A 5.00 0.93 5.380 121.02 319.10 18.64 19.38 

CTSS5B 5.00 0.93 5.380 120.46 319.10 18.82 19.36 

CTSS5C 5.00 0.92 5.435 118.90 319.10 18.64 18.96 

CTSS6A 6.00 0.93 6.452 121.43 319.10 18.59 19.39 

CTSS6B 6.00 0.92 6.522 120.22 319.10 18.68 19.01 

CTSS6C 6.00 0.93 6.452 121.58 319.10 18.33 19.40 

CTSS7A 3.00 1.19 2.520 156.97 304.10 28.32 29.52 

CTSS7B 3.00 1.20 2.500 157.92 304.10 27.91 29.90 

CTSS7C 3.00 1.19 2.521 156.78 304.10 27.82 29.46 

CTSS8A 5.00 1.19 4.200 156.17 304.10 27.87 29.49 

CTSS8B 5.00 1.20 4.167 157.79 304.10 27.96 29.97 

CTSS8C 5.00 1.19 4.200 155.33 304.10 27.91 29.44 

CTSS9A 6.00 1.22 4.920 162.78 304.10 27.96 31.03 

CTSS9B 6.00 1.22 4.918 161.29 304.10 28.54 30.93 

CTSS9C 6.00 1.22 4.918 159.71 304.10 27.60 30.81 

ANSI/ASCE 
Pn 

(kN) 

10.66 
15.85 
26.55 

10.96 
10.95 
10.66 
10.64 
10.67 
10.96 
12.17 
12.19 
19.89 
19.14 
19.15 
19.15 
19.13 
18.74 
19.17 
18.79 
19.17 
29.20 
29.58 
29.14 
29.17 
29.65 
29.12 
30.70 
30.60 
30.48 
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Figure 2 - Variation of Failure Load with rlt ratio for specimens of all thicknesses 
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