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Post-Buckling in the Distortional Mode and Buckling Mode 
Interaction of Cold-Formed Thin-Walled Sections with Edge 

Stiffeners 
 
 

Derrick C.Y. Yap1 and Greg J. Hancock2 
 
 

Abstract 
 
 
The buckling modes of cold-formed thin-walled sections with edge stiffeners 
generally occur at distinct lengths, but interaction of buckling modes may be 
present at certain lengths. This may be due to the distortional mode interacting 
with the local buckling mode, both of which may be in the post-buckling range. 
The paper discusses the analysis of post-buckling in the distortional mode of a 
thin-walled section with edge stiffeners and the effect of interaction of buckling 
modes on failure loads.    The analysis is based on the longitudinal stress 
development and redistribution using the finite element package ABAQUS.  
This methodology whereby the longitudinal stress redistribution is studied is 
similar to the work of Von Karman et al, in predicting the post-local buckling 
behaviour. 
 
Introduction 
 
Thin-walled sections such as lipped channels can buckle in three different 
modes being the short half-wavelength local buckle, the intermediate half-
wavelength distortional buckle and the long half-wavelength flexural/flexural-
torsional buckle (Hancock, Murray and Ellifritt (2001), Hancock (2003), Schafer 
(2002)).  The local buckling mode has been well researched and an effective 
width model developed by Von Karman et al (1932) to produce a simple model 
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of the post-buckling reserve strength.  The flexural-torsional mode has been well 
researched by Timoshenko (1945), Vlasov (1961) and Trahair (1993) and was 
shown to have very little postbuckling reserve of strength.  The distortional 
buckling mode has been researched at the University of Sydney in recent years 
by Hancock (1985), Lau and Hancock (1990), Kwon and Hancock (1992) and 
Yang and Hancock (2004), at Johns Hopkins University by Schafer (2002) and 
the Technical University of Lisbon, Portugal by Camotim and Silvestre (2004).  
What has been known for some time is that the distortional mode has a 
postbuckling strength which is generally less than that of local buckling.  
However, the nature of this postbuckling reserve is not clearly understood, 
particularly what precipitates failure. 
 
Sridharan (1982) demonstrated that soon after buckling in the distortional mode, 
yielding occurs in the lip either at the tip or the flange junction depending on 
which way the flange and lip move (inward or outward respectively). He 
concluded that "one likely consequence of buckling of an edge stiffener in its 
own plane would be the onset of plastic yielding; and the yielding of a member 
which has been the main source of stiffness cannot but hasten the collapse of the 
structure". However, experimentation such as that of Yang and Hancock (2004) 
has shown experimentally this not to be the case with substantial postbuckling 
reserve in line with the early work of Kwon and Hancock (1992) even when the 
lip has yielded and developed local plastic mechanisms.  A further complication 
raised by Yang and Hancock was the difference between the strength when the 
lips moved inward generally with a lower strength than when they moved 
outward.  This was confirmed theoretically more recently by the Generalised 
Beam Theory (GBT) models of Silvestre and Camotim (2004) for fixed ended 
sections. 
 
The main purpose of this paper is to investigate postbuckling in the distortional 
mode using the finite element program ABAQUS.  The distortional mode cannot 
be completely isolated from the local mode and so the interaction of local and 
distortional buckling is considered in the paper.  The work of Von Karman et al. 
(1932) showed that the postbuckling behaviour could be explained by looking at 
the longitudinal stress redistribution around the section in the postbuckling range 
of behaviour.  The same approach is used in this paper.  In addition, strength 
design curves for distortional buckling of channels in compression are further 
validated against the ABAQUS models. 
 
Sections investigated 
 
The basic section chosen was a simple lipped channel with an 80 mm web and 
60 mm flange.   It was decided to study 6 mm, 3 mm and 2 mm thick sections 
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with 9 mm lip, and 2 mm and 1 mm thick sections with 5 mm lip. These 
dimensions were chosen to produce pure distortional buckling in some cases 
(i.e. 6 mm thick section) and interaction buckling in some cases (i.e. 2 mm with 
9 mm lip, 1 mm with 5 mm lip).  Fig. 1 shows the buckling stress versus buckled 
half-wavelength for the 1 mm thick section with 5 mm lip.  The section was 
analysed using the semi-analytical finite strip method (SAFSM), shown as the 
solid line, and the spline finite strip (SFSM), shown as a line with circles.  It can 
be seen that with the fixed ended condition of the SFSM, the distortional 
buckling stress increased and is similar to the local buckling stress. This would 
allow for possible interaction of local and distortional buckling modes.  All 
sections were analysed with one buckle half-wave at 300 mm, except for the 3 
mm thick section, which was analysed at 400 mm. 
 

 
Figure 1 Plot of buckling stress vs half-wavelength for 1 mm thick section with 5 

mm lip 

Finite element analysis 
 
The finite element model set up has been discussed by Yap and Hancock (2006).  
The paper noted that plastic strains were included for the inelastic analysis and 
the plastic strain data was based on Yang and Hancock (2006) stress-strain 
curves of G550 coupons in tension.  The yield stress is assumed to be 700 MPa. 
 
The model uses S4R shell elements.  The web and flanges have a mesh size of 
approximately 5 mm x 5 mm and the lips have mesh sizes ranging from 5 mm x 

80 

60 
5 

t = 1 

L(3) D(1) 
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2.5 mm to 5 mm x 4.5 mm.  The column was assumed to be compressed 
between fixed ends, with all nodes at the ends fixed except the translational 
degree of freedom at the top of the column.  A geometric imperfection 
magnitude of 0.15t was applied to the model. 
 
Sensitivity and validation analyses 
 
Geometric imperfections are included in the finite element model by linear 
superposition of buckling modes.  A scaling factor with respect to the thickness 
was applied to the imperfection before superimposing to create the perturbed 
mesh. To validate the analyses and investigate imperfection magnitudes, 
sensitivity and validation analyses were preformed with different levels of 
geometric imperfections. 
 
As part of this investigation, both outwards (O-O) and inwards (I-I) 
imperfections have been assumed where outwards refers to the lip motion 
relative to the other lip.  Schafer and Pekoz (1998) recommended that for a 
distortional geometric imperfection (called Type 2), a value approximately equal 
to the plate thickness, t, can be chosen.  However this value may be too large 
when applied as the maximum amplitude of a distortional buckling half-wave 
since it may produce conservative results for distortional buckling modes with 
increasing material thickness.  A value of 0.64t was obtained by Schafer and 
Pekoz from the lower bound probability of 25 % of the Type 2 imperfections 
and this value has been used to analyse and compare the FEA ultimate failure 
loads to known strength curves in Fig. 2.  The curves are a strength curve (Puw) 
based on the Winter (1968) effective width formula and the Kwon and Hancock 
(1992) strength equation (Pukh) , which is the same as used in the Direct Strength 
Method (DSM) in AS/NZS 4600:2005 (2005) and NAS (supplement) (2004).  
The elastic buckling curve (Pod or Pol) is shown as the solid line, while the 
Winter strength curve, for local buckling, is shown as the line with triangles 
( ) and the Kwon and Hancock strength curve, for distortional buckling, as a 
line with circles ( ).  The Winter strength curve is derived from the Winter 
(1968) effective width as shown in Equations 1 and 2. 
 
 be

b
= 1 λl ≤ 0.673    (1) 

 be
b

=
fol
f y

1− 0.22
fol
f y

⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟ λl > 0.673   (2) 

where, λl =
f y

fol
, f y  is the yield stress and fol  is the local buckling stress  
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When the effective width, be, of each element of a section is computed for each 
element in the section assuming that all buckle locally at the same stress fol, then 
multiplying by the plate thickness, t,  and yield stress, fy, and summing over all 
elements in the section produces 
 

Puw = Py λl ≤ 0.673    (3) 
 

Puw =
Pol
Py

1− 0.22
Pol
Py

⎛ 

⎝ 
⎜ 
⎜ 

⎞ 

⎠ 
⎟ 
⎟ Py λl > 0.673   (4) 

where,  

λl =
Py

Pol
, Py = Afy  and Pol = Afol  

 
Equations 3 and 4 are called the Winter strength equations in this paper and 
apply to local bucking. 
 

 
Figure 2 FEA results compared to strength curves with imperfection 0.64t 

t = 6mm (I I) 
(9mm lip) (OO) 

t = 3mm (I I) 
(9mm lip) (OO) 

t = 2mm (OO) 
(9mm lip) (I I) 

t = 2mm (OO) 
(5mm lip) (I I) 

t = 1mm (OO) 
(5mm lip) (I I) 
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Equations 5 and 6 are the Kwon and Hancock strength equations and are similar 
to Equations 3 and 4 except that the coefficient 0.22 and the exponent 0.5 have 
been changed to 0.25 and 0.22 respectively lower the curve below the Winter 
strength equations and Pol has been replaced by the distortional buckling load Pod 
= Afod. 
 
 Pukh = Py λd ≤ 0.561  (5) 

 Pukh = 1− 0.25
Pod
Py

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

0.6⎡ 

⎣ 

⎢ 
⎢ 

⎤ 

⎦ 

⎥ 
⎥ 

Pod
Py

⎛ 

⎝ 
⎜ ⎜ 

⎞ 

⎠ 
⎟ ⎟ 

0.6

Py λd > 0.561  (6) 

where,  

λd =
Py

Pod
, Pod = Af od and fod  is the distortional buckling stress  

 
Silvestre and Camotim (2004) also investigated the local and distortional 
postbuckling behaviour of lipped channel columns using Generalised Beam 
Theory (GBT) and finite element analyses.  In their paper, the geometric 
imperfections were assumed to have an amplitude of 0.15t which was applied to 
the finite element models for both the local and distortional buckling mode 
analyses. The FEA ultimate failure loads based on an imperfection of 0.15t are 
compared with the strength curves in Fig. 3 and are higher than those in Fig. 2 
based on the 0.64t. 
 
It can be seen in Figs. 2 and 3 that at higher slenderness, the FEA results for 
columns with both imperfection magnitudes are slightly lower than the Kwon 
and Hancock strength curve. When the columns with 9 mm lips are analysed at a 
thickness of 2 mm, it can be seen from Figs. 2 and 3 that the ultimate loads are 
significantly lower compared to the Kwon and Hancock strength curve for both 
imperfection magnitudes. With thickness increasing to 3 mm and 6 mm, it can 
be seen from Fig. 2 that the analyses with an imperfection magnitude of 0.64t 
produced much lower ultimate loads when compared to the strength curves,  
whereas analyses with an imperfection magnitude of 0.15t produced ultimate 
loads that are well predicted by the strength curves as seen in Fig. 3.  Some of 
these differences are due to the imperfection magnitudes but some are due to 
interaction buckling and will be discussed in more detail later in this paper. 
 
The sensitivity analysis confirms the initial statement that thinner materials (1 
mm or less) is less sensitive to imperfection magnitudes as the difference in 
ultimate loads are relatively similar.  However with thicker materials, the 
ultimate loads are sensitive to imperfections and with a larger imperfection, the 
FEA ultimate loads becomes lower when compared to the strength curves.  
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Generally the scale factor of 15 % of the plate thickness provides ultimate loads 
which compare well with the strength curves which are based on tests.  
Therefore, the scale factor of 15 % of the plate thickness is chosen as the 
maximum amplitude of the geometric imperfections in the distortional mode to 
be applied to the finite element models for the later analyses in this paper.  This 
choice is particularly important in this paper because thicker sections have been 
chosen in many of the analyses to separate the local and distortional modes. 
 

 
Figure 3 FEA results compared to strength curves with imperfections 0.15t 

 
To compare the FEA analyses with the Winter strength curve for local buckling, 
a set of additional analyses where distortional buckling was prevented was 
performed.  From Fig. 3, it can be seen that the local buckling strength, shown 
as a plus (+) symbol, for the sections with varying thicknesses are well predicted 
by the Winter strength curve based on a slenderness λl for local buckling of the 
whole section.  For sections with thicknesses 1 mm and 2 mm, the FEA ultimate 
loads are slightly higher, whereas for the section at 3 mm thickness, the FEA 
ultimate load is slightly lower, which is most likely due to assumed 
imperfections. 
 

t = 6mm (I I) 
(9mm lip) (OO) 

t = 3mm (I I) 
(9mm lip) (OO) 

t = 2mm (I I) 
(9mm lip) (OO) 

t = 2mm (OO) 
(5mm lip) (I I) 

t = 1mm (OO) 
(5mm lip) (I I) 

Local buckling (t=2mm, 5mm lip) 

Local buckling (t=2mm, 9mm lip) 

Local buckling 
(t=3mm) 

Local buckling 
(t=1mm, 5mm lip) 
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Load deflection curves 
 
The load-deflection curves for the postbuckling analyses for the 3 mm and 1 mm 
thick sections are shown in Figs. 4 and 5 respectively. In each figure, the inward 
and outward curves are plotted for a material that is assumed to remain elastic 
and with yielding also included.  The inward and outward deflecting curves for 
the elastic material are defined as the square ( ) and diamond ( ) lines 
respectively.  Similarly the inward and outward deflecting curves for the 
material with yielding included are defined as the star ( ) and cross ( ) 
lines respectively. 
 

 
Figure 4 Load deflection curves for section with t = 3mm 

 
Comparing Figs. 4 and 5, it can be noted that as the sections get thinner, the 
elastic postbuckling curves become more separated with the inward curve 
always below the outward curve.  This is due to the different stress 
redistributions across the section for the inward and outward deflection cases 
and will be further discussed.  For the material with yielding included, the 
sections with thickness 6 mm, 3 mm and 2 mm with 9 mm lip failed below the 
critical distortional stress while sections with thickness 2 mm with 5 mm lip and 
1 mm with 5 mm lip failed in the post-distortional stress range.  For the 3 mm 
thick section, it can be noted in Fig. 4 that the inward curve is higher than the 
outward curve at failure, but very quickly the curves cross over with the outward 
curve carrying more load after failure.  It is interesting to note that this cross 
over point approaches the elastic curves as the material gets thinner.  For the  1 
mm thick section, this cross over occurs in the elastic curve, hence it can be seen 
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in Fig. 5 that the outward curve is higher than the inward curve at failure.  This 
shows that in the post-distortional buckling mode, the outward deflecting 
sections are stiffer than the inward deflecting sections. This confirms the results 
from Yang and Hancock (2004) that the outward deflecting sections are stiffer 
than the inward deflecting sections for thin materials.  For thin materials (e.g. 1 
mm), it can seen in Fig. 5 that for loads up to approximately 90 % of the failure 
load, which is approximately 1.3 Pcrd, there is not much difference between the 
elastic and inelastic behaviour of the section.  Hence this section is useful to 
demonstrate how distortional buckling interacts with local buckling. This will be 
further discussed when the stress distribution across the section is analysed. 
 

 
Figure 5 Load deflection curves for section with t = 1mm 

 
Longitudinal stress distributions 
 
The main objective of this paper is to investigate the post-distortional stress 
distribution and the effects of post-local buckling on post-distortional buckling 
behaviour, therefore sections with thicknesses 6 mm and 1 mm are chosen.  The 
6 mm section demonstrates a section undergoing post-distortional stress 
redistribution while at the other extreme, the section with 1 mm thickness 
demonstrates the effects of distortional buckling on the post-local buckling 
stresses. 
 
 
 
 
Section with 6 mm thickness 

0.9 Pu ≈ 1.3 Pcrd ≈ 42 kN 
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The longitudinal stress distributions for the section with inward (I-I) and 
outward (O-O) deflections when the material is assumed to remain elastic is 
shown in Figs. 6a and b respectively.  The analysis of the section with this 
thickness was chosen because it had an elastic distortional buckling stress (Fcrd = 
2132 MPa) much less than the elastic local buckling stress (Fcrl = 5347 MPa).  
The ratio of Fcrl to Fcrd is approximately 2.51.  For both cases, the sections 
deformed in the post-distortional mode since the stresses were well below those 
where local buckling effects might have affected it. 
 
When the stresses are redistributed across the web in the post-distortional 
buckling region, the stresses decrease in the middle as it sheds the stresses to the 
flange-web junctions.  However for the inward and outward deflections, the 
increased stresses at the junctions are different at similar load levels.  When 
P/Pcrd is approximately 1.35, the stress at the flange-web junction is 
approximately 3890 MPa for the inward deflection mode, while the stress at the 
flange-web junction for the outward deflection mode is approximately 4350 
MPa.  Thus it can be noted that in the post-distortional range, the flange-web 
junction of the outward mode carries more load than the inward mode at the 
same load level for a section with thickness 6 mm.  This increased stress 
capacity for the section with outward deflection mode compared to the inward 
deflection mode indicates that the inward deflection mode is much softer as it 
sheds the load more rapidly as the deformations progress, as shown in Fig. 7.  
This confirms the results obtained by Yang and Hancock (2004) that the 
outward deflection modes are stiffer than the inward deflection modes. 
 

  
 
Figure 6 Longitudinal stress distributions (I-I) and (O-O) around section t = 6 mm 

Fcrd = 
2132 MPa 

Fcrd = 
2132 MPa 

Fcrl = 
5347 MPa

Fcrl = 
5347 MPa 

Stress at flange-web 
junction ≈ 3890 MPa 

P/Pcrd =1.35 

Stress at flange-web 
junction ≈ 4350 MPa 

P/Pcrd =1.35 

a) Inward deflection b) Outward deflection 



81 

When the distortional mode was “locked out” so as to observe the local buckling 
stress alone at the distortional length, the stress distribution for the post-local 
buckling range for the section is as shown in Fig. 8.  It can be seen that as the 
load increases, there is significant stress redistribution in the middle of the web 
and flanges to the flange-web and flange-lip junctions as for normal post-local 
buckling behaviour.  Figs. 6a and b also show that as the loads increase into the 
post-distortional buckling region, the stresses in the middle of the web and 
flanges are redistributed to the flange-web and flange-lip junctions.  However, it 
is interesting to note that this post-distortional buckling stress redistribution has 
a unique characteristic which has some similarities to the post-local buckling 
stress distribution shown in Fig. 8, particularly for the inward deflection mode 
shown in Fig. 6a. 
 

     
 
 
 

    
 

Figure 9 Longitudinal stress distribution (I-I) and (O-O) around section t = 6mm 
(yielding included) 

Inward softer 
than outward 

Fcrl = 
5347 MPa 

Figure 7 Plot of P/Pcrd vs lip deflection 
for section t = 6mm

Figure 8 Longitudinal stress around 
section (forced local) 

P/Pcrl = 0.31 

0.61 

0.84 
1.00 

1.20 

1.30 

a) Inward deflection b) Outward deflection 

Fcrd = 
2132 MPa 

Fcrd = 
2132 MPa 

Fy = 700 
MPa 

Fy = 700 
MPa 

Failure at flange-web and 
flange-lip junctions

Failure at flange-web junctions 
and at tips of lips
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The longitudinal stress distributions for the section with inward and outward 
deflection cases now including yielding is shown in Figs. 9a and b respectively.  
For the section with inward deflection, the stress at the web and flanges are 
redistributed to the flange-web and flange-lip junctions relatively equally and 
hence yield approximately at the same time. The stress in the web and flanges 
for the section with the outward deflection are redistributed differently with 
most of the stress being shed to the lips and flange-web junctions.  Due to the 
stress concentrating at the junction, the section fails at a slightly lower load 
when compared to the inward mode, with the lips yielding first but failure 
occurring in the junctions. 
 
Section with 1 mm thickness 
 
The longitudinal stress distributions for the section with inward (I-I) and 
outward (O-O) deflections when the material is assumed to remain elastic is 
shown in Figs. 10a and b respectively.  The analysis of the section with this 
thickness was chosen because it had an elastic distortional buckling stress (Fcrd = 
154 MPa) is approximately equal to the elastic local buckling stress (Fcrl = 163 
MPa).  The ratio of Fcrl to Fcrd is approximately 1.06. When P/Pcrd is 
approximately 1.3, the stress at the flange-web junction is approximately 420 
MPa for the inward deflection mode, while the stress at the flange-web junction 
for the outward deflection mode is approximately 400 MPa.  It is interesting to 
note that at this thickness, the stress at the flange-web junction for the inward 
deflection is now higher than the outward deflection. 
 

   
 

Figure 10 Longitudinal stress distributions (I-I) and (O-O) for section t = 1mm 

The lip displacements of the deflection modes are shown in Fig. 11 and 
although, as mentioned earlier, the flange-web junction of the outward 
deflection mode carries slightly more load than the junction of the inward 

a) Inward deflection b) Outward deflection 

P/Pcrd =1.30 

≈ 420 MPa 

P/Pcrd =1.30 

≈ 420 MPa 
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deflection mode, it can be seen that the inward deflection mode is softer than the 
outward deflection mode.  This confirms the results obtained by Yang and 
Hancock (2004) that the outward deflection modes are stiffer than the inward 
deflection modes.  With this increased stiffness, the outward mode fails at a 
higher load compared to the inward mode, as shown in the results in Fig. 2. 
 

   
 
 
 
When the distortional mode was “locked out” so as to observe the local buckling 
stress at the distortional length, the stress distribution for the post-local buckling 
range for the section is as shown in Fig. 12.  When the load applied was 
approximately 1.28 Pcrl, which is equivalent to approximately 1.36 Pcrd, the 
stress at the flange-web junction is approximately 261 MPa as shown in Fig. 12.  
This post-local buckling stress of 261 MPa can be compared to the stress at the 
flange-web junction at 1.3 Pcrd (420 MPa) for the inward deflection mode (Fig. 
10a).  This comparison shows that the effect of distortional buckling on post-
local buckling stress is to push the stress higher at the flange-web junctions.  
This shows the interaction of local and distortional buckling in the postbuckling 
range, which can be described by comparing Figs. 10a and 12.  In Fig. 12, as the 
load increases into the post-local buckling range, 0.99 Pcrl to 1.45 Pcrl, the 
stresses in the centre of the web decreases to approximately 70 MPa, while the 
stresses in the flanges increase to approximately 175 MPa.  This increased stress 
at the middle of the flange causes less stress to be redistributed to the junctions.  
In Fig. 10a, as the load increases into the post-distortional buckling range, 1.0 
Pcrd to 1.3 Pcrd, the stress in the web decreases in a similar fashion to the post-
local buckling behaviour.  However the stresses in the flanges decrease very 
slightly and are redistributed into the junctions, causing the flange-web junctions 
to be more highly stressed. 

Inward softer 
than outward 

Fcrl = 163 
MPa 

Figure 11 Plot of P/Pcrd vs lip deflection 
for section t = 1mm 

Figure 12 Longitudinal stress around 
section (forced local) 

P/Pcrl = 0.303 

0.673 

0.99 
1.28 

1.45 

≈ 261 MPa 
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The longitudinal stress distributions for the section with inward and outward 
deflection cases with yielding are shown in Figs. 13a and b respectively.  The 
purpose of analysing both with and without yielding at this thickness was to 
observe whether the lip failure significantly influenced the behaviour.  It can be 
observed for the inward deflection mode that up to 90 % of the failure load, 
which is approximately 1.3 Pcrd as seen in Fig. 5, there is not much difference 
between the elastic and inelastic behaviour around the section except maybe the 
stresses in the centre of the flanges as shown in Figs. 10a and 13a.  The 
maximum load still does not occur until the flange-web junction yielding occurs.  
Hence, although the lip yielding does cause some readjustment of the stresses, it 
is still the flange-web junction failure which governs the failure of the section 
and failure for the inward deflection mode occurs at a load of 1.445 Pcrl.  By 
comparison with the inward deflection mode, the outward mode fails at the 
yielding of the lips even though this is a higher load (1.54 Pcrd) due to the 
different stress distributions as seen in Fig. 13b. 
 

    
 
Figure 13 Longitudinal stress distributions (I-I) and (O-O) around section t = 1mm 

(yielding included) 

 
Effect of lip yielding on failure loads 
 
It was previously discussed that a section with thickness 1 mm, lip yielding may 
occur but not cause failure of the section and that it is the flange-web junction 
that is normally the critical factor.  A new section with increased yield stress 
applied to the lips was designed to further understand the effect of lip yielding 
on failure load. 

P/Pcrd = 
1.445 

P/Pcrd = 
1.54 

a) Inward deflection b) Outward deflection 
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Figure 14 Load deflection curve for section t =1mm (2 materials) 

 
Fig. 14 compares the load displacement plots for the inward and outward 
deflection modes for the sections with both one and two materials.  With two 
materials, the inward deflection mode failed at approximately 1.505 Pcrd and this 
presents a 4.15% increase in failure load of 1.445 Pcrd, as shown in Fig. 13a for 
the section with one material. This increase is considered to be not significant.  
For the outward deflection mode, it can be seen from Fig. 14 that the failure load 
is 1.61 Pcrd and this presents a 4.48 % increase from the failure load of 1.54 Pcrd 
as shown in Fig. 13b for the section with one material.  This increase is 
considered to be not significant.  Therefore it can be concluded that lip yielding 
does not play a large part in the section failure while failure occurs very soon 
after yielding at the flange-web junction.  This is confirmed by Yang (2004) 
with the 800 mm column failing in the outward deflection mode where local 
failure occurred in the lips at about 18 kN but the section continued to carry load 
to approximately 22 kN with very little apparent effect. 
 
Test results in relation to strength design curves with 0.5 and 0.6 
coefficients 
 
The test results in relation to the Kwon and Hancock and Winter strength curves 
have been discussed by Yap and Hancock (2006).  The paper noted that when 
the ratio of elastic local to distortional buckling stress is approximately 1.0, i.e.  
1 mm (5mm lip) thick section, interaction of local and distortional buckling 
would most likely occur and cause the test results to be lower than the Kwon 
and Hancock strength curve as seen in Fig. 3.  When a section has interaction of 

P/Pcrd (I-I) = 1.445 
(1 mat) 

P/Pcrd (I-I) = 1.505  
(2 mat) 

P/Pcrd (O-O) = 1.54 
(1 mat) 

P/Pcrd (O-O) = 1.61 
(2 mat) 
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buckling modes, the effect of this interaction causes the section to have a 
strength reduction of approximately 9.3 % to 10 %.  The current design strength 
equations are unable to account for the interaction of buckling modes. 
 
Conclusions 
 
This paper has described the finite element analysis and results of the 
postbuckling in the local and distortional modes of thin-walled section with edge 
stiffeners of varying thicknesses. A sensitivity analysis for the magnitude of 
geometric imperfections in the distortional mode of the columns was carried out 
and the results were compared to known strength curves to validate the 
methodology against tests.   
 
Longitudinal stress distributions have been discussed for sections failing purely 
in the distortional mode and with interaction of buckling modes.  The effect of 
the post-distortional buckling mode on the post-local buckling stress 
distributions was to push the stress higher in the flange-web junctions.  Failure 
tends to occur very soon after yielding of the flange-web junctions and lip 
yielding does not play a large part in the failure as had been predicted in earlier 
papers.  The Winter strength curve is validated by the local buckling analyses, 
while the distortional buckling analyses showed that the Kwon and Hancock 
strength curve validates the FEA results with pure distortional failure modes.  
The interaction of local and distortional buckling modes indicated that there 
would be a reduction in section strength when the local and distortional buckling 
stresses are approximately equal. 
 
The conclusions of this paper afford a much better understanding of failure in 
the post-distortional mode.  In particular, the reasons why channel sections have 
a post-distortional strength which is not as significant as post-local strength have 
been explained.  Further research is required to quantify the reductions due to 
the interaction of local and distortional buckling modes now that the mechanism 
is understood. 
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