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LOCAL BUCELING OF THIN WALLED
CHANNELS

by
K.R, Venkataramaish? and J, Roorda®t

It is well astablished [5, 10, 13 ] chat a geometrically
perfect stiffened plate or a thin-walled composite of perfect plates,
subjected to longitudinal compressive forces, remains unbuckled umeil
the critical losd is attained, at which stage it assumes a stable
deflected equilibrium configuration. This interchange between two
stable forms - one flat and snother deflected - is characteristic of
place structures and leads to what is appropriately called a stable
post-local-buckling strength. In practice, the presence of wmavoidable
imperfections will cause deflections to grow from first application
of the load; the rate of growth bacoming larger as the critical load
is approached [9] . The load-deflection curves for both geometrically
perfect and imperfect plate or plate composites are shown in Figure la,

For design purposes, and particularly for establishing the
load factors or the safety factors, the local buckling stress is
usaful because it indicates the loading value at which the deflectioans
are still moderate and the structural elements still have a reserve of
strength, Also near this stress significant deformations are initiated
which eventually lead to the failure of the member., These aspects
are important in engineering applications of thin walled sections,
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The problem of local buckling of thin-walled sections under
concantric compression has been studied by a number of investigators
in the past [2, 3, 6, 8, 11, 14, 17 and 26] . However, the cases of
eccentric compression has received relatively little attention., If
this paper, the elastic local instability characteristics of thin-
walled channel sections subjected to eccentric compression is considered,
the eccentricity being in the plane of symsetry. The loaded edges are
considered to be simply supported. The following unloaded edge conditiocns
of plates commouly used in engineering designs are thought to be relevant:
(1) Both unloaded edges are elastically restrained as in web-flange
Juncetions; (ii) Ove edge is elastically restrained as in (i), and the
other is simply supported; (111) One edge is elastically restrained
as in (1), and the other elastically bullt in, due to an edge stiffenar

for example.

Unloaded edge condition (i) ralates to thea wab component,
and conditions (ii) and (iii) are concerned with flange components
of the stiffened channel section (showa in Figure 2), For determining
the local buckling stresses the exact solution is used for web buckling
and the Galerkin method is utilized for flange buckling. The method
presentad here makes no attempt to calculate explicitly the edge
restraints imposed by adjacent plates on esch other., Buch an attempt
would be very difficult, The theoratical analysis of finding critical
stresses of channel sections was, however, done by determining the
stiffnesses of the web and flange elements at their common edge, and
by uaing the criterion of vanishing cosbined stiffness at this edge.
The solution is one of trial and error. The extensive computatious
involved necessitated the use of a computer. All such computations
were carried out on the IBM 360/75 computer at the University of Waterloo,
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Analysis of a thin-welled member such as a channal section
28 & wmit is very complex., Therefors, one of the important simplificacions
made from a thaoretical viewpoint is to consider a thin-walled msmber
as a composite of individual plate components. The load bearing or
behavioural properties of individual components are cbtained and using
these propartiss compatible conditions along the common adjoining
edges are sought, First, the work related to individual plates will be
discussed,

The fundamental differential (equilibrium) equation for the
deflection, w, of a plate subjected to forces in its middle plans
(Figure 1b) under ideal conditions, was first derived by St. Venant
[22) in 1883 as follows:

4 & 4 2 2
3w, , dw iw _ t Aw 2 .2' 2w
e s 0 + -—a" p @ ;‘ R Y -—!-”) (1)

wvhera ¢ __ = normal strass in x-directiom, o” = pormal stress in

y=direction, T __ = ghaar stress in a section perpandicular to the

plana cut plu::.‘l. to the x- or y-axis, t = plate thickness, and

D = E23/12 (1+2), the flexural rigidity of the plate in which K =
modulus of elasticity, and v= Poission's ratio of the plate material,
Equation (1) is based on small deflection theory. If the loading is
uni-axial (Figure 1c), them o” = 0 and Tay = 0, Equation (1) then
assumes the simplified form

& & & 2
3w, —'_i’ g2 . _E, ’—% (2)
3:‘ hz” ‘,6 D xx ax

pirfucation of the equilibrium position is indicated by the lowast
characteristic valus of the parsmeter o __ in Bquation (2), called
the eritical stress or the local buckling stress, o - In 1890 Bryan
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[5)] presented the analysis for the rectangular plate, simply supported
on all its four edges and subjected to uniform compression on two edges
(Pigure 1lc), For this case, 9 . can be derived from Equation (2) as
v

er © X awvh e’ s
where b/t = thimness ratio of the plate, and k = local buckling
constant which depends upon the aspect ratio of the plate and the
manner in which it is supported, chiefly along the longitudinal edges
parallel to the compressive forces. For long narrow plates (that is,
with an aspect ratio Z 4) k can be assumed to be aqual to a constant
value of 4 when the unloaded edges are simply supported. When these
edges are fixed, k reaches a value of 6.97 [3] ., 1In the case of plate
components, such as the web in Figure 2, the value of k lies between
4 and 6.97 due to the presence of mutual restraint at the longitudinal

Junctions of the plate components,

A fundamental approach to tha problem of instability of
croass-sections composed of a number of plate elements is due to
Lundquist [20], 1In this reference the local instability of a plain
channel has been studied, A stiffness criterion was developed to
determine the lowest critical stress and the corresponding mode of
buckling. When two or more plate elements join along an edge which is
parallel to the longitudinal axis of a plate composite, that value of
longitudinal stress at which the algebraic eum of stiffness of the
individual plate elements vanishes is the critical stress for ths plate
composite, The stiffnesses referred to above are defined as the moments
per unit length along the longitudinal axis required to produce a trans-

verse rotatiom of a quarter of a radian at the comson edge, In order
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to use this method, the local buckling constants, k, must be knowa
as functions of the edge restraint, €, and the half wave length of
buckle, A, for all loaded plates in the system, Lundquist and

Stowall have published charte for the critical st of cutstanding
flanges [19] and for long plates with equal and opposite restraints

on unloaded edges [18]. Tables for stiffnesses and carry-over factors
for rectangular plates under compression are given by Kroll [16].

Ven der Mass [26] has presented critical stress charts for local
iostability of columns with "hat" sections,

The solution to the problem of a single plate under compression
and bending in its plane has been obtained by Schuette and McCulloch
[23] who have alsoc published charts for such cases. Johnson and Noel
[15] have published charte for plates subjected to bending in their
own plane, for four positions of the axis of zero stress, Johnson and
Noel suggest that their results should be used in combination with
tables published by Kroll [16] in order to arrive at buckling loads
for sections under eccentrically applied loading.

Walker [27] has studied plates and channel sections subjected
to eccentric compression by means of an approximate solution using the
Galerkin method, Accordiang to Walker - "lastability occurs im the
section as a whole; that is, the individual plates each becoma
unstable simultanecusly at the particular load considered and for the
relevant mutusl boundary conditions, Thus, by using approximate
geometrical procedure the flange plates can be matched to a given web
plate so cthat the load at vhich the assembly of plates becomes unstable

as a unit is obtained”.
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In enginearing designs of thin-wmlled sectioms, it is mot
uncommonu for the resultant load to be either offset from the cemtreid
or combined with an applied moment so that non-umiform stresses are
set wp across the widths of some or all individual plate componeats.
Rhodes and Harvey [21) utilized the principle of minimum poteatial
enargy to obtain the local buckling stresses of plain channels under
combined compression and bending, in wvhich the edges of outstanding
flanges were free., The scalysis hes been extended to lipped and
trapesoidal sectiocns with an assumption that the lip~flamge jumcticns
sstisfy the simply supported condition, The buckled half wave leagth
that gives the lowest possible buckling stress was svaluated by
inspection of the eigem values cbtained for a numbar of valuss of the
half wave lemgth,

Pigure 21a shows a thin-walled mesber subjected to an sccestric
load, P, in the plane of symmetry, It is assumed that the load scts om
the eads of the mssber through rigid plates which preveat warping of the
end plane, The eccentric force om the sectiom can be replaced by the
equivalent stress system om the individual plate components as showm im
Figure 2b, In Figuwre 2c are shown the free body diagrams of the flange
and the web plates. Although oaly the straight-lip edge stiffensr is
shown ia Figure 2, stiffeners of other shapes can be considered in a

similar way.

With reference to Figure 2, the longitudinal axis of the
colusn is taken as the X-axis, and the transverse direction im the
plane of the web or flangs, as applicable, is taken as the Y-axis,
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The Z-axis defines the out-of-plane deformations of the plate alements,
Since the deformations within the thicknass of the plate are not
considerad, the relevant functions are all independent of Z-coordinates.

The edge moments at the root of the outstanding flange, and
at the unloaded edges of the web are assumed to vary sinusoidally along
the length of the channel, The buckled surface of the plate compounents
is sssumed to be defined by the following aquation:

w = @sin F £(y) )
where A= L/m, in which i= length of the plate and m = an integer.
The above assumptiom implies that consideration of the plate in any
one half wave (Figure 2c) woyld apply equally to any other half wave
along the length of the member. It has been observed in tests that
Equation (4) represents ressomably well the deformed surface of a
long plate in the regions remote from the end restraints,

By choosing the stress on the web plate for reference, the
stress distribution on the flange plate can be described as

O ™ LA/ - ¥ ()
vhere .= reference strase on the web plate, ¥ = load eccentricity
paramster, y = co-ordinate in Y-direction, and b! = width of flange.
The magnitude of °o that causes local buckling of the section is now
wought ,

In setting up the appropriate boundary conditfons which would
allow an exact solution of equation (2) for the web, or an approximate
solution for the flange because of the variastion in loading comdition,
the following assumptions have been made:
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(1) The longitudinal edge at tha root of the flange remains
straight throughout the process of loading, not undergoing
any deflection either in Y or Z directionm [ 20].

(i1) The flange and web plates are assumed to buckle with the
same wavelength, 2, with buckles remaining in phase
throughout .

(i11) The restraining moment applied by the web plate on the
flange at the common edge, or vice varsa, iz assumed to
vary sinusoidally aloang the length, that is in X-direction.

(iv) At every station along the length of tha plate the moment
'M' along the edge and the rotation "0' in the YE plane
bear a constant linear relstionship to each other end tha
ratio M/0 is independent of the X-co-ordinate [3 and 24).

The analyses of the web and the flange plate components are now

presented separately.

With reference to the web plate shown in Pigure 2¢,0 -

Equation (2), as appuod to the web plate, can be written as:
2w , 2% ky
=, o _t"" "1 += _'z" = (&)

b' ax

where b = web width, and k_ --9--‘-'-— (k, 1s the web buckling
I
constant). Substitution of equation (4) in equation (6) yields the

following differential equation for F(y):

4
2 4
_f!l 2¢” a%¢ .p(!.r-'_ii) f(y) = 0 (¢)]
dy A 5'1
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The general solution of this ordinary differentisl equatiom is of the
form

@
fi(y) = ¢ eonh-i;!-i-e! M?+cs¢oa 5!4-.-_.‘.1..‘;.. ®)

i w - w -

where ¢;, oy, ©3, and ¢, are constants that depend upon boundary
conditions along the edges y = X b /2, and

.-'T‘! -—'4-;.

> &

(9b)

Equation (4), with £(y) given by equacticn (8), should satisfy the
following twe unloaded edge boundary conditions:

(w) = 0 1Na
y=1 b, /2 0

az 32
=D (;! + v —%)

ax y=1% b'lz
where M, is the ssplitude of sinusolidally distributed moment, M.

hr 9
= M=MN siniE (10b)

According to the sign convention used (see Figures 2 and 3), the
moment is positive 4f it produces out=-of-plane deflection in the
direction of the moment, Thus the moments at the two edges have tha

same sign although they act in opposite dirvections.

The magnitude of "M" itself is not determined From the
differential equation and the conditions at the boundary. This,
however, is inconsequential since the sciffness M/é is constant,

vhare § is the rotation along the edge y = b'[z for exsmple, expressad
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in redisns. In the sequel, stiffness is defined as the moment per

unit length along the longitudinal axis raquired to produce a transverse
rotation of one radian st the edge at which all plate slements join.

The stiffness of the web may then be written as

5, @, 52 an

v,
('l), - b'12 - (3—,»- b'lz (12)
By means of the boundary conditions given by equatioms (10a) and (10b),

where

the arbitrary constants in equation (8) may be computed, and the
daflection surface for tha web plate thus determined, From the
deflection surface, the rotatiom § cam be found from equatiom (12).
Bubstitution of the expression for @ in equation (11) results in the

following expression for the -uﬂg-u of the web plate:
s - 2 (B+ Y

b
(—'5') [% tanh 5;* + -!— tan -5:1 an

Considering the flange plate shown in Figure 2c, the following
equilibrium aquation, which is a cosbination of equations (2) and (5)
may be darived:

4 4 a -f:! 2
3w . 23 3w X ¥, 2
—2""—5!—"'—;" a-a - l—!' (148)
ax'  ax‘ay’ oy bs ¥ by oy
where 2
ﬂﬂ |yl -
K = —‘4— (k; is the flange buckling constant).

Equation (14) is transformed into non-dimensional form with

E=3. n--b’;.o-f;-'-.nndu-fs
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whers £ is the length of the plate in the X-direction. Equation (14)
then takes the form

& & L 2
1 2% 2% 23 2 ¥ ¥u
—— + + ¢ L | [(1L =3 =] (15)
T 26%m2 ;f g z s

The solution of (15) may be assumsd as

w = £(£) s() (16)
It is impossible to get an exact solution of (15). Therefore,
an approximate solution is sttempted by using the Galerkin [12] method,
The functions £(g) and g(n) should be such that they satisfy tha boundary
conditions and also lend themselves to the use of the Galerkin method,
The boundary conditions of the loaded edges, which are considerad to
be simply supported, are (in dimensionless form):

[":-o.l. =0 (17a)
and

2 2

2w 23w

[— + v —5) =0 (17p)
382 hz E=0,1

The function £(f) may be taken as

'(‘) = gin mwg, (m = 1.2”. sen) (u)
Substitution of equations (16) and (18) into (15) results ia
2 &
& 2.2 2 & 4 k.mw
4RV _Zmy dgM) L BE gm) - = [ - Dol (19)
dn ‘2 ‘,‘2 ® .l 2

The sigen values k. of aquation (19) subject to the relevant unloaded
edge boundary conditions, are now sought, The function g(n) is taken
ia the polynomial form
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.("l) -y q"“(")i nw0,1,2,3, sy (20)
g, = e, A.n""’ +B .n""'z + cnn""‘ +pa"
0= 0,1,2,3, e (21)

Ans By, Cp and D, have to be determined on the basis of the unloaded

edge boundary conditions. The stiffensd flange plate is analyzed for

two different conditions at the flange-stiffener junctions - (1) the

simply supported condition and (i1) the elastically built {n condition,

Considering Figure 2c¢ and assuming simply supported edgs

conditions at the flange~stiffener junction, the boundary conditions

at y = & bg/2 ( n= % 1/2) way be written as

o, o2 ™®

L) Y7 Bl
2 2
) 3 By L
(—5“ +-.-§- _—f“-)n ew 1fE™ rt(!n)n 1/2
and
2 2
3w . v dw -
oot e Qe WO R T Sl

(22a)
(22v)

(23a)

(23b)

Sgbe
where Fg = ==p is called the elastic rotational restraint cosfficient

and is the non-dimensional form of stiffness per unit length in X-

direction act the root of the flange,

Application of thase boundary conditions te the daflection
surface proscribed by equations (16), (18) and (20) leads to



2 -4 8 -16 A‘
2 4 8 16 B,
2(o+3) [(ne2) + ;‘] =4(o42) (1) + ;t] s+)[n + -;1] ~16a [(a-1)+ : <,
2(@+3) (o42) 4(n+2) (a+1) 8(a+l)n 16a(a-1) D,

1

-1
T | e[ 5] o

=(n#4) (o+3)

Constants A , 'n' c- and Da can ba determined from equation (24) in ite

matrix form for assigned values of n and Tpe

The flaonge is here considered as elastically built in, because
the bending moments that appesr during buckling along the edge are
proportional at esach point to the angle of rotation of the edge, The
angle of rotation of the stiffener is equal to 3w/dy, and the rate of
change of this angle is a’-}m,. Hence the twisting moment at any
cross~section of the stiffener is GJ( !zwlhay) where GJ is its torsiocaal
rigidicy. The warping rigidity of the stiffener is neglected here
[11, 24]. The rate of change with respect to x of the twisting moment
is numerically equal to the bending moment, M, per unit length along
the flange edge y = + b./2, Because of the equilibrium of the moments
at the stiffener-flange junction, the moment on the stiffener will have
a oign opposite in sense to the one acting on the edge of the flange,
Hence the corresponding boundary condition along the flange-stiffener

junction is
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2 2 3
3w "w 3w

DE=+ v =) = =¢J . it (25)
ay"' azz ax" 3y

Edge stiffeners, particularly narrow ones, can be regarded
as columns buckling under the combined action of an and compressive
stress and lateral shear loading transmitted from the flange plate to
the stiffener (see Figure 3b), During buckling the plate tries to
deflect, but is resisted by the stiffener acting like an elastic beam,
and therefore, banding of tha stiffener follows. Referring to Figure 3b,
equilibrium of the junction between the flange and the stiffener existas
if the following conditions are satisfied: (i) the lateral bending of
the flange is equal to the bending of the stiffener in the Z-~direction,
and (ii) the shear loading transmitted from flange is resisted by the
stiffener acting like an elastic besm, Equilibrium of moments is
already considered, To counsider the bending of the stiffeomer, it
can be assumed that the uniform compressive force on the stiffener is
equal to A_0_, where A is the cross-sectional area of the stiffener
and o  the uniform stress acting om it. Denoting the flexural rigidicy
of the stiffener by EI_, where I is the moment of inertia about the
neucral axis of the stiffenar, the differential equation of its deflection

curve is " 3 2
3
3 3 ? A w
EI = D[=E 4+ (2-v) =] - Ao o | (26)
® ax Oy:’ axzay 55 ax

Consequently, the following boundary conditions, in non-dimensional
form, for the flange plate component shown in Figure 3 may be
formulated:
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(e, _ 42" 0 (270)
(-::—g--t ‘—.'-532'5')“_ -12" r,(-:—::-)". -1/2 (27b)
‘f‘*z' " ff':%’n- +1/2" ‘ﬁ ;:';:n"n- +1/2 (27¢)
=X u'(:—:-; o=+ 1/2 = Dl :—:"5+ (2-v)er ai‘;"_;“l -
AS, ..3(-:%)“. +1/2 (27d)

The boundary conditions in equations (27a) end (27b) are dependent

upon the assumed mode of buckling, the value of M and the magnitude

of the half wave length of buckle, A, The boundary conditions in (27c¢)

and (27d) are determined by equilibrium considerations and arc Independent

of the assumed mode., It is not possible to assign known values of M, the

moment at any station, and A, since the geometry of the deformed surface

cannot be explicictly stated.

Therefore, the solutioan i{s arrived at

through a trial and error procedure by which the lowest crictical

longitudinal force and the corresponding buckling mode are found.

The following matrix equation can be derived by applyling the

boundary conditions given in

equations (27a) to (27d) to the deflection

surface assumed through cquations (16), (18) and (20):
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2 -4
2(n+3) [(242) + 7v,/2) ~&(ok2) [ (otl) + r'n]
B(n+3) (n+2) - 2V + &4 (nd#3)U 16(o#2) (1) - 4V + 8 (2)U

2y + & (ne3)By = 16 (we3) (M) (MDY, Wy 4 8 (me2)Ry - 32 (wh2) (o41) (T

8 ~16 Ay
8(o+l) [z, /2] -16n((a-1) + r, /2] By
32(o#1)(n) - 8V + 16 (o+1)U 16n(n-1) = 16V + 32(a)U C

8y + 16 (o+1) R - 64 (H-l)a(u-l)tlu IGV' + 32l|l. = 128(n) (a-1) (n-2)U |In,

1
(o) [ (243) + 1,/2]

= =[4(a+h) (243) = V + 2 (o+d)U) |
“[Vy + 2(at)Rg = B(nH) (0+3) (2421 )

(28)

54 2.2
where R= -"'—.-z-. R, = (2-v)Db, "—.%-.

2.2 & 4 2.2
oy By _ 2,y
hledow: b U2 Mgy wbed 5 e
* * N
2.2
"'% =3 and U, =b,
¢

The constants A , B , C, and D, can be found from equation (28) for
assigned values of n, rg loading propertics, and the edge stiffener
geometry. By assigning zero dimensions for the edge stiffener in
equation (28) the resulting matrix equation coincides with the one

derived for the plain channel by Walker [27].
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The solution to equation (19) may be formulated using Galerkin's
method as

4

1/2
I (5-1?’- 2 —L-—mlq- '—lml' k,—[(x - D-mlgtn)) /0D

-1/2 o an? q,

-0 (29)
Equations (20) and (21) are used to dafinme g(n), in which the constants

A., l., l:III and ll. have to ba found by uaing the boundary conditions given

in the form of matrix equatiom (24) or (28). The solution is obtained

by expanding equation (29). Use of equations (20) and (21) yields

Galerkin equations of the form

172 g*s (m A
3 [ Y 25L ‘.'._fn__ _r_,n(,,)
n=0,1,2,...,L 1/2 o

(30)

2 4
[
B '}'ﬂ-\mlu,(n)lsj(nun =0
j - 1.2.3.!00.L0
L indicates the limit of the mmber of terms included in the Galerkin
series., Then the following square matrix of the coefficients q, mey be

constructed as:

(00 - ko) Oty = ko)  woue Oty = Rig)] [a,]
0y - kel Oy ~RMyy) oo e Y

. s l=0 o
| M0 = *e*o) e 04, 7 "t"u-’_ %)

A typical alement of the above matrix ia given in the Appendix,
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The values of ht have practical meaning only for the non-
trivial values of q,, This means that values of k, for which the
decerminant of the matrix in equation (31) is smero have to be found,

The only value of relevance in this investigation is the lowast real

one, Of the many methods available for the determination of k e the
method of solving simultaneous equations by Gaussian elimination with
pivotal condensation was used in this investigation. This necessitated
the employment of a "trial and error" type procedure., The large number
of computations involved were practicasble only with the usc of a computer.

For the channel section showm in Figure 2, both the loading
and sectional geometry have the same plane of symmetry. This eymmatry
can be utilized in the local instability anaslysis. The web plate may
ba treated as the reference plate and the plane of symmatry can ba used
as a boundary for the half section where necessary. The theoratical
analysis of the channal section is done by means of the expresssion for
stiffness (13) of the web plate compoment at the web-flange junctiom
and by using the criterion of vanishing stiffuess (i.e., 3'4- Bg = 0)

at this junctionm,

Consider the common edge where a flange and & web plate meet,
At this edge there is a certain magnitude of bending moment transmitted
from the web to the flange and vice versa at overy station along the
length of the junction, If the flange is considered alone without the
web, it is possible to introduce a restraining sinusoidal moment along
the common edge as an external moment. Similarly for the web, the
moments transmitted by the two flanges can be replaced by sinusoidally
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varying bending moments of the seme sign acting along the opposite sdges
of the web plate, A treatment of the plate composite in this manner

makes it possible to consider an external moment acting on the web-flange
Junceion, If an external moment is assumed to act on this junction, the
rotation of the junction would depend upon the algebraic sum of stiffnesases
supplied by the web and flange elements against flexure., These stiffnesses
decrease with the longitudinal stress at varying rates depending upon tha
individual and the relative web and flange geometries and the nature of
the edge restraints, The weakar of the two elements reaches a zero
stiffoess at some longitudinal streas and begina to develop negative
atiffoness, That is, the weaker element then requires restraint from an
adjoining stronger element in order to sustain further stress without
itself succumbing to premature local buckling, This negative stiffness
tends to supplant the positive stiffness of the other elements meeting at
an edge until the sum of all stiffnesses becoma zero. When this happens,
large joint rotations occur, This is the condition which defines the

eritical stress on tha sectiocn,

For a particular axial stress defined by the buckling constant,
k, and a particular mode of buckling specified by a specific half wave
length, the web=-flange junction stiffness can be numerically computed,
By keeping the half wave length constant and tryiag several values of
longitudinal stress the one satisfying the "vanishing stiffness criterion™
can be found, Then, varying the length of half wave of buckle, the
corresponding values of stress meating the same criteriom are computed.
Considering all these values of stress and the corresponding modes, it
is possible to determine the minimum value of stress (i.e., critical
stress) and the corresponding moda of buckling. This procedure not
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only yields the critical stress, but also defines the mode of buckling
(i.e., half vave length, 1).

The following relationships are true at the web-flange junction
when it reaches the vanishing stiffness condition:

'!4'%-0 (32)
By definition
B, £ IE”
LT A= :b;".' D * (33)

where r, is related to the web with the same definitiocn as for Tou

Therefore
r{ . %‘a O‘)
also
= '—k‘— as)
k. 0" b')z
CREUTATIONAL PROCEDURES

The computations can be based on choosing values for either

"k, or "k,", since the eritical valus of each of these quantities yields
the same valus for cricical stress on the basis of the vanishing stiffness
criterion, The computations in the present investigation were based on
"'k!". Cartain values of "k" were assumed as bounds in the computation,
For example, 'ﬁ"‘ wvas assumed never to exceed 7, which is the value for

a uniformly loaded plate with fixed unloaded edges, The Poisson's ratio
for elastic calculations was taken as 0.3, The shear modulus was assumed

to be 11,300 kei (77911M¢/u2).

The procedure followed in the computer programme to determioe
the critical stress on the basis of the vanishing stiffness criterion
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outlined here in the point form.

A half wave length of buckle "A" is assumed.

A value for the buckling counstant "'tt", corresponding to a triasl
value of longitudinal stress, is selected and hence "k is
determined (Eq. 35).

"8." is computed (Eq. 13) and hence "rg" (Eq. 34).

Ay, B, C, and D, are determined (Eq. 24 or Eq. 28).

The determinant of the matrix in Eq, (31) is calculated,

If this determinant is not zero, a different value of 't"‘ is
assumed and steps 2 through 6 are repeated until the determinant
vanishes,

Tha entire procedure, steps 1 through 6, is repesated for other
values of half wave length ")A"™ until a sufficiently accurate
slobal minimum value of "k." is obtained.

The critical load or stress is that which corresponds to the
minimm "k " determined in 7 above, and the value of "A" for
vhich "k, is & minimm is the critical half wave length and
hance the mode of buckling for tha particular section geomatry.

The solution obtained by the use of Galerkin saries seems to

be rapidly convergent. The solutions for the flange buckling constant,
k‘, and the corresponding mode of buckling indicated by the half wave

length of the buckle for increasing numbers of terms, are given in

Table 1, The table includes values for:

(a) channel sections with different shapes of edge
stiffeners;

(b) four different cases of concentric or sccemntric
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loadings varying from uniformly compressed to pure
bending, and
{c) the flange-stiffener junction treated as simply
supported (Eq. 24) and elastically built in conditions
(Eq. 28).
It is evident from Table 1 that three terms in the Galerkin series
resule in a solution with a degree of convergence sufficient for
engineering purposes, 1In the final computations, therefore, only
three terms were included,

The channel geometries shown in Fig, 4a were analyszed to
determine the elastic critical stress under concentric loading. The
overall nominal cross-sectional dimensions of the channals in Series B,
MCM, TILL, T2LL, TILL, T4LL and MCMC were 8 by & inches (203 by 102 =m).
For series CSLL these dimensions ware 6 by 2 1/4 inches (152 by 57 mm).
Series G20CS, G20TS, G22CS, G22TS and G24CS had overall cross-sectional
dimensions of 8 by 3 inches (203 by 76 mm). The relevant dimemsions
of the edge stiffenars in the latter five series were in accordance
with the provisions of Refs. [1] and [7] (Note: the edge stiffener
provisions of the revised 1974 CSA Standard are very close to those
contained in the 1963 CSA Standard). Series D, B and H were nominally
4 x 1 13/16 inches (102 by 46 sm). The straight lip stiffener is
Series H was designed according to the recommondations contained in

[ll and l’]l

A listing of the above channels is contained in Table 2.
The corresponding flange thinness ratios are alse listed and are based
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on exact measurements taken from actual test specimens. A ranga of
b!ft from 56.3 to 155 is represented by these channels, Computations
vers done on the basis of the flange-stiffener junction separately
satisfying (i) the simple support conditiom, and (ii) the elastically
built in condition.

The cross~-sectional shapes analyzed under eccentric loading
are shown in Fig., 4b and include Beries G8SL, GlO08L, G128L, Gl4SL,
Gl6LL, GISLL, G20LL, G22LL, G24LL, G26LL, G28LL and G30LL, The
provisions of Refs, [1] and [7] formed the basis for the dimensions
of the edge stiffener in these series, The flange thinness ratios in
these sections ranged from 17.6 to 211.2, The overall nominal croms-

sectional dimensions of these series wers 8 by 3 inches (203 by 76 wm).

A listing of these channels is contained in Table 3 along
with the corresponding flange thinness ratios which are, as before,
based on exact measurements taken [rom real test specimens, Critical
stress calculations for both the simply supported and the elastically

built in flange-stiffener junction condition were made here also.

The reference stress o, due to eccentric load P - the eccentricity

being in the plane of symmetry = can be described as

P P
a W —— . a — j (3
08I I‘.(b"l'h!j OLL t(b""li‘ + bul,h'f’

(36)

wvhere st = reforenco stress on web of a straight-1ipped channel, and

R reforence scress on web of an L-lipped channcl, For the purposc
of BEq. (26) or (27d) and to evaluate (28), the axial compressive [orce

on the adge stiffeners can be shown to ba
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Pors = Agre Tpg (17 (37)

b

(oyy (1=1) + b, Ay 4 Jut o

Pras = Aus %o —t =
ﬂiu + b“)

where Pg, g = axial compressive force on the straight-lipped stiffener,
’Ll.l = axisl compressive force on the L-lipped stiffenar, ‘!l.l = grea
of straight-lippad stiffaner, A;;g = srea of L-lipped stiffener, be =
width of unstiffened lip (Figure 4b), and b_ = width of stiffesed lip
(Pigure 4b).

Figure 5 shows the dependence of the local buckling constants,
k; and k , upon the overall gecmetry, represented by the Elal;lo to web
width ratio, for concentric and for various eccentricities of loading.
In the relevant computations E is taken as 30,000 ksi (206842 .’lz)-
Here the Elange-stiffener junction is considered to satisfy simpla support
conditions as described im Equations (22), (23) and (24)., In the course
of the computations, the stiffnesses of the web and the flange plates
werae obtained separately. From these results it was possible to identify
which of the two plate components (web or flange) of the channel was the

Eirst to develop a negative stiffncss.

A scrics of flange width to web widcth ratios, 5£’5', ranging
from 0.4 to 1,46 was chosen for this study., At cach specific loading
condition, the web width was kept constant and the flange width was
varied, It is ovident from Fig. 5 that a change in the eccentricity of

loading has an insignificant effect on the critical stress of channale
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vhose by/b. ratios vary from about 0.4 to 0,7, It can also be concluded
that an eccentricity towards the web (i.e. v > D) causes both web and
flange alements to become stiffer than in the uniformly compressed

case (Y= 0),

In Figure 5, the bg/b, Tatio beyond which the flange instead
of the web becomes the critical element, has been marked with an open

circle on each of the kf-nnﬂ'u and with a black dot on each of the

ky-curves. At these bg/b, transition ratios, both elements resch the
sero stiffoess condition simultaneously. It is of interest to note

that both the curves for k, snd k, obtained for the conditiom of
concentric compression, Y = 0, show a valua of 4 for the I:rﬂ,' ratio

of 1, This value is identical to che buckling constgnt of a component
of a tuba with a square cross-section in which case the unloaded edges
of each plate component are simply supported. Thus the theory is fairly
confirmed,

Column (3) in Tables 2 and 3 give the computed ratios of the
flange buckling constants (kf) baged on (i) the alascically built=-in
condition (numerator), and (ii) the simple support condition (denominator).
Calculations were done on actual test Specimens. Hance the variations
in the results For a specific series are mostly due to, and reflect the
usual variation present im, the actual stiffener dimensions that are
likely to occur through standard Fabricating mothods., It {s notable
from thesc rosults that the large majority of specimens with stiffencrs
designed mccording to Refs, [1] and |7] do not quite meet the simply
supported condition at their flange-stiffener junctions. Although the

numerical difference between the ratios obtained (< 1.000) and the
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desired ratio (=1.000) is in most cases very small, one may expect a
pronounced difference in the corresponding behaviours and ultimate

load carrying capacity. 1f the ratio is less than 1,000 the edge
stiffener does not provide enough rigidity to prevent laterally inoward
or outward deflection of the flange-stiffenmer jJjunction in an Buler mode.
Such Euler type behaviour will in turn force the flanges to follow a
similar mode of buckling, A well defined pattern of local buckling in
the web will hence not occur, particularly in the advanced stages of
deformation, Therefors, one may expect a significently lower ultimate
failure load. Tests on the measured specimens (to ba reported elsewhere)

confirm this,

It is appropriate to note here that the computed half wave
lengths of the initial buckling psttern at the critical stress, takan
as a fraction of the web width, varied between 0.78 and 0.82. The
eritical stress, however, is relatively insensitive to small changes
in half~wave lengths,

In Figure 6 the computed web buckling constants, h', for
channels shown in Figure 4b and reported in Table 3, are plotted againat
the corresponding web thinness ratios, b'h. These k' values were
calculated on the basis of equation (28), which accounts for the actual
boundary conditions at the flange-stiffener junctiona of the channels,
The figure demonstrates that the valus of local buckling constant for
a uniformly compressed plate component having elastic restraints at its
unloaded edges - the restraint being of intermediats range between
fixed and simply supported edge conditions - is significantly greater
than 4, Winter (28] assumed & value of & for such plate components to
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derive the effective width formulae contained in Ref, [1]. 1t appears
that this assumption is pubstantially oo the conservative side. A
straight line fit to the results given in Figure 6 indicates that a

value of 5.6 for k, provides good agreement with this theoretical data.

In an approximate stability analysis of thin-walled sections,
the torsional stiffoness, GJ, of the edge stiffeners is usually ignored.
Using the present analysis it is possible to study the effect of torsicnal
ptiffness on the buckling coanstant of the stiffened element. In Figures
7 and 8 the computed minimum k, values are plotted in relation to the
aize of edge stiffeners as represented by their thinness ratios, Both
straight and L-11ip stiffeners are considered, In the case of channels
with straight lips, the curves at higher values of thinness ratio are
shown as dashed lines (Figure 7). Lip sizes in this range could be
susceptible to local instability - an aspect not included in the present
analysis., BStructurally efficient stiffeners should not in themselves
be prone to lecal buckling, Large stiffeners may take tha L-1lip form
shown in Figure 8, which allows an increasse in size beyond that of the
maximum straight-1ip siza without becoming subject to local instambility.
Figures 7 and 8 suggest that the influence of the toreional stiffnase
of straight-lip and L-1lip stiffeners may be neglected in the stability
snalysis of stiffened channels,

The local buckling stresses of tha channel sections presented
i{n Figures 7 and 8 are given in Figures 9 and 10, respectively. These
results, and specifically Figure 10, demonstrate that beyond a particular
size of edge stiffener, the local buckling stress of the section as a

whole does not increase proportionately. This result is useful from
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the design point of view., Using the approsch presented in these figures,
it is possible to arrive at an optimum size of stiffemer for a given.
plate, Thus, a design formula for optimum edge stiffeners suited to
various stiffened plate sizes may be developed. This optimm stiffener
implicitly meets the requirements necessary to provide simple support

conditicas at the plate-stiffener junction.

{a) A generalized method of theoretical analysis for the
problem of local buckling of thin-walled channel sections under eccentric
compression i{s presented., Specific results are cbtained for two common
Elange=-stiffener conditions for which 1ittle design information is
available, Plain channels or channels with other flange-stiffener
Junctions could also be analyzed in a similar way if appropriate
boundary conditions are substituted.

The criterion for instability used herein states that the
tocal buckling (cricical) stress is attained when the sum of the
transverse stiffonesses of the web and the flange plate components at
their common edge vanishes.

(b) For channels with simple support conditions at their
outstanding flange edges, a family of design curves is developed for
concentric and various eccentric loading arrangements.

(c) The analysis of sections with edge stiffeners designed
on the basis of Canadian and American design code specifications seems
to indicate that the resulting edge stiffemers do not quite meet the

requiremente on size necessary to provide the implied simple support
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condition at flange-stiffener junctions.

(d) The theacretical half wave length of buckles computed
as a fraction of web width is gensrally around 0,8 for channels whose
web widths are greater than their Flange widths, TIndividual cases
differ from this value by less then # 3%,

(e) Tha local buckling constant of a uniformly compressed
plate component having elastic restraints ot its unloaded edges, such
28 the web plate of a channel, was found to be 5.6, This value is
substantially grester than the value of & assumed for the derivation
of the effective width formulae contained in American design specifications,

(f) The influence of the torsional stiffuness of straight-lip
and L-1ip edge stiffeners om the local buckling stress way be neglected
in the instability analysis of sciffened sections.

(g) The analysis of stiffened sections suggests that there
exists a stiffener size beyond which there is no mesningful increase
in the critical stress, By suitable development of this result, a
design formula for optimum stiffeners sulted to various stiffened plate
sizes may be derived,
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APPENDIX - NOTATION

The following symbols are used in this chapter:

‘n"a .c..n‘
Ag

o T

_ﬂ
?

prﬂ‘r“ra'ut..u-.nﬂealﬂ

coefficients in deflection serias

cross~sectional ares of stiffener

cross-sectional area of straight-lipped stiffener

croas-sectional area of L-lipped stiffener

width of plate

thinness ratio of plate

width of flange plate component
width of web plate component
width of stiffened 1lip

width of (unstiffened) lip
arbitrary constants

flexural rigidicty of a plate
modulus of elasticity

shear modulus

torsional rigidity

moment of inertia

moment of inartis of stiffener
integer

St, Venant torsion constant
integer

local buckling conatant (coefficiant)
flange buckling coastant

wab buckling constat

integor

length
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M moment along the edge of plate
M, amplitude of the sinusoidally distributed momentc M
m,n integers
axial load
'81.8 axial compressive force on the straight-lipped stiffenar
Pm axial compressive force on the L-lipped stiffener

qo.l]l... L. Galerkin coefficients

re nondimensional elastic rotational restraint of flange
LS nondimensional elastic rotational restraiot of web
Sg stiffness of flange

Sy stiffness of web

3 thickness of plate

v out-of-plane deflection of plate

x,Y,2 co~ordinates in X,¥ ,Z-axis direction

a,p parameter in elastic analysis

¥ load eccentricity parameter

[ elastic edge restraint

£ nondimensional form of Cartesian co-ordinates

* aspect ratio of plate

8 rotation

A half wave length of buckle

v Poisson's ratio of the plate material

L. local buckling (critical) stress

L reference stress

L uniform stress acting on the stiffener

7481 reference stress of a straight-lipped channel
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reference stress of an L-lipped channel
direct stress in X or Y-direction

shear stress, and

nondimensiocnal form of out-of-plane displacemant
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APPENDIX - A TYPICAL GALERKIN ELEMENT
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CONVERGENCE OF GALERKIN SERIES

TABLE 1

Shape | Width | Wideh Elastic |loading | No. of | Flange | Hal¢ [ Flange-
of of web | of flange | Modulus | Condition | Galerkin| Buckling| wave | JELTIS0€T
Channel | b b E ¥ terms Constant | length | 7 759"
W £ Condition
an) | @n) (kst) ke of
Buckle
A (in.)
1) 2) 3) (4) (5) (6) ) (8) (9)
E 1 0.7965 7.067
7.96 | 3.02 34,000 0 2 0.7896 6.568
’ Elastically
3 0.7896 6.568 [ , 4t F ee
1 0.7348 6.965 | Ba- (28)
8.11 | 3.00 30,500 1 2 0.7344 6.949
3 0.7344 6.949
1 1.129 3.156
0.5 2 1.128 3,155
3 1.128 3.156
E 400 | 1ass | 27,73 o B
1 1.161 3,146 &!P‘”L
2.0 2 1.139 3.136 | "+ (24)
3 1,139 3.136

86€

HONFFFANOO ALTVIOALS HLEANOL
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TABLE 2

FLANGE BUCKLING CONSTANTS FOR
CONCENTRICALLY LOADED STIFFENED CHANNELS

Channel Flaoge k, (based on Eq (28) )
Series Wo. Thinnasa kg sed on Eq. (24) 1)
Ratio
bese
1) (2) )

 § 56.3 0.999
OR 56.3 1.006%
D,E 56.6 1.011*
B 148.1 1,009%
MCM 148.1 1.009%
MCMCL 149.6 1.000
MCMC2,3 149.3 0.999
T1LL 155.0 1.006w
T2LL 155.0 1.004%
T3LL 149.1 1.004w
T4LL 149.1 1.003%
CSLL 83.6 0.996
G20cs1 80.3 0.993
G20cs82,3 80.3 0.996
G20TS1 79.8 1.003%
G20TS2 79.5 1.004%
G22Ccs81 90.4 0.996
G22C82 90.7 0.972
G22C83 90.1 0.995
G22T381 89.8 1.003%
G22182 90.4 1.060%
G24C81 118.9 0.993
G24C82 118.1 0.997
G24C83 118. 0.996

% correspond to channels in which thc sizes of edge
stiffencrs wore slightly larger than the ones

recommended in Refs.

i

and [7]
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TABLE 3

FLAKRGE BUCKLING CONSTANTS FOR
ECCENTRICALLY LOADED STIFFENED CHANNELS

Channel Flange k, (based on Eq. (28) )
"“" ¥o. ::::"' ElLﬁuld on Eq. (28) )
b(!:

) (2) (3)
c3sL 17.6 0.998
G108L 22.4 0.999
G128L1,2 27.6 0.998
G12813 27.5 0.997
G145L1,2 39.2 0.997
G14513 39.2 0.995
CGl6LL1,2 47.7 0.999
C16LL3 47.7 1.000
CG16LL4 48.2 0,999
G18LL1 59.0 0.999
Gl8LL2 59.8 1.000
C18LL3 59.4 1.000
G20LL1 75.1 0.99%
G20LL2 75.1 0.993
C20LL3 75.1 0.996
G20LL4 74.9 0.995
G22LL 91.1 0.996
G24LL1 111.2 0.997
G24L12,3 111.5 0.998
G26LL1 148.8 0.995
G26LL2 148.3 0.995
626113 149.3 0.996
G28LL1 174.4 0.996
28112 173.8 0.995
G28LL3 173.8 0.996
G30LLL 211.2 0.991
G30LL2 209.8 1.014
G30LL3 209.8 0.994
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FIG. 2 - LOADING DIAGRAMS OF CHANNEL SECTION
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Local Buckling Stress, o, (ksi)
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