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INELASTIC BUCKLING OF THIN-WALLED MEMBERS 

by S. ~ajasekaran 1 and D.W. Murra/ 

INTRODUCTION 

The use of light gage steel.and slender mermers of open cross 

section, in cold-formed construction, makes it desirable to have a 

knowledge of critical member loading and post-buckling behavior in 

order to devise safe and economical design procedures. Except for 

very slender members, some inelastic behavior usually occurs prior to 

the attaimrent of maximum load carrying capacity. There is, therefore, 

a need to study the problem of the determination of critical loading 

for inelastic members. 

Inelastic lateral and lateral torsional buckling have been 

investigated by Galambos (6,7) and others (10). Since a comprehensive 

closed form solution is not available, and is unlikely to be forthcoming, 

a flexible general purpose numerical approach would be of value. The 

object of this paper is to present a finite-element formulation to 

determine critical (bifurcation)loading conditions on a mermer of thin­

walled open cross-section, including the effects of inelastic material 

response, for any arbitrary statically determinate loading. The 

analysis includes the effect of residual stress but neglects the effect 

of prebuckling displacements on the equilibrium equations. 

BASIC ASSUMPTIONS 

The assumptions used in this formulation are consistent with 

those used in classical inelastic buckling analysis of columns (4,15). 

It is assumed that a reasonable estimate of the maximum load carrying 

capacity may be obtained by employing Shanley's tangent modulus 

concepts (14). The basic assumption is that no strain reversal occurs, 

and therefore the effective incremental stiffness at any section may 

be determined. from the instantaneous tangent modulus values at all parts 

of the cross-section. Since the stress in the member is essentially 

uniaxial, the effective strain for the determination of tangent moduli 

is considered to be the longitudinal strain. The incremental section 

properties may then be computed by a transformed area concept. 

In addition, the following assumptions have been made: 

(1) Merrbers are initially straight and prismatic. 

(2) The projection of the cross-section on a plane normal to the 

centroidal axis does not distort. 

(3) Displacements of a point may be obtained by superi""osing warping 

displacements on plane section displacements, each of which are 

consistent with simple beam theory (12, 15, 16). 

(4) The residual stress distribution satisfies statics. 

(5) Variation of longitudinal stress across the plate thickness may 

be neglected. 

(6) The effect of prebuckling displacements on the equilibrium equations 

may be neglected. 

(7) Boundary conditions are such that the structure remains statically 

determinate. 

(8) The stress-strain curve is tri-linear (Fig. 1). 
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It should be noted that it is by virtue of assumptions (1) 

and (6) that the more realistic, but numerically more difficult, beam­

column problem is converted to a bifurcation problem. 

GOVERNING EQUATIONS 

An incremental equilibrium equation, derived from the principle 

of virtual work and thus valid for any constitutive relation, may be 

expressed in variational form as (13). 

+ t ) "iJ o(uk,iuk,J+uk,iuk,J)dv = 
v 

(1) 

where ti =increments in surface tractions, u, =increments in the 

displacement vector, "ij = the increment of the stress tensor, uk = the 

displacement vector prior to the increment, aij = the stress tensor 

prior to the increment, and V and S are the volume and surface of the 

mermer, respectively. 

By assuming the initial displacements, '\• are negligible 

(see assumption (6)); neglecting the displacement products in the second 

integral; expressing the displacements in terms of those at arbitrary 

reference axes (see Fig. 2) according to the standard beam assumptions 

(see assumption (3)); and integrating over the area; the incremental 

equilibrium Eq. 1 may be expressed in terms of stress resultants, incre­

ments in stress resultants and variations in displacements, as (13). 

where ( •) indicates different! at ion with respect to z; displacements 

and co-ordinates are illustrated in Fig. 2; P, Vx• Vy' Mx• MY = 

(2) 

the usual stress resultants (Fig. 2); MP and Tsv are stress resultants 

defined in Appendix II- Notation; and qx• qy• q2 , mx• my• mt = distri­

buted loads and couples per unit of length, respectively. 

Integrating by parts leads to the Euler- Lagrange equilibrium 

equations of a beam-column 

~ + q • 0 uz z (3-1) 



(3-b) 

(3-c) 

(3-d) 

which are identical with Vlassov's (16) equations if the section remains 

elastic. 

lhe finite element formulation seeks to establish numer1ca1 

approximations for the displacements which satisfy the equilibrium Eqs. 3, 

by substituting assumed forms of displacements into the equivalent virtual 

work expression, Eq. 2. The total virtual work may be evaluated by summing 
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the integrals over each element, and the ref~rence axes in each element 

may be different providing the displacelll!nt variations are compatible at 

the junction of any two elements. 

Equation 2 may therefore be written as 

+ Pe u' 0¢' + Pe ¢' Ou' - Pe v' 6$' - Pe tt>'Ov' 
D f; D f; I; n f; n 

- M4u~ W + Mnv~ W - Mr;$' cSu~ + Mn$' cSv~ 

+ Mpc$' cS$' + Tsv c54>' - (t.ql; cSul; + t.qn c5vn + t.qc c5wc 

+ tome 64> + 11m~; c5v~ + t.mn c5ukl] de} • 0 (4) 

where M • the number of elements; C and S = the centroid and shear center 

of the transformed partially yielded section; I; and n = the transformed 

section principal axes; and stress resultant increments, displacements 

and co-ordinate relationships are shown in Figs. 3 and 4. 

The stress resultant increments appearing in Eq. 4 may be 

written in the following uncoupled form: 

toP 
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FIG. 4 Displacement Transformation 

(5-a) 

( 5-b) 

(5-c) 

(5-d) 

where AT, I T T T 
f; • I D • and !we are properties of the trans formed section, 

for which expressions are derived in Appendix IV- Section Properties. 

The total stress resultants appearing in Eq. 4 need not be 

expressed in terms of displacements and may be evaluated by direct 

integration of the stresses as detailed in Appendix v _ Stress Resultants. 

FINITE ELEMENT IDEALIZATION 

The finite element model used in this analysts employs cubic 

displacement functions to re t 
44 presen u~, vn' and ~. and a quadratic dis-



placement function to represent w~. It is interesting to note that the 

linear displacement function for w, used by other investigators (see, 

for example, Barsoum and Gallagher(l,2)) is inadequate to achieve a balance 

of axial forces for nonuniform inelastic response. 

The displacements in Eq. 4 are therefore approximated, in a 

finite element segment, by 

u = 
E. < f3 > (.!!_] 

v~ < f 3 > (y} 

~ = < f3 > (j_} 

w, = < f2 > (~} 

where 

and 

< f3 > = < (1- 382 + 283). (8- 282 + 83), (382 - 2e3), 

(83 - 82) > 

< f 2 > = < (28- 1)(8- 1), -4s(8- 1). 8(28- l) > 

The nondi mens i onal co-ordinate, 8, and the nodal vectors (J!.}, {]!}, 

{.'!), and {~} are defined in Fig. 5. 

(6-a) 

(6-b) 

(6-c) 

(6-d) 

(7-a) 

(7-b) 

Assuming that the section properties of Eq. 5 vary linearly 

along the length of the element; that the stress resultants prior to the 

load increment also vary linearly; and using Eqs. 5, 6, and 7 to evaluate 

the contribution of one element to Eq. 4, yields an algebraic set of 

element equilibrium equations, which may be written symbollically as 

(8) 

where the element matrices are derived in Appendix VI -Element Matrices; 

and [1\rE J and {tREJ = the vector of element nodal displacement increments 

and element nodal load increments, respectively, associated with trans-

fanned section axes. 

Expressing the transformed section nodal displacement increments 

in terms of nodal displacement increments associated with the original 

reference axes, f.\rEJ' by the transformation 

(9) 

; premul tip lying by I TJ T, the associ a ted force transformation; and assenbl i ng 

by the direct stiffness method, yields the set of equations 

(10) 

where {Ml and {llR} • the assenbled vectors of nodal displacement incre­

ments and force increments, respectively; and [Ks} and [K6J are referred 

to as the 'tangent stiffness' and 'geometric stiffness', respectively. 

The basis for the transformation matrix [TJ is developed in Appendix VI -

Element Matrices. 

SOLUTION PROCEDURE 

A bifurcation loading condition has been attained if it is 

possible to determine nontrivial solutions to Eq. 10, for {t.R} = 0. 
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FIG. 5 Element Nodal Parameters 

The condition required to satisfy this requirement is that the determinant 

of the coefficient matrix be equal to zero, i.e.: 

(11) 

If (Ksl were independent of load and [KG] were linearly dependent on load, 

the critical loading could be obtained from a standard eigenvalue analysis. 

However, for an arbitrary cross section, subjected to arbitrary loads, 

the n1atrix (Ksl is highly sensitive to the loading condition after inelastic 

response has been i ni ti a ted. 

The critical loading may now be determined in a number of ways. 

Fukumoto (5,6) has evaluated the determinant and extrapolated or inter-

polated this value to determine the loading for which Eq. 11 is satisfied. 

Harris and Pifko (9) have used an iterative approach on the load and found 

the load level for which the eigenvalue was one. The approach which the 

authors have used is to iterate for an eigenvalue to determine cri ti ca 1 

length rather than critical load. The procedure is described below. 

For any arbitrary statically determinate loading, equilibrium 

is established, including the effects of inelastic material response but 

neglecting the effect of displacements on the equilibrium equations, 

by an iterative procedure detailed in Appendix III. Knowing the strains 

throughout the menter, the tangent stiffness matrix [Ksl can be established 

as outlined in the previous section and detailed in Appendices IV and VI. 

The prebuckling stress resultants can also be established by simple inte­

gration as detailed in Appendix V. This pennits the evaluation of [K6] 



as detailed in Appendix VI. 

An examination of the element and transformation matrices in 

Appendix VI shows that Eq. 10 may be written as 

(12) 

where Kl' K2 , and K3 contain terms dependent on the inverse oft, t 2 , 

and t 3 , respectively. Noting that [KG] is proportional to the inverse 

oft; defining the critical element length, tc, as\= At, and factoring 

>.; the condition for the existence of nontrivial solutions of Eq. 12 with 

{6R I = 0 may be writ ten as 

(13) 

This equation may be abbreviated as 

(14) 

Assuming a value for >.i, an eigenvalu~ solution will yield ,\i+l" 

Equation 14 may be iterated until ,\i+l = ).i' at which time the critical 

length has been determined. For practical purposes the first iterate is 

usually sufficient. 

It should be noted that the above procedure is only valid if 

the stress resultants remain constant at each node as the member length 

is scaled. A simultaneous scaling of the transverse loading is therefore 

required to satisfy this condition. Since stress resultants are not 

proportional to loading for statically indeterminate inelastic structures, 

the method is applicable only to statically determinate structures. 

NUMERICAL SOLUTIONS 

Fig. 6 shows a comparison of critical a/ay versus L/r ratios, 

obtained from this analysis, with previously published results for a double 

angle section subjected to axial compression. For the section chosen the 
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elastic analysis yields essentially the same results for lateral torsional 

and weak axis buckling, and hence only one has been plotted. Nut tal's 

solution (11) was obtained by imposing a uniform axial strain, evaluating 

transformed section properties numerically and solving the normal stability 

equations for the critical length. The influence of residual stress and 

the significance of inelastic response is apparent. 

Fig. 7 shows a comparison of the nondimensionalized critical 

moment versus L/r ratio for an 8WF 31 subjected to a constant moment. 

A solution of this problem was obtained by Galambos (8). The importance 

of residual stress is again demonstrated and the comparison is reasonably 

good. 

Fig. 8 compares the critical uniform moment required to produce 

inelastic lateral torsional buckling of an 8 WF 31, subjected to constant 

axial load, to that obtained by Galambos (7). The comparison is again 

considered reasonable. 

Fig. 9 compares the criti ca 1 end moment required to produce 

lateral torsional buckling of an 8 WF 31, subjected to a constant axial 

load to that obtained by Fukumoto (5,6). In contrast to the preceding 

solutions, Fukumoto's solution includes the effect of in-plane prebuckling 

displacements in arriving at an equilibrium configuration. The critical 

load is then determined as that for which the determinant vanishes. The 

effect of prebuckl ing displacements is apparently small. 

Fig. 10 shows the results obtained when a 14 WF 43 section is 

subjected to biaxial bending produced by a doubly eccentric axial load. 

Results are presented with and without residual stress. The finite 

element solution of the inelastic beam-column problem was also obtained 

for three l/r ratios. The effect of prebuckling displacements and 

residual stress is apparent. The location of point A is consistent with 

the results of Birnstiel (3). 
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SUMMARY AND CONCLUSIONS 

A general purpose finite element program has been developed to 

determine the inelastic buckling strength of thin-walled prismatric 

members, with arbitrarily shaped open cross-sections, for any statically 

determinate loading condition, with a trilinear stress-strain response 

curve, and including the effects of residual stress. The analysis is 

capable of predicting lateral, torsional and lateral-torsional buckling 

modes, and yields reasonable results for a large class of problems. 

The critical loads determined from the analysis represent 

upper bounds on load carrying capacities because the effects of pre-

buckling displacements have been neglected. When prebuckling displace­

ments have a significant effect on load capacity it is necessary to solve 

the more complex nonlinear load-displacement problem, rather than the 

bifurcation problem. Such a situation is illustrated in Fig. 10. Work 

is presently underway on this class of problem. 
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APPEND! X I I - NOTATION 

area; point on section (Fig. 12) 

transformed area 

plate segment length (Fig. 12) 

centroid; transformed area centroid 

shear center co-ordinates 
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static moments about the x andy axes, respectively 

plate thickness 

surface traction i ncrerrent 

St. Venant torque 

shear center displace!1'ents 

volume 

vx' vy, VI;, v 
n shear stress resultants 

we z displace!1'ent of C 

Ww, WWI; bimoments 

X, y, Z centroi da 1 axes 

xo, Yo distances defined in Fig. 4 

xi r' Y ir region co-ordinates (Fig. 12) 

a rotation of axes (Fig. 4) 

• nondimensional co-ordinate (Fig. 5) 

= strain 

'y• 'p = strains defined in Fig. 1 

= e1 genva 1 ue 

~ • angle of twist 

(Jij' (Jij = stress tensor and f ncrement 

cry, crs • stresses defined in Fig.! 

w • sectorial co-ordinate 
w . • normalized warping with pole S 
w • normalized warping with pole s 

APPENDIX Ill -

ALGORITHM FOR DETERMINING INELASTIC CRITICAL LENGTHS 

STEP 1. DETERMINE STATIC STRESS RESULTANTS 

(a) Subdivide the member into elements of equal length. 

(b) Compute the elastic section properti A 1 1 es , x• y' Ixy• 



with C and S located at the centroid and shear centre 

of the section, (Fig. 2). 

(15-a) 

(15-b) 

(c) Solve for displacements, with [KG] = 0 and (Ksl determined 

from elastic properties. 
A A A -" 

(d) Compute stress resultants P, Mx, MY and Ww at each node 

for this small deflection solution. 

NOTE: The stress resultants determined in this way are those which 

equilibrate the external forces. 

STEP 2. DETERMINE STRAINS(JTERATJVELY)WHICH PRODUCE STATIC STRESS 

RESULTANTS 

(a) Compute strains from the initial approximate displacements, 

as 

c = w~ - y v~' - x u~' + ii' +'' + tR 

(b) Calculate stress resultants, P, Mx, My and Ww• (see 

Appendix V) for the given strain distribution. 

(c) Compute the unbalance in stress resultants, as 

M = M - M y y y 

w = w - w 
w w w 

(d) Compute equivalent unbalanced stress resultants, P*, M/, 

My • and Ww • about C and S, where 

P* = p 

w * = w w w 

(e) Estimate strain increments, from the equation 

P* M/ Mv * Ww * -
6c 1 = A+~ Y + +- x + 1 w 

lx IY w 

and a new approximate strain, as 

(16) 

( 17-a) 

(17-b) 

(17-c) 

(17-d) 

(18-a) 

(18-b) 

(18-c) 

(18-d) 

(19) 

(20) 

(f) Iterate on steps (2-b) to (2-e) until the unbalanced stress 

resultants are negligible. 

NOTE: A set of strains have now been determined which will provide $treu 

resultants to equi 1 ibrate the external forces, assuming the pre­

buckling displacements have negligible effect on the equilibrium 

equations. 

STEP 3. COMPUTATION OF TANGENT AND GEOMETRIC STIFFNESS MATRICES 

(a) The tangent stiffness matrix, [Ks]' of Eq. 10 may now be 

evaluated as outlined in the paper and detailed in 

Appendices IV and VI. 

(b) The geometric stiffness matrix, [KG]' of Eq. 10 may now be 
49 

evaluated as outlined in the paper and detailed in 

Append! ces V and VI. 

STEP 4. SOLUTION FOR CRITICAL LENGTH 

(a) Eq. 14 is solved for )., to determine the critical length 

tc = At, as described in the solution procedure. 

APPENDIX IV - SECTION PROPERTIES 

The determination of stress resultant increments by Eqs. 

requires the eva 1 uati on of the tangent modulus properties AT I T I T • i; ~ • 

and Iw~T This may be accomplished as follows. 

Consider any straight segment of plate for which the residual 

strain is assumed to vary linearly. By superposition, and the beam 

assumptions, the total strain will also vary linearly. Using the tri­

linear stress-strain curve of Fig. l, a linear variation of strain 

divides the plate segment into, at most, five regions, as shown in 

Fig. 11. 

Let A and a designate the ends of the plate. When <A and "a 

are of the same sign, each may be in any one of the three strain ranges, 

£ > Es 

e::5 > e > cy 

Ey > E > 0 

(21-a) 

(21-b) 

(21-c) 

Hence there are nine possible combinations of regions, for the segment A-8, 

when <A and <a have the same sign. Similarly, there will be nine possible 

combinations when "A and <a are of opposite sign. When the strains 'A 

and <a are known the normal stress and the tangent modulus is completely 

determined in each region of the plate segment, assuming no strain reversal. 

To evaluate the tangent modulus section properties, one can modify 

the plate thickness in each region, by the modular ratio (see Fig. ll) 

and treat the transformed section as though it possessed a constant modulus. 

The determination of the instantaneous centroid, c. the principal axes 

E; and n. and the properties AT, li;T and InTis then straight forward. 

In order to locate the instantaneous shear center, S, relative 

to C, let Fig. 12 represent an arbitrary transformed section and let 

CA be the i ni ti a 1 radius from the origin of the trans formed section co­

ordinates X and Y. Sec tori a 1 area co-ordinates may be computed at the 

end points of each region by the relation 

(22) 

The sectorial static moment Sw' and the sectorial linear static moments 

Swx and SwY are defined (12) as 

(23-a) 

Swx • i wYdA (23-b) 

S-.11 = i wXdA (23-c) 

The co-ordinates of the shear center are then 

(24-a) 



(24-b) 

FIG. 11 Transformed Section of a Plate Segment 

X 
___ ___..X 

(Xj I Yj) 

FIG. 12 Arbitrary Transfonned Section 

The sectoria'l area co-ordinates are now recomputed with Sas the pole and 

SA as the initial radiu~. 

The normalized warping co-ordinates, may then be computed 

from the relation 

(25) 

and the section property lw~ is detennined according to the definition ( 12) 

Iw,.. f -j dA (26) 

This is evaluated by the sui1J11ation (see Fig. 12) 

(27) 

where r o the region of the plate segment and n the number of plate 

segments. 

Assuming G is proportional toE, St. Venant's torsional constant, 

J, may be computed by modifying the length of the region, rather than the 

width. 

APPENDIX V - STRESS RESULTANTS 

In carrying out Step 2 of the procedure to establish the strain 

distribution, it is necessary to evaluate P, Mx, MY, and Ww with respect 

to C and S. For any given strain distribution, the plate segments are 

divided into regions as described in Appendix - IV and the stress resultants 

may be computed as 

n 5 
} br tk p = f cr dA• r E (cri r + 0 jr) 

A z k•l r=l 
(28) 

n 5 b t 
Mx f a y dA • l: r ~("ir (yjr + 2yir) 

A z k•l r=l 

+ "Jr (yir + 2yjr)l (29) 

n 5 b t 
My = f " x dA • l: r ¥[air (xjr + 2xir) 

A z k=l r=l 
+ ojr (x1 r + 2xjr)J (30) 

(31) 

where r =plate region; n =number of plate segments; k =plate segment 

index; tk • plate segment thickness; br =plate region length; and~= 

the norma 1 i zed warping co-ordinate with respect to S. 

To evaluate the geometric stiffness (KG] in Eq. 14 it is 

necessary to evaluate the stress resultants P, Ml;, M11 , Vi;' V11 , and Mp.; 

which occur in Eq. 4. The stress resultant P is determined by Eq. 28. 

The stress resultants Ml; and M11 are determined from the transformation 

(32-a) · 

( 32-b) 

The quantity MP~ may be evaluated as 

n 5 br tk 2 2 2 2 
r E --,-,2 (a 1.r(4X 1. r + 2XJ. + 4Y. + 2Y. 
k=l r=l oc 1 r Jr 

+ "J·r ( 4X.2 + 2X. 2 + 4Y. 2 + 2Y 1.
2r- br2)] Jr 1r Jr 

(33) 

In addition 

( 34-a) 

(34-b) 

where p and q are the node numbers of the element. 

APPENDIX VI - ELEMENT MATRICES 

Element matrices arise in Eq. 8, after substitution of Eqs. 5, 

6, and 7 into Eq. 4 and integrating over the length of the element. The 

tangent stiffness, (Ks], arises from the terms 

f (t.P 6w - t.Mc 6v" -liM 6u" + IIW o~")di 
1 c , n n 1; we (35) 

and the geometric stiffness, (KG], arises from the remaining terms with 

the exclusion of the loading terms. 

After integration, expression 35 may be written symbolically 

as 

50. 
(36) 



where 

and 

- T T T T <6rE> = < {.!!_} , !~! , !tl , {~! > , (38) 

the component nodal vectors being defined in Fig. 5. 

The remaining terms eva 1 uate as 

(39) 

where 

(kG]= 
: 9~u g~v g~$ 

(40) 

0 

L_ 

T T T 
Assuming A, II; , In , P, M( Mn' MPt' ei; and en all vary linearly in 

the form 

AT = A T + (A T - A T) B 
p q p (41) 

where p and q are adjacent nodal numbers and B is the nondimensionalized 

co-ordinate of Fig. 5, the integrated matrices may all be written in terms 

of coefficient matrices of the form 

nj 1 . (s) ( t) 
1 k 1 = r sJ 1 f J <f > ds (42) 

s t 0 

where n =the degree of the interpolation vector (see Eqs. 6); sand t 

indicate the order of differentiation; and j is the exponent of B. The 

numerical values of these matrices for specific values of s, t, n. and 

j are given in Table l. 

The matrices in Eqs. 37 and 40 then become 

13 IT 
30 

+ (IT - I T ) 
31 

r [kuul [k I [k I (43-a) nP 22 nq n P 22 

i 3 T 30 
+ (IT - T 31 

r [kvvl II; P !k22 I I( p) [k I (43-b) 
~q 22 

13 T 30 
+(IT _IT ) 

31 
r [k$$1 I WI;P [k I [k I (43-c) 

22 wcq w CP 22 

= AT 
20 21 t 

[kwwl I k I + (AT - A T) [ k I (43-d) r p 11 q p 11 

30 31 
L[guul = 1[gvvl • Pp[k11 J + (Pq- Pp) [k I (43-~) 

11 
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32 
- (P - P )(e - e )[k ] 

q p l;q f;p 11 

30 31 
.i.[g,,J = GJ* [k I + G(J* - J *)[k I 

~~ p 11 q p 11 

M 
where J* = J + ~~; ; 

J = the St. Venant torsion constant; and G = the shear modulus. 

(43-g) 

(43-h) 

(44) 

Prior to assembly, the element nodal displacement increments, 

!IrE! , must be expressed in terms of displacement increments of the 

original reference points C and S. From the geometry of Fig. 4 we may 

write 

"t = "s cos "+ •s sin " + {(bx - ex) sin " - (by - eyl cos a) $ 

(45-a) 

(45-b) 

(45-c) 

Evaluating displacements and displacement gradients at the nodes estab­

lishes the transformation matrix [T] of Eq. 9. 

TABLE 1 - COEFFICIENT MATRICES 

36 3 -36 3 12 6 -12 

3 4 - 3 -1 30 6 4 - 6 
k • 

.6 

2 30 
30[k 1 = 

11 -36 - 3 36 -3 22 -12 - 6 12 - 6 

~1 
30[k } • 

11 

30 
30[k I • 

10 

20 
J[k 1 • 

11 

3 

18 

3 

-18 

0 

-15 

3 

15 

- 3 

7 

- 8 

1 

- 1 

3 

1 

- 3 

- 1/2 

- 3 

0 

3 

- l/2 

- 8 

16 

- 8 

- 3 

-18 

- 3 

18 

0 

-15 

- 3 

15 

3 

1 

- 8 

7 

4 

0 

-1/2 

0 

3 

3 

l/2 

-3 

0 

31 
k • 

22 

32 
210[k l • 

11 

21 
6[k 1 • 

11 

6 2 - 6 4 

6 2 - 6 4 

2 1 - 2 1 

- 6 - 2 6 - 4 

4 1 - 4 3 

72 15 -72 - 6 

15 4 -15 - 3 

-72 -15 72 6 

- 6 - 3 6 18 

3 - 4 1 

- 4 16 -12 

1 -12 11 
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