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DESIGN CRITERIA FOR STEEL TRANSMISSION POLES 

by 

* Edwin H. Gaylord, F. ASCE 

INTRODUCTION 

The use of steel poles for high-voltage electrical transmission 

lines has increased rapidly during the last ten years. The primary reason 

is an esthetic one, since steel-pole lines cost more than those supported 

by lattice towers. The large number of users, designers, and manufacturers 

involved in meeting the increased demand for these structures has created a 

need for a guide to their design, manufacture, and erection. To this end, a 

task committee was appointed in 1968 under the ASCE Structural Vivision's 

Administrative Committee on Analysis and Design. The Committee submitted its 

120-page report at the ASCE National Structural Engineering Meeting in San 

Francisco in April 1973. 1 

Steel transmission poles are usually unguyed cantilevers, although 

dead-end or intermediate anchor poles may be guyed. Two-pole bents are used 

in some cases. The principal loads arise during erection and, in the com

pleted line, from wind and/or ice. Minimum requirements are specified by 

the National Electric Safety Code. It is industry practice to use load

factor design. The load factors are called overload factors and the pole is 

designed on a yield-stress basis for various overload combinations. 

The principal load on a guyed pole as it occurs in transmission 

lines is axial compression. The self-supported or unguyed pole is subjected 

* Professor of Civil Engineering, Emeritus, University of Illinois at 
Urbana-Champaign 
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790 SECOND SEPCIALTY CONFERENCE 

primarily to bending. Both circular and polygonal cross sections are used 

and because of its height the pole is usually tapered. Efficient resistance 

to bending requires a pole with a large diameter and relatively thin walls, 

so that local buckling is an important consideration. High-strength steels 

are usually found to be economical, and steels with a yield stress of 65 ksi 

are used extensively. 

PRIMARY BUCKLING 

Since the steel transmission pole is usually tapered its primary 

buckling load cannot be determined by formulas such as those of the AISC2 

and AISI 3 specifications, which apply to prismatic members. The critical 

load for such cases can be determined by numerical methods. 4 •5 Gere6 has 

developed formulas for tapered members. His solution is given in the form: 

2 * 'IT EI p 0 

L2 
(1) 

where critical load 

E modulus of elasticity 

10 = moment of inertia of cross section at small end 

L length of member 

* P coefficient which depends on shape of cross section, 

taper, and boundary conditions 

* Plots of P are given in Ref. 6. However, Eq. 1 holds only for elastic 

buckling and it is probably unsafe to use it for cases where the predicted 

buckling stress is close to the yield stress. This is because a lower 
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proportional limit can be expected due to residual stresses and other imper

fections, as is the case for prismatic members. An allowance for this effect 

can be made by using an equivalent radius of gyration in column buckling 

formulas for prismatic members. The equivalent slenderness ratio (KL/r)eq 

is found by equating the critical stress according to Eq. 1 to the Euler 

critical stress (Eq. 3b): 

from which 

IKL \ 
\""rleq 

where A 
0 

K 

ro 

- 2 
1T E 

2 
(KL/r)eq 

1 L 
/r' ro 

cross-sectional area at small end 

effective length coefficient 

radius of gyration at small end 

(2) 

The ASCE report suggests that this equivalent radius of gyration be used in 

the following formulas, which are also to be used for prismatic members, 

F [1 - l (KL/rr] y 2 cc 
O<KL<C 

r c (3a) 

iE 
= 

(KL/r) 2 
C < KL 
c r (3b) 

where critical stress 

= yield stress 
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Cc = rr/2E/Fy 

Equation 3a is the Column Research Council formula for inelastic buckling. 

This procedure will give conservative results for tapered columns in the 

inelastic range of buckling because all cross sections do not become in

elastic simultaneously. Instead, the small end where the axial stress is 

largest is the first to become inelastic. If the member does not buckle at 

this load adjoining sections become successively inelastic as the load in

creases, until a buckling load is reached. This may occur when only a 

portion of the length of the column is inelastic, but Eq. 3a is based on the 

assumption that the entire length is inelastic and that the corresponding 

tangent modulus determines the buckling load. It is to be noted that the 

critical stress determined by Eqs. 2 and 3 is to be multiplied by the cross

sectional area at the small end to obtain the buckling load. 

The critical load for inelastic buckling of tapered members can 

also be determined by numerical analysis. However, there is a complication 

that does not exist for prismatic members, namely, the variation in tangent 

modulus mentioned above. Therefore, the solution must begin with an esti

mate of the buckling load in order to determine the stress and corresponding 

tangent modulus at each node. Equations 2 and 3 can be used to obtain a first 

approximation to the buckling load. 

BENDING 

Since the transmission pole and its arms are usually closed sections 

analysis for bending can usually be made without regard to support against 

buckling out of the principal plane of bending. This is because the superior 
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torsional stiffness of the closed section makes it highly resistant to 

lateral-torsional buckling. However, bent-type structures are sometimes 

made with standard rolled shapes, for which the possibility of lateral

torsional buckling must be considered. The simplest way to handle this 

problem is to use an equivalent radius of gyration in a column formula. The 

critical moment M r for doubly symmetrical beams bent about the strong (x) x,c 
axis and acted upon by end moments and/or transverse loads acting through 

the shear center is given by7 

M 

where 

2 
x,cr 

G 

ly 

J 

cw 

L 

K 

1 rr EI GJ + ___ rr ___ EI EC ( 2 4 ) r;; ~ y (KL)4 y w 

modulus of elasticity in shear 

moment of inertia about weak (y) axis 

torsion constant 

warping constant 

distance between points of lateral support 

effective-length coefficient which depends on 

y-axis rotation restraint at points of lateral 

support. K = 1 if supports are rotationally 

free, 0.5 if they are completely restrained, 

etc., as for columns 

em coefficient which depends on variation in 

moment along the member 

(4) 

The critical bending stress is fer= Mx,cr/Sx, where Sx = x-axis section 

modulus. Equating this critical stress to the Euler stress (Eq. 3b) and 

793 
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solving for r gives the following equation for req' the equivalent radius 

of gyration7 

2 
req 

II ,.....------;;f -f /cw + 0. 04J ( KL) 2 
m x 

(5) 

The coefficient em may be taken equal to unity except that for members 

acted upon by end moments M1 and M2, and with no intermediate loads, the 

less restrictive value given by 

Ml 
0.6 + 0.4 ~ > 0.4 

2 
(6) 

may be used, where M1 ~ M2 and M1;M2 is positive if the member is bent in 

single curvature. Values of em for other loadings are given in Refs. 7 and 

8. 

The critical stress for lateral-torsional buckling is found by 

substituting KL/req into the appropriate column fonmula (Eqs. 3). 

To illustrate the favorable lateral-torsional buckling resistance 

of closed sections, assume a box beam 6 in. wide by 30 in. deep by 20 ft 

long, which is an extremely slender member, its depth-width ratio being 5 

and its length-width ratio 40. The equivalent slenderness ratio (L/req) is 

24 and the critical stress according to Eq. 3a is only eight percent below 

the yield stress. 

MEMBERS IN BENDING AND AXIAL COMPRESSION 

Members of transmission-pole structures are usually subject to 
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both bending and axial compression, that is, they are beam-columns. In the 

case of prismatic members bent about the strong axis of the cross section 

and supported against lateral-torsional buckling, good predictions of beam

column strength are given by the following equations: 

{7a) 

< {7b) 

where P/A 

fb M/Sx 

Fa allowable axial compression in the plane of 

bending, according to Eqs. 3 

FE = Euler stress in the plane of bending 

Formulas of this type are used in both the AISC and the AISI specifications. 

Equation 7a applies at points of support in the plane of bending {usually the 

ends of the member) while Eq. 7b checks for maximum stress at points between 

supports. If there is no support against lateral-torsional buckling Eq. 7b 

is replaced by 

{7c) 

F in this equation must be based on weak-axis buckling since the member 
a 

is free to bend laterally, and Fb must be based on Eqs. 3 using the equiva-

lent radius of gyration according to Eq. 5. em does not appear in this 

equation because it is in Eq. 5. 
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The strength of tapered beam-columns should be determined by a 

numerical analysis in which the secondary moment Py, where P is the axial 

load and y the deflection, is added to the beam moment due to the transverse 

loads and/or end moments in computing the bending stress fb. The value of Y 

should include the effect of P. In most cases this effect can be determined 

with sufficient accuracy by multiplying the deflections due to the beam 

moments by the amplification factor of Eq. 7b, i.e., by l/(1- f/FE) = 

1/(l-P/PE). However, if P/PE is large, a second cycle of computations of 

y should be made, based on the sums of the moments Py/(1 - P/PE) and the 

beam moments. Several cycles of computation may be needed to achieve the 

desired accuracy in some cases. The criterion for acceptance is f = 

P/A + M/Sx 2 FY. Equation 7b is not used since the amplification factor in 

the second term of that equation has already been applied. Enough points 

must be checked to make sure that the maximum stress has been found unless 

the location of the section of maximum stress is self-evident. This pro

cedure must be used with caution if the member is one which may fail by 

lateral-torsional buckling, since such a member may become unstable at 

loads less than those which produce yield stress at the most highly stressed 

cross section. Therefore, the numerical analysis for such cases must be 

designed to detect lateral-torsional instability. 

LOCAL BUCKLING OF CIRCULAR CYLINDERS 

The local buckling strengths of axially compressed circular tubes 

has been reviewed in a paper by Schilling9 for tubes of moderate length which 

buckle at a stress equal to or less than the proportional limit. The critical 
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stress is proportional to the parameter Et/R where E = modulus of elasticity, 

t =thickness of tube, and R =radius of tube. Figure 1, which is adapted 

from Fig. 4 of Ref. 9, is a non-dimensional plot of a number of test results 

covering a wide range of yield stress and slenderness and representing the 

work of three different investigators. The specimens in these tests are 

classified as manufactured tubes. These are defined in Ref. 9 as "tubes 

produced by piercing, forming and welding, cupping, extruding, or other 

methods in a plant devoted specificially to the production of tubes, as 

distinguished from tubes fabricated from plates in an ordinary fabricating 

shop." The reason for the distinction is the fact that the local-buckling 

strength of fabricated tubes may be considerably below that of manufactured 

tubes. This appears to result from larger imperfections in trre geometry of 

fabricated tubes. The considerable scatter of test results over the entire 

range of slenderness in Fig. 1 demonstrates the imperfection sensitivity of 

tubes in axial compression even when they are produced under careful control. 

Tests on a series of fabricated tubes gave critical stresses ranging from 

only 40 to 80 percent of yield in the slenderness region 0.14 to 0.22. 

These tests are not shown in Fig. 1 since they tend to obscure the fact that 

the Plantema formula10 which is plotted in the figure is a good lower bound 

for manufactured tubes. This formula was published in 1946 and has been 

adopted in the AISC guide in the form 

D 3,800 (Sa) 
Fa Fy r~-F-

y 

950 3,800 < Q < 12,000 (Sb) 
Fa 0. 75Fy + D/t F - t- F y y 
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where D = diameter of tube 

Round tubes in bending tend to be more resistant to local buckling. 

Results of tests are shown in Fig. 2. Those from Ref. 9 were conducted at 

the U. S. Steel Laboratories to determine the slenderness limit which enables 

a tube to develop the plastic moment. The results, which are given in Ref. 9 

as the ratio of ultimate moment to plastic moment, are shown in Fig. 2 as the 

ratio of ultimate moment to yield moment since the latter is taken as the 

limiting moment of resistance in the design of steel transmission poles. The 

tests from Ref. 11 were made by the Union Metal Company of Canton, Ohio. 

Material yield stresses in these tests ranged from 39 to 70 ksi. It is of 

interest to note how well the two sets of tests fall in line. A conservative 

lower bound to these test results is given by the Plantema-type formula 

shown in the figure, which reduces to 

I 
0 70F + 1 ,BOOt 

• y 0/t 

Q. > 6,000 
t- F y 

6,000 < Q. < 12,000 
F - t- F y y 

(9a) 

(9b) 

It will be noted that the bending tests show much less scatter 

than the tests in axial compression. This is probably due to the fact that 

although geometric imperfections tend to be local in nature and more or less 

randomly located they reduce uniform axial compressive strength wherever they 

are but affect bending strength only when they happen to be in the compression 

zone in the region of maximum moment. The difference in scatter also suggests 

that the formula which the Committee recommends for round tubes in bending 

may be more conservative than it need be to give the same reliability as the 
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Plantema formula for tubes in axial compression. In view of the limited 

number of test results, however, the Committee thought it best to be 

conservative. 

The Committee did not find any tests on round tubes under combined 

bending and axial compression. However, a linear interaction formula is 

known to be conservative12 and the following equation is proposed for the 

combined effect. 

( 10) 

LOCAL BUCKLING OF POLYGONAL TUBES 

Local buckling of flat-plate elements has been the subject of 

extensive experimental and theoretical investigation and limiting values of 

the width-thickness ratio to enable such plates to reach yield stress in 

uniform compression without buckling are given in standard specifications 

such as those of the AISC and the AISI. The limiting values for plates 

supported on both unloaded edges are about the same in both these specifica

tions but are expressed in terms of the yield stress in the AISC Specifica

tion and the computed service-load stress in the AISI Specification. For 

example, the limits for flanges of square or rectangular cross sections of 

uniform thickness are 238/~ for AISC and 184/;r; for AISI. With fa = 0.6FY, 

the maximum allowable value of fa, the AISI limit becomes 238/~. The ASCE 

Task Committee had no reason or evidence to change this limiting value for 

uniformly compressed members but did round off the numerator. Thus, the 

slenderness limit of polygonal tubular members is given as 

799 
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~ < 240 
t ~ 

( 11) 

where w is defined as the flat width of the side except that the inside bend 

radius is not to be taken larger than 4t in calculating w. 

Since the circular cylinder is more resistant to local buckling 

when it is subjected to bending instead of axial compression Eq. 11 can be 

expected to be conservative for polygonal poles subjected to bending. The 

uniform compression of equal-sided polygonal members produces simultaneous 

buckling of all sides, but when bending is involved the most highly compressed 

side receives some rotational edge restraint from the adjacent sides which 

are under a stress gradient. Figure 3, which is adapted from Fig. 5 of Ref. 

13, shows the results of tests by Meyer Industries on poles of 4, 6, 8 and 

12 sides. The poles were tested in bending with a transverse load applied 

at the end. Yield stresses (mill values) ranged from 50.7 to 72.8 ksi. 

Corner radii were not reported, so the plot is based on w equal to the corner

to-corner width. According to these tests, the limiting slenderness is about 

320/;r; based on corner-to-corner width. 

Figure 4 shows the results of tests by A. B. Chance Company. 14 

These tests were also in cantilever bending. There were five 8-sided and 

five 12-sided specimens. Yield stresses ranged from 67.6 to 83.1 ksi. Flat 

widths were measured. Bending stresses were calculated at the point of 

buckle. All but one member buckled at about half the diameter above the 

base. The exception was a pole that buckled about six feet above the base. 

Coupon tests for this specimen disclosed a yield stress of only 62.7 ksi at 

the buckled section. Coupon yield values at the neutral axis of the buckled 

section were used to evaluate all the test results. The figure suggests 
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that a limit 240/;r; is well on the conservative side for polygonal tubes 

in bending. Only the two specimens with w/t greater than 350/;r- failed 
y 

to reach yield stress. However, there are not sufficient data to adequately 

801 

define a higher limit. Furthermore, the maximum number of sides the polygon 

may have in order for the. rule to apply is not established. It is clear 

that this is a factor since the edge support of one face by a neighboring 

face becomes less and less stiff as the number of sides increases, and a 

point must eventually be reached at which the polygonal cross section behaves 

more like a circular cylinder, for which local buckling depends on a differ

ent parameter. It is of interest to note that in both the Meyer tests and 

the Chance tests the compression face buckled oppositely (in a radial sense) 

to the two adjoining faces for specimens up to eight sides, while the buckle 

in the 12-sided specimens encompassed the compression face and the two 

adjoining faces, which is to say that the three contiguous faces buckled in 

the same radial direction. Thus, it appears that the 12-sided pole is at 

or above the dividing line between polygonal poles that can be evaluated by 

plate buckling formulas and those that should perhaps be evaluated by round

tube formulas. 

The test results shown in Fig. 4 are plotted in Fig. 5 against 

slenderness based on corner-to-corner widths. This figure suggests a limiting 

value on the order of b/t = 370;r; compared to a w/t limit of about 330/~ 

according to Fig. 4. However, it is important to note that these larger 

limits would be applicable only to members in bending with the limit for 

axially loaded members to be determined by Eq. 4. It appears that additional 

tests would be worthwhile and that the effects of combined bending and axial 

compression should be investigated. 
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Economical proportioning of polygonal cross sections for trans

mission poles is not likely to involve plate slendernesses much in excess of 

the limiting value by Eq. 11. If larger slendernesses are used, design can 

be based on a reduced local-buckling stress or on the post-buckling strength. 

It is conservative and simpler to use the former procedure and this is 

suggested in Ref. 1 according to the following formulas: 

Fa 1.45Fy(l _ o.001291r:; r> 240 < w < 385 
7F-t-7r y y 

(12a) 

Fa 
108!000 

(w/t) 2 
385 < w 
7F-t y 

( 12b) 

Equation 12a for the inelastic range intersects the elastic local-buckling 

curve, Eq. 12b, at a proportional limit of 0.73FY (Fig. 6). Post buckling 

strength can be taken into account by using the effective-width concept as 

in the AISI and AISC specifications. However, it should be noted that it 

may be unconservative in a polygon of, say, 10 or 12 sides to consider only 

the face in uniform compression to be partially effective since the adjacent 

faces are also in compression. This compression is not uniform over the 

face and there are no formulas for determining the effective width of plates 

under these stress gradients. Of course, it would be safe to treat them as 

uniformly compressed plates. 

SUt+lARY 

Recent tests show that the bending strength of round tubes in 

bending as it is limited by local buckling can be predicted with good accuracy 

by a formula of the same form as the Plantema formula for round tubes in axial 
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compression. These tests show that round tubes can tolerate a larger 

slenderness (D/t) in bending than in axial compression. However, the in

creased strength for a given value of D/t does not appear to be as large 

as has been suggested by earlier work reported in Ref. 9. More tests are 

needed to establish the reliability of the formula. 

The local-buckling resistance of polygonal tubes in bending has 

also been the subject of recent investigations, and it appears that an in

crease in the w/t limits allowed by standard specifications is in order 

where compression due to bending is involved. However, more tests are 

needed to establish a reliable limit. Furthermore, tests on polygonal tubes 

in combined bending and axial compression would seem to be needed to estab

lish the effect of the interaction in reducing limiting values for bending. 
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NOTATION 

area of cross section 

area of cross section at small end of tapered 

column 

corner-to-corner width of side of polygonal member 

7TI2E/Fy 

coefficient in beam-buckling formula 

warping constant 

diameter of tube 

modulus of elasticity 

critical axial stress in column 

critical bending stress 

Euler stress 

yield stress 

axial stress P/A 

bending stress M/Sx 

modulus of elasticity in shear 

moment of inertia at small end of tapered column 

moment of inertia for x, y principal axes 

torsion constant 

effective-length coefficient 

length; distance between lateral supports 

bending moment 

critical moment for strong (x) axis of beam 

axi a 1 1 oad 
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critical axial load 

coefficient for tapered column 

Euler load 

radius of tube 

= equivalent radius of gyration for lateral

torsional buckling 

r0 radius of gyration at small end of tapered 

column 

Sx x-axis section modulus 

t thickness 

w flat width of side of polygonal member 

y deflection of beam or column 
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