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Twelfth International Specialty Conference on Cold-Formed Steel Structures 
St. Louis, Missouri, U.S.A., October 18-19,1994 

LOCAL BUCKLING OF STIFFENED AND UNSTIFFENED 
ELEMENTS UNDER NONUNIFORM COMPRESSION 

V. KALYANARAMAN' and P. JAYABALAN2 

ABSTRACT 

Thin plates subjected to linearly varying inplane compression in one direction may undergo local 
buckling before failure. An analytical procedure is presented for evaluating the local buckling strength 
based on which equations for the local buckling stress of unstiffened and stiffened elements are 
presented. 

INTRODUCTION 

Thin walled members are composed of plate elements which are supported along both edges 
parallel to the direction of compression (referred to as stiffened elements) and supported along only 
one edge parallel to the direction of compression with the other completely free (referred to as 
unstiffened elements). These t~lin plate elements may experience elastic local buckling and stable 
postbuckling behaviour when subject to inplane compressive, bending or shear stress. Due to initial 
imperfections, the bifurcation type of local buckling indicated by small deflection theory is not usually 
experienced by elements of commercially manufactured thin walled members. However, the 
postbuckling behaviour expressed in the form of effective width equations is a function of the elastic 
local buckling stress and hence the theoretical calculation of elastic local buckling stress of thin walled 
elements is of practical interest. Furthermore, the out of plane deflection of imperfect plates increases 
drastically at local buckling stress and hence is of interest to deSigners. 

Stowell (1939). Timoshenko (1961), Winter (1959), and Kalyanaraman (1979), have presented 
methods for evaluating local buckling strength of thin plate elements and members subjected to 
uniform in plane compression. Rhodes and Harvey (1971) and Walker (1967), have presented 
analytical procedures for evaluating the local and postbuckling behaviour of t~lin walled stiffened and 
unstiffened elements subjected to linearly varying in plane compression. Ramakrishna and 
Kalyanaraman (1984) have presented closed form equations for local and post buckling strength of thin 
walled stiffened elements subjected to linearly varying inplane compression based on regression of 
analytical results. 

In this paper Galerkin's procedure has been used to solve the governing differential equation for 
calculating the Iqcal buckling stress of non-uniformly compressed stiffened and unstiffened elements 
having elastically rotationally restrained longitudinal edges. Through regression, equations developed 
[Jayabalan (1989)] for the local buckling coefficient are presented as a function of the edge rotational 
restraint factor, and the non-uniform compression factor. The results of the proposed equations are 
compared with experimental results. 

ANALYTICAL STUDY 

Governing Equations 

A thin flat rectangular plate compressed by linearly varying displacements in the longitudinal 
direction asshown in Fig. 1 is considered, where the unloaded longitudinal edges may have one of the 
following boundary conditions. Both edges are completely restrained against out of plane translation 
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and elastically restrained against rotation (stiffened element); only one edge is completely restrained 
against out of plane translation and other edge is completely free (unstiffened element). 

The basic equation governing the elastic behaviour of buckled elastic plate have been derived 
by Von Karman (1932) and may be written in the non- dimensional form as 
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The applied linearly varying displacement may be represented by 

U = (1- 0.5 IX+ 001) Um •• ...... (3) 

where U is the non-dimensional inplane displacement at any point along the width, Umax is the 
non-dimensional inplane displacement at edge 1] = + 0.5 and IX is the non-uniform compression factor 
defined as 

u ... 
IX=I--

u .... 
..•.••.•. (4) 

IX = 0, 1, 2 correspond to the uniform compression, triangular compression and pure bending 
cases, respectively. 

The differential equation governing the local buckling stress due to the unidirectional 
compreSSion may be obtained after disregarding the terms on the right hand side of Eqn.1, except that 
corresponding to Eqn.3. The value of (f~ is set equal to the non-uniform stress as determined by the 
inplane displacement given by 

(fe=u ..... ( 1 - 0.5 IX + 001) •••••..•• (5) 
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At the local buckling stress, cr~ of stiffened and unstiffened elements can be expressed as 

K1t2 E 

where K is the buckling coefficient and ~ is the Poission's ratio. 

While using Galerkins method for solving Von-Karman's partial differential equation for large 
deflection of plates, the following deflected shape of the locally buckled plate is obtained. 

co . ...... (7,) 

4 
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The accuracy of the resu~s depend upon the number of terms used in the deflection function. In 
this study three terms have been used since it was found that three terms are adequate to obtain good 
resu~s for the standard cases already solved. The value of Cnr can be obtained by satisfying the 
boundary conditions along the unloaded edges of the elements. The elastic edge rotational restraints 
are defined by a factor E [e = (Mle) x (bId)]. The boundary conditions along the loaded edges are 
automatically satisfied by the assumed displacement field. 

By substituting the deflected shape from equation (7) into the governing differential equation (1) 
and using Galerkin's method, one gets 
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where q, is the ratio of wave length to width of the plate perpendicular to direction of 
compression. Performing the integration and varying the values of nand j over the range 0 ,;; n, j ,;; 3, a 
square matrix of the following form is obtained. , 

I ILl • KIM]]{Ijn)=O ......... (9) 

Equation (9) is in the form of an eigen value problem. The lowest eigen value and the 
corresponding eigen vector are of interest in the local buckling analysis, and are obtained using power 
method of solution. The value of 'K' varies with q, and the lowest value of 'K' is of practical interest. 

The elastic local buckling coefficient Ke of stiffened and unstiffened elements are functions of the 
rotational edge restraint factor and non- uniform compression factor. The elastic local buckling 
coefficient for stiffened and unstiffened elements obtained from numerical solution of Eqn. (9) are 
plotted in Fig. 2 and 3. Through a regression analysis, the curves shown in Fig. 2 and 3 can be 
represented by the following equations with a maximum error of 6% and mean error of 2.1% and RMS 
error of 0.35% 
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Stiffened Element 

K..=C,+C2 

C, = 5.48 + 0.71 + 3.43 ... 1.37"'+3.13'" 

C2 = 0.75 + 0.04 

Unstlffened Elements 

K. .. = A + B 

£/05+ 8.76 

£/6_ 163.72 

£0.7 +1.5 

+ 0.87 .. - 0.17'" + 0.66 .. ' 

(a) Maximum compression at free edge: 

A = 0.853 + 0.195 .. + 0.016'" + 0.023'" 

B = 0.426 + 0.078.. + 0.015'" 

(b) Maximum compression at supported edge :. 

A 0.836 + 1.693.. - 3.914'" + 5.154'" 

B = 0.415 + 0.967 .. - 2.402 .. 2 + 3.086'" 

....... (10) 

............. (11) 

The values for the elastic local buckling coefficients obtained from Eqn. (10) and (11) are 
compared with the analysis results in Figs. 2 and 3. 

EXPERIMENTAL INVESTIGATION 

In order to study the local buckling strength of non-uniformly compressed stiffened and 
unstiffened elements, thirty four specimens having twenty six unstiffened elements and eight stiffened 
elements subjected to non-uniform compression were tested. The details of the testing frame, cross 
section dimensions, instrumentation etc., are given in Jayabalan (1989) and Ramakrishna et.al (1984). 
The specimens were tested for the cases of non- uniform compression covering the entire range of 
uniform compression to uniform bending, where the experimental local buckling stress was evaluated 
using the strain reversal method. The cross section dimensions, non-uniform compression factor and 
local buckling stress of all the specimens tested are given Table 1 (aer, exp, coI.S). These experimental 
values have been used below for comparison with analytical methods. 
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COMPARISON OF ANALYTICAL AND EXPERIMENTAL RESULTS 

For the specimens, the elastic local buckling stress calculated using Eqn. (10) and (11) are 
presented in Table 1 (Clcr, coI.6). It is seen from column 7 in Table 1, that the percentage difference 
between the theoretical elastic local buckling stress and experimental local buckling stress increases 
as the ratio of elastic local buckling stress to yield stress increases. It is also well known that both in 
plate and column buckling the effects of initial imperfection and residual stresses become larger as the 
elastic local buckling stress reaches the yield stress. In order to account for these effects, a 
Perry-Robertson type of formula as given below may be used. 

CScrlo,= 1 2nV, 
Il+..J("JI",,~) l' 

....... (12) 

It is found that a value of n' equal to 2.0 gives good correlation with test results. In Table 1, 
column 9, the theoretical local buckling stress calculated using Eqn. (12) is presented. It is seen that 
the comparison between the modified local buckling stress and experimental values are much better. 
The mean difference between the theoretical and experimental values is 7.7o/c_thClonservative side, 
and the coefficient of variation is 13.2%: 

SUMMARY AND CONCLUSIONS 

An analytical method for calculating the local buckling coefficient of stiffened and unstiffened 
elements subjected to linearly varying compression was presented. Closed form equations for 
calculating the local buckling coefficient of members with stiffened and unstiffened compression 
elements derived through regression analysis were also given. Results of the experiments conducted 
on stiffened and unstiffened elements were compared with the analytical values of local buckling 
stress. It was shown that the closed form regression equations for the local buckling strength of 
stiffened and unstiffened elements compare well with the test results. 
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TABLE 1 - COMPARISON OF LOCAL BUCKLING STRESS 

No. bit e (j (j (j (j a exp er,e % error Y or %error 
MPa MPa 5&6 MPa MPa 5&9 

2 3 4 5 6 7 8 9 10 

U1 45.3 -0.18 1.68 68.5 80.4 17.5 177.6 73.2 6.9 
U2 45.8 0.29 1.29 83.1 94.7 13.9 254.8 88.7 6.7 
U3 45.8 -0.31 1.72 81.3 81.3 0.0 155.2 72.0 -11.4 
U4 47.1 0.38 1.65 94.6 99.7 5.4 178.7 87.0 - 8.0 
U5 46.3 -0.61 1.86 76.1 86.6 13.8 159.1 76.1 0.0 
U6 45.6 0.66 1.84 140.6 156.8 11.5 287.3 137.6 -2.1 
U7 65.1 -0.11 1.33 32.7 36.7 12.2 163.1 35.8 9.4 
U8 62.1 0.16 0.98 38.4 44.7 16.4 145.3 42.7 11.1 
U9 60.8 -0.44 1.54 41.1 46.7 13.6 144.7 44.4 8.0 

U10 64.2 0.49 1.77 60.0 60.5 0.8 159.5 55.5 -7.5 
U11 62.3 -0.51 1.58 40.1 45.4 13.2 156.0 43.6 8.7 
U12 65.2 0.53 1.78 62.6 61.7 - 1.4 188.3 58.6 - 6.3 
U13 30.3 -0.21 1.97 108.2 185.8 71.7 150.1 116.7 7.8 
U14 30.2 0.21 1.39 125.4 209.6 67.1 152.0 123.0 - 1.9 
U15 29.9 -0.23 2.04 130.0 192.9 48.3 156.5 121.5 - 6.5 
U16 30.1 0.29 1.67 126.2 229.7 82.0 169.2 136.2 7.9 
U17 84.1 -0.28 1.14 20.1 22.3 10.9 318.4 22.2 10.4 
U18 82.8 0.32 1.05 25.7 28.4 10.5 294.2 28.3 10.1 
U19 83.2 -0.54 1.34 22.2 24.9 12.1 294.2 24.8 11.7 
U20 81.7 0.53 1.39 34.3 37.6 9.6 ,243.4 37.2 8.4 
U21 44.1 -1.56 1.67 109.3 119.7 9.5 284.5 110.3 0.9 
U22 59.4 -1.63 1.38 69.1 66.9 - 3.2 249.8 64.3 - 6.9 
U23 86.2 -1.74 0.82 28.2 30.3 7.4 305.1 30.0 6.2 
U24 44.7 -1.34 1.71 101.3 111.6 10.2 248.8 100.4 - 0.9 
U25 59.7 -1.42 1.33 55.7 61.5 10.4 230.0 58.9 5.6 
U26 88.9 -1.56 0.92 26.3 27.3 3.8 300.8 27.3 3.6 
S1 148.0 0.00 6.20 33.3 45.0 35.1 224.6 44.1 32.4 
S2 148.0 0.16 5.70 35.0 50.1 43.1 224.6 48.9 39.7 
S3 208.0 0.77 7.40 26.3 37.1 41.0 224.6 36.6 39.2 
S4 208.0 0.80 8.90 26.5 38.4 44.9 224.6 37.8 42.6 
S5 241.0 2.00 70.40 103.3 125.4 21.4 224.6 109.5 6.0 
S6 225.0 1.92 60.30 101.5 131.2 29.3 224.6 113.3 11.6 
S7 220.0 1.76 59.50 93.8 114.2 21.7 224.6 101.8 8.5 
S8 220.0 1.48 58.40 69.4 82.9 19.5 224.6 77.8 12.1 

Unstiffened Element, S - Stiffened Element 
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