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Twelfth International Specialty Conference on Cold-Formed Steel Structures 
St. Louis, Missouri, U.SA, October 18-19,1994 

COMPARISON OF A NON-LINEAR PURLIN MODEL 
WITH TESTS 

C.J. Rousch * G.J. Hancock t 

SUMMARY 

A non-lineax elastic analysis has been developed for determining the lateral deflections of, and 
stresses in, the unconnected flanges of simply-supported and continuous channel and Z-section 
purlins screw-fastened to sheeting and subject to either wind uplift or gravity loading. The anal­
ysis incorporates a model, based on a combination of those developed by Pek6z and Soroushian, 
and Thomasson, which depicts the unconnected purlin flange as a beam-column.' The restraint 
against lateral deflection is provided primarily by the sheeting, and is represented by a linear 
extensional spring of stiffness k located at the level of the unconnected purlin flange. 

To verify the model, lateral deflections and failure stresses obtained from vacuum rig tests can be 
compaxed with those determined by the non-lineax analysis. In this paper, results from vacuum 
rig tests on continuous Z-section purlins screw-fastened to sheeting and subject to simulated 
wind uplift and gravity loading are compared. 

1 INTRODUCTION 

Roof systems commonly used throughout the world often consist of cold-formed steel channel 
or Z-section purlins fastened to high tensile profiled steel sheeting. Two major problem areas 
are encountered in the design of cold-formed steel purlins .. Firstly, the .sections are generally 
not doubly-symmetric as for conventional beam design, and secondly, the magnitude ofrestraint 
provided by sheeting, bridging (bracing) and cleats is difficult to quantify. Cold-formed steel 
purlins tend to be efficient, however, as the restraint provided by the sheeting, bridging and 
cleats tends to adequately counteract the adverse effect of using mono-symmetric and point­
symmetric sections. It is the lack of data available on these counteracting effects whic.h produces 
the uncertainty. 

Despite their widespread use, very little data regarding the buckling failure modes, stresses 
and deflections of these roof systems is available. The purpose of this paper is to provide and 
verify a model, based on a combination of those developed by Pek6z and Soroushian (1982). 
and Thomasson (1988), which can be used to calculate the lateral deflections of, and stresses in. 
the unconnected flanges of both simply-supported and continuous cold-formed steel chaunel and 
Z-section purlins screw-fastened to sheeting and subject to either wind uplift or gravity loading. 
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tProfessor, School of Civil and Mining Engineering, University of Sydney NSW 2006 Australia 
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This model has been incorporated in a second order (non-linear) elastic analysis, developed 
at the University of Sydney. In this paper, lateral deflections and stresses obtained from the 
analysis are compared with those determined experimentally for a continuous lapped Z-section 
purlin screw-fastened to sheeting and subject to simulated wind uI?lift and gravity loading. 

2 DESIGN MODELS 

2.1 General 

Two fundamentally different models of the buckling modes of cold-formed steel channel and 
Z-section purlins have been developed. These are the distorted section model, or D model, and 
the undistorted section model, or U model. The U model is based on the thin-walled beam 
theories of Timoshenko (1961) and Vlasov (1961), in which stability can be computed using the 
conventional stability theory of thin-walled beams with undistorted cross-sections. The D model 
has required the development of a new stability model to account for section distortion, which 
is not considered in the Timoshenko and Vlasov theories. In the D model, the unconnected 
purlin flange will become unstable under wind uplift or gravity loading if the lateral restraint 
provided through the web is insufficient in preventing column buckling of that flange. The D 
and U section models for purlins under wind uplift are shown in Fig. la for a Z-section and in 
Fig. 1b for a channel. 

There are two different types of purlin-sheeting connections commonly used in practice. The 
first is a screw-fastened system in which the sheeting is screw-fastened to the purlin through 
its troughs (pans) or crests using self-tapping screws. Screw-fastened systems are commonly 
used throughout the world, and usually provide adequate transfer of both lateral and torsional 
restraint from the sheeting to the ·purlin. For this reason, the D model is deemed the most 
appropriate stability model for screw-fastened systems. The second type involves the use of 
clips or concealed fasteners, usually with standing seam roofs or interlocking sheeting. This roof 
system provides very little lateral or torsional restraint to the purlin, and hence the U model, 
in which the sheeting is assumed to provide no torsional restraint to the attached purlin, may 
be the more appropriate stability model in this case. 

2.2 Distorted Section Model 

If a wind uplift or gravity load is applied parallel to a purlin section web, and there is no lateral 
or torsional restraint provided by sheeting, then a Z-section will move vertically and deflect 
laterally as a result of its inclined principal axes, and a channel will move vertically and twist 
as a result of the eccentricity of the applied load from its shear centre. However, if adequate 
lateral restraint and some degree of torsional restraint is applied, both Z-sections and channels 
will undergo vertical deflection and twisting, including section distortion. Pekiiz and Soroushian 
proposed that these deformations occur in two stages; the vertical bending stage, and the torsion 
stage, as depicted in Fig. 2a for a channel under wind uplift. 

The vertical bending stage can be analysed using simple flexure theory. The torsion stage can 
be analysed by modelling the unconnected purlin flange and a section of the web as a beam­
column on an elastic foundation. The stiffness of this foundation is determined by idealising 
the purlin-sheeting connection as a rotational spring, located at the centre of purlin rotation. 
(Purlin rotation is at the junction of the web and the connected flange for a Z-section, and at 
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the purlin-sheeting connection for a channel.) The rotational spring is then converted to a linear 
extensional spring of stiffness k located at the level of the unconnected purlin flange, as shown in 
Fig. 2b. This linear extensional spring consists of the flexural stiffness of the sheeting combined 
with the flexural stiffness of the purlin web and the rotational stiffness of the purlin-sheeting 
connection, and thus restrains the unconnected purlin flange against lateral deflection. 

When a uniformly distributed wind uplift or gravity load, q, is applied parallel to the purlin 
web, a uniformly distributed lateral load, w, is induced in the unconnected flange. Pekiiz and 
Soroushian calculated the lateral load induced in the un"connected flange of a simply-supported 
channel or Z-section purlin under wind uplift as being equal to 

Qb 
w=q(21 +0) (1) 

where Q is the moment of the beam-column section about the purlin centroidal axis perpendic­
ular to the web, b is the total width of the unconnected purlin flange, I is the second moment 
of area of the effective deflected purlin section about the centroidal axis perpendicular to the 
undeflected position of the web, and 0 is the distance from the centre of purlin rotation to the 
flange-web junction divided by the web depth, H. For a Z-section, 0 is therefore equal to zero, 
and Eq. 1 becomes 

Qb 
w = q(-) 

21 
(2) 

Pekiiz and Soroushian suggested that Q could be simplified by ignoring the contribution of both 
the web and the lip to the beam-column section so that 

Q = btH 
2 

where t is the thickness of the purlin section. 

(3) 

Rousch, Rasmussen and Hancock (1993) proved that Eq. 2 is valid for both simply-supported 
and continuous Z-section and channel purlins under wind uplift, as the lateral load, w, induced 
in the unconnected flange of a channel is the same as that induced in the unconnected flange of 
its equivalent Z-section. (Full details of this proof can be found in Appendix A of Rousch and 
Hancock (1994).) This conclusion may be specific to Australian purlin-sheeting systems where 
channels and Z-sections appear to be equally restrained from twisting. Pekiiz and Soroushian 
do not report the relative magnitudes of twisting of these sections. 

Like Pekiiz and Soroushian, Thomasson also developed the idea of modelling the unconnected 
purlin flange and a section of the web as a beam-column on an elastic foundation. He applied 
this concept when modelling the distortion of both simply-supported and continuous Z-section 
purlins. Thomasson included both the lip and a certain part of the web, x, in the beam-column 
calculations, and suggested that two different beam-column sections be used; one with x equal to 
xl, as shown in Fig. 3a, to obtain the correct lateral deflections of the unconnected flange, and 
one with x equal to X2, as shown in Fig. 3b, to obtain the correct values of stress distribution in 
the unconnected flange. However for practical purposes, Thomasson thought it reasonable to set 
a fixed value of x valid for both Xl and X2. The Swedish Code for Light-Gauge Steel Members 
(1982) sets x equal to 27 percent of the total web depth. For Australian made Z-sections and 
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channels, x should be taken as being equal to 35.5 percent of the total web depth. The details 
of Thomasson's model can be found in Appendix B of Rousch and Hancock. 

The second order (non-linear) elastic analysis model presented in this paper requires calculation 
of the lateral load, w, induced in the unconnected Hange of a simply-supported or continuous 
channel or Z-section purlin when a wind uplift or gravity load is applied parallel to the section 
web, using Eq. 2 provided by Pekiiz and Soroushian. Both the lip and a section of the ~eb, x, 
as suggested by Thomasson, should be included in the calculation of the beam-column moment, 
Q. 

3 SECOND ORDER (NON-LINEAR) ELASTIC ANALYSIS 

3.1 General 

Second order (non-linear) elastic analysis is a method used for determining the stresses and 
elastic deformations of structures whilst accounting for changes in geometry. The deformations 
are usually small but finite, hence the term second order, and the equations developed for 
their solution are non-linear in the deformations. The equations can be solved using iterative 
techniques as described by Hancock (1991). A second order elastic analysis has been developed 
for the specific pu)."pose of determining the lateral deHections of, and stresses in, the unconnected 
Hanges of simply-supported and continuous channel and Z-section purlins under either wind 
uplift or gravity loading. This analysis includes the effects of continuous restraint. 

A typical continuous purlin-sheeting system with a uniformly distributed uplift load, q, applied 
parallel to the pUl'lin web is depicted in Fig. 4a. The cross-sectional area, A, and second moment 
of area, I, are assumed to be doubled at the lapped sections. Initially, a first order (linear) 
elastic analysis for bending in the plane of the web is performed on the purlin to calculate its 
vertical deHection and bending moment distribution. The axial compressive force distribution, p, 
induced in the unconnected Hange by the in-plane bending, is determined from the results of the 
in-plane analysis. A second order (non-linear) elastic analysis is then performed to determine 
the lateral deHection of the unconnected purlin Hange. This Hange is idealised by the Pekiiz 
and Soroushian beam-column model, and includes both the lip and a section of the web, x, as 
suggested by Thomasson. The beam-column section, including the axial compressive force, p, 
resulting from the first order analysis, the induced uniformly distributed lateral load, w, given 
by Eq. 2, and the lateral restraint of stiffness k, is shown in Fig. 4b. 

3.2 Second Order Element Stiffness Matrix 

The unconnected purlin Hange can be divided along its span into elements of length L. A 6 
x 6 second order element stiffness matrix, [k;;.l, can be formed for each element. The stiffness 
matrix, in local x-y axes, relates the forces, {Fm}, to the joint displacements, {xm}, such that 

(4) 

where 
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and 

Both forces and displacements are aligned with the initial member position as shown in Fig. 
5 .. If the deflected shape of the element is assumed to be a cubic polynomial, then [k~] can be 
linearised in the axial load, p, such that it is given by the sum of the linear elastic, [km ], and 
geometric, [Um], element stiffness matrices as shown by Rubinstein (1970): 

[k;;'] = [km] + p . [Um] (5) 

where 
EA 0 0 EA 0 0 T -T 
0 12EI 6EI 0 _12EI 6EI 

0 _~EI -4ki 
0 6i'J -2ki 

[km] = L V L EA 0 0 EA 0 0 -T L 
0 12EI 6EI 0 12EI 6EI 

- MI MI MI 'ih 0 -V L 0 V L 

and 

0 0 0 0 0 0 
0 6 1 0 6 1 

-5[; 
12L 

5[; ¥! 0 1 0 1 

[Urn] = Iii -"30 -Iii 30 
0 0 0 0 0 0 
0 6 1 0 6 -..1. 5[; -IO -5[; 12 0 .1. 0 1 

10 30 -Iii -"30 

3.3 Element Restraint Matrix 

By assuming that the deflection of each element is in the shape of a cubic polynomial, an element 
restraint matrix, [rm ], can be determined. (The derivation of the restraint matrix is given in 
Appendix C of Rousch and Hancock.) The restraint matrix represents the lateral restraint of 
stiffness k in the Pekoz and Soroushian beam-column model. The 6 X 6 element restraint matrix 
is 

0 0 0 0 0 0 
0 156 -22L 0 54 13L 

kL 0 -22L 4L2 0 -13L -3L2 
[rm] = 420 0 0 0 0 0 0 

0 54 -13L 0 156 22L 
0 13L -3L2 0 22L 4L2 
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The element restraint matrix, [rm], can be added to the second order element stiffness matrix, 
[k:'], so that Eq. 4 becomes 

(6) 

The lateral deflection of the unconnected purlin flange can now be solved using the iterative 
techniques mentioned earlier.' . . 

3.4 Verification of Model 

The use of a restraint matrix, [rm], to represent the lateral restraint of stiffness k in the Pekiiz 
and Soroushian model can be verified using equations proposed by Timoshenko and Gere (1961) 
for the buckling of a beam on an elastic foundation. The lateral deflections obtained from the 
second order analysis incorporating the restraint matrix can be compared with those found using 
equations proposed by Hetenyi (1971) for the deflection of a beam on an elastic foundation. 

3.4.1 Buckling of a Beam on an Elastic Foundation 

A plane rigid frame buckling analysis developed at the University of Sydney can be used to 
perform frame buckling analyses using linear eigenvalue routines. The buckling modes and 
loads of a beam with lateral restraint can be determined by adding the restraint matrix to the 
linear elastic stiffness matrix such that the resulting eigenvalue problem is 

([K] + [R]){X} - A[G]{X} = {O} (7) 

where [K] is the linear elastic global stiffness matrix assembled from the individual [km ] element 
stiffness matrices, [R] is the global restraint matrix assembled from the individual [rm] element 
restraint matrices, [G] is the geometric global stiffness matrix assembled from the individual 
[gm] geometric element stiffness matrices, A is the load factor and {X} is the vector of joint 
displacements in global X-Y axes. The buckling load, .P", of a simply-supported beam with 
lateral restraint of stiffness k can therefore be obtained by. solving Eq. 7 using the buckling 
analysis . 

.P" can be compared with the critical buckling load, P",., obtained from equations derived by 
Timoshenko and Gere (outlined in Appendix D of Rousch and Hancock) for the buckling of a 
simply-supported beam on a continuous elastic foundation of stiffness k . .P" and Per are compared 
here for a simply-supported 7.0m (23.0 ft) span beam on a continuous elastic foundation of 
stiffness k. The beam had a second moment of area, I, and cross-sectional area, A, equal 
to 6.012E+6mm4 (14.4in.4) and 934.092mm2 (1.4in.2) respectively. (These values are typical 
of those of a Lytgal Z20024 Z-section purlin.) Table 1 compares the results when an axial 
compressive load, P, equal to 1000 N (225 Ib), was applied at either end of the purlin as shown 
in Fig. 6a . .p" and Per are found to compare favourably. The buckling analysis also showed that 
the beam buckled in a single half-wave for all values of k less than 0.196 N/mm2 (28.4lb/in.2). 

This buckling mode was affirmed for all values of k less than 0.195 N/mm2 (28.3lb/in.2) using 
the Timoshenko and Gere equations. Table 2 compares the results when a distributed axial 
compressive load, p, was applied as shown in Fig. 6b. The distributed loading used to find .p" 
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was that induced in the beam when a uniformly distributed uplift load of 1 N/mm (5.7Ib/in.) 
was applied. Again, Pb and Pcr are found to compare favourably. 

3.4.2 Deflection of a Beam on an Elastic Foundation 

The second order elastic analysis was used to detel·mine the midspan deflection of a simply­
supported 5.0m (16.4 ft) span beam on a continuous elastic foundation of stiffness k when a 
uniformly distributed gravity load, q, equal to 1 N/mm (5.7 lb/in.), was applied as shown in 
Fig. 7a. The beam had a second moment of area, I, equal to 1.0E+8mm4 (240.3in. 4), and a 
cross-sectional area, A, of 1.0E+5mm2 (155.Oin.2). Table 3 compares the deflection, y, found at 
the midspan using the analysis, with the deflection, YH, calculated at the midspan using Hetenyi's 
equation for a beam on an elastic foundation of modulus k. The beam was re-analysed with 
the addition of an axial compressive load, P, equal to 10000 N (2.2 kip), applied at either of its 
ends as shown in Fig. 7b. The deflections at the midspan are compared in Table 4. For both 
load cases, the midspan deflections obtained using the analysis compare favourably with those 
calculated using Hetenyi's equations. Details of Hetenyi's equations can be found in Appendix 
D of Rousch and Hancock. 

4 STRESS CALCULATIONS 

From the bending moments determined in the first order (linear) and the second order (non­
linear) analyses discussed in Section 3, stress distributions in the connected and unconnected 
purlin flanges of a simply-supported or continuous channel or Z-section purlin may be calculated. 
If the distribution of stresses along the length of a pm·lin is known, then the failure criteria, 
including the mode of failure, may be determined. 

4.1 Combining Stresses 

The stress, O'x, in the purlin flange (at any given point along the purlin span) resulting from 
in-plane bending only is given by the equation 

(8) 

where Mx is the in-plane bending moment, Y is the (vertical) distance from the centroid of the 
effective purlin section to the extreme outer fibre of either the connected or unconnected purlin 
flanges, and IxeJf is the second moment of area of the effective deflected purlin section about 
the centroidal axis perpendicular to the undeflected position of the web. As a result of lateral 
deflection and twist, the second moment of area, IxeJf, is reduced, and is therefore given by the 
equation 

(9) 

where Ixo is the second moment of area of the effective undeflected purlin section about the 
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centroidal axis perpendicular to the web, H is the purlin web depth and al is the lateral deflection 
of the unconnected purlin flange as determined by the second order analysis. 

The out-of-plane stresses, ay, are only calculated in the unconnected purlin flange, and may be 
determined from the equation 

My·x 
ay = ---

If 
(10) 

where, at any point along the purlin span, My is the out-of-plane bending moment, If is the 
second moment of area of the beam-column section (comprising the unconnected purlin flange, 
lip and percentage of the web) about its centroidal axis parallel with the purlin web, and x 
is the (horizontal) distance from the centroid of the beam-column section to the point along 
the unconnected flange at which the stress is required (usually at the flange-web or flange-lip 
junction). 

The total stress in the connected purlin flange at any point along the purlin span is equal to the 
stress resulting only from in-plane bending, and is therefore given by Eq. 8. The total stress 
distribution in the unconnected flange is equal to the addition of the stresses resulting from both 
in-plane and out-of-plane bending, and is therefore given by the sum of Eq. 8 and Eq. 10. 

4.2 Failure Criteria 

Vacuum rig tests simulating wind uplift and gravity loading on simply-supported and continu­
ous cold-formed steel channel and Z-section purlins screw-fastened to roof sheeting have been 
performed at the Centre for Advanced Structural Engineering (1989, 1990a) within the Univer­
sity of Sydney, and the test results have been published in Hancock, Celeban and Healy (1993). 
These tests showed that the mode of failure varied for purlins with and without bridging. Under 
wind uplift, continuous Z-section and simply-supported Z-section and channel purlins without 
bridging were all found to fail by local buckling at the flange-web junction of the unconnected 
purlin flange. For purlins with one or more rows of bridging in each span, failure was by flange­
web buckling, lip stiffener buckling 01· general flange failure. When subject to gravity loading, 
continuous Z-section purlins both with and without bridging failed initially by flange-web local 
buckling. For purlins with cleat supports, subsequent loading generally resulted in lip stiff­
ener buckling and general flange failure. For purlins without cleat supports, substantial lateral 
bending of the cleats occurred. 

The failure stress at the flange-web junction can be determined from the equations in the AISI 
Specification (1980) and in the Australian Cold-Formed Steel Structures Code (1988) with the 
factor of safety removed. The limiting stress, Fbw, at the flange-web junction is therefore given 
by the equation 

(11) 

where dl is the clear distance between the flanges, t is the nominal steel thickness exclusive of 
coatings, and Fy is the yield stress of the steel. 
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5 CONTINUOUS PURLIN EXAMPLE 

5.1 Wind Uplift Loading 

A three span continuous lapped Lytgal Z20015 Z-section screw-fastened to roof sheeting and 
subject to wind uplift is shown in Fig. 8. This system corresponds with that of the Series 1 
Test 4(A) vacuum rig t.est performed at the University of Sydney (Hancock, Celeban and Healy) 
in which four equally spaced three span continuous Z20015 purlins screw-fastened to sheeting 
were subject to a simulated wind uplift loading. The lateral deflections of the unconnected 
flanges of the two inner purlins were measured with each increment in loading. The deflections 
were measured at the midpoint of the end spans using displacement transducer ga~ges, labelled 
G3 and G5 at the northern end, and G15 and G17 at the southern end, as shown in Fig. 9. 
Standard two-hole cleats were used. Loading was increased from zero load until failure of one 
of the purlins was obtained. Failure occurred when a uniform line load of approximately 2.58 
N/mm (14.7Ib/in.), corresponding to 2.0 kPa (0.3 psi) pressure in the rig, was applied on the 
inner purlins. 

The second order elastic analysis can be used to pI'edict the lateral displacement of the uncon­
nected purlin flange at any given load if the value of restraint, k, provided by the sheeting to 
the purlin is known. Purlin-sheeting connection tests were carried out at the Centre for Ad­
vanced Structural Engineering (1990b) within the University of Sydney to determine the values 
of restraint for channel and Z-section purlins of various sizes screw-fastened to sheeting. For 
a Z20015, k was found to be approximately 0.018 N/mm2 (2.6Ib/in.2). Fig. 10 compares the 
lateral displacements of the unconnected purlin flange at the midpoint of the end spans as de­
termined by the analysis with k equal to 0.018 N/mm2 (2.6lb/in.2), with those determined in 
the vacuum rig test. 

By using the bending moment distributions obtained from the analysis with k equal to 0.018 
N/mm2 (2.6 Ib/in.2), a stress analysis was performed at the failure load. From this analysis 
it was found that the maximum compressive stress occurred at the flange-web junction of the 
unconnected purlin flange at a position just to one side of the midpoint of the end spans, as 
shown in Fig. 9. The stress distributions in the flanges at this point are given in Fig. 11a. 
Hence flange-web buckling, occurring at a position near the midpoint of the end spans, was the 
predicted failure mode. The vacuum rig test did in fact fail by flange-web buckling near the 
midpoint of the northern end spans of the two inner purlins. The maximum compressive stress 
in the connected purlin flange occurred adjacent to the lapped joints on the inner span, shown 
also in Fig. 9. The stress distributions in the flanges at this point are given in Fig. 11b. The 
failure stress, Fbw, at the flange-web junction can be computed using Eq. 11 with Fy = 520 
MPa (75.4 ksi), d1 = 198.98mm (7.8in.) and t = 1.46mm (0.06in.). The resulting stress of 419 
MPa (60.8 ksi) compares closely with the theoretical value of 413 MPa (59.9 ksi) obtained from 
the stress analysis at the failure load. 

5.2 Gravity Loading 

The Series 4 Test 4 vacuum rig test performed at the University of Sydney (Hancock, Celeban 
and Healy) consisted of four equally spaced three span continuous lapped Lytgal Z20015 purlins 
screw-fastened to sheeting as in Series 1 Test 4(A), but subject to a simulated gravity loading. 
The lateral deflections were measured at the midpoint of the end spans using displacement trans­
ducer gauges G3 and G5 at the northern end, and G15 and G17 at the southern end as shown 
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in Fig. 12. To prevent lateral deformation of the cleats, cleat supports were provided. Failure 
occurred when a uniform line load of approximately 2.94 N/mm (16.8 Ib/in.), corresponding 
to 2.43 kPa (0.4 psi) pressure in the rig, was applied on the inner purlins. Fig. 13 compares 
the lateral displacements of the unconnected purlin flange at the midpoint of the end spans as 
determined by the analysis with k = 0.018 N/mm2 (2.6 Ib/in.2), with those determined in the 
vacuum rig test. The theoretical deflection is close to linear. The experimental values indicate a 
stiffening of the restraint. It is presumed that under gravity loading, the sheeting bears against 
the purlin and increases the k value. Further experimental research on this phenomenon is 
required. 

A stress analysis at the failure load found that the maximum compressive stress occurred at the 
flange-web junction of the unconnected purlin flange at a location adjacent to the lapped joints 
on the inner span, as shown in Fig. 12. The stress distributions in the flanges at this point 
are shown in Fig. 14a. This flange-web buckling failure mode, occurring adjacent to the lapped 
joints on the inner span, corresponds with the vacuum rig test flange-web buckling failures at 
the same positions. The maximum compressive stress in the connected purlin flange occurred 
just to one side of the midpoint of the end spans, shown also in Fig. 12. The stress distributions 
in the flanges at this point are shown in Fig. 14b. The failure stress, Fbw, at the flange-web 
junction computed using Eq. 11 with Fy = 520 MPa (75.4 ksi), d1 = 199.96mm (7.6in.) and t 
= 1.47mm (0.06in.), resulted in a stress of 420 MPa (60.9 ksi). This lies within 4 percent of the 
theoretical value of 437 MPa (63.4 ksi) obtained from the stress analysis at the failure load. The 
analysis values are slightly higher than those calculated using Eq. 11 as a result of the greater 
theoretical lateral deflection of the unrestrained flange than observed experimentally. 

6 CONCLUSION 

A second order (non-linear) elastic analysis has been developed for determining the lateral deflec­
tions of, and stresses in, the unconnected flanges of simply-supported and continuous channel 
and Z-section purlins screw-fastened to sheeting and subject to either wind uplift or gravity 
loading. The restraint provided by the sheeting against lateral deflection of the unconnected 
purlin flange is represented by a linear extensional spring of stiffness k located at the level of 
the unconnected purlin flange, which is modelled as a beam-column. The value of k can be 
incorporated in a restraint matrix which is added to the second order stiffness matrix of the 
beam-colUlnn, and the lateral deflection of the unconnected purlin flange can then be solved 
for using iterative techniques. Stresses are computed assuming bending in the plane of the web 
(using the .properties of the effective section) and lateral deflection of the beam-column. The 
model is similar to that proposed by Pekiiz and Soroushian for simply-supported purlins, but is 
extended to continuous purlin systems, with a beam-column element of the type proposed by 
Thomasson, in whicll both the flange lip and percentage of the web are included. 

A three span continuous Z-section purlin screw-fastened to sheeting was used to demonstrate the 
applicability of the model. The lateral deflections and failure stresses obtained from the second 
order analysis were found to compare favourably with those determined experimentally for both 
wind uplift and gravity loading. In the case of gravity loading, the stiffening of the restraint 
provided by the sheeting under increased load requires further experimental investigation. 
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APPENDIX B. NOTATION 

al 
A 
AI 
b 
dl 

F,.-A, FilA, MAB 
Fbw 

FII 
H 
[, [",ell 

k 
I 
L 
M", 
Mil 
P 

q 

Q 

w 

lateral deflection of unconnected purlin flange 
cmss-sectional area of effective purlin section 
cross-sectional area of beam-column section 
width of unconnected purlin flange 
clear distance between flanges 
forces and moment in local x-y axes 
limiting stress at flange-web junction 
yield stress 
purlin web depth 
second moment of area of the effective deflected purlin section about 
the centroidal axis perpendicular to the undeflected position of the web 
second moment of area of beam-column section about its centroidal 
axis parallel with the purlin web 
second moment of area of the effective undeflected purlin section about 
the centroidal axis perpendicular to the web· 
stiffness of lateral restraint 
length of span 
length of element 
in-plane bending moment 
out-of-plane bending moment 
distributed axial compressive force induced in unconnected purlin flange 
or applied distributed axial compressive load 
applied axial compressive load 
buckling load 
critical buckling load 
uniformly distributed wind uplift or gravity load 
applied parallel to purlin web 
moment of beam-column section about purlin centroidal axis 
perpendicular to web 
purlin thickness 
or nominal steel thickness exclusive of coatings 
uniformly distributed lateral load induced in unconnected purlin flange 



x 

YH 
a 
oX 

[gm] 
[G] 
[km ] 

[k~] 
[J(] 
[rm] 
[R] 
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horizontal distance from beam-column centroid 
or depth of pm'lin web included in beam-column section 
depth of purlin web included in beam-column section to obtain correct 
lateral deflection of unconnected purlin flange 
depth of purlin web included in beam-column section to obtain correct 
stress distribution in unconnected purlin flange 
displacements and rotation in local x-y axes 
distance from centroid of effective purlin section to extreme outer flange 
fibre 
or midspan deflection of simply-supported beam 
midspan deflection of simply-supported beam 
distance from centre of purlin rotation to the flange-web junction divided by H 
load factor 
in-plane bending stress 
out-of-plane bending stress 

geometric element stiffness matrix 
geometric global stiffness matrix 
linear elastic element stiffness matrix 
second order element stiffness matrix 
linear elastic global stiffness matrix 
element restraint matrix 
global restraint matrix 

vector of forces in local x-y axes 
vector of joint displacements in local x-y axes 
vector of joint displacements in global X -Y axes 

APPENDIX C. TABLES 

(1 kN = 2251b, 1 N/mm2 = 1451b/in.2 , 25.4mm = 1 in.) 

k Per .P" Pcr/Pb 
(N/mm2 ) (kN) (kN) 

0.00 242.19 242.19 1.00 
0.01 299.00 291.83 1.03 
0.02 335.21 341.49 0.98 
0.03 398.07 391.13 1.02 
0.04 441.08 440.77 1.00 
0.05 480.44 490.43 0.98 
0.06 539.51 540.07 1.00 
0.07 591.28 589.73 1.00 

Table 1: Comparison of Buckling Loads of a Beam with Axial Compressive Loading 
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k Per Pb Pcr/Pb 
(N/mm2 ) (kN) (kN) 

0.00 499.96 499.54 1.00 
0.01 573.23 597.09 0.96 
0.02 672.74 692.83 0.97 
0.03 772.28 786.66 0.98 
0.04 882.04 878.61 1.00 
0.05 968.75 968.59 1.00 
0.06 1051.16 1056.52 0.99 
0.07 1144.56 1142.31 1.00 

Table 2: Comparison of Buckling Loads of a Beam with Distributed Axial Compressive Loading 

k YH Y YH/Y 
(N/mm2 ) (mm) (mm) 

0.0001 0.407 0.407 1.00 
0.018 0.405 0.406 1.00 
0.027 0.403 0.404 1.00 
0.055 0.400 0.400 1.00 
0.061 0.399 0.399 1.00 
0.085 0.396 0.396 1.00 
0.090 0.395 0.395 1.00 

Table 3: Comparison of Deflections of a Beam with Uniformly Distributed Gravity Loading 

k YH Y YH/Y 
(N/mm2) (mm) (mm) 

0.0001 0.407 0.407 1.00 
0.018 0.405 0.405 1.00 
0.027 0.404 0.404 1.00 
0.055 0.400 0.400 1.00 
0.061 0.400 0.399 1.00 
0.085 0.397 0.396 1.00 
0.090 0.396 0.396 1.00 

Table 4: Comparison of Deflections of a Beam with Uniformly Distributed Gravity and Axial 
Compressive Loading 
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(i) (ii) (iii) 

Distorted (D) section model 

IDmodel 

(i) (ii) (iii) 

Undistorted (U) section model 

Fig.lea) D and U Section Models for a Z-section 
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(i) (ii) 

Distorted (D) section model 

(i) (ii) 

Undistorted (U) section model 

(iii) 

\ 
\ 
\ 
\ 
\ 
\ 
\ 

b~>\ 

(iii) 

Fig.l(b) D and U Section Models for a Channel 

D model 
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x=x[1 - b--f>YZ 
I 
I 

~Zz 

(b) Correct stress distributions 

Fig.3 Thomasson Beam-Column Sections 
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FxA 

Deformed 
Position 

~\ '-- XA 
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Initial 
position 

YB 

x 
~ 

xB 

AB=L 

Fig.5 Element Forces and Joint Displacements 



p= 1000N 
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7000mm 

P = 1000N x 
------C> 

Simply supported beam 

Continuous elastic foundation 

(a) Axial compressive loading 

7000mm 

"I x 
------C> 

Simply supported beam 

Continuous elastic foundation 

(b) Distributed axial compressive loading 

Fig.6 Buckling of a Beam on an Elastic Foundation 
(1 N = 0.225 lb., 25.4 mm = 1 in.) 
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5000mm 

X 
------1:> 

Continuous elastic foundation 
of stiffness k 

(a) Uniformly distributed loading 

5000mm 

Continuous elastic foundation 

(b) Combined uniformly distributed 
and axial compressive loading 

Fig.7 Deflection of a Beam on an Elastic Foundation 

(1 N = 0.225 lb., 1 N/mm = 5.71b/in., 25.4 mm = 1 in.) 
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4 

• Av.G3&G5 
• Av. G15 & G17 
... Analysis, k=0.018 

3 

2 

1 

Vacuum rig test failure load 2.58 N/mm 

O __ ----------~--------~----------~----------~ o 20 40 60 

Lateral Displacement Unconnected Flange (mm) 

Fig.10 Comparison of Second Order Analysis with 
Vacuum Rig Test for Wind Uplift Loading 

(1 N/mm = 5.7Ib/in., 25.4 mm = 1 in.) 
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4.----------------------------------------, 

3 

2 

• Av.G3&G5 

• Av. G15 & G17 

1 
... Analysis, k=0.018 

O~~------~----------~--------~----------~ o 10 20 30 
Lateral Displacement Unconnected Flange (mm) 

Fig.13 Comparison of Second Order Analysis with 
Vacuum Rig Test for Gravity Loading 

(1 N/mm = 5.7Ib/in., 25.4 mm = 1 in.) 
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