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INTRODUCTION 

Farm grain storages (bins) are often constructed in the shape of 

cylindrical cantilever shells using cold formed steel sheets. Their 

diameters are normally in the range of 10 to 40 feet and their heights 

correspond to one time to twice the diameter. They are subjected 

to axially symmetric pressures exerted by stored materials as well as 

to non-symmetric loading due to wind or eccentric discharge of the 

stored grain. 

The present design of these bins follows a very simplified 

approach which is only adequate in dealing with the cases of symmetric 

loading since it accounts for the membrane forces only. However, 

bending moments are developed in the shells because of the axially 

non-symmetric loadings. 

The bending state of cantilever cylinders was examined for 

isotropic shells (4, 5, 7, 10). Similar studies are needed for 

cantilever shells made of cold formed steel sheets in order to 

improve the desiqn of the grain bins. It follows that the invest-

igation presented here is focused on cantilever orthotropic cylindrical 

shells made of cold formed steel sheets and subjected to axially 

non-symmetric loadings. This analysis is approximate, it is based 

on Vlasov's approach in which the longitudinal bending and twisting 

moments are neglected (11). 

LOADING 

The present investigation deals mainly with cantilever ortho­

tropic shells subjected to wind loading and to change in pressure 
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as a result of eccentric discharge of the stored solids (6). This 

loading is axially non-symmetric (Figs. la, b, c) and acts in the 

Z-direction only (p~ ~ px ~ 0). It can be presented analytically 

in the following form of Fourier's series: 

p l: 
m=l, 3, 5 

l: 
n=O,l,2 

x cos n<P 

in which p = the maximum positive. int.ensi ty of load; qm, qn = 

(l) 

constants governing the distribution of loading in the vertical and 

horizontal directions, respectively; they are given as follows: 

(a) Wind Loading (10): 

~= 0,1,2, . .. 
-0.387, 0.338, 0.533, 0.471, 0.166, 

-0.066, -0.055 (2a) 

and 

4 
qm~ l, 3, ... mn (2b) 

(b) Eccentric Discharge: 

4 nn 
q 
n~ 1 '3, ... 1.115 

Sln 
nn 8 (3a) 

and 

qm~1, 3 
0.667 (3b) 

GOVERNING DIFFERENTIAL EQUATIONS 

Grain bins built of cold formed steel sheets can be treated as 

cylindrical shells made of orthotropic material in which the 
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mechanical properties are equal to the average properties of the 

sheets (1). The behaviour of these shells is adequately governed 

by the following differential equations (8) : 

D 
X 

D</J 

B</J 

+ 

2 
(~ 

aq,2 

4 
(~ + 

aq,4 

+ 

aw 
~) + Dxq, 

a
2

w 
2 + 

aq,2 

a
2

u a2 

< axaq, + _::___'~[) 

ax
2 

a
4

w 
W) + B + 

X 
ax

4 

2 (~-R D</J aq, 

- R2 pq, 

a4
w 

2 Bxq, 
ax

2
aq,

2 

W) 
4 

R p 
z 

(4a) 

(4b) 

(4c) 

in which x =non-dimensional coordinate = actual length, x, divided by 

the radius, R; Dx' Dq, =axial rigidity in the x- and q,- directions, 

respectively; Dxq,= the shear rigidity in the x q,- plane; Ex and Bq,= 

bending rigidity in the xz- and <jlz- planes, respectively; Bxq, = 

torsional rigidity; and Px' Pq,, and P
2 

=external loading per unit 

area of the middle surface acting in the x-, ¢- and z- directions, 

respectively; u, v and w displacement in the x-, q,- and z-direction 

respectively (Fig. ld). 

The internal force components can be calculated as follows: 

D</J 
(~ ~ 

2 

Nq, - W) (W + ~) (Sa) 
R aq, R3 aq,2 

D 
au 

N 
X 

(Sb) 
X R ax 

D 
(~ av) N N 2! + (Sc) x<jl <jlx R aq, ax 
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2 
(w + ~) 

3<)>2 

3
2

w 

3x 
2 

The longitudinal bending rigidity Bx and torsional rigidity 

931 

(Sd) 

(Se) 

(Sf) 

Bx<j> of grain bins are normally too small when compared to the bending 

rigidity B <I>. This observation enhances the confidence to utilize 

Vlasov's approximation in which the longitudinal bending moment, Mx, 

and the twist, Mx<j>' are neglected. Thus, 

2 
- R 0 

0 

accordingly, Eq. 4C takes the following simplified form: 

+ + w) R
2 3v 

D<j> <a;p- w) 

while Eqs. 4a and b remain unchanged 

BOUNDARY CONDITIONS 

The bin is attached to the foundation therefore: 

at X 0 w v 0 

and u 0 

Along the upper edge, the axial force Nx (due to lateral loading) 

(6a) 

(6b) 

(4d) 

(7a) 

(7b) 
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should disappear; i.e. 

at X 
H 

R 
N 

X 
0 (7c) 

The upper edge of the shell is connected to an edge member and to a 

conical roof. This roof system provides partial restrain to the upper 

edge of the shell. Therefore, two extreme cases are considered with 

regard to the remaining condition around the upper edge: 

(a) Completely flexible edge: 

at X 

or 

H 

R 
N 

x<)> 

(b) Completely restrained edge: 

0 

In this case the top section remain circular. It can undergo 

displacement only parallel to the q, 0 direction (without 

distortion) i.e. 

at X 
H 
R:· 0 

Note here that the differential equations, Eqs. ~Ja, b, dare 

(7d) 

(7c) 

formulated on the assumption that the moment Mx and the shear force 

Qx are equal to zero throughout the shell as well as along thc edges. 

SOLUTION 

The loading P
2 

can be written as follows: 

p 
z 

p 
zO 

+ p 
zl 

cos q, + l: 
n=2,3,4 

P cos ncb 
zn 

(B) 

in which Pzo' Pzl and P
211 

=functions of x only. Separate solutions 

are to be obtained for each of the terms of loading given in Eq. 8 
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depending on the magnitude of n. 

(a) Load Component With n = 0 

The load here is independent of the angle~. i.e. it is axially 

symmetric and the solution is: 

w p 
zO 

(b) Load Component With n 

The loading: 

p zl cos ~ 

2 
in which n 

m 
mn R 

H 

z 
l 1315 

sin n x 
m 

(9) 

(10) 

The corresponding deflection takes the form of a single cosine 

wave in the ~-direction, i.e. f(x) cos ~. TI1erefore: 

a4w 3
2

w 
Brjl (- + 2 + w) 0 

:l</>4 dq,2 
(lla) 

and also 

B a2w 
H</> 

_ _j_ 
(w + -) 0 

R2 aq,2 
(llb) 

Accordingly, the shell is subjectecl to a state of pure membrane 

forces, and the governing equations can be written as follows: 

oN aN 
X ~ -ax- + 0 

aq, 
(l2a) 

3N~ 3N 
X~ 

~ 
+ ~ 0 (l2b) 
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and -R p zl (l2c) 

Eqs. l2a, b, care integrated considering the loading P
21 

as given in 

Eq. 10 and the boundary conditions, Eqs. 7. This leads to the 

following expressions for the internal force components. 

N<j> -R p qn~l cos <j> l: 
m~l,3,5 

sin <j> l: N R p qn~l xq, 
m=l,3,5 

<j> I: N -R p qn~l cos 
X 

m=l,3,5 

and the displacement components: 

u 

v 

l 
+-

Tl 
m 

(cos Tl x - l)) 
m 

l: 
m~l,3,5 

1: R2 . "' p qn~l s1n "' 
rn:::::l,3,5 

m-1 
2 q 

2 l m 
[ (-1) 

X 
-+ 

2 2 Tl 
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qm 
cos 

n m 
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2 
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m 

n X 
m 
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X 
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Tl m m 
m 
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4 
2 
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B<j> m m 

m 2 
Tl 
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m 

D<j> D -- 2 
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(-1) 
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m 
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+ 
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(l4a) 

(l4b) 

( 14c) 
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in which It _l 
2 

R D</> 

(c) Load Components With n > l 

Particular Solution: 

To satisfy the differential equations, Eqs. la, b, d but not all 

boundary conditions. 

w ); [ A sin n X cos n</> (lSa) 
p mn m 

n m 

v l: l: B sin n X sin ncp (lSb) 
p mn m 

n m 

u l: l: c cos n X cos n¢ (l5c) 
p mn m 

n m 

Amn, Bmn and Cmn are constants calculated by substituting Eqs. lSa, b 

and c in the governing equations, Eqs. la, b, d: 

B 
mn 

c 
mn 

A 
mn 

in which: 

K 
mn 

2 
n 

K 
mn 

l 
n 

n nm 

D 
X 

+ --D 
x¢> 

B 
mn 

{n 
2 

- n 

B 

2 
nm 

n m 

D Dx¢ (n ~ 2 
+ n + 

D</> m D</> 
(n2 + 

(l6a) 

(l6b) 

(l6c) 

n) 
2 

m 
(l6d) 

D 
X n2) 

Dx<P m 

The particular solution given by Eqs. 15 - a to c does not satisfy all 
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the boundary conditions. A homogenous solution is added so that the 

sum of the two solutions can satisfy all boundary conditions. 

Homogenous Solution: 

w A eyx cos n<jl (17a) 

v B eYx sin n<jl (17b) 

u c eYx cos n<jl (17c) 

A and B are real while C and y could be complex numbers. 

Eqs. 17a, b, c are substituted in the governing equations, Eqs. 4a, 

b, d, after replacing Pz' Px and P<P by zero. A non-trivial solution 

of the resulting homogenous system of equations is governed by the 

following characteristic equation: 

4 2 
y - y r2 n2 (n2 - 1) 2 

1 + r2 (n 2 - l) 2 
+ 

D<jl 

D 
X 

The resulting roots are: y ± ex .t i S 

r2 n4(n2- 1)2 

1 + ncn 2 - 1) 2 
0 (18a) 

(18b) 

a and S can be calculated using the formulas given in reference (2) 

and the homogenous solution can be written with four integration 

constants as follows: 

ax 
w /. cos n<P {e (K1 cos Sx + K 2 sin Sxl 

n~2,3,4 

v 

-ax 
+ e (K 3 cos Sx + K 4 sin 13 x ) } (19a) 

sin Sx) 
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+ 
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in which 

a 

b = a 
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sin Sxl } 

I: cos n¢ {K1 
n=2,3,4 

ax 
e (a cos Sx - b sin Bxl 

-ax 
(b cos Sx + a sin Sxl - K3 e (a cos Sx + 

sin 
-ax 

Sxl + K 4 e (b cos Sx - a sin Sxl} 

3 2 (B 3 - 3 a 2 B l 2 
D {(a - 3aS ) + 

x (a~-3ai3 2 ) 

The four constants K1 , K2 , K3 and K4 are calculated by satisfying 

937 

(l9b) 

(l9c) 

(20a) 

(20b) 

the boundary conditions, Eqs. 7a, b, c and d or e. Note here that 

the formulation of both particular and homogenous solution lead to 

one condition with regard to v = w = 0 at x = 0. Accordingly, the 

four integration constants can satisfy all boundary conditions. 

OBSERVATIONS 

1. A comparison is presented in Figs. 2a, b between the results 

obtained using the present approximate analysis for isotropic shell 

(as a special case of orthotropic shells) and the more rigorous 

analysis of isotropic shells reported in reference {4). It shows 
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that small differences exist between the two solutions. Improved 

results are anticipated when applying the present solution to 

orthotropic shells in which the rigidity in the x-direction is small 

compared to that in the ¢-direction. 

2. A general program is written on IBM 360/50 computer of the 

University of Windsor. The analysis is conducted for loadings due 

to wind as well as due to eccentric discharge. Both cases of 

flexible and rigid top edges are considered. The results of the 

. H . _l_ 
analysis arc dependent mainly on the ratlOS 0¢/Dx, Rand on 11 = 

R
2

o<jl 

The ratio D<P/Dx¢ is also encountered in the program, however, nu­

merical solutions show that it has negligible effects on the results. 

This ratio can be replaced by a constant value (say 2. 76 as in the 

case of corrugated steel sheets). 

3. An example is calculated for a shell made of standard corrugated 

steel sheets with the following properties: 

l!cighl of the shell H 38.1 ft. 

Diameter of shell 2R 25.4 ft. 

Depth of corrugation 2f 0.625 in. 

Thickness of sheet t 0.03 in. 

The rigities are calculated using the formulas outlined in reference 

(l) leading to the following input data to the computer program: 

2. 76' 
D¢ 

D 
X 

246, 
H 
R 

3.0' 
-6 

8. 78 X 10 

Figs. 3a, b show the maximum value of M¢ along the generator of the 
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shell. They also show that the conditions at the top edge (flexible 

or rigid) have considerable effect on the bending moment M~ in the 

case of wind loading. However, these conditions become insignificant 

in the case of eccentric discharge since the maximum pressure is 

acting at one third of the height and reduces to zero at the top 

(Fig. lc). 

4. The maximum value of the bending moment M~ can be calculated 

using the following formula: 

in which p = the maximum positive wind pressure or the maximum 

change in the horizontal pressure due to eccentric discharge. The 

D~ 
factors 0 are calculated for different ratios of ~and 

D R 
X 

and are presented for practical use in Figs. 4a to d. 

CONCLUSION 

Analysis is presented for orthotropic cylindrical cantilever 

shells. The differential equations are based on Vlasov's approxi-

mation in which the longitudinal bending moment and twisting moment 

are neglected. 

Contrary to the semi-membrane theory, the membrane strains, 

E~ and yxy are not ignored. This approximation is adequate for 

cantilever cylindrical shells especially when the bending rigidity 

in the longitudinal direction is too small as in the case of shells 

made of cold formed steel sheets. 
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The encountered characteristic equation is of the 4th order. 

Expressions are obtained in closed form for the displacements from 

which the internal force components can be calculated. Also, curves 

are given for practical use for calculating the ring moment, M¢. 
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APPENDIX A - NDIATIONS 

bending rigidity in xz and ~z planes, respectively; 

torsional rigidity; 

corrugation pitch; 

axial rigidity in x and ~-directions, respectively; 

shear rigidity in x q, plane; 

modulus of elasticity for isotropic material; 

half depth of corrugation; 

height of shell; 

half length of corrugation; 

bending moment per unit length acting in xz and q,z 
planes, respectively; 

torsional moment per unit length acting about q, and 
x-axis, respectively; 

root of characteristic equation; 

941 

axial force per unit length acting in x and ¢-direction, 
rcSlJCctively; 

shear force per unit length acting in x~-plane; 

external loading per unlt area of middle surface 
acting in x, ~~ and z-dircctions, respectively; 

lateral shear force per unit length acting perpendicular 
to x and ~-axis, respectively; 

radius of shell; 

average thickness of corrugated sheet; 

displacement in x, ¢, z directions, respectively; 

axial strain in x and 4> directions, respectively; 

shear strain in xcp plane; 

mrr R 
2 H 
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]J Poisson's ratio of material; 

axial stress in x and ¢-directions, respectively; 

shear stress in x¢-plane; 
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