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DESIGN VS. TEST RESULTS 
FOR STEEL DECK FLOOR SLABS 

M. L. Portera and C. E. Ekberg, Jr.b 

INTRODUCTION 

An extensive experimental and theoretical investigation of steel-deck-

reinforced floor slabs was undertaken in 1967 at Iowa State University 

(ISU) under the sponsorship of the Arne an Iron and Steel Institute (AISI). 

To date, 353 full-scale specimens have been tested. See Ref. 3 for a 

summary of tests. An over-view of the types of specimens tested was 

presented at the First Specialty Conference on Cold-Formed Steel Structures 

[41- The majority of tests have been one-way slab elements as shown in 

Fig. 1. The results of some of these full-scale experimental tests will 

be utilized in this paper for illustrating a comparison with design 

recommendations. 

Design recommendations for steel-deck-reinforced floor slabs are 

contained in the latest American Iron and Steel Institute's draft entitled 

"Tentative Recommendations for the Design of Composite Steel Deck Slabs" 

and Commentary. Another paper by the same authors at this Third Specialty 

Conference presents some of these tentative design recommendations [5], 

and an additional paper by T. J. McCabe presents an example design utilizing 

the recommendations L2J. The purpose of this paper is to present results 

aAssistant Professor, Civil Engineering Dept., Iowa State Univ., Ames, Iowa. 

bProfessor & Head, Civil Engineering Dept., Iowa State Univ., Ames, Iowa. 
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794 THIRD SPECIALTY CONFERENCE 

of the computations utilizing the design predictions recommended for the 

shear-bond capacity of steel deck slabs as compared with experimental 

data. In addition, end-slip and deflection behavioral characteristics 

associated with a shear-bond failure mode are presented. 

L 

Fig. 1. Typical arrangement for testing one-way slab elements. 

SHEAR-BOND END-SLIP BEHAVIOR 

Most steel-deck-reinforced floor slabs fail by the shear-bond mode 

of failure. This failure mode is characterized by the formation of a 

diagonal tension crack in the concrete at or near one of the load points 

followed by end-slip at one end of a one-way slab element as described 

previously LS~. A photograph illustrating this displacement between 

the steel decking and concrete at one end-face is shown in Fig. 2. The 

shear-bond failure observed from the experimental tests was typically 

rather sudden, with the concrete moving horizontally, overriding or 
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Fig . 2 . Photograph of end-slip after failure of a one-way slab element . 

failing the shear transferring device, which consisted of embossments, 

spot-welded wires, or concrete protruding through holes in the steel 

deck. 

Typical load -displacement relationships for end-slip are given in 

Fig. 3. Most steel deck systems do not experience end-slip until reaching 

the ultimate load, as illustrated by the relationship on the left in 

Fig. 3. However, some systems may experience end-slip prior to ultimate, 

as shown by the load-displacement plot on the right in Fig . 3. 

Additional behavioral displacement information will be presented 

later in this paper. 
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~ig. 3. Typical load-displacement relationships for end-slip . 

SHEAR-BOND DESlGN FORMULATION 

As previously described L; j , a series of perforn~nce tests, like 

those in Fig. l, is necessary to properly establish a relationship for 

strength involving significant: parameters affecting the shear-bond capacity. 

Since the above described slippage be~een the concrete and the steel 

deck occurs a long the region of the shear-span length, r.' , as shown in 

Fig. l, a primary parameter for shear-bond computation is L
1

• Other 

important parameters include the following: 
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1. ultimate experimental end shear, Ve = Pe/2bd; 

2. reinforcement percentage, p = As/bd; 

3. cross-sectional area of steel deck, As; 

I 

4. concrete strength, fc; 

5. specimen width, b, and effective depth, d; and 

6. center-to-center spacing of shear transferring devices, s, 

797 

where such devices are variable from one deck section to another, 
such as holes or transverse wires. For those devices having a 
fixed pattern, such as embossments, s is taken as unity. 

Utilizing the shear formulation as contained in the ACI Building 

Code [1], the above parameters can be combined to form the terms V s/bdVfO 
e c 

and pd/L'Vf', plotted as y- and x-coordinates, respectively, for the 
c 

performance test series as demonstrated in Fig. 4. To obtain the neces-

sary strength relationship, a linear regression is obtained for the 

plotted points. 
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those in the laboratory, the regression line is reduced by -15 percent 

to obtain the design slope, m, and intercept, k. Thus the computed shear-

bond capacity, Vu' is found from 

V us mPd 
bdY£7 = l:Vf' + k 

c c 
(l) 

where the non-reduced value of the slope of the regression line is given 

by 

m 
nL:xy -L:x.Cy 

nL:x 2 
- (L:x) 2 

and the non-reduced value of the regression line intercept is given by 

k 
L:y :c:x2

- L:x iXY 

ni:x2
- (I: X) 

2 

Equation (1) has been found to be valid for all the various means 

of shear transfer for steel decks currently manufactured. Since each 

steel deck configuration has a different regression plot, a separate 

determination of m and k in Eq. (1) is a necessity for each different 

steel deck cross section. 

Examples of the plot from Fig. 4. for Eq. (1), utilizing strength 

data from tests of slabs constructed with various deck types, are shown 

in Figs. S-8. Each of these figures represents a linear regression for 

a different steel deck type. Lines representing plus or minus 15 percent 

deviation intervals from the regression line are shown as an aid in 

determining the spread of the data. Figures 5-8 are representative of 

results obtained from Eq. (l) and provide a quantitative measure of the 

accuaracy of this equation in predicting the ultimate shear force for 

slab elements where the shear-bond mode of failure governs. 
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In some instances, a significantly different equation determination 

can be made for each gage thickness of the same steel deck cross section. 

The diagrams in Fig. 5 indicate there is a definite change in the re

gression constants m and k as gage thickness changes. A composite dia

gram shown in Fig. S(c) illustrates a much greater scatter for a regres

sion of the combined gage thickness. This greater scatter (to a lesser 

degree) is illustrated in Figs. 6 and 8. Figure 7 indicates litt'le or 

no influence of gage thickness on the constants m and k. For those 

steel decks where gage thickness significantly influences the regression 

constants m and k, separate equation determinations should be made for 

each gage thickness to more accurately predict the ultimate shear capacity. 

In addition to the steel deck configuration and gage thickness, a 

separate regression equation determination may be needed for other significant 

variables not accounted for in Eq. (1). For example, the shear-bond 

capacity is dependent upon the surface coating of the steel deck. If more 

than one coating is used, then an additional equation determination is 

necessary unless the m and k constants for the more conservative (lower) 

shear values are used. An additional example of where a separate 

determination may be needed is for lightweight versus normal weight 

concretes, unless the more conservative results are used for both concrete 

types. 

SHEAR-BOND DESIGN EQUATIONS 

As previously described .s", Eq. (l) can be re-written for design in 

the following form to give the calculated ultimate shear, Vu in pounds 
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per foot of width: 

v ¢ [ l;d (!"Pd + k./£7---) + ~lL J (2) 
u L' c 

where ¢ shear-bond capacity reduction factor = 0.80 

y portion of dead load added upon removal of shear, see Ref. 2 

wl slab dead load, psf 

Utili?:inG the load ~actors in the ACI Building Code [ 1], the allowaale 

superimposed live load (LL) in pounds per square foot is: 

LL (3) 

where L span length, feet 

dead load applied to· slab exclusive of w
1

, psf. 

EXAMPLE RESULTS OF SHEAR-BOND PREDICTIONS 

Based upon design Eqs. (2) and (3), several illustrative examples 

will be presented. As a means of indicating the validity of the predicted 

results, the experimental load-deflection relationships for slab elements 

constructed with 16, 18, and 20 gage deck will be utilized. See Figs. 9 

and 10. The experimental deflections were measured at midspan and 

represent the maximum vertical displacement at each applied loading 

increment. Indicated on each curve is a horizontal line corresponding to 

the allowable live load (ALLOW LL) as obtained from Eq. (3). The constants 

m and k in Eq. (2) were obtained from linear regressions shown in Fig. 11, 

where data from tests on slab elements is plotted separately according to 

gage thickness. All specimens in Figs. 9-11 were reinforced with a 
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three-inch deep steel deck having embossments as the means of shear 

transfer between the deck and concrete. The nominal width and out-to-

out depth of all specimens was 36 in. by 5-l/2 in. and the lengths varied 

from 6 to 16 feet. The concrete had an average compressive strength 

of approximately 4,000 psi. Other pertinent data used in Eqs. (2) and 

(3) is indicated in Figs. 9-ll. 

As can be seen, each of the predicted allowable live load values in 

Figs. 9 and 10 falls just above the upper limit of the straight-line 

portion of the load-deflection curves. Thus, the computed live load in 

all cases provides good results in comparison to the ultimate and 

behavioral test data and provides a consistant and reasonable margin of 

safety for all the test members. 

Figure 9 gives examples of load-deflection behavior for specimens 

reinforced with the same gage thickness of steel deck, but with varying 

shear spans and span lengths. It is evident that the behavior changes 

considerably from a short shear span to a long shear span. The slab 

elements exhibit considerable stiffness with little nonlinearity when the 

shear-span is short. However, the long shear-span ( and span length) 

induces much more ductility and considerable nonlinearity. It is 

significant that the computer allowable live load (ALLOW LL) provides 

consistent results for each type of load-deflection relationship, i.e., 

decreasing load with increasing shear span and span length. 

Figure 10 gives load-deflection relationships for specimens reinforced 

with three different gage thicknesses of steel deck, but having the same 

shear span and span length. As expected, the ultimate load decreases 
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with decreasing thickness of steel deck reinforcing. Also, the nonlinearity 

increases slightly with decreasing thickness of the steel. Again, it is 

significant that the predicted live load provides consistent results, i.e. 

decreasing load with decreasing steel thickness. 

Figures 9 and 10 include a vertical line indicating the allowable 

1 
deflection limitation of 

360 
of the span length. As can be seen the 

load-deflection behavior is a fairly straight-line relation to the left 

of this allowable deflection limitation. In addition, the 3~0 of the 

span length limitation is significant in comparison with the computed 

allowable live load. In most cases the allowable LL value was close to 

or within the 3 ~0 limitation, indicating somewhat of a "balanced" design 

with respect to deflections. 

CONCLUSIONS 

1. All simple span slab elements failing by a shear-bond mode of 
failure exhibit end-slip between the steel deck and concrete. 

2. Most steel-deck-reinforced slab systems exhibit end-slip upon 
reaching the ultimate failure load. 

3. Plots of the terms V s/bdJ~ and pd/L'Jf~ 
reasonable linear re~ressiog relati0nship~ 
equation can be written for predicting the 
shear-bond. 

give consistent and 
from which a design 
maximum load for 

4. On the basis of load-deflection data, it is apparent that the 
recommended design equations for shear-bond provide a consistent 
margin of safety. 
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APPENDIX - NOTATION 

Cross-sectional area of steel deck where used as tension 
reinforcement, in.2/ft of width 

Width of slab 

811 

Effective slab depth (distance from extreme concrete compression 
fiber to centroidal axis of the full cross-sectional area of 
the steel deck), in. 

28-day compressive test cylinder strength, psi 

Intercept of regression line 

Length of span, ft. 

Allowable superimposed live load for service conditions, psf 

Length of shear span, in. 

Slope of regression line 

Center-to-center spacing of shear transfer devices other 
than embossments, in. 

Calculated ultimate shear based on shear-bond failure, 
lb/ft of width 

Weight of slab (concrete plus steel deck), psf 

Dead load applied to slab, exclusive of w1 , psf 

Coefficient depending on support during curing 

Capacity reduction factor 

Reinforcement ratio, A /bd 
s 
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