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PREFACE 

RACK MANUFACTURERS INSTITUTE 

The Rack Manufacturers Institute (RMI) is an independent incorporated trade association 
affiliated with the Material Handling Industry.  The membership of RMI is made up of 
companies which produce the preponderance of industrial storage racks.   

MATERIAL HANDLING INDUSTRY 

Material Handling Industry (Industry) provides RMI with certain services and, in connection 
with this Specification, arranges for its production and distribution.  Neither Material 
Handling Industry, its officers, directors, nor employees have any other participation in the 
development and preparation of the information contained in the Specification. 

All inquiries concerning the Specification should be directed in writing to the RMI 
Engineering Committee, 8720 RED Oak Boulevard, Suite 201, Charlotte, NC 28217 

SPECIFICATION - HISTORY 

In the interest of improved uniformity of rack performance and enhanced public safety, the 
RMI published in 1964 its first “Minimum Engineering Standards for Industrial Storage 
Racks.” and now publishes this Specification. 

Since 1964, mechanized storage has developed very rapidly in size and height of installations 
and new or modified types of racks have been developed.  To reflect this rapid development 
and to assure adequate safety and performance of modern rack installations, the RMI decided 
early in 1971 to replace its original standards by a more detailed and comprehensive 
specification.  Professors George Winter and Teoman Pekoz of Cornell University were 
retained to assist the Rack Standard Development Project Committee in producing such a 
document.  The members of The Material Handling Institute, Inc. were the sponsors. 

In 1972, the “Interim Specification for the Design, Testing and Utilization of Industrial Steel 
Storage Racks” was adopted by the Rack Manufacturers Institute at their annual fall meeting.  
The specification was then submitted to the American National Standards Institute for their 
review and acceptance. In 1974, the Interim Specification with minor changes was accepted 
as an American National Standard and was identified as ANSI MH 16.1-1974. 

The Rack Manufacturers Institute together with its sponsors from the Material Handling 
Institute, Inc., retained Professors Winter and Pekoz to test rack components as well as to 
perform full scale tests of storage racks at Cornell University.  A number of the test results 
have been analyzed, and it was considered necessary to rewrite the 1972 Interim 
Specification to include the knowledge gained from the analysis of those tests.  The 1972 
Interim Specification was rewritten by the Rack Standards Subcommittee with the assistance 
of Professors Winter and Pekoz.  Specifications relating to drive-in and drive-through racks 
have been removed from the Specification until drive-in and drive-through rack test results 
can be analyzed more thoroughly; perhaps more testing may be required.  Movable shelf 
racks have been included. 



As a result of additional testing and analytical research, RMI revised the 1972 Specification 
resulting in the 1979 Edition.  ANSI MH 16.1-1974 was withdrawn in deference to the 1979 
Edition.  Another revised edition of the RMI Specification was published in 1985. 

Subsequent testing and research by Professor Pekoz sponsored by the RMI was the basis of 
the changes in this 1990 Edition.  It was developed and promulgated by the RMI with the sole 
intent of offering information to the parties engaged in the engineering, manufacturing, 
marketing, purchasing, installation or use of such racks. 

To update the 1990 edition, specifically as it relates to seismic and model code issues, the 
Specification Advisory Committee, the Seismology Committee and the RMI Engineering 
Committee worked again with Pekoz and several highly regarded members of the code 
community.  Various other members of similar groups throughout the world were consulted 
to support this work.   

Over the period 1990-1997, RMI continued to conduct extensive physical testing and 
parametric analysis.  The result was the development of the 1997 edition. 

In addition to the state-of-the-art benefit from the ongoing testing/analysis, the 1997 edition 
was expanded to include complete treatment of seismic design considerations more easily 
allowing its incorporation by reference into various code documents. 

The objective is to move the 1997 edition forward as an American National Standard via the 
canvass process. 

SPECIFICATION - 1997 EDITION 

The use of this Specification is permissive, not mandatory.  Voluntary use is within the 
control and discretion of the user and is not intended to, and does not in any way limit the 
ingenuity, responsibility or prerogative of individual manufacturers to design or produce 
industrial steel storage racks which do not comply with this Specification.  RMI has no legal 
authority to require or enforce compliance with the Specification.  The advisory Specification 
provides technical guidelines for the user to specify his application.  Following the 
Specification does not assure compliance with applicable federal, state, or local regulations 
and codes.  The Specification is not binding on any person and does not have the effect of 
law. 

The RMI and Industry does not take any position regarding any patent rights or copyrights 
which could be asserted with regard to this Specification and does not undertake to ensure 
anyone using the Specification against liability, nor assume any such liability.  Users of the 
Specification are expressly advised that determination of the validity of any such copyrights, 
patent rights, and risk of infringement of such rights is entirely their own responsibility. 

In the interest of safety, all users of storage racks are advised to regularly inspect and 
properly maintain the structural integrity of installed storage rack systems by assuring proper 
operational, housekeeping and maintenance procedures 

Users of the Specification must rely on competent advice to specify, test or design 
applications or uses.  This Specification is offered as a guideline.  If a user refers to, or 
otherwise employs, all or any part of the Specification, the user is agreeing to follow the 
terms of indemnity, warranty disclaimer, and disclaimer of liability. 

 



DISCLAIMERS AND INDEMNIFICATION 

DISCLAIMER OF WARRANTY:  RMI AND INDUSTRY MAKE NO 
WARRANTIES WHATSOEVER IN CONNECTION WITH THIS 
SPECIFICATION.  THEY SPECIFICALLY DISCLAIM ALL IMPLIED 
WARRANTIES OF MERCHANTABILITY OR FITNESS FOR PARTICULAR 
PURPOSE.  NO WARRANTIES (EXPRESS, IMPLIED, OR STATUTORY) ARE 
MADE IN CONNECTION WITH THIS SPECIFICATION. 

DISCLAIMER OF LIABILITY:  USER SPECIFICALLY UNDERSTANDS AND 
AGREES THAT RMI, INDUSTRY, THEIR OFFICERS, AGENTS AND 
EMPLOYEES SHALL NOT BE LIABLE IN TORT AND IN CONTRACT-
WHEATHER BASED ON WARRANTY, NEGLIGENCE, STRICT LIABILITY, 
OR ANY OTHER THEORY OF LIABILITY-FOR ANY ACTION OR FAILURE 
TO ACT IN RESPECT TO THE DESIGN, ERECTION, INSTALLATION, 
MANUFACTURE, PREPARATION FOR SALE, SALE, CHARACTERISTICS, 
FEATURES, OR DELIVERY OF ANYTHING COVERED BY THIS 
SPECIFICATION.  BY REFERRING TO, OR OTHERWISE EMPLOYING, THIS 
SPECIFICATION, IT IS THE USER’S INTENT AND UNDERSTANDING TO 
ABSOLVE AND PROTECT RMI, INDUSTRY, THEIR SUCCESSORS, ASSIGNS, 
OFFERS, AGENTS, AND EMPLOYEES FROM ANY AND ALL TORT, 
CONTRACT, OR OTHER LIABILITY. 

INDEMNITY:  BY REFERRING TO, OR OTHERWISE EMPLOYING, THIS 
SPECIFICATION, THE USER AGREES TO DEFEND, PROTECT, INDEMNIFY, 
AND HOLD RMI, INDUSTRY, THEIR SUCCESSORS, ASSIGNS, OFFICERS, 
AGENTS, AND EMPLOYEES HARMLESS OF, FROM AND AGAINST ALL 
CLAIMS, LOSSES, EXPENSES, DAMAGES AND LIABILITIES, DIRECT, 
INCIDENTAL OR CONSEQUENTIAL, ARISING FROM USE OF THIS  
SPECIFICATION INCLUDING LOSS OF PROFITS AND REASONABLE 
COUNSEL FEES, WHICH MAY ARISE OUT OF THE USE OR ALLEGED USE 
OF SUCH SPECIFICATION, IT BEING THE INTENT OF THIS PROVISION 
AND OF THE USER TO ABSOLVE AND PROTECT RMI, INDUSTRY, THEIR 
SUCCESSORS, ASSIGNS, OFFICERS, AGENTS, AND EMPLOYEES FROM 
ANY AND ALL LOSS RELATING IN ANY WAY TO THE SPECIFICATION 
INCLUDING THOSE RESULTING FROM THEIR OWN NEGLIGENCE. 
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SPECIFICATION FOR THE DESIGN, TESTING AND 
UTILIZATION OF INDUSTRIAL STEEL STORAGE RACKS 

1997 EDITION 

1. GENERAL 

1.1 SCOPE.   
This standard applies to industrial pallet racks, movable shelf racks, and stacker racks made 
of cold-formed or hot-rolled steel structural members.  It does not apply to other types of 
racks, such as drive-in or drive-through racks, cantilever racks, portable racks, etc. or to racks 
made of material other than steel. 

1.2  MATERIALS.   
This standard assumes the use of steel of structural quality as defined in general by the 
specifications of the American Society for Testing and Materials (ASTM) that are listed in 
the American Iron and Steel Institute (AISI) Specification for the Design of Cold-Formed 
Steel Structural Members [1]1, and the American Institute of Steel Construction (AISC) 
Specification for the Design, Fabrication and Erection of Structural Steel for Buildings [2]. 

Steels not listed in the above specifications are not excluded provided they conform to the 
chemical and mechanical requirements of either reference [1] or [2], or other published 
specifications which establish their properties and structural suitability, and provided they are 
subjected either by the producer or the purchaser to analyses, tests, and other controls in the 
manner prescribed by either reference [1] or [2] as applicable. 

1.3 APPLICABLE DESIGN SPECIFICATIONS.   
Except as modified or supplemented in this standard, the AISI Specification [1] and the AISC 
Specification [2,3], as respectively applicable, apply to the design and testing of industrial 
steel storage racks. 

1.4 INTEGRITY OF RACK INSTALLATIONS. 

1.4.1 Owner Maintenance 
The owner shall maintain the structural integrity of the installed rack system by assuring 
proper operational, housekeeping, and maintenance procedures including, but not limited 
to, the following: 

(1) Prohibit any overloading of any pallet positions and of the overall rack system. 

(2) Regularly inspect for damage.  If damage is found, immediately unload the affected 
area and replace or repair any damaged columns, beams, or other structural 
components. 

                                                 
1 Numbers in brackets refer to corresponding numbers in Section 10, References to the 
Text. 
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(3) Require all pallets to be maintained in good, safe, operating condition. 

(4) Ensure that pallets are properly placed onto pallet load support members in a 
properly stacked and stable position. 

(5) Require that all goods stored on each pallet be properly stacked and stable. 

(6) Prohibit double-stacking of any pallet position, including the top-most position, 
unless the rack system is specifically designed for such loading. 

1.4.2 Plaque 
All rack installations should display in one or more conspicuous locations a permanent 
plaque and each plaque shall have an area of not less than 50 square inches.  Plaques shall 
show in clear, legible print the maximum permissible unit load and/or maximum 
uniformly distributed load per level, the average unit load (PLAverage, see Section 2.7.2) and 
maximum total load per bay.  The unit load is usually a single pallet or container and its 
contents mechanically transported.  Storage levels having multiple tiering of unit loads 
shall be so identified.  It is the responsibility of the owner to insure that the rack system is 
not altered so that the plaque information is invalidated.  

1.4.3 Conformance 
All rack installations produced in conformity with this standard shall be so identified by a 
plaque having the same characteristics as specified in 1.4.2.  The same plaque may be used 
to show permissible unit loads. 

1.4.4 Load Application and Rack Configuration Drawings 
Load application and rack configuration drawings shall be furnished with each rack 
installation.  One copy should be retained by the owner and another by the dealer or other 
local representative for use by an inspecting body. 

1.4.5 Multiple Configurations 
If use of a pallet rack or stacker rack is permissible in more than one configuration, the 
drawings are to include either all permissible configurations or limitations as to the 
maximum number of shelves, the maximum distance between shelves and the maximum 
distance from the floor to the bottom shelf.  This information may be furnished in a table 
presented to the owner with the drawings referred to in 1.4.4.  If drawings are provided, a 
notice is to be included in conspicuous text on the drawings that deviations from the 
limitations may impair the safety of the rack installation.  

1.4.6 Movable Shelf Rack Stability 
The stability of movable shelf racks is not to depend on the presence, absence or location 
of the movable-shelves.  Those components which do provide stability, such as the 
permanently bolted or welded top shelves and the longitudinal and transverse diagonal 
bracing, are to be clearly indicated on the rack drawings specified in Section 1.4.4.  In 
specific movable-shelf rack installations where rack height requires it, a conspicuous 
warning is to be placed in the owners utilization instruction manual of any restrictions on 
shelf placement or shelf removal.  Such restrictions also are to be permanently posted in 
locations clearly visible to forklift operators.  
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1.4.7 Bearing Plates and Anchors 
The bottom of all columns shall be furnished with bearing plates, as specified in Section 
7.2. All racks should be anchored to the floor by anchors capable of resisting the forces 
caused by the horizontal and vertical loads on the rack.  

1.4.8 Small Installations 
For installations not exceeding 12 feet in height to the top shelf, covering a floor area less 
than 3,000 square feet (not including aisles), and having a unit load not exceeding 2,500 
pounds (no multiple stacking on top shelf), the provisions given in 1.4.2 through 1.4.5 
may be waived.  

1.4.9 Resistance to Minor Impact 
In those applications where the bottom portion of frames or columns are exposed to 
potential minor impacts from forklift trucks or other moving equipment during normal 
operations, consideration shall be given to furnishing collision protection devices and/or 
increasing the impact resistance of the exposed column members to reduce the effect of 
these minor impacts.  When impact resistance is deemed to be required by the user, the 
collision protection and/or impact resistance provisions shall be determined based on the 
operational features and equipment used in the specific application. 

Upon any visible damage, the pertinent portions of the rack shall be unloaded immediately 
by the user and the damaged portion shall be adequately repaired or replaced. 

1.4.10 Racks Connected to the Building Structure 
If the racks are connected to  the building structure, the maximum possible horizontal and 
vertical forces imposed by the rack on the building are to be calculated for the effects 
listed in 2.1 or 2.2 as appropriate and the owner of the building advised of these forces and 
their locations.  

1.4.11 Plumbness 
To assure adequate plumbness, the maximum tolerance from the vertical is 0.5 inches in 
10 feet of height.  

2. Loading 

Design shall be made in accordance with the provisions for Load and Resistance Factor 
Design (LRFD), or the provisions for Allowable Stress Design (ASD).  Both methods are 
equally acceptable although they may not produce identical designs.  However, the two 
methods shall not be mixed in designing the various elements of a storage rack structure.  

2.1 LOAD COMBINATIONS FOR THE ASD DESIGN METHOD 
When the ASD design method is used, all load combinations shall be as stated in the AISI 
Specification [1] and AISC Specification [2] as modified below for racks. 

1. DL Dead Load Critical  
2. DL + LL + (SL or RL) + PL Gravity Load Critical 
3. DL - (WL or EL) + PLapp Uplift Critical  
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4. DL + LL + (SL or RL) + (WL or EL) + PL Gravity Plus Wind/Seismic 
 Critical 

For load support beams and their connections only: 
5. DL + LL+ 0.5(SL or RL) + 0.88PL+ Imp Shelf Plus Impact Critical 

where: 
DL = Dead Load 
LL = Live Load other than the pallets or products stored on the racks.  

( Example, floor loading from work platforms) 
SL = Snow Load  
RL = Load from rain  
WL = Wind Load  
EL = Seismic  Load 
Imp = Impact loading on a shelf, see section 2.4 
PL = Maximum Load from pallets or products stored on the racks.  
PLapp = That portion of pallet or product load that is used to compute the 

seismic  base shear.  When checking for wind uplift, if loads must 
be present, to develop calculated wind force, their minimum 
weight may be included in PLapp.  See commentary. 

Cases 3 and 4 may be multiplied by 0.75.  In addition, when checking cases 3 and 4 and 
seismic forces determined from section 2.7 or another limit state base code was used EL may 
be multiplied by 0.67. 

2.2 Load Factors And Combinations For The LRFD Design Method 
When the LRFD design method is used, all load factors and combinations shall be as stated in 
the AISI Specification [1] or AISC Specification [3] with the following modifications: 

For all rack members: limit state 

1. 1.4DL + LL + 1.2PL Dead load 
2. 1.2DL + 1.6LL + 0.5(SL or RL) + 1.4PL Live/Product load 
3. 1.2DL + 1.6(SL or RL) + (0.5LL or 0.8WL) + 0.85PL Snow/Rain 
4. 1.2DL + 1.3WL + 0.5LL + 0.5(SL or RL) + 0.85PL Wind load 
5. 1.2DL + 1.5EL + 0.5LL + 0.2SL + 0.85PL Seismic load 
6. 0.9DL - (1.3WL or 1.5EL) + 0.9PL Uplift 

For load support beams and their connections only: 
7. 1.2DL + 1.6LL+ 0.5(SL or RL) + 1.4PL + 1.4 * Imp Product/Live/Impact 

 (for shelves and  
  connections)  

All load symbols, DL, LL, PL SL, RL, WL, EL and Imp are as defined in Section 2.1. 

Note:  There is no required increase in the live load factors when the live load exceeds 
100 psf as required in the AISI.   The load factor for EL in load cases 5 and 6 may 
be 1.0 for the seismic loading determined by section 2.7 or another Limit State 
based code. 

For load combination #6 when checking for wind uplift, only pallet loading that 
must be present to develop the wind forces can be considered in PL.  This value 
will be zero for an unloaded rack or a rack with cladding.  
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All resistance factors are to be as given in the latest edition of the AISI Specification [1] or 
AISC Specification [3]. The resistance factors for anchor bolts are determined as follows: 

For Wind uplift: φ =0.45 
For Seismic: φ =0.55 
For overturning forces in Section 8: 
 φ =0.400 

2.3 Design Loads.   
Racks are to be designed for the most critical combination of dead loads, live loads, product 
loads, vertical impact loads, horizontal loads, and wind or seismic induced loads as 
applicable. 

2.4 Vertical Impact Loads.   
Load support beams, supporting arms (if any), and end connections of beams or arms to 
columns are to be designed for an additional vertical impact load of 25 per cent of one unit 
load, placed in the most unfavorable position for the particular determination (moment or 
shear force). When designing by test (see 9.3), due allowance must be made for the additional 
impact load as specified in this section.  No impact load need be applied when checking beam 
deflections (see 9.3 and 9.3.4) and no impact loads need be considered in designing upright 
frames, columns, and other vertical components. 

2.5 Horizontal Forces. 
2.5.1 Beam support connections, frame bracing, and frame bracing to column connections are to 

be designed for the horizontal forces in this section. 

The amount of horizontal force that a rack must resist varies with the application. The 
beam connections and frame bracing and connections must be designed for the more 
critical of: 

1. Earthquake Forces (see Section 2.7). 

2. For Allowable Stress Design -1.5% of the dead load plus the product load at all 
connections based on maximum loading.   

For Load and Resistance Factor Design - 1.5% of the factored dead load and factored 
product load. 

 

These horizontal forces include the effect of out-of-plumbness in Section 1.4.11.  These 
forces shall be assumed to be applied separately, not simultaneously, in each of the two 
principal directions of the rack.  

The horizontal forces shall be assumed to be applied simultaneously with the full vertical 
live load, product load and dead load.  The beam support connection moments shall be 
checked against the permissible moments (both positive and negative) determined from 
the Cantilever Test (Section 9.4.1) and/or the Portal Test (Section 9.4.2).   

2.5.2 Stacker racks or racks fully or partially supporting moving equipment shall meet the 
requirements of 2.5.2.1, 2.5.2.2, and 2.7. 
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2.5.2.1 The moving equipment manufacturer is responsible for supplying to the rack 
manufacturer information on the maximum static and dynamic live loads and their 
locations, transmitted from moving equipment to racks, and the applicable longitudinal 
and transverse impact factors. 

2.5.2.2 Forces described in 2.5.2.1 need not be assumed to act concurrently with those 
described in 2.5.1 and 2.7. 

2.6 Wind Loads.   
Racks exposed to the wind shall be designed for the wind loads acting on the rack plus the 
loaded pallets.  For stability, consideration is to be given to loading conditions which produce 
large wind forces combined with small stabilizing gravity forces. 

The forces described in 2.5.1, except that portion of horizontal loading resulting from out-of-
plumb installation, and 2.7 need not be assumed to act concurrently with wind loads.  The 
forces described in 2.5.2 shall be assumed to act concurrently with wind forces. 

2.7 Earthquake Forces.   

2.7.1 General.  
Where customer specifications require or local building codes dictate that provisions be 
made for earthquake effects and associated lateral forces, customers or their 
representatives shall bring such requirements to the attention of the rack manufacturer.  
For each such installation, the storage rack shall be designed, manufactured, and installed 
in accordance with such provisions.  Storage racks, which are not connected to buildings 
or other structures, shall be designed to resist seismic forces in conformance with this 
section. 

Adequate clearance shall be maintained around the storage rack to avoid damaging contact 
with other structures. 

2.7.2 Minimum Seismic Forces.   
The total minimum lateral force shall be determined using the following considerations: 

At-Grade Elevation:  Storage rack installed at or below grade elevation shall be 
designed, fabricated and installed in accordance with the following requirements: 

The seismic design forces shall not be less than that required by the following equation for 
the determination of seismic base shear: 

V C I Ws p s=  

where: 

Cs =  the seismic response coefficient determined in Section 2.7.3 below. 

Ip =  system importance factor that varies from 1.00 to 1.50 for the following: 
Ip = 1.5  if the system is an essential facility;  
Ip = 1.5 if the system contains material that would be significantly 

hazardous if released; 
Ip = 1.0 for all other structures; 
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however, for storage rack in areas open to the general public, e.g., in 
warehouse retail stores, Ip = 1.5. 

Ws = ( )0 67 0 25. .xPL xPL DL xLLRF + +  

 where: 

 PLRF = Product Load Reduction Factor 

Seismic Force Direction PLRF 

Cross-Aisle 1.0 

Down-Aisle PL
PL

Average

Maximum
 

PLAverage is the maximum total weight of product expected on the 
shelves in any row divided by the number of shelves in that row. 

PLMaximum is the maximum weight of product that will be placed 
on any one shelf in that row. 

Above-Grade Elevation:  Storage rack installed at elevations above grade 
shall be designed, fabricated and installed in accordance with the following 
requirements: 

Storage racks shall meet the force and displacement requirements required of 
building structures including the force and displacement effects caused by 
amplifications of upper-story motions. 

As above, Ws = ( )0 67 0 25. .xPL xPL DL xLLRF + +  

2.7.3 Calculation of Seismic Response Coefficient:  
When the fundamental period of the rack structure is computed, the seismic response 
coefficient, Cs, shall be determined in accordance with the following equation: 

C
C

RT
s

v=
12

2
3

.
 

where: 

Cv = the seismic coefficient based upon the Soil Profile Type and the value of 
Av as determined from Table 2.7.2 in Section 2.7.3.1. 

R = for rack structures more than 8 ft in height, R = 4.0 in the braced direction 
and R = 6.0 in the unbraced direction.  Higher values may be used if 
substantiated by tests. 

T = the fundamental period of the rack structure in each direction under 
consideration shall be established using the structural properties and 
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deformation characteristics of the resisting elements in a properly 
substantiated analysis.   

Alternatively, the seismic response coefficient need not be greater than the following: 

C
C

Rs
a=

2 5.
 

where: 

R is as above 

Ca = the seismic coefficient based upon the Soil Profile Type and value 
of Aa as determined from Table 2.7.1 in Section 2.7.3.1. 

2.7.3.1. Seismic Coefficients Ca and Cv: 

Seismic coefficient Ca based on Soil Profile Type and Aa is determined from Table 2.7.1. 

Table 2.7.1  

Seismic Coefficient Ca 
Soil 

Profile 
Type 

Aa < 0.05 Aa = 0.05 Aa = 0.10 Aa = 0.20 Aa = 0.30 Aa = 0.40 

A Aa 0.04 0.08 0.16 0.24 0.32 
B Aa 0.05 0.10 0.20 0.30 0.40 
C Aa 0.06 0.12 0.24 0.33 0.40 
D Aa 0.08 0.16 0.28 0.36 0.44 
E Aa 0.13 0.25 0.34 0.36 0.36 

NOTE: For intermediate values, the higher value or straight-line interpolation shall be used to determine the value Ca. 

Seismic Coefficient Cv based on Soil Profile Type and Av is determined from 
Table 2.7.2. 

Table 2.7.2  

Seismic Coefficient Cv 
Soil 

Profile 
Type 

Av < 0.05 Av = 0.05 Av = 0.10 Av = 0.20 Av = 0.30 Av = 0.40 

A Av 0.04 0.08 0.16 0.24 0.32 
B Av 0.05 0.10 0.20 0.30 0.40 
C Av 0.09 0.17 0.32 0.45 0.56 
D Av 0.12 0.24 0.40 0.54 0.64 
E Av 0.18 0.35 0.64 0.84 0.96 

NOTE: For intermediate values, the higher value or straight-line interpolation shall be used to determine the value Cv. 

Note that where Aa and Av are less than 0.05, Ca = Aa and Cv = Av. 

Soil Profile Types are defined as follows: 

A Hard rock with measured shear wave velocity, ν s 5,000ft / sec>  
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B Rock with measured shear wave velocity, 2,500ft / sec 5,000ft / secs< ≤ν  

C Very dense soil and soft rock with measured shear wave velocity, 
1,200ft / sec 2,500ft / secs< ≤ν  or with either N 50>  or s 2,000psfu ≥  

D Stiff soil with measured shear wave velocity, 600ft / sec 1,200ft / secs< ≤ν  or with 
either 15 N 50≤ ≤  or 1000, psf ≤ ≤s 2,000psfu  

E A soil profile with ν s 600ft / sec< or any profile with more than 10 ft of soft clay 
defined as soil with PI > 20, w ≥40 %, and su < 500 psf 

F Soils requiring site-specific evaluations: 

1. Soils vulnerable to potential failure or collapse under seismic loading such as 
liquefiable soils, quick and highly sensitive clays, collapsible weakly cemented 
soils. 

2. Peats and/or highly organic clays ( H > 10 ft of peat and/or highly organic clay 
where H = thickness of soil ) 

3. Very high plasticity clays (H > 25 ft with PI > 75) 

4. Very thick soft/medium stiff clays (H > 120 ft) 

Exception: When the soil properties are not known in sufficient detail to determine the 
Soil Profile Type, Type D shall be used.  Soil Profile Types E or F need not be assumed 
unless the regulatory agency determines that Types E or F may be present at the site or in 
the event that Types E or F are established by geotechnical data. 

 

Figure 2.7.1 Contour Map for Coefficient Aa 
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Figure 2.7.2 Contour Map for Coefficient Av 

2.7.4 Vertical Distribution of Seismic Forces:   
The lateral force, Fx at any level shall be determined from the following equations: 

If the centerline of the first shelf level is 12” above the floor or less: 

 1ps1 wICF =  For the first shelf level 

and 

 
( )

F
V F w h

w h
x

x x
k

i i
k

i

n=
−

∑
=

1

2

 For levels above the first level 

If the centerline of the first shelf level is greater than 12”: 

 

∑
=

= n

1i

k
ii

k
xx

x

hw

hVwF  For all levels 

where: 

V = total design lateral force or shear at the base of the rack 
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wi or wx = the portion of the total gravity load (including live load, dead load 
and product load x product load reduction factor, see 2.7.2) of the 
rack, located or assigned to the bottom shelf level, level i or x 

hi or hx = the height from the base to level i or x 

k = an exponent related to the structure’s period 

period ≤ 0.5  k = 1 
period ≥ 2.5  k = 2 

For racks having a period between 0.5 and 2.5 seconds, k shall be 2 or shall be 
determined by linear interpolation between 1 and 2.  If the base shear is based on 
the default Cs then the k shall be taken as 1. 

2.7.5 Horizontal Shear Distribution:   
The seismic design shear at any level, Vx, shall be determined from the following 
equation: 

∑
=

=
n

xi
ix FV  

where Fi = the portion of the seismic base shear, V, induced at level i.  The seismic 
design shear, Vx, shall be distributed to the various vertical elements of the seismic force 
resisting system in the level under consideration based on the relative lateral stiffnesses 
of the vertical resisting elements. 

2.7.6 Overturning. 
Safety against overturning moment shall be provided when only the top level of the rack is 
loaded, in which case it is assumed that the force acts through the center of gravity of the 
top load. 

2.7.7 Concurrent Forces. 
Forces described in Sections 2.5.1, 2.5.2, and 2.6 need not be assumed to act concurrently 
with seismic forces. 

3. DESIGN PROCEDURES 

All computations for safe loads, stresses, deflections, and the like shall be made in 
accordance with conventional methods of structural design as specified in the latest edition of 
the AISI Specification [1] for cold-formed steel components and structural systems and the 
latest edition of the AISC Specification [2,3] for hot-rolled steel components and structural 
systems except as modified or supplemented by this specification.  In cases where adequate 
methods of design calculations are not available, designs shall be based on test results 
obtained in accordance with this specification or Section F of the AISI Specification [1]. 

No slenderness limitations shall be imposed on tension members which are not required to 
resist compression forces under any of the loading conditions specified in this specification. 
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4. DESIGN OF STEEL ELEMENTS AND MEMBERS 

The effect of perforations on the load-carrying capacity of compression members is 
accounted for by the modification of some of the definitions of the AISI Specifications [1] 
and the AISC Specifications [2,3] as described below. 

4.1 Elements of Cold-Formed Steel Members {The AISI Specification [1] Section B} 
Effective width calculated for an element shall not exceed the total net width of the element.  
Net effective section properties shall be calculated as specified in Section 4.2. 

4.2 Cold-Formed Steel Members {The AISI Specification [1] Section 3}. 

4.2.1 Properties of Sections  {The AISI Specification [1] Section C1} 
Exceptions to the provisions of the AISI Specification [1] for computing the section 
properties are given in Section 4.2.2. 

4.2.2 Flexural Members {The AISI Specification [1] Section C3}. 

Se = Elastic section modulus of the net section times ( 0 5
2

. +
Q ) for the extreme 

compression fiber.   

Sf = Elastic section modulus of the full unreduced gross section for the extreme 
compression fiber. 

Sc  = Elastic section modulus of the net section for the extreme compression fiber times  
( )

1
1

2−
− ⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

Q M S
F
c f

y

Q

. 

In the calculation of Me, (σex,σey and σt the section properties shall be based on full 
unreduced gross section considering round corners.  Furthermore, j, ro, and Cw may be 
computed assuming sharp corners. 

Inelastic reserve capacity provisions of the AISI Specification [1] Section C3.1.1 (b) shall 
not be considered for perforated members. 

4.2.3 Concentrically Loaded Compression Members.  {The AISI Specification [1] 
Section C4}. 

Ae = Effective area at the stress Fn determined according to Section 4.1 when applicable.  
Where Section 4.1 is not applicable, Ae shall be calculated as: 

( )A Q
F
F Ae

n

y

Q

net= − −
⎛

⎝
⎜⎜

⎞

⎠
⎟⎟

⎡

⎣

⎢
⎢

⎤

⎦

⎥
⎥

1 1 min  

 

where the Q factor shall be determined by the procedure specified in Section 9.2 and 
Anet min is defined in Section 9.2. 
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4.2.3.1 Sections Not Subject to Torsional Flexural Buckling {AISI Specification [1] 
Section C4.1} 

Radius of gyration is based on gross section properties computed considering rounded 
corners. 

4.2.3.2 Doubly- or Singly-Symmetric Sections Subject to Torsional or Torsional-
Flexural Buckling.  {The AISI Specification [1] Section C4.2} 

σex, σey, and σt shall be the stresses calculated as specified in Section 4.2.2. 

Lx, Ly and Lt are the unbraced lengths defined in Section 6.3 for bending about x- and y-
axes and twisting. 

4.3 Hot-Rolled Steel Columns  
Designs shall be made according to the provisions for Load and Resistance Factor Design as 
given in Section 4.3.1 or to the provisions of Allowable Stress Design as given in 
Section 4.3.2. 

4.3.1 Load and Resistance Factor Design: {The AISC LRFD Specification [2] Chapter E and 
Appendices B and E} 

All hot-rolled steel columns shall be designed according to Chapter E, Appendices B and 
E with the exceptions stated herein. 

4.3.1.1 Design Compressive Strength for Flexural Buckling 
The design strength for flexural buckling of compression members is φc nP  where  

P A Fn e cr=  

Fcr shall be determined by equations of Appendix B, Section B5.3d. Ae is defined in 
Section 4.2.3. The value of Q shall be determined according to Section 9.2.2 

4.3.1.2 Design Compressive Strength for Flexural-Torsional Buckling 
The design strength for flexural-torsional buckling of compression members is φc nP  
where  

P A Fn e cr=  

Fcr shall be determined by equations of Appendix E, Section E3. Ae  is defined in 
Section 4.2.3. The value of Q shall be determined according to Section 9.2.2. 

4.3.2 Allowable Stress Design:  {The AISC ASD Specification [3] Chapter E and Appendix B} 
All hot-rolled steel columns shall be designed according to Chapter E, Appendix B with 
the exceptions stated herein. 

4.3.2.1 Design Compressive Strength for Flexural Buckling 
The allowable axial force for flexural buckling of compression members is Pa where  

P A Fa e a=  
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Fa shall be determined by equations of Appendix B, Section B5c. Ae is defined in 
Section 4.2.3. The value of Q shall be determined according to Section 9.2.2 

5. BEAMS 

5.1 Calculations.   
The bending moments, reactions, shear forces, and deflections shall be determined by 
considering the beams as simply supported, or by rational analysis for beams having partial 
end-fixity.  Where the shape of the beam cross section and the end-connection details permit, 
permissible loads of pallet-carrying beams shall be determined by conventional methods of 
calculation according to the AISI Specification [1] or the AISC Specification[2,3]. 

5.2 Cross Section.   
Where the configuration of the cross section precludes calculation of allowable loads and 
deflections, the determination shall be made by tests according to Section 9. 

5.3 Deflections.   
At working load (excluding impact) the deflections shall not exceed 1/180 of the span 
measured with respect to the ends of the beam. 

6. UPRIGHT FRAME DESIGN. 

6.1 Definition.   
The upright-frame consists of columns and bracing members. 

6.2 General. 

6.2.1 Upright-frames and multi-tiered portal frames shall be designed for the critical 
combinations of vertical and horizontal loads for the most unfavorable positions as specified in 
Section 2.  All moments and forces induced in the columns by the beams shall be considered.  In 
lieu of the calculation, frame capacity may be established by tests according to Section 9.5. 

6.2.2 Connections that cannot be readily analyzed shall be capable of withstanding the moments 
and forces in proper combinations as shown by test. 

6.3 Effective Lengths.   
Effective lengths for columns are those specified in 6.3.1 through 6.3.4 or as determined by 
rational analysis or tests. 

Guidance for using effective length method is given in the following subsections.  It is not 
intended to preclude the use of other design methods.  Other rational methods, consistent with 
AISC and AISI may be used.  Design methods may not be mixed within one structure.   

6.3.1 Flexural Buckling in the Direction Perpendicular to the Upright Frames. 
Lx is the distance from the centerline of one beam to the centerline of the next beam or the 
distance from the floor to the centerline of the first beam. 
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6.3.1.1 Racks Not Braced Against Sidesway.  
For the portion of the column between the bottom beam and the floor as well as between 
the beam levels, the effective length factor K shall be taken as 1.7 or as otherwise 
determined by an analysis properly accounting for the member stiffnesses, the semi-rigid 
nature of the beam to column connections and the partial fixity of the base, allowing for 
average load reduction, as applicable. 

If K of 1.7 is used without analysis, then no reduction of this value shall be made. 

6.3.1.2 Racks Braced Against Sidesway.   
The effective length factor for pallet racks, stacker racks, and movable-shelf racks is 
K = 1 provided that all such racks have diagonal bracing in the vertical plane and that 
such racks have either a rigid and fixed top shelf, or diagonal bracing in the horizontal 
plane of the top fixed shelf.  Increased column capacity may be achieved by additional 
rigid and fixed shelf (or shelves) or bracing in the horizontal plane. The unsupported 
length is defined as the distance from floor to fixed top shelf or bracing; or, in the case 
of additional rigid fixed shelf (or shelves) or fixed shelf with diagonal bracing in its 
horizontal plane, the unsupported length is the distance between fixed shelves or 
between braced shelves.  The effective length factor is K = 1.  If there is no bracing in 
the vertical plane of the rack, the K values are the same as for racks in 6.3.1.2, Racks 
Not Braced Against Sidesway. 

6.3.2 Flexural Buckling in the Plane of the Upright Frame. 

6.3.2.1  Ly is defined as the distance between the intersection of the neutral axis of the 
column with the neutral axis of either two adjacent diagonals or a diagonal and a 
horizontal. 

6.3.2.2  For upright frames having diagonal braces or a combination of diagonal and 
horizontal braces that intersect the columns, the effective length factor K for the 
portion of the column between braced points shall be taken as 1.0, provided that the 
maximum value of the ratio of Lshort or Llong does not exceed 0.15. 

 Lshort or Llong is defined as the distance between the intersection of the neutral axis of the 
column with the neutral axis of either two adjacent diagonals or a diagonal and a 
horizontal. 

 In an upright frame with diagonals and horizontals, Lshort and Llong refer to the minimum 
and maximum distances between two adjacent segments between two adjacent 
horizontals.  In an upright frame with only diagonal Lshort and Llong refer to two 
adjacent segments.  All distances are measured along the neutral axis of the column. 

6.3.2.3  For upright frames having diagonal braces that intersect the horizontal braces, the 
effective length factor K for the portion of the column between braced points shall 
be taken as 1.0 providing the ratio of Lshort  to Llong does not exceed 0.12. 

 Lshort is defined as the shortest distance between the intersection of the neutral axis of one 
of the two diagonal braces with the neutral axis of the horizontal brace, or the 
shortest distance between the intersection of one diagonal brace with the neutral axis 
of the horizontal brace with the neutral axis of the column. 
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 Llong is defined as the length of the horizontal brace measured between the neutral axis of 
the columns. 

 All measurements are along the neutral axis of the horizontal brace. 

6.3.2.4  For upright frames having bracing patterns not included above, the effective length 
factor K of the column shall be determined by rational analysis or by upright frame 
test. 

6.3.3 Torsional Buckling.   

6.3.3.1  Lt is the length of the member unsupported against twisting. 

6.3.3.2  The effective length factor Kt for torsional buckling shall be taken as 0.8 provided 
that the connection details between the columns and the braces are such that the 
twisting of the column is prevented at the brace points.  If the connection details do 
not prevent twist, Kt can be larger and shall be determined by rational analysis or 
test. 

6.3.4 Compression Diagonals and Horizontals.   

For compression diagonals and horizontal members of trussed upright frames, the effective 
length is the full unsupported length of the member. 

6.4  Stability of Trussed-Braced Upright Frames.   
To prevent tall and narrow trussed-braced upright frames from becoming unstable and 
buckling in their own plane, the columns of such upright frames shall be designed using the 
appropriate provisions of the AISI Specification [1] or the AISC Specification [2,3] for a 
value KL/r or Kl/r, respectively, equal to: 

 
π2EA
Pcr

 

 
where for Pcr the following apply: 

1. For upright frames braced with diagonals and horizontals 
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2. For upright frames braced with diagonals 
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3. For upright frames braced with horizontals only, and with fully rigid connections 
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where: 

a Vertical distance between the horizontal brace axis. 
A Sum of the minimum net area (Anet min.) of the columns of the upright 

frame. 
Ab Cross-sectional area of a horizontal brace.  
Ad Cross-sectional area of a diagonal brace. 
B Horizontal distance between neutral axes of the columns. 
E The modulus of elasticity of steel. 
I Minimum net moment of inertia of the columns about the gravity 

axis of the upright frame perpendicular to the plane of the upright 
frame 

Ibr Moment of inertia of the horizontal brace about its own axis 
perpendicular to the plane of the upright frame. 

Ic Minimum net moment of inertia of one column about its own major 
axis perpendicular to the plane of the upright frame.  

k =1.1 if the center of gravity of the loads along the upright frame is 
below midheight. 

 =1.6 if the center of gravity is below the upper third-point of the height. 

 =2.0 if the center of gravity is above the upper third-point of the height. 

l Total height of the upright frame. 
φ Angle between horizontal and diagonal braces. 
 

7. CONNECTIONS AND BEARING PLATES. 

7.1 Connections. 

7.1.1 General.   
Adequate strength of connections to withstand the calculated resultant forces and 
moments, and adequate rigidity where required, shall be established by test or, where 
possible, by calculation.  Test procedures for various connections are specified in 
Section 9. 

7.1.2 Beam Locking Device.   
Except for movable-shelf racks, beams shall have connection locking devices (or bolts) 
capable of withstanding an upward force of 1,000 pounds per connection without failure 
or disengagement. 
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7.1.3 Movable Shelf Racks.   
For movable shelf racks, the top shelf and other fixed shelves are to include support 
connections capable of supporting an upward force of 1,000 pounds per connection 
without failure. 

The movable shelves are generally constructed of a set of front and rear longitudinal 
beams connected to each other rigidly by transverse members.  The movable shelves are to 
be connected in such a way to prevent forward displacement when lifting out the front 
beam of the shelf. 

7.2 Bearing Plates.   
Provision shall be made to transfer column forces and moments into the floor.  These forces 
and moments shall be consistent in magnitude and direction with the rack analysis.  Unless 
otherwise specified, the maximum allowable bearing stress F’p(ASD) or design bearing loads 
φcPp (LRFD) on the bottom of the plate shall determined as follows: 

for ASD 

F fp c' . '= 0 7  

for LRFD 

P f Ap c Effective Base Bearing Area= 17. '  

φc = 0.60 

where f’c = the minimum 28-day compression strength of the concrete floor which, unless 
otherwise brought to the attention of the rack fabricator, shall be assumed to be 3,000 psi. 

Once the required bearing area has been determined from the allowable bearing stress F’p’ the 
minimum thickness of the base plate is determined by rational analysis or by appropriate test 
using a test load 1.5 times the ASD design load or the factored LRFD load.  Upon request, 
information shall be given to the owner, or the owner’s agent on the location, size, and 
pressures under the bearing plates of each type of upright frame in the installation. 

8. SPECIAL RACK DESIGN PROVISIONS. 

8.1 Overturning.   
Overturning is to be considered for the most unfavorable combination of vertical and 
horizontal loads.  Stabilizing forces provided by the anchors to the floor are not considered in 
checking overturning, unless anchors and floor are specifically designed and installed to meet 
these uplift forces (see 2.6 and 2.7). 

Unless all columns are so anchored, the ratio of the restoring moment to overturning moment 
shall not be less than 1.5. 

The height-to-depth ratio of a storage rack shall not exceed 6 to 1 measuring to topmost beam 
position unless the rack is properly anchored or braced externally. 

Rack that exceed the 6 to 1 ratio defined above, shall also be designed to resist a 350 pound 
side force applied to any single frame at the top shelf level in a direction perpendicular to the 
aisle.  For LRFD design method, the load factor applied to this force shall be 1.6.  This force 
is to be applied to an empty frame and divided into as many frames as are interconnected in 
the direction of the force.  Anchors and base plates will be designed to resist uplift forces 
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from this force when applied to an empty frame.  Frame columns need not be designed for the 
additional axial load from this force. 

Unless it can be shown to be unnecessary because of such factors as soil, slab and frame 
stiffness, single rows of rack exceeding a height to depth ratio of 8 to 1 must be tied 
externally to the building or cross-aisle to another rack.  Stabilizing a single rack with a 
height to depth ratio of over 8 to 1 with anchoring alone is not recommended unless designed 
and certified by an engineer. 

The 350 pound side force in this section need not be applied concurrently with the horizontal 
forces of sections 2.5, 2.6 and 2.7. 

8.2 Connections to Buildings.   
Connections of racks to buildings, if any, shall be designed and installed to prevent reactions 
or displacements of the buildings from damaging the racks or the reactions or displacements 
of the racks from damaging the building (see also 1.4.10). 

8.3 Interaction with Buildings.   
Storage rack located at levels above the ground level (as described in Section 2.7.2), rack 
buildings, or racks which depend upon attachments to buildings or other structures at other 
than floor level for their lateral stability, shall be designed to resist seismic forces that 
consider the responses of the building and storage rack to seismic ground motion and their 
interaction so as not to cause damage to one another. 

9. TEST METHODS. 

9.1 GENERAL.   
Material properties as determined in accordance with the applicable ASTM A370 test 
procedures and Section F3 of the AISI Specification apply.  For this purpose, tensile coupons 
are taken, after the completion of testing, from flat portions of the specimen at regions of low 
bending moment and shear force. 

If the effect of cold-work is being accounted for by test, the test specimens must be formed 
by the same procedure as is used or contemplated in the prototype.  This is essential because 
different manufacturing methods produce different amounts of cold working (e.g., cold 
working of a specimen by press-braking is less than that in a cold-roll-formed prototype). 

Test specimens are to be fully described prior to testing and any dents or defects shall be 
noted and the condition of welds, if any, inspected and described.  All cross-sectional 
dimensions of each specimen are to be measured prior to testing at several points along the 
length and photographs of specimens should be taken prior to, during, and after testing 
whenever it seems advisable.  (The purpose of these tests is for design and not for purchase 
acceptance-tests). 

9.1.1 Testing Apparatus and Fixtures.   
These tests should be carried out in a testing machine or by means of hydraulic jacks in a 
test frame or by application of properly measured weights.  The testing machine or load-
measuring apparatus must meet the requirements prescribed in the ASTM Methods E4, 
Verification of Testing Machines. 

The weights of load distribution beams and other fixtures are to be measured and included 
in evaluating the test data. 
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9.1.2 Instrumentation   
Dial gages or other deflection measuring devices are required at appropriate points to 
obtain proper alignment and to measure load-deflection behavior accurately.  The 
deflections should be measured and reported to an accuracy of ±0.03 inches. 

Strain gages may be used if behavior characteristics other than ultimate loads and load-
deflection relations are desired.  In general, for coupon tests, extensometers are used. 

For members subject to twisting (such as channel and Z sections), the twist angle shall be 
measured by proper means. 

9.1.3 Reduction and Presentation of Test Data.   
For each test, the report is to include: 

1. A sketch of the specimen with all dimensions. 

2. A sketch of the test set-up with all dimensions, including locations and kinds of 
gages, loading and support arrangements and an identification of the loading 
apparatus (testing machine, jacks, etc.) with information on the range used and the 
smallest increment readable for that range. 

3. The results of the coupon tension tests should be presented in the form of a table of 
elongations vs. loads or, alternatively, strains vs. stresses.  Yield stress and ultimate 
strength shall be determined by any of the accepted ASTM methods.  (It is desirable 
to include stress-strain curves in the data presentation.) 

4. For presentation of the results of the test, all load, deflection, and other recorded 
data shall be properly reduced to actual values by correcting, where appropriate, for 
initial readings, weights of loading apparatus (e.g., loading beams), etc. 

These reduced measurements shall be presented in tables showing load vs. the particular 
measured quantity (deflection, strain, etc.)  In the same tables, observations of special 
events (flange buckling, connection failure, etc.) shall be noted at the particular load at 
which they occurred. 

Graphic presentation of load-deformation curves is advisable at least for the mid-span 
deflections depending upon observations made during the tests and on inspection of 
tabulated data, graphic presentation of selected or all other load-deformation data is 
desirable, but optional as dictated by judgment. 

9.1.4 Evaluation of Tests for Determining Structural Performance.   
Tests are to be evaluated in accordance with Sec. F1 of the AISI Specification [1]. 

9.2 STUB COLUMN TESTS FOR COLD-FORMED AND HOT-ROLLED 
COLUMNS. 

9.2.1 Test Specimen and Procedure.   
The Q values of perforated compression members for use in Section 4 are determined by 
stub column tests as described in Part VIII of the AISI Cold-Formed Steel Design Manual 
[4].  The ends of the stub column must be milled flat (preferably to a tolerance of ±0.001 
inch) and perpendicular to the longitudinal axis of the column.  The axial load is to be 
applied by flat plates bearing (not welded or otherwise connected) against the milled ends.  
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For the purposes of determining Q, only the ultimate strength of the stub column needs to 
be determined. 

9.2.2 Evaluation of Test Results.   
Q is calculated as follows: 

 

Q
F Ay

=
ultimate compresive strength of stub column by test

net min

 

 

where 

Fy = actual yield stress of the column material if no cold work effects are to be 
considered; or the weighted average yield to point Fy, calculated in accordance 
with appendix A 5.2.2 of the AISI Specification [1], if cold work effects are to 
be considered. 

Anet min = minimum cross-sectional area obtained by passing a plane through the column 
normal to the axis of the column.  In no case shall Q be greater than 1. 

Where a series of sections with identical cross-sectional dimensions and identical hole 
dimensions and locations is produced in a variety of thickness, stub column tests need be 
made only for the largest and the smallest thicknesses (tmax and tmin).  Q values for 
intermediate thicknesses shall then be determined by interpolation according to the 
following formulas: 
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where Q is the value for the intermediate thickness t, and Qmax and Qmin are the values 
obtained by test for the largest and smallest thicknesses, respectively.  This interpolation is 
permissible only if the yield stresses of the two specimens do not differ by more than 25 
percent and if the yield points of the intermediate thicknesses fall between or below those 
of the test specimens. 

9.3 PALLET BEAM TESTS. 

9.3.1 Simply Supported Pallet Beam Tests.   
These tests are acceptable only for beams that are not subject to significant torsional 
stresses or distortions. 

The simply supported pallet beam test is to be made only if the flexural behavior 
parameters such as the yield moment, ultimate moment and the effective flexural rigidity 
(EI) are to be determined.  For the latter parameter, tests are to be conducted on two 
identical specimens unless a third test is required as specified in Section 9.3.1.3.  If lateral 
restraints are required, the beams are to be tested in pairs as they would be used in 
completed assemblies. 
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9.3.1.1 Test Setup.   
The test set-up consists of a beam test specimen simply supported at each end (not 
connected to columns).  The test load is applied to a load distribution beam which in 
turn imposes a load at two points on the beam which in turn imposes a load at two points 
on the beam specimen.  Each load point on the beam test specimen is set at a distance of 
S/C from the support; where S is the span and C is a numerical value between 2.5 and 3.  
Plates can be used to prevent local failure at supports or at load points. 

9.3.1.2 Test Procedure.   
After alignment, a small initial load of about 5% of the expected ultimate load shall be 
applied to the test assembly to insure firm contact between the specimen and all loading 
and support components.  At this load, initial readings are to be taken from all gages.  
Loads shall then be applied in increments no larger than about one-fifth of the expected 
design load.  Readings are taken for all load increments.  (It is good to plot load verses 
mid-span deflection readings at each load increment during testing).  Noticeable 
deviation from straightness of such a plot will indicate incipient inelastic behavior or 
local buckling or crippling.  When such is the case, load increments are reduced to no 
more than half the initial increments.(It is good practice, though not required, to measure 
permanent set for loads within the interval of ±25% of the expected design load by 
reducing, within this interval, the ratio of the applied load to the initial load after the 
increment.  Appropriate gage readings are to be taken at this reduced load to determine 
permanent set). 

When deflection increments for given load increments increase rapidly, this indicates the 
approach of ultimate failure load.  If sudden failure is possible by the nature of the 
specimen, and if such sudden failure could damage the gages, they should be removed.  
On the other hand, if a gradual failure is expected, such as by simply yielding, it is 
desirable to measure the last center line deflections right up to and past the maximum or 
ultimate load, to obtain some part of the descending portion of the load deflection curve. 

All specific events noticeable by visual inspection, such as local buckling, crippling, 
failure of connections, etc., are to be recorded at the loads at which they occur. 

9.3.1.3 Evaluation of Test Results.   
The parameters investigated shall be determined by test results by conventional 
methods. 

The flexural rigidity shall be calculated on the basis of the results of two tests of 
identical specimens, provided that the deviation from the average value does not exceed 
10%.  If the deviation from the average exceeds 10%, then a third identical specimen is 
to be tested.  The average of the two lower values obtained from the tests shall be the 
result from the series of tests. 

9.3.2 Pallet Beam in Upright Frames Assembly Test.   
This test is intended to simulate the conditions in the actual rack as closely as possible. 

9.3.2.1 Test Setup.   
The test assembly shall consist of two upright frames not bolted to the floor and two 
levels of pallet beams with front-to-back ties when specified. 
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The upright frame may be as high as desired.  However, the bottom level beams shall be 
tested and shall be located so there will not be less than 24 inches clear between the test 
beams and the floor or between the test beams and the top-level beams. 

The end connections shall be those used in the prototype. 

The location of the test loads perpendicular to the beams shall simulate actual loading. 

If loads are to be applied by pallets or other devices resting on beams, it is important that 
friction between pallet and beams be reduced to the minimum possible amount by 
greasing or other means.  (This is suggested because new, dry pallets on new, dry beams 
when used in the test could provide considerably more bracing than pallets and beams 
worn smooth in use and possibly covered with a film of oil.) 

The minimum instrumentation for such tests consists of devices for measuring the 
deflections of both beams at mid-span relative to the ends of the beams.  One way of 
doing this is to attach a scale graduated to 0.01 inch at mid-span of each beam and to 
stretch a tight string (usually a string with a rubber band at one end) or wire attached to 
each end of the beam.  Another way is to use dial gages at mid-span and at each end of 
the beams.  Transits may also be used to read scales located at mid-span and at the end 
of the beams. 

Additional instrumentation, such as strain gages or additional dial gages at the ends of 
the beam, is needed only if special problems are to be considered.  For highly 
unsymmetrical beams, e.g., deep channels or C-sections, it may be advisable to measure 
rotation under load.  This is most easily done by rigidly attaching a protractor of 
sufficient size to the beam at or close to mid-span.  A vertical string weighted at the end 
and acting as a plumb is then read against the protractor at every load increment.  

9.3.2.2 Test Procedure.   
The test procedures specified in Section 9.3.1.2 of this report shall be used. 

9.3.2.3 Evaluation of Test Results.   
The design load shall be the smallest of the following: 

1. Strength determined according to the applicable provisions of the AISI 
Specification [1] Section F and its subsections. 

2. Two-thirds of the load at which harmful or objectionable distortions are observed 
in the connections or elsewhere.  These distortions include rotations of such 
magnitude as to render the beam unserviceable. 

3. The load (not including impact) at which maximum vertical deflections attain 
1/180 of the span, measured with respect to the ends of the beams. 

9.3.3 The number of tests for determining design loads shall be as specified in Section F of the 
AISI Specification [1]. 

9.3.4 Once the design load has been determined as specified in 9.3.1 through 9.3.2.3, an 
additional test shall be made using a new set of specimens.  An initial load equal to the 
design load shall be applied, reduced to zero and the deflection read; this deflection 
reading shall be the zero reference reading.  A load equal to 1.5 times the design load shall 
then be applied and the deflection read.  The load shall then be held constant for one-
quarter of an hour and the deflection read again.  This deflection reading shall not exceed 
the previous reading by more than 5 percent.  The load shall then be reduced to zero and 
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the residual or permanent deflection read.  The net residual deflection of the beam shall 
not exceed 15 percent of the final deflection measured at 1.5 times the design load.  If 
these limitations are not met, the design load shall be reduced accordingly or the source of 
residual deflections determined and remedied, and the test repeated with new specimens. 

9.4 PALLET BEAM-TO-COLUMN CONNECTION TESTS. 

9.4.1 The Cantilever Test.   
This test is for determining the connection moment capacity. 

9.4.1.1 Test Setup.   
The test setup shall consist of a pallet beam at least 26 inches in length connected to the 
center of a column at least 30 inches in length.  Both ends of the column shall be rigidly 
connected to rigid supports.  The load shall be applied to the pallet beam at 24 inches 
from the face of the column.  At this load application point, a dial gage shall be mounted 
to measure deflections. 

9.4.1.2 Test Procedure.   
The test procedure specified in Section 9.3.1.2 shall be used. 

9.4.1.3 Evaluation of Test Results.   
The design moment shall be determined in a manner similar to that specified in 
provisions 1 and 2 of Section 9.3.2.3. 

9.4.2 The Portal Test.   
This test is be used to obtain a joint spring constant needed for a semi-rigid frame analysis. 

9.4.2.1 Test Setup.   
The test setup shall consist of two upright frames supported on four half-round bars, one 
under the base of each column, two beams the top of which is installed at a distance of 
24 inches from the floor, and including front-to-back ties when specified.  The half-
round bars shall be located at the centroidal axes of the columns perpendicular to the 
beams.  Extra plates may be placed between the base plates and the half-round bars, if 
necessary.  The bases of the columns shall be held against lateral displacement but not 
against rotation. 

9.4.2.2 Test Procedure.   
After the rack is properly assembled, a load equal to the design load of the beams shall 
be placed on the beams, simulating usual loading.  A horizontal force equal to the 
horizontal design load corresponding to the vertical load on the assembly shall be 
applied to the assembly, equally distributed between the two columns on one side, at the 
level of the top of the beams, and in the direction of the beams.  Deflection due to the 
horizontal loading shall be measured at the level of the top of the beams. 

The procedure shall be repeated at a load twice the design load. 
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9.4.2.3 Evaluation of Test Results.   
The spring constant is to be determined by rational analysis. 

9.5 UPRIGHT FRAME TEST.   
The frame tests specified in this section are intended to simulate the conditions in the actual 
rack as closely as possible.  The purpose of the test is to determine the upright frame loads for 
an expected column failure that takes place between the floor and the bottom beam or 
between the two lower beams in a three beam-level test setup. 

The test will account for vertical and horizontal loads as specified in Section 2.5.1 as well as 
the effects of semi-rigid connections.  This procedure is also applicable to Section 2.6 and 2.7 
with adjustments to take into account modified loads and increased allowable stresses for 
Allowable Stress Design. 

9.5.1 Horizontal Load in the Direction Perpendicular to the Upright Frame. 

9.5.1.1 Symmetrical Loading Condition. 

9.5.1.1.1 Test Setup.   
The test assembly shall consist of three upright frames not bolted to the floor, and at 
least two levels of beams connecting the frames together to make two bays of pallet 
rack.  When the distance from the floor to the first beam is smaller than the distance 
between beams, then three levels of beams shall be used. 

The vertical spacing of the beams shall be the same as in the actual application.  The 
upright frame may be as high as desired; however, its construction consisting of a 
column and truss web members shall be of the same cross section, pattern and spacing as 
in the actual application.  The top beam level and its column connection may be heavier 
or reinforced to the degree necessary to carry the test load to the point where the frame 
fails.  The remaining beams and their connections shall be as in the actual application.  
This test load represents the loading from two or more beam levels. 

Horizontal loads shall be applied perpendicular to one outside upright frame at the 
centerline of the beam connection by means of either hydraulic cylinder(s) or by ropes 
and pulleys with hanging weights attached.  The load at each beam level shall be applied 
equally to each column of the upright frame. 

To measure horizontal displacements, one scale shall be located at the centerline of each 
beam level, and another scale at midheight between the bottom beam level and the floor.  
All scales may be placed on one column. 

9.5.1.1.2 Test Procedure. 
1. Align the rack structure so that it is level and plumb and so that all components are 

properly seated. 

2. Take initial scale readings. 

3. Place a vertical load equal to 1.5 times beam design load on each of the lower beam 
levels. 

4. Take scale readings for horizontal movement. 
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5. Apply a horizontal load to the upright frame at each beam level.  The horizontal load 
shall be determined per Section 2.5.1. 

6. Take scale readings for horizontal movement. 

7. Apply one additional unit of vertical load to the reinforced top level beams only and 
take scale readings for horizontal movement. 

8. Apply one additional unit of horizontal load to the reinforced top level beams only.  
Take scale readings for horizontal movement.  (If hydraulic cylinders are used, be 
sure the hydraulic cylinder at the bottom beam level is always applying the proper 
force to the upright frame.) 

9. Repeat steps (7) and (8) until failure occurs in the upright frame. 

9.5.1.1.3 Evaluation of Test Results.   
The vertical design load for an upright frame shall be determined according to the 
applicable provisions of the AISI Specification [1] Section F and its subsections.  The 
tested ultimate load must be the last set of test data which has an equal number of both 
vertical and horizontal load increments.  The tested ultimate load should be the lowest of 
the three tested conditions, namely symmetrical loading in 9.5.1.1, unsymmetrical 
loading in 9.5.1.2, or for the horizontal load in the direction parallel to the upright frame. 

9.5.1.2 Unsymmetrical Loading Condition.   
Test setup and test procedure are the same as 9.5.1.1 for symmetrical loading condition 
above, except that no load should be placed on one beam level in one bay directly 
adjacent to the expected column failure location.  The direction of the horizontal load 
should be in the direction of sidesway. 

9.5.2 Horizontal Load in the Direction Parallel to the Plane of Upright Frame. 

9.5.2.1 Test Setup.   
The test setup is the same as in Section 9.5.1.1.1, except that the locations of horizontal 
loads and scales shall be changed so that the horizontal loads and displacements are in 
the plane of the upright frame. 

9.5.2.2 Test Procedure.   
The test procedure is the same as the procedure in Section 9.5.1.1.2 above, except in 
step (5) the distribution of the horizontal load on each beam level on each upright frame 
shall be as determined in Section 2.5.1. 

In order to compensate for the effect of the longer moment arm of the upper beam levels 
in the actual application, the applied test loads shall be modified such that the effect of 
the loads in the upper beam levels of the rack are properly accounted for both in 
overturning and shear force. 

9.5.2.3 Evaluation of Test Results.   
See 9.5.1.1.3 above. 
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Part I - Appendix 

Special Provisions for Racks for 

Automated and Manual Storage and Retrieval Systems 

(Stacker Racks) 

1.1 Scope.  Though most of the general provisions in the main part of the Specification do 
apply to Racks for Automated and Manual Storage and Retrieval Systems, special additional 
provisions for such racks are provided herein.  Such racks may be “Drive-in-Type” or “Beam 
Column Type” and can be used in “Rack Supported Structures”. 

The provisions of this Appendix are given the same numbers as the corresponding parts of the 
Specification.  When no special provision or exception is given in the Appendix, it is implied 
that the main body of the Specification shall be followed where applicable. 

1.4.10 Resistance to Minor Impact.  Rack structure need not be designed for accidental 
collision from the captive aisle crane or stacker crane. 

1.4.12 Tolerances.  Installation and design tolerances shall be supplied by the user of the 
installation based on the requirements of the equipment manufacturer. 

2.4 Vertical Impact Loads.  The moving equipment manufacturer is responsible for 
supplying to the rack manufacturer information on maximum vertical static and dynamic 
loads for the design of racks; the rack structures shall be designed for these loads. 

2.5 Horizontal Loads.  Horizontal loads specified in Section 2.5.1 and 2.5.2 of the 
Specification shall be used in the design of racks. 

2.6 Wind and Snow Loads.  Wind (including uplift) and snow loads shall be considered 
in the design of rack during erection and use.  In determining the total force on a rack 
structure, forces in all members of the structure shall be accounted for with proper 
consideration of shielding effects, the shape effect, and other applicable forces. 

The forces specified in Section 2.5.1 and 2.7 need not be assumed to act concurrently with 
wind loads, but forces described in Section 2.5.2 shall be assumed to act concurrently with 
wind forces. 

5.3 Deflections.  Deflections shall not exceed the limits set by the requirements of the 
equipment operation. 

8.4 Rack Compatibility with the Equipment.  Horizontal and vertical deflections shall 
be calculated and reviewed with the crane equipment supplier for compatibility. 

Rack design shall be compatible with the equipment.  The basic considerations shall include 
the height of the first shelf, clearance from the top shelf to the cross-aisle tie, shuttle window 
height, and sprinkler system.  

 



PREFACE 

Any structural design specification is the product of extensive research and development 
work combined with accumulated engineering experience.  Rack structures differ in 
many respects from more familiar types of structures, such as buildings and bridges.  It 
follows that the generally recognized principles and methods of design and testing of 
steel structures must be, modified and supplemented in those features peculiar to rack 
structures.  This can be done adequately only by extensive analytical and experimental 
research on rack structures, combined with engineering experience in this field. 

It is important to bear in mind that the Specification and the Commentary should not be 
used without first obtaining competent engineering advice with respect to suitability for 
any given application. 

This Commentary to the Specification, like those in the AISC and AISI Specifications 
referred to in section 10, attempt to serve two purposes: (1) they give explanations of, and 
reasons for, the various provisions of the Specification, and (2) where advisable, they 
suggest specific procedures with regard to engineering design, calculation or testing, 
which satisfy the particular requirements of the Specification. 

It should be emphasized that, while the provisions of the Specification are meant to be 
explicit, recommendations and suggestions made in the Commentary are not.  In many 
cases they represent one way of interpreting the Specification provisions, but do not 
preclude other ways of doing so. 
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COMMENTARY  
on the 

SPECIFICATION FOR THE DESIGN, TESTING AND 
UTILIZATION OF INDUSTRIAL STEEL STORAGE RACKS 

1997 EDITION 

1.1 SCOPE.   

The scope limits the applicability of the Specification to pallet racks, movable shelf 
racks, and stacker racks made of hot-rolled or cold-formed steel.  Although only these 
three types of rack are explicitly mentioned, the Specification is also intended to be 
applied to any freestanding rack having a three dimensional structural system comprised 
of braced frames in one direction and moment frames in the other.  In other words, any 
rack system that is constructed with beams and frames.  Such rack types include push 
back rack, pallet flow rack case flow rack and order picking modules.  The Specification 
is also intended to be applied to the design of the storage rack portion of rack supported 
buildings.   

The rack systems that are excluded from this Specification (such as cantilever and drive-
in) are excluded for two reasons.  First, certain sections contained in the Specification do 
not apply to these rack types.  For example, the upright frame and effective length 
provisions of Section 6 and the beam design provisions in Section 5 are not applicable to 
these rack types.  Second, the Specification does not include the necessary design 
provisions for these rack types.  For example, effective length factors and deflection 
limits for cantilever uprights would need to be included.  Additional analytical work and 
testing is planned by the committee that will enable the addition of comprehensive design 
provisions for these rack types in the future.  Some of the design sections and special test 
provisions of this Specification are applicable, and therefore helpful, in the design and 
testing of other rack types.  For example, Section 4 Design of Steel Elements and 
Members is applicable to any hot-rolled or cold-formed steel column of other rack types 
such as cantilever or drive-in racks. 

1.2 MATERIALS.  

The intent of this section is to ensure that a reliable quality of steel is used in the 
fabrication of racks, without limiting the type of steel to any particular strength or rolling 
characteristics.  

1.3 APPLICABLE DESIGN SPECIFICATIONS.   

This provision states that the Rack Specification merely contains such relatively minor 
supplements or modifications of the nationally accepted AISI and AISC Specifications in 
Section 10 as are necessitated by the special nature of rack structures, as distinct from 
regular framing for steel buildings. 

This edition of the specification allows the use of either Allowable Stress Design (ASD) 
or Load Resistance Factor Design (LRFD). 
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1.4 INTEGRITY OF RACK INSTALLATIONS.   

1.4.1 OWNER MAINTENANCE.  

This section stresses the importance of planning in the initial design process, controlling 
the use of the rack to that initially intended, and scheduling regular inspection to maintain 
the integrity of rack structures.  Users are directed to “American National Standard For 
the Use of Industrial and Commercial Steel Storage Racks – Manual of Safety Practices / 
A Code of Safety Practices” [1] regarding safety practices in the use of storage racks for 
further information. 

1.4.2 PLAQUE 

In industrial and commercial warehouses, allowable unit floor loads are generally posted 
in easily visible locations, and such posting is often required by law.  The Specification 
provides for similar posting of maximum permissible unit load for each given rack 
installation.  For racks designed to receive loads on standard sized pallets, a unit load 
means the combined weight of product and pallet unless the installation provides for 
more than one unit load being stacked on top of each other.  Load beams may be 
separately identified.  A sample plaque is illustrated in Fig. 1.4.2a and b.  The figures are 
not intended to limit the plaque details, but rather are presented as a possible example.  It 
is the intent of the Specification for the plaque to inform the storage facility manager of 
the safe rack capacity and any plaque that transmits the required information is 
acceptable. The manager of the storage facility shall have the responsibility to be 
cognizant of this load limit and to instruct all operating personnel to see to it that the 
permissible load is not exceeded. 

 

Figure 1.4.2a Example of Load Capacity and Compliance Plaque. 
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Figure 1.4.2b Example of Load Capacity and Compliance Plaque. 

The plaques should not be transferred to any reconfigured or relocated rack without first 
verifying the applicability of the information on the plaque to the new configuration or 
location. 

1.4.3 CONFORMANCE.   

For racks designed in accordance with this Specification, it is important for building and 
safety inspectors to know whether they were produced and erected following this 
Specification.  To this end, Sec. 1.4.3 states that a plaque should be displayed indicating 
conformance with the Specification for racks so produced.  The intent is that such a 
statement of conformance will greatly facilitate and simplify approval of rack 
installations by local, regional or federal inspecting authorities. 

1.4.4 LOAD APPLICATION AND RACK CONFIGURATION DRAWINGS.   

For purposes of safety inspection, complete data should be available on engineering 
design and capacity of the racks as originally ordered, delivered and installed. 

For this reason Sec. 1.4.4 provides that such information, in the form of rack 
configuration drawings with load magnitude and application indications be furnished by 
the rack dealer or manufacturer’s local representative involved in procuring and erecting 
the particular rack installation.  The provision that both these parties retain such 
information on file is important because both the owner of the rack installation and the 
local dealer may change over the lifetime of the installation.  The safekeeping of such 
information by both parties will greatly increase the probability that such information 
will be available if and when needed. 

1.4.5 MULTIPLE CONFIGURATIONS.  

Most racks are produced so that they are adjustable and can be assembled in 
configurations different from the one originally ordered and installed.  Consequently, it is 
possible to install or modify a rack into an alternate configuration which is unsafe.  For 
example, while using the original components [beams and upright frames] the rack could 
be rearranged to reduce the vertical distance between the upper beams, which would 
increase the unbraced length of the bottom portion of the columns.  Its increased 
slenderness ratio would reduce the carrying capacity of the columns as compared to the 
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original configuration.  Alternately, racks can be modified by installation of additional 
components; e.g., greater number of shelf beams at smaller vertical spacing with the 
original upright frames.  This would reduce the slenderness ratios of the individual 
column segments and increase their load capacities.  However, the additional loads, 
which can now be placed on the greater number of shelves, could increase the load on the 
column by an amount greater than the increased capacity resulting from the reduction of 
the unbraced length.  These are just two examples of changed configurations which could 
make an originally adequate rack unsafe. 

The owner or user of the rack installations generally will not have the engineering 
capability to establish the safety of his changed configuration.   

It is for these reasons that Sec. 1.4.5, in essence, provides that the owner be given 
comprehensive guidelines as to those alternate configurations which can be used safely.  
If changes other than those detailed in the guidelines must be made the original 
manufacturer or competent storage rack engineer should be contacted.   

1.4.6 MOVABLE SHELF RACK STABILITY.   

These racks differ from standard storage racking in that a majority of shelves are 
designed to be removed.  In standard storage racks, shelves (beams) are readily 
adjustable, but cannot be removed without unloading the rack and re-assembling the 
components.  For this reason, movable shelf racks are fitted with one or more permanent 
shelves and/or braces that provide the needed stability to the structure.  This section 
specifies the provisions for identifying those stabilizing components, and for posting 
warnings and restrictions for removal. 

1.4.7 BEARING PLATES AND ANCHORS.   

It is the function of bearing plates to receive the concentrated forces at the bottom ends of 
the columns and to distribute them with adequate uniformity over a large enough bearing 
area.  Provisions for the dimensioning of bearing plates on concrete floors are given in 
Sec. 7.2.  Adequate connection of the column to the bearing plate is required to properly 
transfer loads.  

This section also specifies that all racks should be anchored to the floor.  The anchor 
bolts should be installed in accordance with the anchor manufacturer’s recommendations.  

Anchors serve several distinct functions: 

1.)  Anchors fix the relative positions of, and distances between, neighboring 
columns. 

2.)  Anchors provide resistance against horizontal displacements of the bottom 
ends of the columns.  A tendency for such horizontal displacement may 
result from external lateral forces (earthquake, wind, impact, etc.) or from the 
horizontal reactions (shear forces) resulting from the rigid or semi-rigid 
frame action of the rack.  If such shear forces would in fact cause horizontal 
displacements of the bottoms of the columns, this would reduce the carrying 
capacity of the rack as compared to computed values. 
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3.)  For particularly tall and narrow racks, anchors may significantly increase the 
stability against overturning (see Specification Section 8.1). 

1.4.8 SMALL INSTALLATIONS.   

This section offers an exemption for small rack installations from the documentation 
provisions of Secs. 1.4.2 through 1.4.5.  These requirements would represent an 
excessive hardship for the management of such installations.  However, in all other 
respects, the design, testing and utilization provisions of the Specification apply to all 
racks including the small installations as defined in this section. 

1.4.9 RESISTANCE TO MINOR IMPACT.   

Collisions of forklift trucks or other moving equipment with front columns are the single 
most important source of structural distress of storage racks.   

This section is concerned with the protection of those bottom portions of columns which 
are exposed to such collisions.  At what exact level such collisions can occur depends on 
the detailed configuration of the particular forklift truck.  It seems to be general 
experience that with existing equipment, collision occurs and the column damage is 
confined to below the first level of beams.  When the lowest beam is located at some 
distance, say 2 feet to 4 feet from the floor, the rear counterweight of some trucks can 
impact the beam imposing a very significant horizontal load on the beam or frame 
bracing.  In this case impact protection of a special nature should be considered. 

While it is not practical to design racks to resist the maximum possible impact of storage 
equipment, this section addresses two possible ways to safeguard racks against the 
consequences of minor collisions.  Users should contact the rack supplier for 
recommendations on products available. 

The first way is the provision for protective devices that will prevent trucks from hitting 
the exposed columns.  Fenders or bumpers can and have been used for this purpose.  
Also, deflectors which, while not designed to withstand the full impact of the truck, are 
shaped to deflect it away from collision with the columns.  No specific data is available 
regarding the force for which such protective devices must be designed.  It is the 
responsibility of the owner to specify, in the contract documents, the design requirements 
of the deflector.  They will, of course, depend on the weight and velocity of the particular 
truck and also on such energy absorbing bumpers as may be provided on the truck itself. 
It is not necessary, that such devices fully maintain their own integrity in such collisions, 
but merely that they protect the columns from collision, even at considerable damage to 
themselves.  Therefore such devices should be made to be easily replaceable or repairable 
in case of collision damage. 

A second method of safeguarding the rack upright is to reinforce the bottom portion of 
the front column and/or bracing in the frame.  Common methods include welding an 
angle deflector to the front of the aisle side column, doubling the section strength by 
welding two columns together, using heavier horizontal and diagonal bracing to provide 
alternate load paths, or using larger baseplates and anchors with the aisle side column. 

These methods are intended to aid in avoiding collapse of the frame due to minor impacts 
(not major collisions) and limit the damage caused.  Users must perform regular 
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inspections to ensure damaged racks are not used to store loads, and that adequate repairs 
are made promptly in consultation with the rack supplier. 

1.4.10 RACKS CONNECTED TO THE BUILDING STRUCTURE.   

It is common practice to connect certain racks to the building structure for added 
stability, such as single rows adjacent to a wall.  It is important – particularly in seismic 
applications – to consider the forces that can be applied to each of the structures as well 
as considering the structural interactions due to those forces.  This section requires that 
the building owner be advised of the possible force imposed by the rack so that he can 
notify the building architect. 

1.4.11 PLUMBNESS.   

Out-of-plumb installation of racks creates additional stress in the uprights that may not be 
accounted for in the design of the components.  Commonly shims are used under the 
column baseplates to account for uneven floors, and to maintain the needed tolerance.  
The previously specified tolerance of 1 inch in 10 feet of height has been changed to 0.5 
inches in this edition of this specification to reflect common industry practice. 

2 LOADING 

The purpose of this section is to clarify the design methods used in the AISI and the 
AISC Specifications as they apply to storage racks.  Storage racks differ from building 
structures in that their dead loads are a very small percentage of the total load when 
compared to buildings. Also, racks have product loads in addition to dead load and live 
load.  Product load has been defined for racks as the products or pallet loads stored in the 
rack.  This load is given the symbol, PL, in the load combinations.  Live loads could still 
be present in racks.  Examples of live loads would be floor loading from work platforms 
or the moving equipment loads of Section 2.5.2. 

Since the last edition of the RMI Specification LRFD design has become much more 
commonplace for cold-formed and structural steel.  The AISC has recognized both 
methods of design [2, 3].  The AISI has a combined specification [4] that contains both 
methods.  The two methods of analysis should give results that are similar but they will 
not be exactly the same.  The RMI allows the designer to use either method but the 
analysis must be consistent, that is the ASD and LRFD methods must not be mixed.  The 
designer may see some benefit to the LRFD method due to the product load factor that 
has been incorporated in the load combinations. 

2.1 LOAD COMBINATIONS FOR THE ASD DESIGN METHOD 

The ASD design method is to use unfactored applied loads and then compare them with 
the allowable force, which is the ultimate load divided by a factor of safety.  All of the 
loads have no factors except for combination #5.  The 0.88 value is applied to the shelf 
plus impact critical because impact is a short duration load and for the two pallet case 
where the impact effects are not large, the beam design will result in the traditional factor 
of safety of 1.65 to 1.  All loads resulting from these combinations must be checked 
against allowable loads from the AISC – ASD Specification [3] or AISI – ASD 
Specification [4]. 
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The load PLapp represents the product loading that must be present for the WL or the EL 
to be possible.  It is recommended that this be the percent of the product load that was 
used to compute the base shear for the seismic analysis.  For outdoor racks or rack 
buildings with cladding PLapp is zero for the wind uplift case because the racks may be 
required to resist the full wind force when they are empty. 

Combination #3 and #4 may be multiplied by 0.75.  This is the same as using the 33% 
stress increase that has been historically allowed when checking for wind or seismic 
cases.  The EL is allowed to be multiplied by 0.67 when the code used to derive the 
seismic loading is limit states based (such as section 2.7 of this specification).  This is 
because the limit states based codes give higher applied seismic forces by about 50 
percent.  These codes have been written to be used with the LRFD design method. 

2.2 LOAD FACTORS AND COMBINATIONS FOR THE LRFD DESIGN 
METHOD 

As stated above, product loads are the loads that are placed on storage racks.  Product 
load has been differentiated from the live load so it can be factored differently.  It is 
necessary to differentiate between these two types of loading because their treatment 
under seismic conditions is also different.  The maximum product load is generally well 
known for a typical installation and more predictable because the weight and density of 
the products to be stored is known.  The potential for overload may also be reduced due 
to the lifting limitations of the fork truck.  For this reason a smaller load factor than that 
used for a live load is justified.  However the probability of a high product load being 
present during an earthquake is greater than the probability of the high live load being 
present, so for some of the loading combinations the product load factor is higher. 

The purpose of these modifications is to make the load combinations more realistic for 
the rack structures.  These loads are to be compared with the nominal strength for the 
member or connection, multiplied by the appropriate resistance factor from the AISC – 
LRFD Specification [2] or the AISI Specification [4]. 

Product load has been added to the uplift case because, for racks, the product loads must 
be present in order for the prescribed seismic forces to act.  It is possible to get an 
irregular loading that will produce seismic uplift on an unloaded column for an 
interconnected section of rack.  The unloaded frames, in this case, would be tied to 
frames with pallet loading that would resist uplift.  The seismic forces would, in turn, be 
less for the under-loaded areas.  The conservatism here is that the product load not used 
to compute W is still present and resisting uplift. 

The modification of the LRFD approach is a reduced load factor, for product loads, of 
1.4.  As mentioned above, this is justified due to better predictability of product loads 
than live loads.  The designer is reminded that this change only applies to product loading 
only and does not apply to other live loading from roof, mezzanines and so on.  The load 
factors for all of the combinations were derived by averaging the LL factor and the DL 
factor.  This will result in a safety factor for the gravity load case of 1.65 for the entire 
range of column lengths with respect to product loading.  The resistance factor (φ) for 
compression members is 0.85. 

Load combination #7 in the LRFD and load combination #5 in the ASD have been added 
to give a more realistic treatment of impact loading for shelves.  This combination will 

( ) ( ) ( )( ) PLPLPLPL 587.1125.04.14.101.02.1 =××+×+××
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usually govern the design of the shelf.  For a two pallet wide shelf, which is most 
common, the impact effect is about 1/8 of the beam load so the margin of safety for this 
combination (with the DL equal to 1 percent of the product load) would be: 

For φ = 0.95 

This corresponds to the traditional 1.67 factor of safety.  A resistance factor (φb) of 0.9 

would result in a higher factor of safety.  This load combination would govern over 
combination #2 because combination #2 includes no impact.  For ASD, combination #2 
could govern on a shelf with many loads applied, for example a shelf with 50 boxes hand 
stacked.  Combination #7 will always govern for LRFD. 

There is no need to change live load factors for racks when the area floor loading exceeds 
100 psf as required in some codes and specifications.  This is covered in the notes within 
section 2.2. of the RMI Specification.  Also, when the method used to derive the seismic 
lateral forces is limit states based (such as section 2.7 of this specification) the load factor 
for EL in combinations #5 and #6 may be reduced to 1.0.  This is consistent with other 
codes. 

The resistance factors for the anchor bolts have been derived to give a factor of safety of 
4 as recommended by most anchor bolt manufacturers and accounting for the 33% 
Allowable Stress increase, where applicable. 

2.3 DESIGN LOADS.   

The Specification includes, in addition to the vertical load, provisions for vertical impact 
and horizontal loads that a normal rack installation will experience during its use.  It is 
important to include all forces that could reasonably act together.  For instance, one could 
reasonably expect that a forklift truck would not be placing the load on the rack during an 
earthquake.  Therefore, it is not necessary to consider both shelf impact and earthquake 
loading acting concurrently 

2.4 VERTICAL IMPACT LOADS.   

Handling of pallets being placed on and being removed from shelves is responsible for 
most beam damage.  Considering the magnitude of the forces possible, no beam can be 
designed and guaranteed not to be damaged by a pallet being dropped onto the rack.  An 
allowance for impact can therefore be no substitute for proper lift truck operation.  How 
the lift truck is operated is the sole responsibility of the owner.  The owner must make 
sure that his drivers are properly trained and responsible, and that no one else can operate 
the trucks at any time.  It must also be recognized that it is not possible to load a pallet 
without applying some impact to the shelf.  When a pallet is loaded onto the rack, the 
impact force will be transmitted by the pallet being loaded.  The pallet position should be 
chosen to ensure that the minimum safety margin exists for loading pallets at any 
location, Section 2.4 requires the impact force to be on one shelf distributed along the 
width of the pallet which causes the greatest stresses.   

67.195.0
587.1 =
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When determining allowable loads by test, the impact load must be included in checking 
compliance with Section 2.4.  The impact load should be applied by loading one pallet 
125% of the test weight with all of the other pallets at the test weight.  This will give an 
additional 25% of the test pallet load on each shelf.  The heavy pallet may have to be 
placed in different locations to check bending moment, shear force and end connections.  
When testing or designing for deflection in accordance with Section 5.3, the inclusion of 
impact is not required.  

 This impact provision is included to add extra safety to the design of the shelves and their 
connections due to vertical impact of loads being placed by the lift truck or other device.  
When 25% of one pallet load is added for impact on a two load wide shelf, the margin of 
safety is about 1.67 as shown in the Commentary Section 2.2.  This is equal to the 
traditional margin of safety.  If there is one load per shelf the margin of safety will be 
higher.  For the shelf with many small boxes the margin of safety will be less and could 
approach 1.4/φ or 1.47 minimum 

2.5 HORIZONTAL FORCES 
There are few true horizontal loads imposed on a storage rack system. There are cases where 
horizontal forces may be generated that are addressed in other parts of this specification, such 
as Section 2.6, Wind Loads and Section 2.7 Earthquake Forces and the design of the storage 
rack components must be checked for those forces when applicable.  Other horizontal loads 
are generally balanced out in long rack rows, such as plumbness or member out of 
straightness, or isolated, such as fork truck impacts, and it is not generally necessary to check 
the overall rack system for these loads.  The local effects of possible fork truck impacts are 
addressed in Section 1.4.9 and, if columns are exposed to potential impacts, careful attention 
should be paid to the impact resistance. 

In past RMI specifications, an artificially high horizontal force was prescribed to be imposed 
in both the down-aisle and the cross-aisle direction of the rack.  In the down-aisle direction the 
column members were required to be checked for axial load from the pallets and bending 
moments from this horizontal force.  The horizontal force was a PΔ force generated if the 
storage rack row leaned, in the down-aisle direction, 0.015 of the distance to the first shelf.  It 
was found, in subsequent investigations, that this force had a severe impact on the capacity of 
an individual rack column.  However, when many columns are installed in a row and 
interconnected the effect was balanced out.  Further, thousands of storage racks systems have 
been designed and installed without the PΔ forces and have performed well. 

Other specifications NEHRP [5], UBC [6] specify a drift limit for storage racks of 0.0125 hx 
and 0.0036 hx respectively.  These specifications do not require PΔ analysis for drifts below 
the indicated limits.  These codes state that if an analysis of the storage rack shows that the 
drift is within these limits, no analysis of the main force resisting components for PΔ forces is 
required.   

The drift calculation for a column segment is straight forward.  However, much of the down-
aisle drift in a storage rack comes from the flexibility of the beam-to-column connection.  The 
effect on the system of the various manufacturers’ beam to column connectors is generally 
difficult to analyze. If the connections are strong enough, generally, the overall rack system 
will also be sufficient.  It is for that reason that a separate check of the strength of the 
connections is needed.  Since the strength of many connectors can not be analyzed, the 
connection test in Section 9.4 is recommended. 
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In the cross-aisle direction there are not generally the quantity of members necessary to 
balance out the horizontal forces.  The usual configuration is a back-to-back rack row with two 
frames attached with back-to-back ties.  Additionally, fork truck impact will have a greater 
effect in the cross-aisle direction.  In the cross-aisle direction the frame bracing can generally 
accommodate a force of 1.5% of the frame vertical load.  Similarly, in the cross-aisle direction, 
the connections of the bracing to the columns should also be checked.   

2.5.2.1 Some forms of storage rack also provide guidance for the top of the material handling 
equipment.  In that case the equipment manufacturer will specify the top horizontal 
force and the frequency of that force.  It is necessary that the force be included in the 
rack design in proper combination with the other forces on the system.  

2.6 WIND LOADS 

There are instances where racks will be the main wind resisting structural system.  
Storage racks may be installed outdoors or they may be designed as a part of a rack-
supported structure. 

When walls do not protect the rack system the wind will exert force primarily on the surface 
area of the pallet loads in the stored locations.  Consideration should be given to unit loads of 
less than maximum weight but the same size as the posted unit load.  Consideration should 
also be given to partially loaded rack where, for instance, a load is placed only in the top 
position and no others.  The effects of wind acting on the rack components when empty, or 
during construction should be considered. 

When a rack system supports a wall, consideration should be given in the design, especially 
for overturning, of racks that may be subjected to wind loading whether or not pallets loads are 
placed in the racks. 

2.7 EARTHQUAKE FORCES 

2.7.1 GENERAL 

It is important that rack systems be engineered, manufactured, installed, and utilized in a 
manner that such systems can perform adequately under all known loading conditions.  
Many geographic regions have building codes which are known to require that building 
and non-building structures, including rack systems, be designed to accommodate 
earthquake loads.  The analytical approach to the seismic behavior of rack structures 
developed within this Specification is intended to reflect the current thinking within the 
Building Seismic Safety Council (BSSC) and their current provisions of the National 
Earthquake Hazards Reduction Program NEHRP [7] , as well as the national model codes 
promulgated by the Building Officials and Code Administrators International, BOCA [8]; 
the International Conference of Building Officials, ICBO [6]; the Southern Building 
Code Congress International, SBCCI [9], American Society of Civil Engineers, ASCE 
[10]. 

Should the rack structure be connected to another structure in a manner which 
significantly modifies the free field ground motions, then this structural interaction must 
be made part of the analysis and resulting design of both the rack system and the 
supporting structure. 
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The principle advantage of mass-produced steel storage rack systems is their modular 
design, which allows considerable flexibility of configuration and installation.  This 
advantage also presents a serious challenge to competent seismic performance.  The 
initial installation of a rack system should be in accordance with an engineered design.  
Subsequent modifications should be made only with guidance by a registered design 
professional to avoid compromising the seismic integrity of the system.  Further, storage 
rack systems are often subject to rough use and damage.  It is the owner's responsibility 
to maintain the integrity of the rack to insure adequate structural performance during an 
earthquake. 

2.7.2 MINIMUM SEISMIC FORCES 

The base of a rack system supported by a floor slab at or below grade experiences the 
ground accelerations directly, and the design should proceed accordingly.  For a rack 
system supported by another structure (e.g., an upper story of a multi-story building 
structure) the structural analysis must consider the interaction between the structures.   

The system importance factors with magnitudes greater than one are intended to result in 
a higher performance level for certain rack installations under seismic conditions, viz., 
those within systems deemed to be essential facilities that should continue to perform 
following a seismic event; those which might release hazardous materials in such a 
seismic event; and those installations located in warehouse retail stores where the rack 
system is located in an area open to the general public.  In such a warehouse retail store, 
unlike a sparsely populated typical warehouse and distribution center, large numbers of 
the shopping public can be expected to be within the rack system during business hours.  
The consequences of a rack failure, in this environment, dictate a higher level of 
performance for such systems. 

To properly account for the fact that the product loads placed on shelves are often less 
than the capacity for which the shelves are designed, the product load reduction factor 
(PLRF) is introduced.  Thus, in the longitudinal (or down-aisle) direction, where there are 
numerous repetitious pallet positions, PLaverage is defined as the maximum total weight of 
product expected on the shelves in any row divided by the number of shelves in that row.  
PLmaximum is defined as the maximum weight of product that will be placed on any one 
shelf in that row, this being usually the design capacity for the pallet positions.  With 
PLaverage and PLmaximum, the Product Load Reduction Factor (PLrf) becomes simply the 
quotient of the two.  This reduction is not permitted in the cross-aisle direction. 

The factor of 0.67 applies to the loading considerations under seismic events.  Research 
has shown that there is some friction inducing, energy dissipating, relative movement 
between the rack and the stored product during seismic motions.  The 0.67 factor 
represents the fraction of the dynamically active load on a fully-loaded system that is 
likely to be felt by a structure in a normal application, and that needs to be taken into 
account in the determination of lateral loads under seismic events.  If the designer knows 
that for a particular installation the dynamic portion of the load is likely to be greater than 
67 percent, then such a higher magnitude should be used in the determination of lateral 
forces.   
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2.7.3 CALCULATION OF SEISMIC RESPONSE COEFFICIENT. 

The seismic response coefficient is intended to be a site-specific value; the magnitude of 
this coefficient is affected by the characteristics of the structural system through the 
values of R and T, and also by the characteristics of the soil underlying the building on 
whose floors the rack system is founded, through the values assigned to the various soil 
profile types.  T is the fundamental period of the rack structure.  The factor R is an 
empirical response reduction factor intended to account for both damping and the 
ductility inherent in the structural system at displacements great enough to surpass initial 
yield and approach the ultimate load displacement of the structural system.  Magnitudes 
of the acceleration components Av and Aa are to be taken from the accompanying contour 
maps or as specified by the building code authority. 

  

There are several ways for estimating the fundamental period of vibration for a pallet 
rack in the down aisle direction.  One method that is sometimes used is the Rayleigh 
Equation: 

where: 

WI = DL + PL (used to determine the seismic lateral forces) + 0.25LL at each 
level i.  
For RMI Specification Section 2.7:     DL + 0.67PL + 0.25LL 

Fi = Seismic lateral force at level i.  The force at each level must be computed 
from the force distribution equation required by the seismic design code.  
For the RMI Specification, these formulas are given in Section 2.7.4. 

g = acceleration due to gravity (386.4 in/sec2) 

T = the fundamental period of vibration. 

Δi = total lateral displacement at level i relative to the base, as computed using 
Fi. 

 

In order to use the Rayleigh Equation it is necessary to be able to compute the story 
lateral displacements.  These values can be found by a rigorous frame analysis or by 
approximation.  More accurate computations of the lateral displacements will result in a 
more accurate T value.  If the second order lateral displacements are ignored or the drifts 
are otherwise underestimated the resulting T value will be conservative.  The Horne-
Davis method for frame analysis provides a simple method for computing lateral 
displacements at the beam levels.  This method computes displacements as a function of 
Pcr which is the elastic critical story buckling load of the column span.  A summary is 
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shown here: 

where: 

Δp = primary story drift not including PΔ effects. 

H = total lateral force above the shelf elevation being evaluated. 

L = column span length. 

Δi-1 = Primary deflection just below the level being evaluated. 

Pcr =  critical elastic buckling load of the column span  

One method that is sometimes used to compute the Pcr value is to calculate it using the 
value Kx for the column span.  In this sense Kx is being used as a tool to 
approximate the effect of story buckling on the critical elastic buckling load of the 
column.  Pcr could also be figured from a rigorous frame analysis or other equally 
acceptable methods.  Computation of Pcr using the K method is shown below: 

where: 

Kx = Effective length factor for story buckling in the down aisle direction. 

Ix = Column Moment of inertia perpendicular to the plane of the frame. 

 

For the total drift at level i. 

 

This method will be very accurate if the value of Kx is accurately determined.  Kx 
for this method is a measure of the lateral stiffness of the story.  If Kx is 
underestimated, the T value will be conservative.  The designer should use the 
same Kx value to check column members as is used to determine T.  The value of 
Kx used should not be more than is used for the member check. 

The period in the cross-aisle direction is usually much shorter. 
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2.7.4 VERTICAL DISTRIBUTION OF SEISMIC FORCES 

The calculation of the vertical distribution of the lateral forces F which are being resisted 
by the base shear V results in a linearly increasing or triangular distribution for values of 
k=1, and a nonlinearly increasing value of F for values of k greater than one. 

It is appropriate to account fairly for the contribution of the shelf-loading pattern on the 
development of the lateral forces, their distribution, and the resulting behavior of the rack 
structure.  Thus, it is felt that when the bottom most pallet beam is within twelve (12) 
inches of the floor, such a shelf loading contributes little to the lateral deflections and 
resulting lateral force distribution along the height of the structure.  However, when such 
a bottom shelf is located at an elevation greater than twelve (12) inches above the floor, 
the contributions will begin to be significant and should be considered in the same 
manner as the remaining loading on all the upper shelves. 

2.7.5 HORIZONTAL SHEAR DISTRIBUTION 

The magnitude of the lateral shear force at any level is determined simply by the 
equations of equilibrium applied to the particular section of the structure.  The story shear 
in any story is the sum of the lateral forces acting at all levels above that story. 

2.7.6 OVERTURNING 

In an effort to represent an extreme case which might result in an unstable rack system, 
an analysis must be made and resulting design implemented for the condition where only 
the top-most level of the rack is loaded; that load must be the applicable design load and 
the lateral force caused by a seismic event shall be determined accordingly. 

This overturning check is intended for only anchor uplift and floor reactions.  When 
calculating the load combination for seismic uplift in Section 2.1 and 2.2, PL is the top 
load level only. 

2.7.7 STORAGE RACK NEED NOT BE CHECKED FOR OVERTURNING WITH MORE 
THAN JUST THE TOP LOAD IN PLACE.  THE FULLY LOADED RACK HAS TO DEFLECT 
SUBSTANTIALLY MORE THAN THE TOP LOADED CONDITION TO MOVE THE CENTER 
OF GRAVITY TO THE CRITICAL OVERTURNING LOCATION. CONCURRENT FORCES 

Considering the probabilities, it is reasonable to expect that the effects of out-of-
plumbness, impact, wind forces, and seismic events will not occur simultaneously.  The 
design shall proceed accordingly. 

3 DESIGN PROCEDURES.   

This section specifies that engineering design calculations are to be made in accordance 
with accepted principles and conventional methods of structural design.  This means 
among other things, that the basic concepts of structural analysis must be observed. This 
section also refers to the AISI [4] and AISC [2, 3] Specifications as modified in various 
specifics in this Specification. 
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The following is just one example of what is meant by “conventional methods of 
structural analysis”. Depending on types of connections, cross sections and relative 
capacities of beams and columns, pallet racks may function and be analyzed either as 
elastic rigid frames or as frames with semi-rigid connections.  Regardless of what 
methods are used, the basic laws of equilibrium and compatibility must be satisfied in all 
parts of the structure.  For example in the design of shelf beams, advantage can be taken 
of negative end moments up to values that can be developed by the specific connections, 
as determined by test (Section 9.4).  However, if this is done, the column must be 
designed for the end moments which they must develop in order to create the end 
restraint used in the beam design.  For instance, the upper end of a corner column has to 
support the full end moment of the abutting uppermost shelf beam, and the column must 
be designed for its axial load plus indicated moment.  Unless this is done, the basic law of 
equilibrium has been violated.  The same holds true at all other beam and column joints, 
except that the unbalanced end moment of two adjacent beams, is jointly resisted by both 
columns framing in to that joint and possibly also by the unloaded beam, if its connection 
can resist an appropriate moment.  This is so regardless of whether the negative beam 
moments have been calculated on the basis of conventional rigid frame analysis, or on the 
basis of semi-rigid analysis (i.e., using test values of connection capacities).  By the 
simple law of equilibrium, no negative moment can act on the end of a beam unless the 
abutting members can develop this moment, and are designed for it.   

There may be situations in rack structures for which adequate design methods do not 
exist.  This is the case where configurations of sections are used which cannot be 
calculated by established methods, where connections of a non-standard character are 
employed, etc. In these cases, design calculations of member and connection capacity, 
shall be replaced by appropriate tests.  Several of these tests, peculiar to rack 
construction, are spelled out in later parts of the Specification.  Tests not spelled out are 
to be conducted according to the general test procedure requirements of Sec. F1 of the 
AISI Specification [4]. 

Tests are not permitted to be used in lieu of design calculations except in those situations 
which cannot be calculated by available methods.  The AISI Specification [4] is quite 
specific about this in Sec. F1.  It should be noted that confirmatory tests have a different 
nature and are covered in the AISI Specification [4] Section F2. 

No slenderness limitations are imposed on tension members. Indeed the AISC 
Specification [2,3] limitations themselves are not mandatory, but are only suggested as 
good practice.   

4 DESIGN OF STEEL ELEMENTS AND MEMBERS. 

Neither the AISI [4] nor the AISC Specifications [2, 3] make provisions for perforated 
members, particularly of the type routinely used for columns and other components of 
racks. The effect of perforations on the load carrying capacity of compression members is 
accounted for by the modification of some of the definitions of these Specifications.  The 
approach is to use the effective section properties based on the net section whereas the 
AISI Specification [4] bases the effective section properties on the unperforated section.  
Further information on the development of the AISI Specifications [4] can be found in 
Reference 12. 
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4.2 COLD-FORMED STEEL MEMBERS 

4.2.2 FLEXURAL MEMBERS.  {THE AISI SPECIFICATION [4] SECTION C3}. 

The RMI Specification approach involves the replacement of the section properties used 
in the AISI Specification [4] by the effective net section properties.  The effective net 
section is the effective section determined for the net section.  Effective width equations 
do not exist for the type of perforations that are common in rack columns.  For this reason 
approximate approaches need to be formulated.  

The area of the effective section for axial loading is determined by means of stub column 
tests according to Section 9.2.  There are no test procedures for determining the effective 
section properties for bending.  The approximate approach of this section was developed 
assuming that when the section is in tension local buckling does not reduce the capacity 
thus Q = 1 for the tension region. This assumption implies that the cold forming effects 
do not increase the axial tensile strength. In flexure approximately half of the section is in 
compression and the other half is subjected to tension. Of course the effective section is 
not symmetric and thus this is an approximation.  The effective area of the portion of the 
section in compression can be approximated conservatively by using the result of stub 
column tests.  This is conservative because the web has a more favorable stress gradient 
when the section is in flexure. Thus the reduction factor for the area to account for local 
buckling when the section is in flexure is taken as the average of 1.0 for the tension 
portion and Q for the compression portion, namely 2/5.0 Q+ . Thus, Se , the elastic 
section modulus of the effective net section at design yield stress, is determined by 
multiplying the net section elastic modulus by this reduction factor.  

The term Sc  is the elastic section modulus of the effective net section at the lateral 
buckling stress of the gross section M Sc f/ . The reduction factor at the lateral buckling 

stress of the gross section is derived on the basis of the approach described in Reference 
12 as:  
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This approach gives conservative (lower) values of the reduction factor compared with 
the more complicated rational analysis procedures described in the 1990 Edition of the 
RMI Specification [13] Commentary.  

In the calculation of Me, σex, σey, and σt the section properties are to be based on full 
unreduced gross section considering round corners except for J, j, ro and Cw which shall 
be based on the full unreduced gross section using sharp corners because the calculation 
of these parameters using rounded corners for the net section is extremely tedious.   

The extent of inelastic reserve capacity for perforated elements needs further study and is 
hence excluded in the Specification. 
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4.2.3 CONCENTRICALLY LOADED COMPRESSION MEMBERS.  {The AISI Specification [4] 
Section 4}. 

Compression members can buckle in either of two ways: purely flexurally, i.e., by simple 
bending about one of the principle axes without twist; or torsional-flexurally, i.e., by 
bending accompanied by twisting of the member.  Some types of members which buckle 
purely flexurally are: all closed box-type members, sections whose shear center and 
centroid coincide, which is true for doubly-symmetrical members [e.g., I-sections], equal 
flange Z-sections, and others.  Many other open thin walled shapes can be subject to 
torsional flexural buckling, such as singly symmetrical channel-, C-, hat-, and plain or 
lipped angle-sections, and others.  In all these shapes, centroid and shear center do not 
coincide.  However, whether such members actually will buckle torsional-flexurally or 
just flexurally in the direction of the axis of symmetry depends not only on the type of 
cross section but also on its relative dimensions.  Thus, channels with wide flanges tend 
to buckle torsional-flexurally, while narrow-flanged channels generally buckle only 
flexurally.  For some of the more common shapes, Part VII of the AISI Cold-Formed 
Steel Design Manual [14] contains curves which permit one to decide whether or not a 
member of given dimensions will buckle torsional-flexurally.  Another way is to compare 
elastic torsional flexural buckling stress  Eq C4.2-1 of Reference 4 with the elastic 
flexural buckling stress Eq C4.1-1 of Reference 4. 

In designing columns for flexural buckling without torsion, the effective length factors K 
shall be taken as specified in Section 6.3 of this specification.  For singly symmetrical 
shapes these methods are quite straightforward, provided that the effective length is the 
same for bending about the axis of symmetry (x-axis) and for twisting.  This is generally 
the case for building-type frames, but need not be so for rack structures.  For instance, for 
a pallet rack with channel or C-columns placed so that the x-axis is in the plane of the 
upright frame, the unbraced length Lx for buckling about the x-axis is the length from the 
floor to the center line of the bottom beam, or between successive beam center lines, as 
the case may be.  (This is the unbraced length Lx, not the effective length KxLx.)  
However, for torsion it can be assumed that even light members, such as the diagonal or 
horizontal struts of upright frames, will prevent twisting at the point where they are 
connected to the columns, provided the connection itself does not permit twist.  Typical 
connection details between the columns and the bracing which are expected to inhibit 
twist and those that are not are shown in Fig. 4.2.3.  For those racks with proper 
connection details, the unbraced length Lt for torsion will be the free length between 
adjacent connections to any members which counteract torsion.  For instance, if a 
diagonal of an upright frame meets the column somewhere between the floor and the 
lowest beam, then the longer of the two lengths, from the diagonal connection to either 
the floor or the beam, represents the unbraced length for torsion, Lt.  
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Fig. 4.2.3-1 Joint details 

 

Different effective lengths for torsion and flexure are accounted for by taking KxLx in the 
expression for σex, and KtLt in the expression for σt.  The effective length factors Kx and 
Kt are given in Sections 6.3.1 and 6.3.3, respectively.  

The treatment of concentrically-loaded perforated compression members is based on a 
modification of the AISI Specification [4] approach for unperforated compression 
members.  The modification is based on the studies reported in Reference15.  The 
procedure consists of obtaining the nominal axial load capacity by multiplying the 
nominal failure stress obtained for the gross section by the effective net area obtained at 
the nominal failure stress.  In general, the effective net area cannot be calculated for 
column sections with the types of perforations typical in rack structures.  For this reason 
the effective net section area is to be determined through the use of the following formula 
which was developed in Ref.12:  
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where the Q factor is determined by the procedure specified in Section 9.2. 
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5 BEAMS 

5.2 CROSS SECTION   

For pallet rack and stacker rack beams, this section states that the load effects shall be 
determined by conventional methods of calculation if the shape of the cross section 
permits.  In general, the usual simple formulas for stresses and deflections of beams apply 
only if the cross section is symmetrical about the loading direction, i.e., if the section has 
a vertical axis of symmetry.  Beams of any other cross sectional shape may twist under 
load.  Such twist can reduce the carrying capacity of the beams, and/or result in 
deflections larger than that determined by conventional computations.  Examples of such 
sections are channels, particularly those with wide flanges, and wide flanged C-shapes 
when placed with web vertical.  Since calculations that include the twist are fairly 
complex and not always reliable Section 5.2 calls instead for test determination. 

It is worth noting that closed box shapes, even if they have no vertical axis of symmetry, 
are much less subject to twist than open shapes.  Thus, in many cases of closed 
unsymmetrical box beams, determination by conventional calculations may prove 
adequate. 

It can be shown that the following equation can be used  to account for the effect of end 
fixity in determining the maximum midspan moment Mmax of a pallet beam considering 
semi-rigid end connections: 

M WL rMax m=
8

 

where: 
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E = the modulus of elasticity 

F = the joint spring constant determined either by the Cantilever Test described in 
Sec. 9.4 or by Pallet Beam in Upright Frames Assembly Test described in 
Section 9.3.2.  

Ib = the beam moment of inertia about the bending axis 

L = the span of the beam  

W = the total load on each beam [including vertical impact loads]  

where: 

( )me rwLM −= 1
8
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Me = the beam end moment 

In the above derivation the load is assumed to be uniformly distributed.  For a value of F 
equal to zero, Mmax=WL/8 is obtained.  The specification requires applying a vertical 
impact factor of 25% to one unit load.  For a pair of pallet beams supporting two pallets 
this would mean that the load on one half of the beam will be 25% more than the load on 
the other half.  The maximum moment will not occur at midspan in that case.  However, 
it can be shown that the magnitude of the maximum moment thus computed will be 
within 1% of the moment computed on the basis of distributing the total load uniformly. 

If one considers semi-rigid joints, the following expression for maximum deflection δmax 
can be derived. 

δ δMax ss dr=  

where: 
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5.3 DEFLECTIONS.   

The 1/180 of the clear span is an industry consensus figure based on visual appearance 
and operational clearance considerations.  

6 UPRIGHT FRAME DESIGN 

6.3 EFFECTIVE LENGTHS.   

The AISI [4] and the AISC [2, 3] use the effective length concept in determining the load 
carrying capacity of a member subjected to an axial load alone or in combination with 
bending moments.  Such a member is usually part of a frame.  The effective length 
method is not the only available technique for determining the axial capacity of a 
compression member. Alternative methods, consistent with AISC and AISI are equally 
acceptable.  Where large lateral load requirements already exist (such as the higher 
seismic zones) a method employing the lateral load may dominate the instability 
considerations in the design and a K factor approach may not be required.  The effective 
length factor accounts for the restraining effect of the end conditions or the effect of the 
members framed into a particular member.  

The effective length concept is one method for estimating the interaction effects of the 
total frame on a compression member being considered.  The RMI has chosen to use the 
K factor approach but does not preclude the use of other properly substantiated methods.  
Several references are available concerning alternatives to effective length factors for 
multilevel frames under combined loads or gravity loads alone.  Work has been done for 
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hot-rolled members and the RMI has co-sponsored, with AISI ongoing research for cold-
formed members. 

General discussions of the effective length concept can be found in references[16, 17, 18, 
19].  Basically, the effective length factor K times the unbraced length L gives the length 
of a simply supported column which would have the same elastic buckling load as the 
particular member which is part of a frame or which has other end connections.  Though 
the effective length is computed on the basis of elastic frame behavior, it is general 
practice to use the effective length approach to find the inelastic load carrying capacity.  
This is the approach taken in the AISI and the AISC Specification [4, 2 and3] as well as 
in this specification.  As discussed in connection with Section 4.2.2, the effective length 
approach is extended to the torsional-flexural buckling mode as well. 

The behavior of rack structures and hence the effective length factor depends on the 
unique design of racks such as rigidity of the connection between columns and beams.  
Due to the wide variety of details and cross sectional dimensions in rack structures, the 
effective length factors vary within a very broad range.  For example, a simple portal 
frame with pinned column bases, the effective length factor approaches infinity as the 
connection between the beam and the columns approaches a pinned condition due to the 
connection details. 

The values of the effective length factors given in this specification are by no means 
maximum values.  They are average values assuming the racks to be designed according 
to good engineering practice and judgment.  In all cases rational analysis would indicate 
whether the stipulated values are too conservative or too unconservative for the particular 
rack.  Possible rational analysis procedures are presented later in this commentary. 

6.3.1 FLEXURAL BUCKLING IN THE DIRECTION PERPENDICULAR TO THE UPRIGHT 
FRAMES.   

The buckling considered here is parallel to the aisle.  In general, racks have singly 
symmetric sections for columns and also in general the axis of symmetry is perpendicular 
to the aisle.  The buckling of such sections parallel to the aisle, namely, about the axis of 
symmetry takes the form of torsional-flexural buckling.  For such cases, the effective 
length factor is intended to be used in computing σex in Section 4.2.2; σex is in turn used 
in computing the torsional-flexural buckling load. 

6.3.1.1 Racks Not Braced Against Sidesway.   

This section is applicable to racks that do not meet the bracing requirements of 
Section 6.3.1.2. The side-sway failure of several columns in a down-aisle direction is 
quite catastrophic. Portions of rows or entire rows collapse. A value of Kx  greater than 
1.0 is used to design against this type of failure.  The theoretical lower limit of K is 1.0 in 
braced framing or for full fixity at the top and the bottom of an unbraced column. Since 
full fixity is never achieved and the unbraced columns are free to translate, K will always 
be greater than 1.0 for unbraced frame design. The actual value of K depends on the 
rotational restraint at the top and the bottom of the column. Pallet racks that use semi-
rigid connections will have Kx values much greater than 1.0 and may even exceed 2.0. 
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The Specification allows the use of Kx = 1.7 as a default value. Numerous typical rack 
assemblies were researched. These rack assemblies had Kx values ranging from as low as 
1.3 to as high as 2.4. The racks with high K values had lighter beams and heavy columns. 
A larger number of bays tend to increase the K values because the supporting action of 
lighter loaded end frame columns diminishes. As the number of bays increases the 
probability of having all the bays fully loaded decreases. Thus as the number of bays 
increases the probability of getting a higher K may not increase.  A three bay rack has a 
greater probability of  being fully loaded than racks with more bays. Thus practice has 
shown that a three bay rack may be more likely to fail by sidesway.  

The number of levels also has an influence on the value of K. As the number of fully 
loaded levels increase the value of K also increases. This is because the difference in 
loads in the lowest level and the second level columns decreases as the number of stories 
increases. When the difference in the loads decreases the value of K increases. 

A value of K equal to 1.7 was chosen to give a reasonable amount of protection against 
sidesway for most common rack configurations. The designer should be aware that K 
may actually be greater than or less than the default value of 1.7. If the default value of 
1.7 is used no further reductions may be taken based on utilization because utilization has 
already been considered in the selection of this value. K values other than 1.7 may be 
used if they can be justified on the basis of rational analysis. The rational analysis must 
properly consider column stiffness, beam stiffness, semi-rigid connection behavior and 
base fixity. The common approaches to evaluate K are frame analyses that compute the 
frame buckling loads directly and alignment charts. The latter approach will be discussed 
below. 

The use of alignment charts to determine effective length coefficients is described in 
References 16 and 17.  The procedures described in these references need to be modified 
as described below to account for the semi-rigid nature of the connection of the columns 
to the floor and to the pallet beams.  The floor is assumed to be a beam with the following 
stiffness: 

1440

2bd
L
I

f

f =  

where: 

b = the width of the column [parallel to the flexure axis] 

d = the depth of the column [perpendicular to the flexure axis] 

The floor is assumed to be concrete, and the column connection to the floor must be 
adequate to develop base moments consistent with this stiffness.  For other floor material 
the equation should be modified. 

In the analysis the stiffness of the pallet beams is taken to be reduced to (Ib/Lb)red due to 
the semi-rigid nature of the joints. 
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 where 

 Ib = the actual moment of inertia of the pallet beams 

 Lb = the actual span of the pallet beams 

 F = the joint rigidity determined by the Portal Test of Section 9.4.2 

 E = the modulus of elasticity 

 The analysis for the effective length factor for the portion of the column from the 
floor to the first beam level would involve the following G values as defined in the 
commentary of Ref. 3 and 4. 
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 where 

 Ic    the column moment of inertia 

 Lc1   the distance from the floor to the first beam level 

 Lc2   the distance from the first beam level to the second beam level 

The effective length factor is then found directly from references 16 and 17 on the basis 
of Ga and Gb. 

The expression used above for If/Lf is based on  References 20 and 21.  The expression 
given in these references are modified to reflect the situation for rack columns which in 
general have thin base plates.  This expression is a crude representation of the base fixity.  
The base fixity depends among other parameters, on the ratio of the base moment to the 
axial load, namely the eccentricity of the axial load.  A general formulation would be 
quite complex.  Though direct test data is not available it seems reasonable to expect that 
the above equation would estimate the fixity rather closely for eccentricities 
corresponding to design load and 1.5% lateral loads. This reference using the above 
procedure reaches reasonably satisfactory correlation between the computed and the 
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observed test results.  It must be noted, however, that the base fixity is just one of many 
properties of the rack that affect the structural behavior. 

The expression for If/Lf given above assumes that the floor is concrete.  The joint rigidity 
F is to be determined by a portal test.  As the frame sidesways as the type of buckling 
under consideration implies, the beams of the frame will have different joint rigidities at 
each end.  This is due to the fact that at one end the rotation is increased while the 
rotation is decreased at the other end.  The portal method yields an intermediate value 
between the values of the rigidities of the two ends. 
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Table 6.3.1.1-1 shows the results of the rational analysis for various configurations.  
Depending on the rack configuration and the values of F, it is seen that the value of K 
may be unconservative or conservative.  This table is for the case of Lc1=Lc2 and b=d=3 
in.  A similar table can be developed for other Lc1, Lc2, b and d values. 

  Beam - Column Connection Spring Constant (F in kip/rad) 

Ic/Lc Ib/Lb 200 400 600 800 1000 1200 1400 1600 

0.005 0.005 1.54 1.43 1.38 1.35 1.33 1.32 1.30 1.30 
0.010 0.005 1.76 1.66 1.60 1.56 1.54 1.52 1.50 1.49 
0.015 0.005 1.92 1.82 1.76 1.72 1.70 1.68 1.66 1.65 
0.020 0.005 2.05 1.95 1.90 1.86 1.83 1.81 1.80 1.78 
0.025 0.005 2.16 2.07 2.01 1.98 1.95 1.93 1.91 1.90 
0.050 0.005 2.63 2.55 2.49 2.46 2.43 2.41 2.39 2.38 
0.100 0.005 3.34 3.26 3.21 3.17 3.14 3.12 3.10 3.08 

        
0.005 0.010 1.53 1.40 1.34 1.30 1.28 1.26 1.25 1.24 
0.010 0.010 1.75 1.62 1.55 1.50 1.47 1.45 1.43 1.41 
0.015 0.010 1.90 1.78 1.71 1.66 1.62 1.60 1.58 1.56 
0.020 0.010 2.03 1.92 1.84 1.79 1.76 1.73 1.70 1.68 
0.025 0.010 2.15 2.04 1.96 1.91 1.87 1.84 1.82 1.80 
0.050 0.010 2.62 2.51 2.44 2.39 2.35 2.31 2.29 2.26 
0.100 0.010 3.33 3.23 3.15 3.10 3.05 3.01 2.98 2.95 

        
0.005 0.025 1.51 1.38 1.31 1.27 1.24 1.22 1.21 1.19 
0.010 0.025 1.74 1.59 1.51 1.46 1.42 1.39 1.37 1.35 
0.015 0.025 1.89 1.76 1.67 1.61 1.57 1.53 1.50 1.48 
0.020 0.025 2.02 1.89 1.80 1.74 1.69 1.66 1.62 1.60 
0.025 0.025 2.14 2.01 1.92 1.86 1.81 1.77 1.73 1.71 
0.050 0.025 2.61 2.49 2.40 2.33 2.27 2.23 2.19 2.15 
0.100 0.025 3.32 3.20 3.11 3.03 2.96 2.91 2.86 2.82 

        
0.005 0.100 1.51 1.37 1.29 1.25 1.22 1.20 1.18 1.17 
0.010 0.100 1.73 1.58 1.49 1.43 1.39 1.36 1.33 1.31 
0.015 0.100 1.89 1.74 1.65 1.58 1.53 1.49 1.46 1.44 
0.020 0.100 2.02 1.88 1.78 1.71 1.65 1.61 1.58 1.55 
0.025 0.100 2.13 2.00 1.90 1.82 1.77 1.72 1.68 1.65 
0.050 0.100 2.60 2.47 2.37 2.29 2.22 2.17 2.12 2.08 
0.100 0.100 3.32 3.19 3.08 2.99 2.91 2.84 2.78 2.72 

 

 Fig. 6.3.1.1-1 Assumed overall configuration for Table  6.3.1.1-1 



RMI Commentary Sept 7,2000 
Revision 3.2.1 Page 26 

  

6.3.1.2 Racks Braced Against Sidesway.   

A rack structure, in order to be treated as braced against sidesway, must have diagonal 
bracing in the vertical plane for the portion under consideration.  This would restrain the 
columns in the braced plane.  In order to restrain the columns in other planes, there need 
to be shelves which are rigid or have diagonal bracing in their horizontal plane as 
specified in this section.  [Some of the terms used above are illustrated in Fig. 6.3.1.2a].  
The function of this rigid or braced shelf is to ensure restraint for the other row of 
columns against sidesway with respect to the braced row of columns.  All bracing should, 
of course, be tight and effective for its intended use. 

 Horizontal movement, or translation, of the front column relative to the rear column of 
rack with bracing in the rear vertical plane can, in some cases, be prevented by the 
presence of pallets on the load beams.  To prevent translation of the front column, the 
frictional forces between the pallets and the load beams must be capable of resisting 
horizontal force perpendicular to the plane of the upright.  The magnitude of this force at 
a bracing point should be at least 1.5% of the column load immediately below the beam 
acting as the horizontal brace.  Whether or not sufficient force exists to prevent 
translation must be determined by rational analysis giving full consideration to factors 
such as, but not limited to, lighter than normal loads and the absence of any or all loads. 

 Under typical warehouse conditions, the coefficient of friction between a wood or metal 
pallet and its supporting beams has been the subject of many tests and can conservatively 
be taken as 0.10.  Special consideration is necessary in cold storage freezers where 
operational procedures can produce ice on the contact surfaces.  Representative tests are 
recommended in this and other conditions, such as greasy or oily environments, where 
they would likewise be warranted. 

 In order to cut down the unsupported lengths of the columns, the diagonal bracing should 
divide the brace plane as shown in Fig. 6.3.1.2[b] and [c].  At the same time rigid or 
braced fixed shelves are to be provided at levels AA in order to have unsupported lengths 
of h as shown in the figures.  If such shelves are not provided at levels AA, then the 
column will be designed in accordance with Section 6.3.1.1. 

 The bottom and top portions of columns in Fig 6.3.1.2d are to be designed as columns in 
an unbraced rack whereas those in the mid-portion as columns in a braced rack. 
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 A rational analysis similar to that described in 6.3.1.1 of this commentary can also be 
used for racks braced against sidesway.  In this case the following changes need to be 
made: 
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 Figure 6.3.1.2-1  Racks Braced Against Sidesway 



RMI Commentary Sept 7,2000 
Revision 3.2.1 Page 28 

 

6.3.2 FLEXURAL BUCKLING IN THE PLANE OF THE UPRIGHT FRAME.   

In rack structures the columns are in general either singly symmetrical shapes with the 
axis of symmetry in the plane of the upright frames or doubly symmetric shapes.  
Because of this, buckling in the planes of the uprights is in general flexural.  Upright 
frames have a wide variety of bracing patterns.  The most effective bracing pattern is one 
where the centerlines of braces and the columns intersect at one point as shown in Fig. 
6.3.2-1 [a].  This is so because the braces do restrain the columns by virtue of their axial 
stiffness.  On the other hand, the bracing action in the system shown in Fig 6.3.2-1 [b] 
depends on the flexural rigidities of the braces and the connections between the columns 
and the braces.  Thus this type of bracing is not as effective. 

 The effective length factor for the frame of Fig. 6.3.2-1 [a] can be taken in general as 1.0.  
This assumes that the braces are adequate and the connection between the braces and 
columns are sufficiently rigid in the axial direction of the braces.  The effective length 
factor for the frame of Fig 6.3.2-1 [b] is in general greater than one and can be found by 
rational analysis. 

  

 Figure 6.3.2-1 Braced and Unbraced Frames 

In rack structures, frequently the centerlines of the horizontal and the diagonal braces and 
the centerline of the column do not meet at one point.  Thus, the bracing arrangement 
falls between the extremes illustrated in Figs. 6.3.2-1 [a] and 6.3.2-1 [b].  The following 
three subsections treat various bracing configuration possibilities.  
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6.3.2.2 Upright Frames with Diagonal Braces or a Combination of Diagonal and 
Horizontal Braces that intersect the Columns are illustrated in Figs. 6.3.2-2[a] and 
[b].  These figures also define the terms Llong and Lshort.  As the ratio Lshort/Llong 
increases, the frame approaches the case shown in Fig 6.3.2-2[b] and hence, the 
effective length factor can be greater than one.  

 

Fig. 6.3.2-2 Upright Frames with Diagonal Braces that intersect the Columns 

The stability of the frame is quite dependent on not only the relative axial and flexural 
stiffness of the members but also the details of the connections between the members.  
The axial stiffness at the connection in the direction of the braces is dependent on the 
details of the connection.   
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6.3.2.3 Upright Frames with Diagonal Braces that Intersect Horizontal Braces are 
illustrated in Fig. 6.3.2-3[a] and [b].  As the ratio Lshort/Llong increases, the basic 
behavior of the frame approaches that of Fig 6.3.2-3[b] and hence the effective length 
factor can be greater than one.  

 

Figs. 6.3.2-3 Upright Frames with Diagonal Braces that intersect the Horizontal Braces 

6.3.2.4 For uprights having bracing patterns such as the configuration shown in Fig. 6.3.2-
1(b) no typical effective length factors are recommended.  Rational analysis is to be 
used for such cases to determine the effective length factor.  Alternately, the load 
carrying capacity may be determined by test. 

6.3.3 TORSIONAL BUCKLING.   

Though torsional buckling is not likely to happen in rack structures, torsional-flexural 
buckling is usually the governing critical buckling mode.  The torsional buckling 
effective length factor is a parameter in the analysis of torsional-flexural behavior.  The 
provision of the Section is based on References. 14 and 22.  The value of Kt given in this 
section assumes an effective connection between the columns and the braces as shown in 
Fig.6.3.2(a). 

6.4 STABILITY OF TRUSSED-BRACED UPRIGHT FRAMES.   

The provisions of this section are based on Reference23 with the exception of the value 
of K.  The expressions given in the reference were for members that have constant axial 
force throughout their entire length.  The effective length factor K is intended to modify 
these expressions for the case of non-uniform distribution of axial forces.  The provisions 
of this section are more likely to govern for high rise racks. 
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7 CONNECTIONS AND BEARING PLATES 

The provisions of this section include the field connections and the connections between 
the various parts of the shop assemblies. 

7.1 CONNECTIONS 

7.1.1 GENERAL 

The beam end connections must be designed to resist the forces and moments obtained 
from the structural analysis. 

The effects of eccentricity of the connection and the effect of rotation of an attachment to 
the edge of an unstiffened flange must be evaluated.  The influence of these connections 
on the overall behavior is significant.  [Refer to 5.3].  Particular attention should be 
directed to the column-to-bracing connections. 

7.1.2 BEAM LOCKING DEVICE 

The upward load is specified to prevent accidental disengagement of the beam 
connection.  The upward force should be applied to an unloaded beam. 

Failure of the locking device is defined as the distortion of the locking device that 
prevents reapplication of upward force, removal, reinstallation, or reduces the carrying 
capacity.  

7.1.3 MOVABLE SHELF RACKS 

The phrase “connected to each other rigidly” indicates that the beams are connected such 
that skewing of transverse members will be prevented in normal use.  

7.2 BEARING PLATES 

The column base connections must be designed to resist the forces and moments obtained 
from the structural analysis. 

To reduce the probability of local buckling at the base, welds from the base plate to the 
column should be adequate to properly transfer loads.  When analysis indicates, the 
bearing plate and welds to the rack column shall be designed for uplift forces.  For 
bearing surfaces other than concrete, special design is required. 

Actual field experience and limited testing has shown that base plates thinner than those 
normally provided under hot rolled structural shapes, designed to AISC Specifications, 
may be acceptable.  The owner should ensure that the strength of the floor including but 
not limited to the strength of the concrete, the thickness of the floor slab, the method of 
reinforcement, and the quality of the subgrade is adequate for storage rack loading. 

This specification is for the design of storage racks only.  Floor slab design is a separate 
issue not within the scope of this Specification. 
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The owner shall bring up special bearing plate considerations to the attention of the rack 
supplier. 

8 SPECIAL RACK DESIGN PROVISIONS 

8.1 OVERTURNING 

A very important aspect of rack design is to provide stability against overturning of the 
rack structure when the rack is subjected to horizontal forces. Horizontal forces on the 
rack structure can be due to wind (Section 2.6), earthquake (Section 2.7) or the force 
described in this section. 

The designer is cautioned not to consider the stabilizing forces provided by ordinary 
anchorage to maintain rack alignment. However, if forces on anchors are analyzed and 
the anchors designed for these forces with appropriate safety factors, then the anchorage 
forces may be considered in the stability analysis. 

A limit on the height to depth ratio of the rack is imposed. This ratio is defined as the 
height to the topmost beam divided by the frame width (or the combined width of 
interconnected frames). While it is recommended that all frames be anchored (Section 
1.4.7), here it states that if the 6:1 ratio is exceeded, the rack must be analyzed for 
overturning even in the absence of seismic and wind forces. A 350 pound lateral force, 
which could result from moving equipment servicing the rack, is applied at the topmost 
shelf level for the purpose of designing the anchorage. This short duration load need not 
be considered in the design of the column. 

A further limit on the height to depth ratio is given as 8:1. Stabilizing a single row of rack 
that exceeds this ratio with floor anchors alone is not generally recommended. Under 
certain circumstances, this may be feasible but such cases should be thoroughly analyzed 
and certified by an engineer. 

The provisions of this section apply to frames of constant depth over their height. Other 
configurations such as offset or sloped legs requires more detailed analysis.. 

8.2 CONNECTIONS TO BUILDINGS 

The relative stiffness of racks and buildings vary significantly. Therefore, any attachment 
between the rack and the building shall be made with provisions for vertical and lateral 
building movements. Such attachments shall be proportioned so that the attachment 
would fail prior to causing damage to the building structure. Care should be taken that 
roof loads are not transferred to the racks. 

8.3 INTERACTION WITH BUILDINGS 

This section recognizes that building structures and rack structures are likely to have 
different structural characteristics. During an earthquake, this could have a magnifying 
effect for structures that are interconnected but which have differing periods of vibration. 
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Thus, the connections must be designed to ensure that neither structure causes damage to 
the other during a seismic event. 

9 TEST METHODS 

9.1 GENERAL 

Many factors affecting the design of rack are difficult to account for analytically.  Sec 9 
spells out a series of optional tests that may be used to evaluate the effects of components 
on the overall behavior. 

Except as either modified or supplemented in this Specification, AISI [4] and AISC [2, 3] 
shall apply to the testing of components. 

The engineers involved in rack design are probably familiar with the test procedures 
stipulated in the Specification.  However, some comments bear reiterating here.  The 
important factor that must be kept in mind is that a test procedure should be such that the 
test results are repeatable.  Anyone using the same test procedure on the same specimen 
should arrive at the same results. 

It is also important that tensile coupons be taken from each specimen to determine the 
actual yield stress.  Generally, the actual yield stress of the steel is higher than the 
specified minimum yield stress.  It is important to know the actual yield stress in order to 
analyze the test results.  It is also essential to have a complete report spelling out test 
procedures, the results and the analysis of the results. 

9.2 STUB COLUMN TESTS FOR COLD-FORMED AND HOT-ROLLED 
COLUMNS.   

Because of the interplay of three influences which affect a cold-formed perforated 
compression member, [i.e., local buckling, perforations, and cold-work of forming] 
recourse must be taken to determination by tests.  This is done by stub column tests, [i.e., 
by careful concentric compression testing of pieces of the member short enough so as not 
to be affected by column buckling].  The details of such testing are spelled out in Part 
VIII of the AISI Cold-Formed Steel Design Manual [14]. 

9.2.2 EVALUATION OF TEST RESULTS.   

Q is a factor used in Section 4.2.2 and 4.2.3.  The column formulas, as well as the test 
determination of Q, both utilize the yield strength of the material.  It is, therefore, 
essential that the value of Fy used in the column formulas be connected with the yield 
strength Fy used when determining Q.  This is elaborated below. 

The basic definition of Q is: 

influencesweakeningwithoutstrengthmaximumalhypothetic
columnstubofstrengthactual

=Q  
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In turn, this hypothetical strength in the case of nonperforated sections, is Afull Fy.  For 
shapes Q<1 the AISI Specification permits the cold work in the flats to be utilized, but 
not that of the corners. 

For perforated members, the Specification assumes the hypothetical maximum strength to 
be governed by the minimum net section Anet min of a plane appropriately passed through 
the perforations.  Correspondingly, Q is defined as 

Q
ultimate strength of stub column

F Ay net
=

min
 

In regard to the yield strength Fy to be used by determining Q by test, and the value Fy for 
calculating the strength of columns according to AISI Sec. C4 the following needs 
attention:  In calculating column strength according to AISI Sec. C4, Fy is the specified 
minimum yield strength to which the steel is ordered by the fabricator.  On the other 
hand, the yield strength of the particular coil from which the stub column test specimens 
will have been made, will be different and in general somewhat larger than the ordered 
minimum yield point.  In order for the determination of Q to be adequately accurate, it is 
necessary that the virgin yield point of the stub column test material [before forming] be 
as close as possible to the specified strength; it should not deviate from it by more than  
-10% to +20%.  With this proviso, the Specification in conjunction with the quoted AISI 
Specification [4] Appendix A5.2.2 allows the determination of Fy in the formula for 
calculating Q and consistent values of Fy for calculating column strength according to the 
AISI Specifications Sec C4. 

For a series of columns having different thicknesses, the thickest and the thinest may be 
tested.  For any intermediate thickness, the Q so determined should be used in column 
strength calculations according to the AISI Specification [4]Sec. C4 in conjunction with a 
value Q obtained by similar interpolation.  That is, 

( )( )
( )

Q Q
Q Q t t

t t
= +

− −

−min
max min min

max min
 

where Qmin is for the stub column with the thickness tmin, Qmax is for the stub column with 
thickness tmax, both determined as above.  [Note that Qmin is not the smaller of the two Q-
values, but the Q-value for the stub column of the smaller thickness.] 

This method is adequately accurate only if the actual virgin yield strengths of the two 
stub columns with tmax and tmin are not too different.  For this reason the Specification 
limits this difference to 25%. 

It is acceptable to linearly interpolate the Q-values for a series of shapes with identical 
cross-section and perforation dimensions, but with a variety of thicknesses.  For this 
purpose Qmax and Qmin should be determined from stub column tests on specimens made 
with the maximum and minimum thicknesses of coil from which stub column was made.  
This correction is necessary in order to avoid unsafe design in case the virgin yield stress 
[before forming] of the specimens was significantly higher than the specified minimum. 

By the procedures above, it is possible to obtain Q-values larger than 1 [one].  This is so 
if the neglected strengthening effects of cold-work outweigh the weakening effects of the 
perforations.  However, it is basic to the use of Q in the AISI Specifications that it can 
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only be equal to or smaller than, but not larger than 1.0.  Correspondingly, the 
Specifications provides that if the selected procedure for determining Q results in a Q-
value larger than 1.0, Q = 1.0 shall be used. 

9.3 PALLET BEAM TESTS.   

In this section, depending on the information required, two different types of tests are 
specified, [i.e. simply-supported pallet beam tests and pallet beam in upright frame 
assembly.] 

 The loading in these tests is applied by means of a test machine or jacks.  This loading 
may restrain the torsional distortions and hence, may lead to unconservative results for 
members subject to such distortions. 

 The beam test methods illustrated do not account for impact.  However, in practice, test 
results will have to be adjusted to consider the added impact effect. 

9.3.1 SIMPLY-SUPPORTED PALLET BEAM TESTS.   

This test can also be used in the design of beams, in general, when the end restraint is 
deemed not to lead to significant increase in the load carrying capacity. 

In the determination and yield moments, the number of tests needed shall be determined 
according to the AISI Specification [4].   

9.3.1.1 Test Setup.   

The test setup illustrated in Fig. 9.3.1-1 shall be used. 

 

Fig. 9.3.1-1 Simply-Supported Pallet Beam Tests.  

The value of C shown in the figure above shall be between 2.5 and 3 and has been chosen 
to avoid shear failure and to ensure a sufficiently long portion with constant moment. 
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For most pallet beams, the end connection detail is such that the beam can be placed 
directly on the supporting surface and have simply supported end conditions.  In this 
case, the clamps, diaphragms of stiffeners at the supports most likely not be needed. 

9.3.1.2 Test Procedure 

General guidelines given in Sec. 9.1.3 shall be used in addition to the particular 
requirements specified herein. 

9.3.2 PALLET BEAM IN UPRIGHT FRAMES ASSEMBLY TESTS.   

This test is intended to simulate the conditions in the actual rack as close as possible to 
determine the allowable load. 

This test may also be used to determine the magnitude of the joint spring constant F 
defined in the commentary to Sec. 9.4.  For vertical loads this test may reflect the actual 
behavior of the connections more accurately than the test described in Sec. 9.4.1. 

9.3.2.1 Test Setup.   

It is specified that the upright frame not be bolted to the floor even if the actual racks are.  
The test is intended to represent the behavior of the rack between the inflection points.  
Therefore, any restraint at the column bases other than due to the pressure should be 
avoided. 

It is important to minimize friction between beams and pallets because new, dry pallets 
on new, dry beams, when used in the test, could provide considerably more bracing than 
pallets and beams worn smooth in use and possibly covered with a film of oil. 

9.3.2.3 Evaluation of Test Results.   

General guidelines given in Sec. 9.1.3 shall be used in addition to the following three 
particular requirements or criteria for determining allowable load.  The first of these is the 
determination of the factor of safety or the resistance factor according to Section F of the 
AISI Specification.   

The second criterion by which to determine allowable loads from the test results 
prescribes a safety factor of 1.5 against excessive load distortion.  

The third and last criterion limits deflection of beams under design load to 1/180 of the 
span.  To satisfy this requirement, the load that results in this amount of deflection should 
be read from the load deflection curve plotted from the test results.  If this load is smaller 
than those obtained from the first two requirements, it governs. 

9.4 PALLET BEAM-TO-COLUMN CONNECTION TESTS.   

The tests specified in this section have two objectives.  One is to determine the moment 
capacity of the connection, the other is the determination of the joint spring constant F 
described below for use with the rational analysis approach. 
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In a rigid frame analysis the members connected in a joint are assumed to maintain the 
angle between themselves while the frame deflected under applied loading.  The joints 
between the upright columns and the pallet beam do not in general behave as rigid.  This 
is primarily due to the distortion of the walls of the columns at the joint and to a lesser 
extent due to the distortion taking place at the connectors themselves.  This peculiarity 
influences the overall behavior very significantly.  The connection details vary widely.  
Thus, it is impossible to establish general procedures for computing joint stiffness and 
strength.  It is therefore necessary to determine these characteristics by simple test. 

The change in angle between the column and the connecting beam θ [in radius] can be 
idealized as follows: 

θ =
M
F

 

where M is the moment at the joint between connecting members and F is the spring 
constant relating the moment to the rotation. 

9.4.1 THE CANTILEVER TEST.   

The Cantilever Test provides a simple means of determining the connection moment 
capacity and rigidity.  However, it has the disadvantage that the ratio of shear force [that 
is the vertical reaction] to moment at the joint is not well represented.  For typical rack 
connections this ratio is probably higher than it is in the cantilever test as spelled out in 
the Specification. 

In general a higher ratio would probably lead to a more rigid connection.  However, 
bending moment and shear force would interact and lower the ultimate load of the 
connection.  This effect should be studied by reducing the length of the cantilever to the 
distance between the end of the beam and the expected location of the inflection point.  

This test is suitable for determining F for computing stresses due to vertical loads.  A 
somewhat more tedious but more accurate determination of F can be achieved by tests 
according to Sec. 9.3.2. 

9.4.1.1 Test Setup.   

This test setup illustrated in Fig. 9.4.1.1-1  
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 Figure 9.4.1.1-1 Cantilever Test 

  

9.4.1.3 Evaluation of Test Results.   

The relationship between the moment and the angular change at a joint is not linear.  The 
following equation appears to be reasonable for determining a constant value of F to be 
used in a linear analysis. 

( )

b

b

c

c

b EI
L

EI
L

LP

FRF

316

..

2
85.0

85.0 −−
=

δ
 

where P0.85 is 0.85 times the ultimate load and δ0.85 is the deflection of the free end of the 
cantilever at load P0.85, Lc, Lb, Ic, Ib are the same lengths and moments of inertias of the 
columns and the beam, respectively.  (R.F.) is a reduction factor to provide safety 
considering scatter of test results.  Since a lower F means a higher design moment for the 
beam, an (R.F.)=2/3 should be taken in the design of the beam.  However, in determining 
bending moments for the columns a higher F leads to a more conservative value of the 
bending moment.  It is therefore recommended to take (R.F.) = 1.0 for this case.  

It is suggested that the spring constant F be calculated on the basis of the average results 
on two tests of identical specimens provided that the deviation from the average results of 
two tests does not exceed 10%: if the deviation from the average exceeds 10%, then a 
third specimen is to be tested.  The average of the two higher values is to be regarded as 
the result in the design of the columns.  

9.4.2 THE PORTAL TEST.   

The portal test is desirable when the value of F obtained is to be used in a sidesway 
analysis either for lateral deflections or stability.  Under vertical loads the connections in 
general “tighten up”.  Subsequently, under sidesway, the connection at one end of the 
beam “tightens up” while the connection at the other end “loosens.”  The portal test gives 
an approximate average value of the spring constants involved in the process.  Thus it is 
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more desirable to use the portal test for evaluating sidesway behavior, namely, the 
effective lengths and horizontal deflections.  

9.4.2.1 Test Setup.   

A schematic of the test setup is shown in the figure 9.4.2.1.  According to the 
Specification, h=24 in. 

Dial gage #1 shall be used to measure the lateral deflection δ of the rack.  Dial gages #2 
and #3 indicate whether the column bases are properly restrained or not.  In lieu of dial 
gages other deflection measuring devices may be used.  In general the friction between 
concrete and the half round bars is enough for this restraint.  

Figure 9.4.2.1-1 Portal test 

9.4.2.3 Evaluation of Test Results.   

The following is a possible rational analysis for evaluating test results .  Considering a 
portal height h and span L with moments of inertia of the columns and beams designated 
Ic and Ib respectively, and expression for maximum sidesway deflection δ corresponding 
to a lateral load of 2H combination as follows: 

δ = + +
Hh
EI

Hh L
EI

Hh
Fc b

3 2 2

3 6
 

Solving this equation for F, the following is obtained: 

F R F

Hh
h
EI

L
EIc b

=
− −

. .

2
3 62

δ
 

[R.F.] is a reduction factor that should be taken equal to 2/3. 

E = the modulus of elasticity. 

h = the distance from the floor to top of the beam. 
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H = the horizontal load per beam. 

Ib = the moment of inertia of the beam about the axis parallel with the floor. 

Ic = the moment of inertia of the column about the axis parallel with the upright 
frame. 

L = the distance between the centroid of the two columns parallel with the shelf 
beam. 

δ = Sway deflection corresponding to a lateral load of 2H. 

Since the behavior at both the design load and the ultimate load is of interest, portal 
tests are to be conducted at both load levels.  Multiple tests as recommended in the 
commentary on Sec. 9.4.1.3 are also recommended here. 

9.5 UPRIGHT FRAME TEST.   

The hazard of collapse of a full scale high rise rack system poses severe safety problems.  
Therefore, the testing procedures proposed herein are geared to a reduced scale that will, 
by simulating a full scale test, establish the upright frame capacity in a safe manner.  The 
tests are further intended to simulate the conditions in the actual racks as closely as 
possible. 

9.5.1.1.1 Test Setup for Horizontal Load in the Direction Perpendicular to the Upright 
Frame. 

 

 

Figure 9.5.1.1.1 Test Setup 
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