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ABSTRACT 

This report summarizes the status of knowledge on the inelastic deformability of steel 
members and frames. It demonstrates that the inelastic response of planar beams, beam
columns, connections and frames is well understood and can be adequately, though con
servatively, predicted by theory provided the loading is static, proportional and monotonic, 
and adequate provisions are made to inhibit premature local and lateral-torsional instability. 
The report reviews the available theoretical work, and examines the experimental evidence. 
It shows that the inelastic rotation capacity, which defines also the "ductility factor" and 
the inelastic energy absorption capacity, is both predictable and large enough to meet the 
requirements of plastically designed frames. 

The report demonstrates that the knowledge of the behavior of members and frames 
subjected to non-proportional or reversible loading, which may be the result of dynamic 
phenomena, is not complete. Methods of frame analysis are available, but information 
needs to be generated on the inelastic behavior of individual structural components under 
reversed loading. This information is vital for the performance of a proper dynamic analysis. 
A similar need exists in the area of biaxially loaded structures. 

The report considers separately the available research on beams, beam-columns, con
nections and frames. Particular emphasis is placed on the inelastic deformability. Each 
section of the report contains specific suggestions for further research and study. Selected 
references appear at the end of the report. 

The large amount of research performed for the development of plastic design has 
relevance for the study of the behavior of structures subjected to earthquake motion or 
blast, because it provides information on basic behavior, and it defines methods of analysis 
and experimentation. This research does not, however, give all the answers, and some ad
ditional areas need to be investigated. 
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I. INTRODUCTION 

Structural engineers are becoming in
creasingly interested in using the maximum 
strength of a structure (or its "ultimate" 
strength or "collapse" strength) as one cri
terion of design. This interest is due to a va
riety of complex reasons, one of which is the 
more economical use of structural materials 
than in a design based on purely elastic be
havior. It is also realized that the use of the 
elastic limit as a design criterion can not 
always account for instability effects in a 
rational manner. In some design situations, 
particularly when resistance to earthquake 
motions and blast shocks is involved, it is 
necessary to count on the energy absorbed by 
inelastic deformations. 

"Maximum strength" design, better known 
as "plastic" design, depends on the ability of 
the structure to deform into the inelastic 
range without fracture or the loss of its ca
pacity to resist forces as the deformations in
crease. The structure and its components must 
be "ductile." 

A vast amount of research has been per
formed on a multitude of problems related to 
inelastic behavior for both steel and concrete 
structures. The present study is restricted to a 
survey of research on steel-framed structures 
and components. Several previous studies col
lected, classified and evaluated the research 
on the inelastic behavior of framed steel 
structures [Refs. 1-1, 1-2, 1-3 and 1-4]. 
These surveys provided supporting evidence 
for design rules for structures under static 
loads[l-5]. 

The purpose of this report is to collect 
and evaluate the available information on in
elastic deformability and energy absorption 
capacity. The emphasis is thus on "deforma
bility" rather than on "load capacity." The 
reason for collecting this information is to 
provide structural designers with a clear pic
ture of just how much a steel structure can 
deform, and to draw the attention of re
searchers to areas in which more work is 
needed. The principal impetus for this litera
ture survey has been to suggest how the re
search data developed for steel structures 
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under static loads have relevance for struc
tures subjected to earthquake motions. This 
topic is discussed in the conclusion of this 
report. 

The report evaluates both the theoretical 
and the experimental information on the in
elastic deformability of steel beams, beam
columns, connections and frames. The list of 
references contains most of the recent English 
language papers. 

Definition of Terms 
Before starting a description of the in

elastic behavior of individual steel compo
nents, it is well to discuss some general termi
nology. The solid curve in Fig. 1 shows a 
typical end moment-end rotation curve for a 
steel member or connection under monotonic 
deformation. Here "monotonic deformation" 
indicates that the member is deformed in one 
direction past the maximum load and into the 
unloading range. The member responds first in 
an elastic manner (OA, Fig. 1 ). After initiation 
of yielding the increments of deformation in
crease for equal increments of the moment 
until the peak moment M M is reached. With 
further deformation the moment must be re
duced to maintain equilibrium and finally the 
moment capacity is fully exhausted. 

END MOMENT 

o e., E NO ROTATION 

lie,. 

: I .... 
Fig. I Typical member moment-rotation curve. 



The non-linear behavior is caused by: 
(1) geometric non-linearities - i.e., the force 

distribution may be changed by the de
flections (e.g., the "P-D." effect in beam
columns). 

(2) material non-linearities - such as yield
ing and strain-hardening of the material. 

(3) non-linearities due to local or lateral
torsional instability. 

( 4) non-linearities of the connection ele
ments. 
These non-linearities cause a continual 

reduction in the stiffness of the member until 
equilibrium can only be maintained by a re
duction of the moment capacity. 

In the non-linear range the relationship 
between the forces and deformations be
comes highly complex, and it is usually con
venient to represent the curve OADC by the 
two straight lines OAB and BC (Fig. 1 ). Such 
a representation is called the "ideal elastic
plastic relationship." It is first assumed that 
the member remains elastic until severe loss 
of stiffness takes place, and the moment there
after is assumed to remain constant with an 
increasing deformation. Severe loss of stiffness 
usually corresponds to the full plastification 
of the cross section, that is, the attainment of 
the full plastic moment. [ 1-2] 

The particular question to which this re
port is addressed is: What is the deformation 
OM at which the moment begins to drop 
off substantially below the maximum moment 
M M ? In Fig. 1, () M corresponds to the rota
tion at the intersection between the actual 
M-0 curve and the plastic moment level. This 
is an arbitrary cut-off, but it is a more realistic 
estimate of deformability than the rather ill
defined rotation at the maximum moment. In 
the later discussions each situation will require 
a specific definition of the final rotation () 

'M' and this will be stated. 
The deformability of a member will be 

either determined as the absolute value of the 
rotation OM, or the "rotation capacity," which 
is defined as 

R = (1) 

2 

or the "ductility factor," which is defined 
as 

()M 
R + I (2) J.l. == - = 

() 
p 

The related dimensionless terms R and J.l. 
are illustrated in Fig. I. The rotation e P in 
Fig. I is the hypothetical elastic rotation 
caused by M P. In a more general sense, e P in 
Eq. I and 2 represents the extent of the elas
tic range of deformation. In situations where 
it is difficult to define a meaningful value for 
e P, the final rotation () M is a useful measure 
of deformability. 

2. BEAMS 

Beams are here defined as members for 
which the axial and shear forces are so small 
that their effects on the over all behavior are 
negligible. [ 2-1] Such members comprise most 
horizontal members in multistory frames. 

It appears that the available plastically 
designed, unbraced multistory frames develop
ed the majority of the plastic hinges in the 
beams, and that inelastic action in the columns 
was limited. The British approach to the plas
tic design of tall frames is based on the de
liberate exclusion of plastic hinges from the 
columns. [2-2] The probable reason for this 
is the concern for inelastic instability, particu
larly for lateral-torsional buckling. The largest 
reported steel frame designed before 1967 by 
plastic design is the 3-bay, 24-story frame C 
of the Lehigh Summer Conference notes. [ 2-3] 
In this frame only eight out of a total of 63 
plastic hinges form in the columns. [ 2-4] 

All of these frames were designed on the 
basis of the "weak beam, strong column" con
cept. However, if the stiffness of an unbraced 
rigid frame is increased by increasing the beam 
sizes, the proportion of beam-to-column hinges 
may become altered. It is reasonable to ex
pect that efficiently designed earthquake-re
sistant structures will also depend largely on 
the capacity of the beams to absorb energy. 
[2-5] Thus for multistory frames it can be 
expected that most of the inelastic action will 
take place in the beams. 



On the surface, the prediction of the in
elastic behavior of beams is simple. However, 
this simplicity is deceptive, and when the mass 
of data is evaluated there still remain some 
unanswered questions about beams. 

Most of the research on steel beams has 
been confined to rolled or built-up wide-flange 
beams of A36 and A441 steel. The following 
discussion is limited to such beams. 

Besides the yield stress, ay, and the cross
sectional geometry, which define the fully 
plastic moment, MP, other important struc
tural properties of steel wide-flange beams are 
the unbraced slenderness ratio and the width
thickness ratios of its plate elements. Depend
ing on the magnitudes of these ratios, the per
formance of beams lies in one of the three 
regions shown in Fig. 2. This figure shows 
schematically the variation of the moment ca
pacity (upper region) and the rotation capaci
ty (lower region) with the unbraced slender
ness ratio and the width-thickness ratio. The 
unbraced slenderness ratio is the governing pa
rameter of lateral-torsional instability and the 
width-thickness ratios control local buckling. 
When either of these ratios is large, the maxi
mum moment is curtailed by elastic buckling. 
When these ratios are relatively small, the full 
plastic moment is reached or exceeded. In the 

MOMENT 

CAPACITY 

ROTATION 

CAPACITY 

Fig. 2 

INELASTIC~~ 
INSTABILITY TRANSITION 

~ ZONE I 
~ ~ ELASTIC 

or-------~~~-----------%~-a_u_cK_L_'N-G~-
RATIO 

OR 

WIDTH ·THICKNESS RATIO 

Schematic variation of moment and rotation ca
pacity with unbraced slenderness ratio and width
thickness ratios. 
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intermediate or transition range buckling oc
curs under partially inelastic conditions, but 
M P is not reached. 

Sufficient rotation capacity to achieve 
beneficial moment redistribution under in
creasing loads exists only in the range where 
MP can be reached. Strain-hardening at first
formed hinges may also increase the load ca
pacity of a beam, but in conventional plastic 
design this is ignored, conservatively, and only 
adequate rotation capacity is counted on. 
Allowable stress design uses the elastic and 
the transition ranges. In the following discus
sion only beams falling into the range in which 
plastic design applies will be treated. There 
has obviously been much work done on beams 
which are more slender [ 2-6], but this work 
does not concern the present study. 

In summary, the beams useful for plastic 
design have the following characteristics: (I) 
The plastic moment must be capable to be 
reached and (2) enough rotation capacity must 
exist so that redistribution of moments can 
take place. [ 1-2] It is important to know the 
limiting maximum values of the unbraced slen
derness ratio and the plate width-thickness 
ratios which bound the region of usefulness 
for plastic design. It is also important to know 
the maximum rotation which can be delivered 
before the moment capacity is reduced by the 
eventual and unfailing occurrence of lateral 
and local buckling. 

Moment-Rotation Curves of Beams 

In the absence of instability effects, a 
wide-flange beam which is bent in the plane of 
the web will deform only in the plane of the 
web. The load-deflection curve, or the mo
ment-rotation curve, can be predicted from 
the stress-strain curve of the given material, 
the residual stresses, the cross-sectional di
mensions, the longitudinal dimensions and 
the loads. Integration of the stresses over the 
cross section, given the moment-curvature re
lationship and integration of the moment-cur
vature relationship over the length, gives the 
load-deformation curve. [ 1-2] [2-7] 

Residual stresses combine with bending 
stresses to cause yielding. In the early stages 



of plastification the beam is slightly less stiff 
than one without residual stresses. Residual 
stresses do not, however, affect the magnitude 
of the plastic moment. [ 1-2] The strains near 
the plastic hinges are usually one order of 
magnitude larger than the strain levels where 
residual stresses affect behavior, and therefore 
the residual stresses in plastically designed 
beams play only a relatively minor role. In 
contrast, beam-column and column perform
ance is more seriously affected by residual 
stresses. [ 2-8] [ 2-9] The overall performance 
of beams suitable for plastic design can thus 
be well predicted by neglecting residual 
stresses. 

Failure of wide-flange beams would take 
place, theoretically, by tensile fracture when 
the tensile strength of the material is attained. 
This type of failure has been observed, some
times under very artificial conditions. [ 2-10] 
In welded frames fracture should be guarded 
against by avoiding welded connection details 
which would produce triaxial constraints. Be
fore fracture, and at strains of about one order 
of magnitude smaller than the fracture strains, 
a reduction in the moment capacity ("unload
ing" or "failure") is initiated by the combined 
occurrence of lateral-torsional and local insta
bility. For beams of practical dimensions this 
will always be the case. [ 2-11 ] 

The ideal and the experimental moment
rotation relationship for two types of deter
minate beams is illustrated in Fig. 3. The top 
of the figure shows the behavior of a beam 
containing a segment under uniform moment, 
and the bottom shows the corresponding rela
tionships for a beam under moment gradient. 
The two types of beams are different in that 
in the upper beam yielding is spread over the 
whole uniformly bent segment. Whereas for 
the lower beam, yielding is confined to the 
region adjacent to the load point. 

The best possible in-plane performance 
of the beam under uniform moment is charac
terized by the fact that the moment remains 
constant and equal to M while the beam de-

P 
forms until the average strains in the flanges 
have reached the strain-hardening strains along 
the whole region of uniform moment. Only 
then can the moment be increased above the 
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Local Buck ling 
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Fig. 3 Experimental and theoretical moment-rotation 
curves for a beam under uniform moment (top) 
and a beam under moment gradient (bottom). 

plastic moment as strain-hardening takes over 
(see dashed curve in Fig. 3, upper part). In 
contrast, yielding in the beam under moment 
gradient can not spread unless the moment is 
increased, and so strain-hardening sets in as 
soon as M is reached, resulting in the upward 

p 
swing of the curve (see dashed curve in Fig. 3). 

The experimental curves (solid curves) in 
Fig. 3 (taken from Ref. 2-12) show that the 
behavior of these two types of beams follows 
fairly well the moment-rotation curves pre
dicted by ideal theory until instability takes 
over and a reduction in moment capacity re
sults. 

Because of unavoidable initial crooked
ness, the un braced compression flange of the uni
formly bent beam segment deflects laterally as 
soon as M P is reached. [ 2-13] This lateral de
flection continues to grow as deformation is 
increased, but the moment capacity is not im
paired until local buckles develop in the com
pressed half of this flange (sec arrow on top of 
curve of Fig. 3 ). 

The midspan moment will increase in the 
beam under moment gradient due to strain-



hardening. This will continue until a sufficient 
length of the compression flange has yielded 
so that a full wavelength of a local buckle can 
develop. Local buckling will then commence 
(see arrow in lower part of Fig. 3) and un
loading takes place when lateral buckling also 
sets in. 

In both cases both lateral and local insta
bility combine to trigger unloading. Lateral 
deformation precedes local buckling for beams 
under uniform moment and the reverse se
quence characterizes beams under moment 
gradient. It also should be noted that the drop 
in moment is not catastrophic (i.e. dynamic) 
nor even steep. This drop is rather gentle; at 
least to moment levels of about 0.8 M for 
the beam tests in Fig. 3. 

p 

The general behavior of wide-flange 
beams, as described above, has been widely 
observed in experiments on relatively compact 
statically determinate beams. These character
istics are specifically stated in the test de
scriptions given in Refs. 2-12 through 2-15 
and 2-17 through 2-19, and they are implied 
in the tests described in Refs. 2-16, 2-20 and 
2-21, as well as in many additional tests re
ported in the literature compiled in Refs. 1-1 
and 1-4. 

Inelastic instability at average strains, 
which are an order of magnitude larger than 
the yield strain, thus seems to limit the ability 
of steel wide-flange beams to continue to sup
port load with increasing deformation. The 
combined phenomena of yielding, strain
hardening, in-plane and lateral deformation 
and local distortion occur soon after the flange 
is yielded, and they interact so that the sepa
rate effects can only be distinguished in a very 
gross manner. Further complications arise 
from residual stresses and initial crookedness. 
It has been impossible to consider all of these 
effects at once and the instability problem has 
been solved essentially as two separate buckling 
problems: local buckling and lateral buckling. 

Local Buckling 
When a wide-flange steel beam is de

formed well into the inelastic range, local 
buckles appear and eventually the load begins 
to drop off. Local buckling is either preceded 
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by, or succeeded by, lateral deformations, and 
it is the combined effect of these two which 
causes unloading. Unfortunately, it has been 
impossible to capture this true behavior by a 
rational analysis. Instead, the problem is treat
ed as a buckling problem where the plate ele
ment is considered to remain flat until, under 
a critical loading, it suddenly buckles. 

For the flange, for example, the un
buckled plate element is assumed to be sub
jected to a uniform longitudinal stress of ay, 
the yield stress and to a strain of EST, the 
strain-hardening strain. A theoretical buckling 
analysis for this state of stress and strain re
sults in width-thickness ratios which are re
quired so that the plate can attain this state. 

The first solution to the problem of local 
buckling in the strain-hardening range was pre
sented by Haaijer (Refs. 2-22, 2-23, 2-24), who 
recommended the following critical width
thickness ratios for wide-flange shapes: 

~ ~ 16.6 and (d~2t)/w ~ 62 (3) 

The symbols b, t, d and w denote the 
flange width, the flange thickness, the total 
depth and the web thickness of the wide
flange shape. These ratios apply for steel with 
ay = 36 ksi, and they were rounded off to 

b d 
- ~ 17 and- ~ 70 
t w 

(4) 

in the 1963 AISC Specifications [ 1-5] . 
Haaijer's work was based on extensive 

theoretical and experimental work, and, con
sidering the complexity of the problem, there 
was fairly good correlation between the two. 
However, the results do not apply to steels 
other than ASTM-A36 steel. The wide availa
bility of high strength steels made it neces
sary to re-evaluate the local buckling problem 
for these new steels. Based principally on ex
periments, the British proposed a b/t limit of 
15 for their high strength steel (BS 968) 
[2-25, 2-26] and Massonnet suggested b/t ~ 14 
for the European A 52 steel [ 2-27]. Both of 
these steels have a yield stress of about 50 ksi. 
As part of an extensive investigation of the 
applicability of plastic design for high-strength 



steel structures at Lehigh University, [ 2-12] 
Lay recommended the following more general 
formula (Eq. 42 in Ref. 2-28) for the critical 
width-thickness ratio of the compression 
flange: [2-28, 2-29] 

(5) 

where au is the ultimate tensile stress, ay is 
the yield stress, E Y is the yield strain ( E Y = a Y I E) 
and h is the ratio of the elastic to the strain
hardening modulus of the material (Fig. 4). 
The corresponding b/t ratios for three types 
of steel are given in Table 1. No comparable 
formula has yet been developed for the width
thickness requirement of the web, but research 
on this problem is underway. [2-18] The fol
lowing interim formula has been proposed 
[ 2-1 ] : 

(6) 

where the yield stress a Y is expressed in units 
of ksi. 

Table 1 shows that the width-thickness 
ratio requirements become more severe as the 
yield strength increases. The requirements are 
not only a function of the square root of the 

STRESS 
tT 

STRAIN _. 

Fig. 4 Idealized representation of initial portions of the 
stress-strain curve for steel. 

inverse of the yield stress, but also a function 
of the strain-hardening modulus. 

The width-thickness ratios of Eqs. 5 and 
6 are limiting ratios, and they define a geomet
ric boundary at which the average strains will 
just be able to reach strain-hardening accord
ing to the theory and assumptions which were 
used. Members with smaller ratios can deform 
more, and members with larger ratios will de
form less. There are some experiments availa
ble on both types of members (Refs. 2-22, 
2-23 and 2-57) but there is still lacking a ra
tional theory which explains the behavior of 
members with smaller width-thickness ratios 
than those defined by Eqs. 5 and 6 and a ra
tional theory which defines the transition, 
with respect to both strength and deforma
bility, between local buckling at full yielding 

Table I. Critical Width - Thickness Ratios 

A36 

au 65 ksi* 

ay 36 ksi 

E 29,500 ksi 

Ey 0.00122 

Est 895 ksi** 

h 33 

b/t 17.1 

d/w 70 

* Assumed typical values 
** Ref. 2-22 

***Tables 3 and 4, Ref. 2-12 

A441 A514 

78.5 ksi** 120 ksi* 

54.5 ksi*** 100 ksi* 

29,500 ksi 29,500 ksi 

0.00185 0.00339 

705 ksi*** 146 ksi* 

42 200* 

13.1 4.7 

57 42 
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and elastic local buckling. This problem of 
local buckling certainly deserves further inves
tigation, especially the behavior of beams under 
different loading conditions and the effect of 
the whole range of possible practical geomet
ric parameters. 

Lateral Bracing Requirements in Plastic Design 
The lateral and local deformations are 

intricately interrelated. It has not been pos
sible to treat these two effects together, and 
so the lateral deformation problem also has 
been handled as an individual buckling prob
lem. The end result of such an analysis is a 
critical maximum spacing of lateral bracing. 
Lateral buckling of an initially straight un
braced beam segment is assumed to take place 
at the same instant as local buckling, that is, 
when the average strain in the compression 
flange becomes the strain-hardening strain. 

The original work on the determination 
of the required bracing spacing was due to 
White. [ 2-30] Additional tests and an evalu
ation of White's results are given in Refs. 2-20 
and 1-1. The current bracing spacing rules in 
the AISC specifications [ 1-5] are based on 
this work. These rules apply, however, only 
for A36 steel and they are generally conserva-

*In Eqs. 7 and 8 the value of the moment gradient sepa
rating beams under uniform moment and moment gradient is 
given as p = 0.5. This is the value given in the latest refer
ence (Ref. 2-33). Previously a less conservative limit of 
p = 0. 7 has been suggested [2-1] . The limits in either refer
ence were based on rather arbitrary reasoning. Since no con
clusive theoretical or experimental evidence exists to sub
stantiate either limit, and it would probably make very little 
difference anyway, it is suggested that the practically less 
severe value of p = 0. 7 be used in design. 

tive. The problem was recently re-evaluated, 
and more general requirements were formu
lated as a result. [2-31, 2-32, 2-33, 2-34] Ac
cording to this research, wide-flange beams in 
plastic design should be braced according to 
the following equations: 

Beams under Moment Gradient (-I ~P~
+ 0.5; Fig. Sa)* 

(7) 
0.7VE; .J l + 0.7h/(s-l) 

Beams under Uniform Moment 
(+ 0.5 < p ~ 1.0; Fig. Sb,c)* 

(8) 

K.J"S VI+ 0.56h 

In these equations L 8 R is the unbraced length, 
r Y is the least radius of gyration of the wide
flange shape, E Y is the yield strain, h is the 
ratio of the elastic to the strain-hardening 
modulus, s is the ratio of the strain-hardening 
strain to the yield strain (Fig. 4) and K is an 
effective length factor which depends on 
whether the adjacent span is elastic (K = 0.54, 
Fig. Sb) or yielded (K = 0.8, Fig. Sc). 

Typical unbraced slenderness ratio re
quirements are shown in Table 2. For A36 
steel and elastic adjacent spans for uniform 
moment in the critical span, the required un
braced length is 37.5 ry. This compares with 
35 r Y in the AISC specifications. The require
ments for high strength steel are again more 
severe than for A36 steel. 

Table 2. Typical Unbraced Length Requirements 

aY Ey p K h s L/ry 

36 ksi 0.00122 + 1.0 0.54 33 11.5 37.5 

36 ksi 0.00122 + 1.0 0.80 33 11.5 25.3 

36 ksi 0.00122 less than 0.5 - 33 11.5 71.1 

54.5 ksi* 0.00185 + 1.0 0.54 42* 11.6* 27.2 

54.5 ksi* 0.00185 + 1.0 0.80 42* 11.6* 18.4 

54.5 ksi* 0.00185 less than 0. 5 - 42* 11.6* 58.0 

*From Ref. 2-22 
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Fig. 5 Typical bending moment diagrams and brace loca
tions. 

The width-thickness and bracing spacing 
requirements given in Eqs. 5 through 8 are 
designed to insure that the full plastic moment 
is reached or exceeded and maintained for a 
sufficiently long rotation.* They apply to all 
but the last hinge to form in a plastically de
signed structure. At the last hinge, no rotation 
is required, and thus the usual rules of con
ventional design apply for the instability re
quirements at these hinges. 

The usual condition of beams in multi
story frames, that is, the top flange continu
ously supported by the floor slab and ·the 
bottom flange restrained by beam connections 
spaced 7 to I 0 ft. on centers, will usually pro
vide adequate lateral bracing. In such cases the 
only design check is to insure that the beam 
spacing in the negative moment region does 
not exceed the limit given by Eq. 7. 

Rotation and Energy Absorption Capacity of 
Beams Under Uniform Moment. 

The idealized behavior of wide-flange 
beams under uniform moment is illustrated in 
Fig. 6, where a beam with two symmetrically 
*The available rotation capacity will be discussed on page 
12 et seq. 
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Fig. 6 Behavior of beam under uniform moment. 

placed equal loads is shown (Fig. 6a). The cen
tral segment is under uniform moment (Fig. 
6b). Lateral bracing exists at the supports and 
under the loads. The central segment is fully 
yielded and the two outside spans act as elas
tic restraints. The moment diagram is shown 
in Fig. 6c, and the corresponding curvature 
diagram is given in Fig. 6d at the attainment 
of the maximum curvature 'Pu when unloading 
begins (see idealized M 'P curve in Fig. 6e). 
The rotation e at the end of the central seg
ment (Fig. 6b) is equal to 

I e = -'PL 
2 

(9) 

At the hypothetical start of yielding (I{)= 'Pp ), 
the end slope is 

- MPLe ----
p 2EJ 

and at unloading 

1 e = - ,, L 
u 2 'Yu 

(10) 

(11) 



The rotation capacity is (Eq. 1) 

eu IPu 
R =- =- - 1 (12) 

ep ~Pp 

and the ductility factor (Eq. 2) is 

IPu 
f.J. =- (13) 

IPp 

The total energy absorbed per unit length 
of the segment is approximately equal to the 
area under theM-IP curve, or [2-35] 

M2 
UT = 2~ + Mp (~Pu -~Pp) (14) 

Upon release of the load the elastic strain 
energy is recovered and the approximate ener
gy dissipated in plastic deformation is 

M2 M2J.J. 
UD = Mp (IP - IP) =-p (1 +R)=-p- (15) 

u P EI EI 

The dissipated energy over the whole yielded 
length is 

(16) 

Equation 16 shows that theoretically the dis
sipated energy, the rotation capacity and the 
ductility factor are linearly related to each 
other. 

The rotation capacity R, and thus also 
U D and f.J. at the attainment of the maximum 
rotation has been determined theoretically 
from the condition that local buckling and 
lateral buckling occur simultaneously. The fol
lowing relationship is given in Ref. 2-3 2: 

(17) 

where s, h and EY are defined in Fig. 4, K is 
the effective length ratio (Fig. 5) and L/r Y is 
the unbraced slenderness ratio. The critical un
braced length L 8 R of Eq. 8 is obtained by 
setting L8 R and R = 0.8 (s- I) into Eq. 17. 
The latter value of R represents the optimum 
rotation capacity. If the bracing spacing is less 
than L8 R , the value of R increases above 0.8 
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(s-1 ), but will never become extremely large 
because of combined local and lateral distor
tion. 

Through Eqs. 16 and 17 it is thus pos
sible to theoretically connect the properties 
of a wide-flange beam to the resulting rotation 
capacity, the ductility factor and the dissipated 
energy. There are a number of experiments 
available against which the theoretical predic
tions of beams under uniform moment can be 
tested. The tests reported in Refs. 2-12, 2-13 
and 2-14 were chosen for this comparison be
cause they were performed with the main pur
pose of studying deformability. For all these 
tests curves relating the applied moment and 
the resulting curvature are available. To avoid 
ambiguity of interpretation, the rotation ca
pacity and the energy dissipation were deter
mined to a point equal to 95% of MP on the 
unloading part of the curve (Fig. 7). The 95% 
cutoff is entirely arbitrary and serves only to 
assure uniform interpretation of the results. 
Each test was performed on statically deter
minate beams under two equal concentrated 
loads (Fig. 6a). 

The pertinent test data are listed in 
Table 3 and the test points are compared with 
theory in Figs. 8 and 9. The abscissa in these 
figures is the unbraced slenderness ratio ad
justed for the yield strain. The theoretical and 
experimental rotation capacities are compared 
in Fig. 8 and the comparisons of the energy 
absorption capacities are given in Fig. 9. The 
absorbed energy was obtained by measuring 
the area under the experimental moment
rotation curves. 

M 

.p ~ 

SHADED AREAc DISSIPATED ENERGY 

Fig. 7 Rotation capacity and absorbed energy for beams 
under uniform moment. 
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Table 3. Experimental Rotation Capacities of Beams (Figs. 8 and 9) 

Ref. LBR 
Kexp. h Test -- s aY ry 

LB II 2-I3 35 0.52 33 Il.5 35 ksi 
LB I5 2-13 40 0.52 33 Il.5 35 ksi 
LB IO 2-I3 45 0.53 33 Il.5 35 ksi 
LB I6 2-13 50 0.54 33 Il.5 35 ksi 

G I2 2-I4 30 0.80 33 Il.5 43 ksi 
GIO 2-I4 35 0.80 33 Il.5 43 ksi 
G 9 2-I4 40 0.79 33 Il.5 43 ksi 
G II 2-I4 45 0.78 33 Il.5 43 ksi 

HT 4I 2-I2 25 0.52 42 I0.5 54 ksi 
HT 3I 2-I2 30 0.52 42 I0.5 54 ksi 
HT 29 2-I2 35 0.52 42 I0.5 54 ksi 
HT 37 2-I2 37.5 0.53 42 10.5 54 ksi 
HT 30 2-I2 40 0.54 42 I0.5 54 ksi 
HT 36 2-I2 45 0.54 42 10.5 54 ksi 

*Determined from the area under the experimental moment-rotation curves. 
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Fig. 8 Comparison of experimental and theoretical rota
tion capacity. 
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Fig. 9 Comparison of predicted and measured inelastic 
absorbed energy. 
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Fig. 10 Moment and curvature diagram at and near a plastic 
hinge for a beam under moment gradient. 

In view of the many idealizations involved 
in the development of the theory, the corre
lation shown in these two figures is quite 
satisfactory. Thus for beams with a uniform 
moment, it is possible to confidently predict 

the rotation and energy absorption capacities. 
It is interesting to note that beams under 
optimum bracing spacing generally had larger 
capacities than predicted. 

In addition to the tests of Figs. 8 or 9, 
many more such experiments were reported 
(Refs. 2-15, 2-36, 2-37, 2-30 and 2-20). Table 
4 lists the pertinent results from Refs. 2-1 5 
and 2-20. These tests were performed to study 
the effectiveness of various types of bracing. 
It can be seen that rotation capacities of 1 0 or 
more are the rule rather than the exception. 
The average rotation capacity for all beams 
which were braced to an optimum or near
optimum spacing (Eq. 8) was about 10. In 
addition, Lay notes in Ref. 2-38 that Massey's 
tests [ 2-36] give rotation capacities closely 
predicted by Eq. 1 7. 

The following conclusions may be drawn 
from the results presented above: 1) The ro
tation capacity predictions of Eq. 17 are well 
substantiated by experiment. 2) "Compact" 
wide-flange beams (optimum or sub-optimum 

Table 4. Experimental Rotation Capacities of Beams 

Text 
Ref. 

LBR 
Rexp. 

( UDEJ) -- aY Mp 2 L exp. No. ry 
LB-12 2-15 40 34 ksi 21 14 
LB-13 2-15 40 34 ksi 18 15 
LB-14 2-15 40 34 ksi 12 14 
LB-18 2-15 40 34 ksi 12 11 
LB-19 2-15 40 34 ksi 11 11 
LB-20 2-15 40 34 ksi 12 10 
LB-22 2-15 40 38.8 ksi 7 7 
P-3 2-15 40 38.5 ksi 12 11 
P-4 2-15 40 38.5 ksi 15 12 
P-6 2-15 40 38.8 ksi 9 9 
P-7 2-15 40 38.8 ksi 8 9 
P-8 2-15 40 38.8 ksi 9 10 
P-9 2-15 40 38.8 ksi 10 10 
P-10 2-15 40 38.8 ksi 6 7 
LB-1 2-20 23 32.6 ksi 22 * 
LB-2 2-20 41 32.6 ksi 5 * 
LB-3 2-20 22 37.6 ksi 5 * 
LB-4 2-20 72 32.6 ksi 1 * 
LB-7 2-20 29 38.3 ksi 8 * 
LB-8 2-20 29 38.3 ksi 9 * 

-- -~ 

*There were no experimental curves available to the author from which the area under the M-<.p curve could be determined. 
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spacing of bracing, and critical or sub-critical 
width-thickness ratios) deliver a rotation ca
pacity of about 10 or more. 

The tests were usually discontinued after 
only a little unloading had taken place, and so 
no information is available on the mechanism 
of unloading. This is also true for the theo
retical developments. The trend, however, 
seems to be that unloading is not rapid but 
gradual. 

No information is available on beams 
under uniform moment when the load is 
released and then reversed. Since loading 
which produces uniform or near uniform mo
ment is primarily due to vertical gravity load
ing, and this will not reverse during a reversal 
of the horizontal loads on the frame, the 
problem is, for this discussion, unimportant. 

Rotation and Energy Absorption Capacities of 
Beams Under Moment Gradient. 

Beam segments under concentrated loads 
and near joints are usually in a region in which 
the moment varies along the longitudinal axis 
of the beam. Beams under moment gradient 
have relatively short zones of yielding, and 
strain-hardening is present soon after the 
plastic moment is reached (Fig. 3, lower 
figure). 

Figure 1 Oa shows a portion of a moment 
diagram near a plastic hinge. The peak mo
ment Mo will exceed M because spreading of 
the yielded zone can o~cur only in this man
ner. The length of the yielded zone extends 
over the region in which the moment is above 
M P . The yeilded length r L will depend on the 
moment ratio p to the right and to the left of 
the plastic hinge. The curvature diagram cor
responding to the moment diagram of Fig. I Oa 
is given in Fig. 1 Ob. At M = M the curvature 
jumps from its elastic limit vafue of 'P to the 
str~in-hardening curvature S'{JP, wher/s is the 
ratlo of the strain-hardening to the yield strain 
(Fig. 4). Within the yielded zone the curvature 
will be above S'{J • 

p 

A c~nservative estimate of the hinge
angle e H IS the cross-hatched area in Fig. 1 Ob. 
This hinge angle represents the inelastic ro-

*See footnote with Eqs. 7 and 8. 
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tation of the plastic hinge. This angle is equal 
to 

neglecting the triangular area of curvature 
above 'P = SI{)P. Because of this and also for 
other reasons, the estimate of e H from Eq. 18 
is about 20% smaller than the true value [2-29, 
2-33]. Theoretically the maximum inelastic 
rotation is reached when either of the yielded 
lengths r L L L orr R L R (Fig.l Oa) becomes long 
enough for one wave length of the local 
buckle to develop. [ 2-33] This length is equal 
to (Eq. 9, Ref. 2-33) 

where b, t, w and d are dimensions of the 
wide-flange cross section and Aw = (d-2t)w 
and A 1 = bt are the web and flange areas, 
respectively~ A combination of Eq s. 18 and 19 
leads to the following expression for the 
theoretically available hinge rotation capacity: 

bt A 114 V 
eH = 2.84 Ey (s- I) [(dw) (A w) [ 1 + v~] 

f 
(20) 

in which Vt and V2 are the absolute values of 
the shears on both sides of the hinge. They 
are chosen so that 

(21) 

The last bracket in Eq. 20 allows for the fact 
that both sides of the hinge may not be yield
ed to the local buckling limit. The limitations 
of Eq. 20 are the following: 

-1.0 ~ p ~ 0.5 * (22) 

If P > 0.5, the formula for uniform moment is 
to be used (Eq. 17). In order to avoid local 
crushing under the load point, which is the 
hinge location, [ 2-33] 

VM ~ (MP /4.8b) (a ja - 0.88) (23) 
u y 

where au is the ultimate tensile stress of the 
material. If Vt exceeds the value from the 



right side of Eq. 23, the value of V M is to be 
used in Eq. 20 instead. Finally, to avoid shear 
yielding [ 2-33] 

:s;::: Aw (au + ay) 
Vs ._ 3.46 (24) 

If v; exceeds the right side of Eq. 24, use the 
value of Vs in Eq. 20. In the case of a fixed 
end, or at a point where all yielding takes 
place in only one member entering a joint, the 
value of the last bracket in Eq. 20 becomes 
unity. 

The predicted rotations from Eq. 20 are 
compared to experimentally measured rota
tions in Table 5 (all but the data from Ref. 
2-57 were taken from Ref. 2-33). In addition 
to basic test data this table contains a com
parison of the theoretically predicted and ex
perimentally measured rotations for each of 
the tests. The recorded test rotation was 
measured at the point where distinct un
loading took place (i.e. the peak of the M e 
curve in Fig. 3). For all but two of the tests 
which fulfilled the b/t requirement of Eq. 5 

Table 5. Experimental and Theoretical Rotation for Beams Under Moment Gradient 

Source 
Test LnR b d ay eH eH Test eH ** - - p Ref. ry t w ksi Theory Test Theory OH 

2-20 LB-5 48 16.9 41.2 38 0.39 0.060 0.082 1.37 
2-20 LB-6 38 16.9 41.2 38 0.71 0.066 0.130 1.97 

- G-1 47 14.9 43.5 42 0.5 0.057 0.064 1.12 
- G-2 56 14.9 43.5 42 0.5 0.057 0.058 1.02 
- G-5 56 14.9 43.5 42 0 0.057 0.044 0.77 

2-39 T-5 60 13.6 45.2 36 0 0.059 0.071 1.20 
2-40 1 32 9.20 23.8 36 0 0.074 0.095 1.29 
2-12 HT28 35 15.7 34.8 54 0 0.052 0.074 1.42* 
2-12 HT43 23 15.7 34.8 54 0 0.034 0.039 1.15* 
2-12 HT52 72 15.7 34.8 54 0 0.084 0.086 1.02* 
2-16 5 25 13.9 32.8 41 0 0.091 0.162 1.78 
2-16 6 35 13.9 32.8 41 0 0.09 0.168 1.85 
2-16 9 32 13.9 20.8 42 0 0.142 0.370 2.60 
2-16 12 38 10.2 41.0 38 0 0.051 0.100 1.96 
2-16 15 35 14.0 45.5 39 0 0.072 0.130 1.80 
2-16 18 43 17.7 59.6 33 0 0.050 0.026 0.52 
2-16 21 32 18.4 27.8 41 0 0.141 0.161 1.14* 
2-57 A-1 35 18.8 32.7 41 0 0.067 0.113 1.69* 
2-57 A-2 35 16.3 32.7 41 0 0.060 0.122 2.03 
2-57 B-1 35 19.4 45.0 54 0 0.098 0.028 0.29* 
2-57 B-2 35 14.0 45.0 54 0 0.077 0.049 0.64* 
2-57 B-3 35 16.3 45.0 54 0 0.086 0.052 0.61 * 
2-57 B-4 35 17.8 45.0 54 0 0.092 0.030 0.33* 
2-57 B-5 35 18.3 45.0 54 0 0.094 0.030 0.32* 
2-57 C-1 35 19.4 54.5 53 0 0.065 0.024 0.37* 
2-57 C-2 35 14.0 54.5 53 0 0.051 0.048 0.94* 
2-57 C-3 35 16.3 54.5 53 0 0.057 0.030 0.53* 
2-57 C-4 35 17.1 54.5 53 0 0.061 0.022 0.36* 
2-57 C-5 35 17.8 54.5 53 0 0.059 0.032 0.54* 

* bft exceeds limit defined by Eq. 5. 
**Average ratio of test to theory, excluding tests marked by *: 1.52. Average ratio of test to theory, all tests: 1.12. 
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the test rotation exceeded the predicted 
rotation with the average over prediction 
of about 50 per cent. This is more than 
the estimated conservatism in Eq. 20. The 
reason for this is the frequently observed 
fact that the moment capacity does not 
immediately drop off after the first observed 
local buckle. This can be seen in the lower 
curve of Fig. 3 where unloading com
mences after local buckling. Since the theory 
is based on the first occurrence of local 
buckling, it is unable to predict what happens 
after it. Unfortunately there is no theory 
available yet to predict post-local buckling 
performance. 

On the 15 tests in Table 5 for which the 
b/t requirements of Eq. 5 were not fulfilled, 
five tests showed somewhat higher measured 
rotations than predicted. For these tests the 
b/t limit was not greatly exceeded. On the 
other hand, tests with very slender flanges 
showed very little rotation capacity. 

MOMENT LOCAL BUCKLING 

ROT AT ION 

Fig. ll Schematic moment-rotation curve of beams under 
moment gradient. 

In plastic design, the increased moment 
due to strain-hardening is usually neglected, 
and the level of expected moment capacity is 
the full plastic moment, M P. * On the sche
matic drawing of Fig. 11 it is seen that 
whereas the theoretical rotation capacity stop~ 
at the onset of local buckling, the available 

*An exception to this approach is the newly proposed method 
due to Lay, which includes strain-hardening [ 2-41]. 
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capacity is much greater. Unfortunately there 
are very few tests for which the value of the 
rotation down toM P on the unloading part of 
the curve is available. The tests listed in Table 
5 also had closer bracing spacing than is re
quired by Eq. 7. 

In general, the tests reported in Ref. 2-16 
(see Table 5) had a greater average under
prediction of e H than the other tests. This 
could be due to the fact that the load and 
deformations were read "on the run", without 
stopping at each load increment, as was done 
for the other tests. This may indicate that the 
faster load application may have a beneficial 
effect on eH . This fact could be of great 
importance to beams in a frame designed to 
resist earthquakes. More research on this 
aspect of the problem is definitely needed. 

In conclusion, e H as predicted by Eq. 20 
seems to give a conservative estimate of the 
rotation capacity of beams under moment 
gradient. Further research needs to be done 
on the following topics: I) A theory is needed 
on the post-local buckling deformation be
havior; 2) tests arc needed to get more com
plete moment-rotation curves, especially for 
the region beyond local buckling; 3) tests are 
needed to study the M--e relationship for 
beams braced in accordance with Eq. 7, that 
is, tests on beams with longer unbraced lengths; 
4) tests and theoretical work are needed on the 
effect of the rate of loading. 

It should be noted here that the state of 
knowledge with regard to the available rota
tion capacity, the required bracing spacing and 
the flange width-thickness ratios for beams 
under moment gradient still is quite in
complete, both with regard to theory and tests. 
There is no really conclusive separation be
tween beams under uniform moment and 
beams under moment gradient, and this leads to 
contradictions and inconsistencies. There is no 
theoretical relationship connecting the width
thickness ratio, the bracing spacing and the 
a:ailable hinge angle e H. The relationship de
fined by Eq. 20 applies theoretically only to 
beams having the bracing spacing of Eq. 7 and 
~he b/t ratio of Eq. 5. That rotation capacity 
Increases with a decrease of the b/t ratio was 
demonstrated experimentally by Lukey and 



Adams [ 3-57], but there is no theory to ex
plain this. Also, 0 H from Eq. 20 is quite con
servative. 

There are also a number of practical 
questions which need to be considered: 1) 
What takes place in the negative moment re
gion of a beam welded to a column? 2) Does 
statical indeterminacy have any influence? 

The theory presented here represents the 
first steps toward a solution of these problems. 
Much work still needs to be done before the 
complete problem is solved. However, the 
results presented here are the best available, 
and they are, in general, conservative. In view 
of the lack of a more perfect theory, they can 
be used with confidence in design. The results 
will now be used to determine the dissipated 
energy of beams under moment gradient. 

The energy dissipated during hinge rota
tion is equal to the area under the M-0 curve, 
or, approximately and conservatively 

(25) 

In this expression the contribution above M P 

is neglected, and 0 H is the conservative esti
mate of the inelastic rotation from Eq. 20. 
The energy from Eq. 25 is the available energy 
per each plastic hinge up to the point of local 
buckling. 

The available hinge angle 0 H, and thus 
also the available energy (Eqs. 20 and 25, 
respectively) depend on material properties 
(s, EY ), cross sectional properties (b, t, d, w), 
the ratio of the shears adjacent to the hinge, 
V1 I V2 and the moment ratios (p 1 and P2 ). 
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Fig. 12 Motion of a simply supported beam with a plastic 
hinge. 
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The inelastic hinge-rotation 0 H is ex
pressed in units of radians in Eq. 20. In general 
it is not possible to express a non-dimensional 
numerical ratio, such as was possible for the 
beam under uniform moment, to give a rota
tion capacity R or a ductility factor, /-1, which 
is only the function of the material and the 
bracing spacing. The dimensions of the cross 
section and the overall dimensions of the 
structure also enter into the picture. This is 
illustrated on the simply supported beam 
under a central concentrated load in Fig. 1 2. 

The ductility factor 1-1 is defined as 
(Eq. 2) 

Ou 
1-l =op 

In terms of the rotation of Fig. 12, 

(26) 

Op/2+0Hf2 OH 
1-l = = 1 +- (27) 

op; 2 op 
The elastic rotation, 0 P, when the maximum 
moment equals M P at the center of the beam 
is equal to 

Since 

Mp - ;:::: 2Ey 

EI - 1/Jp d 

the ductility factor becomes 

OHd 
J.l. = 1 +---

Ey L 

Substitution of OH from Eq. 20 gives 

d bt Aw 114 

1-1 =I +2.84 (L) (s-1) [(dw) (At) ] 

v 
[ 1 + _1 ] 

v2 

(28) 

(29) 

(30) 

(31) 

bt A 114 
If average values of s = 11.0, d- hAw) = 0. 7 

w f 

(Ref. 2-42 lists the values of this parameter for 
rolled wide-flange shapes; it varies from about 
0.5 to 0.9) are substituted into Eq. 31, and if 
it is noted that the last bracket equals 2.0 for 
the beam of Fig. 1 2, then 

40 
J.l. = I+ L/d (32) 



Thus for a given section and loading con
dition the ductility factor depends only on the 
L/d ratio of the beam. Assuming, for example, 
L/ d = 16, the ductility factor becomes e·qual 
to 3.5. Because of the reasons given above, the 
ductility factor of a test beam should exceed 
this value by at least 40 per cent; thus one 
could expect that JJ. = 5 would be a reasonable 
ductility factor for this beam. 

The foregoing has shown that it is pos
sible, for specific instances where all the in
formation about a beam is known, to define a 
ductility factor. However, the variety of para
meters entering into the determination of JJ. is 
so large, that it seems advisable to define 
hinge-rotation in terms Of 0 H, in radians 
(Eq. 20). This available hinge angle will be 
compared with the required hinge angle for 
indeterminate structures in Chapter 6. 

Beams Under Load Reversal 

The previous discussion concerned beams 
under monotonic loads, i.e., the beams were 
loaded once and in only one direction. The 
information was obtained from tests made in 
support of plastic design which is based on the 
assumption of monotonic and proportional 
loading. For nominally statically loaded struc
tures this assumption may be theoretically 
questioned, although a good case has been 
made for static loading on the basis of shake
down studies [ 1-l]. For structures subjected 
to earthquake motion, the assumption of 
monotonic and proportional loading is un
acceptable. Beams in such structures will be 
subject to load reversals which cause several 
excursions into the inelastic range in both 
directions of bending. [ 2-43] It is thus neces
sary to know the behavior of beam under 
reversed loading, where the load reversals de
form the beam repeatedly into the inelastic 
range. Unfortunately little theoretical work 
and only very few experiments are available.* 
A search was made of the available literature 

' especially the Proceedings of the World Con-
ferences of Earthquake Engineering (Berkeley, 
1956; Tokyo, 1960; New Zealand, 1965). The 

*There probably arc many more tests than the author is 
aware of, especially in the literature of Japan and the Soviet 
Unwn. 
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only relevant work was found to be that at 
the University of California at Berkeley (Refs. 
2-44, 2-45, 2-46) and two tests performed 
under the supervision of the author [2-47]. 
There are many references on the behavior of 
steel (the material) under cyclic inelastic ten
sion or bending (see, for example, the survey 
presented in Ref. 2-48 and the work in Refs. 
2-49 through 2-56). And, it is well understood 
that the material itself has a stable and well
defined hysteresis loop, and that failure even
tually occurs by fracture due to low-cycle 
fatigue. However, because of effects of local 
buckling and lateral deformations, a knowl
edge of material behavior alone is not enough 
to determine the behavior of a whole mem
ber. 

In the Berkeley tests, short, cantilevered 
wide-flange beams were loaded at their ends 
by a concentrated load which reversed its di
rection and which bent the beams in the plane 
of the web. Two series of tests were per
formed: In the first series of tests 35-in.-long 
4Ml3 beams (L/r.v = 37; b/t = 10.5; a.v = 41 
ksi) were fully clamped at the fixed ends 
[ 2-44]. In the second series 8W20 beams of 
66-in. length ( unbraced slenderness ratio of 
27.5, b/t = 14 and a.v = 39 ksi) were attached 
by moment connections to a short 8W48 
column section [ 2-45, 2-46] . The inelastic be
havior in each of these tests was essentially the 
same. Local buckling occurred in the com
pressed flange but no drop-off of moment 
capacity was experienced as the beams were 
loaded well into the strain-hardening range in 
one direction. Upon removal of the load and 
re-application in the other direction, the local 
buckles were straightened out on the previous
ly compressed flange as new local buckles 
occurred on the reverse compressed flange. 
Failure finally occurred due to low-cycle 
fatigue in the zones of local buckling. Up to 
fracture the load-deformation curves experi
enced remarkable stability, each curve falling 
right on the curve from the previous cycle. 
No lateral buckling was observed at any stage 
of the tests. 

An examination of the inelastic rotations 
of the tests (Refs. 2-44 and 2-45) showed that 
the beams were rotated to about 40 per cent 



more than the rotation prediCted by Eq. 20. 
The beams in these tests, as well as the con
nections by which they were attached to the 
stub-column, behaved extremely well. This 
shows that steel wide-flange beams under re
versed loading can be reliably counted on to 
deform inelastically, thus absorbing a pre
dictable amount of energy without loss of 
moment capacity. 

The Berkeley tests are very important 
pilot tests. However, further tests with a larger 
range of variables are needed. The flange and 
web slenderness (b/t and d/w ratios) and the 
bracing spacing were all subcritical when com
pared to the requirements of Eqs. 5, 6 and 7. 
The important question as to what these criti
cal requirements are was not answered experi
mentally and no attempt has been made at a 
theoretical solution. It is obvious that the 
theory for monotonic loading (Eq. 20) is con
servative. Is it even more conservative for re
versed slow quasi-static loading? What effect 
does the rate of loading have? 

One of the tests reported in Ref. 2-4 7 
(where wide-flange beams were tested as beams 
under a reversible central concentrated load) 
had a bracing spacing somewhat larger than 
that recommended by Eq. 7. Although the 
beam was subjected only to one-and-a-half 
cycles of loading, it was apparent that its 
moment and rotation capacity were deterio
rating due to combined local and lateral buckl
ing. Thus not all beams behave as the beams in 
the Berkeley tests. 

The behavior of steel beams under cyclic 
reversible loads in the inelastic range deserves 
further study. The following research is rec
ommended: 

I) Experiments on beams with larger 
width-thickness ratios and unbraced lengths 
should be performed to experimentally de
termine the critical values of these para
meters. 

2) Theoretical studies should concentrate 
on a better and more inclusive prediction of 
behavior than is now possible. Such studies 
should deal with the post-buckling behavior, 

*Unfortunately not a great deal is known about very heavy 
beam-columns (14 W426 or the jumbo sizes). Their behavior 
may be somewhat different than the behavior discussed here. 
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with the full range of width-thickness ratios 
and bracing spacing, with strain rate and dy
namic effects and with a clear definition of 
what constitutes satisfactory and unsatisfac
tory behavior under reversed loading. 

3) A correlation should be sought be
tween the material behavior, including cumu
lative damage and low-cycle fatigue failure, 
and the behavior of a real beam in a real 
structure. 

4) The inelastic behavior of composite 
continuous beams and A572 beams should be 
investigated. 

3. BEAM -COLUMNS 

Beam-colums are members which are sub
jected to appreciable amounts of both axial 
load and bending moments. In multistory 
frames all the vertical members and in some 
instances even some horizontal members can 
be considered as beam-columns. In general, 
beam-columns may be bent about both princi
pal axes, and forces producing bending may 
be present at the ends and in the span. In the 
usual column framing, however, only end 
moments are present, and these act about the 
principal axis of the member. Most of the 
research has been performed on the simplest 
situation: beam-columns with end-moments 
only about the principal axis of the wide
flange section. Not too much work has been 
performed on beam-columns bent about the 
weak axis. The following discussion will con
centrate on this problem, although beam
columns with inter-panel loading and biaxial 
loading will also be briefly considered. A great 
deal of work has been performed on inelastic 
steel beam-columns, and in some respects more 
is known about such members than about the 
apparently simpler beams.* 

A beam-column and its loading is shown 
in Fig. 13. The loading consists of an axial 
load P and moments M 0 and {3M 0 , where {3 is 
the ratio of end moments and it is chosen such 
that -1 ~ {3 ~ + 1, a value of {3 = + I indica
ting two equal end moments which cause 
single curvature bending. If the axial load P is 
applied first and then M0 is increased from 
zero, the member will deform as shown in 



Fig. 13. A usual measure of this deformat_ion 
is the end rotation e. The highest posstble 
moment which can be attained is the fully 
plastic moment, M pc, where the cross section 
is fully yielded under the end moment and the 
axial force. [ 3-1] A good estimate of this 
"reduced plastic moment" is 

M =1.18M (1-P/P)forP/Py~O.lS 
pc p y 

(33) 
for wide-flange m~mbers bent about the strong 
axis. In this equation M is the plastic moment 
of the section under zero axial force and 
P Y =A a Y, is the fully plastic load. 

0 
8 

LOCAL 
BUCkliNG 

LATERAL TORSIONAL 
BUCkliNG 

Fig. 13 Schematic moment-rotation curves for beam
columns. 

It may not be possible for the beam
column to achieve M pc, although in many 
practical cases Mpc can be reached [3-2]. The 
reduction in moment capacity is due to the 
combined effect of the "secondary" moments 
introduced by the axial force times the deflec
tion, and the reduction of the flexural stiff
ness due to yielding. The heavy solid curve in 
Fig. 13 is the resulting M 0 - e curve. Due to 
yielding and second order bending, the mo
ment will reach a peak, and thereafter it will 
have to be reduced to maintain equilibrium 
upon further bending. The reduction in both 
moment and rotation capacity is purely an 
"in-plane" phenomenon and it differentiates 
the performance of a beam-column from that 
of a beam. Out-of-plane effects, such as lateral
torsional buckling and local buckling, further 

tend to reduce the capacities of the beam
column (see dashed curves in Fig. 13). 

In-Plane Deformation Capacities of Beam

Columns 
The attainment of a peak point on the 

M - e curve is a form of instability and it 
0 

requires that portions of the beam-column be 
yielded. [ 3-3] Because of the nature of the 
wide-flange cross section, and because of the 
important influence of residual stresses [ 3-3] , 
the determination of the M 0 - 8 curve is per
formed by numerically integrating the mo
ment-curvature relationship. This numerical 
integration procedure is very simple in con
cept, but because of its repetitious nature it is 
best suited for computer solution. Two fre
quently used methods of numerical integra
tion are described in Refs. 3-3, 3-4, and 3-5. In 
these references the considerable amount of 
research performed on the behavior of in
plane beam-columns is also described and ref
erenced. 

The construction of theM o - e curves is 
most efficiently performed by the use of 
"column-deflection-curves." The description 
of the steps from the moment-curvature re
lationship to the M o - e curves, via the 
numerical integration procedure and the col
umn-deflection curves, is available in many 
references and will therefore not be repeated 
here( e.g., Refs. 3-4 through 3-7). 
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For the purposes of this discussion it is 
only important to know that efficient compu
tational tools exist whereby the in-plane load
deformation relationship of beam-columns, 
including the unloading portion of the curve, 
can be obtained. Furthermore it is important 
that for steel wide-flange beam-columns bent 
about their major axis the load-deformation 
curves are for all practical purposes identical 
for all wide-flange shapes, with only the fol
lowing variables differentiating the different 
cases of bending and length: M 0 /MP (or 
Mo/Mpc), P/PY, L/rx (the strong axis slender
nessratio), (3 (the end moment ratio), e and ay. 
Inter~ction curves relating P!Py and M)Mp 
for gtven values of L/rx, {3 and ay at the 
maximum moment condition are given as 
curves, tables, and in algebraic formulas (ob-



tained by curve fitting from the interaction 
curves) in Refs. 3-1, 3-3, 3-5, 3-8 and in the 
Appendix to Part 2 of the AISC Specifica
tion [ 1-5] . End moment versus end rotation 
curves are given for most practical combina
tions of P/PY' L/rx and (3 in Refs. 3-9 and 
3-10. Excellent experimental correlation with 
predicted strengths and with predicted Mo -8 
curves exists for steel wide-flange and steel 
box columns and this correlation is document
ed in Refs. 2-12, 3-3, 3-11, 3-12, and 3-13. 

The status of knowledge on the be
havior of beam-columns which are bent in a 
principal plane of the cross section and which 
are forced by bracing to deform in this plane 
is thus fairly complete both from a theoreti
cal as well as from an experimental point of 
view. 

Since the peak part of the 111 0 0 curve 
(solid curve in Fig. 13) is usually rather llat, 
the rotation corresponding to (M 0 ) rn ax is 
poorly defined. Rotation capacity is therefore 
defined with reference to the rotation 0 u cor
responding to 95 per cent of (M 0 ) ma:-. on the 
unloading portion of the curve, the same way 
as was done in Fig. 7 for beams. The rotation 
capacity is thus 

Ou 
R =--1 = f.J. -1 ep (34) 

where e p is the elastic rotation of the beam
column end at M 0 = 0.95 (M 0 ) max. The ex
perimentally measured rotation capacities and 
the corresponding theoretical values arc given 
for several tests in Table 6. [ 3-1 5] The tests 
marked "local buckling" were adjusted for this 

Table 6. Experimental and Theoretical Rotation Capacities of Beam-columns 

·-------

Ref. Test 
Member L/rx P/Py (3 

Type of Rotation Capacity 
No. Failure Experiment Theory 

3-11 A2 8WF31 55 0.65 0 Bending I. I 1.2 

3-1 I A3 8WF31 55 0.32 0 Local Buckling 3.3 2.6 

3-11 A4 8WF3l 55 0.49 0 Bending 1.6 1.9 

3-11 AS 4WFI3 II 0 0.33 0 Bending 0.5 0.5 

3-11 A6 4WF13 112 0.50 0 Bending 0.3 0.4 

3-11 A7 4WF13 1 12 0.16 0 Bending 1.4 1.2 

3-1 1 A8 8Bl3 52 0.30 0 Lateral Buckling 1.8 2.8 

3-11 A9 8Bl3 52 0.12 0 Local Buckling 3.1 2.0 

3-1 1 AlO 8Bl3 52 0.60 0 Lateral Buckling 1.9 1.4 

3-12 RCI 8WF31 59 0.50 1.0 Bending 0.9 0.8 

3-12 RC2 8WF31 59 0.40 1.0 Bending 1.8 1.2 

3-12 RC3 8WF31 60 0.42 1.0 Bending 0.7 1.1 

3-12 RC4 8WF31 40 0.57 1.0 Bending 1.8 1.5 

3-12 RC5 8WF31 40 0.56 1.0 Bending 2.6 1.5 
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effect (see discussion below), but the tests 
which failed by in-plane bending and lateral 
buckling were determined from the numerical 
integration procedure, considering only in
plane behavior. 

Comparison of the two rotation capacity 
values in Table 6 gives reasonable agreement. 
It should be noted that the rotation capacities 
are relatively small when compared to beams. 
This is not always the case, especially for short 
beam-columns under light axial loads. The 
available test results given in Table 6 are for 
relatively long beam-columns, and they do not 
possess much inelastic deforrnability. 

Rotation capacities of the order of 4 to 
13 were reported on model tests on :Y,.-in.-deep 
wide-flange sections of 8- to 22-in. length 
loaded with one end moment [ 3-14] . The test 
specimens were pieces of annealed steel glued 
together, and the maximum flange width-thick
ness ratio was about 4. 

Theoretical curves relating the axial load 
ratio P/ PY, the rotation capacity R and the 
slenderness ratio L/rx are given in Figs. 14 
and 15 for the loading case of two equal end 
moments ({3 =+ 1.0, Fig. 14) and for the case 
of one end moment ({3 = 0, Fig. 15). These 
curves apply for steel wide-flange beam
columns bent about their strong axis and 
a y = 36 ksi. They apply only to in-plane per
formance, except that they are adjusted for 
the possibility of local buckling. The rotation 
capacity is defined as in Eq. 34 where e is 
either the rotation to 95 per cent of (M ) 

h . o max 
on t e unloadmg branch of the M - e curve 
or the rotation at which bucklin; sets in if 
local buckling occurs first [2-29]. ' 

.T~e criterion of local buckling used in 
obtammg the curves in Figs. 14 and 15 was 
the attainment of a strain equal to the strain
hardening strain over a sufficiently long seg
ment of a flange so that one full wavelength of 
the local buckle could develop. The curves in 

*The curves in Figs. 14 and 15 were taken from Ref. 2_29, 
and the method of constructing them is described · R f 
3-15, where, however, overly conservative results a~: p;e~ 
sented. Even so, the local buckling cut-off in p· 14 · . 1g. IS con-
servative. Local buckling for beam-columns of c t h ompac s ape 
has not been experimentally observed to reduce rot t' . a 1on ca-
pacity at a moment of 0.95 (M ) on the 1 d' 
branch of the curve. o max un oa mg 
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Figs. 14 and 15 were determined by searching 
for the regions in the column-deflection-curves 
in which this condition of local buckling takes 
place.* For the case of {3 = 0 (Fig. 15), it is 
possible that a plastic hinge forms at the end 
of the beam-column. In this case the end rota
tion is determined as for a beam, and a modi
fied form of Eq. 20 is used [ 2-29]. 

The rotation capacity values for Figs. 14 
and 15 thus include both in-plane instability 
and local buckling. They assume, however, 
adequate lateral bracing. When the beam
column has two equal end moments ({3 = + 1.0, 
Fig. 14 ), very little rotation capacity exists for 
slenderness ratios larger than about 30 to 40. 
Therefore, such members do not absorb a 
great deal of energy, and they should probably 
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Fig. 14 Rotation capacity of beam-columns, ay = 36 ksi, 
{3 = 1.0. 
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Fig. 15 Rotation capacity of beam-columns, a = 36 ksi, 
{3 :: 0. y 



not be counted on to do so. Such a loading 
would not occur under seismic loads anyway. 
The rotation capacity of beam-columns with 
only one end moment is quite substantial, 
especially for shorter members ({3 = 0, Fig. 15). 
Rotation capacities of 6 (or ductility factors 
of 7) are not uncommon for practical beam
columns. For the case of beam-columns under 
double curvature moment ({3 ~ -1 ), which is 
a typical situation for multistory frames sub
jected to earthquake loads, one-half of the 
slenderness ratio of the member should be 
used when determining the rotation capacity 
from Fig. 15. 

The information in Figs. 14 and 15 is 
rather incomplete. However the M - e 

' 0 

curves in Ref. 3-1 0 could be used directly to 
obtain the maximum rotation eM, the elastic 
rotation e P and the maximum end moment 
(Mo )max. The rotation capacity, R, the duc
tility factor J.l, and the inelastic energy ab
sorption capacity. 

(35) 

could then be computed. Because of the many 
variables involved, it is difficult to make more 
general statements about the energy absorp
tion capacity. Eq. 35, however, provides the 
means whereby this value can be determined 
in any individual case. The M - e curves in 

0 

Ref. 3-1 0 terminate at the start of local buckl-
ing, so this restriction is already taken care of. 

In-plane beam-column behavior as de
scribed above depends on the presence of 
adequate lateral bracing to prevent the occur
rence of lateral-torsional buckling. There has 
been little systematic research performed yet, 
as in the case of beams, to recommend rules 
for adequate bracing spacing. However some 
thought has been given to this problem in 
Refs. 2-29 and 3-2, where it was concluded 
that the bracing spacing requirements for 
beam-columns are probably not as stringent as 
for beams. However, it has been recommended 
[3-2] that for 0 ~ {3 ~ + I the bracing should 
be spaced according to Eq. 8. For -1 ~ {3 < 0 
the same equation should be used, except that 
the more liberal Eq. 7 applies if 

P ~ 1- (L/rx) (Vf;/n) (36) 

PY 1 + (L/rx) (.JEy/n) 
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These bracing rules are quite conservative and 
further work should result in more liberal pro
visions. 

For flanges the maximum recommended 
width-thickness ratio is determined by Eq. 5. 
For webs the recommended width-thickness 
ratio is [3-2] 

d/w ~ (70- IOOP/PY) )36/ay (37) 

d/w ~ 42 J36/ay (38) 

Lateral-Torsional Buckling of Beam-Columns 

Inadequately braced beam-columns will 
fail by lateral-torsional buckling before the in
plane maximum moment is reached. This is 
shown schematically in Fig. 13. The critical 
moment causing lateral-torsional buckling can 
be determined by standard elastic methods of 
analysis [3-21]. The critical moment can also 
be determined if lateral-torsional buckling 
occurs after some parts of the member have 
already yielded (e.g., Refs. 3-16 through 3-20). 
However, no analysis has yet been presented 
for the load-deformation path beyond the start 
of buckling. Thus it is possible to assess the 
strength at the onset of buckling, but no ana
lytical information is available on the post
buckling deformability of the beam-column. 
There are, however, a number of experiments 
which were performed on un braced wide-flange 
beam-columns (see Refs. 3-1 I, 3-14, 3-1 5, 
3-17, 3-18 and 3-19). These experiments 
were performed over a wide range of P/PY 
and L/ry values and for {3 = --1, 0 and+ 1, and 
they quite conclusively show that very little 
rotation capacity is available if failure is by 
lateral-torsional buckling. Most of these tests 
showed a rotation capacity of 2 or less, 
although in some isolated instances it was 
larger. In view of the lack of an adequate post
buckling theory, it has been recommended 
that beam-columns which do not meet the 
bracing requirements stated above should not 
be counted on to deliver any inelastic rota
tion capacity. [3-1] [3-5] 

Further Topics on Inelastic Beam-Columns 
The in-plane rotation capacity of beam

columns loaded by end forces and inter-span 



transverse forces has not yet been examined in 
detail, although ultimate strength interaction 
curves (Refs. 3-22, 3-23) and some moment
rotation curves are available [3-24]. The 
problem of obtaining this information is not 
very great because the same method of numer
ically integrating the moment-curvature rela
tionship applies as for beam-columns without 
lateral load. 

In contrast, the problem of the biaxial 
bending of beam-columns is of great practical 
interest. Unfortunately, the great complexity 
of the problem has not yet permitted the de
velopment of more than a few isolated analyti
cal and experimental results. [3-25, 3-26] The 
major emphasis in both the analytical and the 
experimental work has been on strength 
rather than on deformability. Therefore it is 
not possible to draw any conclusions about 
the deformation capacity of biaxially loaded 
beam-columns. Several universities are working 
on this problem under the guidance of a Task 
Committee of the Column Research Council, 
and it is expected that considerably more will 
be known about this topic in the near future. 

There is no publication on either tests or 
analytical work known to the author on the 
behavior of beam-columns under reversed 
loadings. This is indeed a very timely and im
portant research topic. 

The work on the in-plane behavior of 
steel beam-columns assumed that inelastic 
straining always proceeds in its initial direc
tion. It was also assumed that the axial load 
remains constant while the end moment 
changes. In the inelastic range, the deformation 
path depends on prior history, and the ideal
ized assumptions stated above certainly do not 
hold true for a beam-column in a frame. Some 
attempts have been made to examine these 
assumptions in Ref. 3-6, and it was shown that 
their effect on over all behavior was negligible, 
at least for the cases which were considered. 
There is further need to thoroughly investigate 
the effects of the path by which forces, de
formations and strains arrive at any particular 
position. 

Research Needs 

The following brief list gives several of 
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the research needs on topics on the inelastic 
deformability of steel beam-columns: 

1) Experimental and analytical studies 
on the behavior of beam-columns under re
versing end moments will give information on 
the design of earthquake- and blast-resistant 
structures. 

2) Experimental and theoretical studies 
on the inelastic deformability of biaxially 
loaded beam-columns under monotonic and 
reversible loadings will allow more realistic 
design. 

3) Optimum bracing-spacing studies on 
beam-columns are needed to arrive at a more 
liberal and more realistic bracing requirement. 

4) Post-buckling deformability, both after 
local and lateral-torsional buckling, should be 
investigated. 

5) The effects of the loading path, of 
elastic unloading of previously yielded fibers 
and of strain hardening should be studied. 

6) The influence of encasement of beam
columns on the lateral-torsional buckling be
havior needs to be investigated. 

7) Further research topics involve the 
study of 

a) Laterally unbraccd and end-restrain
ed beam-columns 

b) Beam-columns under large axial load 
(P/PY = 0.8 to 0.9) 

c) Large-sized beam-columns 
d) Beam-columns under dynamically 

applied end moments 
e) Restrained beam-columns subjected 

to drift, with composite and non-com
posite restraining beams 

f) Beam-columns of A572 steel. 

4. CONNECTIONS 

Plastic design is based on the ability of 
moments to redistribute themselves through
out the structure. In order for this redistri
bution to be completed, the connection is re
quired to transmit the full plastic moment of 
the weaker member framing into it. For this 
reason "Simple" framing (AISC Type 2 con
struction) and "Semi-Rigid" framing (AISC 
Type 3 construction) are not suitable for plas
tically designed steel frames. The connections 



to be discussed here will therefore be "fully 
rigid" (AISC Type 1 construction). 

A great deal of research has been per
formed on fully rigid connections to establish 
design methods which ensure that the mem
bers at a joint can indeed develop their full 
plastic moment and rotation capacity. This 
research, together with the experimental evi
dence and the design rules (Refs. 1-2, 4-1, 4-2 
and 4-3), has concentrated on the develop
ment of design rules for connections so that 
they would be the stronger link in the joint
member assembly. The actual strength of the 
connection, as well as its inelastic deforma
tion, was thus not a primary function of the 
research. 

The major research papers on the be
havior of connections which are required to 
permit the members to be connected to de
velop their full moment capacity are: Ref. 
4-4, welded interior beam-to-column connec
tions; Ref. 4-5 through 4-9, welded corner 
connections; and Refs. 4-1 0 through 4-13, 
high-strength bolted moment resistant connec
tions. The analytical studies of these types of 
connections, supported and supplemented by 
extensive experimental studies, have provided 
design rules (see Ref. 4-3 for a convenient 
tabular summary). These design rules assure 
that the connections will permit the members 
framing into them to achieve their full mo
ment and rotation capacity. The evidence in 
support of this statement is summarized in 
Ref. 4-14, which presents many available ex
perimental load-deformation curves for fully 
moment-resistant connections. 

It would thus seem that the strength and 
energy absorbing capacity of a rigid frame, as 
well as the rotation capacities of each plastic 
hinge, can be assessed by assuming rigid con
nections and plastic hinges in the members 
adjacent to the connections. The frame test 
reported in Ref. 4-1 5 has indeed borne this 
out, and the ultimate loads of these frames 
were successfully predicted by assuming that 
plastic hinges formed at a distance equal to 
the depth of the member away from the face 
of the welded beam-to-column connection. 
This is, of course, a gross simplification of the 
true situation, even though the over all be-
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havior of the rigid frame can be explained by 
it. Portions of the connection will yield, and 
the load-deformation behavior of the joint
member assembly shows that the connection 
is not fully rigid. However, it is rigid enough 
to permit the beam to develop its full moment 
capacity. The amount of rotation contributed 
by the connection, and the energy absorbed 
by it, has not been assessed theoretically, even 
though experimental measurements of connec
tion deformation are available [ 4-4, 4-9]. This 
contribution to the rotation has, however, not 
been defined in terms of the total rotation, 
and it has not been theoretically predicted. 

It is, therefore, desirable to perform 
more research to determine the contribution 
of the connection itself to the total deforma
tion of the joint so that the energy absorbed 
by the inelastic deformation in the connec
tion can be determined. The energy absorbed 
by a connection is probably quite small when 
compared to the energy absorbed by the wide
flange member which has a plastic hinge that 
rotates its full amount. However, in a struc
ture subjected to several load reversals, but 
which never develops a full mechanism as 
might be the case for a structure in an earth
quake, the energy absorbed by the connec
tions may be considerable. 

There have been a number of frame tests 
(e.g. Refs. 2-3 7, 4-15, 4-16 and others dis
cussed in the subsequent section) which had 
connections proportioned by the methods 
proposed for plastically designed frames, and, 
with the exception of one test, no mention 
was made of unsatisfactory connection be
havior. All of these frames behaved as pre
dicted by plastic analysis, and so it is con
cluded that the methods of connection design 
are adequate. A brief paragraph in Ref. 2-37 
states that " .... observation of the connec
tion behavior in the tests indicate that the 
effect of axial load on connection design 
should be studied. Current methods for pro
portioning connections do not consider the 
effect of axial load on the yield criterion of 
the we b." Thus there seems to be some ques
tion as to the adequacy of beam-to-column 
connections for columns with relatively high 
P/Py ratios. Subsequent reports (Refs. 4-15 



and 4-16) on the same research project, and a 
new research proposed from the same organi
zation [ 4-17], do not further mention the 
problem. It would be desirable to examine the 
current beam-to-column connection design 
rules (Ref. 4-3) to see if high axial loads in 
the columns indeed change anything. 

There is some experimental evidence that 
beam-to-column connections do not introduce 
any additional problems if the joint is sub
jected to load reversal. In Ref. 4-8, four square 
knees (square corner connections) were tested 
so that the knees opened up under tensile 
loading. The four specimens were previously 
tested in compression well beyond the peak of 
the load-deflection curve, and the connections 
were therefore already distorted by some local 
and lateral deformations. In Fig. 16 two of the 
four moment-deflection curves* are shown 
from Ref. 4-8. The dashed line is the plastic 
moment of the connected members; curve A 
is the compression test, and curve B is the 
tension test. Comparison of the two types of 
curves shows that in the region below theM 

p 
of the member, the tension knee is less stiff. 
This is due to the prior local and lateral de
formations in the compression test. However, 
the tensile test had a larger rotation capacity 
than the prior compression test; M P of the 
connected members was exceeded, and the 

14W30 
24W'100 
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/ 

Fig. 16 Connection test results from Ref. 4-8. 

* Mh = moment at the intersection of the center lines of 
the two members 

A = deflection of the end of the legs relative to each 
other. 
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maximum moment either exceeded or was 
equal to the maximum moment from the com
pression test. Three of the four tension tests 
failed by inelastic instability (local and/or 
lateral deformation of the compressed ele
ments). The fourth test was made on a knee 
with very large members (36WF230) and 
failure occurred by tensile brittle fracture after 
a moment equal to the maximum moment 
attained by the compression test was reached. 

Typical beam-to-column connections 
were tested under large cycling strains at the 
University of California at Berkeley [ 2-45] 
[2-46]. In these tests cantilever beams were 
connected to a short column by three typical 
welded and one typical high-strength bolted 
beam-to-column connections. The welded con
nections all failed by alternating plasticity in 
the beam flange or flange connection plates, 
and the bolted connection failed by the frac
ture of the beam-flange across the line of 
bolts farthest from the column face. In all 
cases, many cycles at very high strains were 
delivered by the beam-and-column assembly 
before failure. 

Several steel frames were tested under 
reversed horizontal loading at Lehigh Univer
sity (see Refs. 4-16, 4-18 and 4-19).The con
nections in all these frames were designed by 
current methods of plastic design (Ref. 4-3), 
and in every case it was noted that the con
nections permitted the frame members to de
velop their full capacity. 

The test referred to above seem to indi
cate that current plastic design methods of 
connection design are adequate for frames sub
jected to severe reversed loading. Further 
testing on various other rigid beam-to-column 
connections would be highly desirable to de
termine whether connections which are ade
quate for monotonic loading are also ade
quate for reversed loading. Special attention 
should be paid to connections with columns 
under high axial load, to connections which 
consist of two beams framing into a column 
where one beam is substantially larger than 
the other [ 4-14] , and to one-sided beam-to
column flange connections. 



5. FRAMES 

The previous chapters reviewed the status 
of knowledge on the inelastic rotation capaci
ty of individual beams, beam-columns and 
connections. They demonstrated that the rota
tion capacity of beams and beam-columns can 
be conservatively determined and that connec
tions, if properly designed, will permit the 
members to develop their full capacity. In 
order to attain the full available rotation ca
pacity, members must be properly braced 
against lateral buckling and the width-thick
ness ratios must not exceed certain specified 
maximum values. 

The review of the inelastic deformability 
of members gave information on what mem
bers can do. This chapter will deal with what 
members must be able to do in order that the 
behavior of the frames, of which the mem
bers are part, can be satisfactorily predicted. 
This discussion will be almost entirely re
stricted to planar frames, that is, the loading 
will cause deformations primarily in the plane 
of the frame. Unfortunately, not enough 
knowledge is available on the inelastic be
havior of space frames to make a general re
view and specific conclusions. 

There are two things we might wish to 
know about a given frame. First, it is desired 
to know the load-deformation path of the 
frame under a specified static proportional 
and monotonic load system (Fig. 17). One 
point of interest is the relationship of the 
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Fig. 17 Load-deformation curve for frame under monotonic 
proportional loading. 
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maximum load to the working load (i.e., the 
"load factor"), and the other is the force level 
corresponding to the allowable deflection 
limit. Such a load-deformation curve is the 
basis of plastic design, where the load capacity 
is defined by the maximum load. It is also 
useful for allowable stress design, where the 
elastic limit is considered as the limiting load 
capacity. 

The second item of importance is the 
energy absorbed by the frame under dynamic, 
non-proportional and non-monotonic loads. 
There seems to be no convenient graphic way 
of representing this information. In fact, the 
problem still needs to be more clearly defined. 

The following discussion examines the 
literature on both these problems. 

Plastic Analysis of Planar Frames 

Plastic design requires that the load level 
corresponding to the working load times a 
specified load factor be as close as possible bu1 
never more than the maximum load which 
can be supported by the frame (see Fig. 17). 
The load is assumed to be monotonic, static 
and proportional; i.e., it increases slowly from 
zero load, and all loads in the load system 
remain in a fixed ratio to each other through
out the entire loading history. [ 1-2] Under 
these assumptions there exists a unique load
deformation path in the inelastic range. I 5-1] 
The problem of plastic analysis is to estimate 
this path and to determine the magnitude of 
the maximum load. 

The theoretical determination of the in
elastic portion of the load-deformation path 
for even relatively simple frames is feasible 
only by making use of the plastic hinge con
cept. This concept assumes that the moment
rotation curves of the beams and bea~
columns are idealized to consist of an elastic 
portion (linear) up to the plastic moment 
and of a flat portion where the moment 
remains unchanged while rotation can c~n
tinue up to the limiting rotation capac~ty 
(see dashed curve in Fig. 1 ). Accord~ng 
to this assumption the whole frame remams 
elastic except at the point-locations where the 
moment diagram has extreme points and 
where plastic hinges form. [ 1-2] 



The first order plastic analysis of a frame 
proceeds as follows: At first the frame is sub
jected to small loads so that it is entirely 
elastic. Frame deflections are not included in 
the equilibrium equations. The load corre
sponding to the formation of the first hinge is 
determined as that load which would cause 
the highest elastic moment to be equal to the 
plastic moment. Upon a further increase of 
load, a real hinge with constant plastic mo
ment is assumed at the first plastic hinge, and 
the frame has a reduced stiffness in the cor
responding elastic analysis. The next hinge 
forms when the highest moment in this 
analysis is set equal to MP. This step-by-step 
elastic analysis is continued until the stiffness 
of the frame becomes zero. At this time 
enough hinges have developed so that the 
structure with its hinges becomes a mecha
nism. 

This type of an analysis is called "elastic
plastic" analysis, and it gives the best possible 
first order estimate of the load-deformation 
path. [ 5-l 1 This method is especially con
venient with a computer, and a number of 
fairly complex frames have been analyzed in 
this manner (see Refs. 2-2, 2-4, 4-15, 4-16, 
4-18, 5-2 and S-3). 

1110RD. RIGID-PLASTIC ANALYSIS 
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Fig. 18 Types of structural analysis. 
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For simpler frames, that is, two or three
story, three or four-bay structures, the work 
involved in the elastic-plastic analysis can be 
avoided by directly determining the maximum 
load and the deflections corresponding to the 
start of mechanism motion, by the rigid-plastic 
analysis [ 1-2). This method becomes, how
ever, rather difficult for more complex frames 
as it is not possible to account for certain 
"second-order" effects which become im
portant for complex frames. 

The curves in Fig. 18 explain the rela
tionship between various possible types of 
analysis and the "true" load-deflection curve 
which might be obtained in an experiment 
(solid curve). A rigid-plastic analysis will pro
vide the maximum load at point A. If it is 
assumed that the deformations do not change 
the force distribution in the frame (that is, 
first order analysis), the structure will deform 
as a mechanism without a change in load 
(line AB). However, if it is assumed that after 
the start of mechanism motion the internal 
forces change because of the moments caused 
by the vertical forces times the deflections 
(P - .6. effect), a drooping line, marked 
"second order rigid-plastic analysis" in Fig. 18 
results. As the deformations due to mechanism 
motion increase, more and more of the mo
ment capacity of the members is taken up 
by P - .6. moments and in order to maintain 
equilibrium the load capacity must be re
duced. The curve marked "first order elastic
plastic analysis" is a step-by-step analysis as 
described before where the P -- .6. moments 
are ignored. This curve reaches the first order 
rigid plastic curve at B when the first order 
maximum load is reached. 'll1is is an upper 
bound to the true maximum load. The second 
order elastic-plastic analysis is computed by 
including the P- .6. effect and it joins with the 
second order rigid-plastic curve at C. 1 t so hap· 
pens that on this schematic diagram point Cis 
also the maximum load. This need not neces
sarily be so, and the intersection may take 
place after the maximum load is reached. Thus 
it is possible, and for complex frames quite 
probable, that the maximum load according 
to the second order clastic-plastic analysis 
occurs before a complete mechanism has 



formed. [5-3] This is due to the fact that the 
stability of the frame may deteriorate because 
of axial forces and plastic hinges before a 
mechanism occurs. 

The maximum point on the second order 
elastic-plastic load-deformation curve is the 
best estimate of the true maximum load which 
can be made for all but the simplest frames. 
Beyond the peak point of the curve, strain
hardening effects become predominant and an 
analysis which neglects strain-hardening will 
generally fall below the "true" curve. [ 4-15] 
However, methods are available to deal with 
this problem also (Ref. 4-15), so that the 
course of the curve past the peak can be 
analyzed more realistically. 

For many smaller structures, e.g., con
tinuous beams, shed-type frames and low 
buildings, the second order effects are negli
gible or easily approximated. and the first 
order rigid-plastic analysis predicts the total 
maximum load capacity with very good ac
curacy. This fact is the basis for the success of 
plastic design for such structures whose design 
is governed by Part 2 of the 1963 AISC Speci
fication [ 1-5] . There is a great deal of ex
perimental evidence of this from tests of con
tinuous beams, square and gabled one-story, 
two-story, one-bay and two-bay frames made 
up of full-sized steel members. 

This experimental evidence is catalogued 
in the references cited in Refs. 1-1 and 1-4. In 
Chap. 5 of Ref. 1-1, out of a total of 18 beam 
tests and 22 frame tests, only one beam and 
three frames delivered slightly less than the 
predicted first order rigid-plastic maximum 
load. The other structures either exceeded or 
delivered exactly the predicted loads. Thus for 
these types of structures where axial loads are 
relatively small, there is no doubt about the 
validity of the theory. These tests also showed 
very good agreement with the complete load
deformation curve as determined by first order 
elastic-plastic theory. 

Relatively high axial forces have three 
effects on the load-deformation relationship: 
1) they introduce additional moments due to 
the P - Ll effect; 2) they reduce the elastic 
stiffness of the beam-columns; and 3) they 
introduce additional moments due to member 
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shortening. Of these three the P - A effect is 
the most important. The other two may or 
may not be significant, depending on the type 
of loading and geometry. 

The reduction in the elastic flexural stiff
ness of the columns is negligible as long as the 
following relationship holds [5-3] : 

L J P/EI < 1.0 (39) 

where L is the height of the story, P is the 
axial load in the column, and EI is its elastic 
modulus times the moment of inertia. Com
plete results on the effects of the member 
shortening are not available, but studies on 
one and two-bay frames of up to 15 stories 
have indicated that the reduction of the maxi
mum load due to axial shortening is not sig
nificant. [5-3] The closer the frame is to a 
mechanism at the peak of the load-deflection 
curve, the less significant is the influence of 
this effect. 

An iterative type second-order elastic
plastic analysis has been developed for taking 
care of the second-order effects (Refs. 2-2, 
2-4, 4-15, 4-16, 5-2 and 5-3). This type of 
analysis is necessarily a computer solution. A 
method of plastic design, including the design 
against second-order effects, but distinctive 
from the analysis method, has also been de
veloped [5-4] . Thus a theoretical basis exists 
for both the analysis and the design of steel 
multistory frames. 

The establishment of a broad experi
mental basis for the verification of the second
order elastic-plastic analysis may be practically 
quite expensive. It is not feasible to test many 
full-scale multistory frames, although it is 
hoped that at some time in the future such a 
test will be performed on a building to be 
dismantled. 

There is also a possibility of extensive 
model tests and a good start on such tests has 
already been made [ 5-15]. The existing labo
ratory tests are on full-scale frames of up. to 
three I 0-ft.-high stories, and two 15-ft.-wide 
bays which were performed at Lehigh Univer
sity. The structural details of o~e of_ the_se 
tests, reported in Ref. 4-15, are _give~ m FIg. 
19. The vertical loads were applied first, and 



kept constant as the horizontal load H was 
applied. The solid curve in Fig. 20 is the ex
perimentally obtained relationship between 
the horizont~d load // and the horizontal de
flection at the beam leveL ~. The dashed 
curves show that the total load-deformation 
relationship was well predicted by an elastic
plastic analysis up to the maximum load, and 
by an analysis which included the effect of 
strain-hardening after that point. The fact that 
the maximum load predicted by first order 
rigid plastic theory of 21.3 kips was substan
tially above the actual maximum load of 16.9 
kips shows that the P - ~ effect was quite 
considerable for this frame and load system. 

Three tests on three-story, two-bay 
frames braced by diagonal bracing and which 
were loaded by: I) symmetric vertical forces, 
2) unsymmctric vertical forces, and 3) hori
zon tal and vertical forces, showed good agree
ment with theoretical predictions as regards 
the maximum loads, the load-deformation 
paths and the order of hinge formation. [ 2-3 7] 
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Similarly good correspondence was obtained 
for tests on two three-story, one-bay and one 
three-story, two-bay un braced frames [ 4-16]. 

The seven frame tests at Lehigh (Refs. 
4-15, 2-37, and 4-16, with the testing tech
nique reported in Ref. 5-5) demonstrate that 
the behavior of such frames is quite adequately 
predicted by the second-order clastic-plastic 
analysis. 

The design procedure recommended for 
the plastic design of multistory frames is not 
based on an elastic-plastic analysis of the 
whole frame, but on the design of individual 
subassemblages consisting of one column 
member and the beams framing into it. [5-4] 
A great deal of theoretical work was per
formed (Refs. 3-4, 3-9, 5-6, 5-7, 5-~, and 
Chapters 9, 10, and 17 in Ref. 5-4) to de
velop efficient means of predicting the load
deformation curves for these subassemblages. 
This theoretical work was verified by a series 
of tests on columns restrained at their ends by 
beams. These tests are reported in Refs. 2-18, 
3-12, and 5-9, and excellent correlation was 
obtained between theoretical and experimen
tal moment-rotation curves and maximum 
loads. These tests arc remarkable in that the 
column members were often deformed well 
into the descending branch of their end mo
ment-end rotation curves before the whole 
subassemblage reached its maximum load. 

The frame and su bassemblage tests pro
vide a substantial and convincing experimen
tal basis for both the plastic analysis as well as 
the plastic design of planar multistory rigid 
frames. It should be pointed out that in all of 
these tests, lateral bracing was used to guard 
against lateral torsional buckling, and the 
details of all phases of the testing were care
fully controlled and supervised. 

Rotation Requirements and Rotation 
Capacities 

The problem of com paring the required 
hinge rotation at a plastic hinge with the avail
able capacity has not received recent atten
tion. If the load-deformation curve is deter
mined by computer, the required hinge angles 
are a by-product of the com pu ta tions and 
comparison can be made with the rotation 



capacity which is available. The available rota
tion capacity can be obtained from Eqs. 17 or 
20 for beams and from Figs. 14 or 15 or from 
the available M -0 charts in Ref. 3-1 0 for 
beam-columns. 

Rotation capacity requirements for struc
tures where the P - d effect is negligible, that 
is, continuous beams and single-story frames, 
are studied in Refs. 5-10 and 5-11. Rotation 
capacity requirements are compared with 
available rotation capacities in Ref. 2-42 for 
three-span continuous beams. An examination 
of the results in these reports leads to the fol
lowing conclusions: 

1) Members under uniform moment usu
ally form hinges late in the deformation histo
ry, and the required rotation is considerably 
less than the capacity. 

2) Under common structural situations, 
it is unlikely that the rotation requirement 
exceeds the rotation capacity for hinges form
ing in regions of steep moment gradient. In 
uncommon situations, for example, for three
span beams with much heavier loads on the 
end spans than in the center span, and for 
gabled frames with steep gables, large theo
retical rotation requirements may be computed 
using elastic-plastic theory. 

In considering the comparisons between 
the available and required hinge rotation ca
pacities, it should be realized that the availa
ble capacity is based on a strain-hardening 
model, whereas the required capacity has been 
computed by neglecting strain-hardening. 
Strain-hardening alters the moment distribu
tion, it stiffens the beams and it appears to re
duce deformations [ 2-41 ] . The discussion in 
Chapter 2 has also shown that the prediction 
of the available rotation capacity may be quite 
conservative. It seems desirable to further in
vestigate the required rotation capacity by in
cluding strain-hardening for structures of the 
type considered in Refs. 5-10, 5-1 1, and 2-42. 

No exhaustive studies of these problems 
have as yet been performed for multistory 
frames where a second-order elastic-plastic 
analysis must be performed. However, both 
Parikh (Ref. 2-4) and Korn (Ref. 5-3) give 
maximum hinge rotations for the frames they 
have analyzed. From a knowledge of the rna-
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terial and section properties, and from the 
final moment diagram, it is possible to com
pute the available capacity from Eq. :20. The 
rotation capacity exceeds the requirement for 
both frames in Ref. 2-4 ( 1 0-story, 3-bay, and 
24-story, 3-bay frames). The maximum hinge 
angles at collapse and the computed available 
rotation capacities are tabulated in Table 7 for 
the frames which were analyzed by a second
order elastic-plastic analysis in Ref. 5-3. This 
table shows that in all except four cases the 
capacity substantially exceeded the require
ment. For the four frames where this was not 
so, the rotations in the parentheses show the 
maximum hinge angles at a load only slightly 
below the collapse load. These rotations arc 
substantially smaller than the rotations at col
lapse, indicating that the particular frames 
were very ductile in the final stages. However, 
the rotations still exceed the capacities in three 
cases. Two of the three frames (four-story, 
one-bay, and eight-story, one-bay) had ex
tremely flexible beams (weak-beam design) 
and thus the large rotation requirement is to 
be expected. The last frame (six-story, two
bay) was subjected to checkerboard loading. 

These limited studies on the comparison 
of the rotation requirement with the rotation 
capacity seem to indicate that in usual struc
tural situations the capacity exceeds the re
quirement. However, this is not fully proven, 
and considerable analytical work is still needed 
to delineate structural parameters where no 
additional rotation check needs to be made. 

In connection with Table 7 there are 
several important points worth noting: The 
hinges with the most rotation usually occur in 
regions of high moment gradient, that is, at 
the ends of the beams. For such situations it 
was demonstrated that the theoretical capacity 
as defined by Eq. 20 is quite conservative. 
There is also evidence that the rotations may 
be smaller if the load-deformation curve is 
determined by a theory which includes the 
strain-hardening effect. [ 2-41] 

There are thus quite a number of loose 
ends in this problem which would warrant 
further investigation, and thus the results pre
sented in Table 7 should be considered pre-



liminary, and should not be interpreted as 
having any general validity. 

Behavior of Frames Under Reversed Loading 

The largest share of the research on 
frames concerns the maximum strength under 
static monotonic loading. This type of loading 
is usually considered to be a satisfactory ap
proach to the design of frames under pre
dominantly static or quasi-static loadings, 
although there may be a question if this con
cept will not be challenged as methods of dy
namic computer analysis are applied to more 
complex frames. No structure is subjected to 
truly static or truly monotonic loads. In a 
sense the maximum load capacity under static, 
monotonic and proportional loads is a refer
ence load against which working load levels 
arc compared by means of a minimum allow
able load factor. This load factor is really only 
an empirical parameter which defines past 
satisfactory behavior. Thus there is still a lack 
of a truly rational means of defining criteria of 
design for any structure. 

There is, however, one point in favor of 
the present method of design which is pro
vided by the concept of the shakedown load. 
A structure will shakedown finally into a fully 
clastic state if it is possible to find a residual 
bending moment distribution which, if added 

to extreme values of elastic bending moments 
due to the variable repeated loading, will give 
a resultant moment field which nowhere ex
ceeds the plastic moment (Ref. 1-1, Chap. 6). 
Methods are available for computing the load 
level at which shakedown will just take place. 
This load level is the maximum which can be 
attained under variable repeated loads. Studies 
on continuous beams and relatively simple 
frames have shown that the shakedown load 
level is only slightly below the maximum load 
determined by first order rigid-plastic theory. 
It is argued that the chances of attaining one 
overload to the static maximum load level are 
larger than the chances of many severe vari
able loadings of an intensity only slightly be
low this level. A design method based on the 
assumption of static proportional loading is 
thus justified [ 1-1 ] . 

This argument is justified for the rela
tively simple structures for which AISC per
mits plastic design. Besides the analytical evi
dence, there are also several experiments 
which bear this out (see the results and refer
ences cited in Chap. 6 of Ref. 1-1 ). The ana
lytical studies, however, are based on struc
tures in which only bending is present. There 
is a real need to know what happens with 
regard to the shakedown load when substan
tial axial loads are present and where such 

Table 7. Rotation Requirements and Capacities for Multistory Frames 

Type of Frame 
Maximum Hinge Available 
Angle in Beam Rotation Capacity 

I (Radians) (Radians) I r wo-S tory' One-Bay··- - -- -
--~------------------f---------- -- -- --

Four-Story, One-Bay 
0.0541 0.052 
0.0392 (0.0273) 0.020 Eight-Story, One-Bay 0.0357 (0.0297) 0.026 Eight-S tory, One-Bay 

Eight-Story, One-Bay 
0.0032 0.023 
0.0049 

Eight-Story, One-Bay 0.0140 
0.028 

Eight-Story, One-Bay 0.0084 
0.021 

Eight-Story, One-Bay 0.0207 
0.021 

Eight-Story, One-Bay 0.0018 
0.028 

Eight-Story, One-Bay 0.0048 
0.024 

Eight-Story, One-Bay 0.0077 
0.024 

Fifteen-Story, One-Bay 
0.0303 (0.0223) 

0.026 
Three-S tory, Two-Bay 0.0306 

0.024 
Six-Story, Two-Bay 0.0171 

0.035 
Six-Story, Two-Bay 

0.0443 (0.0389) 
0.026 
0.026 

30 



secondary phenomena as the P- .::l effect play 
a predominant role, as for example in steel 
multistory frames. In the author's opinion, an 
argument can be made for retaining the con
cept of design based on proportional loading 
for many strucutres. This is a current and 
largely unsupported judgment which may be 
modified by further research. [ 5-16] 

There are two types of structures where 
a design based on the maximum proportional 
load level is incorrect: continuous beam 
bridges under moving load, and frames which 
must absorb energy due to earthquake or blast. 
For beams, one basis of design against severe 
overload from moving vehicles is the shake
down load. This is always above the elastic 
limit load, but it may be below the plastic 
collapse load [ 5-12] . In the design of frames 
against severe earthquake or blast shocks, it is 
desired to absorb energy by inelastic deforma
tion without loss of life by the full destruc
tion of the frame. Thus the attainment or 
survival of a static load level is not necessarily 
an adequate criterion. [ 2-43] 

There are essentially two basic ap
proaches available for dealing with the prob
lem of inelastic response to severe dynamic 
loads. One of these is the "reserve energy" 
technique (see Ref. 5-13 for a description and 
for further literature on this subject) which 
makes empirical use, in part, of static load
deflection curves of the type shown in Fig. 17 
for determining energy absorption capacity. 
This technique is essentially an empirical 
design method which, while not able to ration
ally take care of all phenomena involved, ap
pears to be an improvement over the usual 
quasi-static elastic design. The other approach 
is to make a dynamic analysis of a given struc
ture for a given excitation and to determine 
the extent and the number of excursions into 
the inelastic range. [ 2-5] [ 2-43] In this analy
sis it is necessary to specify a moment-rotation 
response of each member. A simple elastic
plastic response (Ref. 2-5), and Ramberg
Osgood type relationship (Ref. 2-43) have 
been used. The criterion of adequacy has as 
yet not been clearly defined. One criterion 
would be to determine the extent of inelastic 
rotation and the number of reversals, and to 
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check these against the rotation capacities of 
the members. Data on the capacity to resist 
inelastic load reversals are available from 
Popov's and Bertero's tests (Refs. 2-44, 2-45, 
2-46). Another criterion would be to compare 
the available energy capacity with the energy 
which needs to be absorbed. [ 2-43] 

The energy absorption capacity can be 
very roughly approximated as the sum of the 
plastic moment times the inelastic rotation at 
the location of plastic hinges. This information 
is available for beams and beam-columns under 
monotonic loading, but such information is 
still unavailable if the loading is reversed (see 
previous portions of this report). There is thus 
need for information about the behavior of 
individual beams, beam-columns and connec
tions under reversed loading which then can 
be utilized in making realistic dynamic studies. 

Such studies are under way at the Univer
sity of California at Berkeley (See Ref. 2-5 and 
5-17 for the results of such studies), at the 
California Institute of Technology [ 5-19] and 
at the University of Michigan at Ann Arbor 
[ 2-43, 5-18] . These studies have been made, 
to date, without considering the P- .6. effect, 
but strain-hardening effects have been included 
in one of the studies [ 2-43, 5-18] . This latter 
effect is incorporated in a Ram berg-Osgood 
load-deformation diagram, and it seems that 
both the extent of yielding and the number of 
reversals were reduced. Strain-hardening is thus 
beneficial, physically always present, and 
should therefore be used in an inelastic dy
namic analysis. Similar conclusions were also 
reached by Lay about static proportional 
loading [ 2-41 ] . 

The P - .::l effect, though it can result in 
a considerable reduction in the static propor
tional maximum load, has also some beneficial 
effects which make it desirable to include it in 
future dynamic analyses. One of these is illus
trated in Ref. 5-3 where maximum hinge rota
tions are computed for several frames with the 
P- ,::l effect included and excluded. The hinge
rotations for the second order analysis were 
shown to be, for the most part, less than the 
rotation capacities (Table 7). However, all of 
these rotations at collapse were higher, some 
by factors of two or three, for a first order 



analysis (P - Ll effect neglected). Thus the 
internal behavior of the frame was more rea
sonable and attainable for the more realistic 
second-order analysis. 

Another effect of the axial forces is illus
trated in Fig. 21 which shows the horizontal 
load-versus-horizontal deflection behavior of 
the frame in Fig. 19 under the reversal of the 
load II as the vertical loads remained con
stant. The first branch of the curve is the 
same as Fig. 20; the other branches result from 
repeated reversed loading. The most significant 
aspect of this test is that the maximum loads 
which could be carried by the frame in all but 
the first load application are increased sub
stantially. Thus a remarkable increase of ca-
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Fig. 21 H-1:1 Curves for hybrid frame. 

pacity exists upon reloading in the opposite 
direction and upon further cycling after that. 
This same observation was made also in two 
other tests where a three-story, one-bay frame, 
and a three-story, two-bay frame were tested in 
a similar manner. [ 4-16] [ 4-1 9] 

The maximum loads attained in each 
half-cycle for each of these three frames is 
listed in Table 8. It is apparent that the same 
frame was considerably stronger than its 
original strength when the load was reversed. 
In no case had the strength level decreased to 
the value of the original strength in the last 
cycles of the test. The increase in strength is 
quite substantial; this increase is ( (39.5 16.9)/ 
16.9) 100 = 134% for the hybrid frame, and 
41% and 61% for the other two frames, 
respectively. 

These tests establish the fact that a frame 
behaves differently under reversed loading 
than under monotonic loading, and that 
strength is enhanced by load reversal. 

The following reasons have been pro
posed for the strength increase under reversed 
loading: 

1) Strain hardening on successive cycles 
of load application (Ref. 4-19). 

2) Displacement effect; i.e., when the 
frame deforms the beams drop, and when the 
load is reversed the vertical loads must be 
lifted up (Ref. 4-19). 

3) After the first one-half cycle, when all 
horizontal loads arc removed from the frame, 
the residual permanent sway deflections, in 
conjunction with the remaining vertical loads, 
create a "residual P Ll effect" which must be 
counteracted by some portion of the reversed 
loads (Ref. 4-1 () ). 

In Ref. 4-1 R an attempt is made to in
corporate into an analysis both the "residual 

Table 8. Maximum Loads of Test-Frames Under Reversed Horizontal Loads 

1.1----------------.-·-----·----------- ....... __ 
Type of Frame Maximum Ho-ii;';~t~lL-;~d~ Ki-ps.------------

------------... J-__ Y2_C_yc_l_e_-+-___ l __ C_.::_ycle --- _IY: __ 2 Cyek- ---2 C'~~le --- -·-------
Fig. 19 16 9 -

. 36 36 ~ 3-Story, !-Bay 2 9 4 _19.5 
3-Story, 2-Bay 5.1 .I 
~~---------~---· ------'-___ s_. 2__ 6. 9 
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P - ..::l effect" and strain-hardening. In view of 
the rather simplified assumptions which were 
made, and due to the uncertainties resulting 
from a lack of adequate experimental data, it 
was not possible to describe completely the 
behavior of the hybrid frame. However, it was 
shown that a substantial amount of the in
crease in strength could be accounted for by 
these effects. 

In order to obtain a qualitative idea of 
the influence of the "residual P - ..::l effect" 
and strain-hardening, an analysis was per
formed on the hybrid frame tested at Lehigh 
[ 4-18] . The pertinent dimensions of this frame 
are given in Fig. 22. The vertical loads are all 
placed only on the column tops (compare with 
the actual loading of this frame in Fig. 19) in 
the interests of simplicity. The plastic moment 
of the beam is considerably higher than the 
reduced plastic moments of the two columns 
and therefore all the inelastic behavior take~ 
place at the column ends where the moments 
are highest. 

80K BOK 
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Fig. 22 Simplified frame loading for analytical study. 

The moment-end rotation curves used in 
the analysis are shown in Fig. 23. The top 
curve is for the case where the effect of strain
hardening is neglected, and the bottom curve 
includes strain-hardening using the arbitrary 
stiffness factor J. (Similar relationships were 
used in Ref. 4-16). In the case of strain
hardening, the elastic range in the unloading 
branch is always larger than 2 Mpc (Fig. 23b). 
The Bauschinger effect is completely neglected. 
This was again done in the interest of sim
plicity. 
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Fig. 23 Moment·rotation relations for columns. 
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The analysis of the frame was performed 
by the incremental slope-deflection method 
discussed in Ref. 4-16. The analysis was per
formed by ignoring the effects of axial shorten
ing and the stiffness reduction due to axial 
force. The value of M pc was assumed to be the 
same in both columns so that the changes in 
yield condition (i.e. formation of plastic hinges 
in the case of the elastic-plastic analysis and 
start of strain-hardening in the case of the 
elastic-strain-hardening solution) were the same 
in each column. These latter assumptions were 
again made in order to achieve a simple solu
tion. However, these effects are small in this 
frame, and no large error results by making 
them. 

The results of the analysis are given in 
Fig. 24 for the elastic-plastic analysis, and in 
Fig. 25 for the elastic-strain-hardening analysis. 
The curves show the relationship between the 
horizontal force H and the resulting column 

rotation p. 

Elastic-plastic Analysis (Fig. 24) 
Curve OABEC represents monotonic load

ing. At point A plastic hinges form at the 



base of the columns, and the full sway mecha
nism has developed at point B. At an arbitrary 
rotation p = 0.07 radians, the horizontal load 
is released first and then it is reapplied in the 
opposite direction. Branch EFGHI gives the 
second part of the loading cycle. It can be 
seen that the load required to initiate yielding, 
or to reach the maximum value in the reverse 
direction, is proportionately higher than the 
first maximum load (in this case these loads 
are -27.0 kips and 18.5 kips, respectively). 
The maximum loads in either direction are 
bounded by the two parallel lines DBEC and 
JHGK. The two curves cross the H-axis at the 
load corresponding to first order rigid-plastic 
theory and their slope is that of the plastic 
mechanism curve which includes the P - ~ 

effect. The more the frame is deformed past 
the peak of the curve at the first application 
of the load, the higher is the force required 
for a mechanism in the other direction. 
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Fig. 24 Frame under load reversal, no strain-hardening. 

Elastic-Strain-Hardening Analysis (Fig. 25) 

The analysis in Fig. 24 gives only the in
fluence of the "residual p _ ~ effect , Th . . e 
curves m Fig. 25 include this influence plus 
the effect of strain-hardening. In this particu-
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lar analysis the strain-hardening stiffness was 
arbitrarily taken to be I I 1 0 of the elastic stiff
ness (i.e., J = 1/10 in Fig. 22). The curve 
OABC represents the first monotonic load 
application. Strain-hardening does not affect 
the first maximum load appreciably ( 18.8 kips 
versus 18.5 kips in the absence of strain
hardening), a fact which has been noted pre
viously [ 4-15 ] . How ever, the H - .6 curve is 
considerably stiffer than the post-mechanism 
curve in the absence of strain-hardening (com
pare branch BC with line QP in Fig. 25) after 
strain-hardening has set in at the bottom and 
at the top of the columns. Monotonic loading 
is stopped arbitrarily at p = 0.07 radians. 
When the horizontal load is reversed, maxi
mum load is reached at pointE, and it is equal 
to -26.7 kips (as compared with 18.8 kips on 
the first half cycle). Upon negative straining 
to -0.07 radians, unloading and reloading 
again (EFGH) a new maximum of 25.7 kips is 
reached. If now the frame is strained to 
P = 0.12 radians (point I) and then reloaded 
in the opposite sense (IJKL), the maximum 
load is -32.6 kips. The model thus shows 
that if both the "residual P - .6 effect" and 
strain-hardening are present, it is possible to 

Fig. 25 
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Frame under load reversal, strain-hardening, J = lo · 



increase the strength of the frame. The more 
the frame is deformed in one direction, the 
more force is required to obtain maximum 
load in the other direction. 

The few available frame tests under re
versed horizontal loading and the very approxi
mate analysis strongly suggest that dynamic 
analyses of inelastic frames should incorporate 
the P - Ll effects and strain-hardening. [ 5-14] 
There is also no need to limit inelastic de
formations to beams only, since the behavior 
of columns in the inelastic range can also be 
included in an analysis. 

Research Needs 
A rational study of the behavior of com

plex frames, whether the analysis is based on 
static or dynamic loads, on elastic or elastic
plastic response, or on first or second order 
analysis, has become possible only as a result 
of large digital computers. Such computers 
b~came generally available only at the begin
nmg of this decade, and yet it is amazing to 
note the large variety of problems which have 
been studied. Structural problems of all types 
and of any magnitude can be solved in the 
future, provided that the basic conditions of 
the solution can be mathematically formu
lated. It is important that the basic conditions 
be well understood. In both the static and the 
dynamic studies the basic conditions of frame 
analysis are the member load-deformation re
lationships. The research needs for these have 
been listed previously. Computer studies of 
frames should be channeled along the follow
ing broad research needs: 

1) Analysis methods should be refined to 
permit efficient static or dynamic analyses of 
large size plane frames with provisions to in
clude the effects of plasticity, strain-harden
ing, P - Ll moments and axial shortening. 

2) Parameter studies should be made to 
determine for what frame geometry and load 
configurations some or all of the second order 
effects are negligible, and where they must be 
included in order to arrive at a realistic inter
pretation of frame behavior. 

3) Static and dynamic analyses on a wide 
range of frames should be performed to obtain 
the requirements for inelastic rotation. 
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. 4) Careful analytic and experimental 
studies should be performed on the basis of 
energy .requirements and capacities to permit 
a consistent and rational definition of the 
energy absorption capacity of complex frames. 

5) The role of non-structural cladding on 
both the static load-deformation response and 
the dynamic energy absorption capacity needs 
to be closely examined both analytically and 
by experiment. 

6) Work on the elastic-plastic analysis of 
three-dimensional frameworks should be ini
tiated; the questions to be asked need to be 
formulated clearly before extensive studies are 
performed. 

6. SUMMARY AND CONCLUSIONS 

This report has attempted to summarize 
the status of knowledge on the inelastic de
formability of steel members and frames. It 
was demonstrated in the report that the planar 
inelastic response of beams, beam-columns and 
frames is well understood and can be ade
quately, though conservatively, predicted by 
theory, provided: I) the loading is static, 
monotonic, and proportional and 2) adequate 
provisions exist to inhibit local and lateral de
formations. A great deal of experimental work 
was performed, and it substantiates the theo
retical predictions. The inelastic deformability 
for members and connections is finally curbed 
by the combined occurrence of local and 
lateral deformations at average strain levels of 
10 to 15 times the yield strain (i.e. strain
hardening strains). It was shown that the in
elastic rotation capacity, which defines both 
the "ductility factor" and the inelastic energy 
absorption capacity, is predictable and large 
enough to meet the rotation requirements of 
plastically designed frames. Thus the plastic 
design of steel frames, whether relatively 
simple or quite complex and large, is based on 
an adequate and impressive body of knowl
edge and experimental experience. 

The knowledge of the behavior of mem
bers and frames subjected to loading which is 
non-proportional or reversible and which may 
be a result of dynamic phenomena is less de
veloped. The methods of frame analysis are 



available, but information on the behavior of 
individual structural components under re
versed loading into the inelastic range is in
complete. There is not as extensive an experi
mental basis for such loading as there is for 
monotonic loading. Such information must be 
developed before the analysis methods can be 
considered fully reliable. 

There is not enough known about the in
elastic behavior of structural steel members 
which are subject to biaxial loading. Such in
formation must be developed before reliable 
analysis methods can be formulated. 

There are thus two major areas of re
search which are recommended. These are: 

l) Analytical and experimental studies 
on beams, beam-columns, connections, sub
assemblages, and small frames, under reversible 
static and dynamic loading which produces in
elastic strains. 
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2) Tests and theory on the behavior of 
frames, members and connections under bi
axial loading. 

Present research is being performed at 
various institutions on some phases of these 
areas. However, the problems introduced by 
load reversal, by strain-rate effects, by biaxial 
effects, etc., are complex, and therefore it is 
necessary that the present volume of research 
be increased to develop the needed body of 
information for a rational seismic design 
method. 

The large amount of research performed 
for the development of plastic design has rele
vance for the study of the behavior of struc
tures subjected to earthquake motion or blast, 
but it is only a stepping stone which can not 
provide all the answers. 

Research needs on specific topics have 
been discussed in various parts of the report, 
and they are tabulated at the end of each 
chapter. 
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