

Missouri University of Science and Technology Scholars' Mine

Center for Cold-Formed Steel Structures Library

Wei-Wen Yu Center for Cold-Formed Steel Structures

01 Mar 1985

Comparison and evaluation of web crippling prediction formulas

Monique Bakker

Teoman Peköz

Follow this and additional works at: https://scholarsmine.mst.edu/ccfss-library

Part of the Structural Engineering Commons

Recommended Citation

Bakker, Monique and Peköz, Teoman, "Comparison and evaluation of web crippling prediction formulas" (1985). *Center for Cold-Formed Steel Structures Library*. 152. https://scholarsmine.mst.edu/ccfss-library/152

This Technical Report is brought to you for free and open access by Scholars' Mine. It has been accepted for inclusion in Center for Cold-Formed Steel Structures Library by an authorized administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

Afdeling Bouwkunde Vakgroep Konstruktie

Technische Hogeschool Eindhoven

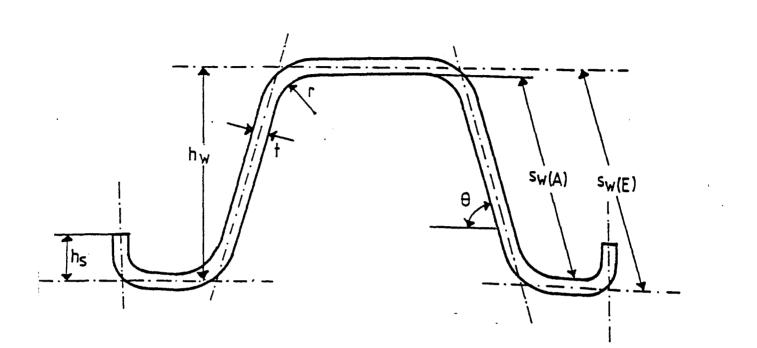
Comparison and evaluation of web crippling prediction formulas.

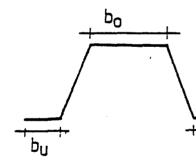
Monique Bakker

Teoman Peköz, Ph.D. professor of structural engineering

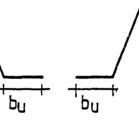
March 1985

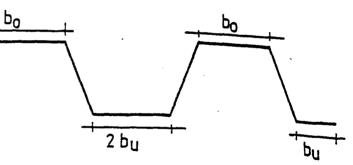
TABLE OF CONTENTS

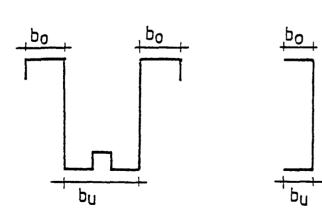

Summary	3
Notation	5
Chapter 1 Introduction	7
I.I. General	7 7 7 8
1.2. Objective and scope	7
1.3. Outline	8
Chapter 2 Formulations evaluated	10
2.1. ECCS approach	10
2.2. AISI approach	10
2.3. Waterloo approach	11
Chapter 3 Differences in web crippling formulations	12
Chapter 4 Testresults used	17
4.1. Stockholm test	17
4.2. Cornell tests	23
4.3. Missouri-Rolla tests	27
4.4. Waterloo tests	31
4.5. Eindhoven tests	35
Chapter 5 Comparison of experimental and computed results	5 38
Chapter 6 Conclusions	57
Bibliography	58

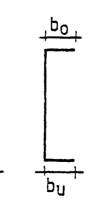

SUMMARY

Since the use of end and load stiffeners is frequently impractical in thin-walled cold-formed steel construction, the webs of beams and deck may cripple due to the high local intensity of the load or reaction.


In this report three different web crippling prediction formulations are compared with experimental results from five different sources.


It is found that these web crippling formulas show considerable differences and do not give satisfactory results consistently.





i i

. .

1.3. Outline

.

Chapter 2 of this report describes the three web crippling formulations evaluated.

Chapter 3 states the differences in these web crippling prediction formulas.

Chapter 4 gives the necessary information of the test series used to compare the web crippling prediction formulas with the test results.

Chapter 5 contains the comparison between the test loads and the ultimate web crippling loads computed with the three web crippling formulations. Chapter 6 states the conclusions.

ţ,

Y

ŝ.

5

e T

r

2. FORMULATIONS EVALUATED

The three formulations evaluated have been based on test results, not on theoretical analysis.

This is due to the complexity of the theoretical analysis.

A theoretical analysis involves

- Nonuniform stress distribution under the applied load and the adjacent portions of the web
- Elastic and inelastic stability of the web element
- Local yielding in the immediate region of load application
- The effect of the inside bend radius (bending of the webs out of the plane)

The web crippling prediction formulas evaluated are:

2.1. The ECCS approach

In the ECCS-1983 Recommendations (1 and 2) the web crippling load is predicted by the equation

$$R_{d} = 0.15 t^{2} \sqrt{E f_{ty}} (1 - 0.1 \sqrt{r/t}) (0.5 + \sqrt{0.02 \frac{1}{s}/t})(2.4 + (\Theta/90)^{2})$$

The use of the equation is subject to the following limitations: r < 10t $s_s < 200 (mm)$ $\Theta > 50^{\circ}$

When the support consists of a round tube, z_{-} or $c_{-purlin}$, so that the nominal bearing length becomes very small, l_s may be taken equal to 10 mm. The equation applies to both sections and deck.

The ECCS approach is based on the testing of profiled sections performed at the Royal Institute of Technology in Stockholm (3). Baehre (10) reported that the testing involved 78 specimens, but it is doubtful whether all these tests can be seen as IOF web crippling tests (see the description of the Stockholm tests in chapter 3).

The empirical formula for the ultimate web crippling load given in References 5 and 10 has been modified slightly to make it applicable to aluminium also. The original formula (5) included a limitation $s_{m(R)} < 170t$.

2.2. The AISI approach

In the AISI-1980 Specification (3) the web crippling load is obtained by the equation

$$R_{d} = 1.85^{*} f_{ty} / 33^{*} C_{1} C_{2} C_{\Theta} (291 - 0.40 s_{w(A)} / t)(1 + 0.007 l_{s} / t)^{**}$$
where
$$C_{1} = (1.22 - 0.22 f_{ty} / 228)$$

$$C_{2} = (1.06 - 0.06 r / t) \le 1.0$$

$$C_{\Theta} = 0.7 + 0.3 (\Theta / 90)^{2}$$
* Safety factor

** When
$$l_s/t > 60$$
 the factor $(1 + 0.007 l_s/t)$ may be increased to $(0.75 + 0.011 l_s/t)$

The formula applies to beams when $r/t \le 6$ and to deck when $r/t \le 7$, $l_s/t \le 210$ and $l_s/s_{w(A)} < 3.5$. Further limitations applied to the use of the equation are: $\Theta \ge 45^{\circ}$ $s_{w(A)} \le 200 \text{ t}$

The AISI approach is based on the evaluation of 58 IOF tests (8). The tests included 28 tests performed at the University of Missouri-Rolla and 30 tests performed at Cornell University.

Some additional tests have been conducted for the purpose of determining the effect of large bearing lengths on web crippling.

2.3. The University of Waterloo approach

A modification of the AISI approach was reached in a research project conducted at the University of Waterloo (4). The web crippling formula is:

 $R_{d} = 1.85^{*} 9.0 t^{2} f_{ty} (\sin\Theta)(1.0-0.001 \frac{s_{w(A)}}{t})(1.0+0.005 l_{s}/t)(1.0-0.075 \sqrt{r/t})(1.0-0.1f_{ty}/228)$

* Safety factor

The use of the equation is subject to the following limitations $s_{w(A)}/t \le 200$ r/t ≤ 10

The University of Waterloo approach is based on the evaluation of 90 IOF tests (4). These tests included 59 tests performed at the University of Waterloo and 31 tests performed at Cornell University.

The University of Waterloo approach was developed for deck (multi-web cold formed steel sections). In this study it is also applied to sections. This is reasonable because the AISI and ECCS use the same equations for sections and deck too.

Besides the Cornell test specimens were sections.

3. DIFFERENCES IN WEB CRIPPLING FORMULATIONS

The three web crippling prediction formulas can be written as

 $R_{d} = t^{2}C \cdot C_{f_{ty}} \cdot C_{r/t} \cdot C_{g_{s}/t} \cdot C_{s_{w(A)}/t} \cdot C_{\theta}$ where C is a constant C_{f_{ty}} is a term depending on f_{ty} C_{r/t} is a term depending on r/t etc. and $C_{f_{ty}} = 1 \text{ for } f_{ty} = 400 \text{ (N/mm}^{2})$ $C_{r/t} = 1 \text{ for } r/t = 0$ $C_{g_{s/t}} = 1 \text{ for } g_{s/t} = 200$ $C_{s_{w(A)}/t} = 1 \text{ for } g_{w(A)}/t = 40$ $C_{\theta} = 1 \text{ for } \theta = 90^{0}$

In the three web crippling formulas these terms have different forms.

1. <u>ECCS approach</u> C = $0.15 \sqrt{210\ 000} \sqrt{400} \cdot 2.5 \cdot 3.4 = 11686$ (N)

$$C_{f_{ty}} = \sqrt{f_{ty}/400}$$

$$C_{r/t} = 1 - 0.1 \sqrt{r/t}$$

$$C_{g_{s}/t} = \frac{(0.5 + \sqrt{0.02 \, \frac{g}{s}/t})}{2.5}$$

$$g_{s} < 200 \text{ (mm)}$$

$$C_{s_{w(A)}/t} = 1$$

$$C_{\Theta} = \frac{(2.4 + (\Theta/90)^{2})}{3.4}$$

$$\Theta > 50^{\circ}$$

2. AISI approach

$$C = \frac{1.85}{33} \cdot 3336 \cdot 2.95 \cdot 275 = 15172 \text{ (N)}$$

$$C_{f_{ty}} = \frac{(1.22 f_{ty} - 0.22 f_{ty}^{2} / 228)}{333.6}$$

$$C_{r/t} = (1.06 - 0.06 r/t) \le 1$$

$$C_{1/t} = \frac{(1 + 0.007 l_{s}/t)}{2.95}$$

$$= \frac{(1 + 0.007 l_{s}/t)}{2.95}$$

$$when l_{s}/t \le 60$$

$$deck: l_{s/t} < 210$$

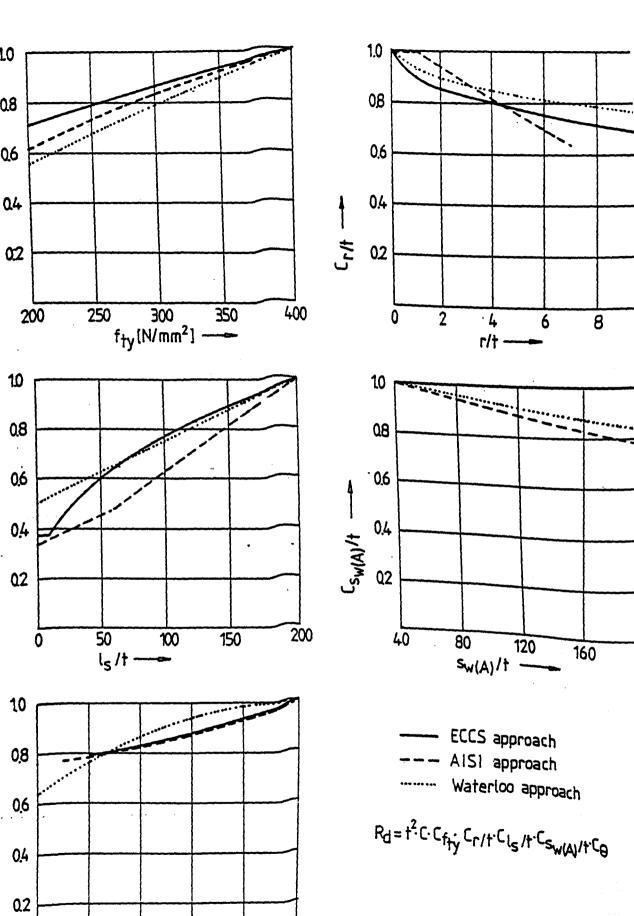
$$deck: l_{s/t} < 200$$

$$C_{1/t} = \frac{(291 - 0.40 s_{w(A)}/t)}{2.95}$$

$$C_{0/t} = 0.7 + 0.3 (\Theta/90)^{2}$$

$$\Theta \ge 45^{0}$$

. 🗕


3. Waterloo approach
C = 1.85 · 9.0 · 329.8 · 2 · 0.96 = 10543 (N)
C_{fty} =
$$\frac{(f_{ty} - 0.1 f_{ty}^2 / 228)}{329.8}$$

C_{r/t} = 1.0 - 0.075 $\sqrt{r/t}$
C₂/t = $\frac{(1.0 + 0.005 ! / t)}{2}$
C s_{w(A)}/t = $\frac{(1.0 - 0.001 s_{w(A)} / t)}{0.96}$
C₀ = sin Θ

r/t ≦ 10

7

•

s_{w(A)}/t ≦ 200

90

80

70

60

0 (degrees) -

50

40

Figure 4

10

0.8

0.6

cfy-

- Is /t

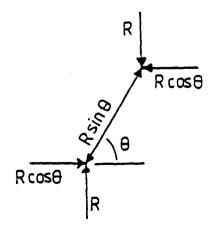
م ر9

For a comparison of the terms see Figure 4.

The most striking difference between the three web crippling prediction formulas is that the ECCS approach, unlike the AISI and Waterloo approaches, does not contain a web slenderness term.

The values of the term $C_{r/t}$ of the AISI approach decrease at a much greater rate than the values of the ECCS and Waterloo approach. (See Figure 4).

The values of the terms $C_{ls/t}$ of the ECCS and Waterloo approach are almost identical for l_{t} 50.


The values of the term C_{Θ} do not show big differences.

In the Waterloo approach $\sin\theta$ was used because it is simpler to compute on a hand calculator and has physical meaning as demonstrated in Figure 5.

The constants C show rather big differences.

The constant C of the AISI approach is about 45% higher than the constants C of the ECCS and Waterloo approach.

This may be caused by the relatively large reduction of the web crippling load according to the AISI approach for increasing r/t and $s_{w(A)}/t$ and decreasing ℓ_s/t .

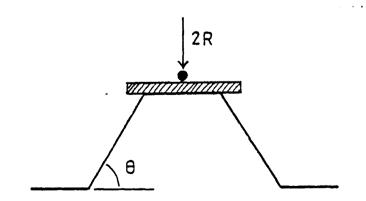
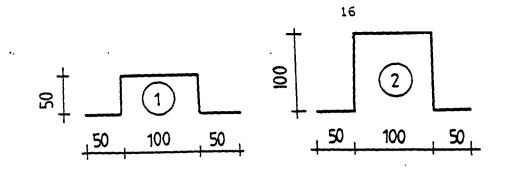
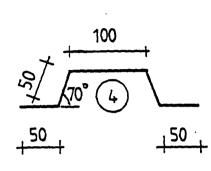
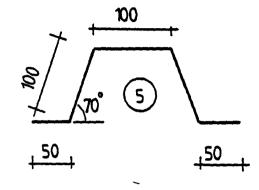
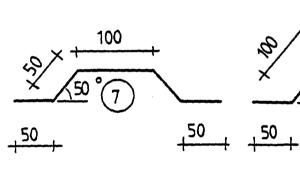






Figure 5

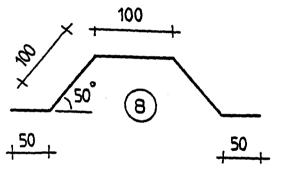
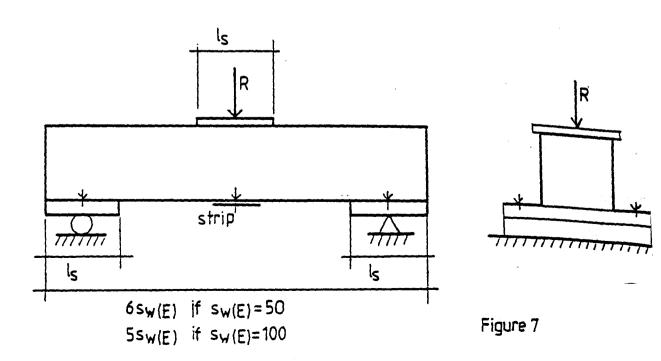



Figure 6

4. TESTRESULTS USED

4.1. STOCKHOLM TESTS (5)

1. Properties of test specimens

The configuration of the test specimens is shown in Figure 6. The dimensions and properties are given in Table 1.

2. Test setup

See Figure 7.

To prevent spreading the tension flanges were connected with a strip in the middle of the span. It is assumed that the central bearing plate and the end supports had the same bearing length.

3. Load application

The loading speed was 20 kp per minute (1 kp = 9.807 N). Every 100th kp the load was kept constant for about 20 seconds to read the dial indicators (used to measure the deformations). Circa 300 kp before failure the dial indicators were read every 50th kp.

4. Determination of the test load

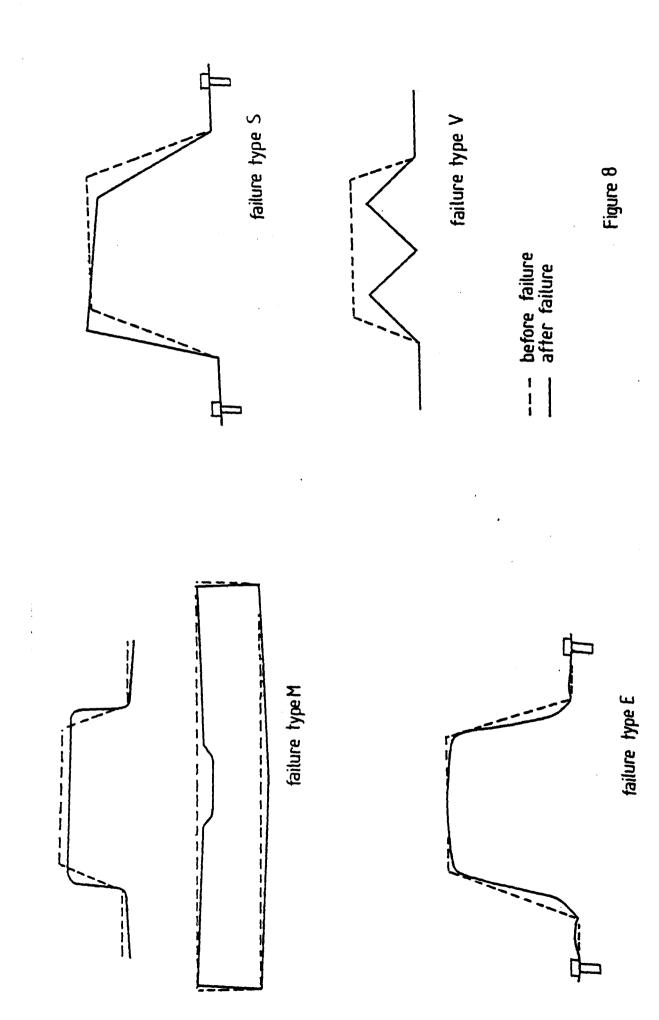
The test load was taken as the largest load the section was able to sustain.

This criterion was suitable for the sections (with small bending radii) showing small deformations at failure. Sections with large bending radii failed with large deformations. These deformations were too large to be accepted in practice.

Yet, lacking a better failure criterion, for these tests too the test load R_{test} was taken as

the largest load the section was able to sustain.

Each type of test was performed twice.


When the test loads differed more than 5% a third test was performed.

5. Failure mode

Several types of failure occurred during the testing:

- failure in the middle of the span (type M, Figure 8)
- failure at the end supports (type E, Figure 8)
- failure by sway of the whole section (type S, Figure 8)
- failure of the top flange over the whole length of the section (type V, Figure 8)
- failure in the middle of the span after failure at the end supports and stiffening the section at the end supports with a wooden block between the top flange and the bearing plate (type M_{a})

The failure types S and V do not occur in practice. In this report only tests with failure mode M are included.

6. Moment ratio

The moment ratio $M_{test}^{/M}$ is not given in Reference 5. It is reported that the span length was taken so short that the influence of the bending moment on the ultimate web crippling load was negligible. However, using the ECCS-1983 to calculate the ultimate moment capacity M_d it appears that the moment ratios M_{test}/M_{d} range from 0.28 to 0.48.

 $(M_{\text{test}})^{(2)}$ was computed by the equation $M_{\text{test}} = R_{\text{test}} ((2 - 2))/4)$.

According to Bachre (12) interaction is negligible for M/M_d < 0.3. Hence it is doubtful whether all the Stockholm tests are web crippling tests. Some tests are probably interaction tests.

Since the ECCS approach was based on the Stockholm tests, the tests with moments ratios larger than 0.3 are also included in this study.

7. Test results

See Table 6 Chapter 5.

Table 1. PROPERTIES OF TEST SPECIMENS; STOCKHOLM TESTS

PROPERT	IES OF TEST	SPECIM	ENS; STI	DCKHOLM TO	E6TS								
NR.	TESTCODE	fty	ls	t	r	0	su(E)	sw(A)	bo	bu	hs	1	ŧ OF WEBS
1	1-2-1	366	40	1.02	10.40	90	50	49	100	50	0	260	2
	1-2-1	366	40	1.02	10.40	90	50	49	100	50	0	260	2
2 3	1-4-2	366	40	1.02	10.40	90	100	99	100	50	0	460	2
4	1-4-2	366	40	1.02	10.40	91	100	99	100	50	0	460	2
5	1-6-2	366	40	1.02	10.50	88	100	99	100	50	0	460	2
	1-10-5		40	1.02	10.40	70	100	99	100	50	· O	460	2
6	1-11-5	366	40	1.02	10.40	70	100	99	100	50	0	460	2
7 8	1-13-8	366 366	40	1.02	10.40	50	100	99	100	50	0	460	2
9	1-14-8	366	40	1.02	10.40	49	100	99	100	50	0	460	2
10	1-14-8	366	40	1.02	10.40	50	100	99	100	50	0	460	2
	2-1-5	366	40	1.02	1.40	72	100	99	100	50	0	460	2
11	2-1-5			1.02	1.30	71	100	9 9	100	50	0	460	2
12		366	40	1.02	1.20	71	100	99	100	50	0	460	2
13	2-3-5	366	40		5.30	.71	100	99	100	50	0	460	2
14	2-4-5	366	40	1.02	5.20	70	100	99	100	50	0	460	2
15	2-5-5	366	40	1.02		50	100	99	100	50	0	460	2
16	2-7-8	366	40	1.02	1.60	50	100	99	100	50	0	460	2
17	2-8-8	366	40	1.02	1.10		100	99	100	50	0	460	2
10	2-10-8	366	40	1.02	5.50	49	100	99	100	50	0	460	2 2
- 19	2-11-8	366	40	1.02	5.40	50	50	49	100	50	0	260	2
; 20	3-1-4	384	40	0.58	1.30	69	50	49	100	50	0	260	2
21	3-3-4	384	40	0.58	1.30	70 70	50	49	100	50	0	260	2
22	3-5-4	384	40	0.58	2.70		50	49	100	50	0	260	2
23	3-6-4	384	40	0.58	2.70	70 70	50	49	100	50	0	260	2
24	3-7-4	384	40	0.58	5.20		50	49	100	50	0	260	2
25	3-8-4	394	40	0.58	5.00	69 69	50	49	100	50	0	260	2 2
26 '	3-9-4	384	40	0.58	5.20	70	100	99	100	50	0	460	2
27	3-10-5	384	40	0.58	1.30	71	100	99	100	50	0	460	2
28	3-11-5	384	40	0.58	1.30	68	100	99	100	50	0	460	2
29	3-13-5	384	40	0.58	2.80	71	100	99	100	50	0	460	2
30	3-14-5	384	40	0.58	2.90	68	100	99	100	50	0	460 460	2
31 -	3-16-5	384	40	0.58	4.60	71	100	99	100	50	0	460	2
32	3-17-5	384	40	0.58	4.90 5.30	71	100	99	100	50	0	460	5
33	4-1-5	274	40	0.93	5.30	70	100	99	100	50	ŏ	430	2 2
34	4-2-5	274	40	0.95	5.20	71	100	99	100	50	ŏ	430	2
35	4-4-5	274	70	0.93	5.30	70	100	99	100	50	ŏ	430	2
36	4-5-5	274	70	0.94 0.95	5.40	69	100	99	100	50	ŏ	400	$\tilde{2}$
37	4-6-5	274	70	0.92	5.30	70	100	99	100	50	ŏ	400	2
38	4-7-5	274	100	0.97	5.30	70	100	99	100	50		400	2
39	4-8-5	274	100 100	0.93	5.30	70	100	99	100	50	0	400	2
40	4-9-5	274	70	1.02	5.50	70	100	99	100	50	-		2
- 41	4-10-5	366 366	70	1.02	5.40	71	100	99	100	50	0	430	2
42	4-11-5	366	100	1.02	5.40	71	100	99	100	50	0	400	2
43	4-12-5 4-13-5	366	100	1.02	5.30	72	100	99	100	50	0	400	2
44	4-15-5	366	100	1.02	5.30	69	100	99	100	50	0	400	2
45	7 10 5												

Table 1.(Continued	>	•	
PROPERTIES OF TEST	SPECIMENS;	STOCKHOLM	TESTS

47 4 48 4 49 4	1-17-7 1-22-7 1-24-7	384 384	40 100	0.58	3.30									
48 4 49 4			100		a	50	50	49	100	50	0	260	2	•
49 4	1-24-7		100	0.58	3.50	51	50	49	100	50	0	200	2	
		384	100	0.58	3.60	51	50	49	100	50	0	200	2	
F A	4-25-7	244	40	0.52	2.60	52	50	49	100	50	0	260	2	
	1-26-7	244	40	0.52	1_40	52	50	49	100	50	0	260	2	
	4-28-7	244	70	0.52	2.40	50	50	49	100	50	0	230	2 2	
	1-29-7	244	70	0.52	2.70	50	50	49	100	50	· 0	230	2	
53 4	4-33-7	244	100	0.52	2.40	51	50	49	100	50	0	200	2	
;									:					

•

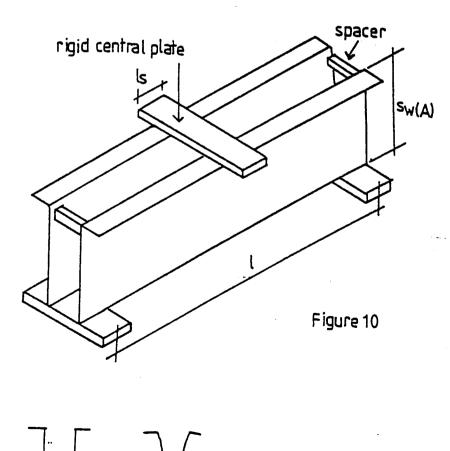



Figure 9

4.2. CORNELL TESTS

A complete description of these tests is reputed to have been given in Reference 8. Since this was not available References 4, 5 and 9 have been used.

1. Properties of test specimens

The test sections used in the Cornell Study are shown in Figure 9. The dimensions and properties are given in Table 2. Only the overall length of the stiffeners is given, the dimensions of the curved and straight portions of the stiffeners were not available.

2. Test setup

See Figure 10.

3. Load application

-

4. Determination of the test load

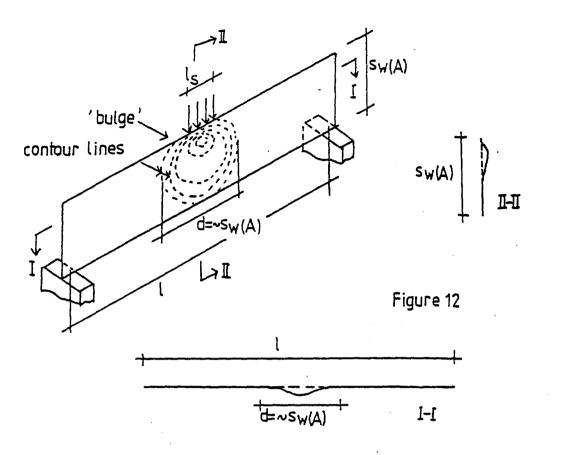
-

5. Failure mode

During the progress of a test at moderately high loads but still before failure the webs deflected inwards out of their plane (see Figure 11).

This deflections were relatively small and extended throughout the depth of a web in the vicinity of the external load. At failure, there was a sudden bulging of the web with large deflections under and in the immediate vicinity of the central bearing plate, as shown in Figure 12.

6. Moment ratio

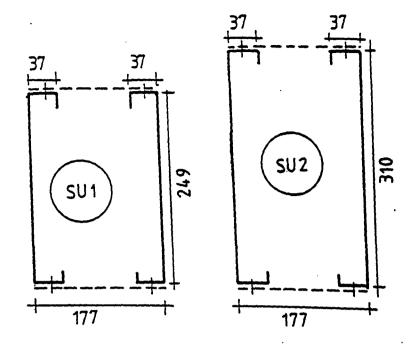

According to Reference 4 the moment ratio M_{test}/M_d was less than 0.3.

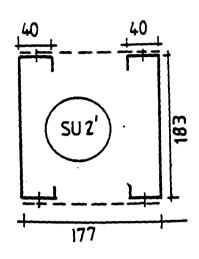
The AISI-1980 Specification was used to compute the ultimate moment capacity M_d . The test moment M_{test} was computed by the equation

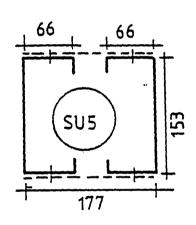
 $M_{\text{test}} = R_{\text{test}} (\tilde{2} - \tilde{2}_{s}) / 4.$

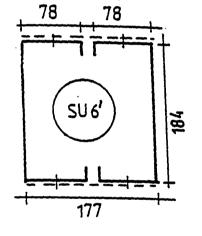
7. Test results

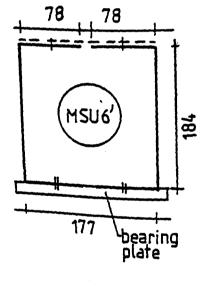
See Table 7 Chapter 5.

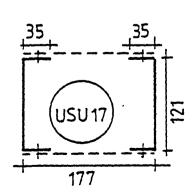

NR.	TESTCODE	fty	15	t	r	0	sw(E)	sw(A)/	bo	bu	hs	1	t OF WEBS
54	13	234	19	1.54	1.54	90	151	149	49	100	25	610	2
55	14	254	38	1.52	1.52	90	151	149	49	100	25	610	2
56	16	255	19	1.52	4.55	90	151	149	49	100	25	610	2
57	17	225	38	1.53	4.60	90	151	149	49	100	25	610	
58	18	225	64	1.54	4.61	90	151	149	49	100	25	610	2
59	19	372	19	1.64	1.64	90	151	149	49	100	25	610	2
60	20	370	38	1.66	1.66	90	151	149	49	100	25	610	2 2 2 2
61	21	371	64	1.65	1.65	90	151	149	49	100	25	610	2
62	22	372	19	1.64	4.92	90	151	149	49	100	25	610	2
63	23	365	38	1.65	4.95	90	151	149	49	100	25	610	2
64	24	367	64	1.67	5.02	90	151	149	49	100	25	610	2
65	25	260	19	1.53	1.53	90	227	226	37	75	0	914	2
66	26	247	38	1.51	1.51	90	227	226	37	75	0	914	2
67	28	219	19	1.53	4.58	90	227	226	37	75	0	914	2
68	29	228	38	1.51	4.53	90	227	226	37	75	0	914	2
69	30	223	64	1.49	4.47	90	227	226	37	75	0	914	2 2
70	31	376	19	1.65	1.65	90	227	225	37	75	0	914	2
71	34	377	19	1.62	4.85	90	227	225	37	75	0	914	2
72	35	374	38	1.63	4.88	90	227	225	37	75	0	914	2
73	36	373	64	1.61	4.82	90	227	225	37	75	0	914	2
74	37	221	19	1.53	1.53	90	303	302	37	75	0	1219	. 5
75	38	229	38	1.56	1.54	90	303	302	37	- 75	0	1219	2
76	39	263	64	1.55	1.55	90	303	302	37	75	0	1219	2
77	40	213	19	1.50	4.51	90	303	302	37	75	0	1219	2
78	41	224	38	1.54	4.63	90	303	302	37	75	0	1219	2
79	42	223	64	1.55	4.64	90	303	301	37	75	0	1219	2
80	43	371	19	1.69	1.69	90	303	301	37	75	0	1219	2
81	44	374	38	1.69	1.69	90	303	301	37	75	0	1219	2
62	46	385	19	1.68	5.03	90	303	301	37	75	0	1219	2
83	47	373	38	1.70	5.10	90	303	301	37	75	0	1219	2
84	48	368	64	1.60	5.04	90	303	301	37	75	0	1219	2

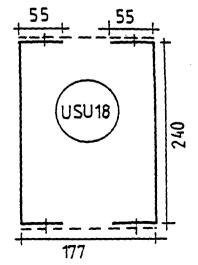

Table 2.

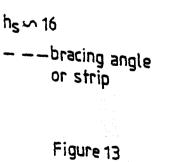

.


25


.







4.3. MISSOURI-ROLLA TESTS (8)

1. Properties of test specimens

Three different types of cross-sectional configurations of beam specimen were used. The first type consisted of two channel sections (section SU, Figure 13). The channels were braced by 19.05 x 19.05 x 3.175 mm angles at the compression flange and 3.175×19.05 rectangular bars at the tension flange.

Self tapping screws were used for connections. The intervals of braces were provided such that the lateral buckling of each individual channel section was prevented.

The second type of beam specimens (section MSU, Figure 13) was fabricated in the same manner as the first type except that the beam flanges were connected to the bearing plates by machine bolts. The purpose of this arrangement was to evaluate the possible improvement of web crippling loads resulting from the restraint provided by beam flanges when they are connected to bearing plates by machine bolts.

The third type consisted of two channel sections with unstiffened flanges (sections USU, Figure 13). The braces of the tension and compression flanges were provided in the same manner as the first type. The dimensions and properties are given in Table 3.

2. Test setup

See Figure 14.

3. Load application

During the test the loads were applied by an increment of 15% of the predicted ultimate load. The duration for each load increment was approximately five minutes.

4. Determination of the test load

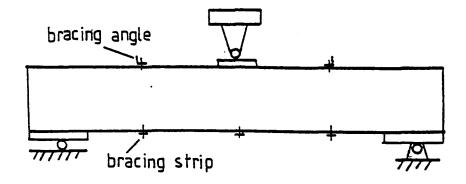
After failure of each specimen the ultimate load for web crippling was recorded.

5. Failure mode

All failure modes were consistent. Failure occurred in the web underneath the bearing plate.

However, the maximum deformation is located at about % of the depth measured from the top flange of the specimen. See Figure 15.

6. Moment ratio


The moment ratio M_{test} / M_d was less than 0.3.

The AISI-1968 Specification was used to compute the ultimate moment capacity M_d . Backcalculating from the tables in Reference 8 it appears that M_{test} was computed by the equation

```
M_{test} = R_{test} 2/4.
```

7. Test results

See Table 8 Chapter 5.

.'

Figure 14

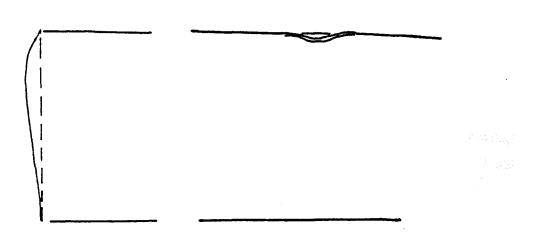
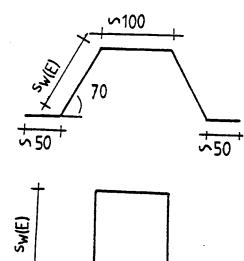


Figure 15

# 0F UEBS		101
T	99999999999999999999999999999999999999	516
<u>इ</u> प		• •
nq	であるままです。 本本本本本本本本本本本本本本本本本本本本本本本本本本本本本本本本本本本本	ាល ល
pq	するまであるののののなんなんななないででなっていっていている。	20
şu(A)		242
su(E)	222 222 222 222 222 222 222 222 222 22	240
0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	06
<u>-</u>		1.19
تو		1.24
1 e	**************************************	76
fty		520
TESTCODE	801-10F1 801-10F2 801-10F2 801-10F5 802-10F1 802-10F3 802-10F3 802-10F3 802-10F4 802-10F4 802-10F4 802-10F4 802-10F4 802-10F4 805-10F4 805-10F4 805-10F4 805-10F4 805-10F5 806	USU18-10F6
NR.	88888888888888888888888888888888888888	116

.

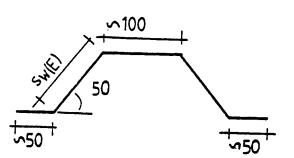
••


Table 3. Properties of test specimens; missourl-kolla tests

.

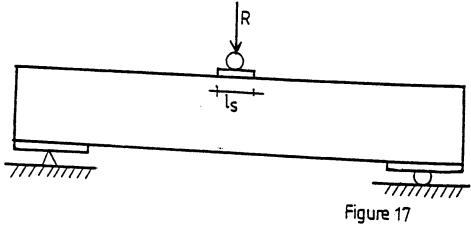
• •

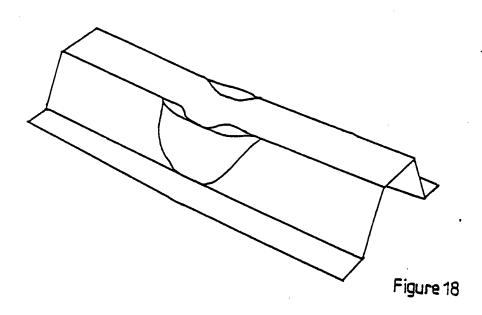
29


•

~100

⁺~50⁺


~50



ł

 $s_{W(E)} = 85 - 200$

1. Properties of test specimens

The test specimens consisted of profiles specially fabricated at the University of Waterloo, as shown in Figure 16. They were brake-formed using ASTM A611 Grade C steel with a minimum garanteed yield stress of 228 (N/mm²). Their dimensions and properties are given in Table 4.

2. Test setup

See Figure 17.

Relatively large end bearing plates were used to insure that failure would occur at the interior load position. Spreading was prevented by bolting the lower flanges to the bearing plate.

3. Load application

The load was applied to the test specimens by means of a 45 kN capacity hydraulic jack through a hand operated hydraulic pump. The rate of load application was uniform up to the failure load.

4. Determination of the test load

The test load R_{test} was taken as the largest load the specimen was able to sustain after which a sudden decrease in load was experienced.

5. Failure mode

See Figure 18. The failure region for the tests was a localized failure which was restricted to the area under the bearing plate and immediately adjacent to it.

6. Moment ratio

The moment ratio M_{test} / M_d was less than 0.3. The AISI-1980 Specification was used to compute the ultimate moment capacity M_d . $M_{test} = R_{test} (2 - 2_s) / 4.$

7. Test results

See Table 9 Chapter 5.

19b10 4. PROFERTIES OF TEST SPECIMENS, WATERLOO TESTS

+ OF UEBS 2 សភាពស្ថិត ស្ថិត 3 å Eu(A) su(E) ٥ ٤. ធម្មធ្លាធិច្ចធ្លូច ចំពោះ ចំពោ 1 ſ Su-10F 2u-10F 2u-10F 2u-10F 2u-10F 1u-10F 1u-10F 1u-10F 2u-10F **TESTCODE** Ϋ́Ĕ.

Table 4. PROFERTIES OF TEST SPECIMENS, WATERLOD TESTS

4 OF UEBS			N N N N N N N N N N N	NNNNNNNNNNN 4 NNNNNNNN	
-	460 5559 518 518 508 508 508 508	508 508 1158 1158 1158 1158 1158 1158 11		888888888888 6666888168968874 66668888766887668877768 666688888887668777687776877777777	
84		00000000			
nq	និតិតិតិតិតិតិតិ		4 11 11 4 11 11 11 11 11 11 0 0 0 0 0 0 0 0 0 0 0	និនិទំនិនិតិតិតិតិតិតិតិតិតិតិតិតិតិតិ	
å	100 101 102 100 100 99	99 99 101 101 101 101	100 127 101 103 103 103		÷.,
su(A)	101 199 102 100 100 201	1000 1000 1000 1000 1000 1000 1000 100	104 129 129 129 129 100	100 100 100 100 100 100 100 100 100 100	
su(E)	101 201 102 102 102	202 203 203 203 203 203 203 203 203 203	105 106 130 101 101 101	100 100 100 100 100 100 100 100 100 100	
0	066 666 666 77			C C C C C C C C C C C C C C C C C C C	
Ŀ	2,38 2,38 2,38 2,38 2,38 2,38 2,38 2,38		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	10000000000000000000000000000000000000	
**	0.97 0.61 0.97 0.97 0.97	0.97 0.97 0.61 0.61 0.61 0.61 0.61 0.61 0.61 0.61	0.00.00.00	00000000000000000000000000000000000000	
3	នួននួននួន		25666666666		
fty	274 265 274 274 274 274 275	2555 274 2655 274 2655 274 2655 274 2655 274 2655 274 2655 274 2655 274 275 274 275 274 275 274 275 274 275 274 275 275 275 275 275 275 275 275 275 275	88881 74767 88881777767 888817777767	22244 22244	
TESTCODE	54-10F 64-10F 74-10F 84-10F 144-10F 154-10F	264-10F 2374-10F 244-10F 264-10F 264-10F 3544-10F 3544-10F 3544-10F	514-10F 524-10F 524-10F 554-10F 554-10F 564-10F 601-10F 614-10F 624-10F	694-10F 914-10F 914-10F 1014-10F 1034-10F 1034-10F 12244-10F 12244-10F 13244-10F 13244-10F 13744-10F 13744-10F 1374-10F 1374-10F 1374-10F 1374-10F 1374-10F 1374-10F 1374-10F 1374-10F 1374-10F 1374-10F 1374-10F 1374-10F 1374-10F 1374-10F 1374-10F 1374-10F 1374-10F	
NR.	117 119 120 121 122	122 122 122 122 122 122 122 122 122 122	132 134 134 135 136 137 137 139		

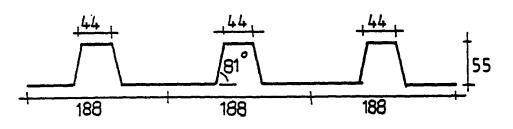
32

.

.

Table 4.(Continued) PROPERTIES OF TEST SPECIMENS; WATERLOO TESTS

.


.

Ũ

s. .

•

í.		
+ OF UEBS		
1		
84	••••••	
14	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
pq	106 99 103 103 103 103 103 103 103 103 103	
sw(A)	104 105 105 105 105 105 105 105 105 105	
su(E)	105 107 107 108 108 108 107 107	
0	° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° ° °	
L	0,00,00,00,00,00,00,00,00,00,00,00,00,0	
4	1.00 0.55 0.55 0.63 0.63 0.63 1.00 0.63 1.00 0.63 1.00 1.00	
]6	02200000000000000000000000000000000000	
fty	299 279 279 279 299 299 299 299 299 299	
TESTCODE	42UR-IOF 48UR-IOF 51UR-IOF 57UR-IOF 57UR-IOF 66UR-IOF 69UR-IOF 75UR-IOF 75UR-IOF 131UR-IOF 131UR-IOF 137UR-IOF 140UR-IOF 144UR-IOF	
NR.	162 163 163 165 165 166 168 168 171 171 172 173 173	

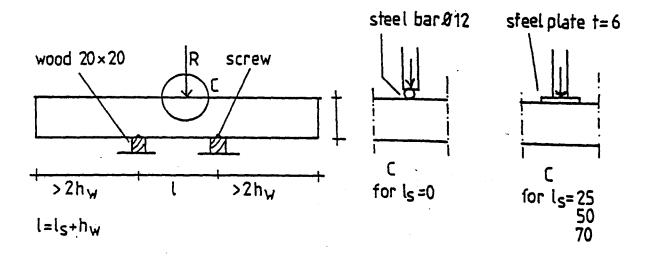


Figure 20

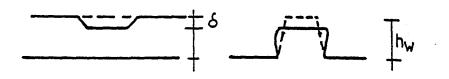


Figure 21

1. Properties of test specimens

All the test sheets consisted of three full corrugations as shown in Figure 19. The dimensions and properties of the sheets are given in Table 5. The sheets were roll-formed by Hoesch (Germany): type PC 750 - 55 - 0.71; distributor Prince Cladding.

2. Test setup.

See Figure 20.

 $l = l_s + s_{w(E)}.$

The clear distance between the bearing edges of the central bearing plate and the end supports is smaller than 1.5 $s_{w(A)}$. This was necessary for the limitation of the bending moment.

3. Load application

For each sheet the load was applied in more than 5 equal steps upto 90% of the ultimate load. When the deflection in the middle of the span was increasing at constant load at least 2 minutes were taken before the new load was applied.

The sheets A-3, B-3, E-3 and D-1 were loaded upto the characteristic load (ultimate load devided by 1.5). Then the load was removed and afterwards the sheets were loaded to failure as described above.

4. Determination of the test load

Because of the large deformation of the compression flange at failure (up to 17 mm) the test load was corrected to be the load causing a flange deformation δ of $h_w/10$ (see Figure 21.)

5. Failure mode

See Figure 21.

6. Moment ratio

The maximum moment ratio M_{test} / M_d was 0.24. The ECCS - part 1 - draft - 1980 was used to calculate the ultimate moment capacity M_d .

The test moment M_{test} was calculated by the equation

$$M_{\text{test}} = \frac{R_{\text{test}}}{4}$$

7. Test results

See Table 10 Chapter 5.

Table 5. Properties of test specimens, elumioven tests

1

# 0F 4685	~~ ~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~	
-		
s t	•••••••••••••	
nq	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
. 0 4	**************************************	
5u (A)	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	
su(E)	អ្នកស្នាល់ស្នាល់ស្នាល់ស្នាល់ស្នាល់ស្នា ស្នាល់ស្នាល់ស្នាល់ស្នាល់ស្នាល់ស្នាល់ ស្នាល់ស្នាល់ស្នាល់ស្នាល់ស្នាល់ស្នាល់ស្នាល់ស្នាល់ស្នាល់ស្នាល់ស្នាល់ស្នាល់ស្	
0	888788778887488887888888888888888888888	
£		
نم	222448222000000000000000000000000000000	
1.	00000nnnn 60000000000000000000000000000	
fty	44444444444444444444444444444444444444	
TESTCODE	444 444 444 444 444 444 444 444 444 44	
NR.	176 177 177 179 180 181 181 183 183 181 182 181 192 192 192 193	

.

5. COMPARISON OF EXPERIMENTAL AND COMPUTED RESULTS

The test loads R_{test} are compared with the computed ultimate web crippling 1 RECCS, RAISI and RWat:

The test loads R_{test} and the load ratios R_{test}/R_{ECCS} , R_{test}/R_{AISI} and R_{test}/R_{Wai} listed in the Tables 6, 7, 8, 9 and 10.

A load ratio R_{test}/R_d less than 1 means that the applied web crippling formulation ; an unsafe prediction for the ultimate web crippling load R_d .

For each test series the mean, standard deviation and coefficient of variation of the ratios were calculated. A load ratio marked with * means that the test is not within limits of the applied web crippling prediction formula. These load ratios are not incline the computation of the mean, standard deviation and coefficient of variation. In o to include tests that only just fail the limitations (as given in Chapter 2) these limitat are enlarged by 5%. The limitations consist of restrictions to the ratios $\frac{1}{s} \frac{1}{s} \frac{1}{s}$

and $s_{w(a)}/t$.

These ratios are also shown in the Tables 6, 7, 8, 9 and 10.

An overview of the computed means, standard deviations and coefficients of variatic given in Table 11.

The load ratios R_{test}/R_{ECCS}, R_{test}/R_{AISI} and R_{test}/R_{Wat}, are plotted against some parameters in Figures 22 to 30.

The dashed line $(R_{test}/R_d = 1)$ represents perfect correlation between R_{test} and R_d .

The plots shown in Figures 22 to 30 are a selection of the available plots. Similar plots be made for every parameter.

From Figure 22 it can be seen that the ECCS approach can probably be improved introducing a web slenderness term.

For the comparison of the web crippling formulations the coefficient of variation is most important.

The coefficient of variation, which can be seen as the standard deviation for a mean o is a measure for the scattering of the load ratios. The mean of the load ratios can ea be corrected by multiplying the web crippling prediction formulas with a constant. The AISI and Waterloo approaches have the same coefficient of variation for all the t

results together.

The ECCS approach has a larger coefficient of variation. Since the Waterloo approach a wider range of application it can be concluded that the Waterloo approach gives the b average results. The Waterloo approach does not give the best results for each test set individually.

From Table 11 it can be seen that there are significant differences between the t series.

The Waterloo tests show the lowest mean of the ratios R_{test}/R_d for all the web crippl formulas evaluated This may be due to the test setup or load application.

Because the Stockholm tests had relatively large bending moments the ECCS approwas expected to give a relatively safe prediction of the web crippling load for the ot test series. This is not the case. Nor do the AISI and Waterloo approaches give a relativunsafe prediction of the web crippling load for the Stockholm tests.

Apparently the web crippling prediction formulas give a prediction of the mean w

Crippling load. When a characteristic web crippling load is required (i.e. a web crippling load which ha certain specified probability of being achieved), the web crippling equations should multiplied by a constant K. Assuming a normal distribution of the load ratios, this constant K can be calculated from the given mean m and standard deviation s by the equation

.

-

$$K = \frac{1}{m - x \cdot s}$$

-

where x depends on the required probability.

	TEBTS	
	STOCKHOL M	
•	Table 6. TEBT RESULTS,	

, .

su(A)	84			2		> r		/ /	6	16	26	14	16	14	79	1.6	\ .	14	67	58	83	83	ເກ ເຫ	85	85	85	171	171	171	171	171	171	106	104	106	103	104	108	102	106	97	67	97	97	67	
- +	10.20	10.20	10.20	10.20	10.29	10.20	10.20	10.20	10.20	10.20	1.37	1.27	1.18	5.20	5.10	1.57	1.08	5.39	5.29	2.24	2.24	4.66	4.66	8.97	8.62	8.97	2.24	2.24	4.83	5.00	2.93	8.45	5.70	5.58	5.59	5.64	5.68	5.76	5.46	5,70	5.39	5.29	5.29	5.20	5.20	
18	6 E	39	6E	6 E	39	39	39	39	39	39	39	6E	39	δE	6 E	39	6E	6E	39	69	69	69	69	69	69	69	69	69	69	63	69	69	54	42	75	74	74	109	103	108	69	69	98	96	86	
18 54(A)	0.82	0.82	0.40	0.40	0.40	0.40	0.40	0.41	0.41	0.41	0.40	0.40	0.40	0.40	0.40	0.41	0.41	0.41	0.41	0.81	0.81	0.81	0.61	0.81	0.81	0.81	0.40	04-0	0.40	0.40	0.40	0.40	0.40	0.40	0.71	0.71	0.71	1.01	1.01	1.01	0.71	0.71	1.01	1.01	1.01	
<u>Rtest</u> Ruat.	0.93	0.09	1.00	1.05	1.04	0.96	0.98	1.04	1.12	1.10	0.96	1.08	1.03	0.94	0.91	1.08	1.05	1.01	1.01	1 10	1 . 09	1.01	201						00	0.1	17.1	1.09	1.00	0.97	1.06	1.09	1.10	1.05	1.04	1.08	1.06	1.06	1.18	1.11	1.08	
Ktest KAIBI	1.49*	1.42*	1.64*	1.73*	1.75*	1.68*	1.71*	1.45#	1.76#	*92 · 1	0.92	E0 - 1	0.98	1 . 07	50.1	49.0	0.91	1 . 05	1.05	1.04		102		10-1		1.07		71.I	1.10		77.1			1.07	1.10			00	60 ° 0	20-1				1.10	1.07	
<u>Rtest</u> RECCS	0.98	6.93	1.00	1.05	1.05	1.02	1.04	1.00	90.1	1 - 06		1.05	101	70 0		70 0							04.0	1.00	24.0	94°0	94-0	E0 - 1	10.1	0.70	54.0	1.02	44.0	04.0		0.40	74-0		/8-0		49-0		10.1		1.00	
Rtest	4291	4085	4379	4575	4546	3942	4021	TARI	1045	1407	100	555	5174	C1C4			18CV		2022	0/07		1010		06/1	14/1	1574	1520	2001	1966	1687	1692	1652	1603	27.62	2642	3516	3658	3736	3776	4153	156E	2286		6003 6067	4002	
TESTCODE	1-2-1	1-3-1	1-4-2	1-5-2	1-6-2	1-10-5	1-11-5	1-13-8				1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C 1 C		2 4 C 2 4 C 2 4 C					0-01-2	0-11-7		€ 	4-11-7 - 1	3-6-4	9-2-6	4-8-E	4-6-12	3-10-5	3-11-2	3-13-5	3-14-5	3-16-5	3-17-5		4-2-5	8-4-4	4-0-0	4-6-5	4-7-5	4-8-5	8-6-4	4-10-5	4-11-5			
NR.	-	2	m	4	ţt)	9		. œ) - - -	: :	4 P	7 4	r 4 4 7	7 4	1	\ C	20	71	0	N C	NI	m Ci	40	25	90	27	82	65	30	IE	32	23	₩ M	35	36	37	38	6E	40	41	42	M	4 4 4 4	

·· . .

Table 6.(Continued) TEST RESULTB; STOCKHOLM TESTS

•

.

.

•

••

su(A) t	888666666 8888888888	
12	69 172 77 172 172 172 172 172 172 172 172	
1s su(A)	0.81 0.81 0.81 0.81 1.42 2.03 2.03 2.03 2.03	
<u>Rtest</u> Ruat.	1.07 1.33 1.33 1.49 1.49	1.08 0.13 0.12
<u>Rtest</u> RAISI	1.09 1.11 1.12 1.21 0.95 1.12 1.18	1.08 0.08 0.08
<u>Rtest</u> <u>RECCS</u>	0.95 1.17 1.01 0.87 1.08 1.08	0.99 0.07 0.07
Ktest	1486 2555 1079 1079 1427 1427 1537	MEAN VIATION ƘIATION
TESTCODE	4-17-7 4-22-7 4-22-7 4-25-7 4-25-7 4-25-7 4-28-7 4-28-7 4-28-7	STANDARD DE COEF. OF VA
NR.	444400000 0000000000000000000000000000	

Values followed by * not included in computation of mean, standard deviation and coefficient of variation. (See Chapter 5)

.

٠

,

Table 7. Test Results, Cornell Tests

·

	х.	
su(A) t	644 644 644 644 644 644 644 644 644 644	
- + -		
1 t	48584388383838383838843843838 8	
15 54(A)	00000000000000000000000000000000000000	
Rtest Ruat.		0.12 0.12
Rtest RAISI	0.93 0.93 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95	0.11
Rtest RECCS		0.20
Rtest	9033 9033 9033 9033 9033 9033 9033 9033	DEVIATION VARIATION
TESTCORE	HIJJHJQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQQ	STANDARD DEVIATION COEF. OF VARIATION
NR.	19999999333333333327777777778888888 199999993333333333327777777782888888	

Values followed by # not included in computation of mean, standord deviation and coefficient of variation. (See Chapter 5)

.

• •• •

Table 8. TEST RESULTS, MISSOURI-ROLLA, TESTS.

• • •

•

•

.

• ·

.

su(A)	00000000000000000000000000000000000000
6 +3	00000000000000000000000000000000000000
4 N	, , , , , , , , , , , , , , , , , , ,
<u>15</u> 54(A)	
<u>Ktest</u> Ruat.	000 000 000 000 000 000 000 000 000 00
Ktest RAISI	0.03 0.03 0.03 0.04 0.04 0.04 0.04 0.04
Rtest RECCS	0.92 0.92 0.92 0.92 0.92 0.92 0.92 0.92
Rtest	5605 5227 5450 5450 5450 5450 5450 5450 5472 5415 5605 5414 7606 7784 5683 7784 7784 7784 7784 7784 7784 7784 77
TESTCODE	SU1-10F1 5605 SU1-10F2 5605 SU2-10F1 5093 SU2-10F1 5093 SU2-10F1 5093 SU2-10F3 5093 SU2-10F3 5093 SU2-10F4 6472 SU2-10F4 6472 SU2-10F4 6472 SU2-10F5 6472 SU2-10F5 6472 SU2-10F5 6472 SU2-10F5 6472 SU2-10F5 6472 SU2-10F5 6472 SU2-10F5 6472 SU5-10F4 8140 SU5-10F5 6583 SU6'-10F5 6583 SU6'-10F5 6583 SU6'-10F5 6477 SU6'-10F5 6677 SU6'-10F5 6677 SU6'-10F5 6677 SU6'-10F5 6677 SU6'-10F5 6677 SU6'-10F5 6677 SU6'-10F5 6677 SU6'-10F5 6677 SU6'-10F5 6677 SU6'-10F5 6677 USU18-10F5 6677 USU18-10F5 6677 USU18-10F5 6677 USU18-10F5 6677 S14018-10F5 66777 S14018-10F5 6677 S14018-10F5 66777 S14018-10F5 66777 S14018-10F5 66777 S14018-10F5 6677777 S14018-10F5 6677777777777777777777777777777777777
NR.	8888884 888887 88889 887888 887888 88788 8078 80788 80

Values followed by * not included in computation of mean, standard deviation and coefficient of variation. (See Chapter 5)

.

,

	TESTS
	UATERLOO
Table 9.	TEST REGULTS;

.

su(A)	104 104 104 105 105 105 105 105 105 105 105 105 105	80 121 121 160
دإب	······································	7.59 5.61 10.12
15	22222222222222222222222222222222222222	18 09 18
1s su(A)		0.59 0.48 0.48 0.48
Rtest Ruat.	0.000000000000000000000000000000000000	0.70 0.94 0.85 1.05
Ktest KAISI	0.03 0.03 0.04 0.04 0.04 0.04 0.04 0.04	0.97# 1.17# 0.94 1.68#
Rtest RECCG	0.00 0.00	0.79 0.79 0.79
Ktest	25000 251254 251455 25045 251455 25045 251455 251113 25115 25113 25115 25115 25115 25115 25115 25115 25115 25115 25115 25115 25115 2	2713 1472 2246 1579
TESTCORE	Su-10F 2u-10F 2u-10F 2u-10F 1au-10F 1au-10F 1au-10F 1au-10F 2au-10F 3au-10F 3au-10F 5au-10F 5au-10F 5au-10F 5au-10F 13au-	21ur-1ur 24ur-10f 30ur-10f 33ur-10f 39ur-10f
. NR.		157 158 160 161

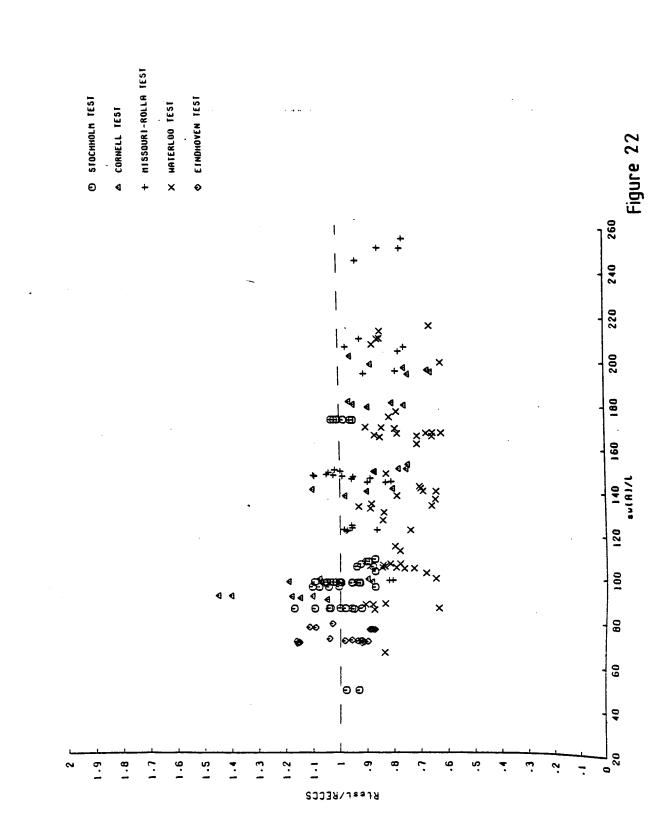
	TESTS
(penut	UATERLOO
9.(Conti	RESULTS
Table	TEST. 1

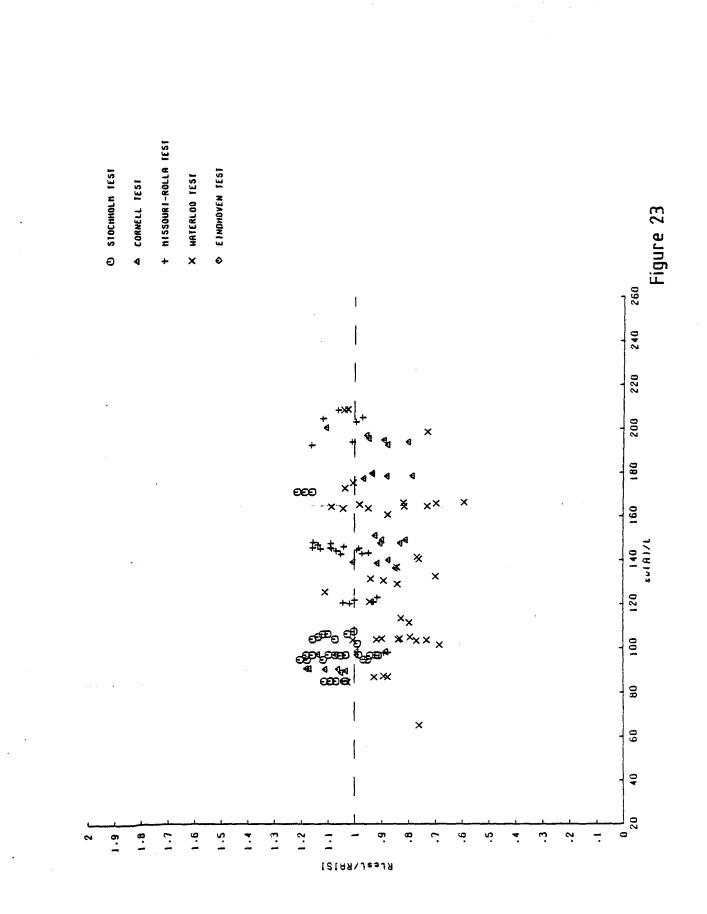
•

su(A) t	192 192 192 192 192 192 192 192 192 192	
- +	6.33 8.71 8.71 9.42 9.49 10.12 10.12 8.71 8.71 8.71	
10	51 51 52 53 51 55 55	
<u>1s</u> su(A)	0.49 0.48 0.48 0.48 0.41 0.41 0.41 0.41 0.41 0.45 0.45 0.45 0.45 0.45 0.45 0.45 0.45	
<u>Rtest</u> Ruat.	0.86 1.19* 0.87 1.120 1.15* 1.07 1.07 0.95 0.95 0.95 0.95 0.95 0.95 0.95 0.95	
<u>Rtest</u> RAISI	2.831 1.24************************************	
Rtest RECCS	0.79 96.96 96.87 0.887 0.884 0.884 0.884 0.884 0.988 0.988 0.988 0.098 0.0000 0.098 0.0000000000	
Rtest	3207 1179 3105 1463 1463 2113 2113 3074 1601 2980 6606 1913 3781 1913 3781 1913 3781 1913 3781 Nean Nean Nean Nean Nean Nean Nean Nean	
TESTCODE	42UK-TOF 48UK-TOF 51UK-TOF 57UK-TOF 60UK-TOF 60UK-TOF 66UK-TOF 68UK-TOF 78UK-TOF 78UK-TOF 137UK-TOF 137UK-TOF 140UR-TOF 140UR-TOF 140UR-TOF 140UR-TOF 517ANPARD DE 517ANPARD DE 517ANPARD DE	
NR.	162 163 164 165 166 172 172 172 172 172 172 172 172 172 172	

Values folloped by * not included in computation of mean, standard deviation and coefficient of variation. (See Chapter 5)

..


TESTCODE	Rtest	Rtest	Rtest	Rtest	ls	3	F	su(A)
		RECCS	RAISI	Ruot.	Su(A)	له	4	ł
-	1967	1.15	1.41*	1.01	0.00	0	8-04	20
Ŋ	2017	1.16	1.42*	1.02	0.00	0	8.04	70
m	2017	1.16	1.41*	1.01	0.00	0	8.04	69
¢	1650	1.12	1.39#	0.99	0.00	•	7.96	76
æ,	1617	1.09	1.36*	0.96	0.00	•	7.96	76
El	1967	0.91	1.19#	0.89	0.46	32	8.14	70
g	2150	0.98	1.28*	0.96	0.46	32	8.14	70
g	2267	1.04	1.36*	1.00	0.45	32	8.14	11
¥	1967	1.03	1.34#	1.01	0.45	35	7.96	78
Ē	2533	0.92	1.26#	0.98	0.90	63	8.04	71
Ë	2633	0.94	1.28*	1.00	0.90	63	8.04	70
E 3	2633	0.92	1.25#	0.98	04-0	63	1.94	69
9	2200	0.88	1.17*	0.94	0.92	69	7.85	76
ų	2217	0.89	1.18*	0.95	0.92	69	7.85	76
5	2933	0.96	1.25*	1.05	1.27	06	8.14	11
5	2883	6.93	1.20#	1.02	1.26	68	8.04	70
50	2833	0.90	1.16*	0.99	1.26	89	8.04	70
g	2500	0.89	1.10#	0.97	1.29	67	7.85	76
4-H	2450	0.87	1.09#	0.95	1.29	67	7.85	76
	MEAN	0.99	0.00	0.98	•			
STANDARD D	EVIATION	0.10	0.00	0.04	• ••			
2	VARIATION	0.11	00.00	0.04				


-

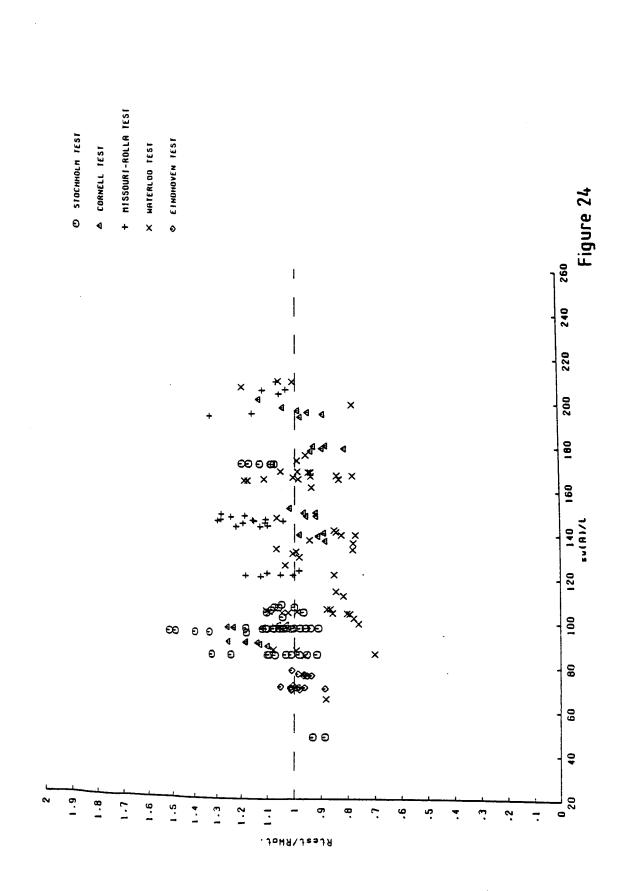
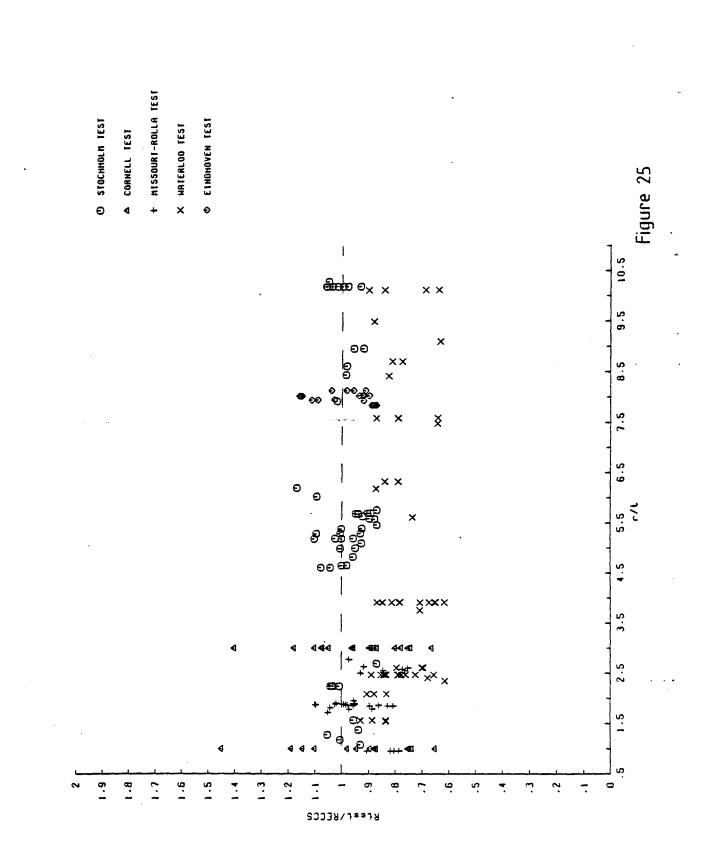
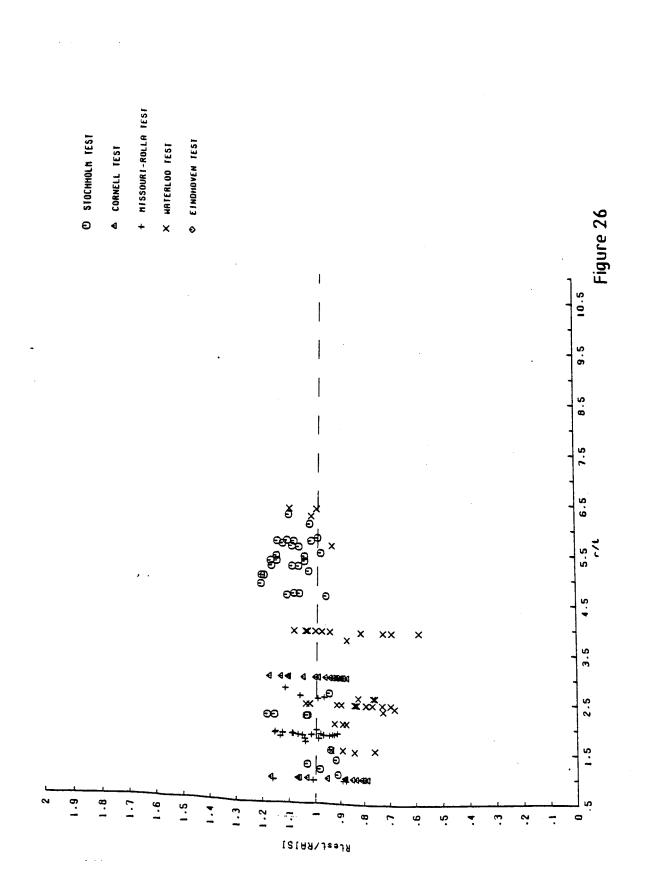
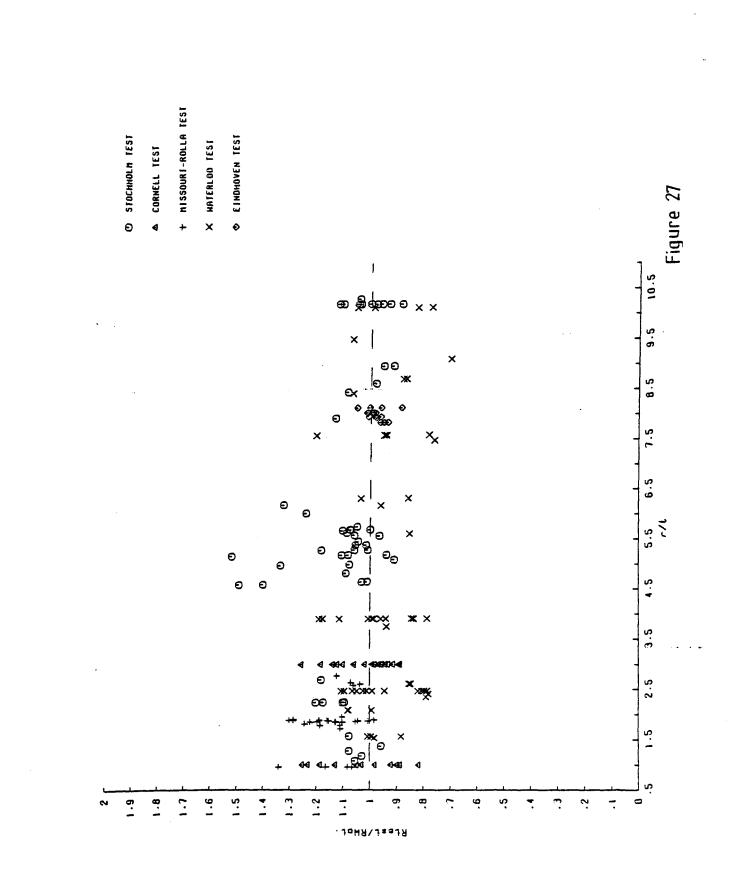
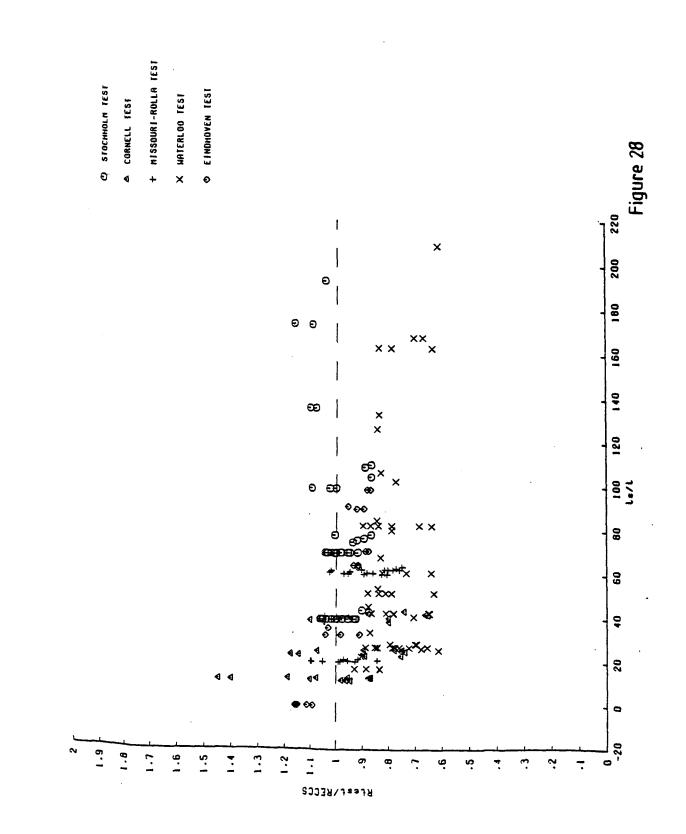

Table 10. Test results, Einghoven tests Values followed by * not included in computation of mean, standard deviation and coefficient of variation. (See Chapter S) · ••

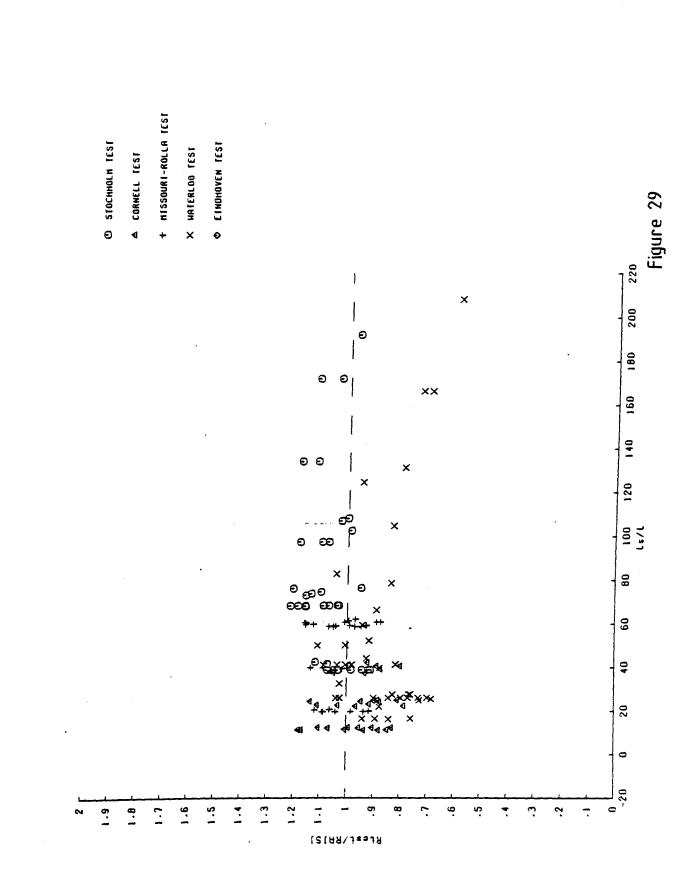
Table 11. Comparison of testresults

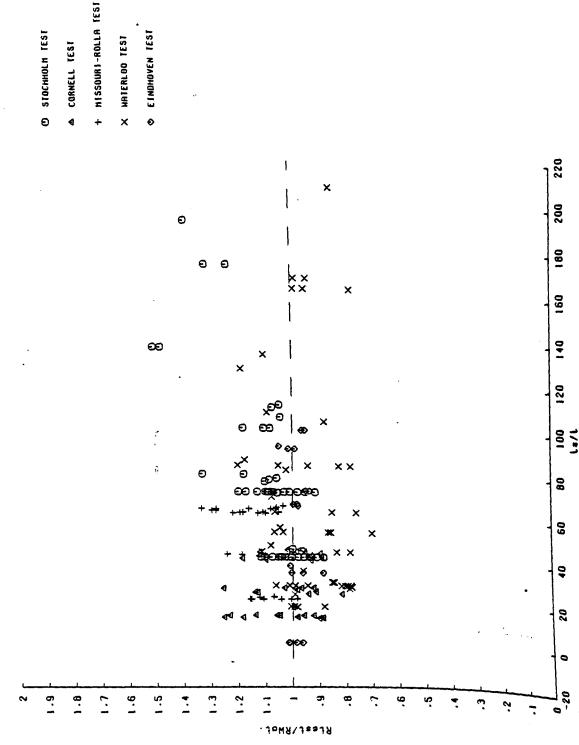

	ECCS /	PPROACH		AISI A	PPROACH	_	UATERL	JATERLOO APPROACH	ROACH
	MEAN	8.D.	c.v.	MEAN	5. D.	C.V.	MEAN	s.b.	C.V.
CTOCKHOLM TERTS	0.99	0.07	0.07	1.08	0.08	B0.0	1.08	0.13	0.12
CORNELL TESTS	0.94	0-20	0.21	0.96	0.11	0.11	1.02	0.12	0.12
MICONIELE FOULD TESTS	0.92	0.10	0.11	1.03	0.08	0.08	1.14	0.09	0.08
HIDDUNA NULLY ILST	0.78	0-09	0.11	0.87	0.13	0.14	0.94	0.12	0.13
ETWINDLEN TESTS	0.99	0.10	0.11	00-00	00-00	0.00	0.98	0.04	0-04
ALL TESTS	0.91	0.14	0.16	0.98	0.13	0.13	1.03	0.14	0.13








. .



6. CONCLUSIONS

The web crippling prediction formulas evaluated do not give satisfactionary results consistently.

Maybe this is due to the fact that the formulas have been based on test results only.

In the formulas it is assumed that the influences of the parameters r/t, $s_{w(A)} / t$, l_s / t , f_{ty} and Θ on the web crippling load are independent of each other.

This assumption is not based on theoretical analysis and is probably incorrect. It may be noted that the web crippling prediction formula according to the AISI-1968 Specification included a term $l_s/t s_{w(A)}/t$.

The three web crippling formulations give a prediction of the mean failure load, not a characteristic failure load.

Mainly due to the differences in the basic constants C the calculated results may differ up

Of the formulations evaluated the Waterloo approach gives the best results and the ECCS

approach the worst. This may be caused by the fact that the ECCS approach lacks a web slenderness term.

The test setup, load application and determination of the failure load are not the same in all the test series.

This might explain the differences in the test results per series. Special attention should be paid to the fact that a section sometimes fails with unacceptable large deformations. This failure mode is mentioned with the Stockholm tests and with the Eindhoven tests.

It is not clear in what situations this failure mode occurs.

To get a better understanding of web crippling additional research is required.

This research should concentrate on theoretical analysis.

BIBLIOGRAPHY

- 1. "European recommendations for the design of profiled sheeting". ECCS - TC7 - 1983.
- 2. "European recommendations for the design of light gauge steel members". ECCS - TC7 - 1983.
- "Specification for the design of cold-formed steel structural members". (1980 edition).
 American Iron and Steel Institute, Washington D.C.
- Wing, B.A.
 "Web crippling and the interaction of bending and web crippling of unreinforced multi-web cold-formed steel sections".
 M.A. Sc. Thesis, University of Waterloo, 1981.
- Andersson, T. and Bergfors, A.
 "Upplagstryckets inverkan pa brottlasten hos trapetsprofilerad plat". Examenarbeite i Stalbyggnad. K.T.H., Stockholm 1973.
- Zetlin, L. and Winter, G.
 "65th and 66th progress reports on light gauge steel beams of cold-formed steel". Cornell University, September 1952/January 1953. (unpublished).
- Zetlin, L.
 "Elastic instability of flat plates subjected to partial edge loads". Journal of the Structural Division, ASCE Proceedings. Vol. 81, 1955.
- Hetrakul, N. and Yu, W.W.
 "Structural behavior of beam webs subjected to web crippling and a combination of web crippling and bending".
 University of Missouri-Rolla, 1978.
- Keulers, A.J.C.
 "Web crippling tests and a comparison of the results with the provisional ECCS recommendations (80-02-15)".
 Report THE-BKO-S-80-02, 1980.

 Baehre, R. "Sheet metal panels of use in building construction. Current research projects in Sweden". Proceedings of the Third International-Specialty Conference on Cold-Formed Steel Structures, University of Missouri-Rolla, 1975.