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I. INTRODUCTION

In the past, a considerable amount of theoretical and experimental

research has been undertaken to study material properties and the behavior

of structures under dynamic loads and impact loads. For the purpose of

investigating the structural behavior and streng1(h of cold-formed steel

members under dynamic loads, a research project was conducted at the

University of Missouri-Rolla from January 1988 ~hJ:"0ugh December 1991 to

study the effect of strain rate on mechanical properties of sheet steels

and the structural behavior and strength of cold-formed steel members. The

test results of material properties, stub columns, and beams with

evaluations were summarized in the Eighteenth Progress Report 1 .

Because the previous studies were limited only to the structural

members which were assembled with the same material in a given section, the

research work reported herein under the sponsorship of the American Iron

and Steel Institute (AISI) was concentrated on a study of the structural

strength of hybrid automotive structural components using different sheet

steels. In the first phase of the project, two selected sheet steels (25AK

and 50SK) have been tested for establishing the mechanical properties in

tension and compression under different strain rates. The nominal yield

strengths of these two sheet steels are equal to approximately 25 and 50

ksi and the range of strain rates used in the test varied from 10- 4 to 1.0

in. / in. /sec .. Details of the tension and compression coupon tests were

presented in the Seventeenth Progress Report2

Due to the lack of drop tower test equipment at the University of

Missouri-Rolla, a total of fifty-two (52) drop tower tests of stub columns

were conducted at General Motors Corporation during the Summer of 1992.
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The impact velocities used in the drop tower tests were 28.5 and 43.2 km/hr.

The research findings are presented in Reference 3.

At the University of Missouri-Rolla, the study of stub columns

including hybrid sections fabricated from 25AK and 50SK sheet steels

subjected to dynamic loads was initiated in January 1993. Ninty-six (96)

box-shaped stub columns and forty-eight (48) hat-shaped stub columns were

tested under the strain rates varied from 10-4 to 10- 1 in./in./sec.. The

test results of a total of 144 test specimens were reported herein. Among

these specimens, 80 specimens were hybrid sections.

In Chapter II of this report, the literature review is related to the

structural strength of steel members under dynamic loading conditions. The

experimental investigation of the structural behavior of stub columns

subjected to static and dynamic loads are discussed in Chapter III. The

test data of specimens fabricated from two types of sheet steels are

evaluated in Chapter IV.

summarized in Chapter V.

Finally, the results of stub column tests are
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II. REVIEW OF LITERATURE

A. GENERAL

Two current trends in automobile design have increased the complexity

of material selection for automobiles. On the one hand, there has been the

steady drive to develop designs that increase the safety of occupants during

auto collisions. At the same time, in the interests of fuel and material

economy, the steel industry has been developed high-strength steels for use

by the automotive industry in designing lighter-weight steel components 4 .

Because material properties are influenced by impact loading, a large

number of research projects were conducted for a variety of structures under

specified loading conditions in the past three decades. Recent research

has been directed to analytical procedures which take into account more

precise constitutive relationships including strain rate sensitivity,

strain harding, and geometric change arising from overloads.

In view of the fact that in the current AISI Automotive Steel Design

ManualS, the design criteria for effective design width are based on the

test results under static loading condition, this study involved the

investigation of the validity of these effective design width formulas for

the design of cold-formed steel structural members fabricated from either

the same material or two different materials subjected to dynamic loads.

Another primary objective for this investigation is to study the crushing

behavior of these members. Therefore, a review of the structural behavior

of compression elements under static loads and the strengths of axially

loaded members subjected to dynamic or impact loads are necessary.
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B. STRUCTURAL BEHAVIOR OF COMPRESSION ELEMENTS UNDER STATIC LOADS

1. Elastic Local Buckling of Flat Compression Elements. The

compression flat elements may buckle locally in the elastic or inelastic

range depending on the width-to-thickness ratio of the compression elements.

The elastic local buckling stress, (fcr)E' of compression elements subjected

to a uniform compression can be determined by the following equation:

2
·f ) kn E
( cr E = 2 2

12(1 - J1 )(wjt)

where E = modulus of elasticity

k = buckling coefficient

t = thickness of element

w = width of element

J1 = poisson's ratio = 0.3 for steel

( 2.1 )

The value of k depends upon the magnitude of the aspect ratio of the

plate and the boundry conditions. It is noted that the k value is equal

to four for a square plate and for any plate with an aspect ratio equal to

an interger. It is also noted that the value approaches to four for a long

plate with an aspect ratio larger than four. Therefore, a minimum value

of k equal to four for the stiffened compression elements is conservatively

used in practical design without considering the rotational restraint along

the unloaded edges.

2. Inelastic Buckling of Flat Compression Elements. The preceding

discussion on elastic local buckling is valid as long as the computed

critical buckling stress is below the proportional limit of the material.

When a plate buckles at a stress level beyond the proportional limit, this
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type of buckling is referred to as inelastic buckling. The analytical study

of local buckling in the inelastic range is rather complicated because of

the anisotropic nature of the compression element. However, analytical

studies of the plates buckled in the inelastic range have been performed

by numerous researchers. 6 - 10

In the late ninteenth century, the tangent modulus theory and the

reduced modulus theory were proposed by Engesser. In 1924, Bleich6 extended

the theory of flat plate stability into the inelastic range by considering

the plate as an anisotropic type and by introducing a reduced modulus. He

assumed that the reduced modulus is applied only to a plate in the direction

of the compressive stress, whereas the modulus of elasticity remains the

same in the perpendicular direction to the compression stress. Thus, for

a simply supported plate subjected to uniformly compressive stresses in one

direction, the following equation can be used for determining the inelastic

buckling stress:

( 2.2 )

where rr = F = ",/ Et/E

Et = tangent modulus of steel

It is noted that the inelastic buckling stress ((fcr)I) is in terms

of the elastic buckling stress ((fcr)E) and the plasticity reduction factor

(rr) •

3. Postbuckling Behavior of Flat Compression Elements. The

compression elements of thin-walled structural members with relatively large

wit ratios can continue to carry additional loads after the attainment of



elastic local buckling.

6

The stresses in the compression elements will

redistribute until the stresses along supported edges reach the yield stress

of steel. Then, the maximum load-carrying capacity of the member will be

reached.

A grid model shown in Figure 2.1 11 can be used for the deflected shape

of a stiffened compression element in the postbuckling range. The

transverse bars, which are anchored at the sides of grid, act as tie rods

to support the deflection of the longitudinal struts. This meams that the

tension membrane stress developed in the transverse direction restrains the

lateral displacement caused by the longitudinal load. As a result,

additional load can be carried by the plate after the elastic buckling load

is reached because of the transverse membrane stress and the redistribution

of longitudinal stress. As shown in Figure 2.2(a)11, the stress

distribution is uniform prior to its buckling. After buckling, the stress

distribution is nonuniform as shown in Figure 2.2(b)11. It is assumed that

the maximum load is reached when the stress at the supported edges reaches

the yield stress of the steel as shown in Figure 2.2(c)11.

Because the membrane stresses are developed in the transverse direction

and the deflection of the plate is usually much larger than its thickness

after buckling, small deflection theory of plate bending can not be applied

to the postbuckling behavior. Therefore, the large deflection theory of

plates was used by Von Karman 12 for the analysis of plates in the

postbuckling range.

4. Development of Effective Width Formulas. A solution for the large

deflection theory was difficult for use in practical design because of its

complexity. Therefore, the concept of "Effective Width-" has been proposed
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by von Karman 13 to determine the ultimate strength of thin metal sheets in

aeronautical structures in 1932. In the past, the effective width concept

has been successfully used for the prediction of postbuckling strengths of

stiffened and unstiffened elements.

In von Karman 's13 approach, it was assumed that the entire load is

carried by two effective strips with a uniformly distributed stress equal

to the edge stress, f max ' as shown in Figure 2.3 11 , instead of using the

full width of the compression element with actual, nonuniform stress

distribution. The effective width can be considered as a particular width

of the plate which just buckles when the compression stress reaches the

yield strength of steel. The effective width (b) of the stiffened element

derived by von Karman is shown in Equation 2.3.

( 2.3 )

where
I 2

C = ;r/~ 3(1 - 11 ) = 1. 9

The following equation can be derived from Equation 2.1 for a stiffened

compression element with k = 4.0:

( 2.4)

From Equations 2.3 and 2.4, the following relationship of band w can

be obtained:

( 2.5 )

For the study of effective design width, Winter 14 - 16 conducted

extensive tests by using cold-formed steel sections .. Based on his test
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results, Winter derived effective width formulas for the design of both

stiffened and unstiffened compression elements under uniform compression.

Based on the accumulated design experience with a restudy of original

and additional test results, the following equation was used in the AISI

Specification for determination of the effective width of stiffened

compression elements:

or

jE [ t IE]b=1.9t -- 1-0.415(W-)j--
V f max \, f max

( 2.6)

( 2.7 )

The effective width approach was used for the design of stiffened

compression elements since 1946, whereas the reduced allowable stress method

was used for the design of unstiffened compression elements until the 1986

revision of AISI Specification. Based on the recent research 17, a new

format of effective width formulas, which are based on Equation 2.7, has

been used for the design of both stiffened and unstiffened compression

elements in the AISI Specification since 1986. The effective width formulas

used in the current AISI Specification and the AISI Automotive Steel Design

Manual are presented in detail in the next section.

5. Current AISI Effective Width Formulas. According to the AISI

Cold-Formed Steel Design Manual 18 , the effective design widths of uniformly

compressed stiffened and unstiffened elements can be calculated by using

the following equations for load capacity determination:

b=w when ). S 0.673, ( 2.8 )



b=pw when A > 0.673,

9

( 2.9 )

where b = effective width of a compression element

w = flat width of a compression element

p = (1- 0.22())()'

). = a slenderness factor

( 2.10 )

). (2.11 )

where f = the edge stress

E = modulus of elasticity, 29500 ksi

k = plate buckling coefficient

= 4.0 for stiffened elements supported by a web on each

longitudinal edge

= 0.43 for unstiffened elements supported by a web on one

longitudinal edge and free on the other

The effective width formulas for computing the load-carrying capacity

of uniformly compressed elements used in the current AISI Automotive Steel

Design Manual are similar to those used in AISI Cold-Formed Steel Design

Manual for building construction. According to the AISI Automotive Steel

Design Manual, for stiffened and unstiffened compression elements with a

yield strength higher than 80 ksi, it is recommended that a reduced yield

strength can be used in the calculation of Equation 2.11. The reduced yield

strengths for stiffened and unstiffened compression elements are given in

Reference 5.
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According to the AISI Automotive Steel Design Manual, the effective

design width of compression elements is used for determining the

load-carrying capacity of the member when the slenderness factor A (Equation

2.11) of compression elements exceeds a limiting value of 0.673.

When ) = 0.673, the limiting width-thickness ratio (at which full

capacity is achievable) ~an be evaluated as

[ ..::!.- ] = 0 . 64 / kE
t lim \i f

( 2.12 )

For fully stiffened compression elements under a uniform stress, k =

4, which gives a limiting wit value as follows:

[ w ] IEt lim = S = 1.28...;£ ( 2.13 )

Using a buckling coefficient of 0.43, the limiting wit ratio for the

unstiffened compression elements can be derived as follows:

'E
[ ~ ] lim = S = 0.42.)£ ( 2.14)

When the wit ratio exceeds the value of S, the effective width, b, is

less than the actual width w. The value of b is calculated on the basis

of Equation 2.9.

C. RESPONSE OF AXIALLY LOADED MEMBERS TO DYNAMIC LOADS

The crushing behavior of thin-walled sheet metal structures such as

tubes, circular cylinders, and non-circular sections under both quasi-static

and dynamic axial loading conditions has been studied over the past 30
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years. These structures were used to study the mechanical energy absorption

in the event of a vehicle collision or accident.

The dynamic plastic collapse of energy-absorbing structures is more

difficul t to understand than the corresponding quasi -static collapse, on

account of two effects which may be described as the "strain-rate factor"

and the "inertia factor" respectively. The first of these is material

property whereby the yield stress is raised, while the second can affect

the collapse mode, etc 19 .

In this section, some of the developments resulted from the previous

research for the response of structural members subjected to dynamic loads

are reviewed. Particular attention is focused on those items related to

axially loaded members.

The analysis of column behavior under impact loading conditions dates

back to 1933, when Koning and Taub derived equations describing the axial

and transverse oscillation of pin-ended columns subjected to dynamic axial

loads. They considered loads having a rectangular pulse form, of magnitude

less than, equal to, or greater than the static Euler load. However, they

did not recognize the possibility of dynamic overloads 20 .

Macaulay and Redwood (1964) examined the behavior of rods, square tubes

and small-scale models to gain insight into the effect of axial impact on

railway coaches. They found important differences between the static and

dynamic buckling behavior and recognized a velocity effect with two

components, geometry and strain rate21 .

Some of the most significant work on the analysis of strut behavior

under dynamic loading is due to Hoff22 (1965). His analysis was directed
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to study the dynamics of the buckling of elastic columns in a rapid

compression test. In his study, he found that the lateral displacements

of the column under rapid loading are less than those calculated from static

considerations. As a consequence the load supported by the column can

exceed the Euler load considerably.

Axial impact on thin-walled columns was examined theoretically by

Culver and Vaidya 23 and experimentally by Logue24 , both were published in

1971. The theoretical work was applied to short duration impact loading

which was defined by prescribing the time variations of the load at the end

of the columns. Nonlinearity due to local buckling was accounted for by

using nonlinear axial load-curvature relations derived with the aid of the

effective width concept. The results of the analytical study were shown

as response spectra curves which described the effect of initial deflection,

pulse duration, maximum dynamic load, and the static preload on the dynamic

response. It was concluded from the experimental study that maximum loads

in excess of the static failure loads may be carried dynamically.

Soden, AI-Hassani, and Johnson25 (1974) studied the crushing behavior

of circular tubes under static and dynamic axial loads. The loads and

deformations of tubes with various thicknesses were recorded and three

failure modes were observed and studied. The majority of tube tests

collapsed by progressive folding into diamond shaped lobes, while thick

tubes failed by collapsing into circumferential rings. The thinnest

specimens collapsed into sets of three diamonds at each level with

successive sets displaced through 30 degrees to give the collapsed specimen

a hexagonal formation. The initial failure loads and postbuckling loads

for various modes of deformation were predicted theoretically. They found
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that both the initial maximum stress and the mean post-buckling stress are

seen to increase with increasing compression rate.

In 1974, Ohkubo, Akamatsu, and Shirasawa24 examined a series of tests

to study the energy absorption of closed-hat section members subjected to

axial loading. In order to estimate the amount of energy absorption of the

closed-hat section members subjected to dynamic axial loading, dynamic tests

were performed for the same members by using pendulum type collision test

equipment. By fitting experimental data, they found that the dynamic mean

crushing load seems to be a linear function of the collision speed:

Pmd = Pms (1.0 + 0.0668V)

where Pmd = dynamic mean crushing load

Pros = static mean crushing load

V = collision speed (m/s)

( 2.15 )

In 1977, Van Kuren and Scott4 studied a series of crushing tests

performed to determine the energy absorption of a range of steels at testing

speeds up to 40mph and temperatures of 70 and -40 F. Open-ended square and

cylindrical tubes were axially loaded to produce accordionlike deformation

patterns. For four- inch-diameter cylinders at 40mph impact, Figure 2.4

shows the effect of impact velocity on energy absorbed for two test

thicknesses. Based on their investigation, the conclusions are: (1) the

energy absorption of steel increases with impact velocity and at low

temperature; (2) tube geometry significantly influences the amount of energy

absorbed. Specifically, a square tube absorbs a third less energy than a

circular tube for an equal volume of material; and (3) high-strength steels
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absorb energy in proportion to their strength level, the significance being

that they can be used in relatively thin material to reduce vehicle weight.

Van Kuren 27 (1980) also studied the energy absorption of several

automotive materials, i.e., reinforced plastics, steel, and aluminum. These

curved shell specimens were crushed at impact speeds up to 25mph and

temperatures of 70 and -40 F. Figure 2.5 shows the effect of impact velocity

on the energy absorption of several materials. He stated that steel

absorbed up to 20 times more total energy than did the reinforced plastics

and over twice that absorbed by aluminum for the same thickness. Aluminum

absorbed more energy per unit weight than the other materials, but steel

was considerably more cost-effective.

In 1977, Wierzbicki28 studied the dynamic crushing strength of

strain-rate sensitive box columns. The main purpose of his study was to

identify material and geometrical parameters in the problem of impact

loading for sheet metal and to derive an expression for the strain rate

correction factor. As a particular structural component, a straight

retangular box column was considered to be representive of front or rear

longitudinal members of an automobile body. He stated that during a vehicle

collision the strain rate in the zones of localized deformation can be of

the order of 10 to 100 in./in./sec .. Consequently, dynamic forces in

compressed mild steel members are much greater than static ones. An

approximate analysis was presented to determine dynamic strength and energy

absorption of axially loaded thin-walled box columns. In this analysis,

the dynamic compressive force is a product of a static crushing strength

of the column and a strain-rate correction factor. The strain-rate

correction factor was found to be dependent on the initial impact velocity

and parameters describing the sensitivity of the material to strain rate.
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In another work published in 1979, Wierzbicki and Abramowicz29 used a

simple method to calculate the dynamic correction factor for thin-walled,

strain-rate sensitive structures. For the experiments run at two crushing

speeds vI and v2 with associated strain rates £1 and £2' the corresponding

ratio of mean crushing forces P; and P; is equal to the dynamic correction

factor given as follows:

( 2.16 )

where n is the material strain-rate sensitivity calculated from the

following equation:

1

(1 (£)n(10 = £0 ( 2.17)

It can be seen from Equation 2.16 that the dynamic correction factor

does not involve any geometrical and material parameters except the constant

n .

In 1984, Abramowicz and Jones 30 conducted twenty-three experimental

tests on 56mm-diameter steel tubes of various lengths subjected to dynamic

axial loads. The columns were crushed axially on a drop hammer rig. The

effective crushing distance was considered in the analysis along with the

influence of material strain-rate sensitivity. The ratio of the dynamic

to quasi-static mean crushing forces for identical, straight tubes of mild

steel can be expressed as below:



pd _1_
--'!!.- = 1 + (_£_) 3.91
ps 6844

m

where 3.91 and 6844 sec.- l are material constants.
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( 2.18)

They concluded that a modified version of Alexander' s31 theoretical

analysis for axisymmetric, or concertina, deformations gives good agreements

with the experimental results when the effective crushing distance is

concerned and provided that the influence of material strain rate

sensitivity is retained in the dynamic crushing case.

In 1981, by using semi-empirical approach, Mahmood and Paluszny32

derived the design equations for determining the load capacity (maximum

strength) and the post buckling crush resistance of thin wall, box columns

subjected to static axial crush. According to Mahmood and Paluszny, the

maximum load and the mean crushing load for a box-type column can be

calculated by using the following equations:

where b width of "buckling" plate=

t = thickness of plate

k 2 = plate coefficient

kp = crippling plate coefficient

CI: = section aspect ratio

{3 = material strength coefficient

( 2.19 )

( 2.20 )
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~y = yield strength of material

They found that the design equations correlated very closely with tests

for seam welded, retangular and square box columns as well as double hat

sections. They also pointed out that in determining the effective

cross-sectional area, used in estimating the mean crush load, the spot

welded flanges must be included. The reason being that in contrast to the

maximum load case, where the contribution of flanges to the load carrying

capacity is neglibible, the flanges participate in the folding process and

thus contribute to the crush resistance of the section.

The crush strength characteristics and modes of collapse of thin-walled

circular columns were mathematically formulated by Mahmood and Paluszny in

198433 . The formulation was based on the stability of shell structures

subjected to axial crush, where various stages of collapse were identified

and crush characteristics pertinent to column design were quantified. It

was concluded that the crush characteristics of columns are functions of

both column geometry (thickness to radius ratio (t/r)) and the elastic/yield

properties of the material (elasticity modulus (E), poisson's ratio (v),

and yield strength (5y ))' whereas the mode of collapse (number of

circumferential lobes) is governed predominantly by the geometry ratio

(tjr).

Mamalis, Johnson, and Viegelahn 34 (1984) studied the uniformly thin

circular cylinders and frusta (truncated circular cones) of low carbon steel

subjected to axial loading at elevated strain rate. The initial axial

length and the outside diameter of the cylinders and frusta (the larger top

end) were kept constant while the uniform wall thickness of those specimens

was varied. The load-deformation or compressive behavior of the cylinder
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and frusta for the two semi-apical angles used, 50 and 100, were recorded

and the modes of collapse were observed and discussed. In this

investigation, they found that with increasing slenderness ratio, thickness

to initial outside diameter ratio for cylinder and thickness to initial

outside mean diameter for frusta, (effectively increasing wall thickness)

both the peak and mean postbuckling loads increase in a broadly parabolic

manner. With increase in semi-apical angle, both the peak and postbuckling

load decrease.

In 1986, Reid and Reddy35 examined the crushing behavior of sheet metal

tubes of rectangular cross-section which (1) remains constant along its

length or (2) increases with a taper on one face (single-tapered) or

increases with tapers on two opposite faces (double-tapered). They observed

that the mean crushing loads increased under dynamic loading conditions due

to material strain rate sensitivity, although there was no changes in the

mode of deformation compared with that under quasi-static conditions.

Birch and Jones 21 conducted a series of axial impact and static

crushing tests carried out on specimens manufactured from commercial

structural mild steel tubing (seam welded) having an outside diameter D'

of 64 mm, wall thickness H of 1.58 mm, a length of L of 150 mm, with

stiffeners. An examination was made into the influence of stiffener depth

(T), number of stiffeners (N), and the effect of placing the stiffeners

externally or internally. Based on the test results, they found that the

static and dynamic collapse modes are similar for plain unstiffened tubes.

However, there are considerable differences between the static and dynamic

collapse modes for the axially stiffened tubes which were even more

pronounced in tubes with four axial stringers. The static collapse of tubes

stiffened with four external stringers occurs in an unstable ·overall
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buckling mode with peak collapse loads lower than those found in the

specimens with four internal stringers. The dynamic collapse mode of the

tubes stiffened with four internal stringers is generally a stable regular

progressive type, while the dynamic collapse mode is an irregular

progressive type, with some stability, when the tubes are stiffened with

four external stiffeners.

In 1989, Kassar36 and Pan 1 also studied the box-shaped and I-shaped

stub columns subjected to dynamic loads. A total of 96 stub columns were

fabricated from 35XF and 50XF sheet steels. Prior to the stub column tests,

the effects of strain rate on the mechanical properties of three different

sheet steels (35XF, 50XF, and 100XF) were studied experimentally. The

results of the experimental study indicated that the mechanical properties

of sheet steels (yield stress, proportional limit, and ultimate tensile

strength) as well as the load-carrying capacity of stub columns increase

with increasing strain rates.

The crush behavior of box-shaped and hat-shaped stub columns were

tested under quasi-static and dynamic loads by Schell et al. 3 (1993). The

hybrid stub columns were fabricated by spot welding two components using

different sheet steels (25AK and 50SK) with the nominal yield stresses equal

to approximately 25 ksi and 50 ksi. Comparisons were also made between

single material and hybrid stub columns. The results indicate that the peak

crush load, energy absorption, and mean crush load for all specimens were

affected by the loading rate, composition, and cross-sectional geometry of

the stub columns.
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III. EXPERIMENTAL INVESTIGATION

A. GENERAL

All tests were performed in the MTS 880 Test System located in the

Engineering Research Laboratory at the University of Missouri-Rolla. The

materials used in this phase of study are 25AK and 50SK sheet steels with

nominal yield strengths equal to approximately 25 and 50 ksi, respectively.

A total of 96 box-shaped stub columns and 48 hat-shaped stub columns were

tested to study the effect of strain rate on the cold-formed steel

structural components including hybrid sections. These specimens were

cold-fromed to shape by Rose Metal Products Inc. in Springfield, Missouri.

The configurations of specimens are shown in Figures 3.1(a) and 3.1(b) for

box-shaped and hat-shaped stub columns, respectively. The designation of

test specimens is presented in Table 3.1. As shown in Figure 3.2, five

groups of test specimens were used in this investigation: (1) Group A 

box-shaped stub columns were assembled by using two hat sections fabricated

from 50SK sheet steel; (2) Group B - box-shaped stub columns were assembled

by using two hat sections fabricated from 25AK sheet steel; (3) Group C 

box-shaped stub columns were assembled by using two hat sections fabricated

from two different materials (50SK and 25AK); (4) Group D - hat-shaped stub

columns were assembled by using a hat section fabricated from 50SK sheet

steel and a plate of 25AK sheet steel; (5) Group E - hat-shaped stub columns

were assembled by using a hat section fabricated from 25AK sheet steel and

a plate of 50SK sheet steel. Groups A and B are used as control groups.

Tables 3.2 through 3.6 show the specimen number, test speed, strain rate,

and width-to-thickness ratio (wit) of each individual test specimen. Four

selected strain rates 00- 4 , 10- 3 , 10- 2 , and 10- 1 in./in./sec.) were used
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A total of 144 stub column

specimens were tested in this study.

discussed in Chapter IV of this report.

B. MATERIAL PROPERTIES

The test results are evaluated and

Two virgin materials, 25AK and 50SK sheet steels, were tested in

tension and compression in the longitudinal and transverse directions. The

tested mechanical properties were presented in the Seventeenth Progress

Report 2 . Tables 3.7 and 3.8 summarize the average values of mechanical

properties tested under different strain rates for 25AK and 50SK sheet

steels. The thicknesses of 25AK and 50SK sheet steels are 0.078 in. and

0.074 in., respectively. To illustrate the effect of strain rate on the

mechanical properties, Figures 3.3 and 3.4 show the typical stress-strain

relationships for 25AK sheet steel subjected to longitudinal tension and

compression with different strain rates of 10- 4 ,10- 2 ,10- 1 , and 1.0

in./in./sec.. The typical stress-strain relationships for 50SK sheet steel

are shown in Figures 3.5 and 3.6. The empirical equations derived on the

basis of the material test results were presented in the 17th Progress

Report, which were used to predict tensile and compressive yield stresses.

C. STUB COLUMN TESTS

1. Specimens. In this phase of experimental investigation, one

hundred forty- four (144) stub column specimens were tested to study the

effect of strain rate on the local and post-buckling strengths of

compression elements. As shown in Figure 3.1(a), box-shaped stub columns

were fabricated by connecting two hat sections through the unstiffened

flanges. To form a hat-shaped stub column, a hat section and a plate were
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assembled by attatching the plate to the unstiffened flanges of the hat

section as shown in Figure 3.1(b). All test specimens were fabricated in

General Motor Corporation by using spot welded connections. Six spot welds

were used on each unstiffened flange of hat sections for all box-shaped stub

columns in spite of the lengths of specimens. For hat-shaped stub columns,

twelve spot welds were used on each flange of hat sections to assemble the

specimens. To ensure a close contact between the ends of test specimens

and compression platens of the test machine, all specimens were milled in

the machine shop to make both ends of stub column flat and parallel.

The length of stub columns has been designed long enough (more than 3

times the largest dimension of the cross section) to develop the plate

buckling wave and short enough (less than 20 times the least radius of

gyration) to prevent overall buckling of the entire member as recommened

in Reference 37. This criterion was also adopted in Part VII of the 1986

AISI Cold-Formed Steel Design Manual. The webs and unstiffened flanges of

all hat sections were designed to be fully effective. Tables 9 through 13

give the lengths and dimensions of stub column specimens fabricated from

25AK and 50SK sheet steels. The wit ratios of stiffened flanges ranged from

23.02 to 58.38 and from 24.14 to 61.60 for box-shaped stub columns (Groups

A, B, and C) fabricated from 25AK and 50SK sheet steels, respectively. For

Group D specimens, the wit ratios of stiffened flanges ranged from 17.41

to 44.43 and the wit ratios of plates ranged from 34.17 to 59.73. The wit

ratios of stiffened flanges and plates ranged from 9.67 to 41.98 and from

28.97 to 62.78, respectively, for Group E specimens.

2. Strain Measurements. Eight foil strain gages were used to measure

strains at midheight of stub columns for specimens with small and medium

wit ratios (cases 1 and 2 of Groups A, B, C, D, and E). The location of
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strain gages, numbered from 1 to 8, is shown in Figure 3.7. For the stub

columns with large or extra large wit ratios, additional four strain gages

were mounted above and below the midheight of the hat sections for

box-shaped stub columns (cases 3 and 4 of Groups A, B, and C) and the plates

for hat-shaped stub columns (cases 3 of Groups D and E) at the location equal

to one-half of the overall width. The arrangements of strain gages are shown

in Figure 3.8.

The load-strain diagrams obtained from paired strain gages (No. 1-2,

5-6, and 9 through 16) were used to determine the tested local buckling load

by means of the modified strain reversal method, which is discussed in

Reference 38. The strain gages numbered 3,4, 7, and 8 were used to measure

the strain rate during the tests. Prior to testing, all strain gages were

used to align the stub column specimens.

3. Instrumentation and Test Procedure. All tests were performed in

a llO-kips 880 Material Test System (MTS) by using "stroke" (actuator

displacement) as the control mode to maintain a constant actuator speed for

stub column tests. This test system shown in Figure 3.9 consisted of an

MTS load frame, a control console, and the CAMAC (Computer Automated

Measurement and Control) data acquisition system. The data acquisition

system used in this study consisted of 64 simultaneously sampling input

channels at a resolution of 12 bits. The test frequency or sampling rate

depended on the total test time with a maximum of 25,000 readings per second

for each channel. After the data were acquired, they were downloaded to

the Data General MV-lOOOO Mini Computer for analysis purpose.

For all tests, the maximum load range of 100 kips and the maximum stroke

range of 5 inches were selected for the function generator of the test
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machine. The ramp time was programmed to have a constant speed, which was

calculated by the product of a selected strain rate and the overall length

of the specimen. Following fabrication of the specimen and placement of

strain gages, the stub column was placed in the MTS load frame. In order

to obtain good test results, a small amount of preload was applied to the

stub column prior to testing for the purpose of checking the alignment of

specimen. If necessary, thin aluminum foils were placed at the end of the

specimen in the regions of low strain until the load is uniformly

distributed over the whole cross section.

4. Test Results. The failure mode of the stub column specimens varies

with the width-to-thickness ratio of the stiffened compression element.

Based on the readings obtained from the paired strain gages attached back

to back along the centerline of the stiffened elements, no local buckling

occurred in the specimens with small wit ratios (case 1 of Groups A through

E) as shown in Figure 3.10. For specimens with medium wit ratios (case 2

of Groups A through C and case 2 of Group E), the specimens normally buckled

in the inelastic range as shown in Figure 3.11. The local buckling occured

in the elastic range for the specimens having large wit ratios (cases 3 and

4 of Groups A and C, case 4 of Group B, and case 3 of Groups D and E). When

local buckling occurred in the test specimens, the stresses in the

compression flanges redistributed over the cross section until the edge

stress reached to the maximum value. Typical load-strain relationship for

the specimen with large wit ratios is shown in Figure 3.12.

The location of local buckling for the box-shaped stub columns as well

as hat-shaped stub columns with small or medium wIt ratios was found to be

at the end for most cases. Figure 3.13 illustrates a specimen with small

wit ratio at the beginning of buckling, and Figure 3:14 shows the final
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However, the specimens with large

wit ratios failed locally at or near the midheight of specimens regardless

of the strain rate for most cases.

specimen with large wit ratio.

Figure 3.15 is an example of test

For all tests, the maximum displacement of 5.0 inches was applied to

the specimens in order to study the crushing behavior of stub columns. For

most box-shaped stub columns (Groups A, B, and C), regular folding was

developed in the stub columns with smaller wit ratios and irregular folding

was observed in those with larger wit ratios during the test. In addition

to folding, other failure modes such as bending, twisting, lateral buckling,

and openning were also observed in some stub columns. As shown in Figure

3.16, the specimens bent about X-X axis and Y-Y axis were defined as bending

and lateral buckling, respectively. For the purpose of differentiating the

failure modes, Figures 3.17 through 3.21 illustrate these failure types.

For most specimens in case 3 of Groups A, B, and C, due to the use of smaller

L/r ratios, the stub columns buckled after attaining one or two folds in

the specimens. Consistent failure type of folding was noted in most

hat-shaped stub columns (Groups D and E). Figures 3.22 through 3.33 show

typical load-displacement diagrams for box-shaped stub columns (Groups A,

B, and C) tested under different strain rates. Similarly, Figures 3.34

through 3.39 show typical load-displacement diagrams for hat-shaped stub

columns (Groups D and E). Although a constant speed was applied to the test

specimen during the test, however, the strain rate could not be retained

constant after the ultimate load was reached in the specimen. Therefore,

the value of strain rate was defined as the slope of the strain-time

relationship before the attainment of the ultimate -loads. A ·typical
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strain-time diagram for the strain rate of 0.01 in./in./sec. is shown in

Figure 3.40.
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IV. EVALUATION OF EXPERIMENTAL DATA

A. GENERAL

In the previous UMR research, two types of stub column specimens

fabricated from two sheet steels (35XF and 50XF) were tested under different

strain rates to study the behavior of stiffened and unstiffened compression

elements. It was concluded that the predicted ultimate loads of stub

columns can be improved by using the dynamic yield stresses 1 , Because the

previous studies were limited only to the structural members which were

assembled with the same material in a given section, this research was

concentrated on a study of the structural strength of hybrid automotive

structural components using different sheet steels. In addition, some stub

column specimens fabricated from the same material were also tested.

Two sheet steels (25AK and 50SK) which were used to fabricate the stub

column specimens were tested and presented in the Seventeenth Progress

Report 2 . Because the material properties and stress-strain relationships

are influenced by strain rate, comparisons are made between the experimental

results and the predicted failure loads which were calculated according to

the current AISI Automotive Steel Design Manual by using static and dynamic

material properties. The crushing behavior of these stub columns are also

discussed in this chapter.

B. CRITICAL LOCAL BUCKLING LOADS

All stub column specimens were tested under an axial compressive load.

The compression element of stub columns may buckle in the elastic or

inelastic range, depending on the wit ratio of the compression element.
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The elastic critical local buckling stress, (fcr)E' of a stiffened element

under uniform compression can be calculated by using Equation 2.1.

( 2.1 )

The buckling coefficient used in Equation 2.1 is equal to 4.0 for

stiffened compression elements supported along both longitudinal edges.

When the elastic critical buckling stress exceeds the proportional limit,

the compression element buckles in the inelastic range. The inelastic

buckling stress, (fcr)r' can be computed by using the following equation,

which is based on the tangent modulus concept39 .

Fpr(Fy - Fpr)

(fcr)E
( 4. 1 )

where Fy = compressive yield stress of steel

= proportional limit of steelFpr

(fcr)E = elastic critical local buckling stress

Once the critical local buckling stress ((fcr)E or (fcr)r) was

calculated, the computed critical local buckling load of a stub column

corresponding to the initiation of local buckling of its controlling

compression element can be calculated as follows:

( 4.2 )

where Ag = gross cross-sectional area of the stub column

fer = critical local buckling stress

Based on the dimensions of compression elements and the mechanical

properties of sheet steel, the critical local buckling -loads of box-shaped
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stub columns fabricated from the same material (Groups A and B) can be

obtained according to Equation 4.2. However, the critical local buckling

loads for the stub columns fabricated from two different sheet steels

(Groups C, D, and E) could not be determined easily because the governing

critical local buckling stress is not known. Therefore, the stress-strain

relationships of both sheet steels must be investigated for determining the

governing critical local buckling stress in the hybrid sections. Comparing

the strains obtained from the critical local buckling stresses for both

components, the smaller strain will be used to calculate the stresses for

each components. Then, the critical local buckling loads can be calculated

by adding the loads from two different components. The following empirical

equations were derived from material tests and used to compute the stresses

and strains for 25AK and 50SK sheet steels under different strain rates:

For 25AK sheet Steel

For 50SK sheet Steel

y

y

A + B/X + C/X2

D + E x X + F x X2

( 4.3 )

( 4.4 )

where y = compressive stress

X = compressive strain

when strain rate = 10-4 in. lin ./sec. :

A = 23.45 B = -0.525 C = -0.008

D = 1.403 E = 334.7 F = -454.7

when strain rate = 10- 2 in·/in./sec. :

A = 27.32 B = -0.475 C = -0.035

D = 1.350 E = 328.6 F = -407.6

when strain rate = 10- 1 in ./ in . Is ec. :

A = 31.19 B = -0.426 C = -0.062



D = 1.192 E = 310.0 F = -266.1
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The strains used for determining the above equations were selected from

the proportional limit to the yield point of steel. The predicted and tested

critical local buckling loads are presented in Tables 4.1 through 4.3 for

box-shaped stub columns, and Tables 4.4 and 4.5 for hat-shaped stub columns.

The critical local buckling stresses of hybrid sections (Groups C, D, and

E) listed in column (1) of Tables 4.3 through 4.5 are calculated based on

Equations 4.3 and 4.4. On the basis of dynamic material properties, the

predicted critical local buckling loads are shown in column (2) of Tables

4.1 through 4.5. The tested critical local buckling loads listed in column

(3) of these tables were determined from load-strain relationships by using

the modified strain reversal method. It can be seen that the tested critical

local buckling load increases with increasing strain rate for most stub

column tests, except for the box-shaped stub columns fabricated from 50SK

sheet steel (Group A). Comparisons of the computed and tested critical

local buckling loads are listed in column (4) of these tables. The mean

values of (Pcr)test/(Pcr)comp ratios for Groups A and B specimens seem to

indicate that a good agreement can be achieved between the tested and

computed critical local buckling loads for specimens fabricated from 50SK

sheet steel but the computed critical local buckling loads are

underestimated for specimens fabricated from 25AK sheet steel. Similar

results can also be found for Groups D and E specimens. for which the

predicted critical local buckling stresses were calculated for 25AK and 50SK

sheet steels, respectively.
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c. ULTIMATE AXIAL LOADS

For the stub columns fabricated from the same material, it is assumed

that the stub column reaches its ultimate load when the maximum edge stress

in the stiffened elements reaches the yield stress of steel. Therefore,

the ultimate load of the stub column can be calculated by mutiplying the

effective cross-sectional area by the yield stress of steel as expressed

in Equation 4.5.

( 4.5 )

where Ae = effective cross-sectional area of the stub column

Fy = yield stress of steel.

The AISI effective width formulas (Equations 2.8 and 2.9) can be used to

compute the effective cross-sectional area.

It should be noted that the previous equation is valid only for the

stub columns fabricated from one material such as Groups A and B. For the

stub columns fabricated from two different sheet steels, even though one

of two components reaches its yield point of steel, the stub column may

continuously carry additional load until another component reaches its yield

point of steel. Therefore, the ultimate strength of such a stub column

fabricated from two different materials such as Groups C, D, and E can be

calculated by using the following equation:

(4.6)

The subscripts of "1" and "2" used in Equation 4.6 represent the components

in the stub column fabricated from two different sheet steels. The

effective design widths to be used for determining the effective
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cross-sectional areas, (Ae )l and (Ae )2' were computed on the basis of

(Fy )l and (Fy )2' respectively. It should be noted that the yield strengths

and the cross-sectional areas of two components in a hybrid section are

different. Therefore, Equation 4.6 can be used to compute the ultimate load

only if the length of column is short enough without overall buckling and

both ends of the column are flat and parallel.

The predicted and tested ultimate loads are presented in Tables 4.6

through 4.8 for box-shaped stub columns and Tables 4.9 and 4.10 for

hat-shaped stub columns. The computed ultimate loads listed in column (3)

of these tables are based on the static compressive yield stress, while the

values listed in column (4) of these tables are based on the dynamic yield

stress corresponding to the strain rate used in the test. The dynamic

compressive yield stresses were determined by using equations listed in

Figures 3.5 and 3.7 of 17th Progress Report 2 for 25AK and 50SK sheet steels,

respectively. The tested ultimate loads are listed in columns (5) of these

tables. It is noted from Tables 4.6 through 4.10 that the tested ultimate

load increases with increasing strain rate for specimens having the similar

wit ratios. Comparisons of the computed and tested ultimate loads are

listed in columns (6) and (7). From the comparisons of the mean values and

standard deviations of (Pu)test/(Pu)comp ratios listed in columns (6) and

(7) of these tables, it can be seen that the computed ultimate loads using

dynamic yield stresses are somewhat better than the computed ultimate loads

using static yield stress. Similar to the results of critical local

buckling loads, the computed ultimate loads are underestimated for

box-shaped stub columns fabricated from 25AK sheet steel (Group B) and a

good agreement can be achieved between the tested ultimate loads and

computed values calculated based on dynamic yield stresses for specimens
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fabricated from 50SK sheet steel (Group A). As expected, the ultimate loads

of Group e specimens are close to the average values of the ultimate loads

of Groups A and B specimens having the similar dimensions.

It is well known that cold-forming operation increases the yield stress

and tensile strength of the steel particularly in the corners of cross

sections. In order to consider the effect of cold-work on the axial strength

of stub columns, comparisons between the tested ultimate loads and the

predicted ultimate loads based on the applicable tensile yield stresses are

discussed in the following paragraphs.

According to the AISI Cold-Formed Steel Design Specification, the

load-carrying capacity of a compact section (i.e. p = 1) including the cold

work of forming can be determined by substituting Fya for Fy ' where Fya is

the average yield stress of the full section, and can be computed as follows:

(4.7)

where

Fya = average tensile yield stress of steel.

e = ratio of the total corner cross-sectional area to the total

cross-sectional area of the full section.

Fyf = weighted average tensile yield stress of flat portions.

(Fy)c BcFyv/(R/t)m, tensile yield stress of corners.

2
Be = 3.69(Fuv/Fyv)-0.819(Fuv/Fyv) -1.79

(4.8)

(4.9)

m (4.10)

R = inside bend radius.

Fyv = tensile yield stress of virgin steel.

Fuv = ultimate tensile strength of virgin steel.
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The above equations are applicable when Fuv/Fyv>1. 2, R/t<7, and minimum

included angle< 120 0

The predicted ultimate loads based on the applicable tensile yield

stresses and the tested ultimate loads are presented in Tables 4.11 through

4.13 for box-shaped stub columns. Tables 4.14 and 4.15 present the similar

data for hat-shaped stub columns. For the stub columns with small wit ratios

(first case of each group), the computed ultimate loads were calculated by

considering the cold work effect and presented in these tables.

The computed ultimate loads based on the static and dynamic yield

stresses are listed in columns (3) and (4) of Tables 4.11(a) through

4.15(a), respectively. Comparisons of computed and tested ultimate loads

are listed in columns (6) and (7) of these tables. By comparing the mean

values and standard deviations of (Pu)test/(Pu)comp ratios listed in Tables

4.11(a) through 4.15(a). it can be seen that the computed ultimate loads

using dynamic yield stresses are better than that using static yield stress.

By comparing Tables 4.6 through 4.10 to Tables 4.11(a) through 4.15(a), it

is noted that the ultimate loads calculated based on tensile yield stresses

are better than those calculated on the basis of compressive yield stresses.

It can be seen from Table 4. 12(b) that a better prediction of the

ultimate loads of compact sections can be obtained by considering the

cold-work effect for the box-shaped stub columns fabricated from 25AK sheet

steel (Group B). However, the computed ultimate loads can not be improved

by considering the cold-work effect for box-shaped stub columns fabricated

from SOSK sheet steel (Group A) and hybrid sections (Groups C, D, and E).

By comparing Table 4.6 with Table 4.7 and Table 4.11 with Table 4.12,

it was found that the ratios of tested to computed ultimate loads for compact
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sections of box-shaped stub columns fabricated from 25AK sheet steel are

larger than those fabricated from 50SK sheet steel. This fact can be

explained by the load-strain diagrams shown in Figures 4.1 and 4.2. Figures

4.1 and 4.2 show the load-strain relationships of box-shaped stub column

specimens 1A2A1 (50SK) and 1A2B1 (25AK), respectively. These curves were

drawn from the readings of strain gages mounted on the corner of compression

flanges of box-shaped stub columns. From Figure 4.1, it can be seen that

the load reached its maximum value when the strain reached the yield strain

for the specimen fabricated from 50SK sheet steel. However, for the

specimen fabricated from 25AK sheet steel, the maximum strain under ultimate

load were beyond the yield strain as shown in Figure 4.2. This is because

the types of stress-strain relationship for these two sheet steels are

different. The stress-strain curve for 50SK sheet steel is sharp-yielding

type but it is a gradual-yielding type for 25AK sheet steel.

D. MEAN CRUSHING LOADS

The crash energy of a colliding vehicle is dissipated in the plastic

deformation of structural elements. For the axial mode of energy

dissipation, vehicle deceleration is controlled by the mean crush resistance

of the collapsing rails while the rail deformation provides the desired

crush distance to more safely decelerate the occupant. In the collapse

process, the load that the column resists after the maximum compressive load

has been reached is the corner crush 10ad3 . Generally, the

load-displacement relationship of a box-shaped stub column compressed

axially can be obtained as illustrated in Figure 4.3. The area under the

load-displacement curve indicates the amount of energy absoption, which can



be used for determining the mean crushing load.
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Therefore, the mean

crushing load can be defined by the following equation:

Pmean ( 4.11 )

The 6 value in Equation 4.11 represents the total distance of crushing.

The maximum stroke range of function generator was selected to provide a

5-inch crushing distance for each test. The tested ultimate loads and the

mean crushing loads of box-shaped stub columns are presented in Tables 4.16

through 4.18. Tables 4.19 and 4.20 present the similar data for hat-shaped

stub columns. By comparing the ultimate and mean crushing loads, it appears

that the percentage increases in mean crushing loads are lower than the

percentage increases in ultimate loads for the tests conducted under similar

strain rate. The spacing of connections and the type of failure mode for

each individual test specimen are also presented in Tables 4.16 through

4.20. It can be seen from these tables that the failure modes of some

specimens were not the regular folding type alone but also the combinations

of bending, twisting, lateral buckling, or openning types.

According to Mahmood and Paluszny32, the maximum load and the mean

crushing load for a box-type column can be calculated by using Equations

2.19 and 2.20, respectively. By dividing Equation 2.19 by Equation 2.20,

the ratio of the ultimate load to mean crushing load can be expressed as

the following equation:

Pmean

k 0.43

- (----.!:.)
k2

( 4.12 )
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Figures 4.4 and 4.5 show graphically the curves of Kp and K2 ,

respectively. Comparisons of the tested ultiamte loads and mean crushing

loads are presented in column (3) of Tables 4.16 through 4.20 for each

individual test specimen. It was observed from Tables 4.16 through 4.18

that the values of Pu/Pmean ratio are high for cases 2 and 4 in Groups A

and B. This is due to the use of larger spacing of connections as compared

with cases 1 and 3. It is also due to the use of high yield stress and less

thickness for the sections fabricated from 50SK sheet steel as compared with

the sections fabricated from 25AK sheet steel. Therefore, the unstiffened

compression flange could not provide a sufficient support to hold the

sections together during the test, as can be seen in Figure 4.6. For this

case, the ratio of ultiamte load to mean crushing load can be improved by

reducing the spacing of connections for the sections fabricated from 50SK

sheet steel.

For the box-shaped stub columns fabricated from 25AK sheet steel (Group

B), the average value of Pu/Pmean for case 2 having an aspect ratio

(depth-to-width ratio) of 1.0 is 2.61; for case 3 having an aspect ratio

of 0.55 is 2.44; and for case 4 having an aspect ratio of 0.8 is 2.74. By

using Equation 4.12, the ratio of ultiamte load to mean crushing load is

approximately 2.88 for a square steel column having an aspect ratio equal

to 1.0; 2.74 for a retangular steel column having an aspect ratio equal to

0.55; and 2.96 for a steel column having an aspect ratio equal to 0.8. The

differences between the values computed by using Equation 4.12 and the

values obtained from test results is about 7 to 10 percent. According to

Mahmood and Paluszny32, this is because the unstiffened flanges of hat

sections participate in the folding process and thus contribute the crush

resistance to the section as compared with the seam welded box-type stub
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For case 2 of Groups D and Group E specimens (hat-shaped stub

columns) having an aspect ratio of 0.9, the difference between the predicted

Pu/Pmean value (3.01) and the average value of Pu/Pmean (2.88) obtained from

test results is about 4 percent. For case 3 of Groups D and E specimens

having an aspect ratio of 0.53, the predicted and average tested values of

Pu/Pmean are 2.76 and 2.87, respectively. The average tested Pu/Pmean value

is 4 percent higher than the predicted value. Again, it colud be due to

the large spacing of connections in the specimens.

Equation 4.12 seems to indicate that the ratio of ultimate load to mean

crushing load is a function of depth-to-width ratio because both kp and k2

are depending on the aspect ratio. The following empirical equation was

derived from the test results for predicting the mean crushing loads from

the computed ultimate loads for box-shaped and hat-shaped stub columns

failed by folding:

[0 . 141(a - 1.144) + o. 361J Pu ( 4.13)

where a = aspect ratio, d'/b'

The symbol d' represents the overall depth of cross section, while the

symbol b' represents the overall width of stiffened flange of box-shaped

and hat-shaped stub columns. Figure 4.7 shows the schematic definition for

the symbols d' and b'. The tested mean crushing loads and the predicted

values according to Equation 4.13 for box-shaped stub columns are presented

in Tables 4.21 through 4.23. Tables 4.24 and 4.25 present the similar data

for hat-shaped stub columns. In these tables, the tested mean crushing

loads were obtained from the UMR specimens tested under the strain rates

of 0.0001 and 0.1 in./in./sec. and from the GM specimens tested under the



strain rates of 25.97 and 39.37 in./in./sec ..

39

The mean crushing loads

computed according to Equation 4.13 are listed in column (2) of Tables 4.21

through 4.25. The computed ultimated loads listed in column (1) of these

tables are based on Equations 4.5 and 4.6 with the dynamic tensile yield

stresses corresponding to the strain rate used in the test. As discussed

in the 18th Progress Report 1 , the dynamic yield stresses for high strain

rates can be estimated by using Equation 4.14:

, ((BjF))(Fylpred = A e y + 1 (Fy)s

A = a1 + b 1 log(i) + c1 log(i)2

B = a2 + b 2 log(i) + c2 log(£)2

For tensile yield stress:

(4.14 )

(4.15 )

(4.16 )

aIt = 0.023

bIt = 0.009

cIt = 0.001

a2t = 77.7

b2t = 0.069

C2t = -0.595

Comparisons of the tested and predicted mean crushing loads are

presented in column (4) of Tables 4.21 through 4.25. It can be seen from

these tables that the predicted mean crushing loads for the strain rates

of 25.97 and 39.37 in./in./sec. are conservative for box-shaped stub

columns. For most specimens, the difference between the tested and

predicted mean crushing loads for strain rates of 0.0001 and 0.1

in./in./sec. is within 10 percent. The predicted mean crushing loads for

A4, D3, and E3 specimens are higher than the tested values. This may be

due to the use of the large spacing of connections in these specimens as

mentioned previously.
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To examine the accuracy of Equation 4.13 for hat-shaped stub columns,

comparisons of dynamic crushing load to static crushing load ratios were

also made between Ohkubo's test results 26 and the values calculated on the

basis of Equation 4.13. For a typical hat-shaped cross section used in

Ohkubo's tests (the width of stiffened flange = 70mm; the depth of web =

60mm; the width of unstiffened flange = 18mm; the thickness of cross section

= 1.2mm; the static yield strength of steel = 25 kg/mm 2 ; and the speed for

the dynamic crushing test = 4.18 m/sec) the ratio of dynamic to static

crushing loads obtained from the test is 1.30. Based on Equation 4.13, the

computed ratio of dynamic to static crushing loads is also 1.30. The above

simple comparison illustrates that Equation 4.13 can be used to calculate

the mean crushing load for both box-shaped and hat-shaped stub column

fabricated from materials other than 25AK and 50SK sheet steels.

E. GM TESTS

A total of 70 stub column tests were conducted in General Motor

Corporation, among which 52 specimens were tested by using a drop silo test

facility and 18 specimens were used for the quasi-static testing. Seven

types of stub column specimens, including cases 1 and 3 of Groups A, B, and

C and case 1 of Groups D and E specimens, were used in the GM tests. The

selected speeds used in the tests were 28.5, 43.2, and 1.524x10- 3 km/hr.

The test results indicate that the loading rate, composition and

cross -sectional geometry of the stub columns affect the ultimate load,

energy absorption, and mean crushing load for all specimens.

Figures 4.8 and 4.9 show the comparisons of the tested mean crushing

loads of the box-shaped stub columns (cases 1 and 3 of "Groups A, Bj and C)
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Figure 4.10 shows the similar data for the

hat-shaped stub columns. It can be seen from these figures that the mean

crushing loads were increased for the stub columns tested at high loading

rates. Similar to the material tests, Figures 4.8 and 4.9 showed that the

stub columns fabricated from 50SK sheet steel are less strain-rate sensitive

than those fabricated from 25AK sheet steel for mean crushing loads. As

can be seen in Figure 4.8, the mean crushing loads of hybrid sections

(Specimen C1) under the static loading condition are close to the average

values of the other two tests for both GM and UMR programs. Similar results

can also be found in Figure 4.9 for both static and dynamic loading

conditions.

It is noted that the mean crushing loads of both box-shaped and

hat-shaped stub columns tested under static loading are different for GM

and UMR tests. The main reason for causing this difference is apparently

due to the fact that two plates were welded to the ends of stub columns for

the GM tests. These end plates can provide some end fixity for the specimens

and reduce the slenderness ratio. As can be seen from Figure 4.8, the mean

crushing loads obtained from the GM tests are slightly higher than those

obtained from the UMR tests. However, contrary results are shown in Figure

4.9 for case 3 specimens due to the use of large L/r ratios and large wit

ratios as compared with case 1 specimens. It should be noted that the data

shown in Figures 4.8 through 4.10 for the GM tests are based on the average

values of test results but for the UMR tests, the data are based on the

average values of tests failed by folding. For this reason, the values shown

in Figure 4.9 for the GM tests are slightly lower than those for the UMR

tests. It should also be noted that, in general, slight differences are
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expected for the test results obtained from two independent test

labratories.
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V. CONCLUSIONS

In order to investigate the effect of strain rate on the structural

strength and crushing behavior of cold-formed steel hybrid sections, 96

box-shaped stub columns and 48 hat-shaped stub columns fabricated from two

types of sheet steels (25AK and 50SK) were tested under different strain

rates. Based on the available test results, the following conclusions can

be drawn from the stub columns fabricated from 25AK and 50SK sheet steels:

1. For most cases, the ultimate load increases with increasing strain

rate for specimens having the similar wit ratios.

2. A better predictions for ultimate capacity can be achieved by using

dynamic tensile yield stresses for both box-shaped and hat-shaped stub

columns fabricated from 25AK and 50SK sheet steels.

3. Equation 4.6 can be used for the prediction of ultimate load for the

hybrid sections fabricated from 25AK and 50SK sheet steels.

4. For the compact sections of box-shaped stub columns fabricated from

25AK sheet steel (Group B), the predicted ultimate load can be

improved by considering the cold-work of forming.

5. For the compact sections of stub columns, the cold-work of forming

is not the only reason to cause the discrepancies between the tested

and computed ultimate loads. The tested loads are also affected by

the ~ype of stress-strain relationship.

6. The predicted ultimate loads for the stub columns fabricated from 50SK

sheet steel (Group A) were found to be less conservative than the

specimens fabricated from 25AK sheet steel (Group.B).
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7. The percentage increases in mean crushing loads are slightly less than

the percentage increases in ultimate loads for the stub column

specimens.

8. Similar to the material tests, the box-shaped stub columns fabricated

from 50SK sheet steel are less strain-rate sensitive than those

fabricated from 25AK sheet steel for the ultimate loads and mean

crushing loads.

9. The ultimate loads and mean crushing loads of hybrid sections (Group

C) are close to the average values of Groups A and B specimens having

the similar dimensions.

10. For the design purpose, the mean crushing loads may be estimated by

applying the computed ultimated loads (Equations 4.5 or 4.6) in

Equation 4.13 for box-shaped and hat-shaped stub columns. The

ultimate load was calculated on the basis of dynamic tensile yield

stresses (Equation 4.14).

In summary, the ultimate loads and mean crushing loads of cold-formed

steel stub columns increase with increasing strain rates. A better

prediction for ultimate loads can be obtained by using the dynamic yield

streses. The effective cross-sectional area can also be employed in the

calculation of ultimate load for hybrid sections. Equation 4.13 can be used

for computing the mean crushing loads of both box-shaped and hat-shaped stub

columns failed by folding. It can be used only for the stub columns having

the aspect ratio between 0.5 and 2.0 with sufficient connections to prevent

premature failure. This equation should be verified for a large range of

materials and member configurations.

verify and improve the findings.

Future beam tests can be used to
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Table 3.1

Designation of Stub Column Specimens Used in This Study
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1st Digit 1st Letter 2nd Digit 2nd Letter 3rd Digit

Test Type Test No. Strain-Rate Section Type wit Ratio
(in. / in. / sec. ) (Group) (case)

1 : Stub-Column A: 1st Test 0: 0.0001 A: Two Hat Sec. 1 : Small
Test (50SK & 50SK)

B: 2nd Test 1 : 0.001 B: Two Hat Sec. 2: Medium
(25Ak & 25AK)

2: 0.01 C: Two Hat Sec. 3 : Large
(25AK & SOSK)

3: 0.1 D: Hat Sec.-SOSK 4: X Large
Plate -2SAK

E: Hat Sec.-25AK
Plate -50SK



Table 3.2

Number of Performed Stub Column Tests
Box-Shaped Specimens Assembled from Two Hat Sections

(50SK Sheet Steel)
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Spec. Test Speed Strain Rate wit No. of Tests
(in. Imin.) (in . I in . Is ec . ) Performed

1AOA1 0.075 0.0001 24.30 1
1BOA1 0.075 0.0001 24.40 1
1A1A1 0.750 0.001 24.30 1
1B1A1 0.750 0.001 24.32 1
1A2A1 7.500 0.01 24.26 1
1B2A1 7.500 0.01 24.14 1
1A3A1 75.00 0.1 24.28 1
1B3A1 75.00 0.1 24.25 1

1AOA2 0.086 0.0001 44.36 1
1BOA2 0.086 0.0001 44.47 1
1A1A2 0.857 0.001 44.55 1
1B1A2 0.857 0.001 44.53 1
1A2A2 8.571 0.01 44.63 1
1B2A2 8.571 0.01 44.41 1
1A3A2 85.71 0.1 44.47 1
1B3A2 85.71 0.1 44.44 1

1AOA3 0.075 0.0001 47.79 1
1BOA3 0.075 0.0001 47.87 1
1A1A3 0.750 0.001 47.68 1
1B1A3 0.750 0.001 47.83 1
1A2A3 7.500 0.01 47.87 1
1B2A3 7.500 0.01 47.86 1
1A3A3 75.00 0.1 47.79 1
1B3A3 75.00 0.1 47.82 1

1AOA4 0.100 0.0001 61.56 1
1BOA4 0.100 0.0001 61.44 1
1A1A4 1.000 0.001 61.24 1
1B1A4 1. 000 0.001 61.39 1
1A2A4 10.00 0.01 61.41 1
1B2A4 10.00 0.01 61.53 1
1A3A4 100.0 0.1 61.49 1
1B3A4 100.0 0.1 61. 51 1

Subtotal 32



Table 3.3

Number of Performed Stub Column Tests
Box-Shaped Specimens Assembled from Two Hat Sections

(25AK Sheet Steel)
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Spec. Test Speed Strain Rate wit No. of Tests
(in. jmin.) (in. I in. jsec. ) Performed

1AOB1 0.075 0.0001 23.06 1
1BOB1 0.075 0.0001 23.03 1
1A1B1 0.750 0.001 23.13 1
1B1B1 0.750 0.001 23.08 1
1A2B1 7.500 0.01 23.17 1
1B2B1 7.500 0.01 23.16 1
1A3B1 75.00 0.1 23.17 1
1B3B1 75.00 0.1 23.02 1

1AOB2 0.086 0.0001 42.56 1
1BOB2 0.086 0.0001 42.30 1
1A1B2 0.857 0.001 42.10 1
1B1B2 0.857 0.001 42.35 1
1A2B2 8.571 0.01 42.29 1
1B2B2 8.571 0.01 42.33 1
1A3B2 85.71 0.1 42.30 1
1B3B2 85.71 0.1 42.46 1

1AOB3 0.075 0.0001 45.21 1
1BOB3 0.075 0.0001 45.29 1
1A1B3 0.750 0.001 45.35 1
1B1B3 0.750 0.001 45.24 1
1A2B3 7.500 0.01 45.35 1
1B2B3 7.500 0.01 45.37 1
1A3B3 75.00 0.1 45.42 1
1B3B3 75.00 0.1 45.29 1

1AOB4 0.100 0.0001 58.35 1
1BOB4 0.100 0.0001 58.31 1
1A1B4 1. 000 0.001 58.37 1
1B1B4 1.000 0.001 58.20 1
1A2B4 10.00 0.01 58.19 1
1B2B4 10.00 0.01 58.38 1
1A3B4 100.0 0.1 58.33 1
1B3B4 100. a 0.1 58.30 1

Subtotal 32



Table 3.4

Number of Performed Stub Column Tests
Box-Shaped Specimens Assembled from Two Hat Sections

(50SK and 25AK Sheet Steels)
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Spec. Test Speed Strain Rate wit wit No. of Tests
(in ./min.) (in. I in. Isec.) (50SK) (25AK) Performed

1AOC1 0.075 0.0001 24.41 22.98 1
1BOC1 0.075 0.0001 24.21 23.14 1
1A1C1 0.750 0.001 24.36 23.12 1
1B1C1 0.750 0.001 24.21 23.06 1
1A2C1 7.500 0.01 24.36 23.03 1
1B2C1 7.500 0.01 24.39 23.15 1
1A3C1 75.00 0.1 24.25 23.04 1
1B3C1 75.00 0.1 24.29 23.06 1

1AOC2 0.086 0.0001 44.52 42.39 1
1BOC2 0.086 0.0001 44.66 41. 96 1
1A1C2 0.857 0.001 44.64 42.20 1
1B1C2 0.857 0.001 44.68 42.43 1
1A2C2 8.571 0.01 44.68 42.26 1
1B2C2 8.571 0.01 44.53 42.33 1
1A3C2 85.71 0.1 44.24 42.12 1
1B3C2 85.71 0.1 44.41 42.44 1

1AOC3 0.075 0.0001 47.78 45.33 1
1BOC3 0.075 0.0001 47.76 45.21 1
1A1C3 0.750 0.001 47.82 45.30 1
1B1C3 0.750 0.001 47.78 45.33 1
1A2C3 7.500 0.01 47.80 45.46 1
1B2C3 7.500 0.01 47.78 45.31 1
1A3C3 75.00 0.1 47.80 45.31 1
1B3C3 75.00 0.1 47.82 45.26 1

1AOC4 0.100 0.0001 61.49 58.22 1
1BOC4 0.100 0.0001 61. 39 58.28 1
1A1C4 1.000 0.001 61.53 58.28 1
1B1C4 1.000 0.001 61.40 58.26 1
1A2C4 10.00 0.01 61.42 58.29 1
1B2C4 10.00 0.01 61. 60 58.16 1
1A3C4 100.0 0.1 61.57 58.07 1
1B3C4 100.0 0.1 61.41 58.22 1

Subtotal 32



Table 3.5

Number of Performed Stub Column Tests
Hat-Shaped Specimens Assembled from Hat Section
(50SK Sheet Steel) and Plate (25AK Sheet Steel)
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Spec. Test Speed Strain Rate wit wit No. of Tests
(in. Imin.) (in./in./sec.) (50SK) (25AK) Performed

1AOD1 0.075 0.0001 17.51 34.26 1
1BOD1 0.075 0.0001 17.52 34.19 1
1AID1 0.750 0.001 17.41 34.17 1
1B1D1 0.750 0.001 17.68 34.19 1
1A2D1 7.500 0.01 17.41 34.21 1
1B2Dl 7.500 0.01 17.56 34.18 1
1A3D1 75.00 0.1 17.44 34.17 1
1B3D1 75.00 0.1 17.56 34.23 1

1AOD2 0.075 0.0001 23.99 40.54 1
1BOD2 0.075 0.0001 24.11 40.53 1
1A1D2 0.750 0.001 24.17 40.49 1
1B1D2 0.750 0.001 24.10 40.54 1
1A2D2 7.500 0.01 23.84 40.49 1
1B2D2 7.500 0.01 24.09 40.54 1
1A3D2 75.00 0.1 23.99 40.47 1
1B3D2 75.00 0.1 24.11 40.50 1

1AOD3 0.086 0.0001 44.33 59.63 1
1BOD3 0.086 0.0001 44.30 59.69 1
1A1D3 0.857 0.001 44.43 59.68 1
1BID3 0.857 0.001 44.15 59.69 1
1A2D3 8.571 0.01 44.14 59.72 1
1B2D3 8.571 0.01 44.36 59.72 1
1A3D3 85.71 0.1 44.07 59.72 1
1B3D3 85.71 0.1 44.36 59.73 1

Subtotal 24



Table 3.6

Number of Performed Stub Column Tests
Hat-Shaped Specimens Assembled from Hat Section
(25AK Sheet Steel) and Plate (50SK Sheet Steel)
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Spec. Test Speed Strain Rate wit wit No. of Tests
(in. /min. ) (in./in./sec. ) (50SK) (25AK) Performed

1AOE1 0.075 0.0001 9.67 29.05 1
1BOE1 0.075 0.0001 10.22 29.08 1
1A1E1 0.750 0.001 10.10 29.03 1
1B1E1 0.750 0.001 10.10 28.97 1
1A2E1 7.500 0.01 9.74 29.03 1
1B2E1 7.500 0.01 9.98 29.01 1
1A3E1 75.00 0.1 10.20 29.03 1
1B3E1 75.00 0.1 10.19 28.99 1

1AOE2 0.075 0.0001 22.90 42.50 1
1BOE2 0.075 0.0001 22.93 42.53 1
1A1E2 0.750 0.001 23.20 42.64 1
1B1E2 0.750 0.001 22.92 42.55 1
1A2E2 7.500 0.01 22.96 42.50 1
1B2E2 7.500 0.01 23.06 42.51 1
1A3E2 75.00 0.1 23.01 42.51 1
1B3E2 75.00 0.1 22.89 42.49 1

1AOE3 0.086 0.0001 42.28 62.74 1
1BOE3 0.086 0.0001 41. 98 62.78 1
1A1E3 0.857 0.001 42.13 62.73 1
1B1E3 0.857 0.001 42.06 62.78 1
1A2E3 8.571 0.01 42.16 62.73 1
1B2E3 8.571 0.01 42.02 62.74 1
1A3E3 85.71 0.1 42.24 62.72 1
1B3E3 85.71 0.1 42.17 62.76 1

Subtotal 24
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Table 3.7

Average Mechanical Properties of 25AK Sheet Steel Used in
the Experimental Study Under Different Strain Rates

Strain Rate (Fy)c (Fpr)c (Fy)t (Fu)t Elongation

in./in./sec. (ksi) (ksi) (ksi) (ksi) (%)

0.0001 21. 66 15.93 24.60 42.76 -----
0.01 24.77 19.55 27.86 44.44 49.31
0.1 29.80 22.81 31. 72 47.35 50.98
1.0 38.14 ***** 35.13 51.25 58.18

Table 3.8

Average Mechanical Properties of 50SK Sheet Steel Used in
the Experimental Study Under Different Strain Rates

Strain Rate (Fy)c (Fpr)c (Fy)t (Fu)t Elongation

in ./in./sec. (ksi) (ksi) (ksi) (ksi) (%)

0.0001 53.35 41. 98 54.97 67.07 36.09
0.01 55.91 42.46 56.83 68.98 33.34
0.1 56.96 44.36 58.06 71.04 34.45
1.0 59.41 *..;,*** 60.73 76.50 40.13

Notes:
1) (Fy)c and (Fpr)c are based on longitudinal compression coupon

tests.
2) (Fy)t and (Fu)t and Elongation are determined from

longitudinal tension coupon tests.
3) Elongation was measured by using a 2-in. gage length.



Table 3.9

Dimensions of Box-Shaped Columns Assembled from Two Hat Sections
(50SK Sheet Steel)

Spec. BF BW BL Area wit Length
(in. ) (in. ) (in. ) (in. 2 ) (in. )

1AOA1 2.259 1. 993 0.849 1.1046 24.30 11.97
1BOA1 2.266 1.990 0.853 1.1058 24.40 11.96
1A1A1 2.259 1.990 0.847 1.1030 24.30 11.96
1B1A1 2.260 1. 995 0.847 1.1046 24.32 11.97
1A2A1 2.256 1. 994 0.851 1. 1049 24.26 11.95
1B2A1 2.247 1. 993 0.844 1.1012 24.14 11.97
1A3A1 2.257 1. 993 0.847 1. 1036 24.28 11. 96
1B3A1 2.255 1.985 0.844 1. 1000 24.25 11. 95

1AOA2 3.743 1.986 0.848 1. 3217 44.36 14.94
1BOA2 3.751 1. 982 0.840 1. 3194 44.47 14.88
1A1A2 3.757 1. 988 0.847 1. 3241 44.55 15.00
1B1A2 3.756 1. 983 0.843 1. 3213 44.53 14.99
1A2A2 3.763 1. 991 0.842 1.3244 44.63 15.00
1B2A2 3.747 1. 984 0.845 1.3208 44.41 15.00
1A3A2 3.751 1. 983 0.845 1. 3211 44.47 15.00
1B3A2 3.749 1. 982 0.845 1.3205 44.44 15.00

1AOA3 3.997 1.118 0.840 1.1000 47.79 11. 98
1BOA3 4.003 1.111 0.837 1. 0980 47.87 11. 98
1A1A3 3.989 1.115 0.840 1.0980 47.68 11. 95
1B1A3 4.000 1.112 0.836 1. 0975 47.83 11.96
1A2A3 4.003 1.111 0.839 1.0985 47.87 11. 97
1B2A3 4.002 1.113 0.840 1. 0993 47.86 11.94
1A3A3 3.997 1.111 0.840 1. 0980 47.79 11.98
1B3A3 3.999 1.116 0.835 1. 0983 47.82 11.94

1AOA4 5.016 1. 978 0.844 1.5066 61.56 18.00
1BOA4 5.007 1. 976 0.844 1. 5047 61.44 17.95
1A1A4 4.992 1.983 0.850 1.5063 61.24 17.95
1B1A4 5.003 1.977 0.848 1. 5055 61. 39 17.97
1A2A4 5.005 1. 974 0.847 1. 5047 61.41 17.95
1B2A4 5.014 1.984 0.844 1. 5081 61.53 17.98
1A3A4 5.011 1.986 0.846 1. 5088 61.49 17.95
1B3A4 5.012 1. 975 0.847 1. 5060 61. 51 17.94

Note * For symbols of dimensions, see Figure 3.1(a).
* The thickness of 50SK sheet steel is 0.074 in ..
* The inside bend radius (R) is 0.15625 (5/32)

in. for all specimens.
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Table 3.10

Dimensions of Box-Shaped Columns Assembled from Two Hat Sections
(25AK Sheet Steel)

Spec. BF BW BL Area wit Length
(in. ) (in. ) (in. ) (in. 2 ) (in. )

1ADB1 2.267 1. 994 0.855 1. 1658 23.06 11. 98
1BOB1 2.265 1. 997 0.861 1.1683 23.03 11. 98
1A1B1 2.273 1. 993 0.854 1. 1661 23.13 11. 99
1B1B1 2.268 1. 993 0.861 1. 1675 23.07 11.96
1A2B1 2.276 1. 991 0.852 1. 1653 23.17 11. 98
1B2B1 2.275 1.991 0.863 1.1686 23.16 11. 97
1A3B1 2.276 1. 999 0.855 1.1688 23.17 11. 98
1B3B1 2.264 1. 993 0.862 1.1672 23.02 11. 97

1AOB2 3.788 1. 981 0.866 1. 4025 42.56 14.94
18082 3.768 1.986 0.865 1. 4006 42.30 14.94
1A182 3.752 1.994 0.867 1. 40 12 42.10 14.95
1B1B2 3.772 1. 992 0.861 1. 40 18 42.35 14.93
1A282 3.767 1.986 0.864 1. 400 1 42.29 14.97
1B2B2 3.770 1.983 0.863 1. 3993 42.33 14.94
1A382 3.768 1. 981 0.860 1. 3975 42.30 14.93
1B382 3.780 1.982 0.863 1. 4006 42.46 14.97

1A083 3.995 1.125 0.850 1.1627 45.21 11. 95
1B083 4.001 1.121 0.859 1.1652 45.29 11.94
1A1B3 4.006 1.123 0.845 1.1622 45.35 11.94
181B3 3.997 1.129 0.848 1.1636 45.24 11. 97
1A2B3 4.006 1.114 0.856 1. 1629 45.35 11. 95
182B3 4.007 1.123 0.851 1.1643 45.37 11.94
1A383 4.011 1.115 0.850 1.1621 45.42 11. 95
1B3B3 4.001 1.125 0.856 1.1655 45.29 11. 95

1AOB4 5.020 1. 978 0.859 1. 5915 58.35 17.95
18084 5.017 1. 985 0.855 1. 5920 58.31 17.97
1A184 5.021 1.983 0.853 1. 5914 58.36 17.95
1B1B4 5.008 1. 987 0.855 1. 5912 58.20 17.94
1A2B4 5.007 1.982 0.858 1. 5904 58.19 17.96
182B4 5.022 1. 986 0.859 1.5943 58.38 17.94
1A3B4 5.018 1.980 0.855 1.5906 58.33 17.94
1B384 5.016 1. 983 0.855 1.5912 58.30 17.92
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Note * For

* The

* The
in.

symbols of dimensions, see Figure 3.1(a).
thickness of 25AK sheet steel is 0.078 in ..
inside bend radius (R) is 0.15625 (5/32)
for all specimens.



Table 3.11

Dimensions of Box-Shaped Columns Assembled from Two Hat Sections
(50SK and 25AK Sheet Steels)
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Spec. Steel BF BW BL Area wit Length
type (in. ) (in. ) (in. ) (in. 2 ) (in. )

1AOC1 50SK 2.267 1.990 0.847 0.5521 24.41 11.96
25AK 2.261 1.990 0.865 0.5834 22.98 11. 96

1BOC1 50SK 2.252 1.994 0.844 o.5511 24.21 11. 97
25AK 2.273 1.994 0.859 0.5840 23.13 11. 97

1A1C1 50SK 2.263 1. 986 0.843 0.5506 24.36 11.95
25AK 2.272 1. 986 0.857 0.5824 23.12 11. 95

IB1C1 50SK 2.252 1. 992 0.843 0.5507 24.21 11.96
25AK 2.267 1. 992 0.858 0.5831 23.06 11.96

1A2C1 50SK 2.263 1.991 0.845 0.5516 24.36 11.95
25AK 2.265 1.991 0.857 0.5826 23.03 11.95

1B2C1 50SK 2.265 1.985 0.845 0.5509 24.39 11. 97
25AK 2.274 1.985 0.861 0.5830 23.15 11. 97

1A3Cl 50SK 2.255 1.991 0.846 0.5512 24.25 11. 93
25AK 2.266 1.991 0.858 0.5828 23.04 11. 93

1B3C1 50SK 2.258 1.977 0.844 0.5491 24.29 11.95
25AK 2.267 1.977 0.860 0.5810 23.06 11. 95

1AOC2 50SK 3.755 1. 981 0.846 0.6607 44.52 14.92
25AK 3.775 1. 981 0.863 0.6998 42.39 14.92

1BOC2 50SK 3.765 1.985 0.848 0.6623 44.66 14.95
25AK 3.741 1.985 0.866 0.6982 41.96 14.95

lAIC2 50SK 3.764 1. 987 0.842 0.6617 44.64 14.94
25AK 3.760 1. 987 0.864 0.6998 42.20 14.94

1BIC2 50SK 3.767 1. 982 0.847 0.6619 44.68 14.93
25AK 3.778 1. 982 0.865 0.7005 42.43 14.93

lA2C2 50SK 3.767 1. 979 0.843 0.6609 44.68 14.95
25AK 3.765 1. 979 0.861 0.6983 42.26 14.95

1B2C2 50SK 3.756 1. 981 0.849 0.6612 44.53 14.94
25AK 3.770 1. 981 0.864 0.6995 42.33 14.94

1A3C2 50SK 3.734 1. 991 0.846 0.6606 44.24 14.95
25AK 3.754 1. 991 0.862 0.6995 42.12 14.95

IB3C2 50SK 3.747 1.989 0.845 0.6612 44.41 14.93
25AK 3.779 1.989 0.863 0.7013 42.44 14.93

Note * For symbols of dimensions, see Figure 3.1(a).



Table 3.11 (Cont'd)

Dimensions of Box-Shaped Columns Assembled from Two Hat Sections
(50SK and 25AK Sheet Steels)
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Spec. Steel BF BW BL Area wit Length
type (in. ) (in. ) (in. ) (in. 2 ) (in. )

1AOC3 50SK 3.996 1.119 0.843 0.5505 47.78 11. 94
25AK 4.004 1.119 0.851 0.5812 45.33 11. 94

1BOC3 50SK 3.995 1.119 0.840 0.5500 47.76 11. 95
25AK 3.995 1.119 0.851 0.5806 45.21 11. 95

1A1C3 50SK 3.999 1.114 0.841 0.5497 47.82 11. 95
25AK 4.002 1.114 0.849 0.5800 45.30 11. 95

1B1C3 50SK 3.996 1.113 0.839 0.5491 47.78 11. 93
25AK 4.004 1.113 0.853 0.5806 45.33 11. 93

1A2C3 50SK 3.998 1.108 0.841 0.5488 47.80 11. 94
25AK 4.014 1.108 0.858 0.5814 45.46 11.94

1B2C3 50SK 3.996 1.113 0.843 0.5496 47.78 11. 95
25AK 4.003 1.113 0.851 0.5803 45.31 11. 95

1A3C3 50SK 3.998 1.120 0.840 0.5504 47.80 11.94
25AK 4.003 1.120 0.854 0.5818 45.31 11. 94

1B3C3 50SK 3.999 1.118 0.842 0.5505 47.82 11. 96
25AK 3.999 1.118 0.850 0.5806 45.26 11. 96

1AOC4 50SK 5.011 1. 979 0.853 0.7544 61.49 17.94
25AK 5.010 1. 979 0.853 0.7942 58.22 17.94

1BOC4 50SK 5.003 1. 978 0.848 0.7529 61. 39 17.95
25AK 5.014 1. 978 0.848 0.7400 58.28 17.95

1A1C4 50SK 5.014 1. 976 0.850 0.7537 61.53 17.93
25AK 5.014 1. 976 0.853 0.7941 58.28 17.93

1B1C4 50SK 5.004 1. 981 0.847 0.7533 61.40 17.95
25AK 5.013 1. 981 0.853 0.7948 58.26 17.95

1A2C4 50SK 5.006 1. 980 0.850 0.7537 61.43 17.97
25AK 5.015 1. 980 0.853 0.7948 58.29 17.97

1B2C4 50SK 5.019 1. 981 0.845 0.7541 61.60 17.93
25AK 5.005 1. 981 0.854 0.7943 58.16 17.93

1A3C4 50SK 5.017 1. 980 0.849 0.7544 61.57 17.94
25AK 4.998 1. 980 0.854 0.7936 58.07 17.94

1B3C4 50SK 5.005 1. 988 0.844 0.7540 61.42 17.93
25AK 5.010 1. 988 0.850 0.7951 58.22 17.93

Note * For symbols of dimensions, see Figure 3.1(a).



Table 3.12

Dimensions of Hat-Shaped Columns Assembled from Hat Section
(50SK Sheet Steel) and Plate (25AK Sheet Steel)

(a) Dimensions of Hat Sections (50SK Sheet Steel)

Spec. BF BW BL Area wit Length
(in. ) (in. ) (in. ) (in. 2 ) (in. )

1AOD1 1. 756 1. 993 0.839 0.5135 17.51 11.94
1BOD1 1. 757 2.001 0.839 0.5148 17.52 11. 97
1AID1 1. 749 2.003 0.839 0.5145 17.41 11.94
1B1D1 1. 769 1. 993 0.840 0.5146 17.68 11. 94
1A2D1 1. 749 1. 995 0.839 0.5133 17.41 11. 95
1B2Dl 1. 760 1. 992 0.840 0.5138 17.56 11. 95
1A3D1 1. 751 1.999 0.844 0.5148 17.44 11.96
1B3Dl 1. 760 1. 990 0.833 0.5125 17.56 11.98

1AOD2 2.236 2.009 0.844 0.5522 23.99 11.94
1BOD2 2.245 1. 995 0.844 0.5508 24.11 11. 93
lAID2 2.249 1. 998 0.848 0.5521 24.17 11. 59
1B1D2 2.244 1. 993 0.844 0.5504 24.10 11.94
1A2D2 2.225 2.004 0.845 0.5508 23.84 11.88
1B2D2 2.243 1.994 0.843 0.5503 24.09 11.94
1A3D2 2.236 1.994 0.847 0.5504 23.99 11.94
1B3D2 2.245 1. 993 0.845 0.5506 24.11 11.94

1AOD3 3.741 1. 986 0.849 0.6609 44.33 14.93
1BOD3 3.739 1.990 0.847 0.6610 44.30 14.95
1A1D3 3.748 1. 993 0.850 0.6626 44.43 14.94
1B1D3 3.725 1. 997 0.845 0.6608 44.15 14.94
1A2D3 3.727 1. 994 0.847 0.6607 44.14 14.94
1B2D3 3.743 1.998 0.844 0.6621 44.36 14.95
1A3D3 3.722 2.002 0.847 0.6615 44.07 14.94
1B3D3 3.743 2.000 0.844 0.6623 44.36 14.93

Note * For symbols of dimensions, see Figure 3.1(b).
* w = WF, see Figure 3.1(b).
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Table 3.12 (Cont'd)

Dimensions of Hat-Shaped Columns Assembled from Hat Section
(50SK Sheet Steel) and Plate (25AK Sheet Steel)

(b) Dimensions of Plates (25AK Sheet Steel)

Spec. BP Area wit Length
(in. ) (in. 2) (in. )

1AOD1 3.511 0.2739 34.26 11.94
1BOD1 3.506 0.2735 34.19 11. 97
1AID1 3.504 0.2733 34.17 11.94
1BID1 3.507 0.2735 34.19 11.94
1A2D1 3.507 0.2735 34.21 11. 95
1B2D1 3.506 0.2735 34.18 11. 95
1A3D1 3.509 0.2737 34.17 11. 96
1B3D1 3.503 0.2732 34.23 11. 98

1AOD2 4.006 0.3125 40.54 11.94
1BOD2 4.005 0.3124 40.53 11. 93
1A1D2 4.006 0.3125 40.49 11. 59
1B1D2 4.006 0.3125 40.54 11.94
1A2D2 4.003 0.3122 40.49 11. 88
1B2D2 4.005 0.3124 40.54 11.94
1A3D2 4.004 0.3123 40.47 11.94
1B3D2 4.004 0.3123 40.50 11.94

1AOD3 5.500 0.4290 59.63 14.93
1BOD3 5.503 0.4292 59.69 14.95
1AID3 5.505 0.4294 59.68 14.94
1BID3 5.501 0.4291 59.69 14.94
1A2D3 5.505 0.4294 59.72 14.94
1B2D3 5.502 0.4292 59.72 14.95
1A3D3 5.505 0.4294 59.72 14.94
1B3D3 5.503 0.4292 59.73 14.93

Note * For symbols of dimensions, see Figure 3.1(b).
* w = WP, see Figure 3.1(b)
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Table 3.13

Dimensions of Hat-Shaped Columns Assembled from Hat Section
(25AK Sheet Steel) and Plate (50SK Sheet Steel)

(a) Dimensions of Hat Sections (25AK Sheet Steel)

Spec. BF BW BL Area wit Length
(in. ) (in. ) (in. ) (in. 2 ) (in. )

1AOE1 1.223 2.019 0.855 0.5054 9.67 11.94
1BOE1 1.266 1. 997 0.853 0.5050 10.22 11.95
1A1E1 1.256 2.008 0.855 0.5062 10.10 11. 95
1B1E1 1. 256 2.000 0.858 0.5055 10.10 11. 95
1A2E1 1.228 2.018 0.858 0.5061 9.74 11.96
1B2E1 1. 247 2.009 0.858 0.5062 9.98 11. 93
1A3E1 1.264 2.001 0.856 0.5059 10.20 11. 94
1B3E1 1.263 2.003 0.858 0.5065 10.19 11. 94

1AOE2 2.225 1. 996 0.860 0.5831 22.90 11.95
1BOE2 2.257 2.004 0.861 0.5846 22.93 11.94
1A1E2 2.278 1. 995 0.851 0.5833 23.20 11.94
1B1E2 2.256 1. 994 0.860 0.5828 22.92 11. 95
1A2E2 2.259 1. 997 0.861 0.5837 22.96 11. 95
1B2E2 2.267 1. 996 0.861 0.5842 23.06 11. 94
1A3E2 2.263 1. 996 0.861 0.5838 23.01 11. 97
1B3E2 2.254 1. 997 0.865 0.5839 22.89 11.94

1AOE3 3.766 2.004 0.862 0.7025 42.28 14.94
1BOE3 3.743 2.008 0.860 0.7010 41. 98 14.94
1A1E3 3.755 2.012 0.864 0.7032 42.13 14.94
1B1E3 3.749 2.010 0.859 0.7016 42.06 14.94
1A2E3 3.757 2.006 0.864 0.7024 42.16 14.94
1B2E3 3.746 1. 991 0.863 0.6991 42.02 14.95
1A3E3 3.763 1. 992 0.865 0.7004 42.24 14.95
1B3E3 3.758 1. 992 0.860 0.6997 42.17 14.94

Note * For symbols of dimensions, see Figure 3.1(b).
* w = WF, see Figure 3.1(b)
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Table 3.13 (Cont'd)

Dimensions of Hat-Shaped Columns Assembled from Hat Section
(25AK Sheet Steel) and Plate (50SK Sheet Steel)

(b) Dimensions of Plates (50SK Sheet Steel)

Spec. BP Area wit Length
(in. ) (in. 2) (in. )

1AOE1 3.005 0.2224 29.05 11. 94
1BOE1 3.005 0.2224 29.08 11. 95
1A1E1 3.003 0.2222 29.03 11. 95
1B1E1 3.002 0.2221 28.97 11. 95
1A2E1 3.006 0.2224 29.03 11. 96
1B2E1 3.005 0.2224 29.01 11. 93
1A3E1 3.004 0.2223 29.03 11.94
1B3E1 3.003 0.2222 28.99 11.94

1AOE2 4.006 0.2964 42.50 11. 95
1BOE2 4.008 0.2966 42.53 11.94
1A1E2 4.006 0.2964 42.64 11. 94
1B1E2 4.009 0.2967 42.55 11. 95
1A2E2 4.006 0.2964 42.50 11. 95
1B2E2 4.007 0.2965 42.51 11.94
1A3E2 4.007 0.2965 42.51 11. 97
1B3E2 4.009 0.2967 42.49 11.94

1AOE3 5.505 0.4074 62.74 14.94
1BOE3 5.506 0.4074 62.78 14.94
1A1E3 5.506 0.4074 62.73 14.94
1B1E3 5.505 0.4074 62.78 14.94
1A2E3 5.506 0.4074 62.73 14.94
1B2E3 5.506 0.4074 62.74 14.95
1A3E3 5.506 0.4074 62.72 14.95
1B3E3 5.504 0.4073 62.76 14.94

Note * For symbols of dimensions, see Figure 3.1(b).
* w = WP, see Figure 3.1(b).
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Table 4.1

Comparison of Computed and Tested Critical Local Buckling Loads
Box-Shaped Stub Columns Assembled from Two Hat Sections

(50SK Sheet Steel)

64

Spec. Strain Rate (fcr)comp (Pcr)comp (Pcr)test (3)/(2)
(in. / in. /sec. ) (ksi) (kips) (kips)

(1) (2) (3) (4)

1AOA1 0.0001 50.70 56.00 N/A N/A
1BOA1 0.0001 50.69 56.05 N/A N/A
1A1A1 0.001 51. 52 56.83 N/A N/A
1B1A1 0.001 51.52 56.91 N/A N/A
1A2A1 0.01 52.76 58.29 N/A N/A
1B2A1 0.01 52.79 58.13 N/A N/A
1A3A1 0.1 53.87 59.45 N/A N/A
1B3A1 0.1 53.88 59.27 N/A N/A

1AOA2 0.0001 44.54 58.87 N/A N/A
1BOA2 0.0001 44.50 58.71 N/A N/A
1A1A2 0.001 44.82 59.35 N/A N/A
1B1A2 0.001 44.83 59.23 N/A N/A
1A2A2 0.01 45.24 59.92 N/A N/A
1B2A2 0.01 45.35 59.90 N/A N/A
1A3A2 0.1 46.60 61.56 N/A N/A
1B3A2 0.1 46.61 61.55 N/A N/A

1AOA3 0.0001 43.13 47.44 49.73 1. 05
1BOA3 0.0001 43.09 47.31 47.87 1. 01
1A1A3 0.001 43.43 47.68 50.81 1. 08
1B1A3 0.001 43.36 47.59 47.63 1. 00
1A2A3 0.01 43.64 47.94 50.46 1. 05
1B2A3 0.01 43.65 47.98 48.12 1. 00
1A3A3 0.1 44.99 49.40 52.32 1. 06
1B3A3 0.1 44.98 49.40 49.83 1. 01

1AOA4 0.0001 28.14 42.40 47.83 1.13
1BOA4 0.0001 28.25 42.51 46.46 1. 09
1A1A4 0.001 28.44 42.84 47.88 1. 12
1B1A4 0.001 28.30 42.61 43.58 1. 02
1A2A4 0.01 28.28 42.55 47.54 1. 12
1B2A4 0.01 28.17 42.48 48.31 1. 14
1A3A4 0.1 28.20 42.55 45.29 1. 06
1B3A4 0.1 28.19 42.46 47.53 1. 12

Mean 1. 066

Standard Deviation 0.050



Table 4.2

Comparison of Computed and Tested Critical Local Buckling Loads
Box-Shaped Stub Columns Assembled from Two Hat Sections

(25AK Sheet Steel)
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Spec. Strain Rate (fcr)comp (Pcr)comp (Pcr)test (3)/(2)
(in./in./sec. ) (ksi) (kips) (kips)

(1) (2) (3) (4)

1AOB1 0.0001 21. 20 24.72 N/A N/A
1BOB1 0.0001 21. 21 24.78 N/A N/A
1A1B1 0.001 21.46 25.03 N/A N/A
1B1B1 0.001 21.46 25.06 N/A N/A
1A2B1 0.01 24.26 28.27 N/A N/A
1B2B1 0.01 24.26 28.35 N/A N/A
1A3B1 0.1 29.00 33.89 N/A N/A
1B3B1 0.1 29.01 33.86 N/A N/A

1AOB2 0.0001 20.11 28.20 N/A N/A
1BOB2 0.0001 20.13 28.19 N/A N/A
1A1B2 0.001 20.62 28.90 N/A N/A
1B1B2 0.001 20.61 28.89 N/A N/A
1A2B2 0.01 23.06 32.29 N/A N/A
1B2B2 0.01 23.06 32.26 N/A N/A
1A3B2 0.1 27.12 37.91 N/A N/A
1B3B2 0.1 27.11 37.96 N/A N/A

1AOB3 0.0001 19.91 23.15 N/A N/A
1BOB3 0.0001 19.90 23.19 N/A N/A
1A1B3 0.001 20.43 23.75 N/A N/A
1B1B3 0.001 20.44 23.78 N/A N/A
1A2B3 0.01 22.80 26.51 N/A N/A
1B2B3 0.01 22.80 26.55 N/A N/A
1A3B3 0.1 26.72 31.05 N/A N/A
1B3B3 0.1 26.73 31.16 N/A N/A

1AOB4 0.0001 18.75 29.83 37.81 1. 27
1BOB4 0.0001 18.75 29.85 38.89 1. 30
1A1B4 0.001 19.51 31.05 41. 38 1. 33
1B1B4 0.001 19.53 31. 07 N/A N/A
1A2B4 0.01 21. 53 34.24 44.55 1. 30
1B2B4 0.01 21. 51 34.29 44.41 1. 30
1A3B4 0.1 24.71 39.31 48.27 1.23
1B3B4 0.1 24.72 39.33 47.78 1. 21

Mean 1.277

Standard Deviation 0.043



Table 4.3

Comparison of Computed and Tested Critical Local Buckling Loads
Box-Shaped Stub Columns Assembled from Two Hat Sections

(50SK and 25AK Sheet Steels)

66

Spec. Strain Rate (fcr)comp (Pcr)comp (Pcr)test (3)/(2)
(in./in./sec. ) (ksi) (kips) (kips)

(1) (2) (3) (4)

...
1AOC1 0.0001 50.68" 40.03 N/A N/A...
1BOC1 0.0001 50.73" 40.03 N/A N/A...
1A1C1 0.001 51.51" 40.68 N/A N/A...
1B1C1 0.001 51. 54" 40.71 N/A N/A......
1A2C1 0.01 24.26 .... 43.20 N/A N/A
1B2C1 0.01 24.26** 43.17 N/A N/A...
1A3C1 0.1 53.88" 45.82 N/A N/A...
1B3C 1 0.1 53.87" 45.65 N/A N/A

...
1AOC2 0.0001 44.48" 43.37 N/A N/A...
1BOC2 0.0001 44.43" 43.38 N/A N/A...
1A1C2 0.001 44.78" 43.93 N/A N/A...
1B1C2 0.001 44.77" 43.94 N/A N/A......
1A2C2 0.01 23.06 .... 44.97 N/A N/A......
1B2C2 0.01 23.06 .... 45.01 N/A N/A...
1A3C2 0.1 46.71" 49.47 N/A N/A...
1B3C2 0.1 46.62" 49.49 N/A N/A

...
1AOC3 0.0001 43.13" 35.27 38.54 1. 09...
1BOC3 0.0001 43.14" 35.23 39.18 1.11...
1A1C3 0.001 43.37" 35.60 40.74 1. 14...
1B1C3 0.001 43.39" 35.59 39.96 1.12......
1A2C3 0.01 22.79 .... 36.57 42.26 1.16.......
1B2C3 0.01 22.81 .... 36.58 42.55 1. 16...
1A3C3 0.1 44.98" 40.08 42.79 1. 08...
1B3C3 0.1 44.98" 40.04 43.58 1. 09

...
1AOC4 0.0001 28.20" 34.55 39.67 1. 15...
1BOC4 0.0001 28.30" 34.60 39.03 1.13...
1A1C4 0.001 28.17" 35.03 41. 91 1. 20...
1B1C4 0.001 28.29" 35.15 40.99 1. 17...
1A2C4 0.01 28.27" 36.03 42.70 1.19...
1B2C4 0.01 28.27" 35.91 41. 82 1.16...
1A3C4 0.1 28.13" 37.02 43.72 1.18...
1B3C4 0.1 28.28" 37.23 45.43 1. 22

Mean 1.146

Standard Deviation 0.043

Note: The superscripts * and ** in column (1) represent the critical
stresses for sections fabricated from 50SK and 25AK sheet
steels, respectively.



Table 4.4

Comparison of Computed and Tested Critical Local Buckling Loads
Hat-Shaped Stub Columns Assembled from Hat Section (50SK)

and plate (25AK)

67

Spec. Strain Rate (fcr)comp (Pcr)comp (Pcr)test (3)/(2)
(in . / in . / s ec . ) (ksi) (kips) (kips)

(1) (2) (3) (4)

.........
1AOD1 0.0001 20.66 .... 31.73 N/A N/A.........
1BOD1 0.0001 20.66 .... 31.78 N/A N/A........
1A1D1 0.001 21. 04.... 31. 71 N/A N/A.........
1BID1 0.001 21. 03 .... 31.72 N/A N/A........
1A2D1 0.01 23.65 .... 30.93 N/A N/A.........
1B2D1 0.01 23.65 .... 30.95 N/A N/A.....
1A3D1 0.1 55.37" 36.12 N/A N/A.....
1B3D1 0.1 55.34" 35.97 N/A N/A

.........
1AOD2 0.0001 20.25 .... 32.24 N/A N/A........
1BOD2 0.0001 20.25 .... 32.17 N/A N/A.........
1AID2 0.001 20.71 .... 32.48 N/A N/A.........
1B1D2 0.001 20.71 .... 32.40 N/A N/A.........
1A2D2 0.01 23.20 .... 32.26 N/A N/A.........
1B2D2 0.01 23.20 .... 32.25 N/A N/A

J .....

1A3D2 0.1 27.35 .... 36.90 N/A N/A
1B3D2 0.1 27.35** 36.91 N/A N/A

1AOD3 0.0001 18.61** 31.87 39.81 1.25
1BOD3 0.0001 18.61** 31. 88 39.86 1. 25.........
1A1D3 0.001 19.41 .... 33.27 42.31 1. 27.........
1BID3 0.001 19.41 .... 33.20 41. 96 1. 26
1A2D3 0.01 21. 36** 33.14 41. 96 1. 27
1B2D3 0.01 21. 36** 33.19 42.70 1. 29.........
1A3D3 0.1 24.47 .... 35.46 43.67 1. 23.........
1B3D3 0.1 24.47 .... 35.48 44.99 1. 27

Mean 1. 261

Standard Deviation 0.018

Note: The superscripts * and ** in column (1) represent the critical
stresses for sections fabricated from 50SK and 25AK sheet
steels, respectively.



Table 4.5

Comparison of Computed and Tested Critical Local Buckling Loads
Hat-Shaped Stub Columns Assembled from Hat Section (25AK)

and plate (50SK)

68

Spec. Strain Rate (fcr)comp (Pcr)comp (Pcr)test (3)/(2)
(in. / in. / sec. ) (ksi) (kips) (kips)

(1) (2) (3) (4 )

....
1AOE1 0.0001 49.57" 21.41 N/A N/A....
1BOE1 0.0001 49.57" 21.40 N/A N/A....
1A1E1 0.001 50.31" 21. 83 N/A N/A...
1B1E1 0.001 50.33" 21. 81 N/A N/A....
1A2E1 0.01 51. 40" 23.65 N/A N/A....
1B2E1 0.01 51. 40" 23.65 N/A N/A....
1A3E1 0.1 52.54" 25.60 N/A N/A....
1B3E1 0.1 52.56" 25.61 N/A N/A

....
1AOE2 0.0001 45.27" 25.13 N/A N/A....
1BOE2 0.0001 45.26" 25.16 N/A N/A....
1A1E2 0.001 45.62" 25.50 N/A N/A....
1B1E2 0.001 45.66" 25.51 N/A N/A....
1A2E2 0.01 46.24" 27.40 N/A N/A...
1B2E2 0.01 46.23" 27.41 N/A N/A....
iA3E2 0.1 47.49" 29.71 N/A N/A....
1B3E2 0.1 47.50" 29.72 N/A N/A

....
1AOE3 0.0001 27.09" 22.80 24.82 1. 09....
1BOE3 0.0001 27.06" 22.75 23.35 1. 03...
1A1E3 0.001 27.10" 23.05 24.28 1. 05....
IB1E3 0.001 27.06" 22.99 24.67 1. 07....
1A2E3 0.01 27.10" 23.67 25.82 1. 09....
1B2E3 0.01 27.09" 23.60 26.24 1.11....
lA3E3 0.1 27.11" 24.51 25.99 1. 06...
1B3E3 0.1 27.08" 24.46 26.77 1. 09

Mean 1. 074

Standard Deviation 0.026

Note: The superscripts * and ** in column (1) represent the critical
stresses for sections fabricated from 50SK and 25AK sheet
steels, respectively.



Table 4.6

Comparison of Computed and Tested Ultimate Loads Based on the
Effective Width Formulas in the 1991 AISI Automotive Steel

Design Manual for Stub Columns Assembled from Two Hat Sections
(50SK Sheet Steel)

* Based on Compressive Yield Stresses

69

Spec. Strain Rate wit (Pu)comp' kips (Pu)test (5)/(3) (5)/(4)
Basea on

in./in./sec. (F~)s (F4:)d kips
(1) (2) ( ) ( ) (5) (6) (7)

1AOA1 0.0001 24.30 58.92 58.92 59.89 1. 02 1. 02
1BOA1 0.0001 24.40 58.99 58.99 59.50 1. 01 1. 01
1A1A1 0.001 24.30 58.84 59.96 60.97 1. 04 1. 02
1B1A1 0.001 24.32 58.93 60.45 60.04 1. 02 0.99
1A2A1 0.01 24.26 58.95 61. 76 63.51 1. 08 1. 03
1B2A1 0.01 24.14 58.75 61. 57 62.24 1. 06 1. 01
1A3A1 0.1 24.28 58.88 62.86 64.48 1. 10 1. 03
1B3A1 0.1 24.25 58.69 62.66 66.10 1. 13 1. 05

1AOA2 0.0001 44.36 64.93 64.93 65.02 1. 00 1. 00
1BOA2 0.0001 44.47 64.75 64.75 65.85 1. 02 1. 02
1A1A2 0.001 44.55 64.97 66.06 68.51 1. 05 1. 04
1B1A2 0.001 44.53 64.82 65.91 68.64 1. 06 1. 04
1A2A2 0.01 44.63 64.94 67.70 70.25 1.08 1. 04
1B2A2 0.01 44.41 64.85 67.61 70.20 1. 08 1. 04
1A3A2 0.1 44.47 64.84 68.73 72.59 1. 12 1. 06
1B3A2 0.1 44.44 64.83 68.71 72.59 1,12 1. 06

1AOA3 0.0001 47.79 51. 51 51. 51 53.25 1. 03 1. 03
1BOA3 0.0001 47.87 51.36 51.36 52.32 1. 02 1. 02
1A1A3 0.001 47.68 51.49 52.28 54.81 1. 06 1. 05
1B1A3 0.001 47.83 51.35 52.18 53.69 1. 05 1. 03
1A2A3 0.01 47.87 51.39 53.48 56.08 1. 09 1. 05
1B2A3 0.01 47.86 51.44 53.53 54.23 1. 05 1. 01
1A3A3 0.1 47.79 51.40 54.34 58.23 1.13 1. 07
1B3A3 0.1 47.82 51.40 54.34 57.74 1. 12 1. 06

1AOA4 0.0001 61.56 66.35 66.35 65.22 0.98 0.98
1BOA4 0.0001 61.44 66.31 66.31 64.88 0.98 0.98
1A1A4 0.001 61.24 66.51 67.60 66.93 1. 01 0.99
1B1A4 0.001 61.39 66.39 67.48 65.22 0.98 0.97
1A2A4 0.01 61. 41 66.33 69.08 70.59 1. 06 1. 02
1B2A4 0.01 61.53 66.45 69.20 71.13 1. 07 1. 03
1A3A4 0.1 61.49 66.51 70.39 72.45 1. 09 1. 03
1B3A4 0.1 61. 51 66.35 70.22 72.50 1. 09 1. 03

Mean 1. 056 1. 025

Standard Deviation 0.045 0.025



Table 4.7

Comparison of Computed and Tested Ultimate Loads Based on the
Effective Width Formulas in the 1991 AISI Automotive Steel

Design Manual for Stub Columns Assembled from Two Hat Sections
(25AK Sheet Steel)

* Based on Compressive Yield Stresses

70

Spec. Strain Rate wit (Pu)comp.' kips (Pu)test (5)/(3) (5)/(4)
Baseo on

in. / in . / sec. (F~)s (F~)d kips
(1) (2) ( ) ( ) (5) (6) (7)

1AOB1 0.0001 23.06 25.25 25.25 34.73 1. 38 1. 38
1BOB 1 0.0001 23.03 25.31 25.31 34.68 1. 37 1. 37
1A1B1 0.001 23.13 25.26 25.45 36.83 1.46 1.45
1B1B1 0.001 23.07 25.29 25.48 36.25 1.43 1.42
1A2B1 0.01 23.17 25.24 28.87 39.42 1. 56 1. 37
1B2B1 0.01 23.16 25.31 28.95 38.98 1. 53 1. 35
1A3B1 0.1 23.17 25.32 34.83 43.04 1. 70 1. 24
1B3B1 0.1 23.02 25.28 34.78 43.09 1. 70 1. 24

1AOB2 0.0001 42.56 30.38 30.38 37.13 1. 22 1. 22
1BOB2 0.0001 42.30 30.34 30.34 36.44 1. 20 1. 20
1A1B2 0.001 42.10 30.35 30.59 39.08 1. 29 1. 28
1B1B2 0.001 42.35 30.36 30.60 38.74 1. 28 1. 27
1A2B2 0.01 42.29 30.33 34.68 42.99 1.42 1. 24
1B2B2 0.01 42.33 30.31 34.66 42.50 1. 40 1. 23
1A3B2 0.1 42.30 30.27 41.25 48.46 1. 60 1. 17
1B3B2 0.1 42.46 30.34 41. 31 48.17 1. 59 1. 17

1AOB3 0.0001 45.21 25.18 25.18 32.63 1. 30 1. 30
1BOB3 0.0001 45.29 25.24 25.24 32.93 1. 30 1. 30
1A1B3 0.001 45.35 25.17 25.37 33.61 1. 34 1. 32
1B1B3 0.001 45.24 25.20 25.40 33.51 1. 33 1. 32
1A2B3 0.01 45.35 25.19 28.62 36.59 1. 45 1. 28
1B2B3 0.01 45.37 25.22 28.65 36.64 1.45 1. 28
1A3B3 0.1 45.42 25.17 33.57 41. 08 1. 63 1. 22

1B3B3 0.1 45.29 25.24 33.70 40.69 1. 61 1. 21

1AOB4 0.0001 58.35 32.69 32.69 38.40 1. 17 1. 17

1BOB4 0.0001 58.31 32.71 32.71 38.89 1. 19 1. 19
1A1B4 0.001 58.37 32.69 32.91 41. 67 1. 28 1. 27

1B1B4 0.001 58.20 32.17 32.94 40.84 1. 27 1. 24
1A2B4 0.01 58.19 32.70 36.73 44.65 1. 37 1. 22
1B2B4 0.01 58.38 32.75 36.78 44.75 1. 37 1. 22
1A3B4 0.1 58.33 32.68 43.05 48.71 1.49 1.13
1B3B4 0.1 58.30 32.70 43.07 48.56 1.49 1. 13

Mean 1. 412 1. 263

Standard Deviation 0.148 0.080



Table 4.8

Comparison of Computed and Tested Ultimate Loads Based on the
Effective Width Formulas in the 1991 AISI Automotive Steel

Design Hanual for Stub Columns Assembled from Two Hat Sections
(50SK and 25AK Sheet Steels)

* Based on Compressive Yield Stresses
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Spec. Strain Rate wit (Pu)comp.' kips (Pu)test (5)/(3) (5)/(4)
Basea on

in./in./sec. (F
3

)s (Fl)d kips
(1) (2) ( ) ( ) (5) (6) (7)

1AOC1 0.0001 24.41 42.09 42.09 44.94 1. 07 1. 07
1BOC1 0.0001 24.21 42.05 42.05 44.94 1. 07 1. 07
1A1C1 0.001 24.36 41. 99 42.64 48.36 1. 15 1.13
IBICI 0.001 24.21 42.01 42.66 46.70 1.11 1. 09
IA2C1 0.01 24.36 42.05 45.27 50.56 1. 20 1. 12
IB2CI 0.01 24.39 42.02 45.24 50.12 1. 19 1. 11
IA3C1 0.1 24.25 42.03 48.76 51.59 1. 23 1. 06
IB3C1 0.1 24.29 41. 88 48.59 53.98 1. 29 1.11

IAOC2 0.0001 44.52 47.57 47.57 52.37 1. 10 1. 10
IBOC2 0.0001 44.66 47.60 47.60 51.39 1. 08 1. 08
1A1C2 0.001 44.64 47.60 48.26 52.91 1.11 1. 10
IB1C2 0.001 44.68 47.62 48.28 52.42 1. 10 1. 09
1A2C2 0.01 44.68 47.52 51. 06 57.16 1. 20 1. 12
1B2C2 0.01 44.53 47.59 51. 15 56.33 1.18 1. 10
1A3C2 0.1 44.24 47.63 55.09 60.04 1. 26 1. 09
1B3C2 0.1 44.41 47.66 55.10 57.94 1.22 1. 05

1AOC3 0.0001 47.78 38.38 38.38 42.16 1.10 1. 10
1BOC3 0.0001 47.76 38.34 38.34 42.45 1.11 1.11
1A1C3 0.001 47.82 38.30 38.81 43.67 1. 14 1.13
1B1C3 0.001 47.78 38.28 38.79 43.38 1.13 1.12
1A2C3 0.01 47.80 38.28 41. 03 46.56 1. 22 1.13
1B2C3 0.01 47.78 38.31 41. 07 47.00 1. 23 1. 14

1A3C3 0.1 47.80 38.37 44.07 48.17 1. 26 1. 09
1B3C3 0.1 47.82 38.35 44. 03 49.63 1. 29 1.13

1AOC4 0.0001 61.49 49.58 49.58 51. 83 1. 05 1. 05

1BOC4 0.0001 61. 39 49.51 49.51 51. 05 1. 03 1. 03
1A1C4 0.001 61. 53 49.52 50.18 54.62 1. 10 1. 09

1B1C4 0.001 61.40 49.55 50.21 53.16 1. 07 1. 06

1A2C4 0.01 61.42 49.57 52.74 57.40 1.16 1. 09

1B2C4 0.01 61.60 49.54 52.93 55.50 1. 12 1. 05

1A3C4 0.1 61. 57 49.56 56.68 58.43 1. 18 1. 03
1B3C4 0.1 61.41 49.60 56.73 60 .14 1. 21 1. 06

Mean 1. 155 1. 091

Standard Deviation O. 072 0.030

Note: The values of wit ratio shown in this table are based on the
sections fabricated from 50SK sheet steel.



Table 4.9

Comparison of Computed and Tested Ultimate Loads Based on the
Effective Width Formulas in the 1991 AISI Automotive Steel
Design Manual for Stub Columns Assembled from Hat Section

(50SK Sheet Steel) and Plate (25AK Sheet Steel)

* Based on Compressive Yield Stresses

72

Spec. Strain Rate wit (Pu)comp.' kips (Pu)test (5)/(3) (5)/(4)
Basea on

in./in./sec. (F~)s (F4)d kips
(1) (2) ( ) ( ) (5) (6) (7)

1AOD1 0.0001 34.26 33.33 33.33 34.08 1. 02 1. 02
1BOD1 0.0001 34.19 33.38 33.38 33.71 1. 0 1 1. 0 1
1A1D1 0.001 34.17 33.37 33.94 34.10 1. 02 1. 00
1B1D1 0.001 34.19 33.39 33.95 34.39 1. 03 1. 0 1
1A2D1 0.01 34.21 33.32 35.48 37.03 1.11 1. 04
1B2D1 0.01 34.18 33.33 35.50 38.01 1.14 1. 07
1A3D1 0.1 34.17 33.39 37.48 39.28 1. 18 1. 05
1B3D1 0.1 34.23 33.26 37.33 40.25 1. 21 1. 08

1AOD2 0.0001 40.54 36.23 36.23 37.27 1. 03 1. 03
1BOD2 0.0001 40.53 36.15 36.15 37.91 1. 05 1. 05
1A1D2 0.001 40.49 36.22 36.83 37.83 1. 04 1. 03

1B1D2 0.001 40.54 36.13 36.74 38.79 1. 07 1. 06

1A2D2 0.01 40.49 36.14 38.52 40.69 1. 13 1. 06
1B2I':'_ 0.01 40.54 36.13 38.51 40.25 1.11 1. 05

1A3D2 0.1 40.47 36.12 40.64 41. 28 1.14 1.02

1B3D2 0.1 40.50 36.13 40.65 43.28 1. 20 1. 06

1AOD3 0.0001 59.63 40.76 40.76 41. 82 1. 03 1. 03

1BOD3 0.0001 59.69 40.77 40.77 42.50 1. 04 1. 04

1A1D3 0.001 59.68 40.83 41.43 44.06 1. 08 1. 06

1B1D3 0.001 59.69 40.79 41. 39 44.16 1. 08 1. 07

1A2D3 0.01 59.72 40.79 43.02 45.04 1. 10 1. 05

1B2D3 0.01 59.72 40.81 43.04 46.17 1. 13 1. 07

1A3D3 0.1 59.72 40.85 44.93 48.02 1. 18 1. 07

1B3D3 0.1 59.73 40.82 44.91 48.56 1. 19 1. 08

Mean 1. 097 1.046

Standard Deviation 0.064 0.023

Note: The values of wit ratio shown in this table are based on the
sections fabricated from 25AK sheet steel.



Table 4.10

Comparison of Computed and Tested Ultimate Loads Based on the
Effective Width Formulas in the 1991 AISI Automotive Steel
Design Manual for Stub Columns Assembled from Hat Section

(25AK Sheet Steel) and Plate (50SK Sheet Steel)

* Based on Compressive Yield Stresses

73

Spec. Strain Rate wit (Pu)comp.' kips (Pu)test (5)/(3) (5)/(4)
Basea on

in./in./sec. (F~)s (Fl)d kips
(1) (2) ( ) ( ) (5) (6 ) (7)

1AOE1 0.0001 29.05 22.81 22.81 24.72 1. 08 1. 08
1BOE1 0.0001 29.08 22.80 22.80 25.50 1. 12 1. 12
1A1E1 0.001 29.03 22.83 23.13 26.62 1. 17 1.15
1B lEI 0.001 28.97 22.80 23.11 26.09 1. 14 1. 13
1A2E1 0.01 29.03 22.83 24.98 27.85 1. 22 1. 11
1B2E1 0.01 29.01 22.82 24.97 27.80 1. 22 1.11
1A3E1 0.1 29.03 22.82 27.74 30.04 1. 32 1. 08
1B3E1 0.1 28.99 22.83 27.75 29.51 1. 29 1. 06

1AOE2 0.0001 42.50 26.06 26.06 30.87 1. 18 1. 18
1BOE2 0.0001 42.53 26.10 26.10 30.87 1. 18 1. 18
1A1E2 0.001 42.64 26.04 26.32 32.14 1. 23 1. 22
1B1E2 0.001 42.55 26.06 26.34 31.12 1. 19 1. 18
1A2E2 0.01 42.50 26.08 28.37 34.49 1. 32 1. 22
1B2E2 0.01 42.51 26.09 28.38 33.22 1. 27 1. 17
1A3E2 0.1 42.51 26.09 31. 50 35.96 1. 38 1. 14
1B3E2 0.1 42.49 26.10 31. 52 35.66 1. 37 1. 13

1AOE3 0.0001 62.47 29.64 29.64 31. 17 1. 05 1. 05
1BOE3 0.0001 62.78 29.59 29.59 31. 02 1. 05 1. 05
1A1E3 0.001 62.73 29.65 29.96 32.54 1. 10 1. 09
1B1E3 0.001 62.78 29.61 29.91 31. 56 1. 07 1. 06
1A2E3 0.01 62.73 29.63 32.30 35.08 1. 18 1. 09
1B2E3 0.01 62.74 29.56 32.21 34.39 1. 16 1. 07
1A3E3 0.1 62.72 29.60 35.77 36.79 1. 24 1. 03
1B3E3 0.1 62.76 29.56 35.73 36.93 1. 25 1. 03

Mean 1. 199 1.114

Standard Deviation 0.095 0.057

Note: The values of wit ratio shown in this table are based on the
sections fabricated from 50SK sheet steel.



Table 4.11

Comparison of Computed and Tested Ultimate Loads Based on the
Effective Width Formulas in the 1991 AISI Automotive Steel

Design Manual for Stub Columns Assembled from Two Hat Sections
(50SK Sheet Steel)

(a) Based on Tensile Yield Stresses
(without Considering Cold-Work of Forming)

74

Spec. Strain Rate wit (Pu)comp.' kips (Pu)test (5)/(3) (5)/(4)
Basea on

in./in./sec. (F
3

)s (F4)d kips
(1) (2) ( ) ( ) (5) (6) (7)

1AOA1 0.0001 24.30 60.72 60.72 59.89 0.99 0.99
1BOA1 0.0001 24.40 60.79 60.79 59.50 0.98 0.98
1A1A1 0.001 24.30 60.63 61.23 60.97 1. 01 1. 00
1B1A1 0.001 24.32 60.72 61. 32 60.04 0.99 0.98
lA2Al 0.01 24.26 60.74 62.79 63.51 1. 05 1. 0 1
1B2Al 0.01 24.14 60.53 62.58 62.24 1. 03 0.99
1A3A1 0.1 24.28 60.66 64.07 64.48 1. 06 1. 01
1B3A1 0.1 24.25 60.47 63.87 66.10 1. 09 1. 03

1AOA2 0.0001 44.36 66.67 66.67 65.02 0.98 0.98
1BOA2 0.0001 44.47 66.49 66.49 65.85 0.99 0.99
1A1A2 0.001 44.55 66.71 67.30 68.51 1. 03 1. 02
1B1A2 0.001 44.53 66.57 67.15 68.64 1. 03 1. 02
1A2A2 0.01 44.63 66.69 68.69 70.25 1. 05 1. 02
1B2A2 0.01 44.41 66.60 68.60 70.20 1. 05 1. 02
1A3A2 0.1 44.47 66.59 69.90 72.59 1. 09 1. 04
1B3A2 0.1 44.44 66.57 69.88 72.59 1. 09 1.04

1AOA3 0.0001 47.79 52.84 52.84 53.25 1. 01 1. 01
1BOA3 0.0001 47.87 52.68 52.68 52.32 0.99 0.99
1A1A3 0.001 47.68 52.77 53.22 54.81 1. 04 1. 03
1B1A3 0.001 47.83 52.69 53.12 53.69 1. 02 1. 01
1A2A3 0.01 47.87 52.71 54.23 56.08 1. 06 1. 03
1B2A3 0.01 47.86 52.76 54.28 54.23 1. 03 1. 00
1A3A3 0.1 47.49 52.72 55.23 58.23 1. 10 1. 05
1B3A3 0.1 47.82 52.73 55.24 57.74 1. 10 1. 05

1AOA4 0.0001 61. 56 68.10 68.10 65.22 0.96 0.96

1BOA4 0.0001 61.44 68.06 68.06 64.88 0.95 0.95

1A1A4 0.001 61.24 68.25 68.83 66.93 0.98 0.97

1BlA4 0.001 61. 39 68.13 68.71 65.22 0.96 0.95

1A2A4 0.01 61. 41 68.07 70.06 70.59 1. 04 1. 01

1B2A4 0.01 61.53 68.19 70.19 71.13 1. 04 1. 01

1A3A4 0.1 61.49 68.25 71. 57 72.45 1. 06 1. 01

1B3A4 0.1 61. 51 68.09 71.40 72 .50 1. 06 1. 02

Mean 1. 028 1. 005

Standard Deviation 0.043 0.027



Table 4.11

Comparison of Computed and Tested Ultimate Loads Based on the
Effective Width Formulas in the 1991 AISI Automotive Steel

Design Manual for Stub Columns Assembled from Two Hat Sections
(50SK Sheet Steel)

(a) Based on Tensile Yield Stresses
(without Considering Cold-Work of Forming)
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Spec. Strain Rate w/t (Pu)comp.' kips (Pu)test (5)/(3) (5)/(4)
Baseu on

in. / in. /sec. (F
3

)s (Fl)d kips
(1) (2) ( ) ( ) (5) (6) (7)

1AOA1 0.0001 24.30 60.72 60.72 59.89 0.99 0.99
1BOA1 0.0001 24.40 60.79 60.79 59.50 0.98 0.98
1A1A1 0.001 24.30 60.63 61. 23 60.97 1. 01 1. 00
1B1A1 0.001 24.32 60.72 61. 32 60.04 0.99 0.98
1A2A1 0.01 24.26 60.74 62.79 63.51 1. 05 1. 01
1B2A1 0.01 24.14 60.53 62.58 62.24 1. 03 0.99
1A3A1 0.1 24.28 60.66 64.07 64.48 1. 06 1. 0 1
1B3A1 0.1 24.25 60.47 63.87 66.10 1. 09 1. 03

1AOA2 0.0001 44.36 66.67 66.67 65.02 0.98 0.98
1BOA2 0.0001 44.47 66.49 66.49 65.85 0.99 0.99
1A1A2 0.001 44.55 66.71 67.30 68.51 1. 03 1. 02
1B1A2 0.001 44.53 66.57 67.15 68.64 1. 03 1. 02
1A2A2 0.01 44.63 66.69 68.69 70.25 1. 05 1. 02
1B2A2 0.01 44.41 66.60 68.60 70.20 1. 05 1. 02
1A3A2 0.1 44.47 66.59 69.90 72.59 1. 09 1. 04
1B3A2 0.1 44.44 66.57 69.88 72 .59 1. 09 1. 04

1AOA3 0.0001 47.79 52.84 52.84 53.25 1. 01 1. 0 1
1BOA3 0.0001 47.87 52.68 52.68 52.32 0.99 0.99
1A1A3 0.001 47.68 52.77 53.22 54.81 1. 04 1. 03
1B1A3 0.001 47.83 52.69 53.12 53.69 1. 02 1. 0 1
1A2A3 0.01 47.87 52.71 54.23 56.08 1. 06 1. 03
1B2A3 0.01 47.86 52.76 54.28 54.23 1. 03 1. 00

1A3A3 0.1 47.49 52.72 55.23 58.23 1. 10 1. 05

1B3A3 0.1 47.82 52.73 55.24 57.74 1. 10 1. 05

1AOA4 0.0001 61. 56 68.10 68.10 65.22 0.96 0.96

1BOA4 0.0001 61.44 68.06 68.06 64.88 0.95 0.95

1A1A4 0.001 61.24 68.25 68.83 66.93 0.98 0.97

1B1A4 0.001 61. 39 68.13 68.71 65.22 0.96 0.95

1A2A4 0.01 61. 41 68.07 70.06 70.59 1. 04 1. 01

1B2A4 0.01 61.53 68.19 70.19 71.13 1. 04 1. 01

1A3A4 0.1 61.49 68.25 71. 57 72.45 1. 06 1. 01

1B3A4 0.1 61. 51 68.09 71.40 72 .50 1. 06 1. 02

Mean 1. 028 1. 005

Standard Deviation 0.043 0.027



Table 4.11 (Cont'd)

(b) Based on Tensile Yield Stresses
(with Considering Cold-Work of Forming)

(i) Based on Static Tensile Yield Stresses
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Spec. Strain Rate wit (Fy)t A (P) camp (P)test (6)e --
(in. 2 )

(5)
(in. I in ./sec. ) (ksi) (kips) (kips)

(1) (2) (3) (4) (5) (6) (7)

1AOA1 0.0001 24.30 57.86 1.1046 63.90 59.89 0.94
1BOA1 0.0001 24.40 57.85 1.1058 63.97 59.50 0.93
1A1A1 0.001 24.30 57.86 1. 1030 63.82 60.97 0.96
1B1A1 0.001 24.32 57.86 1.1046 63.91 60.04 0.94
1A2A1 0.01 24.26 57.85 1. 1049 63.92 63.51 0.99
1B2A1 0.01 24.14 57.86 1.1012 63.72 62.24 0.98
1A3A1 0.1 24.28 57.86 1.1036 63.85 64.48 1. 01
1B3A1 0.1 24.25 57.87 1.1000 63.66 66.10 1. 04

Mean 0.974

Standard Deviation 0.039

(ii) Based on Dynamic Tensile Yield Stresses

Spec. Strain Rate wit (Fy)t A (P ) (Pu\est (6)e u camp --
(in. 2 )

(5)
(in./in./sec.) (ksi) (kips) (kips)

(1) (2) (3) (4) (5) (6) (7)

1AOA1 0.0001 24.30 57.86 1. 1046 63.90 59.89 0.94
1BOA1 0.0001 24.40 57.85 1.1058 63.97 59.50 0.93
1A1A1 0.001 24.30 58.25 1.1030 64.25 60.97 0.95
1B1A1 0.001 24.32 58.24 1. 1046 64.34 60.04 0.93
1A2Al 0.01 24.26 59.44 1.1049 65.68 63.51 0.97
1B2A1 0.01 24.14 59.45 1. 1012 65.47 62.24 0.95
1A3A1 0.1 24.28 61. 45 1. 1036 67.81 64.48 0.95
1B3A1 0.1 24.25 61.46 1.1000 67.60 66.10 0.98

Mean 0.950

Standard Deviation 0.018



Table 4.12

Comparison of Computed and Tested Ultimate Loads Based on the
Effective Width Formulas in the 1991 AISI Automotive Steel
Design Manual for Stub Columns Assembled from Hat Sections

(25AK Sheet Steel)

(a) Based on Tensile Yield Stresses
(without Considering Cold-Work of Forming)
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Spec. Strain Rate wit (Pu)comp.' kips (Pu)test (5)/(3) (5)/(4)
Basea on

in./in./sec. (F
3

)s (F4)d kips
(1) (2) ( ) ( ) (5) (6) (7)

1AOB1 0.0001 23.06 28.68 28.68 34.73 1. 21 1. 21
1BOB1 0.0001 23.03 28.74 28.74 34.68 1. 21 1. 21
1A1B1 0.001 23.13 28.69 30.23 36.83 1. 28 1. 22
1B1B1 0.001 23.07 28.72 30.26 36.25 1. 26 1. 20
1A2B1 0.01 23.17 28.67 32.47 39.42 1. 37 1. 21
1B2B1 0.01 23.16 28.75 32.56 38.98 1. 36 1. 20
1A3B1 0.1 23.17 28.75 37.07 43.04 1. 50 1.16
1B3B1 0.1 23.02 28.71 37.02 43.09 1. 50 1.16

1AOB2 0.0001 42.56 34.50 34.50 37.13 1. 08 1.08
1BOB2 0.0001 42.30 34.45 34.45 36.44 1. 06 1. 06
1A1B2 0.001 42.10 34.47 36.32 39.08 1. 13 1. 08
1B1B2 0.001 42.35 34.49 36.34 38.74 1. 12 1. 07
1A2B2 0.01 42.29 34.44 38.89 42.99 1. 25 1.11
1B2B2 0.01 42.33 34.42 38.87 42.50 1. 23 1.09
1A3B2 0.1 42.30 34.38 43.63 48.46 1. 41 1. 11
1B3B2 0.1 42.46 34.45 43.69 48.17 1.40 1.10

1ADB3 0.0001 45.21 28.46 28.46 32.63 1.15 1.15
1BOB3 0.0001 45.29 28.51 28.51 32.93 1.16 1.16

1A1B3 0.001 45.35 28.43 29.76 33.61 1. 18 1.13

1B1B3 0.001 45.24 28.48 29.81 33.51 1. 18 1. 12

1A2B3 0.01 45.35 28.44 31.70 36.59 1. 29 1. 15

1B2B3 0.01 45.37 28.48 31. 74 36.64 1. 29 1. 15

1A3B3 0.1 45.42 28.41 35.42 41. 08 1.45 1. 16

:B3B3 0.1 45.29 28.52 35.56 40.69 1.43 1. 14

1AOB4 0.0001 58.35 36.50 36.50 38.40 1. 05 1. 05

1BOB4 0.0001 58.31 36.52 36.52 38.89 1. 06 1. 06

1A1B4 0.001 58.37 36.49 38.18 41. 67 1.14 1. 09

1B1B4 0.001 58.20 36.53 38.21 40.84 1.12 1. 07

1A2B4 0.01 58.19 36.51 40.65 44.65 1. 22 1. 10

1B2B4 0.01 58.38 32.75 36.78 44.75 1. 22 1. 10

1A3B4 0.1 58.33 36.48 45.43 48.71 1. 34 1. 07

1B3B4 0.1 58.30 36.50 45.45 48.56 1. 33 1. 07

Mean 1. 249 1.126

Standard Deviation 0.130 0.052



Table 4.12 (Cont'd)

(b) Based on Tensile Yield Stresses
(with Considering Cold-Work of Forming)

(i) Based on Static Tensile Yield Stresses
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Spec. Strain Rate wit (Fy)t A (P) camp (Pu\est (6 )e --
(in. 2 )

(5)
(in.lin·/sec. ) (ksi) (kips) (kips)

(1) (2) (3) (4) (5) (6) (7)

1AOB1 0.0001 23.06 27.72 1.1658 32.32 34.73 1. 07
1BOB1 0.0001 23.03 27.71 1.1683 32.38 34.68 1. 07
1A1B1 0.001 23.13 27.72 1.1661 32.32 36.83 1. 14
1B1B1 0.001 23.07 27.71 1. 1675 32.36 36.25 1. 12
lA2B1 0.01 23.17 27.72 1. 1653 32.30 39.42 1. 22
1B2B1 0.01 23.16 27.71 1.1686 32.38 38.98 1. 20
1A3Bl 0.1 23.17 27.71 1. 1688 32.39 43.04 1. 33
1B3B1 0.1 23.02 27.72 1. 1672 32.35 43.09 1. 33

Mean 1.185

Standard Deviation 0.104

(ii) Based on Dynamic Tensile Yield Stresses

Spec. Strain Rate wit (Fy)t A (P) camp (Pu)test (6)e --

(in. 2)
(5)

(in. I in ·/sec. ) (ksi) (kips) (kips)

(1) (2) (3) (4) (5) (6) (7)

1AOB1 0.0001 23.06 27.72 1.1658 32.32 34.73 1. 07
1BOB1 0.0001 23.03 27.71 1.1683 32.38 34.68 1. 07
1A1B1 0.001 23.13 29.09 1.1661 33.92 36.83 1. 09
1B1B1 0.001 23.07 29.09 1.1675 33.96 36.25 1. 07
1A2B1 0.01 23.17 31. 38 1.1653 36.57 39.42 1. 08
1B2B1 0.01 23.16 31. 37 1. 1686 36.66 38.98 1. 06
1A3B1 0.1 23.17 34.58 1.1688 40.42 43.04 1. 06
1B3B1 0.1 23.02 34.58 1. 1672 40.37 43.09 1. 07

Mean 1.071

Standard Deviation 0.010



Table 4.13

Comparison of Computed and Tested Ultimate Loads Based on the
Effective Width Formulas in the 1991 AISI Automotive Steel
Design Manual for Stub Columns Assembled from Hat Sections

(50SK and 25AK Sheet Steels)

(a) Based on Tensile Yield Stresses
(without Considering Cold-Work of Forming)
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Spec. Strain Rate wit (Pu)comp.' kips (Pu)test (5)/(3) (5)/(4)
Basea on

in. / in. / sec. (F
3

)s (F~)d kips
(1) (2) ( ) ( ) (5) (6) (7)

1AOC1 0.0001 24.41 44.70 44.70 44.94 1. 01 1. 0 1
1BOC1 0.0001 24.21 44.66 44.66 44.94 1. 01 1. 01
1A1C1 0.001 24.36 44.59 45.66 48.36 1. 08 1. 06
1B1C1 0.001 24.21 44.61 45.68 46.70 1. as 1. 02
1A2C1 0.01 24.36 44.66 47.58 50.56 1. 13 1. 06
1B2C1 0.01 24.39 44.62 47.55 50.12 1.12 1. 05
1A3C1 0.1 24.25 44.64 50 .49 51.59 1. 16 1. 02
1B3C1 0.1 24.29 44.47 50.31 53.98 1. 21 1. 07

1AOC2 0.0001 44.52 50.50 50.50 52.37 1. 04 1. 04
1BOC2 0.0001 44.66 50.52 50.52 51.39 1. 02 1. 02
1A1C2 0.001 44.64 50.53 51. 74 52.91 1. 05 1. 02
1B1C2 0.001 44.68 50.55 51. 76 52.42 1. 04 1. 01
1A2C2 0.01 44.68 50.44 53.66 57.16 1. 13 1. 07
1B2C2 0.01 44.53 50.52 53.74 56.33 1.11 1. 05
1A3C2 0.1 44.24 50.56 56.87 60.04 1.19 1. 06
1B3C2 0.1 44.41 50.59 56.88 57.94 1. 15 1. 02

1AOC3 0.0001 47.78 40.67 40.67 42.16 1. 04 1. 04

1BOC3 0.0001 47.76 40.64 40.64 42.45 1. 04 1. 04

1A1C3 0.001 47.82 40.59 41. 47 43.67 1. 08 1. as
lBlC3 0.001 47.78 40.57 41.46 43.38 1. 07 1. as
lA2C3 0.01 47.80 40.56 42.94 46.56 1. 15 1. 08

lB2C3 0.01 47.78 40.60 42.98 47.00 1. 16 1. 09

lA3C3 0.1 47.80 40.67 45.44 48.17 1.18 1. 06

lB3C3 0.1 47.82 40.64 45.41 49.63 1. 22 1. 09

lAOC4 0.0001 61.49 52.35 52.35 51. 83 0.99 0.99

lBOC4 0.0001 61. 39 52.28 52.28 51. 05 0.98 0.98

1A1C4 0.001 61.53 52.30 53.43 54.62 1.04 1. 02

lB1C4 0.001 61. 40 52.33 53.46 53.16 1.02 0.99

1A2C4 0.01 61.43 52.34 55.41 57.40 1. 10 1. 04

lB2C4 0.01 61. 60 52.32 55.38 55.50 1. 06 1.00

1A3C4 0.1 61. 57 52.33 58.46 58.43 1. 12 1. 00

1B3C4 0.1 61. 41 52.37 58.51 60.14 1. 15 1. 03

Mean 1. 091 1. 036

Standard Deviation 0.067 0.029

Note: The values of wit ratio shown in this table are based on the
sections fabricated from 50SK sheet steel.



Table 4.13 (Cont'd)

(b) Based on Tensile Yield Stresses
(with Considering Cold-Work of Forming)

(i) BA~ed on Static Tensile Yield Stresses

79

Spec. Strain Rat;~ wit (Fy)t A (P) camp (Pu\est (6)e --

(in. 2 )
(5)

(in. I in. Isec. ) (ksi) (kips) (kips)

(1) (2) (3) (4) (5) (6) (7)

1AOC1 0.0001 24.41 57.86 1.1355 48.11 44.94 0.93
1BOC1 0.0001 24.21 57.86 1. 1351 48.08 44.94 0.93
1A1C1 0.001 24.36 57.86 1.1330 48.01 48.36 1. 01
1B1C1 0.001 24.21 57.86 1.1337 48.03 46.70 0.97
1A2C1 0.01 24.36 57.86 1. 1345 48.07 50.56 1. as
1B2C1 0.01 24.39 57.86 1.1339 48.04 50.12 1. 04
1A3C1 0.1 24.25 57.86 1. 1340 48.00 51. 59 1. 07
1B3C1 0.1 24.29 57.87 1.130 1 47.89 53.98 1. 13

Mean 1. 016

Standard Deviation 0.070

(ii) B~~ed on Dynamic Tensile Yield Stresses

Spec. Strain Rat~ wit (Fy)t A (P) camp (P)test (6)e --

(in. 2)
(5)

(in. I in. Isec. ) (ksi) (kips) (kips)

(1) (2 ) (3) (4) (5) (6) (7)

1AOC1 0.0001 24.41 57.86 1.1355 48.11 44.94 0.93
1BOC1 0.0001 24.21 57.86 1. 1351 48.08 44.94 0.93
lAIC 1 0.001 24.36 58.25 1.1330 49.02 48.36 0.99
1B 1CI 0.001 24.21 58.25 1.1337 49.04 46.70 0.95
IA2C1 0.01 24.36 59.44 1. 1345 51. 08 50.56 0.99
1B2C1 0.01 24.39 59.45 1.1339 51. 05 50.12 0.98
1A3CI 0.1 24.25 61.45 1. 1340 54.03 51. 59 0.95
1B3C 1 0.1 24.29 61.46 1. 130 1 53.85 53.98 1. 00

Mean 0.965

Standard Deviation 0.028

Note: The values of wit ratio and (Fy)t shown in this table are based
the sections fahricated from SOSK sheet steel.



Table 4.14

Comparison of Computed and Tested Ultimate Loads Based on the
Effective Width Formulas in the 1991 AISI Automotive Steel

Design Manual for Stub Columns Assembled from Section
(50SK Sheet Steel) and Plate (25AK Sheet Steel)

(a) Based on Tensile Yield Stresses
(without Considering Cold-Work of Forming)
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Spec. Strain Rate wit (Pu)comp.' kips (Pu)test (5)/(3) (5)/(4)
Basea on

in./in./sec. (F
3

)s (Fl)d kips
(1) (2) ( ) ( ) (5) (6) (7)

lAODl 0.0001 34.26 34.97 34.97 34.08 0.97 0.97
1BOD1 0.0001 34.19 35.03 35.03 33.71 0.96 0.96
1AlDl 0.001 34.17 35.00 35.64 34.10 0.97 0.96
1B1D1 0.001 34.19 35.02 35.66 34.39 0.98 0.96
1A2D1 0.01 34.21 34.95 36.79 37.03 1. 06 1. 01
1B2Dl 0.01 34.18 34.98 36.82 38.01 1. 09 1. 03
1A3Dl 0.1 34.17 35.03 38.57 39.28 1.12 1. 02
1B3D1 0.1 34.23 34.89 38.43 40.25 1.15 1. 05

1AOD2 0.0001 40.50 38.40 38.40 37.27 0.98 0.98
1BOD2 0.0001 40.53 37.95 37.95 37.91 1. 00 1. 00
IA1D2 0.001 40.49 38.04 38.75 37.83 0.99 0.98
1B1D2 0.001 40.54 37.94 38.65 38.79 1. 02 1. 00
1A2D2 0.01 40.49 37.96 40.00 40.69 1. 07 1. 02
1B2D2 0.01 40.54 37.93 39.97 40.25 1. 06 1. 01
1A3D2 0.1 40.47 37.93 41. 71 41. 28 1. 09 0.99
1B3D2 0.1 40.50 37.95 41. 73 43.28 1. 14 1. 04

1AOD3 o.0001 59.63 42.43 42.43 41.82 0.99 0.99
1BOD3 0.0001 59.69 42.45 42.45 42.50 1. 00 1. 00
1A1D3 0.001 59.68 42.50 43.15 44.06 1. 04 1. 02
IB1D3 0.001 59.69 42.47 43.11 44.16 1. 04 1. 02
1A2D3 0.01 59.72 42.47 44.32 45.04 1. 06 1. 02
1B2D3 0.01 59.72 42.48 44.33 46.17 1. 09 1. 04
1A3D3 0.1 59.72 42.53 46.00 48.02 1. 13 1. 04
1B3D3 0.1 59.73 42.50 45.97 48.56 1.14 1. 06

Mean 1.048 1. 007

Standard Deviation 0.061 0.029

Note: The values of wit ratio shown in this table are based on the
sections fabricated from 25AK sheet steel.



Table 4.14 (Cont'd)

(b) Based on Tensile Yield Stresses
(with Considering Cold-Work of Forming)

(i) Based on Static Tensile Yield Stresses

81

Spec. Strain Rate wit (Fy)t A (P)comp (P)test (6)e --
(in. 2 )

(5)
( in . I in . Is ec . ) (ksi) (kips) (kips)

(1) (2) (3) (4) (5) (6) (7)

1AOD1 0.0001 17.51 58.07 0.7874 36.56 34.08 0.93
1BOD1 0.0001 17.52 58.06 0.7883 36.62 33.71 0.92
1A1D1 0.001 17.41 58.07 0.7878 36.60 34.10 0.93
1B1D1 0.001 17.68 58.06 0.7882 36.62 34.39 0.94
1A2D1 0.01 17.41 58.07 0.7869 36.54 37.03 1. 01
1B2D1 0.01 17.56 58.07 0.7873 36.57 38.01 1. 04
1A3D1 0.1 17.44 58.06 0.7885 36.62 39.28 1. 07
1B3D1 0.1 17.56 58.08 0.7857 36.49 40.25 1. 10

Mean 0.993

Standard Deviation 0.072

(ii) Based on Dynamic Tensile Yield Stresses

Spec. Strain Rate wit (Fy)t A (Pu)comp (Pu)test (6)e --

( in. 2)
(5)

(in. I in. Isec. ) (ksi) (kips) (kips)

(1) (2) (3) (4) (5) (6) (7)

1AOD1 0.0001 17.51 58.07 0.7874 36.56 34.08 0.93
1BOD1 0.0001 17.52 58.06 0.7883 36.62 33.71 0.92
1A1D1 0.001 17.41 58.44 0.7878 37.15 34.10 0.92
1B1D1 0.001 17.68 58.44 0.7882 37.17 34.39 0.93
1A2D1 0.01 17.41 59.65 0.7869 38.24 37.03 0.97
1B2D1 0.01 17.56 59.65 0.7873 38.27 38.01 0.99
1A3D1 0.1 17.44 61. 67 0.7885 40.43 39.28 0.97
1B3D1 0.1 17.56 61.69 0.7857 40.23 40.25 1. 00

Mean 0.954

Standard Deviation 0.032

Note: The values of wit ratio shown in this table are based on the
sections fabricated from 50SK sheet steel.



Table 4.15

Comparison of Computed and Tested Ultimate Loads Based on the
Effective Width Formulas in the 1991 AISI Automotive Steel

Design Manual for Stub Columns Assembled from Section
(25AK Sheet Steel) and Plate (50SK Sheet Steel)

(a) Based on Tensile Yield Stresses
(without Considering Cold-Work of Forming)
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Spec. Strain Rate wit (Pu)comp.' kips (Pu)test (5)/(3) (5)/(4)
Basea on

in./in./sec. (F
3

)s (FX)d kips
(1) (2) ( ) ( ) (5) (6) (7)

1AOE1 0.0001 29.05 24.65 24.65 24.72 1. 00 1. 00
1BOE1 0.0001 29.08 24.64 24.64 25.50 1. 03 1. 03
1A1E1 0.001 29.03 24.67 25.46 26.62 1. 08 1. 05
1B1E1 0.001 28.97 24.64 25.43 26.09 1. 06 1. 03
1A2E1 0.01 29.03 24.68 26.74 27.85 1. 13 1. 04
1B2E1 0.01 29.01 24.67 26.74 27.80 1.13 1. 04
1A3E1 0.1 29.03 24.67 28.93 30.04 1. 22 1. 04
1B3E1 0.1 28.99 24.68 28.95 29.51 1. 20 1. 02

1AOE2 0.0001 42.50 28.07 28.07 30.87 1. 10 1. 10
1BOE2 0.0001 42.53 28.12 28.12 30.87 1. 10 1. 10
1A1E2 0.001 42.64 28.06 28.93 32.14 1. 15 1.11
1B1E2 0.001 42.55 28.08 28.95 31.12 1.11 1. 07
1A2E2 0.01 41. 50 28.10 30.34 34.49 1.23 1. 14
1B2E2 0.01 42.51 28.11 30.35 33.22 1. 18 1. 09
1A3E2 0.1 42.51 28.10 32.82 35.96 1. 28 1. 10
1B3E2 0.1 42.49 28.11 32.84 35.66 1. 27 1. 09

1AOE3 0.0001 62.74 32.00 32.00 31. 17 0.97 0.97
1BOE3 0.0001 62.78 31. 95 31. 95 31. 02 0.97 0.97
1A1E3 0.001 62.73 32.02 33.05 32.54 1. 02 0.98
1B1E3 0.001 62.78 31. 97 32.99 31. 56 0.99 0.96
1A2E3 0.01 62.73 32.00 34.59 35.08 1. 10 1. 01
1B2E3 0.01 62.74 31. 92 34.50 34.39 1. 08 1. 00
1A3E3 0.1 62.72 31. 96 37.16 36.79 1. 15 0.99
1B3E3 0.1 62.76 31. 92 37.13 36.93 1.16 0.99

Mean 1.113 1. 038

Standard Deviation 0.090 0.052

Note: The values of wit ratio shown in this table are based on the
sections fabricated from 50SK sheet steel.



Table 4.15 (Cont'd)

(b) Based on Tensile Yield Stresses
(with Considering Cold-Work of Forming)

(i) Based on Static Tensile Yield Stresses

83

Spec. Strain Rate wit (Fy)t A (P)comp (P)test (6)e --
(in. 2 )

(5)
( in . I in . Is e c . ) (ksi) (kips) (kips)

(1) (2) (3) (4) (5) (6) (7)

1AOE1 0.0001 9.67 28.21 0.7278 26.48 24.72 0.93
1BOE1 0.0001 10.22 28.21 0.7274 26.47 25.50 0.96
1A1E1 0.001 10.10 28.20 0.7275 26.50 26.62 1. 00
1B1E1 0.001 10.10 28.21 0.7276 26.47 26.09 0.99
1A2E1 0.01 9.74 28.20 0.7285 26.50 27.85 1. 05
1B2E1 0.01 9.98 28.20 0.7285 26.50 27.80 1. 05
1A3E1 0.1 10.20 28.20 0.7282 26.49 30.04 1. 13
1B3E1 0.1 10.19 28.20 0.7287 26.50 29.51 1.11

Mean 1. 028

Standard Deviation 0.070

(ii) Based on Dynamic Tensile Yield Stresses

Spec. Strain Rate wit (Fy)t A (P) camp (Pu)test (6)e --
(in. 2)

(5)
(in . I in . Is e c . ) (ksi) (kips) (kips)

(1) (2) (3) (4) (5) (6) (7)

1AOE1 0.0001 9.67 28.21 0.7278 26.48 24.72 0.93
1BOE1 0.0001 10.22 28.21 0.7274 26.47 25.50 0.96
1A lEI 0.001 10.10 29.57 0.7275 27.33 26.62 0.97
1B1E1 0.001 10.10 29.58 0.7276 27.28 26.09 0.96
1A2E1 0.01 9.74 31. 87 0.7285 28.77 27.85 0.97
1B2E1 0.01 9.98 31. 87 0.7285 28.77 27.80 0.97
1A3E1 0.1 10.20 35.09 0.7282 30.66 30.04 0.98
1B3E1 0.1 10.19 35.08 0.7287 30.67 29.51 0.96

Mean 0.963

Standard Deviation 0.015

Note: The values of wit ratio shown in this table are based on the
sections fabricated from 25AK sheet steel.



Table 4.15 (Cont'd)

(b) Based on Tensile Yield Stresses
(with Considering Cold-Work of Forming)

(i) Based on Static Tensile Yield Stresses

83

Spec. Strain Rate wit (Fy)t A (Pu)comp (P)test (6)e --

(in. 2 )
(5)

(in./in./sec. ) (ksi) (kips) (kips)

(1) (2) (3) (4) (5) (6) (7)

1AOE1 0.0001 9.67 28.21 0.7278 26.48 24.72 0.93
1BOE1 0.0001 10.22 28.21 0.7274 26.47 25.50 0.96
1A1E1 0.001 10.10 28.20 0.7275 26.50 26.62 1. 00
1B1E1 0.001 10.10 28.21 0.7276 26.47 26.09 0.99
1A2E1 0.01 9.74 28.20 0.7285 26.50 27.85 1. 05
1BZE1 0.01 9.98 28.20 0.7285 26.50 27.80 1. 05
1A3E1 0.1 10.20 28.20 0.7282 26.49 30.04 1.13
1B3E1 0.1 10.19 28.20 0.7287 26.50 29.51 1.11

Mean 1. 028

Standard Deviation 0.070

(ii) Based on Dynamic Tensile Yield Stresses

Spec. Strain Rate wit (Fy)t A (Pu)comp (P)test ( 6)
e --

(in. 2 )
(5)

(in./in./sec. ) (ksi) (kips) (kips)

(1) (2) (3) (4) (5) (6) (7)

1AOE1 0.0001 9.67 28.21 0.7278 26.48 24.72 0.93
1BOE1 0.0001 10.22 28.21 0.7274 26.47 25.50 0.96
1A1E1 0.001 10.10 29.57 0.7275 27.33 26.62 0.97
1B lEI 0.001 10.10 29.58 0.7276 27.28 26.09 0.96
1AZE1 0.01 9.74 31. 87 0.7285 28.77 27.85 0.97
1B2E1 0.01 9.98 31. 87 0.7285 28.77 27.80 0.97
1A3E1 0.1 10.20 35.09 0.7282 30.66 30.04 0.98
1B3E1 0.1 10.19 35.08 0.7287 30.67 29.51 0.96

Mean 0.963

Standard Deviation 0.015

Note: The values of wit ratio shown in this table are based on the
sections fabricated from 25AK sheet steel.



Table 4.16

Comparison of Tested Ultimate and Mean Crushing Loads for
Box-Shaped Stub Columns Assembled from Hat Sections

(50SK Sheet Steel)

84

Spec. wit Pu Pmean (1)/(2) Type of Spacing
(kips) (Kips) Failure of
(1) (2) (3) Mode Connection

1AOA1 24.30 59.89 ***** N/A F 2.0"
1BOA1 24.40 59.50 23.50 2.53 F 2.0"
1A1A1 24.30 60.97 22.43 2.72 F 2.0"
1B1A1 24.32 60.04 22.49 2.67 F 2.0"
1A2A1 24.26 63.51 23.96 2.65 F 2.0"
1B2A1 24.14 62.24 21.52 N/A F,L 2.0"
1A3A1 24.28 64.48 24.21 2.66 F 2.0"
1B3A1 24.25 66.10 24.28 2.72 F 2.0"

1AOA2 44.36 65.02 16.01 N/A F,B 2.5"
1BOA2 44.47 65.68 22.51 2.93 F 2.5"
1A1A2 44.55 68.51 23.01 2.98 F 2.5"
1B1A2 44.53 68.64 19.74 N/A F,T 2.S"
1A2A2 44.63 70.25 20.62 N/A F,O 2.S"
1B2A2 44.41 70.20 19.27 N/A F,O 2.S"
1A3A2 44.47 72.S9 19.63 N/A F,T 2.5"
1B3A2 44.44 72.59 20.11 N/A F,O 2.5"

1AOA3 47.79 53.25 10.54 N/A B 2.0"
1BOA3 47.87 52.32 21.71 2.41 F 2.0"
1A1A3 47.68 54.81 14.99 N/A F,B 2.0"
1B1A3 47.83 53.69 22.57 2.38 F 2.0"
1A2A3 47.87 56.08 18.43 N/A F,B 2.0"
1B2A3 47.86 54.23 22.01 2.46 F 2.0"
1A3A3 47.79 58.23 11.44 N/A B 2.0"
1B3A3 47.82 57.74 15.44 N/A F,B 2.0"

1AOA4 61. 56 6S.22 17.51 N/A F,O 3.0"
IBOA4 61.44 64.88 22.29 2.91 F 3.0"
1A1A4 61.24 66.93 22.43 2.98 F 3.0"
1BIA4 61. 39 65.22 16.71 N/A F,O 3.0"
1A2A4 61.41 70.59 15.58 N/A F,T 3.0"
1B2A4 61.53 71.13 20.26 N/A F,T 3.0"
1A3A4 61.49 72.45 24.76 2.93 F 3.0"
1B3A4 61.51 72. SO 23.63 3.07 F 3.0"

Note: F - Folding
o - Openning

B - Bending T - Twisting
L - Lateral Buckling



Table 4.17

Comparison of Tested Ultimate and Mean Crushing Loads for
Box-Shaped Stub Columns Assembled from Hat Sections

(25AK Sheet Steel)
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Spec. wit Pu Pmean (1)/(2) Type of Spacing
(kips) (Kips) Failure of
(1) ( 2) (3) Mode Connection

1AOB1 23.06 34.73 15.09 2.30 F 2.0"
1BOB1 23.03 34.68 14.54 2.39 F 2.0"
1A1B 1 23.13 36.83 14.48 2.54 F 2.0"
1B1B1 23.08 36.25 13.85 2.62 F 2.0"
1A2B1 23.17 39.42 16.51 2.39 F 2.0"
1B2B1 23.16 38.98 13.27 N/A F,T 2.0"
1A3B1 23.17 43.04 16.73 2.57 F 2.0"
1B3B1 23.02 43.09 15.25 N/A F,T 2.0"

1AOB2 42.56 37.13 14.25 2.61 F 2.5"
1BOB2 42.30 36.44 14.87 2.45 F 2.5"
1A1B2 42.10 39.08 11. 43 N/A F,B 2.5"
1B1B2 42.35 38.74 15.52 2.50 F 2.5"
1A2B2 42.29 42.99 16.89 2.55 F 2.5"
1B2B2 42.33 42.50 16.22 2.62 F 2.5"
1A3B2 42.30 48.46 17.00 2.85 F 2.5"
1B3B2 42.46 48.17 18.14 2.66 F 2.5"

1AOB3 45.21 32.63 13.47 2.42 F 2.0"
1BOB3 45.29 32.93 13.51 2.44 F 2.0"
1A1B3 45.35 33.61 14.33 2.35 F 2.0"
1B1B3 45.24 33.51 14.50 2.31 F 2.0"
lA2B3 45.35 36.59 14.66 2.50 F 2.0"
1B2B3 45.37 36.64 15.48 2.37 F 2.0"
1A3B3 45.42 41. 08 15.32 2.68 B 2.0"
1B3B3 45.29 40.69 14.18 N/A F,B 2.0"

1AOB4 58.35 38.40 14.79 2.60 F 3.0"
1BOB4 58.31 38.89 12.75 N/A F,B 3.0"
1A1B4 58.37 41. 67 15.63 2.67 F 3.0"
1B1B4 58.20 40.84 14.74 2.77 F 3.0"
1A2B4 58.19 44.65 15.37 2.91 F 3.0"
1B2B4 58.38 44.75 16.19 2.76 F 3.0"
1A3B4 58.33 48.71 15.38 N/A F,B 3.0"
1B3B4 58.30 48.56 15.25 N/A F,B 3.0"

Note: F - Folding
o - Openning

B - Bending T - Twisting
L - Lateral Buckling



Table 4.18

Comparison of Tested Ultimate and Mean Crushing Loads for
Box-Shaped Stub Columns Assembled from Hat Sections

(50SK and 25AK Sheet Steels)
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Spec. wit Pu Pmean (1)/(2) Type of Spacing
(50SK) (kips) (Kips) Failure of

(1) (2) (3) Mode Connection

1AOC1 24.41 44.94 18.04 2.49 F 2.0"
1BOC1 24.21 44.94 18.10 2.48 F 2.0"
1A1C1 24.36 48.36 19.08 2.53 F 2.0"
1BIC1 24.21 46.70 18.18 2.57 F 2.0"
1A2C1 24.36 50.56 19.64 2.57 F 2.0"
1B2C1 24.39 50.12 18.81 2.66 F 2.0"
1A3C1 24.25 51. 59 20.02 2.58 F 2.0"
1B3C1 24.29 53.98 19.95 2.71 F 2.0"

1AOC2 44.52 52.37 18.54 2.82 F 2.5"
IBOC2 44.66 51. 39 14.67 N/A F,O 2.5"
1A1C2 44.64 52.91 18.01 2.94 F 2.5"
1BIC2 44.68 52.42 17.32 N/A F,L 2.5"
1A2C2 44.68 57.16 16.09 N/A F,O 2.5"
1B2C2 44.53 56.33 17.93 N/A F,O 2.5"
1A3C2 44.24 60.04 19.84 3.03 F 2.5"
1B3C2 44.41 57.94 16.81 N/A F,L 2.5"

1AOC3 47.78 42.16 12.02 N/A F,B 2.0"
1BOC3 47.76 42.45 12.65 N/A F,B 2.0"
1AIC3 47.82 43.67 9.86 N/A F,B 2.0"
1BIC3 47.78 43.38 11. 08 N/A F,B 2.0"
1A2C3 47.80 46.56 12.66 N/A F,B 2.0"
1B2C3 47.78 47.00 12.92 N/A F,B 2.0"
lA3C3 47.80 48.17 12.13 N/A F,B 2.0"
1B3C3 47.82 49.63 16.13 N/A F,B 2.0"

lAOC4 61.49 51. 83 20.51 2.53 F 3.0"
1BOC4 61. 39 51. 05 19.66 2.60 F 3.0"
1A1C4 61. 53 54.62 19.53 2.80 F 3.0"
1B1C4 61.40 53.16 18.38 2.89 F 3.0"
1A2C4 61.42 57.40 18.93 3.03 F 3.0"
1B2C4 61.60 55.50 19.95 2.78 F 3.0"
1A3C4 61. 57 58.43 14.86 N/A F,T 3.0"
1B3C4 61.41 60.14 21. 67 2.78 F 3.0"

Note: F - Folding
o - Openning

B - Bending T - Twisting
L - Lateral Buckling



Table 4.19

Comparison of Tested Ultimate and Mean Crushing Loads for
Hat-Shaped Stub Columns Assembled from Hat Section

(50SK Sheet Steel) and Plate (25AK Sheet Steel)
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Spec. wit Pu Pmean (1)/(2) Type of Spacing
(50SK) (kips) (Kips) Failure of

(1) (2 ) (3 ) Mode Connection

1A001 34.26 34.08 13 .12 2.60 F 1.0"
1B001 34.19 33.71 7.39 N/A F,L 1.0"
1A101 34.17 34.10 12.82 2.66 F 1.0"
1B101 34.19 34.39 13.40 2.57 F 1.0"
1A201 34.21 37.03 10.36 N/A F,L 1.0"
1B201 34.18 38.01 14.31 2.66 F 1.0"
1A301 34.17 39.28 14.48 2.71 F 1.0"
1B301 34.23 40.25 14.88 2.70 F 1.0"

1A002 40.54 37.27 13.22 2.82 F 1.0"
1B002 40.53 37.91 13.93 2.72 F 1.0"
1A102 40.49 37.83 13.60 2.78 F 1.0"
1B102 40.54 38.79 13.80 2.81 F 1.0"
1A202 40.49 40.69 14.08 2.89 F 1.0"
1B202 40.54 40.25 14.29 2.82 F 1.0"
1A302 40.47 41. 28 14.22 2.90 F 1.0"
1B302 40.50 43.28 15.20 2.85 F 1.0"

1AOD3 59.63 41. 82 15.18 2.75 F 1.25"
1BOD3 59.69 42.50 15.79 2.69 F 1.25"
1AID3 59.68 44.06 14.80 2.98 F 1.25"
IBID3 59.69 44.16 15.26 2.89 F 1.25"
lA2D3 59.72 45.04 15.54 2.90 F 1.25"
IB203 59.72 46.17 14.67 N/A F,B 1.25"
lA3D3 59.72 48.02 15.82 3.04 F 1.25"
IB303 59.73 48.59 15.73 3.09 F 1.25"

Note: F - Folding
o - Openning

B - Bending T - Twisting
L - Lateral Buckling



Table 4.20

Comparison of Tested Ultimate and Mean Crushing Loads for
Hat-Shaped Stub Columns Assembled from Hat Section

(50SK Sheet Steel) and Plate (25AK Sheet Steel)

88

Spec. w/t Pu Pmean (1)/(2) Type of Spacing
(25AK) (kips) (Kips) Failure of

(1) (2) (3) Mode Connection

1AOE1 29.05 24.72 9.26 2.67 F 1.0"
1BOE1 29.08 25.50 9.96 2.56 F 1.0"
1A1E1 29.03 26.62 10.57 2.52 F 1.0"
1B lEI 28.97 26.09 10.00 2.61 F 1.0"
1A2E1 29.03 27.85 11. 09 2.51 F 1.0"
1B2E1 29.01 27.80 11. 07 2.51 F 1.0"
1A3E1 29.03 30.04 11.35 2.65 F 1.0"
1B3E1 28.99 29.51 11.90 2.48 F 1.0"

1AOE2 42.50 30.87 10.26 3.01 F 1.0"
1BOE2 42.53 30.87 10.38 2.97 F 1.0"
1A1E2 42.64 32.14 10.86 2.96 F 1.0"
1B1E2 42.55 31.12 10.93 2.85 F 1.0"
1A2E2 42.50 34.49 10.96 3.15 F 1.0"
1B2E2 42.51 33.22 11. 66 2.85 F 1.0"
1A3E2 42.51 35.96 12.39 2.90 F 1.0"
1B3E2 42.49 35.66 11. 08 N/A F,B 1.0"

1AOE3 62.74 31. 17 10.33 3.02 F 1.25"
1BOE3 62.78 31. 02 11. 37 2.73 F 1.25"
1A1E3 62.73 32.54 11.75 2.77 F 1.25"
1B1E3 62.78 31.56 11. 37 2.78 F 1.25"
1A2E3 62.73 35.08 11.65 3.01 F 1.25"
1B2E3 62.74 34.39 13 .16 2.61 F 1.25"
1A3E3 62.72 36.79 12.80 2.87 F 1.25"
1B3E3 62.76 36.93 11. 83 N/A F,B 1.25"

Note: F - Folding
o - Openning

B - Bending T - Twisting
L - Lateral Buckling



Table 4.21

Comparison of Computed and Tested Mean Crushing Loads for
Box-Shaped Stub Columns Assembled from Hat Sections

(50SK Sheet Steel)

Strain Rate (Pu)comp (Pm)comp (Pm)test (3)/(2)
in./in./sec. (Kips) (Kips) (Kips)

(1) (2) (3 ) (4)

I Al Specimens I

0.0001 60.76 25.22 23.50 0.93
0.1 63.97 26.55 24.25 0.91

25.97 69.98 29.05 28.21 0.97
39.37 70.49 29.26 30 .13 1. 03

I A2 Specimens I

0.0001 66.58 24.09 22.51 0.93
0.1 69.89 25.29 N/A N/A

I A3 Specimens I
0.0001 52.76 21.60 21.71 1. 01

0.1 55.24 22.62 N/A N/A
25.97 59.54 24.38 28.55 1. 17
39.37 59.50 24.53 29.00 1. 18

I A4 Specimens I
0.0001 68.08 25.77 22.29 0.87

0.1 71.49 27.06 24.20 0.89

Note: (Pu)comp calculated based on Equation 4.5
(Pm)comp calculated based on Equation 4.13
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Table 4.22

Comparison of Computed and Tested Mean Crushing Loads for
Box-Shaped Stub Columns Assembled from Hat Sections

(25AK Sheet Steel)

Strain Rate (Pu)comp (Pm)comp (Pm)test (3)/(2)
in./in./sec. (Kips) (Kips) (Kips)

(1) (2) (3) (4)

II B1 Specimens

.'.
0.0001 32.35" 13.38 14.82 1.11.'.

0.1 40.40" 16.71 15.99 0.96.'.
25.97 57.06" 23.60 26.31 1. 12...
39.37 58.27" 24.10 27.65 1. 15

I B2 Specimens I

0.0001 34.48 12.48 14.56 1. 17
0.1 43.66 15.80 17.57 1.11

I B3 Specimens I
0.0001 28.49 11.65 13.49 1. 16

0.1 35.49 14.51 14.75 1. 02
25.97 48.56 19.85 24.28 1. 22
39.37 49.32 20.16 24.96 1. 24

I B4 Specimens I
0.0001 36.51 13.81 14.79 1. 07

0.1 45.44 17.19 N/A N/A

Note: The supscript ""." represents the values calculated
by considering the cold-work effect.

(Pu)comp calculated based on Equation 4.5
(Pm)comp calculated based on Equation 4.13



Table 4.23

Comparison of Computed and Tested Mean Crushing Loads for
Box-Shaped Stub Columns Assembled from Hat Sections

(50SK and 25AK Sheet Steels)

Strain Rate (Pu)comp (Pm)comp (Pm)test (3)/(2)
in./in./sec. (Kips) (Kips) (Kips)

(1) (2) (3 ) (4)

I C1 Specimens I

0.0001 44.68 18.52 18.07 0.98
0.1 50.40 20.89 19.99 0.96

25.97 61. 68 .25.56 26.53 1. 04
39.37 62.51 25.91 27.43 1. 06

I C2 Specimens I

0.0001 50.51 18.28 18.54 1. 01
0.1 56.88 20.59 19.84 0.96

I C3 Specimens I

0.0001 40.66 16.64 N/A N/A
0.1 45.43 18.59 N/A N/A

25.97 54.05 22.12 27.20 1. 23
39.37 54.61 22.34 28.33 1. 27

II C4 Specimens

0.0001 52.32 19.80 20.09 1. 02
0.1 58.49 22.13 21. 67 0.98

Note: (Pu)comp calculated based on Equation 4.6
(Pm)comp calculated based on Equation 4.13
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Table 4.24

Comparison of Computed and Tested Mean Crushing Loads for
Hat-Shaped Stub Columns Assembled from Hat Section

(50SK Sheet Steel) and Plate (25AK Sheet Steel)

Strain Rate (Pu)comp (Pm)comp (Pm)test (3)/(2)
in./in./sec. (Kips) (Kips) (Kips)

(1) (2) (3) (4)

I D1 Specimens I

0.0001 35.00 12.64 13.12 1. 04
0.1 38.50 13.90 14.68 1. 06

25.97 44.84 16.19 17.09 1. 06
39.37 45.29 16.35 18.66 1. 14

I D2 Specimens I

0.0001 38.18 14.04 13 .58 0.97
0.1 41. 72 15.34 14.71 0.96

I D3 Specimens I

0.0001 42.44 17.40 15.49 0.89
0.1 45.99 18.86 15.78 0.84

Note: (Pu)comp calculated based on Equation 4.6
(Pm)comp calculated based on Equation 4.13
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Table 4.25

Comparison of Computed and Tested Mean Crushing Loads for
Hat-Shaped Stub Columns Assembled from Hat Section

(25AK Sheet Steel) and Plate (50SK Sheet Steel)

Strain Rate (Pu)comp (Pm)comp (Pm)test (3)/(2)
in./in./sec. (Kips) (Kips) (Kips)

(1) (2) (3) (4)

I E1 Specimens I

0.0001 24.65 9.85 9.61 0.98
0.1 28.94 11. 56 11. 63 1. 01

25.97 44.31 17.70 16.41 0.93
39.37 44.61 17.82 16.86 0.95

I E2 Specimens I

0.0001 28.10 10.34 10.32 1. 00
0.1 32.83 12.08 12.39 1. 03

I E3 Specimens I

0.0001 31. 98 13.11 11. 37 0.87
0.1 37.15 15.23 12.80 0.84

Note: (Pu)comp calculated based on Equation 4.6
(Pm)comp calculated based on Equation 4.13
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Figure 2.1 Strut and Bar Grid Model Simply Su~~orted Along Its
Edges and Subjected to End Loading

( a) (b) (c)

Figure 2.2 Consective Stages of Stress Distribution in a Stiffened
Compression Element 1l
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Figure 3.2 Cross Section of Stub Columns Used in This Study



60 -:r --- I

S
t

.... 0.0001 in.jin./sec.
-- 0.01 in.jin./sec.

.- 0.1 in.jin./sec.
--1.0 in./in./sec.

o -=j-"ITl"-.,r'lT I I I I I I I I I 1 I I I I I I I I I I I I I I I I I , I I I I 1 I I I I I 1

40 -

...-""'---~---_.-- ................--.._-~- ..._..------......_--------- ----~'-

///~"'" '::::.:: ::.: ::::::':.:........ ..,.0,<,<.
/ --' .. ' .. , ,

' / ,
I " ,. , ,( , ,. , ,

I ' ,
' ,30 ' ,

'. ,'.' ,
' ,

I
I,
I
I,,,

I
\,

S

I 10_

r 50

e
s
s

k 20 -

o 5 10 15 20 25 30

Strain, Percent
35 40 45 50

Figure 3.3 Stress-Strain Curves for 25AK Steel in the Longitudinal
Tension under Different Strain Rates

-0
-0



50 .., 1

,... 0.0001 in/in./sec.
-- 0.01 in./in./sec.
- 0.1 in./in./sec.
- -1.0 in./in./sec.

21.5

.................
............

1

Strain, Percent
0.5

...........

-------- ------ -------------------- ---------................................

.----.--------------------------------------
r-

f
,-

I

20 I
/",.

k i
:I
:'

S :/
:1

10 :1
I :1

:I
:'
:1
:',

-1o ~

0

S
t
r 40
e
s
s 30

Figure 3.4 Stress-Strain Curves for 25AK Steel in the Longitudinal
Compression under Different Strain Rates

......
o
o



s 20
I

.... 0.0001 in.fin.fsec.
-- 0.01 in./in./sec.
- 0.1 in.fin.fsec.
--1.0 in.fin.fsec.

10

80 :::j I

40

30
k

S
t 70 - --~'-'-'---1 --- '--

l\ /'./ - - - - - - - - - - - - - - -'---.r . ./ ,-' :-.":"......... "-
e 60 \.-/.,/J.<' ..... ..<.... '. \

\_--~. "S \

S 50 \

\
I
I
\

O-t-rlllllllllllllllllllllllllill ~ \ II I I I I I I I I I I I I I I I I I I I

o 5 10 15 20 25 30 35

Strain, Percent
40 45 50

Figure 3.5 Stress-Strain Curves for 50SK Steel in the Longitudinal
Tension under Different Strain Rates

......
o
......



.... 0.0001 in/in/sec.
-- 0.01 in/in/sec.
- 0.1 in./in./sec.
--1.0 in/in./sec.

21.51

Strain, Percent
0.5

- ------~'--- ~-----------
' '.~ .~ :: .~ .~.-'::.~ .: .-;.-:.~ ~.:=::-.:=. ~. :::: .~ :::: .'": ., dH ••• •• .,.

70
S
t 60
r

e 50
s

s 40

I 30

k 20
s
I

10

o -'1 I I I ,

0

Figure 3.6 Stress-Strain Curves for SOSK Steel in the Longitudinal
Compression under Different Strain Rates

.....
o
N



3 , 4-

103

-
2

-() \..\...

'" ~

6-
7 5

-
8

(a) Box-Shaped Stub Column

3-

7

,
-
-2

6-
5

4-

-
8

(b) Hat-Shaped Stub Column

Figure 3.J Locations of Strain Gages at Midheight of Stub Columns



104

~ I ~ I ~
I ,

~ 9 11110 ~ 1311114 ~I ,
I ,

~ 7 5 1 68 ~ 3 1 1 2 4
--I~- --ILI -

~
,-

~
,-

~, I,
~

I
~ 111111 2 1511116 ~

I- I-

~
I ~ 4111) I

~, I

(Back View) (Front View)

(a) Box-Shaped Stub Column

I

~ I ~
I

~
I

~,
1

~ 3 1 I 2 4 ~

---I~-~ I-

~ ~,
I

~ 1 ~

I

~
1

~I
I

(Front View)

I

(Back View)

(b) Hat-Shaped Stub Column

Figure 3.8 Locations of Strain Gages along the Specimen Length for
Stub Columns Having Large wit Ratios



Figure 3.9 880 Material Test System and Data Acquisition System
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Figure 3.13 Photograph of a Stub Column with small wit Ratio at
Beginning of Buckling (Spec. IBIEl)

Figure 3.14 Typical Failure of a Stub Column with small wit Ratio
(Spec. IB1E1)
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Figure 3.15 Typical Failure of a Stub Column with Large wit Ratio
(Spec. 1BOA2)
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Figure 3.16 Definition of Bending and Lateral Buckling of Stub
Columns Used in This Study



Figure 3.17 Typical Folding Type of Stub Column Specimens
(Spec. 1B2D3 and 1AOE3)
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Figure 3.18 Typical Bending Type of Stub Column Specimens
(Spec. lAIA3, lB2D3, lBOC3, and IBOB4)
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Figure 3.19 Typical Twisting Type of Stub Column Specimens
(Spec. 1B1A2, 1A3C4, and 1A3A2)
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Figure 3.20 Typical Openning Type of Stub Column Specimens
(Spec. IBOC2 and lAlA4)
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Figure 3.21 Typical Lateral Buckling Type of Stub Column Specimens
(Spec. lB2Al and lBlC2)
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Figure 3.27 Load-Displacement Curves for Stub Column Specimens
(Case 2 of Group B)
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(Case 3 of Group B)
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Figure 3.29 Load-Displacement Curves for Stub Column Specimens
(Case 4 of Group B)
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(Case I of Group C)
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Figure 3.35 Load-Displacement Curves for Stub Column Specimens
(Case 2 of Group D)
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Figure 3.36 Load-Displacement Cllrves for Stub Column Specimens
(Case 3 of Group D)
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Figure 4.6 Photograph of a Stub Column with Large wit Ratio
(Spec. 1BOA2)
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Figure 4.7 Definition of Symbols b' and d' Used in This Study
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NOTATION

The following symbols are used in this report:

145

A
e

A
g

b

b'

C

D

cit

E

f

f cr

Fpr

F
Y

Fya

Fyc

Fuv

k

Effective cross-sectional area of stub columns

Cross-sctional area of stub columns

Effective width of a compression element

Overall width of stiffened flange of box-shaped and
hat-shaped stub columns

Ratio of the total corner cross-sectional area to the
total cross-sectional area of the full section

Flexural rigidity of plate

Overall depth of box-shaped and hat-shaped stub columns

Modulus of elasticity of steel, 29,500 ksi

Edge stress in the compression element

Critical local buckling stress

Elastic critical local buckling stress

Inelastic critical local buckling stress

Stress component normal to the edges of the plate

Proportional limit

Yield stress

Average tensile yield stress of steel

Corner yield stress

Weighted average tensile stress point of flat portions

Tensile yield stress of virgin steel

Compressive yield stress

Tensile yield stress

Ultimate tensile strength

Ultimate tensile strength of virgin steel

Buckling coefficient



k
P

k
2

Pcr

(Pcr)comp

(Pcr\est

Pmean

P
u

(Pu)comp

(Pu)test

R

t

)

p

Crippling plate coefficient

Plate coefficient

Critical local buckling load

Computed critical local buckling load

Tested critical local buckling load

Mean crushing load

Ultimate load

Computed ultimate load

Tested ultimate load

Inside bend radius

Thickness of element

Flat width of a compression element

Slenderness factor

Lateral deflection of the plate

Poisson's ratio

Reduction factor

Aspect ratio
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