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CHAPTER 1
INTRODUCTION

1.1 General

Cold-formed steel structures are being widely used in
various forms of construction such as industrial plants, gym-
nasiums, hangars and metal buildings. One important feature
of metal building construction is the use of light gage roof
panels connected to purlins, particularly of the Z-section.
This section is, besides the channel-section, the simplest two-
flange section which can be produced by cold-forming. The pur-
lins have span lengths of 20 to 25 feet, generally made contin-
uous over the building rigid frames by nesting. Construction
details vary from manufacturer to manufacturer. The purlins
available would typically have prepunched holes for connection

of various types of bracings, overlapping connections, etc.

1.2 Previous Studies

Studies involving such purlin-panel assemblies have been
carried out by a limited number of investigators. Cornell
University carried out a series of studies on channel and Z-
section behavior as regards lateral, flexural, torsional and
flexural-torsional buckling. It is not the intention of this
particular study to investigate any of such buckling modes as
these have been well reported in the various Cornell University

reports referenced and others.



A particularly important study on laterally unbraced
compression flanges is that of Douty6 undertaken at Cornell
University. Section 3, Part III of the American Iron and Steel
Institute (AISI) Cold-Formed Steel Design Manuall was formu-
lated based on Douty's design approach. It is noted that this
approach was intended for sections which have overall lateral
stability. This study is presented in Chapter 2.

Douty's approach as formulated in the AISI Design Manual
is frequently used for calculating the allowable stress on a
beam in which the tension flange is continuously braced while
the compression flange is either free or braced at intervals
along its length. This would be the case when a purlin is
subjected to an uplift load, braced continuously by the dia-
phragm strength of the roof panel.

In a survey undertaken by Ellifritt7 of the Metal Build-
ing Manufacturers Association, there was observed considerable
variation in the computed allowable stresses. He attributed
this almost exclusively to the selection of the spring constant,
B, which represents the rotational restraint of the purlin-
panel assembly. Hence, the accurate determination of B is
critical in predicting the ultimate load capacity of the pur-
lins.

Another important Cornell study was on diaphragm-braced
channel and Z-sections by Celebi.4 He studied the theoretical
basis for the design of diaphragm-braced thin-walled channel
and Z-section beams and obtained the solution to the differ-

ential equation involved. A computer program, coded based on



his investigations and conclusions, is used by the metal build-
ing industry to check their design recommendations. One sig-
nificant aspect of this study is the consideration of both the
shear rigidity and the rotational rigidity of the diaphragm

in bracing of purlins.

A follow-up of Celebi's study was done by Pek'o'z.11 He
developed further the computer program coded by Celebi4 and
conducted tests on three span continuous diaphragm-braced
purlin assemblies. The test results were correlated with the
computer program solutions.

A significant study on the strength of elastically sta-

bilized beams was done by Haussler.8 In many respects, this

study is comparable to that of Douty.6

1.3 Objectives of this Study

This study will attempt to establish by full-scale test-
ing of diaphragm-braced purlins under simulated uplift loads a
reliable failure criteria of such purlins. The current AISI
Design Manual, particularly that of Section 3, Part III, shall
be employed as a suitable foundation for such a criteria.
Further inputs shall be considered from the differential equa-
tion solution as coded in a computer program by Celebi. The
study will particularly look into the problem of the rotational
restraint factor, F, from which the spring constant, 8, is
computed.

Chapter 2 will detail the analytical studies as presented

6

by Douty on the stability analysis of laterally unbraced com-

pression flange. Chapter 3 presents the details of the experi-



mental program with particular emphasis on what is called the
vacuum test procedure for testing the purlins. Analysis of the
results are done in Chapter 4, followed by conclusions, design

recommendations and suggestions for future work in Chapter 5.



2.2 Stability Analysis

2.2.1 Portion of Compression Flange Acting as a Column

Considering the simple case of the U-shaped beams, when
the compression flange is subjected to the critical bending
forces gcrAf’ where Oy is the critical stress and Af is the
area of the flange, the component normal to the deflected
flange is Afdzxa/dzz, where X, is the displacement of the top
flange in the x-direction (see Figure 2.2). The differential
equation for the deflection of the flange as a beam is

d4x

EIf—d—z% = -0 Agd’x_/dz? 2.1

The lateral force component on a unit length of the de-
flected web is ctwdzx/dzz, where o is assumed to be a linear
function of the distance from the neutral axis, i.e., directly
proportional to y, and tw is the thickness of the web. Figure
2.3 shows the distribution of the lateral force on the web.
The lateral force in the tension region Ct is directed opposite
to the direction of displacement while in the compression
region Cc’ it is directed in the direction of displacement.
The lateral force in the web is transmitted to the compression
flange and the magnitude of the total force per unit length of
beam is obtained by taking moments about the base of the web

giving the following result:

R = g Aweb d *a 2.2
a cr 12CC dzZ
!:c ) :t



where Ra = total lateral force transmitted to the com-
pression flange by the buckled web.
Ao = area of web.
CC = distance from the neutral axis to the extreme
compression fiber.
Ct = distance from the neutral axis to the extreme

tension fiber.

The equation of equilibrium of the compression flange

then would be:

4 2
d'x A d®x
EI 3 .5 [A. + web 1 __ "2 . g 2.3
£ dzz cr f 12Cc ) dzz
\3c_ =,

and the corresponding nontrivial eigenvalue leads to:

2
T E
ag = 2.4
T (/1)
/ Ie
where T =
Af + Awtb/[lzcc/(SCC - Ct)]

r is the radius of gyration of the flange together with a por-
tion of the web of depth d(3CC - Ct) / 12Cc’ where d is the
depth of the beam. This is the portion of the web which, along
with the compression flange, can be considered as the column

subjected to buckling.

2.2.2 The Effect of Torsional Instability

2.2.2.1 Stability Condition

The analysis in Section 2.2.1 is for the type of column



supported on an elastic foundation where the elastic support
is provided by the remaining portion of the web and the tension
flange acting together as an elastic frame. The effect of
torsional weakening in the combined flexural-torsional stability
of the effective column is considered by using the theorem of
minimum potential energy. The following analysis is based on
the analysis for the stability of the upper chord of a pony
truss bridge presented by Bleich.3
The change in the entire potential energy of the systen,
U is given by:

U=V, +V, + U

1

L
5| e @n? v g em? + aiten) ez
0

L
. %J (cyu’ - 2C,ue + Co07)dz
0
L I
3 twn? ez« Dol 2.5
0

where P = axial load on the effective column.

U = the change in the entire potential energy of the
system consisting of the effective column and its
supporting elastic frame.

V1 = strain energy accumulated in the bent and twisted

column.

V2 = strain energy of the deflected supporting frame.



Uw = the change of potential energy of the external
forces acting on the system.

Iy = moment of inertia of the column about its vertical
y axis.

u = horizontal displacement of the shear center.

¢ = rotation of the column.

J = torsional rigidity of the column.

Yo = vertical distance between the shear center and
the centroid of the column.

Ip = polar moment of inertia of the column about its
shear center.

Cw = warping constant.

€y = 8,/ (8,8, - 53¢)

C = Bug/ BBy = 85

C5 = 8,/(8,8, - ai¢)

6, = horizontal displacement of the shear center due

to a unit load.
5u¢ = horizontal displacement of the shear center due

to a unit moment.

O
]

rotation of column due to a unit moment.

To minimize the integral U so that 8U = 0, the following

Euler-Lagrange differential equations must be satisfied:

2

oF d oF d oF

30 -z Gt P (ggm = 0 2.0a
z
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oF d ,9F

w‘az(—?b—,—)*‘ = ( 2.6b

L
where U =j F(z,u,u’,u",6,6",6")dz
0

To satisfy the boundary conditions, substitute the

eigenfunctions
u = AISinImz/L
o = AZSinrmz/L where n = 1,2,3,..

A nontrivial solution can exist only if the determinant of the

coefficients of A1 and A2 is zero (A1 and A2 are indeterminate):

Per Cu Por
L+uw - 57— S ToMy TP Y
n Pn C1 n Pn 0
Sz Per ey, v, S Pl
C1 P o} njszIy Iy C1 n Pn A
c,L?
where My = 55— 2.7
n n°w Pn
2.2
nen“gl

L = length of column without elastic foundation.

Expanding 2.7 gives the following quadratic equations:

I P C I C
2 2 2
(78 ) yo)(Fiz) ) [ﬁ% Mo ? 7? (L + ) * 2y, C, "n
BT i I T @2y’
Iy nzﬂzEI P 1 n’’'n C; ™m
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C 2
w L°GJ
- (@) o+

(1 + un)] =0 2.8
y nm EIy

Equation 2.8 is the general equation of torsional-
flexural stability for a column on an elastic foundation if
a Winkler foundation, i.e., closely spaced springs, is assumed.
Although the support provided by that part of the beam con-
sidered to be the elastic foundation is continuous, the dif-
ference is significant only for very short columns when
compared with that of closely spaced discrete springs. The
Winkler foundation is more conservative as it is less firm than
that provided by a continuous foundation.

2.2.2.2 Simplification of Stability Condition

Equation 2.8 can be expressed in a general form as:

P
-B(I—,ﬂ)+c=o 2.9
n

A D
n
Numerical investigations done by Douty on various shapes as
indicatéd in Reference 6 show that A is insignificant when
compared with B and C for short column length. It becomes
more insignificant as the column length increases since A re-
mains static while B and C increases with length. Thus, the
second order term of (Pcr/Pn) can be neglected reducing the

general stability equation to:

C C C
3 2 2 w GJ
Q1 +udu - (F=u)"+— 1 +up)+5 (1+up)
icr ) Sl In n C1 n CIy i n Pn n
n 3 P 2 w GJ
== u_ + (1 +u ) +2y =u + —+ 35— .
C, 'm A n oC] 'n Iy P 2.10



Winter12

strength of a column on an elastic foundation which buckle

12

published the following equations for determining the

flexurally:
p 2
E- 1+ By for aL¥/p 2.11
e T P
e
P 2
-1591 = (0.6 +% %1*—) for BLZ/Pe > 30 2.12
e e
where PCr = critical load of equivalent column.
Pe = Buler critical load = 1T2EI/L2
B = spring constant = 1/D
D = lateral deflection of the column centroid due
to a unit force applied to the web at the level
of the column centroid.
L = unbraced length of equivalent column

Equation 2.10 can be manipulated and rewritten as:

~
P, g ¢ ™n 1 n Iy
P C C
n 3 W GJ
(opl S R
1 y n
.
[~ 1
I C2
+ @+ )+ 2y, gFun
1+ — 1
Su +(_:.W_ .(.Si
L M T =

2.

13
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Comparison of Equation 2.13 with Equation 2.11 shows that
the former is completely analogous to the latter if B is the

following expression:

C C C
3u - (_g.)zu + ..y_ + G_J
C, "n C n I P
B = (=% 1 Yy ¢ 2.14
€q C3 C GJ 1 '
—.u + l + ——
C1 n Iy Pn

The additional multiplier within the second bracket of Equation
2.13 can be regarded as a reduction factor due to the torsional
weakness of the cross-section. The value of Cw/Iy is generally

small in relation to the other terms. Hence, Beq can be reduced

to:

C.C. - cZ)L2 + GJC
3 2752 1
7

L

3"2

B = 2-15

eq

C + GJ

For short columns, it can be shown that Beq is a function of L
and the torsional constant J. As L increases, the asymptotic

limit of Equation 2.15 is:

2
B = ——__—Clcs - CZ 2.16
eq Cs

which in turn reduces to:

Beq = 1/6u 2.17

This is the modulus of the elastic foundation which restraints
the deflection perpendicular to the web of the beam. Douty's
study showed that Beq = 1/6u is an accurate approximation for
longer columns, and conservative to use for short columns.

Thus, Equations 2.11 and 2.13 are identical except for the term
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in the second bracket of Equation 2.13 which will be called

the torsional reduction factor:

T = 1 2.18
I C
2
L @ru) * 2y, == oy
1+ = of -
3 s W LG
c1“n I P
y n

2.2.2.3 Design Approximation for Torsional Reduction Factor

It is necessary to reduce Equation 2.18 to a simple
enough expression applicable to cold-formed light gage columns

on an elastic foundation. The expression for T can be simpli-

fied to:
T = 1 2.19
I C2
£ (1 +u) + 2y, c; ¥
1 +
C3 !
UI n

Equation 2.19 is justified from consideration of the terms
CW/Iy and GJ/Pn which are negligible when compared with
(C3/C1)un, for typical light gage beams.

From Equation 2.12, the length of one half wave in the
asymptotic limit is L' = n*/ET/E. The total length is nL'.
Substituting for n4 in H, = C1L4/n4n4EI and B = (C1C3 - C%)/CS,

gives the asymptotic form of T:

T = 1 2.20
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From consideration of the three common types of elastic support
configurations found in light gage steel construction (see
C

Figure 2.4), Cl’ C2 and C3 can be simplified. C and C

1’ 72 3
are constants, each of which involves the three possible dis-
placements caused by a unit moment and a unit force applied to
the column on elastic support. The three cases considered,
Case I, Case II and Case III correspond to the elastic support
configuration as shown in Figure 2.4. The deflections at the

top of the web produced by a unit moment and unit force at that

point on a unit length of beam for each of the three cases are:
s $ 8

+

+ — b
3EIw I?EIf ZEIw 12EIf EIw lZEIf

u u¢ o)
3 2 2
h h™b h hb h b
Case 1 + + +
3EIW ZEIf ZEIw ZEIf EIw ZEIf
3 2 2
h h™b h hb h b
Case II + + + 2.21
SEIW 4EIf 2EIW 4EIf EIw 4EIf
: 3 2 2
Case III h h™b h hb h b

Substituting Su, $ 8§, in the expressions for Cl’ C2

ud’ "¢
and C3, Equation 2.20 can be simplified to:

For Case I (and for IW = If):

= 1
Ta I Yo 2.22
1+ —72 + S
h"A B

15 + 30(%) + 9(‘%)2

where R
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b(l + %)

S=
b
2+3H

Expressions for Cases II and III can be easily derived. The
expressions obtained however are still too complex and cum-
bersome for design use, although sufficient for detailed
structural analysis. Douty showed, however, that R and S
become asymptotic to 1.0 and 2.0, respectively, as the ratio

b/h increases (see Figure 2.5). He showed that it is con-

servative and expedient to consider the case b = h. Thus,
further simplifying for the three cases with b = h:
Case I: T, = 1 2.23a
) a 216I 2.4y ¢
1 + 2= P . 0
"h“Z—A —h
Case II: T, = 1 2.23b
) a 2.63 T 2.57y
1 + & P 4 0
—;T_ A T h
Case III: Ta = 2.23c

From examination of the term My in Equation 2.19, T is

highly dependent on L for low values of L. My (= C1L4/n4ﬂ4EIY)
becomes dominant as L/n increases. At the transition point:
= = 4 =
L Llim T /EI7C1 (n 1) 2.24

For Case I, Cq is computed using the applicable values of Gu’

§, and Gu

p to give:

¢



-

For b = hoand 1 = /12

P ————g:

2 .,.,"‘\ -3
"lxm. '.It\’(h/t’

[
.

[
(¥}

Douty did a numerical investigation by computer of
fquation .19 for several shapes representing Case 1 for vary-
1ng lengths and n = 1 to 4 for cach of the length. Results
for one shape with the dimensions indicated is as shown in
Figure 2.6. Cther results showed similar asymptotic behavior
of the curves indicating for Case 1, the expression for Llim

is a good approximation. Above L T becomes quite indepen-

lim’
dent of L and is reasonably equal to Ta'

The problem of the stability of the effective column on
elastic foundation taking the torsional weakening of the flange

into consideration is finallv reduced to the following:

“
. . 8L° 2 ,
pCT T(1 ;r;-)pe when 8L /pe < 30 2.26
e

- 8L” 2 .
Pop = T(0.60 « 0.635 §:~)Pe when 8L°/P_ > 30  2.27

T, the torsional reduction factor is determined as follows:

h

L h L .
T=T( ) = ( ) ( ) if L < L 2.29
o'l ;n R 5.4y 0, lim

where Llim * ‘"'/n(h/t)3 = 37V
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distance from the centroid of the equivalent

<
[}

column to its shear center

o
]

distance from the tension flange to the

centroid of the equivalent column

For the case where the beams are braced at large dis-

tances, the following expression for PCr may be used:

PCr = T0 /AR EI 2.30

Equation 2.28 for TO is the expression further simplified from
Equation 2.23a, developed by the AISI and the one in use in its
Design Manual.1 Equation 2.29 represents the linear inter-

polation T = LTa/Llim'



CHAPTER 3
EXPERIMENTAL INVESTIGATION

3.1 General

The general theory of laterally unbraced compression
flanges is quite involved as was discussed in the preceding
chapter. In order to bear out the theory and simplifying
assumptions, and to test the reliability and/or validity of
the treatment of laterally unbraced compression flanges for
diaphragm-braced beams, a series of tests was performed. The
rationale behind this series of tests was to restrict variables
to the minimum: hence the testing of simple spans and single

bay assemblies.

3.2 General Procedure

The experimental investigations conducted were to examine
the ultimate load capacity together with the relevant parameters
involved, of Z-section purlins assembled as roof systems with
galvanized panels. The loading is to simulate uplift load due
to wind on the roof system. Several purlin sections were made
available by two manufacturers who also provided galvanized
panels and their required fasteners. Two sets of tests were
performed for each purlin-section. These are referred to as
vacuum tests and beam tests. The details are described below.
The choice of the Z-section purlins is essentially due to the
common usage of this type of section as roof purlins in indus-

trial-type metal buildings.
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3.3 Vacuum Tests

A series of tests referred to as vacuum tests were
carried out for each purlin section. Two twenty foot sections
of the same purlin were assembled with galvanized roof panels
to form the roof. This length was chosen to represent the
portion of the purlins in the exterior span of a continuous
purlin assembly. The distance between the exterior support
and the first inflection point in the common case of twenty-
five foot span purlins is about twenty feet. The purlins lie
horizontal and parallel at five feet apart. The panels were
screwed to the purlins using self-tapping screws for purlins
already provided with prepunched holes. For purlins without
prepunched holes, self-drilling screws were used. The screws
were at one foot spacing. An overlay of polyethylene sheeting
was provided between the purlins and the panels, and was taped
to the floor before testing. A vacuum suction was then applied
using a workshop vacuum cleaner. Two valves were provided to
control the required vacuum suction. The applied pressure load
was measured using a water manometer.

Figure 3.1 shows the overall view of the purlin assembly,
and Figure 3.2 gives the dimensional details. The panels used
has the cross-sectional dimensions shown in Figure 3.6. It
should be noted that the initial assembling of the roof assembly
was done in the 'correct' position, i.e., the panels were on
top of the purlins. The assembly was then inverted, the poly-

ethylene sheeting taped to the floor, thus enabling a convenient
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method of applying the uplift load. Reference to these tests
are designated by the letter 'V' followed by a number signify-
ing the sequence, e.g., test V3 means the third vacuum test
done.

With the exception of the first vacuum test (test V1)
which had rigid end supports, all the tests had simply sup-
ported ends. The simple supports were provided by placing
rollers under the support I-beams at both ends of the purlins
to which they were connected to by using oniy one bolt not
tightly bolted. The rigid end conditions for test V1 were
obtained by attaching the purlin ends by means of two bolts fo
the end supports which were not free to rotate.

The initial sweeps at midspan of the top web to flange
junction of the purlins were measured relative to the same
point at the purlin ends (see Figure 3.7). The strains and
deflections under load were measured at midspan. The strains
were measured using strain gages located mainly at the top
flange region i.e., the compression flange. The horizontal
and vertical displacements were measured by dial gages suitably
located. The relative locations of the strain gages are as
shown in Figure 3.9. All the tests were continued until fail-

ure occurred in one or both of the purlins.

3.4 Beam Tests

A parallel part of the experimental program was a series
of tests on similar Z-section purlins as in the vacuum tests

referred to as the beam tests. Two twenty feet sections of the
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same purlins were connected together along their bottom
flanges by sixteen channel sections at one foot apart. This
arrangement provided a bracing system for the purlins. At
one-fifth points along the spans, a sixteen-inch small I-
section was used instead of the channel sections. These

were the locations of the applied load. The ends of the beam
test assembly were simply supported with rollers.

A four point loading system was applied to the bottom
flanges parallel to the web. The loads were applied via the
four small I-sections connected to the bottom flanges. The
test was done using a universal testing machine. Figure 3.3
gives an overall Viéw of the beam test assembly under load.
Figuré 3.4 shows a schematic diagram of the assembly and some
dimensions.

As in the vacuum tests, the initial sweeps of the purlins
at midspan were measured_prior to testing (see Figure 3.8).
Also, the strains and deflections were obtained at similar

locations at the midspan.

3.5 Rotational Restraint Tests

A series of tests were conducted to determine the rota-
tional restraint provided by each purlin-panel system. For
each purlin section, a three feet section was obtained and
connected to a section of the roof panel with the screws as
used in the vacuum test assembly. The procedure followed was
that proposed by Haussler.9 A schematic diagram of the assem-

bly is shown in Figure 3.10. An initial test was done according
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to a modification by Pekc’iz11 of a procedure used by Celebi4

and
used for similar purposes as this study. Both procedures gave
near identical results for the rotational factor, F, in the
initial tests. However, the Haussler method was preferred
since it is simpler and was used in subsequent tests.

The tests were continued until excessive rotation of the
purlins and substantial buckling of the roof panels were ob-
served. Care was taken to measure the gage and load direction
heights at each loading as these differ substantially as the
purlin rotations increase.

Some measure of the rotational restraint on the purlins
in the beam test set-up was needed. The F value for these
tests would evidently be different from that of the vacuum
tests. A two feet section of a purlin was taken. Two channel
sections used for bracing in the beam tests were bolted at one
end each to the purlin. Figure 3.11 shows the set-up used,
which is a modification of the Haussler procedure used for
the purlin-panel rotational restraint tests described above.
The channels are rigid, hence the presence of the small I-beams
at one-fifth points along the actual beam test assembly should

not alter the rotational restraint provided significantly.

3.6 Shear Rigidity Tests

The shear rigidity of the roof panels was determined
using a method called the centilevel shear test used by Pekb‘z,11
among others. A schematic diagram of the assembly is shown in

Figure 3.12. The specimens for the two tests done were the
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two halves of the purlin-roof panel assembly of the vacuum
test V3. The results of these tests are shown graphic¢ally in

Figure 4.24.

3.7 Material Properties

Three tensile coupons were prepared according to ASTM
standards from lightly stressed regions of the failed purlin
for each purlin type used in the vacuum tests. The average
of the tensile yield stresses obtained are presented in Table

3.1.

3.8 Section Dimensions

The purlin section dimensions were determined using a
procedure that has been used in the metal building industry.
This involves obtaining a portion from each purlin about
eighteen inches long, and squaring one end reasonably flat.
Next, a profile of the purlin was obtained by placing the flat
end on a piece of tracing paper, and paint sprayed lightly
around the perimeter of the section. The dimensions of the
purlin were then conveniently measured from the image obtained.
For the same purlin type, the dimensions are averaged and pre-

sented in Table 3.2.

3.9 Discussion of Test Results

3.9.1 Test Results

Under ideal circumstances, one would expect the purlin
failure to be due to buckling in the compression region and

in the vicinity of the midspan. The tests conducted showed
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buckling in essentially three ways: (i) buckling at the com-
pression flange-web junction at midspan or at the prepunched
holes used for sag rods in an actual roof assembly, (ii) buck-
ling at the web compression region at midspan or at the pre-
punched holds, and (iii) buckling at the lip-stiffener of the
compression flange. These are shown in Figures 3.13 to 3.18,
and a summary of the results is presented in Table 3.3.

Details of the failures observed are as follows:

Vacuum Tests:

Test V1: --Purlin type A. Failure occurred in one purlin
by local buckling at 4.8 in. from the midspan
where the prepunched holes were. The purlin
ends were fixed, hence a high failure load
obtained and the purlin maximum rotation was
comparatively small (see Figure 3.13).

Test V2: --Purlin type B. Local buckling occurred in one
purlin at the hole location 1.6 in. from midspan.
Yielding was observed as failure load was ap-
proached resulting in large lateral deflections
of both purlins. The vertical deflection of the
assembly was also observed to be large (see Fig-
ure 3.15).

Test V3: --Purlin type D. Local buckling occurred in one
purlin at the web and at midspan. It occurred
after some observable yielding of the failed
purlin. This test was one of two that showed

the failure described, i.e., at the web only.
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Also, from this test onwards care was taken to
ensure that the purlins' holes are symmetrical
about their midspan (see Figure 3.17).

Test V4: --Purlin type'C. Local buckling occurred at 6 in.
from midspan at the location of prepunched holes
of one purlin. No noticeable yielding was ob-
served (see Figure 3.16).

Test V5: --Purlin type A. This was essentially a duplicate
test for purlin A, except that the ends of the
purlins were simple i.e., free to rotate. The
failure occurred in one purlin by local buckling
at the compression flange-web junction. The
failure load was lower, and rotations and deflec-
tions larger than in test V1.

Test V6: --Purlin type E. Self-drilling screws were used
on this purlin type for panel connection. The
failure occurred at midspan by flange lip-
stiffener failure of one purlin followed by
the other. The stiffeners were twisted out-
wards until buckling occurred (see Figure 3.18).

Test V7: --Purlin type B. This was a duplicate of test
V2 to verify the results obtained earlier.
Failure occurred at the prepunched hole loca-
tion by local buckling in the web compression

region of one purlin.
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Beam Tests

Test Bl: --Purlin type A. Failure occurred by sudden
local buckling of the compression flange-web
region at the location of the prepunched holes
of one purlin. This was 15 in. from the mid-
span of the purlins (see Figure 3.14).

Test B2: --Purlin type A. One of the two purlins used
in this test was the purlin that did not fail
in test Bl. This purlin failed in this test
in the same manner as in test Bl, 12 in. from
the midspan. The failure load was lower.

Test B3: --Purlin type A. This is a duplicate of test BIl.
Failure occurred in one purlin by local buck-
ling as in test Bl, but at midspan. The fail-
ure load was nearly the same as in test Bl.

Test B4: --Purlin type D: Failure occurred by buckling of
the flange lip-stiffener of one purlin. The
other purlin deflected considerably and was
restrained by the test machine column. It is
envisaged that failure would have occurred in
this purlin by local buckling of the compres-
sion flange-web region had not it been for the
restraint described. The failure was violent
(see Figure 3.17).

Test BS: --Purlin type B. Failure occurred in one purlin

at midspan after large lateral deflections
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indicating yield. Failure was of the local
buckling of the compression flange-web-type.

Test B6: --Purlin type C. Failure occurred in one purlin
at 6 in. from midspan at the prepunched hole
location. The failure was as in test Bl. How-
ever, at failure, the other purlin reacted
violently and showed failure in the lip-stif-
fener of the compression flange (see Figure
3.16).

Test B7: --Purlin type E. The failure occurred in one
purlin by buckling of the compression flange
lip-stiffener. Small lateral deflections were
observed as was the case in test V6 for similar

type purlin (see Figure 3.18).

3.9.2 Discussion of Vacuum Test Results

The failures in the tests conducted occurred mainly in
the compression flange-web region of one purlin. With the
exception of test V3 and V7 where the local buckling was ob-
served to be at the webs only, it was difficult to observe
whether the local buckle appeared initially in the flange or
the web as it happened suddenly in most cases. For tests V2,
V3 and V7, the purlins used were of low flange-width to thick-
ness (w/t) ratios (purlin types B and D with w/t = 24.3 and
22.3, respectively).

The approaching failures were easily anticipated by the

large lateral deflections observed with each load increment,
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indicating yield. In general at failure, the purlins deflected
laterally in a continuous manner at constant load until local
buckling occurred at the location of high compression stress.

The purlins of high w/t ratios, namely purlin types A,
C and E all failed by sudden local buckling in the compression
flange-web region in the case of purlin types A and C, or at
the lip-stiffener of the compression flange in the case of
purlin type E.

It is interesting to note the failure of purlin type E.
The initial sweep (see Figs. 3.7 and 3.8) of this purlin type
tended to be negative as defined by Figure 4.2 Hence, the
twisting outwards of the lip-stiffener of the compression
flange began almost immediately upon loading. It is envisaged
that a higher load could be obtained if the initial sweep had
a small positive value. For the other purlin types, the tests
did indicate a tendency to buckle at the prepunched holes. The
absence of these holes should give higher ultimate load capaci-
ties for these purlins.

3.9.3 Discussion of Beam Test Results

The failure modes in the beam tests conducted are gen-
erally of the same type as those in the vacuum tests. For the
various purlin types, the behavior at failure was the same.
The beam tests thus model the behavior in the vacuum tests
adequately. Considering the two types of tests as a whole it
can be observed that the purlins of low w/t ratios tended to
buckle locally at midspan, whereas those of higher w/t ratios

tended to do so at the location of the prepunched holes.



CHAPTER 4
ANALYSIS OF RESULTS

4.1 General

The analysis of diaphragm-braced purlins is a complex
problem. Among other procedures for analysis, that of the AISI
Cold-Formed Steel Design Manuall-Part III, Section 3, was tried.
The basis for this procedure is the study by Douty6 which has
been described in some detail in Chapter 2. The studies pre-
sented by DesmondS and Yu13 will also be utilized to assist in
understanding the analytical and design problem and arrive at
suitable design recommendations. An available computer program
based on analytical studies by Celebi4 and modified by Pek6211

was also used to obtain theoretical values to compare the test

data with.

4.2 Background for Evaluation of Results

4.2.1 AISI Design Manual (Part III, Section 3) Approach

(Douty Approach)

Part III, Section 3 of the American Iron and Steel
Institute (AISI) Cold-Formed Steel Design Manual1 (henceforth
referred to as the Douty approach), is the basis used for
analyzing the quantitative information obtained from the
experimental program of this study. The Douty approach re-
quires the following:

1. The location of the neutral axis is determined for
the purlin section. The "equivalent column'" is defined as the

portion of the beam from the extreme compression fiber to a

30
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level which is (3CC - Ct)/12Cc d distance from the extreme
compression fiber. Here, CC and Ct are the distances from the
neutral axis to the extreme compression and tension fibers
respectively, and d is the depth of the purlin section.

2. The shear center is located for the distance Yo
measured parallel to the web from it to the centroid of the
equivalent column (see Figure 4.1). Approximation is allowed,
for example, if the flanges of the channel-shaped compression
portion of the section are of unequal width, one can take w as
the mean of the two flange widths. More exact methods of analy-
sis can be used to locate the shear center.

3. The spring constant, B, is then determined. This is
done by taking 1 inch long portion of the purlin, apply a force
of 0.001 kip perpendicular to the web at the level of the
column centroid, and compute the corresponding lateral deflec-
tion D of that centroid. The spring constant is then

B8 = 0.001/D
4, The torsional reduction factor, To’ is computed as

follows:

where h is the distance from the tension flange to the centroid
of the equivalent column, and Yo is as defined in 2.

5. For the flange braced at less than two points, (which
is the case for this study), the critical load of the equivalent
column, PCr is computed as follows:

PCI‘ N TO BEI
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where I is the moment of inertia of the equivalent column about
its y axis parallel to the web, B is as defined in 3, and E is
the modulus of elasticity. 1If the flange is laterally braced
at two or more points, PCr is computed as in p. 19 of Part III

of Reference 1.

6. The slenderness ratio of the equivalent column is

then determined as follows:

(Peq = & i
T ‘eq PCr AC

where k is an experimental correction factor for the post-buck-
ling strength of the section and equals 1/1.1, and AL is the
cross-sectional area of the equivalent column. With E = 29500

ksi, the equation reduces to:

(%)eq i /?—i_%—_
cr’c
7. The axial stress Fal’ at the level of the centroid
of the equivalent column, corresponding to (KL/r)eq, is com-
puted from the equations in paragraph (a) of Section 3.6.1.1
of Reference 1 (using Q = 1 and K = 1). These equations,

without the factor of safety, are:

KL 21°E
For =< /¥
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F . =
L

A note about the above formulas is in order. The value of
/ZTr:E/Fy is the limiting KL/r ratio corresponding to a stress
equal to Fy/Z in flexural column buckling. When the KL/r ratio

is greater than this limiting ratio, fhe column is assumed to
be governed by elastic buckling, and when the KL/r ratio is
smaller than this limiting ratio, the column is to be governed
by inelastic buckling. In the actual design formulas, the
factor of safety of 23/12 is used.

8. The compression bending stress in the extreme com-
pression fiber, sz, is then computed by extrapolating linearly

the axial stress Falz

C

sz B (Yf) Fal
where CC is the distance from the neutral axis of the beam
to the extreme compression fiber, and YC is the distance from
the neutral axis of the beam to the centroid of the equivalent
column. In the Design Manual, sz is multiplied by a factor
of 1.15 being the ratio of the factor of safety used for column
buckling (23/12) to the factor of safety used for beam yield-

ing (5/3), F_, having the factor of safety of (23/12) applied

al
to it beforehand.
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4.2.2 Discussion of the Douty Approach

In the second step of the Douty Approach, the computation
of Yor the distance from the centroid of ¢pe compression area
to the shear center, parallel to the web 6 js easily established
for a channel-shaped configuration with equal flanges. A
reasonable approximation can be made for a channel with unequal
flanges by taking the flange width as the mean of the two
unequal flanges. For a channel with one flange angled, the
required shear center distance is computed pore accurately by

a method as presented in Appendix A. It js observed that the
computed values of y by this method is gpajler as compared to
the values obtained by the approximate method suggested by the
Douty Approach. For the same section, thjs leads to a higher

computed stress being obtained.

In the third step of the procedure,K , spring constant,

B, is computed. This spring constant Tepresents the rotational
restraint provided by the section when sypjected to an applied
moment. In the procedure for computing g suggested by the
Douty approach, a one inch long portion of the member is iso-
lated, a force of 0.001 kip is applied Perpendicular to the web
at the level of the column centroid, the corresponding lateral
deflection D of that centroid is computed, g8 is then equal to
0.001/D. This study involves purlins braced continuously by
panels. There is a restraining action by the panel on the
rotation of the purlin section, hence the value of 8 must

reflect this action. An analytical procedure would be too
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complex for ease of computation. Two experimental procedures
are available for a reasonably accurate determination of the
rotational restraint factor, F, from which 8 can be easily
computed for sections such as the Z-sections used in this

study.
g = F/dZ

where dr is the distance from the centroid of the equivalent
column to the axis of rotation, which for the Z-section is
the web-tension flange corner.

The procedures as used by Pekdz and proposed by Haussler9
were discussed in Section 3.5. The significance of using dif-
ferent values of F for a particular cross-section is discussed
further in Section 4.3.4.

The concept of effective width of a plate element under
compressive stress is well established in cold-formed steel
design. Winter's commentary on the AISI Cold-Formed Steel
Design Manual (Part II of Reference 1) gives a summary of this
concept as currently used by the AISI. This concept is of great
significance in the procedure discussed since the ultimate load
capacity of a purlin depends on the sectional modulus used.
Other computations involve the determination of the centroid
of the compression area (equivalent column) and its moment of
inertia. These geometrical parameters depend on the amount of
the compression flange considered. In general, the Douty ap-
proach is currently applied assuming the compression flange as

fully effective. However, in the evaluation of the test results
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in Section 4.3, the use of the effective section properties
were also tried. The work of Desmond5 was used in this regard
since it uses the concept of effective width for a stiffened
as well as partially stiffened and unstiffened plate elements.

4.2.3 Adequacy of Compression Elements

The material discussed in this section is drawn from the
study by Desmond5 on the behavior and strength of thin walled
compression elements with longitudinal stiffeners. Desmond
presented the stiffener requirements and design procedures for
predicting effective widths of edge and intermediately stiffened
elements. He adhered to existing design procedures of the AISI
Design Manual1 as far as possible. In his design method, the
flange stiffened by an edge stiffener is examined, depending
on its (w/t) ratio and the yield stress, whether it is fully
effective as an unstiffened element, fully effective when ade-
quately stiffened or it is in the post-buckling range. The
last two categories require adéquate stiffening for which
formulas are provided.

The edge stiffeners are thén examined for their adequacy.
For an adeduately stiffened flange, the flange and stiffener
effective widths are then computed. For a partially stiffened
flange, its effective width and the reduced area of the partial
stiffener are determined. From the reduced area of the partial
stiffener, the reduced length is obtained. The reduced length
is treated like an effective width for computations of section
properties. All the effective width equations are drawn from

Winter's1 equivalent width relationship or modifications of it.
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Essentially, Desmond presented modified values of the buckling
stress coefficient. A summary of Desmond's design method is

presented in Appendix B.

4.3 Evaluation of Results

4.3.1 Test Ultimate Loads

The ultimate loads for the vacuum tests and the beam
tests are presented in Table 3.3. A uniformly distributed
load was applied in the vacuum tests. The maximum moment
occurs at midspan and is equal to w12/8 where w is the uniform-
ly applied load per linear foot of purlin, and 1 is the purlin
span. For a section modulus S of a purlin, w, = 808/12, where
o is the stress in the extreme fibers and W, is the distributed
load corresponding to stress o. A four point loading is applied
in the beam test (see Figure 3.4). By considering the maximum
moment at midspan, the load per linear foot is Wy = (20/3)08/12.
For the situation where the purlins in both tests have the same
failure stress, wv/wb = 1.2. From an inspection of the ratios
of the actual test values, the theoretical ratio does not hold,
the mean being 0.83. However, wb/wV has a mean value of 1.22.
A possible explanation is that in the actual tests, the purlins
of the same section do not reach the same failure stress in the
vacuum as well as the beam tests, as assumed above. It is ex-
pected that since the rotational restraint factors, F, for the
same purlin section in the two set-ups, vacuum and beam, are
different, (the latter is expected to be higher), the ultimate

stresses, hence ultimate loads are predictably no longer in the
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ratio of 1.2. Further, the purlins were not subjected to pure

flexural action.

4.3.2 Test Ultimate Stresses

The ultimate stresses (computed from the last recorded
strains before failure occurred) reached in the vacuum and beam
tests are presented in Table 4.1. Load-strain curves for the
five purlin types tested are presented in Figures 4.3 to 4.12.
The locations of the strains recorded are indicated by numbers
corresponding to those in Figure 3.9. All the tests indicated
the highest stresses (corresponding to the highest strains)
occurred at locations 4 and 5 on one purlin, or the correspon-
ding locations 9 and 10 on the other purlin in the pair, depen-
ding on which purlin failed. The exception was for tests on
purlin type E, where the failures were due to local buckling
of the lip-stiffener of the compression flange. Both purlins
in test V6 showed high stresses at similar locations 2 and 7,
and 5 and 10 (at top of web). 1In test B7, one purlin showed
highest stress at location 1 (at lip-stiffener) on one purlin
and at location 10 (at web) on the other purlin. It is inter-
esting to note that the initial sweeps of the purlins in test
V6 are both negative (see Figure 3.7), whereas that of B7 are
both equal and opposite.

In the vacuum tests, the failures occurred at stresses
varying from 45.3 to 87.3 percent of yield stress (see Table
4.1). One test of purlin type B failed at yield, another at
79.2 percent of yield stress. Generally, purlin types with

high flange width to thickness ratios failed at lower stresses
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(average of 62.2 percent of yield stress) than that of low
ratios, i.e., thicker purlins (average of 83.2 percent of yield
stress). The failures in these tests than are governed by
buckling of the plate elements rather than by yielding, as can
be expected.

The load-stress curves of the highest stressed location
for each purlin type in the vacuum tests were compared with the
curves obtained for the same location using an available com-

ll)- These curves are

puter program (due to Celebi4 and Pekoz
shown in Figures 4.13 to 4.17. With the exception of curves
for purlin type B, all the curves show fair correspondence,
less so at higher loads. The test stresses were computed
directly by multiplying the strains with the modulus of elas-
ticity (29500 ksi). These would then be comparable directly
with the computer program results where elastic behavior is

assumed for any load.

4,3.3 Test Ultimate Rotations

The maximum rotations computed from deflection measure-
ments are presented in Table 4.2. The load rotation curves for
the two types of tests are presented in Figures 4.18 and 4.19.
The behavior of purlin type E in the vacuum test, as have been
pointed out in this report previously, is somewhat different
from the other purlin types. Due to the compression area
twisting outwards (i.e. in the negative direction according to
Figure 4.2), which led to the failure of the lip-stiffener, it
did not show the torsional behavior exhibited by the other

purlin types. The load-rotation curve is linear up to failure,
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with the maximum rotation only of the order of one quarter of
the other purlin types.

The maximum rotations, with the exception of that for
purlin type E for the vacuum tests and purlin types D and
E for the beam tests, are fairly close with one another. The
mean is 0.243 radians with a standard deviation of 0.029.
It has been suggested that a failure criteria based on ulti-
mate rotations could be formulated.

4.3.4 Rotational Restraint Factor, F

An important factor in considering the ultimate strength
of the purlins is the rotational restraint the roof panels
provide when the whole assembly is loaded. The degree of
rotational restraint is dependent to a certain degree on the
cross-sectional dimensions of the purlins, the rigidity of
the panels to which they are connected and the nature of the
connection. The last two factors were different for the
vacuum and beam tests. These have been described in the as-
sembly details for the two types of tests in Chapter 3, and is

further discussed below.

Three initial tests to evaluate the rotational restraint
factors F, were done according to the method used by Pekb’z,11
all the remaining twelve tests were conducted using the pro-
cedure proposed by Hausslerg (see Section 3.5). The results
of the tests (1) with the purlins diaphragm-braced and (2) with
the purlins braced with sixteen inch length channel sections

are presented in Figures 4.20 to 4.22. The rotational defor-

mation of the purlin web with respect to its bottom (tension)
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flange was also computed from the deflections measured at a
point near the mid-point of the web, parallel to the bottom
flange. The ratios of these rotations to the total rotations
were computed and are presented in Table 4.3.

The rotational restraint factor, F, was computed for each
purlin and test type by obtaining the moment M corresponding
to the maximum large-scale test rotation. M is then divided
by the maximum test rotation. This was done since the moment-
rotation curve is nonlinear. The value of F increases with
increasing rotation. The F values are presented in Table 4.2.

It is generally observed that the F value is higher for
a purlin section that has a low web depth to thickness ratio
(H/t). This is indicated in a plot of H/t vs. F shown in
Figure 4.23., Also from Table 4.3, it is observed that general-
ly, purlin types of high H/t ratios suffer more cross-sectional
rotational deformation than those of lower H/t ratios. Purlin
type E is consistently enigmatic in its behavior, even in this
case since in both the diaphragm-braced and channel-braced F
tests, its web cross-sectional rotational deformations (per
total rotations) are higher although its H/t ratio can be con-

sidered as intermediate between those of B and D, and A and C.

4.3.5 Shear Rigidity of Panels

The knowledge of the shear rigidity of the panels is
required for use in the computer program computations. The
shear rigidity, Q, computed from Figure 4.24 is 30 Kkips,

. 2
calculated according to a method given by Apparao and Errera.
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This value is somewhat lower than those obtained by Peké’z.11

There are intentional differences in the framing of the panels
in the tests done in the two cases (see Figure 68 of Reference
11 and Figure 3.12 of this report).

4.3.6 Initial Sweeps of Compression Flanges

The initial sweeps of the compression flange-web junction
of the purlins were measured relative to a straight line join-
ing the two ends (for the same locations) at the supports. The
values obtained are presented in Figures 3.7 and 3.8 for the
vacuum and beam tests respectively. The initial sweep seems
significant in predicting which purlin out of the two in the
test assembly would fail and what kind of failure would occur,
namely local buckling in the vicinity of the compression flange-
web area or local buckling at the lip-stiffener of the compres-
sion flange. The purlin that had the larger initial sweep of
the two generally tended to fail first. Local buckling at the
web-flange junction occurred when the initial sweep was positive
(see Figure 4.2 for deflection sign convention used). This type
of failure occurred in most types of purlins tested and in these
purlins the initial sweep was in the negative direction. This
was the case for purlin type E in both the vacuum and beam tests.
It must be added that comparing with the other purlin type whose
H/t ratio is fairly close, the ultimate load obtained for purlin
type E was low. It is envisaged that besides the nature of the
initial sweep discussed above, purlin type E has a comparative-
ly longer flange width and shorter lip-stiffener which probably

contributed to the lower ultimate strength reached.
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4.4 Ultimate Loads

4.4.1 General

The tested purlin sections, with measured dimensions
as in Table 3.2, were analyzed for ultimate loads using various
relevant sections of the current AISI Specification for the
Design of Cold-Formed Structural Members (Part I of Reference
1), henceforth referred to as the Specification, as well as
the Douty approach (Part II, Section 3 of Reference 1). Speci-
fically, the effective widths of flanges were used for compu-
tation of the section properties necessary for determining
ultimate loads. The adequacy of the lip-stiffeners were
checked. The procedure was repeated using the findings of
Desmond regarding flange and stiffener adequacy.

4.4.2 Computations Based on Full Widths of Flanges

The procedure outlined in Section 4.2.1 (the Douty
approach) was used in computing the ultimate stress at the
extreme fibers under compression. From consideration of the
loading system used, uniform loading for the vacuum tests and
a four point loading for the beam tests, the ultimate load

was computed. Using basic mechanics, the load per linear foot

of purlin, q in the vacuum tests is:

q = SUS/L2

where o = ultimate stress

S = section modulus of purlin
L = span length

For the loading in the beam test set-up, the total load, W, is:
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20 oS

ez T
The ultimate loads were computed based on the full widths

of the purlin dimensions for determination of section proper-
ties. This assumes that particularly the compression flange
is fully effective. The computations were done on the basis
of sharp corners at the web-flange and flange-stiffener junc-
tions. From Table 3.2, it is observed that the corner radius
to thickness ratios are generally of the order of four or
greater. Hence, this approximation relieves computations of
the corners.

| The computed ultimate loads were compared with the ulti-
mate test loads for each purlin type. The results are tabulated
in Tables 4.6 and 4.7 (Column a) for the vacuum tests and beam
tests respectively. These computations used the tensile coupon
test yield stress as ultimate stress. Also, the rotational
restraint factor, F, has different values for each purlin type.
Further, for each purlin type, the F values are different for
the case when it is diaphragm braced and when it is rigidly

braced as in the beam test setup.

A similar series of computations were done using Fbw

given below, as ultimate stress:

F, = [1.257 - .000508 (h/t) ‘/g] F,

bw
The above equation is proposed by Yul3 for the maximum compres-

sive stress in the web for beams with unstiffened compression

flanges. For the purlin sections used, Fow is presented in
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Table 4.4. The load ratios are presented in Tables 4.6 and
4.7 (Column b).

4.4.3 Computations Based on Effective Widths (AISI)

The relevant sections of the Specification used here are
Section 2.3.1.1 for effective width determination:
Flanges are fully effective up to (w/t);; = 221/ VT

For flanges with w/t larger than (w/t)lim

b _ 326 71.3
== 222 [1 - —————
t r (w/t) VT

where w/t flat-width ratio

b effective design width, inches

£ actual stress in the compression element

computed on the basis of the effective design
width, ksi.
and Section 2.3.2.1 for edge stiffener requirements.

The minimum moment of inertia:

I . = 1.834t4 /(W/t)2 - 4000/F. but not less
min : y
than 9.2t4

where w/t = minimum allowable moment of inertia of stiffener

about its own centroidal axis parallel to the

. 4
stiffened element, 1n .

Using the above, the effective widths were computed using
the yield stress, Fy, as the ultimate stress. In computing
Imin’ the fact that the lip-stiffeners in the test purlins were
angled at less than right angles with the flange was taken into

account. The results of these computations are presented in
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Table 4.8.

The computed values of adequate and actual moments of
inertia show that using the full flange width, only purlin
type C is adequately stiffened. The others were as much as
56 percent less than adequate. Computations showed that in-
Creasing the lip-stiffener angle would increase the required
moment of inertia. For purlin type E however, increasing the
lip angle to 90 degrees would not help. A longer lip-stiffener
is required to meet the minimum stiffener requirements.

Using the flat flange width as a basis for computing the
minimum stiffener requirement showed that all the purlin types
except E are adequate. It has been shown in Section 4.4.2 that
since the corner radius to thickness ratios are generally larger
than 4, computations based on sharp corners are reasonable.
Hence, the total widths were preferred in the computations.

The Specification states that in order that a flat compression
element may be considered a stiffened compression element, the
stiffeners must have the minimum moment of inertia as given
above. This being the case, one can treat all the purlin types
tested, except C, as being unstiffened. The Specification does
not provide for obtaining the effective width of an unstiffened
element. This will be considered in Section 4.4.4.

4.4.4 Computations Based on Desmond's Flange and Stiffener

Adequacy Requirements5

Desmond's study was briefly discussed in Section 4.2.3
and his procedure for the determination of flange and stiffener

adequacy and formulas for effective widths are presented in
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Appendix B. Using this procedure then, effective widths of the
compression flanges, and effective widths of adequate 1lip stif-
feners or reduced length of partial stiffeners as the case may
be, were computed. Both the total widths and flat widths of
the compression flanges and lip-stiffeners were used as the
bases for the computations. The computations were done using
Fy (the tensile coupon test yield stress) as ultimate stresses.
The computed widths are presented in Table 4.9. These computed
widths were used for the compression flange area in computing
the section properties required in the Douty approach for
determining ultimate stresses in laterally unbraced compression
flanges. The ultimate loads were then obtained as in the pre-
vious computations, and compared with the test ultimate loads.
The ratios of the computed and ultimate loads were obtained

for the four cases as given in Tables 4.6 and 4.7 (Colummns c,
d,e and f).

Desmond also gave provisions for the case when the com-
pression element is unstiffened (Refer Appendix B). To obtain
a lower bound for the computed strength the width of the com-
pression flange was also taken as the total of the actual length
of the flange and the lip-stiffener length. Equation B.18 of
Appendix B was then used to obtain the flange effective widths
for the two cases using Fy and Fbw as ultimate stresses. These
widths are given in Table 4.7. It is interesting to note that
the computed effective widths vary from 28.3 to 46.7 percent

of the actual widths considered which are rather small.
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The ultimate loads were obtained as before and compared
with the test loads. These load ratios are presented in
columns (g) and (h) of Tables 4.6 and 4.7. With these compu-
tations, the series of computed ultimate loads for the five

tested purlin types are completed.

4.5 Discussion of Analysis

The analyses undertaken in the preceding sections were
done to establish a reliable failure criteria for cold-formed
steel Z-purlins. Although the analyses were done based on
experimental data that were obtained under uplift load condi-
tions, any prediction of ultimate loads should be generally
applicable due to the point symmetric nature of the Z section.
Any flexural action of the purlins would introduce torsional
weakening, hence reduce ultimate loads computed simply on the
basis of only flexural beam action.

The ultimate stresses in the diaphragm-braced purlins at
failure were below their yield stresses. The failures were
due to local buckling of the plate elements at the compression
flange-web junction or at the lip-stiffener of the compression
flange, rather than by yielding. In the beam tests, the strains
measured indicated that yielding occurred for purlin types B,
C and D, although local buckling in the compression flange-web
junction did occur in most cases. |

Referring to Table 4.6, the mean, standard deviation and
standard deviation/mean of the test load/computed load ratios

were computed for each analysis type for the vacuum tests.
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From column (a) of this table, purlin types A and B (depth

9.45 and 9.46 inches respectively) showed excellent correlation
between observed and computed ultimate loads, allowing for
slight conservatism, when full flange widths were used. The
load ratios are low however, for purlin types C and D and lowest
for purlin type E. Overall, a mean of 0.88 was obtained which
is not a satisfactory correlation. Column (b) of the same
table shows a slight improvement in the mean value, but still
unsatisfactory. The use of a lower ultimate stress, Fbw (the
maximum web stress - see Table 4.4), which underestimates the
strength, does not help when full flange width was used.

An improved correlation between observed and computed
loads was obtained when effective flange widths and effective
widths of the lip-stiffeners, or reduced lengths of partial
stiffeners as the case may be, were used in the computations.
Analysis type (d) shows an overall mean of 1.01. This analysis
used the maximum web stress, Fbw’ as the ultimate stress.
Ignoring the load ratio for purlin type E gives a mean of 1.05
for analysis type (c) which is satisfactory. Excluding results
for purlin type E could probably be justified by the fact that
its observed ultimate load compared with the computed load
seems consistently small for the first six analysis types and
by other considerations discussed variously in the preceding
sections of this chapter.

Analysis types (e) and (f) used effective widths computed
on the basis of flat flange and stiffener widths, and using the

yield stress, Fy and Fbw respectively for ultimate stresses.
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Slight improvements over analysis types (a) and (b) are indi-
cated. Analysis types (g) and (hj used the effective widths
of unstiffened compression flanges (which they were shown to
be in Section 4.4.3). Both analyses are evidently very con-
servative to be of design use. The concept of partial stif-
feners proposed by Desmond5 would be more realistic for inade-
quately stiffened flanges.

Looking at the analysis for the beam test ultimate loads
presented in Table 4.7, one can say that analysis type‘(f)
shows good correlation between observed and computed ultimate
loads. This analysis used effective widths computed from flat
flange and stiffener widths and Fbw as the ultimate stress.
However, again ignoring the load ratio for purlin type E,
analysis type (c) gives a mean of 1.03 for the load ratios,
which is good.

Inherent in all the analysis types for both vacuum and
beam tests is the use of a unique rotational restraint factor,
F, for each purlin type. Besides using an experimental pro-

cedure to determine F, a simple design method need yet to be

established.
4.6 Summary

The analyses showed that the Douty approach as given in
the current AISI Design Manual1 (Part III, Section 3) on the
design of laterally unbraced compression flanges is inadequate

for the determination of ultimate strength of cold-formed

steel Z-purlins. The use of effective widths for compression
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flanges and effective widths of adequate stiffeners or reduced
length of partial stiffeners as the case may be, as proposed
by DesmondS gave a good correlation between observed and

computed ultimate loads. Using the maximum web stress, Fbw’

13 provided

of unstiffened compression flange as proposed by Yu
slightly more conservative results. The value of the rotational
restraint factor, F, to be used in the analyses is of signifi-

cant importance.



CHAPTER 5
CONCLUSION

5.1 Summary of Results

The research described herein studied the ultimate
strength of braced cold-formed steel Z-purlins subjected to
uplift loads.

An experimental investigation was undertaken to obtain
quantitative information. Five types of cold-formed steel Z-
purlin were used in large-scale tests of two kinds: vacuum
and beam tests. These purlin types have different flange
width to thickness ratios. The tests were undertaken to
determine the ultimate load capacity of the purlins. Experi-
mental values of the rotational factors, F, were determined
at least once for each purlin and test type. The information
obtained from the tests conducted and the analyses done on them
were reported in Chapter 3 and 4 respectively. Chapter 2 de-
tailed a Cornell University study undertaken by Douty.6

The experimental results were analysed using the AISI
(or Douty's) approach given in its Design Manuall (Part III,
Section 3) and Desmond's5 design method for edge-stiffened
thin-walled compression elements. The AISI approach was found
to be generally unsatisfactory in predicting the ultimate
strength of the Z-purlins used. The analyses showed that the
compression flanges and their lip-stiffeners cannot be treated

as fully effective in most cases, especially for purlin types

that have high flange width to thickness ratios. The AISI
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approach as it stands lead to unconservative results. When
used in conjunction with Desmond's design method however,
which uses the concept of effective plate widths, the AISI
approach was found to be able to predict ultimate strengths
reasonably well. A more conservative result could be obtained
by using Yu's maximum web stress, based on an unstiffened
compression flange, as the ultimate stress in the design pro-

cedure given in the AISI Specification.

5.2 Recommendations

On the basis of the experimental results obtained and the
analyses done through this research project, it is possible to
recommend modifications to the current AISI Design Manual,1
Part III, Section 3, which deals with the design of laterally
unbraced compression flanges -insofar as it is used to predict
ultimate strengths of cold-formed steel Z-purlins.

The AISI Design Manual Part III, Section 3 can be uti-
lized to determine the ultimate strength of Z-purlins, with
the proviso that the compression flange and lip-stiffener be
checked for their effectiveness by Desmond's design method as
presented in Appendix B. The effective width of the compres-
sion flange and the effective width of the lip-stiffener or
the reduced length of the partial stiffener, as the case may
be, should be used. For a reasonably conservative prediction
of ultimate strength, the maximum web stress as proposed by

Yu13 could be used as the ultimate stress instead of the yield

stress.
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Further, the rotational restraint factor, F, needs to be
known, or at least a reasonably close approximation of it.
Currently, the suggested method is by a simple test such as
the method proposed by Haussler.9 A convenient design pro-

cedure to obtain F is being studied at Cornell University.

5.3 Suggestions for Future Work

This study is limited to the determination of ultimate
strength of cold-formed Z-purlins. The use of channel-section
purlins is also common in metal building construction for
similar applications as the Z-purlins. Hence, besides further
confirmatory tests on the applicability of Desmond's design
method in determining effective widths for use in the AISI
Design Manual, Part III, Section 3, the ultimate strength of
channel-section purlins under uplift loads need to be looked
into.

Another important area to be looked into is a design
procedure to determine the rotational restraint factor, F. An
empirical relationship between web depth to thickness ratio,
yield stress, and F seems reasonable, should further quanti-

tative information be available from extensive testing to

justify it.



APPENDIX A

LOCATION OF SHEAR CENTER FOR
EQUIVALENT COLUMN

For the purpose of the computations detailed in Chapter
4, it is necessary to obtain the distance Yor the vertical
distance from the centroid of the equivalent column to the
shear center. It is not necessary to know the exact location
of the shear center. Referring to Figure A.1l, let the shear
center (S.C.) be as indicated, distance Yy from the flange
centerline.

Applying a force Pv as indicated on the shear center
parallel to the flange, no twisting of the equivalent column
could occur. Considering this condition, an attempt is made
to obtain a good approximation of the shear center location.
The variation of the shear flow along the lip-stiffener is
taken to be linear as shown. This would be true for a regular
channel section, but since the stiffener length for this case
is normally short compared to the flange width, this would be
a reasonable approximation.

Using the usual notations, the maximum shear flow in the
stiffener is:

V(st) (£ + 3 cosa)

V =
T T

where Iyy = moment of inertia of the lip stiffener about

axis y-y

55



56

Vszt(£ v 2 cosa)

2
21
Yy

Total shear force =

Moment of shear force about 0, Mo:

vs?t(2 + £ cosa) (£ + m)sina

Yo = 21
Yy
Moment of applied force P, about 0, Mp
v
M = Py
PV v'v

Since Pv =V and with b = £ + m

szt(z + % cosa)bsina
Yy T 21
Yy

The location of the shear center above the centroid is
then:

yo = YNA * yV



APPENDIX B

DESIGN METHOD FOR EDGE STIFFENED ELEMENT

Introduction

The following design method for an edge stiffened
element is taken from Reference 5. This design method is
part of a complete design method proposed for stiffened
elements which include intermediately stiffened elements.
The stiffener requirements and design procedures for predic-

ting effective widths are presented.

Notation

The following symbolism and definitions pertain to the
typical edge stiffened elements shown in Figure B.1 and will

be used in the subsequent design recommendations.

(w/t)OL = 221/ /'6'; B.1
(w/t)B = 0.64\kaw)u-s. E/oy B.2
in which (k )u.s. is determined by rotational
analysis per Figure 2.2.2 of Reference 16.
If rotational restraint at supported edge is
neglected, then
(kw)u.s. = 0.425
and
(w/t)B = 71.7/3; B.3
I_ = effective moment of inertia of edge stiffener about

S
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its own centroidal axis parallel to the stiffened
element, in.4

If the stiffener is a straight 1lip then

I =D°

s eff t/12 B.4

where
Degr = degg * T B.5

in which r is the inside radius at the corner of

the stiffener and flange, and from Equation 4.1.3

(@/t) gg = -95 /4:555_3 (1.-—'292 / -Zzi Ey B.6

when kd is taken as 0.425.

Also, if the straight 1lip stiffener is at an angle
to the flange, deff is determined from the above
equation, but Is is calculated by

3

D t
_ Teff 2
IS = =1 cos 8 B.7

where 8 is defined in Figure 6.1b.

(Is)adequate = Required minimum centroidal moment of

inertia of stiffener necessary to ade-
quately support the flange. Stiffener
moment of inertia is taken about its own
centroidal axis parallel to the stiffened

element, in4.

and

w = flat width of edge stiffened flange, in.
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d = flat width of straight lip edge stiffener, in.
kd = buckling coefficient for straight lip stiffener
kw = buckling coefficient for edge stiffened flange
oy = yield stress, ksi

E = Young's modulus, ksi

Edge Stiffener Requirements

The required minimum stiffener rigidities, (Is)adequate’
necessary to adequately support the edge stiffened flange are
as follows:

--For (w/t) < (w/t)B; fully effective as an unstiffened

element

(Is)adequate
--For (W/t)B < (w/t) < (w/t)a; fully effective range when

adequately stiffened

: [/ e)/ (w/t) - (/0 / /) 1°
(Is/t )adequate =120 [1.0 - (w/t)B/(w/t)a]3
I1f rotational restraint is neglected at sup-
ported ege such that (w/t)a and (w/t)B are
defined per Equations 5.4.3a and 5.4.4a in

Section 6.1.1, then

[w/t) - (71.7/ F)1°

4
(I /tH) = 120
s adequate [(221/ 6;) - (71.7/ G;)]S

- 36.1 x 10°° [/ ) B - 71.71°

--For (w/t) > (w/t); post-buckling range
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From Figure 5.3.3, Stiffener Requirement V is given by

(Is/t4) 115 (w/t)/(w/t), + 5

adequate

Substituting Equation 5.4.3a,

(Is/t4) 0.52 (w/t) /3 + 5

adequate

etermination of Effective Widths and Areas

-For IS > (IS)

; Adequately Stiffened Element

adequate’

Effective Width of Flange is given by

B.

B.

10

11

Bk E(k)
(/)  gg = 0.95 f—wa.s. (. ~'392 / gya's‘ ) B.12
y

If Ds/w < 0.25 or if stiffener other than a straight

lip (such as L-shaped stiffener in Figure 6.1c)

(kw)a.s. =4

If Ds/w > 0.25 then

(k),. g = -5 Dg/w + 5.25

where DS is the unstiffened flat width of the

stiffener plus the corner radius.
Effective Area of Adequate Edge Stiffener

If straight 1lip stiffener

(Adegr = dege ¢
where — —
_ d .209 /%4
(d/t) ggp = -95 [ —— (1. - 573 )

y Oy

B.

B.

13

14
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in which

kd = 0.425

If other than straight 1lip and if for none of the

stiffener's component elements w/t > (w/t)lim then

(As)eff = unreduced cross-sectional area of

stiffener

--For 0 < Is < (I Partjially Stiffened Element

s)adequate;
Effective Width of Flange is given by

JEK) s 200 /E(R) S o
(W/t) g gg = 0.95 ——g-;P—— (1. - 7% n )  B.15

I B
(k) = : nol(k), o - (k) o]
ﬂ .S. .S.

where

wp.s. (Is)adequat

* (kJy. s, B.16

in which (kw)a s, 1is defined above for the adequate stiffener

and (kw)u s and is defined in the plate buckling coefficient
if the plate element were stiffened and if
w/t < (w/t)a n =2

3

w/t > (w/t)a n
Reduced Area of the Partial Stiffener is given by

(A) B.17

s’p.s. © (As)eff Is/(Is)adequate
where (AJ) e is defined above for the adequate edge

stiffener.
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--For Is = 0; Unstiffened Element

Effective Width of Unstiffened Flange is given by
E(k ) /E(k )
= w'u.s. _.209 w'u.s.
(w/t)eff =0.95 —_E;_—__— (1. w7t N ) B.18

(k)y. s = 0.425

where

unless determined by rational analysis per Figure 2.2.2 of

Reference 16.
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MATERIAL PROPERTIES (Tensile)
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TABLE 3.1

Purlin Yield Ultimate Percent
Type Stress (ksi) Stress (ksi) Elongation
A 57.3 79.9 26.0
B 57.6 81.2 27,5
C 61.5 85.0 23.5
D 65.9 91.2 23.2
E 70.5 94.8 17.8



PURLIN
TYPE

m o O W >

H
(in)
9.45
9.46
7.92
7.93
7.92

PURLIN

TYPE

A

m o 0w

by
(in)
2.56
2.65
2.49
2.56
2.96

by
(in)
2.65
2.72
2.42
2.57
2.92

TABLE 3.2

AVERAGE PURLIN DIMENSIONS (1)

Wi

(in)
.03
.02
.01
.86
.33

N = NN

b

(in)

NN = NN

.10
.08
.01
.88
.38

S

t

(in)

o = o

.76
.12
.86
.10
.74

b

(in)
0.84
1.25
0.86
1.22

0.74

dg 2

(in) (degrees)

0.60 42

0.90 40

0.64 40

0.81 35.5

0.48 35
dy ¢y R/t
(in) (degrees)
0.64 44.5 5.40
0.90 42 3.76
0.68 36 3.67
0.85 42 3.52
0.47 36 5.14

(1)Dimensions as in Figure 3.5

R/t

.17
.12
.00
.87
.42

L= T @ ¥ o B . B &4

.60
.06
.67
.48
.86

o N O O 00

.13
.24
.54
.00
.70

(in)

o O o o ©

.063
.109
.060
.115
.069

99



SUMMARY OF TEST RESULTS

TABLE 3.3

%ﬁ?T gg%gIN g%giﬂ #g?éK igik(z) LOCATION OF LOCAL BUCKLE COMMENTS (4)
(IN) (IN) (LBS/FT) AT A DIST. OF BUCKLE
HOLE(3) | TO MIDSPAN(IN)

V1 A 9-1/2 | .063 145 Y 4.8 (9)
V5 A 9-1/2 ) .063 114 N m.s,

Bl A 9-1/2 | .063 119 Y 15

B2 A 9-1/2 | .063 96 - - (10)
B3 A 9-1/2 | .063 119 N m.

V2 B 9-1/2 | .110 229 Y 1.6 (5)
V7 B 9-1/2 | .110 224 Y

B5 B 9-1/2 | .110 280 N m.s.

V4 C 8 .063 82 Y 6 (6)
B6 C 8 . 063 95 Y 6

V3 D 8 .110 177 N m.s

B4 D 8 .110 254 N m.s (7)
V6 E 8 .07 88 N m.s (8)
B7 E 8 .07 105 N m. s (8)
(1) V designates vacuum - B designates beam test

(2)

In the beam test, failure load is given as the total load on the span
divided by the span length.

L9



(3)
(4)

(5)
(6)

(7)

(8)
(9)
(10)

TABLE 3.3 (continued)

Y-Yes; N-No.

Unless otherwise noted, local buckle occurred only in one purlin and in
the web and the flange.

Yielding accompanied by large deflections.

Indicated buckling was in the web and the flange of one purlin. The
other purlin buckled locally in the flange stiffener.

Indicated buckling was in the flange stiffener. The other purlin was
restrained by the test machine due to large lateral deflections.

Flange stiffener buckling.
Ends of purlins were fixed.

One purlin was tested previously and was badly distorted.
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TABLE 4.1

TEST ULTIMATE STRESSES(S)

Vacuum Test Beam Test

Purlin Yield
Type Stress (cy) Stress %cy Stress %oy

A 57.3 39.2 68.4  53.8 93.9
B 57.6 y(1:2) y
C 61.5 45.5  74.0 y
D 65.9 57.5  87.3 y
E 70.5 31.9  45.3  45.4  64.4

(1) (y)ield

(2) Duplicate test (V7) gave ultimate stress
of 45.6 ksi (79.2 %cy)

(3) All stresses are in ksi.
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TABLE 4.2

ROTATIONAL RESTRAINT FACTORS (F)(z)

Vacuum Test Beam Test

PURLIN Max. Rot. F Max. Rot. F
TYPE (rad.) (rad.)

A .250 .084 .284 .173

B .275 .141 .223 .392

C .203 .073 .225 .185

D .238 .150 .137 .413

E 060 115 144 .246

(1) F not based on this value (see Fig. 4.21).

(2) ¢ is in k-in/in/rad.
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TABLE 4.3
ROTATIONAL DEFORMATION OF PURLIN WEB

Purlin (1)

Type H/t (ep/e)v (6 /9)3(2)

P

A 150.0 .32 .53

B 86.8 .11 .29

C 132.0 .31 .58

D 69.0 .10 .27

E 114.8 .39 .66

(1) Ratio of rotational deformation of purlin web
(ep) to total rotation (6) in diaphragm-braced

F tests.

(2) Ratio of rotational deformation of purlin web
(ep) to total rotation (6) in channel-braced

F tests.



(1)

(2)
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TABLE 4.4

YIELD AND ULTIMATE STRESSES

oy (@

ng%éN Fy Fbw,s bw,u
(KSI) (KSI) (KSI)

A 57.3 47.41 38.97
B 57.6 56.91 53.13

C 61.5 52.96 44,96

D 65.9 67.31 64.10

E 70.5 62.41 54.10

Computed using the F_ equation for beams with stiffened
compression flanges (Reference 13). Fbw = [1.21 -

.000337(h/t)JF;]Fy.

Computed using the F,  equation for beams with unstif-

H

fened compression flanges (Reference 13). Fbw [1.257 -

.000508 (h/t) JF_}:] Fy'
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TABLE 4.5
SUMMARY OF ANALYSIS Typgs(l)

AN@%ggrs ULTIMATE FLANGE BASIS OF
2) (3) EFFECTIVE
STRESS (
TYPE WIpTH (4)
a F
) Fy F NA
bw F NA
c F
‘ y S TW
P S W
e F S FW
f py S FW
, bw
g F__ u W
. y
Fi U TW

(1) This table deals with the parameters used in the AISI De-

(2)

(3)

(4)

Sign Manual Part III Section 3 "type" analyses.

All moments of inertias and section moduli were found on
the basis of sharp corners.

The stress indicated was substituted for Fy required in the
column formulas to be used with the procedure. Fpy were
for un-

the web ultimate stresses as listed in Table 4.4 r
Stiffened compression flanges since this equation gives
lower stresses and hence underestimates the strength.

F - Full flange width (unreduced). . _
S - The effective width was determined with the equations

given in Appendix B for plate elements with edge

stiffeners. .

U - The effective width was determined with the equations
given in Appendix B for unstiffened flanges (with k =
0.7). In this case the width of the flange was taken
as the total width of the flange plus the width of the
lip.

NA - Not applicable, full flange width was used.
™ - w/t wgg based on the full flange width. In all cases,
the r/t was greater than 4 for the lip-flange corner,

thus possibly justifying the approach.
FW - w/t was based on the flange flat width.

Wben flange effective width was used, the lip effective
width determined according to Appendix B was also used.

Even when Fpw was used for failure criterig,‘the.effective
Width was based on F, and not Fpw, thus eliminating a very
tedious iterative prgcedure. This procedure leads to

underestimating the capacity.



TABLE 4.6

COMPARISON OF OBSERVED
AND COMPUTED ULTIMATE LOADS
IN VACUUM TESTS

qtest/qcomputed

PURLIN ANALYSIS TYpE (1)
TYPE F (a) (b) (c) (d) (e) (f) (g) (h)
A .084  1.03 1.05 1.18 1.22 1.13 1.15 3.98 3.98
.141  1.06 1.06 1.11 1.11 1.06 1.06 2.41 2.41
C .073 .88 .89 1.00 1.0% .93 .97  3.53  3.53
D .150 .87 .87 .91 .91 .87 .87 1.88 1.88
E .115 .58 .60 .68 .74 .62 .67 2.52 2.52
Mean .88 .89 .98 1.01 .92 .94 2.86 2.86
St. Dev. .19 .19 .20 .19 .20 .19 .86 .86
St. Dev. .22 .21 .20 .18 .21 .20 .30 .30
Mean
Ultimate Stress Fy Fbw Fy Fbw Fy Fbw Fy Fbw
Flange Type F F S S S S U U
Basis of eff. w NA NA W TW FW FW TW TW

(I)See Table 4.5 for further information.
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TABLE 4.7

COMPARISON OF OBSERVED
AND COMPUTED ULTIMATE LOADS

BEAM TESTS
(1°ad)test/(1°ad)comp.
PURLIN
TYPE F (a) (b) (c) (d) (e) (£) (g) (h)
A .173 .91 1.06 1.06 1.26 1.00 1.18 3.47 3.47
B . 392 1.00 1.04 1.06 1.09 1.00 1.04 2.15 2.15
C .185 .81 .95 .98 1.18 .90 1.07 3.09 3.09
D .413 .97 .98 1.03 1.04 .97 .98 1.96 1.96
E .246 .62 .71 77 .01 .69 .81 2.47 2.47
Mean .86 .95 .98 1.10 .91 1.02 2.63 2.63
St. Dev. .15 .14 12 .13 .13 .14 .64 .64
St. Dev. .18 .15 .12 .12 .14 .13 .24 .24
Mean
Ultimate Stress Fy Fbw Fy Fbw Fy Fbw Fy Fbw
Flange Type F F S S S S U U
Basis of eff. w NA NA TW TW FW FW TW TW

(1)See Table 4.5 for further information.
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TABLE 4.8
MINIMUM STIFFENER REQUIREMENT ACCORDING TO AISI

1(1) 11(2)
PURLIN  FLANGE I . (3} prravee 1. 3 STIFFENER
TYPE WIDTH n WIDTH min 1(4)
(in) (in*) (in) (in*) (in*)
A 2.56 00115 2.03 .00090 00103
B 2.65 .00590 2.02 .00428 .00527
C 2.49 .00097 2.01 .00077 .00131
D 2.56 00667 1.86 .00454 .00494
B 2.96 00175 2.33 .00137 00077

(l)Total flange width used.

(Z)Flat flange width used.

CS)Minimum stiffener moment of inertia required.

(4)Moment of inertia of stiffener.
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‘TABLE 4.9

EFFECTIVE WIDTHS OF COMPRESSION
FLANGES AND LIP-STIFFENERS

(Desmond Method)

I I1 111
nglﬁéN W (in( S(l)(in) w(in) s(l)(in) (in)
A 1.75  0.17  1.64 0.14 1.051
B 2.56  0.67  2.020%)  0.00(3) 1 736
C 1.58  0.16  1.51 0.13 0.973
D 2.44  0.56  1.86° 0.81(3) 1,709
E 1.68  0.08  1.50 0.03 1.047

I Based on total width.

II Based on flat width.

IITI Based on total length of flange + stiffener
and considered as unstiffened.

(1)Reduced length of partial stiffener unless otherwise
noted.

cz)Fully effective.
W = flange width. S = stiffener length.
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Z-SECTION DIMENSION

FIG. 3.5
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A= ’////
= P (load)

FF N

Support
Bolt PP

\>3h2 y /

A \Channel section
-
10" L 12"

12" Load point

/,--Z = purlin

‘;‘;-EL:. ........ S
l‘——rz—u——'l —\Channel section

(bolted to bottom
Section A-A flange)

FIG.-3.11 F TEST: CHANNEL-BRACED PURLIN



93

Legend:
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FIG. 3.12 SHEAR RIGIDITY TEST SETUP






=
-
.
-
=
=
=
-
S
-
=
-

5.

2
-
=
o
o
P
Smer

FIG.




BUCKLE IN TEST V2

URLIN TYPE B).




. 0 i
Calend
e i

o
L
.

.

.

-~ mxesw@#&&@ﬂwﬁﬁ%










100

A

/Shear center

a

L+

[

Centroid

"FIG. 4.1

Principal axes

FIG. 4.2

(3c,-cprnzcq

L

COMPRESSION AREA OF Z-SECTION

DISPLACEMENT SIGN CONVENTION



101

NIVILS °"SA QvOoT ¢
O X UIDNS

0 0001+ O
L

jsd ‘ppo| pai|ddy

O |

02

00¢2-

‘014

0001-

0 000i+

i
£s

V Ulling :GA s3]

O

02

jsd ‘pooy paiddy
Q
M



Applied load, psf

€
y
|

Test V2.

L |
+3000 +1500

o

|
-150

0

1 -
-3000 -3500

Purlin B

Applied load, psf

N
ol

€
y
|

+3000 +H 500

Strain x 10
FIG. 4.4 LOAD vs. STRAIN

0

-1500

-3000

-
-3500

0T



103

NIVILS °"SA QvOo1 S°v 914

g0l X ulbig

008i-0021- 009- 0O 009+ 0081-002i- 009- O 009+
[ T T — — T Y —
Ky Ay

J ullind :pA isaL

<

n

-l

jsd ‘poo| paijddy
jsd ‘ppo| patljddy



2, Applied load, pst
Applied load, psf

€ = 2234 x 1076 €, =2234 x 107®

1 1 ]
+ l2?)0 +600 o) -600 -1200

L. i
+1200 +600 o

-600 -1200 -1800
Strain x 10® |

FIG. 4.6 LOAD vs. STRAIN

P01



Applied load, psf

24

20

o

N

Test V6: Purlin E

€, = 2390 x 107®

=400

~800  —1200" <1600

Applied load, psf

€y = 2390 x |0-®

Strain x 108

FIG. 4.7

LOAD vs,

=400

STRAIN

=800

1200 =1600

SOT



o
T

D

Applied load, kips

Applied load, kips
o

Test B3: Purlin A

10

2..
€y
I .
=2000  +1000 o
Strain x 10©

FIG. 4.8 LOAD vs. STRAIN

901



Applied load, kips

Test B5: Purlin B

0 1600

-2000

Strain x 10®
FIG. 4.9 LOAD vs.

Applied load, kips

STRAIN

12

o

@™

LOT



6 6
a Q
= =

3 4 3 4
o o
5 o
® °
";: Test B6: Purlin C a

a2 s 2

€y

1 1l o)

0 -1000 -2000 o)
Strain x 108

FIG. 4.10 LOAD vs. STRAIN

80T




Applied load, kips

o

8
6 Test B4:. Purlin D
4
2
fv
0] L A
-1000 -2000
Strain x |
FIG. 4.11

=

Applied load, kips

06
LOAD vs. STRAIN

60T



Applied load, kips

Test B7: Purlin E

Applied load, kips

€ =2390 x 10”¢

€ =2390 x |0-®

-400 -800 -1200 -1600 00 -460
Strain x 108
FIG. 4.12 LOAD vs, STRAIN

~800 -1200 -jeno

0TT



Load, k/ft

111

.|2r
— Failure

AOF

Test VS

06 ——___ Computer
program
04r
02
OO -10 -20 -30 -40 -50

Maximum stress, ksi

FIG. 4.13 COMPARISON OF STRESSES
(PURLIN TYPE A)



Load, k/ft

112

\Failure load =.229 k/ft /

.20

/
18 //

/
16
-/
1a //
A2 ' /
/
10 /
/
08 /
06 / Test V2
____ Computer

program
04
02

0 Z10 -20 ~30 a0 250

Maximum stress, ksi

" FIG. 4.14 COMPARISON OF STRESSES
(PURLIN TYPE B)



Load, k/ft

113

10T -
/
ol ~
.08F aliure /
06
/ Test V4
04 —ew-= Computer
program
.02F
O y 1 4 1
0 -0 -20 -30 -40

Maximum stress, ksi

FIG. 4.15 COMPARISON OF STRESSES
(PURLIN TYPE C)



Load, k/ft

114

.18} Failure load
/
16 //
4
d2F
JOF
08 Test V3
_ __ _ Computer
program
06
04F
02
OO -10 -20 -30 -40 =50

Maximum stress, ksi

FIG. 4.16 COMPARISON OF STRESSES
(PURLIN TYPE D)



Load, k/ft

A2

10

o)
@

(o]
o

04

02

115

FIG. 4.17

(PURLIN TYPE E)

e
[ v
v
I /
’/’
— Failure s
i /
/
Test V6
—___ Computer
- program
! A 1 - | B |
0o -0 -20 -30 -40 =50
Maximum stress, ksi
COMPARISON OF STRESSES



70r

12000

1

10,000

8,000

6,000

Applied load, psf

Ve 4000

Applied load (on 2 purlins), Ibs

2000

1 i

a4 0 4 8 1z e 0 2 5

12 16 20

Rotation, degrees Rotation, degrees .

FIG. 4.18 VACUUM TESTS: LOAD-ROTATION FIG. 4.19 BEAM TESTS: LOAD-ROTATION
CURVES CURVES

91T



Moment (Ib—in/in purlin)

70

i o Points at which
F computed
60
D//B
50}
E
40}
30}
A
20} /
Jold /////
0 v i i [ [ )
0 (o] 02 03 04 05
Rotation (radians)
FIG. 4.20

F TESTS (DIAPHRAGM-BRACED

PURLINS (MOMENT-ROTATION
CURVES

Moment (ib~in/in purlin)

0 1 1 [ (] —d
0 0.l 0.2 03 04 05
Rotation (radians)
FIG. 4.21 F TESTS: PURL

IN TYPE E (DIA-
- PHRAGM-BRACED PURLINS) MOMENT.
ROTATION CURVES

LTI



Moment (ib-in/in purlin)

80

70|

60

SO

401

30

118

O Points at which

F computed

(out of range for B)

8

| ] 1 ]

1

FIG. 4.22

0.1 0.2

Rotation, (radians)

F TESTS (CHANNEL-BRACED PURLINS)
MOMENT-ROTATION CURVES



119

1 7saa/m
(I/H)
001

L3°F Cul4

Pa30.q I®udgd

Pe3D.q jduuDYy) o

| 4

(utjand urzur-x) 4



Lood, P (ibs)

1600

1200

>

L 4

P, * Ultimate load
Q * Shear rigidity

- QP 1010 1pg

0+300
800
400!
0 - —a
0 10 20

Defgction, (in}

$30 B ;8 WMERE SICIPITY TEE?
10D MALBCTION OPEE




121

S y
1/0\‘\
/
s.clP x
\, yv
S —- =%
i
L M INa
Centroid ||
b i

FIG. A.1 LOCATION OF SHEAR CENTER
FOR EQUIVALENT COLUMN

w » +1
,(gj‘ "é?%f
Flange —" 1 D,

]
Edge stiffener

a) Straight lip stiffener

w (r+1) cos 8
,er -—1&%25"'
8

b) Angled straight lip stiffener
FIG. B.1 TYPICAL EDGE STIFFENED ELEMENTS



CCFSS LIBRARY Pekoz, Teoman M.A.A. Razak

22 1 * 4925 ULTIMATE STRENGTH OF COLD - FORMED
. February STEEL Z-PURLINS

1980

CCFSS L1B 92 “LTIMA';_PURLINS
22 1 TEEL
Feb‘—'uary

1980



	Ultimate strength of cold-formed steel z-purlins
	Recommended Citation

	00000001
	00000002
	00000003
	00000004
	00000005
	00000006
	00000007
	00000008
	00000009
	00000010
	00000011
	00000012
	00000013
	00000014
	00000015
	00000016
	00000017
	00000018
	00000019
	00000020
	00000021
	00000022
	00000023
	00000024
	00000025
	00000026
	00000027
	00000028
	00000029
	00000030
	00000031
	00000032
	00000033
	00000034
	00000035
	00000036
	00000037
	00000038
	00000039
	00000040
	00000041
	00000042
	00000043
	00000044
	00000045
	00000046
	00000047
	00000048
	00000049
	00000050
	00000051
	00000052
	00000053
	00000054
	00000055
	00000056
	00000057
	00000058
	00000059
	00000060
	00000061
	00000062
	00000063
	00000064
	00000065
	00000066
	00000067
	00000068
	00000069
	00000070
	00000071
	00000072
	00000073
	00000074
	00000075
	00000076
	00000077
	00000078
	00000079
	00000080
	00000081
	00000082
	00000083
	00000084
	00000085
	00000086
	00000087
	00000088
	00000090
	00000091
	00000093
	00000094
	00000095
	00000096
	00000097
	00000098
	00000099
	00000100
	00000101
	00000102
	00000104
	00000106
	00000108
	00000110
	00000112
	00000114
	00000115
	00000116
	00000117
	00000118
	00000119
	00000120
	00000121
	00000122
	00000123
	00000124
	00000125
	00000126
	00000127
	00000128
	00000129
	00000130
	00000131
	00000132
	00000133
	00000134
	00000135
	00000136
	00000137

