
Missouri University of Science and Technology Missouri University of Science and Technology 

Scholars' Mine Scholars' Mine 

Center for Cold-Formed Steel Structures Library Wei-Wen Yu Center for Cold-Formed Steel 
Structures 

01 May 1976 

Performance of unstiffened compression elements Performance of unstiffened compression elements 

Venkatakrishnan Kalyanaraman 

Follow this and additional works at: https://scholarsmine.mst.edu/ccfss-library 

 Part of the Structural Engineering Commons 

Recommended Citation Recommended Citation 
Kalyanaraman, Venkatakrishnan, "Performance of unstiffened compression elements" (1976). Center for 
Cold-Formed Steel Structures Library. 184. 
https://scholarsmine.mst.edu/ccfss-library/184 

This Technical Report is brought to you for free and open access by Scholars' Mine. It has been accepted for 
inclusion in Center for Cold-Formed Steel Structures Library by an authorized administrator of Scholars' Mine. This 
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the 
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu. 

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/ccfss-library
https://scholarsmine.mst.edu/ccfss
https://scholarsmine.mst.edu/ccfss
https://scholarsmine.mst.edu/ccfss-library?utm_source=scholarsmine.mst.edu%2Fccfss-library%2F184&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/256?utm_source=scholarsmine.mst.edu%2Fccfss-library%2F184&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/ccfss-library/184?utm_source=scholarsmine.mst.edu%2Fccfss-library%2F184&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu


CCFSS LIBRARY Kalyanaraman, V. Pekoz, T.
22 1 * 281 Winter, G. PERFORMANCE OF
1976 UNSTIFFENED COMPRESSION ELEMENT!

I CCFSS LIBRARY Kalyanaraman, V. Pekoz, T.
22 1 * 281 Winter, G. PERFORMANCE OF
1976 UNSTIFFENED COMPRESSION ELEMENTS

=

Technical Library

Center for Cold-Formed Steel Structures

University of Missouri-Rolla

Rolla, MO 65401



DEPARTMENT OF STRUCTURAL ENGINEERING

SCHOOL OF CIVIL AND ENVIRONMENTAL ENGINEERING

CORNELL UNIVERSITY

Report No. 362

-DRAFT

PERFORMANCE OF UNSTIFFENED

COMPRESSION ELEMENTS

by

Venkatakrishnan Kalyanaraman

Teoman Pekoz and George Winter

Project Directors

A Research Project sponsored by the

American Iron and Steel Institute

Ithaca, New York May 1976



PREFACE

This report is based on a thesis presented to the Faculty

of the Graduate School of Cornell University for the degree of

Doctor of Philosophy.

The author wishes to thank Professors George Winter and

Teoman Pekoz for their help and guidance during this research

undertaking.

The sponsorship of the American Iron and Steel Institute

and the cooperation of the American Iron and Steel Institute

Engineering Subcommittees of the Sheet Committees are grate

fully acknowledged.



TABLE OF CONTENTS

LIST OF TABLES

LIST OF FIGURES

NOMENCLATURE

ABSTRACT

CHAPTER 1. INTRODUCTION

1.1 General

1.1.1 Cold-Formed Structural Steel Members

1.2 Behavior of Unstiffened Element Under

Page

ix

xi

xv

xvii

1

1

2

1. 2.1

1. 2.2

1. 2.3

1. 2.4

Compression

Local Buckling of Unstiffened Element

Postbuckling Behavior

Local Buckling in the Inelastic Range

Effect of Local Buckling on Structural

Members

1.3 Purpose of the Investigation

1.4 Scope of the Investigation

1.4.1 Desired Information

1.4.2 Analytical and Experimental Investigation

1.5 Summary

CHAPTER 2. ANALYTICAL INVESTIGATION

2.1 Review of Analytical Methods

2.2 Local Buckling

4

4

7

12

14

17

20

20

21

23

24

24

25



CHAPTER 4.

3.4.4 Winter's Unstiffened Element Effective

Width Equation

3.4.5 Out of Plane Deformation

3.5 Summary and Conclusions

INTERACTION OF THE LOCAL AND THE OVERALL

BUCKLING IN COMPRESSION MEMBERS

4.1 General

4.1.1 The Flexural Instability of Columns

4.1.2 The Flexural Buckling Strength of

Compression Members With Locally Buckling

75

79

80

83

83

84

88Elements

4.2 Experimental Investigation of Compression

Members 92

4.2.1 Material Properties 92

4.2.2 Design of the Specimens 93

4.2.3 Fabrication and Instrumentation 93

4.2.4 Experimental Set-Up and Procedure 94

4.3 Background for Evaluation of Experimental

Data 97

4.3.1 Determination of the Elastic Flexural

Buckling Load from Experiments

4.4 Evaluation of the Experimental Results

4.4.1 Experimental Results

4.4.2 Comparison of Test Results to AISI

Specification Procedure

97

100

100

101



DEPARTMENT OF STRUCTURAL ENGINEERING

SCHOOL OF CIVIL AND ENVIRONMENTAL ENGINEERING

CORNELL UNIVERSITY

Report No. 362

-DRAFT

PERFORMANCE OF UNSTIFFENED

COMPRESSION ELEMENTS

by

Venkatakrishnan Kalyanaraman

Teoman Pekoz and George Winter

Project Directors

A Research Project sponsored by the

American Iron and Steel Institute

Ithaca, New York May 1976



2.2.1 Elastic Local Buckling Stress

2.2.2 Inelastic Local Buckling

2.3 Elastic Postbuckling Behavior

2.3.1 Postbuckling Behavior of Perfectly Flat

Unstiffened Elements - Parameter Study

2.3.2 Postbuckling Behavior of Unstiffened

Elements With Initial Imperfections 

Parameter Study

2.4 Summary and Conclusions

CHAPTER 3. EXPERIMENTAL INVESTIGATION OF UNSTIFFENED

ELEMENT BEHAVIOR

3.1 General

3.2 Stub-Column Test

3.2.1 Material

3.2.2 Design of Test Specimens

3.2.3 Fabrication and Instrumentation

3.2.4 Experimental Set-Up and Procedure

3.3 Background for Evaluation of Experimental

Data

3.3.1 Local Buckling

3.3.2 Postbuck1ing Behavior

3.4 Evaluation and Experimental Results

3.4.1 Experimental Results

3.4.2 Experimental Results of DeWo1f 32

3.4.3 Comparison With Analytical Solution

iv

25

30

35

49

53

54

56

56

57

57

58

60

61

64

64

66

67

67

69

70



3.4.4 Winter's Unstiffened Element Effective

Width Equation 75

3.4.5 Out of Plane Deformation 79

3.5 Summary and Conclusions 80

CHAPTER 4. INTERACTION OF THE LOCAL AND THE OVERALL

BUCKLING IN COMPRESSION MEMBERS 83

4.1 General 83

4.1.1 The Flexural Instability of Columns 84

4.1.2 The Flexural Buckling Strength of

Compression Members With Locally Buckling

Elements 88

4.2 Experimental Investigation of Compression

Members 92

4.2.1 Material Properties 92

4.2.2 Design of the Specimens 93

4.2.3 Fabrication and Instrumentation 93

4.2.4 Experimental Set-Up and Procedure 94

4.3 Background for Evaluation of Experimental

Data 97

4.3.1 Determination of the Elastic Flexural

Buckling Load from Experiments

4.4 Evaluation of the Experimental Results

4.4.1 Experimental Results

4.4.2 Comparison of Test Results to AIS!

Specification Procedure

v

97

100

100

101



4.4.3 Comparison of Test Results to Theoretical

Solutions

4.4.3.1 Flexural Buckling Strength from

Analytical Solution

4.4.3.2 Flexural Buckling Strength from

Effective Width Equations

4.4.3.3 Comparison of Test Results

4.5 Summary and Conclusions

105

106

110

114

118

135

141

128

131

131

143

120

120

122

122

123

124

126

Elastic Local Buckling and Postbuck1ing

Behavior of Unstiffened Compression

Flanges

Limiting Flat Width to Thickness Ratio

Inelastic Strain Capacity of Unstiffened

Compression Elements

5.4.3

5.4.4

5.4 Evaluation of the Experimental Results

5.4.1 Experimental Results

5.4.2

CHAPTER 5. EFFECT OF LOCAL BUCKLING ON FLEXURAL

MEMBERS

5.1 General

5.2 Flexural Member Tests

5.2.1 Material Properties

5.2.2 Design of Experimental Specimens

5.2.3 Fabrication and Instrumentation

5.2.4 Experimental Set-Up and Procedure

5.3 Background for Evaluation of Experimental

Data

vi



5.5 Summary and Conclusions 147

157

CHAPTER 6. POSSIBLE DESIGN METHOD 149

6.1 General 149

6.2 Local Buckling of Unstiffened Element 150

6.2.1 General 150

6.2.2 Rotational Edge Restraint Factor 151

6.2.2.1 Channel and I Sections Subjected to

Uniform Compression 153

6.2.2.2 Channel and I Sections Subjected to

Uniform Bending

6.2.2.3 Rotational Edge Restraint Factor of

Miscellaneous Sections 161

6.2.3 Elastic and Inelastic Buckling 162

6.3 Elastic Postbuckling Behavior of Unstiffened

Elements

6.4 Analysis of Compression Members

6.5 Summary and Conclusions

CHAPTER 7. SUMMARY AND CONCLUSIONS

7.1 Summary and Conclusions

7.2 Scope for Future Investigation

171

175

179

181

181

184

APPENDIX A. EFFECTIVE WIDTH EQUATIONS FOR STIFFENED

ELEMENTS 186

APPENDIX B. COMPARISON OF EFFECTIVE WIDTH EQUATIONS

AND POSSIBLE DESIGN PROCEDURES 188

vii



B.l General

B.2 Comparison of Effective Width Equations and

Test Results of Stub-Columns and Beams

B.3 Flexural Buckling Strength of Columns

B.3.l Tangent Modulus Method

B.3.2 Modified Column Research Council Method

B.3.3 Columns With Locally Buckling Stiffened

Elements

B.3.4 Computation of Flexural Buckling Strength

of Columns

B.4 Summary and Conclusions

LIST OF REFERENCES

TABLES

FIGURES

viii

18H

189

191

192

192

196

199

207

209

215

247



3.2.2

3.4.1

3.4.2

3.4.3

3.4.4

4.4.3

4.4.1

4.4.2

LIST OF TABLES

2.2.1 Local Buckling and Postbuckling Parameters of

Unstiffened Elements

3.2.1 Mechanical Properties of Hot Rolled Steel Sheets

for Column Specimens

Stub-Column Specimen Dimensions

Local Buckling Coefficient from Stub-Column Tests

Experimental Effective Width at Ultimate Load

Stub-Column Specimen Dimensions

Initial Imperfection Parameter in Effective Width

Equation

3.4.5 Comparison of Effective Width of Stub-Column

Unstiffened Flanges

4.2.1 Dimensions and Section Properties of Compression

Specimens

Test Results of Compression Specimens

Section Properties and Test Results of DeWolf's

Compression Specimens

Dimensions and Section Properties of Bijlaard's

Aluminum Compression Specimens

4.4.4 Section Properties and Test Results of Bijlaard's

Aluminum Compression Specimens

4.4.5 Section Properties and Test Results of Stub-Column

Specimens

4.4.6 Section Properties and Test Results of Slender

Compression Specimens

ix



5.2.1 Material Properties of Hot Rolled Steel Sheets for

5 • 4 • 3

6.2. 1

5.2.2

5.4. 1

5.4.2

Beam Specimens

Dimensions of Beam Specimens

Theoretical and Experimental Moments of Beam Specimens

Elastic Local Buckling and Postbuckling Test Results

of Beam Specimens

Ultimate Compressive Strain of Beam Sp~cimens

Local Buckling Coefficient of Unstiffened Elements

in Short Compression Members

6.2.2 Local Buckling Coefficient of Unstiffened Elements

in Flexural Members

6.2.3 Compression Strain Capacity of Unstiffened Elements

in Flexural Specimens

6.3.1 Effective Widths of Unstiffened Elements in Short

Compression Members

6.3.2 Effective Widths of Unstiffened Elements in Flexural

Members

6.3.3 Effective Widths of Unstiffened Elements in Short

Compression Members

6.3.4 Effective Widths of Unstiffened Elements in Flexural

Members

B.2.1

B. 2 • 2

B. 3. 1

B.3.2

Comparison of Effective Widths - Stub-Columns

Comparison of Effective Widths - Beams

Dimensions and Section Properties of Columns With

Stiffened Elements

Test Results of Columns With Stiffened Elements

x



LIST OF FIGURES

2.2.5

2.2.4

2.2.6

2.2. 7

1.5

2.2.1

2.2.2

2.2. 3

Unstiffened Element Idealization

Elastic and Inelastic Local Buckling Coefficients

Plastic Buckling Strain versus wIt Ratio of

Unstiffened Elements

Average Stress versus Maximum Supported Edge Stress 

Perfectly Flat Unstiffened Elements

Postbuckling Parameters versus Buckling Coefficient 

Unstiffened Elements

Effective Width of Perfectly Flat Unstiffened Elements

Postbuckling Out of Plane Deflection of Perfectly

Flat Unstiffened Elements

2.2.8 Postbuckling Out of Plane Deflection of Perfectly

1.1 Common Cold-Formed Structural Shapes

1.2 Unstiffened Element Idealization

1.3 Out of Plane Deflection Diagram of Unstiffened

Compression Element

1.4 Stress Distribution in Unstiffened Element in the

Postbuckling Range

AISI Design Curves - Unstiffened Elements

Flat Unstiffened Elements

2.2.9 Effective Width of Unstiffened Elements With Initial

Imperfection

2.2.10 Postbuckling Out of Plane Deflection of Unstiffened

Elements With Initial Imperfections

xi



3.2.1

3.2.2

3.2.3

i C of Steel SheetsTypical Stress Stra n urve

Stub-Column Test Specimen

Test Set -Up and Specimen Section WithStub-Column

Strain Gages

3.2.4 Wave Amplitude Measuring Instrument

3.2.5 Stub-Column Specimen - Before Test

3.2.6 Stub-Column Specimens - After Test

3.3.1 Determination of Local Buckling Stress - Experimental

Method

3.4.1 Axial Load versus Shortening of Stub-Column

3.4.2 Comparison of Effective Width Equations and

Stub-Column Test Results

3.4.3 Effective Width Equation (eqn. 3.4.1) Initial

Imperfection Parameter

3.4.4 Average and Maximum Stresses at Ultimate Load of

Unstiffened Elements

3.4.5 Comparison of Effective Width Equations

3.4.6 Comparison of Sub-Ultimate and Ultimate Test Results

and the Effective Width Equations

3.4.7 Maximum Amplitude of Postbuckling Deflection of

Unstiffened Elements

4.2.1 End Fixture for Column Tests

4.2.2 Location of Dial Gages in Column Tests

4.2.3 Compression Members Test Set-Up

4.2.4 Compression Members After Failure

4.3.1 A typical Southwell Plot

xii



4.4.1 Bijlaard and Fischer's Specimen Cross-Section

4.4.2 Comparison of Test Results and the AISI Specification
to

4.4.6 Column Curve

4.4.7 Typical Compressive Stress Redistribution in

Locally Buckling Unstiffened Elements

4.4.8 Idealization of Effective Area of Unstiffened

Elements in the Postbuckling Range

4.4.9 Effective Sections and Stress Distribution for

Column Specimens

4.4.10 Comparison of Test Results, the Analytical Solution

to and Effective Width Equation (eqn. 3.4.1) Column

4.4.21 Curves

4.4.22 Comparison of Test Resutls and the Effective Width
to

4.4.33 Equation (eqn. 3.4.5) Column Curves.

5.2.1 Flexural Specimens - Section and Strain Gage Locations

5.2.2 Beam Test Set-Up and Instrumentation

5.2.3 Beam Specimens Load Set-Up

5.4.1 Typical Moment Curvature Diagram of Specimens

5.4.2 Typical Moment Curvature Diagram of Specimens

5.4.3 Typical Load versus Central Deflection Diagram

5.4.4 Comparison of Sub-Ultimate and Ultimate Beam Test

Results and Modified Form of Effective Width Equations

5.4.5 Comparison of Effective Width Equations and Beam Test

Results

5.4.6 Limiting wit ratio of Unstiffened Elements

5.4.7 Plastic Compressive Strain Capacity of Unstiffened

Elements

xiii



6.2.1 Distorted Shape and Edge Moments Due to Local
&

6.2.2 Local Buckling of Unstiffened Elements

6.2.3 Variation of Buckling Coefficient With the Ky/K e

Ratio

6.4.1 Column Flexural Buckling Strength Curves and Test
to

6.4.9 Results

A.l Comparison of Effective Width Equations for Stiffened

Elements

B.Z.l Comparison of Effective Width Equations and Test

Results

B.3.l Tangent Modulus Column Curves and Test
to

B.3.9 Results

B.3.l0 Modified CRC Curves and Test
to

B.3.l8 Results

B.3.l9 DeWolf's Column Specimen With S tiffened Elements

B.3.20 Modified CRC Curves and Test
to

B.3.23 Results

xiv



A

AO' A
l

B , b

BC

BT

B
l

through B
S

C

D

D'

E

e

F

I

K

L, L
w

L

M

P

P
e

Q

T
f

T
w

NOMENCLATURE

Total area of a cross section

Parameters of wave amplitude

Total width of a flange

Width of a Compression Flange

Width of a tension flange

Constants

Coefficient of proportionality between
moment and angle rotation at an edge

Depth of a specimen, Flexural rigidity

Flexural rigidity

Young's modulus

Strain

Stress function

Moment of inertia

Local buckling coefficient

Length of a local buckling wave

Effective length of a column

Moment

Load

Euler buckling load

Form factor

Thickness of a flange element

Thickness of a web element

xv



t

w

Zt Zo

£

/::,

ep

n tn'

l.l

a

Subscripts:

av

c

cr

e

expt.

lim.

p

E
r

E
s

theory

total

u

x,y

y

Thickness of a plate element

Flat width of an element

Amplitude of a local buckling wave

Rotational edge restraint factor

Non-dimensional parameter of local
buckling wave amplitude

Curvature

Plasticity index

Poisson's ratio

Stress

Average value

Compression

Critical value

Elastic value

Experimental value

Limiting value

Plastic value

Reduced modulus value

Secant modulus value

Tangent modulus value

Theoretical value

Total value

Ultimate value

Coordinate directions

Yield value

xvi



ABSTRACT

The elastic and inelastic local buckling and elas

tic postbuckling behavior of unstiffened elements in

cold-formed steel members and their effects on bending

of beams and overall flexural buckling of columns have

been investigated.

An analytical investigation of the elastic and

inelastic local buckling and the elastic postbuckling

behavior of unstiffened elements with an elastic rota-

tional edge restraint has been carried out. Results

of experiments on short columns, long columns and beams

are presented and compared with the analytical solution.

An effective width equation for the elastic post

buckling range of the unstiffened element behavior has

been derived by modifying the analytical solution to

include the effects of initial imperfections, as indi

cated by test results. An empirical effective width

equation, having a format similar to the AISI effective

width equation for stiffened elements, has also been pre-

sented. An equation for the inelastic compressive strain

capacity of unstiffened element has been derived.

On the basis of the equations derived, methods for

calculating the strength of cold-formed beams and columns

with unstiffened compression elements subject to local

buckling, are presented.

xvii





Chapter I

INTRODUCTION

1.1 General

Intensive theoretical and experimental investigations

have led to recognition of modes of failure of structures

and better understanding of factors governing such fail

ures. On the other hand, recent advances in the area of

reliability and probability have led to more accurate

definition of loads, load factors and under strength fac-

tors. Developments in these two areas have brought about

a change in design philosophy in the last few decades

which has led to the replacement of time honored allowable

stress design method by design based on ultimate strength

of structures. Although other factors such as deflection

and distortion of sections in the range of operating load

may sometimes govern the design, the ultimate strength is

the most commonly encountered design criterion.

Common modes of failure associated with steel struc

tures are: (1) instability; (2) ductile fracture;

(3) brittle fracture and (4) fatigue. Among these, in

stability is often the cause of failure of steel structures.

The collapse may be either due to overall buckling of a

member in a structure or a consequence of local buckling

of some element in a member.

1



2

Local buckling of elements in a member takes place

when the elements are very thin, as in cold-formed mem-

bers, and are subject to compressive,bending or shear

stresses.

1.1.1 Cold-Formed Structural Steel Members

Cold-formed structural steel members are fabricated

either by cold rolling or press braking steel sheets to the

desired shape. The forming process introduces strain

hardening at the points of bending and the extent of the

strain hardening depends upon the radius of the bend and

the thickness of the material. The region of cold work is

more localized in the process of press braking than in

the cold rolling. In contrast, hot rolled members are

subject to residual stress as a result of differential

cooling and cold straightening.

Hot rolled steel members are commonly proportioned so

that they do not buckle locally before the yield stress

is reached. In fact, in most cases, elements are stocky

enough even to undergo sufficient plastic strain leading

to the overall failure of the structure by the formation

of the collapse mechanism, or overall buckling of the com

pression member. The Manual of Steel Construction(l)*

serves as a guide for the design of such hot rolled steel

*Superscripts designate the entries in the list of ref
erences.
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members.

Economic considerations often dictate the use of

light gage steel members in structures covering a large

area and subject to light loads. In contrast to hot

rolled members, the cold forming process allows practi-

cally unlimited width to thickness ratio. Consequently,

thin elements of cold-formed members may undergo local

buckling before the ultimate load, thus decreasing the

strength appreciably. This represents the primary

difference between cold-formed and hot rolled steel mem-

bers. The Specification for the Design of Cold-Formed

2
Steel Structural Members provides guidelines for the

design of light gage steel members.

Generally the cold-formed sections used in practice

are open in form, though closed tubular sections can be

roll-formed or made up by joining two open sections.

Fig. 1.1 shows some of the commonly encountered cold-

formed structural shapes. It can be seen that the sections

are composed of two typical types of elements:

(1) Stiffened elements having two edges parallel to the

longitudinal axis of the member supported against trans-

lation normal to the plane and elastically restrained

against rotation by the adjoining elements.

(2) Unstiffened elements having one edge parallel to the

longitudinal axis of the member supported against trans-
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the Plane and elastically restrained1ation normal to

against rotation by the adjoining element and the other

parallel edge is completely free to translate and ro-

tate.

In the next few sections the elastic and inelastic

buckling and postbuck1ing behavior of unstiffened ele

ments and their effect on member behavior will be studied

qualitatively. In the process, a brief review of other

investigators work in this area will be presented.

1.2 Behavior of Unstiffened Element Under Compression

1.2.1 Local Buckling of Unstiffened Element

The history of the stability of plates under com

3pression goes back to 1891, when Bryan presented an

analysis for the buckling load of a rectangular plate

simply supported on all four sides and subject to uniform

compressive stress in one direction, using the energy

method. Subsequently, though many investigators studied

the problem of plate buckling, credit for the most exten-

sive treatment of the buckling of plates with various

4boundary conditions belongs to Timoshenko who used the

energy method to study the local instability of plates.

The unstiffened compression element of a member can

be idealized as shown in Fig. 1.2 with one unloaded edge

simply supported and elastically restrained against ro-



tation and the other edge fully free. If the plate is

5

perfectly flat to begin with, it remains flat until the

compressive stress equals critical buckling stress, be-

yond which it deflects normal to the plane and buckles

into waves. Using the small deflection equation of the

equilibrium of plates, buckling stress ocr is given by

the equation;

(1.2.1a)

where E is the Young's modulus, ~ the poisson's ratio,

w flat width of the element and t the thickness. The

buckling coefficient K depends upon the edge rotational

restraint, the type of loading and aspect ratio of the

plate (ratio of length of the plate L to width of the

5plate w). Lundquist has computed the variation of buck-

ling coefficient K of unstiffened elements subject to

uniform compression for various values of the rotational

edge restraint and aspect ratio. The buckling coeffici-

ent K of long plates (high aspect ratio) is independent of

the aspect ratio and depends only on the rotational edge

restraint, varying from 0.475 for the hinged edge condi-

tion to 1.277 for the fixed edge condition.

Contrary to the column and shell postbuck1ing be-

havior, the local buckling of plates does not mean the end

of the useful strength of the plates. The buckled config-

uration of a plate is stable due to the stabilizing in-
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and shear stresses induced. The postbuck

can be investigated analytically by using

Curve OA

plane tensile

ling behavior

the large deflection equations of Von Karman.

(fig. 1.3) shows the stable postbuckling range where the

increase in the amplitude of buckling waves is accom

panied by an increase in the applied compressive stress.

The compre~sive stress can be increased in the post

buckling range until yielding occurs in some region of the

buckled plate which initiates load shedding, and the

ultimate strength of the plate depends on the yield stress

of the material. Since the local bUckling stress in-

creases as the flat width to thickness ratio (wit) de-

creases, for smaller values of the wit ratio yielding may

take place before the element buckles locally. Local

buckling of the unstiffened element in the inelastic

range will be treated in section 1.2.4.

The bifurcation type of buckling, which is a term

used to describe the sudden out of plane deformation ex-

perienced at critical stress, is encountered only in the

case of an ideally flat plate. Actual plates have initial

imperfections and the out of plane deformation starts to

increase gradually even before the buCkling stress is

reached and near the critical state, the out of plane de

formation increases at a faster rate. This type of behavior

can be analyzed by using the large deflection equations.

The curve O'A' in fig. 1.3 shows the typical load deflec-



tion behavior of a real plate. It can be seen that the

7

difference in behavior between the real and ideal plate

is most pronounced near the critical range.

So far, the local buckling of the unstiffened element

has been studied without any reference to supporting

elements. In an actual structure, the unstiffened element

appears as a part of a member. Hence, the rotational edge

restraint of the unstiffened element depends on the length

of the buckling waves, the compressive stress on the

supporting element and the stiffness of the supporting

1 M i i 6,7,8,9 h d 1e ement. any nvest gators ave presente ana y-

tical procedures, charts and tables for calculating the

local buckling coefficient of unstiffened elements in

different members. Some of these are more difficult to use

than others in routine design applications.

1.2.2 Postbuck1ing Behavior

It was observed that even after the local buckling

plate elements can sustain additional load, with increas-

ing out of plane deformation, before failure. Consequent-

1y, all the design procedures based on strength take into

consideration this postbuck1ing behavior.

In an ideally flat unstiffened element, compressive

stress is uniforma11y distributed until the local buckling

takes place. After this, there is a redistribution of
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edge.

stress over the width of the plate with the stress near

b i highe r than that at the freethe supported edge e ng

The wave length of buckles tend to become shorter,

and more and more stress is redistributed towards the

supported edge as the compressive stress is increased.

The stress distribution in a typical unstiffened e1e-

ment after local buckling is shown in fig. 1.4. It has

been observed that the failure of the element takes place

when the compressive stress at the supported edge of the

element (which is the maximum membrane compressive stress

over the width) reaches the yield stress of the material.

In a real plate, because of initial imperfections, the

redistribution of stress takes place as the loading

progresses even before the critical stress is reached.

is idealized in two ways (fig. 1.4):

However, the difference between an ideally flat element and

a real element with initial imperfections is very little

in the advanced stages of the Postbuckling range.

For design purposes, the non-uniform stress distribu

tion over the width of the plate in the
Postbuckling range

so that

actual

effective width (b )
e '

plate is equal to the

Effective width method: In this d
esign idealiza-

1)

tion, the stress at the supported edge is assumed to be

uniformly distributed over an

the total load carried by the

load on the buckled plate.
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2) Average or effective stress method: In this de-

sign idealization, an equivalent average stress is dis-

tributed over the entire width (w) of the plate, so that

the total load carried by the plate is equal to the

actual load on the buckled plate.

The effective width method is more popular of the two

idealizations and is used extensively due to certain in-

herent advantages. Hence, only effective width formula-

tion will be presented in this investigation.

The first use of effective width representing the

postbuckling behavior of the stiffened element was pre

10sented by Von Karman. The approximate equation pre-

sented by him can be written in the form:

b /w = 10 /°e cr e max (1.2.1)

where be is the effective width, w is the total width,

Ocr is the local buckling stress and 0e max is the maxi

mum stress at the supported edges. Many other formulae

for the effective width of a variety of plate elements

11have been proposed by others and tabulated by Gerard.

All these equations are for ideally flat plates and are

applicable directly to real plates with initial imperfec-

tiona only in the advanced stages of postbuckling. How-

ever, as already mentioned, in real plates the effective
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Karman's equation to take into account
14

Winter's equations can be written asimperfections.

to decrease even before the buckling stress
width begins 12,13

f tions Winter,
is reached, because of initial imper ec .

on the basis of experimental investigation, modified

effects of initial

b Iw = k cr/0e max (1 .22/0cr /o e max)
(1.2.2)

e

b Iw = 1.19/0cr / oe (1 - O.3/ocr /o e ~ax) (1.2.3)
e max

Eqn. 1.2.2 is the effective width equation for the

stiffened elements and eqn. 1.2.3 is for the unstiffened

elements. Even though the effective width equation for

unstiffened elements has been available for some time now,

its use has been limited because of the lack of ext en-

sive experiemental investigation to support the validity

of the equation and the fear of excessive cross section

distortion in the postbuckling range.

There have been ~any analytical investiga-

ti 15,16,17,18,19 f h bons 0 t e post uckling behavior of

stiffened elements. All the investigators assume a de

flected wave form and determine the amplitude by some

approximation procedure. The author is not aware of any

analytical investigation of the postbuckling behavior of

unstiffened elements. A more detailed survey of the

analytical investigations will be presented in Chapter 2.
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The crippling strength of plates in edge compression

can be obtained by substituting the yield stress (a )
y

for the maximum stress at the supported edge (a ).
e max

This condition is sufficiently accurate for thin plates witl

(a /0 »1.5(31). For plates buckling near the yield
y cr-

stress. strain at the supported edge at the ultimate load

is usually larger than the yield strain. though this does

not increase the strength appreciably in the case of

elastic plastic materials.

17 19
Objection has been raised by many • to using the

same effective width equation for both the ultimate and

subultimate ranges of the postbuckling behavior. The

19argument has been: "Stiffness of a plate in compression

at subultimate load is a function of end shortening of

the plate. which is an integrated effect along the length

of the plate. Collapse. however. at a =0 • is ae max y

local phenomenon." Given the fact that (1) there is

usually scatter in the postbuckling range due to the

statistical nature of initial imperfections. and (2) sub-

ultimate stiffness is usually used in the computation of

quantities involving many inherent approximations (de-

flection and stiffness of flexural members. and stiffness

of axially loaded columns); it seems reasonable to use the

effective width equation corresponding to the ultimate

load for the computation of subultimate stiffness also.

thus obtaining a conservative estimate of the subultimate
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stiffness.

1. 2.3 Local Buckling in the Inelastic Range

h centered around slenderSo far, the discussion as

As theplates which experience elastic postbuckling.

width to the thickness ratio (wit) of an element de-

creases, the theoretical elastic buckling stress in-

creases as given by the eqn. 1.2.1. Below a limiting

value of the flat width to thickness ratio (w/t)lim the

theoretical buckling stress of a flat plate is larger

than the yield stress. This limiting value can be

found by substituting the yield stress (0 ) for they
local buckling stress (0 ) and solving for (wIt) ratio.cr

(1.2.4)

A perfectly flat plate having a width to thickness ratio

less than or equal to the limiting ratio given by

eqn. 1.2.4 will not buckle locally and remains fully

effective to resist uniform compression until the yield

stress is reached. However, for a real plate the limit-

because initial imperfections and non-linearity of the

ing ratio will be smaller than that given by eqn. 1.2.4,

stress strain relationship near the yield stress tend to

reduce the effective width even before the local buckling

stress is reached.
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20 21 22
Ros and Eichinger, Bijlaard, and Ilyushin

have formulated rational theory of the stability of plates

beyond the elastic limit, based on modern failure theories.

Bijlaard's theory seems to show good agreement with the

test results.
23Stowell using Ilyushin's general modi-

fication of Bijlaard's theory succeeded in developing a

Unified Theory of Plastic Buckling of Columns and Plates.

He has derived expressions for the plasticity index n

which when multiplied by the elastic local buckling

stress (Ocr)e yields the inelastic buckling stress for

elements with different boundary conditions.

(1.2.5)

In this equation, (Ocr)p and (Ocr)e correspond to plastic

and elastic buckling stress respectively. Stowel1 24 also

has presented a procedure for computing the plastic local

buckling stress of assembly of plates.

Bleich
25

has derived a semiempirical theory for the

plastic buckling, which takes into account the direction-

al dependence of the elastic plastic characteristics of

a plate compressed into the plastic range. An analysis of

plates buckling in the strain hardening range is pre

26 27
sen ted by Haaijer ' using general expression for the

buckling strength and assuming the material to have be-

come orthogonally isotropic.
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d28 ,29,30 that the postbucklingIt has been suggeste

behavior in the inelastic range can be approximately

i t d of stresses in thedealth with by using strains ns ea

effective width equations. Assuming the rigid-plastic

material behavior and a geometry of plastic mechanism,

Walker and Murray3l have arrived at the postbuckling

stiffness in the plastic range of a plate assembly using

numerical minimization.

1.2.4 Effect of Local Buckling on Structural Members

In preceeding sections, buckling and postbuckling

behavior of the unstiffened compression elements was

briefly discussed without any reference to the implica-

tiona of local buckling of elements on the behavior of

members. In practice, structural members are made up of

an assembly of plates. Behavior of such members subject

to compression and/or bending is influenced by the local

buckling of the component plates. In this section, a

review of the effect of local buckling of component

plate elements on the member behavior and a survey of work

done by other investigators in this area is presented.

Cold-formed steel columns often consist of stiffened

and unstiffened elements which undergo local buckling.

If the slenderness ratio of such a column is high, then

the column may buckle before the local buckling of com-
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ponent plates. However, in the case of columns not

having a high slenderness ratio, the component plates may

buckle locally before the overall buckling of the column.

Since local buckling of elements does not mean the end

of their load carrying capacity, columns can be subject to

additional compression even after local buckling of com-

ponent plates. The failure of short columns is initiated

by the crippling of the component plates buckling 10-

cally, and intermediate columns fail by overall buckling

after the local buckling of the component plates. The

reduction in the stiffness of the component plates due to

local buckling decreases the stiffness of the column, and

hence reduces the buckling load. The effect of initial

imperfections tend to reduce the effective stiffness of

the component plates even before local buckling, compli-

cating the problem further.

26Bijlaard was one of ~he earliest investigators to

study the buckling strength of columns in the postbuck-

ling range of the component plates. Other investiga-

l4,27,28,29,3l,32 h d 1 i 1 i i 1tors ave presente ana yt ca , emp r ca

and approximate solutions for the interaction of the over-

all buckling of columns of various shapes and local buckling

14 29 30 32of component plates. In most of these works, , , ,

either the change in the slenderness ratio or the effec-
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obtained from effective width equations is

These meth-
tive modulus

considered in the column buckling equation.

ods involve tedious numerical procedures, unless simp1i-

fying assumptions are made.

In flexural members, if the compression flanges are

thin plates, they may buckle locally before the member

fails. The member behaves linearly until the compression

flange effective width begins to reduce. An increase in

the applied load beyond this is accompanied by a decrease

in the effective width and a shifting of the neutral axis

toward the tension flange. In the postbuck1ing range,

the behavior becomes nonlinear, because the effective

width depends upon the stress at the supported edge and

this stress depends upon the section modulus and hence on

the effective width. A decrease in the effective width

due to local buckling also reduces the lateral buckling

resistance of the compression flange. In the moment grad-

ient region of a beam with a compression flange in the

postbuck1ing range, the effective width of the compression

flange and hence the moment of inertia of the member

varies from section to section. This introduces additional

complexity to the analysis of indeterminate structures

with locally buckling elements. The local buckling of the

compression elements in the inelastic range introduces lim

itations on the inelastic rotation capacity of members,
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thus hindering the complete redistribution of moments as

assumed in plastic design.

Many investigators have analyzed inelastic buckling

of compression elements in flexural members. Lay and

Ga1ambos 33 ,34 have studied the inelastic behavior of wide

flange beams under uniform moment and moment gradient.

Many experimental investigations have been carried out to

35 36 37study the inelastic behavior of beams ' , . The

effect of the elastic local buckling of both stiffened and

unstiffened compression elements on the flexural strength

10 12 38 39 40of beams has also been studied extensively , , , , ,

where some form of the effective width equation is used to

compute the section properties in the postbuck1ing range.

The ultimate load is computed using the effective width,

assuming that failure takes place when the stress at the

supported edge reaches the yield stress.

1.3 Purpose of the Investigation

The purpose of this investigation is to study the

elastic and inelastic local buckling and postbuck1ing be-

havior of unstiffened elements and the effect of this

local buckling on the overall buckling of columns and

bending of beams.

At this stage, it is appropriate to look at the

American Iron and Steel Institute guidelines for the de-

sign of unstiffened element as outlined in the Specifica-
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of Cold-Formed Steel Structural
tion for the Design

2 for various values of theMembers. Allowable stresses

flat width to thickness ratio (wIt) of unstiffened ele-

d b using a sufficient factor ofments are arrive at y

safety to limiting stresses. The limiting and allowable

Fi 1 5 Curve C is the bucklingstresses are shown in g. ••

stress of the unstiffened elements obtained by conserva

tively assuming the value of the buckling coefficient K

to be 0.5. If compression elements are perfectly flat

and if the material has a sharp yield points the horizon

tal line A drawn at the yield stress will be the upper

limit of the local buckling stress of the element. How-

ever, real unstiffened compression elements are rarely

ideally flat and the material may not have a sharp yield

point either as a result of the sheet forming process or

the cold-forming process of the section. These tend to

lower the local buckling stress for elements having the

theoretical buckling stress around yield stress. Line B

corresponds to the limiting value of the buckling stress

in this range of wIt ratio. The upper and lower limits

the line B are set at l44/~ and 63.3/;cr- respectively,
y y

based on test results. Curve D represents the postbuck-

ling strength of the material when the local buckling takes

place elastically. The postbuckling reserve, indicated

by the difference between curve C and D, becomes larger

with the increase in wit ratio. Allowable stress for de-
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sign is obtained from the limiting value, using a factor

of safety of 1.67 with the exception of the region where

elastic buckling takes place. In the case of angle sec

tions under compression, which have the lowest buckling

coefficient and deform considerably in the postbuck1ing

range, the design value is obtained using a factor of

safety of 1.67 to curve C. For other unstiffened ele

ments in other sections allowable stress is given by

line d with the postbuck1ing strength providing a factor

of safety from 1.67 to as high as 4.0.

This type of allowable stress approach has been

followed for unstiffened elements because of the lack of

sufficient experimental evidence supporting an effective

width equation for the postbuck1ing range and a concern

about excessive distortion in the working range due to

local buckling. It should, however, be mentioned that

the idea of an effective width equation for unstiffened

elements is not something new. As already pointed out in

section 1.2.2, some investigators have already proposed

effective width equations for unstiffened elements, and

some of these equations are for stainless steel elements.

One of the main objectives of this investigation has been

to study unstiffened compression elements systematically

in order to develop an effective width equation and get

an idea about the out of plane deformation in the post-
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buckling range.

For low values of wit ratio of unstiffened elements.

the buckling stress is nearly equal to the yield stress.

However, the compressive strain at the local buckling is

usually larger than the yield strain and the value of the

compressive strain at local buckling increases with a de

crease in the wit ratio. This inelastic strain capacity

of compression elements having a low wit ratio could be

used to take advantage of the section plastification and

the moment redistribution in indeterminate structures.

The determination of this inelastic strain capacity of

unstiffened elements has been another objective of this

investigation.

1.4 Scope of the Investigation

1.4.1 Desired Information

Based on the objectives specified in the last section,

the following information is desired for the unstiffened

compression elements.

1) Method of determining the local buckling stress.

2) Effective width equation for the postbuckling

range.

3) Out of plane deformation in the postbuckling

range.

4) Limiting value of the flat width to thickness

ratio (wIt) below which the unstiffened com-
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pression element remains fully effective until

the yield stress is reached.

5) Inelastic strain capacity of compression elements

having a wit ratio less than the limiting value

of the wit ratio.

6) Effect of local buckling of unstiffened elements

on the overall buckling of columns.

7) Effect of local buckling of unstiffened com

pression flanges on the bending of beams.

1.4. Analytical and Experimental Investigations

In contrast to the hot rolled sections where pre

designed shapes are selected, the light gage steel design

presents a wide range of shapes and dimensions to choose

from. This versatility in design, however, requires that

one understand the behavior of elements forming a member,

in order to be able to design members for any type of

loading condition. A good understanding of the behavior

of an element can be best obtained by completely isolating

the element and studying it exactly under the same boundary

conditions as one expects to use it. However, it is often

difficult to simulate such boundary conditions exactly in

an isolated environment. Sometimes it is even difficult

to know the nature of the boundary condition that is im

posed on an element in a member. Hence, the best method

of studying the behavior of unstiffened elements under



22

these constraints is to test a member, the behavior of

which is affected only by the local buckling of component

unstiffened elements under axial compression. This reason

ing led to the experimental investigation using stub columns

with the unstiffened elements in compression. Having ob

tained the information about the element behavior from such

tests, it is then logical to study members, such as beams

and columns, which are encountered in practical structures.

This will result in an understanding of the effect of the

local buckling of component elements on the behavior of

members in a struc~ure, and thus the behavior of the struc-

ture itself.

This investigation has been planned with this basic

philosophy in mind. An analytical investigation of the

buckling and postbuckling behavior of the unstiffened ele-

ments was carried out to understand the influence of

various parameters. The following specimens were tested

in order to obtain the experimental information about the

element and member behavior.

1)

2)

Ten stub columns with five different values of

wIt ratio of unstiffened elements in compression

in order to understand the element behavior.

Three long columns of different lengths corres

ponding to each of the five stub column sections

to study the effect of local buckling on the

flexural buckling of columns.
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3) Eighteen beams with unstiffened elements in com

pression, to study the elastic and inelastic local

buckling behavior of compression elements and

their effect on flexural members.

1.5 Summary

A brief description of unstiffened compression ele

ments as encountered in cold-formed structural applica

tions was presented. Following this, the behavior of un

stiffened compression elements and members with unstiff

ened compression elements was discussed qualitatively.

Existing literatures in the area were also briefly re

viewed. Subsequently, the objective and scope of the in

vestigation were enumerated.
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ANALYTICAL INVESTIGATION

2.1 Review of Analytical Methods

Analytical investigation of the stability of plates

and shells are difficult, especially as encountered in

t ice with complex boundary conditions. The stabilitypra c

of unstiffened compression elements, governed by th,e

small deflection equation of plates subject to com

pression, has been solved by Timoshenko 4 using the energy

method. Closed form solutions for the two simple

An

boundary conditions of hinged and fixed supported edge

are available. However, when an exact solution to the

stability of unstiffened elements with elastic rotational

restraint at the supported edge is attempted, a trans-

cedental equation not lending itself to a closed form

solution is encountered. An approximate solution to this

problem has been proposed in "closed ll form. S Local

buckling in the inelastic range is affected by the non

isotrophy of the material after yielding. This problem

has been investigated by many researchers2l,22,23,25.

analytical solution of the postbuckling behavior

becomes even more involved. The postbuckling behavior of

a plate, subject to compression, is governed by two

24
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partial differential equations of the fourth order,

which were originally proposed by Von Karman. Ana1yti-

cal solutions for the postbuck1ing behavior of stiffened

elements, by assuming an approximate deflected shape,

16 17 18 19 46have been proposed ' , , , . Although a similar

procedure can be used to analyze the postbuck1ing be-

havior of unstiffened elements, there is no such solu-

tion to the author's knowledge. Investigations of the

postbuck1ing behavior of plates also have been attempted

through numerical methods, such as finite element and

finite difference, using plate bending elements or

equations. These solutions are too tedious to use in a

design office situation and do not yield a closed form

solution. Most of the equations used in the design of

thin elements having post buckling strength are semi-

empirical in nature, and are based on experimental re-

su1ts. In the following sections, an analytical investi-

gat ion of elastic buckling, inelastic buckling, and post-

buckling behavior of unstiffened elements will be pre-

sented.

2.2.1 Elastic Local Buckling Stress

The local buckling stress of unstiffened elements

with elastic moment restraint at support (fig. 2.2.1) will

be solved in a "closed" form using an approximate de-
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fleeted shape. The small deflection equation of plate

bending subject to membrane stresses can be written as

(2.2.1)

where Z is the out of plane deflection, t the thickness,

D the flexural rigidity and a the membrane stress in the

plate. This equation is attributed to St. Venant. The

normal stress in x direction and shear stress in a per-

fectly flat plate, subject to compression only in the y

direction, are zero before local buckling. Hence, eqn.

2.2.1 reduces to

or

(2.2.2)

ro-

are:

The boundary conditions of the unstiffened element

(1) deflection and moment are zero at loaded edges;

(2) deflection is zero and moment is proportional to

tation at the unloaded supported edge; and (3) shear and

moment are zero at the unloaded free edge. These bound

ary conditions can be written as
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= caz
ax at x = 0

a 2z a 2z) = 0(- + j.l--
ax 2 ay2

at x = W

a 3z 3
(- + (2_j.l)a z 2) = 0

ax 3 axay (2.2.3)

where C is the rotational edge restraint stiffness

(C = MIa). It is assumed that the deflected shape of

the unstiffened element after local buckling is given by

z = Al f(x) sin .'!!.I.
L

= Al
z:;4 C (~)n sin 1!Z (2.2.4)

n=l n w L

This deflected shape satisfies boundary conditions (1)

along the loaded edges automatically. Substituting eqn.

2.2.4 in the boundary condition eqn. 2.2.3, a set of four

simultaneous equations given below are obtained.

1 0 0 0 Cl
1

-E/2 1 0 0 C2 0
=

2 2 2 2 2 2 2 21T W (2_j.l1T W ) (6_j.l1T W ) (12-j.l1T ; ) C
3

0-j.l-
L2 L2 L2 L



2 2
1T W )(6-(6-311)---Y-

L
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(24_(8_4V<~2j lcj lOJ
( 2 • 2 .5)

where £ is the rotational edge restraint factor

(£ = ~C/D). Constants Cl through C4 can be obtained by

solving eqn. 2.2.5.

The small deflection eqn. 2.2.2 can be solved for

buckling stress (0 = 0 ), by substituting Z given bycr yy

eqn. 2.2.4 and using Galerkin's approximation as follows.

L

!Al ~
V'4 Z f sin !1. dx dy

L

= -A (J t t r:6 2!L1 cr f sin dx dy (2.2.6)
D o 0 ay2 L

Performing the integration and solving for buckling

stress

C4n C
4 4 m

l: l:
n=O m=l (n+m+l)

D(J = - (2.2.7a)Cr 2 2 t1T w t t C Cn m
n=l m=l (n+m+l)

where

1T
4 2

= [~C
L2 n

(2.2.7b)
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with C = 0 when n = 0 and n > 4.n

Since

cr =cr (2.2.8a)

the buckling coefficient K is given by

[4 [4 C4 C
n m

K
1 n=O m=l «n+m+l) )

=--4 [4 [4 C C
1T n m

n=l m=l (n+m+l)

(2.2.8b)

From equation 2.2.8b, it is seen that the buckling co-

efficient (K) depends upon the length of the wave and it

is well known that for a given width (W) and the rota-

tional edge restraint factor (E), the buckling coeffici-

ent (K) is minimum at some discrete values of the

length L. For high values of the aspect ratio (L/w), the

buckling coefficient is nearly independent of length and

is equal to the smallest value of the buckling coeffici-

ent. Since in a structure the aspect ratio of the com-

ponent elements can be varied by varying the length of

the member, only the smallest value of the buckling co-

efficient K is of interest. Fig. 2.2.2 and table 2.2.1

indicate the variation of the buckling coefficient K with

the variation in the rotational edge restraint E.

It has already been observed that the bifurcation
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buckling is obtained only if the plate under compression

is perfectly flat. In practice, no plate is perfectly

flat and waving starts from almost the onset of loading.

Consequently, one might be tempted to rule out the com-

putation of the local buckling stress as an unnecessary

academic exercise. However, it is important to have a

knowledge of the local buckling stress, because this in-

dicates the region where the effects of initial imper-

fections are most pronounced. The buckling stress is

also a parameter, useful in the non~dimensional repre

sentation of postbuckling behavior, which will be demon

strated later in this chapter.

2.2.2 Inelastic Local Bucklin&

In this section ,
plastic buckling of 1

pates, as

later modified by II
yushin and

proposed by Bijlaard and

a brief treatment of the

An analytical investigation of the local buckling

in the inelastic range is complicated by the i
non- sotropic

nature of the material beyond yielding.

Stowell, is presented.

21
Bijlaard studied the plastic buckli

ng of plates

by assuming that the distortion energy theory
governs the

plastic deformation and that the plastic
part of the de-

formation is "quasi-isotropic"; that is si 1·1
' m ar to the

elastic deformation with the exception of th
e V'ar1ablfO



31

modulus and Poisson's ratio of 0.5. He concluded that

the buckling stress obtained using the flow theory was too

high when compared with test results, whereas the buckling

stress based on the deformation theory exhibited good

agreement.

22Ilyushin developed his theory by assuming a con-

stant volume and adopting the principle as visualized in

the double-modulus theory of column stability. 23Stowell

improved and simplified this by basing his analysis on

41Shanley's concept of non-reversal of stress during the

inelastic buckling. Even though Stowell also assumed

Poisson's ratio to be 0.5, any error in such as assump-

tion was reduced by the introduction of plasticity

index n, which when multiplied by the elastic buckling

stress, yields plastic buckling stress. Since he used

Poisson's ratio ~ of 0.5 for calculating both the p1as-

tic and the elastic buckling stresses, n may be only

marginally affected by the value of Poisson's ratio ~.

The differential equation of plastic buckling, used

by Stowell can be written as

(2.2.8)

where

D' = E t
3/9,s K = (l-E IE )t s
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E and E are the tangent and the secant modulus respec-
s t

tively. He expressed the plastic buckling stress (Ocr)p'

given by the solution of eqn. (2.2.8), in terms of the

elastic buckling stress (0 ) and the plasticity indexcr e

n as given below.

(0 ) .. n (0 )
cr p cr e

( 2 . 2 . 9 )

For an unstiffened element with a given rotational edge

restraint coefficient £ (£ = we/D), the plasticity index

T) is

E
sn .. E

!.+
2

!. +
2

.1742£+.0192£2

2
.1742£+.0192£

(2.2.10)

The rotational edge restraint factors for the two cases

of hinged and fixed condition, reduce eqn. 2.2.10 to

eqs. 2.2.11 and 2.2.12 respectively.

n = E /Es

/
1 3 E t 

T) .. E /0(.33 + .67 -+- --)
s 4 4 E

s

(2.2.11)

(2.2.12)
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The elastic and plastic local buckling strains can be

written in terms of the corresponding stresses and the

modu1ai E and E as
s

and

(0 ) / E
cr e

(2.2.13)

Substituting values from eqn. 2.2.13 in eqn. 2. 2.9

(ecr)p
E

(ecr)e= 11 E
s

= 11 ' (ecr)e (2.2.14)

where

11 ' = 11 E/E (2.2.15)s

Steel members of material having an elastic perfect-

1y plastic stress strain curve exhibit an yield plateau

where

E = 0
t

(2.2.16)

Substituting eqs. 2.2.10 and 2.2.16 in eqn. 2.2.15

11' =
t + .1742£+.0192£2

~ + .1742£+.0192£2



~ 2· 3 4+ .0834£+.0414£ +.00688£ +.00038£
I 2 3 Z;+2 .0834£+.0414£ +.00688£ +.00038£
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(2.2.17)

The relationship between n' and £ expressed by eqn.

2.2.17 is shown in fig. 2.2.2 and table 2.2.1.

The elastic local buckling strain (e ) is equal
cr e

to

(2.2.18)

where Ke is the elastic local buckling coefficient. Sub

stituting eqn. 2.2.18 in eqn. 2.2.14

= n'

(2.2.l9a)

and

(2.2.19b)

The plastic buckli~g coefficient K is f
p a unction of only

the edge rotation restraint coefficient f
£ or a large

aspect ratio and is given by

K "" n' Kp e
(2.2.20)
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Fig. (2.2.2) and table (2.2.1) show the relationship be-

tween K and E.
p

Eqn. 2.2.l9a is plotted in fig. 2.2.3

showing the relationship between (e ) IK and (wit), forcr p p

the two extreme values of Poisson's ratio (~=0.3 and 0.5).

It is important to realize that equation 2.2.l9a and fig.

2.2.3 are applicable only for elements of materials

having a sharp yield point and buckling locally in the

yield plateau between yield strain and strain hardening

strain.

The influence of initial imperfections on the in-

elastic local buckling of unstiffened elements has not so

far been studied satisfactorily. An analytical solution

to this problem is complicated by the introduction of

non-linear material properties in the non-linear equations.

The postbuckling reserve strength of elements from

materials having an yield plateau is negligible beyond

the local buckling in the plastic range, and can be dis-

regarded. However, when local buckling takes place in

the elastic range, there is a postbuckling reserve strength

and an analytical investigation of this will be presented

in the next section.

2.3 Elastic Postbuckling Behavior

The elastic local buckling of a plate represents an

interchange from one stable form, when the plate is flat,



plane.
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h i de flection normal to theto another stable form av ng a

This behavior of plates is different from that

of columns, which undergo considerable deflection after

buckling, leading to inelastic deformation and failure

with very little increase in the load carrying capacity;

and that of shells which commonly experience an unstable

postbuckling deformation. This postbuckling strength of

plates is due to the presence of membrane tensile and

shear stresses after local buckling. Since the collapse

load of a plate can be many times higher than the local

buckling load, any design based on the ultimate strength

should take into consideration the postbuckling strength

of plates. An analytical solution to the elastic post-

buckling behavior of unstiffened compression elements is

presented in this section, assuming an approximate wave

form.

The large deflection equations of thin plates were

first derived by Von Karman and were extended to plates

with initial curvature by Marguerre 42 • These equations

have been used by many researchers to investigate the

postbuckling behavior of stiffened compression elements.

Approximate solutions were obtained by Shnadel 43 44,Cox ,
4 45 46

Timoshenko and Marguerre . Levy used Marguerre's

equations to theoretically solve the Postbuckling be

havior of a simply supported rectangular plate d
un er edge



to remain straight and parallel.
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compression in one direction, with all edges constrained

Coan 16 solved the same

problem when unloaded edges were stress free.
18Yamaki

extended the solution to obtain numerical results for

deflection, stiffness, and the effective width of stiff-

ened plates subject to edge compression in one direction

and a variety of boundary conditions.
17Sayed has de-

rived effective width equations for stiffened plates,

with stress free and straightly held unloaded edges,

using Galerkin's approximation. An effective width

equation for stiffened elements based on Sayed's analytical

solution will be compared with the Winter's effective

width equation (eqn. 1.2.2) in Appendix A. 19Dawson has

studied the effect of different generalized imperfection

parameters on the effective width. All these investiga-

tors confine their attention to plates supported on all

four edges against deflection normal to the plate (stiff-

ened elements). A theoretical solution to the postbuck-

ling behavior of unstiffened elements, which are plates

with one of the unloaded edges free to move normal to the

plane, will be derived using the large deflection

equations of plates with initial curvature.

The large deflection equations of thin plates with

initial curvature under compression, derived by Marguerre,

are
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4 2 -z Z -z Z )v F=E(Z -Z Z +2Z,xy ZO,xy ,xx O,yy ,yy O,xx,xy ,xx ,yy

(2.3.1a)

V4Z=~(F (Z+Z) +F (Z+ZO) -2F (Z+ZO) xy)D ,yy 0, xx , xx ,yy, xy ,

(2.3.lb)

Z is the initial out of plate deflection of thewhere 0

element, Z is the additional out of plate deflection due

to uniform compression, and F is the stress function de-

fined as

a =F ;
xx ,yy

a =F .
yy ,xx' a =-F

xy ,xy

(2.3.2)

In the above equations, subscripts preceeded by a comma

indicate a partial differential with respect to the sub-

scripted variable. Coordinate directions and the origin

of the Unstiffened element are as shown in f' 2 1 1]. g • •••

The deflected shape is assumed as

(2.2.4)

where L is the length of the local buckling waves and the

constants Cl through C4 can be obtained, by satisfying

boundary conditions, from equation 2.2.5. The amplitude

of the waving increases in proportion to the parameter
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A
l

to be determined by the Galerkin's procedure. The

effect of initial imperfection is maximum when it has

the same form as the deflection due to loading, and

therefore the initial imperfection is assumed to be

(2.3.3)

Substituting the assumed deflected shapes Z, 2
0

from

eqs. 2.2.4 and 2.3.3 in eqn. 2.3.la

V4F=A[(f 2+ff )+(f 2_ ff )cos~]
,x ,xx ,x ,xx L

where

(2.3.4)

Particular solution to equation 2.3.4 can be written

as

Substituting eqn. 2.3.5 in eqn. 2.3.4 for F=F p ' then

4
d GO(x)

(f
2

+ ff )=
dx

4 ,x ,xx
or

2
d GO(x) 1 f2=

dx
2 2

(2.3.6a)

(2.3.6b)



Solving eqn. 2.3.6b

2 10 x nG (x)=w E C (-)o n=4 On w

where

(f 2_ f f )
tX ,xx

40

(2.3.6c)

(2.3.7a)

(2.3.7b)

Substituting

G (x)=w2 E10 C (x)n
1 n=O 1n w

in eqn. 2.2.6c yields

where

8=2TIw/L t C1n =0 when n>10

(2.3.8)

(2.3.9)

Equating coefficients of equal Power of (x!w) i.
n eqn.
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2.3.9, the eleven constants C1n (n=0 •... 10) can be found.

Thus particular solution to eqn. 2.3.4 is given by

(2.3.5)

where

(2.3.7a)

(2.3.8)

COn and C1n can be obtained from eqs. 2.3.7b and 2.3.9.

Let the homogenous solution to eqn. 2.3.4 be

F(x,y)

Then

F=F (x,y)+F(x,y)
P

where F should satisfy

V4F=0

Assuming

- I2!.YF=AG 2 (x)cos L +A G3 (x)

and

(2.3.10a)

(2.3.10b)

(2.3.11)

(2.3.12a)

= 0 (2.3.12b)
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The solution to eqn. 2.3.l2a is

2 2nx 2nx 2nx 2TIX
G

Z
(x)-w [CZlcoshL +c 22 sinhL +C23L"coshT

Substituting eqs. 2.3.12a and 2.3.12b in eqn.

F-A[(Gl(X)+GZ(x»cos2~y+ GO(x)+G
3

(x)]

(2.3.13)

2.3.10

(2.3.14)

where GO,Gl,G Z ' and G3 are functions of x.

Membrane stresses in the buckled unstiffened ele-

ment are given by eqs. 2.3.2. SUbstituting eqn. 2.3.14

in eqn. 2.3.Z,

) ~a -F -A[(G1+G Z cos L + (G
O

+G
3

) ]yy ,xx ,xx ,xx

(2.3.15a)

(2.3.15b)

(2.3.1Sc)

There are two possible boundary conditions along the

unloaded supported edge of an unstiffened element in the

postbuckling range.

remain straight or,

They are (1) the edge constrained to

(2) the edge free of b
mem rane stresses.

A membrane stress-free supported edge is h
t e condition

often encountered in cold-formed structural membe
ra.

Hence, only this type of supported edge will b
e treated.



Consequently, shear and normal stresses are zero at the

unloaded edges. These boundary conditions are

a = 0
xy

at x=O,W
a = 0

xx

(2.3.16)

Substituting eqs. 2.3.l5a and 2.3.l5c in eqn. 2.3.16, the

following set of four simultaneous equations are ob-

tained, and constants C2l through C
24

are evaluated by

solving the equations.

0 B B 0 C
2l -Cll

BsinhB BcoshB B(coshB+BsinhB) B(sinhB+BcoshB) C22
- LIRc

1
n-O..

1 0 0 0 C
23

-C10

coshB sinhB BcoshB BsinhB C
24

_ L10 c
o Inn-

where B=2nw/L
(2.3.17)

Boundary conditions at y = 0, L are (1) membrane shear

stress is zero, (2) in plane compressive deformation is

uniform and (3) resultant of normal membrane stress is

equal to the average applied stress

equations are

0=0
xy

(a ).
av Corresponding

(2.3.18a)



v II: Constant
w
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(2.3.18b)

a = (l/w)
av o

a dx
yy

(2.3.19)

where a is the average compressive stress applied at
av

the loaded edges, and v is the displacement along y

direction. Eqn. 2.3.l8a is automatically satisfied by

the stress function F. Eqn. 2.3.18b yields

... Constant (2.3.20)

The solution to eqn. 2.3.20 can be written as

2 2
G3 (x) ... w C32 (x/w) (2.3.21)

which satisfies eqn. 2.3.12b. By substituting eqs.

2.3.13, 2.3.14, 2.3.15b, and 2.3.21 in eqn. 2.3.19, con-

stant C32 in eqn. 2.3.21 can be evaluated to be

C32 ""...!.. a - 1 rIO n C
2A av 2 On

n=4
(2.3.22)

Hence, the stress function F is given by eqn. 2 3 13.. as

F

where

= A{[G 1 (x) + G2 (x)] cos2~~ + GO(x) + G
3

(x)}

(2.3.13)

GO(x)= w2 rIO ( n
n-4 COn x/w)



45

+C 2nx h 2nx + C 2nx sinh 2nx ]
23 L cos -r- 24 L L

2 2
= w C32 (x/w) (2.3.13a)

All constants can be evaluated by equations already de-

rived.

Substituting eqs. 2.3.13, 2.2.4, and 2.3.3. in

2.3.1b and using Ga1erkin's approximation, eqn. 2.3.1b

becomes

L W L W
( J '1

4
Zf sin!Z. dx dy=.!. J J [F (Z+Zo)J L D ,yy ,xx

o 0 0 0

+F (Z+ZO) -2F (Z+ZO) ] f sin2!L dx dy,xx ,yy ,xy ,xy L

(2.3.23)

All the integrals can be evaluated as given below.

r w A
1 E4 1":4 C4n Cm

J '1
4

Zf sin!Z. dx dy = 2wLL n=l m=1(n+m+1)
0 0

= A1
2WL 1

L
(2.3.24)
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L W

J J [F (Z+ZO) + F (Z+ZO) ,yy - 2F (Z+ZO) ,xy]
o 0 ,yy ,xx ,xx ,xy

2
f sin!X dx dy = An (A1+AO)

L 2L

VI

J [(G1+GZ)(ff -f 2)_(G O+G 3) f2)dx dy,xx ,x ,xx
o

(2.3.25)

VI

f (GO+G3) nx)o ,xx

o C C
dx =~ r 4 t 4~

A n=1 mel (n+m+1)

+ W L10 E4 r 4 p(p-2)(n+m)C Op CnCm
p-4 n=1 mel (n+m+p-1)(n+m+l)

= W
oav
A

(2.3.26a)

)
w Z 10 4 m(m-n+l)C 1 C C

G1(ff -f ) = wEt E4 p n m,xx ,x (-o p=O n=l m=l n+m+p-l)

(2.3.26b)
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. (PL+l)
+ [«C 2l - (PL=1)c24)7S ) if PL is odd]

(PL+l)
+ [«(PL+l)C23-C22)~S ) if PL is even]}

(2.3.26c)

where P = (n+m-2)
L

Substituting eqs. 2.3.24, 2.3.25, 2.3.26a, band c in

eqn. 2.3.23.

(2.3.27)

This equation can be written as

(2.3.28)

Using eqn. 2.2.27, eqn. 2.3.28 can be written as

aav
(2.3.29)
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where

Let

c 0 /y
av

k .. (J 0
avl cr (2.3.30a)

Eqn. 2.3.29 can be written as given below, using the

parameters as defined by eqn. 2.3.30a.

(2.3.30b)

Eqn. 2.3.30b has only one real positive root, which is the

value of 6. Having found 6, the postbuckling analysis is

complete. Value of any desired variable can be obtained

by back substitution into respective equations in this

section.

One of the variables in this postbuckling analysis is

the length of the local buckling waves. The wave length

at the local buckling load can be determined by minimizing
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the buckling stress with respect to the wave length L.

Experimental investigations indicate that wave length

tends to reduce as the element is loaded into the post

buckling range. In order to study the effect of a re

duction in the wavelength, the analysis was carried out

by reducing the length of the wave at the critical load

up to 25%. It was found that the change in the effective

width at the advanced postbuckling range due to the re

duction in the wavelength was nominal. Hence, in the en

suing investigation it has been assumed that the length

of wave in the postbuckling range to be the same as the

length at local buckling.

2.3.1 Postbuckling Behavior of Perfectly Flat Unstiff

ened Elements - Parameter Study

Equations derived in the previous sections for the

postbuckling behavior of unstiffened compression elements

with initial imperfections can be used to study post

buckling behavior of perfectly flat unstiffened com

pression elements by setting the parameter AO in the

initial imperfection amplitude eqn. 2.3.3 to be equal to

zero.

The maximum compressive stress at the supported edge

of an unstiffened compression element occurs at the crest

of a wave and is given by
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°e max

or

(2.3.3la)

oe max
ocr

oav= --ocr

A--o cr
{2C +S2(C

2l
+2C

24
)+ ElOm COm}

12 m=4

(2.3.3lb)

Fig. 2.2.4 shows the relationship between (Oe max/Ocr)

and (a /a ) of perfectly flat unstiffened elements
av cr

given by eqn. 2.3.3lb. It is seen that in the postbuck-

ling range the relationship is linear and the slope of

the straight line depends upon the buckling coefficient

K. The equation of these straight lines can be written

as

(0 /a ) = (1-B 1 ) + B1 (O /a) (2.3.32)av cr e max cr

where Bl is the slope of the straight lines. Fig. 2.2.5

and Table 2.2.1 show the relationship between the slope

B1 and the buckling coefficient K. The relationship be

tween Bl and K can be expressed by the following equation,

obtained through a regression analysis having a correla-

tion coefficient of 0.998.

Bl • 0.326 + 0.086K2
(2.3.33)
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Ratio of the effective to the actual width is

(2.3.34)

substituting eqn. (2.3.34) in eqn. 2.3.31a and re-

arranging

b /w =
e 1 -

1

(2.3.35)

and substituting eqn. (2.3.34) in eqn. 2.3.32 and re-

arranging

b /w = (l-Bl ) + B
1e a /a

( e max cr)

(2.3.36)

Fig. 2.2.6 shows the relationship between b /w and
e

(a /a) as expressed by eqn. 2.3.36. It can be seen
e max cr

that perfectly flat unstiffened elements remain fully

effective until local buckling stress is reached and the

effective width reduces with further loading. The re-

duction is larger for elements having a lower buckling

coefficient than a higher buckling coefficient.

The maximum amplitude of the out of plane deforma-

tion is obtained by substituting value of ~ from solution

of eqn. 2.3.30b in eqn. 2.2.4.
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(Z/t)max

(2.3.36)

(Oe max/Ocr)·

as shown in fig. 2.2.8,

Fig. 2.2.7 shows the relationship between (ZIt) and
2

plotting (0 /0) against (z/t)max
e max cr

there is a linear relationship

of the form

°= B ( e max
3 ocr

- 1) (2.3.37)

where B
3

is a function of the buckling coefficient K.

i 2 2 5 and table 2.2.1 show the relationship betweenF g. ••

A functional re1ation-B
3

and the buckling coefficient K.

ship between B
3

and K, obtained through a regression

analysis and having a correlation coefficient of 0.999,

is given below.

B
3

= 2.727 + 1.l35/(K-0.425) (2.3.38)

Equations 2.3.37 and 2.3.38 indicate that the ratio

of the maximum out of plane deformation to thickness

«Z/t) ) is large at the advanced stage of postbuck1ing
max

of unstiffened elements having a low buckling coefficient

(hinged edge condition). However, Von-Karman's equations

are valid only for the intermediate range of deflection.

Consequently, the equation (eqn. 2.3.37) for computation

of deflection should be used with discretion for elements
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having a low buckling coefficient.

2.3.2 Postbuck1ing Behavior of Unstiffened Elements

With Initial Imperfections - Parameter Study

Eqs. 2.3.31a,b, 2.3.35 and 2.3.36 for stresses and

displacements derived in section 2.3.1 are also valid for

plates with initial imperfections.

Hence, eqn. 2.3.35 given below yields the effective

width for imperfect plates, as long as initial imperfec-

tions parameter AO is not taken to be equal to zero.

1
b /w = A

e 1- a--[2c 12 +
av

(2.3.35)

Fig. 2.2.9 shows the variation in the effective

width for an element having a rotational edge restraint

parameter £ equal to 2.0 and various values of initial

imperfections. Fig. 2.2.10 shows the variation in the

out of plane deformation for various values of initial

imperfections for the same plate. It is seen that the

effect of imperfection is most pronounced around the

critical buckling stress and is negligible at the ad-

vanced postbuck1ing stage. It can also be observed that

the net out of plane deformation due to in plane com-

pression is smaller at the advanced stage of postbuckling
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for a plate with initial imperfections than for a per-

fectly flat plate.

2.4 Summary and Conclusions

In this chapter, an analytical investigation of

elastic and inelastic local buckling and postbuckling

behavior of unstiffened elements has been carried out.

The local buckling stress is a function of the flat

width to thickness ratio of the element and the buckling

coefficient, which in turn depends upon the rotational

restraint at the supported edge. A method for determin-

ing the local buckling coefficient K in "closed" form has

been presented. It was shown that the plastic buckling

strain coefficient K can be obtained by multiplying thep

elastic buckling coefficient K by the plasticity index

n' which is a function of the rotational edge restraint

coefficient £, the tangent modulus and the secant modulus.

In the elastic postbuckling range, the reduced

effective width was shown to be a function of the maximum

stress at the supported edge, the local buckling coefficient

K, the flat width w, and the thickness t of the un

stiffened element. It was observed that the load carrying

capacity of an element is essentially reached when maxi-

mum stress at the supported edge reaches the yield stress
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When the local buckling takes place in

the inelastic range, it was observed that any increase

in load carrying capacity beyond this is very limited

and often neglected. Plots and equations giving the re-

lationship between various parameters of the postbuckling

equations have been presented.

In conclusion, it is important to reemphasize that

due to the approximate nature of the assumed deflected

shape, equations derived may not give a good solution in

the advanced stages of the postbuckling range (large

value of a /0 ),out of plane deflection may be largee max cr

and the wave form along the length may be very different

from the assumed simple sinusoidal curve. However, for

the range of interest in this investigation, it is ex-

pected that the analytical solution should give results

of sufficient accuracy.



CHAPTER 3

EXPERIMENTAL INVESTIGATION OF UNSTIFFENED
ELEMENT BEHAVIOR

3.1 General

A study of unstiffened compression element buckling

and postbuckling behavior is the first step in the pro-

posed experimental investigation. The objective of the

test is to subject an unstiffened element to axial com-

pressive stress and investigate local buckling and post-

buckling behavior as the loading progresses. It is de-

sirable to have the support condition of such an element

matching the environment encountered in practice. One

of the easiest and most commonly used methods of testing

an element in uniform compression is to subject a member

composed of such elements to uniform axial compression.

This test, often referred to as the stub column test, nol

only gives the desired information about the element be-

havior, but also provides information useful in the in-

vestigation of the overall flexural buckling of such a

member. In this chapter, stub column tests conducted in

this investigation are described and the results of the

tests are evaluated. Results of stub column tests con-

32
ducted by DeWolf are also presented in section 3.4.2.

56
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These test results are compared with the analytical solu-

tion derived in the previous chapter, bearing in mind the

derivation of an effective width equation as the ultimate

goal.

3.2 Stub-Column Test

3.2.1 Material Properties

Stub columns were fabricated from ten 18 gage, 4 feet

by 10 feet sheets of low carbon commercial grade steel.

Three tensile coupons were tested, from each of the ten

sheets to obtain the material properties, following ASTM

Designation E 8-69 on "Tension Testing of Metallic

47
Materials" . The mechanical properties of the three

coupons from each sheet were averaged to obtain the pro-

perties of each sheet. Tension tests generally revealed

a sharply yielding stress strain relationship with yield

plateau. Fig. 3.2.1 shows the early portion of the stress

strain curve of a tension coupon and is typical of all

the coupons. The yield stress and the ultimate stress of

the ten 18 gage sheets are given in Table 3.2.1. The

strain hardening occured at an average strain of 0.0135

and the average elongation of 2 inch gage lengths was 45

percent.
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~2.2 Design of Test Specimens

One of the objectives of a stub column test is to

Study the local buckling and postbuckling behavior of

Unstiffened elements in compression. In order to get a

Complete picture, it is desirable to design the specimens

such that the whole range of variables governing the

element behavior is covered. The rotational edge res

traint at the supported edge and the flat width to thick

Qess ratio (wit) are two of the variables which influence

the behavior of an unstiffened element most. The flat

~idth to thickness ratio can be easily designed to be

~ithin any desired range, by varying the width, thickness

Or both. The rotational edge restraint at the supported

edge depends upon the relative stiffnesses of the

SUpporting and supported elements, and often cannot be

varied at will, because of other constraints such as the

Premature local buckling of the supporting element and the

restrictions of the forming process.

Five H sections, as shown in Fig. 3.2.2, were designed

for the stub column tests. Two specimens were tested

cOrresponding to each section. The dimensions of the ten

Stub column specimens (SC) are given in Table 3.2.2. The

~idths of the unstiffened elements were varied to obtain

a wit ratio in the range of 30 to 60. This ensured an



elastic local buckling. Unstiffened elements having

wIt 32ratios between 16 and 30 were tested by DeWolf ,

and the results of his tests will also be used in this

chapter. It is desirable to have webs that do not buckle

locally prematurely and provide rotational edge res-

traint to the unstiffened flanges. Therefore, the webs

were designed to remain fully effective until the yield

stress was reached. Even though the local buckling of

flanges introduced waving in the webs, webs were stjff

enough to resist this with a negligible reduction in the

effective width. Consequently, only local buckling of the

unstiffened elements affects the stub column test results.

The lengths of the stub column specimens are also

given in table 3.2.2 and the tolerance was within one

tenths of an inch. Stub columns need to be as short as

possible to avoid the overall buckling of the columns.

However, in order to avoid the dependence of the local

buckling stress of the unstiffened elements on the as-

pect ratio (L/w) of the elements, it is desirable to have

as long a column as possible. These two conditions dictate

bounds on the length of a stub column. The specification

for Design of Cold-Formed Steel Structural Members
2

recommends the length to be bounded between twenty and

fifteen times the least radius of gyration. As the loading



progresses into the postbuckling range, the radius of

60

gyration decreases and hence, the limit based on the

. 148Helmerradius of gyration is difficult to apply.

suggests a length of stub column such that the buckling

pattern has at least three half-waves. The lengths of

thl' stub column specimens were chosen, taking into

account both these recommendations.

3 . 2 . 3 Fabrication and Instrumentation

Sections were cut from the 18 gage low carbon steel

sheets and cold-formed into channel shapes by press

braking with a sharp die so that the inside radius was

negligibly small. In all subsequent computations, the

inside radius has been assumed to be zero. The flatness

of the plate elements was checked at random in the speci-

mens and the maximum amplitude of the distortion was

fuund to be of the order of two-tenths of the thickness

oj the sheet. The general quality of the forming was

Each stub column specimen was fabricated out of

two such channel sections from the same steel sheet.

Channels were cut slightly longer than the desired final

length of the test specimen. Matching holes were drilled

in the web of the channel sections as shown in fig. 3.2.2.

Surfaces to be joined were then cleaned with a solvent.

A thin layer of Epon 907, an epoxy grout, was spread over
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Wires having a 0.009

inch diameter were used as spacers between the channel

sections to avoid the complete squeezing out of the glue.

The channel webs were rivited to hold them together while

drying and to provide additional strength to the connec-

tion during the test. After the glue had set, the ends

were ground to assure a uniform bearing against a flat

surface. To assure a perfectly flat bearing surface, the

ends were finally lapped with a lapping compound on a

perfectly flat surface.

Strain gages were glued to the specimen, parallel to

the axis of the specimen at mid-height, as shown in

fig. 3.2.3. Twelve 1 inch long SR-4, A-l2 strain gages

were glued to the four flanges, one near the intersection

of the web and each flange and one on each face at the

free edge of each flange. In addition to this, two 6 inch

long SR-4, A-9 strain gages were glued to the web near

the flange and the web intersection and one linch SR-4,

A-l2 at the mid width of the web to insure that the strain

was uniform over the web.

3.2.4 Experimental Set-Up and Procedure

49
"Stub Column Test Procedure" of the Design Criteria

for Metal Compression Members was followed to set up and

test the stub columns. The ground ends of the stub col-



umns were set to bear against the ground surfaces 01 t ....·0

3/4" thick cold-rolled steel plates. The specimen <lnJ

end plates were centered in a Tinius Olsen testing

machine. A thin layer of hydrostone was spread between

the machine head and the table and the bearing end

plates as shown in fig. 3.2.3.

Initially, the stub columns were loaded to approxi

mately 30% of their local buckling load in order to cen

ter the specimens. The centering was done by checking

the uniformity of increase in all the strain gage read-

ings. If they did not exhibit uniform compression, the

column was recentered and a new layer of hydrostone between

the top plate and the machine head was recast. After the

centering was completed, the load was reduced to a small

initial load to maintain the surfaces in contact.

A dial gage was located at mid-height of the stub

columns to measure any overall buckling of the columns in

the direction normal to the weak axis. This dial gage in

dicated no overall flexural buckling prior to failure.

One rigid arm was attached, using a magnetic base,

to each of the end plates, with its axis parallel to the

axis of the column (fig. 3.2.3). The relative displacement

between the two arms during the test was directly re

corded in the Olsen recorder, using a compressometer.

Thus a load axial deformation plot was produced.



Testing was started from an initial load with In

r t.' rll' n t s such that there were at least 4 or 5 read in g s

before the elastic local buckling. In the post buckling

range, the load increment was reduced depending upon the

progress into the postbuckling range. Near the ultimate

load, the axial deformation was increased in very small

stages to get readings as near the ultimate load as

possible.

The strain gage and dial gage readings were re

corded subsequent to each load increment, after the load

had settled down. In the postbuckling range, the am-

plitude of the local buckling waves were measured using

the instrument shown in fig. 3.2.4. By sliding the

dial gage in the device along the free edge of the un

stiffened element, readings were taken at the trough of

the wave. The difference between this and the zero read-

ing being the wave amplitude desired.

Failure occurs when a further increase in the axial

shortening is accompanied by a decrease in load resis-

tance. Sometimes this type of load shedding was difficult

to recognize, because of a drop in the load after each

loading stage in the postbuckling range. In such cases,

failure was assumed to have occured when an additional

small deformation does not increase the load carried by

the specimen to a level higher than the previous load
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d ' of the load and deformationAutomatic recor lng

1 facilitated the identifica-using a compressometer a so

tion of the failure load, because at this point the load

deformation curve has a horizontal tangent.

Pictures of one stub column prior to loading and all

the stub columns after failure are shown in figs. 3.2.5

and 3.2.6 respectively.

3.3 Background for Evaluation of Experimental Data

3.3.1 Local Buckling

It was already pointed out that waving, and hence

decrease in effective width, starts from the very be-

ginning when an unstiffened element is loaded in com-

pression. Hence, a bifurcation type of buckling, char-

acteristic of an ideally flat plate, is not realized in

an experimental investigation. However, it was pointed

out that the local buckling stress is one of the impor-

tant values desired.

A number of approximate methods have been proposed

for determining the local buckling stress from experimen-

tal observations. 15 50Hu et aI, Vann et aI, and

Johnson
5l

have discussed some of these methods. Basically

all methods depend upon the measurement of either the

out-of-plane deformation of the unstiffened element or

the compressive strains at both faces of the free edge.
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Difficulty in obtaining an accurate measurement of the

maximum wave amplitude and change in the location of

the maximum wave amplitude in the postbuckling range make

the computation of local buckling stress based on out of

plane deformation unreliable. Among all the methods for

finding the local buckling stress from strain measurement t

the modified surface strain reversal method t described

below t has been found to be most reliable by past investi

gators and will be used here.

When an unstiffened element is subjected to com

pressive stress, waving starts practically from the be

ginning of loading. Hence t the strain readings at the

free edge of the unstiffened element are non-linear as

the loading progresses t as shown in fig. 3.3.1. Com

pressive strain at the convex side of the element is

always smaller than that at the concave side, due to the

flexural stress in the plate. At a certain load t the in

crease in the flexural tensile stress at the convex side

exceeds the compressive stress due to the increase in

the axial load and there is strain reversal (point A).

The modified surface strain reversal method assumes the

load corresponding to this point to be the critical load

of an unstiffened element. This procedure has been used

throughout this investigation to determine the local

buckling stress experimentally.
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Postbuckling Behavior

At each load increment, the axial load on the stub

column and the strain at the web and flange intersections

were measured. Since the web has been designed to re-

main fully effective until the yield stress is reached,

the stress throughout the web and at the corners of the

web and flanges is taken to be equal to the stress in

the flange at the intersection of the web and flanges.

The load resisted by the four outstanding unstiff-

ened elements can then be computed by subtracting the load

carried by the rest of the area of the cross section

from the total load on the stub column. The average

stress in the unstiffened elements at any load is ob-

tained by dividing the load carried by the unstiffened

elements by the total area of the unstiffened elements.

The maximum stress in the unstiffened elements is the

stress at the web flange intersection. The ratio of the

effective width to the actual width (b /w) is obtained
e

from eqn. 2.3.34b (given below) by dividing the average

stress on the unstiffened element by the maximum stress

on the unstiffened element.

b /w
e / c)

av e r.lax (2.3.34b)
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With these background information, evaluation of

the experimental results will be carried out in the

following section.

3.4 Evaluation of Experimental Results

3.4.1 Experimental Results

The local buckling stress of the stub columns has

been computed from the experimental results as des-

cribed in the previous section, and is given in table

3.4.1. The corresponding buckling coefficient K com-

puted by substituting the buckling stress 0 in the eqn.
cr

1.2.la and solving for the buckling coefficient K, is

also presented in table 3.4.1. The stub columns tested

exhibit characteristics in between that of an H section

and a single channel section, because of the discontinu-

ity of the flanges across the web and the non-integral

nature of the web. The theoretical buckling coefficient

of these two extreme idealizations can be obtained from

7W.D. Kroll and these values are also presented for com-

parison in table 3.4.1. The average of these two values

seems to agree reasonably well with the test values.

As already mentioned, crippling is assumed to take

place when the maximum stress at the supported edge

reaches the yield stress. The corresponding average com

pressive stress and the ratio of the effective width to



the actual width (b /w) has been computed as explained in
e

the previous section. The ratio of the maximum supported

edge stress to the critical stress (a e max/Ocr) and the

ratio of the effective width to the actual width (be/w)

at crippling, are given in table 3.4.2 for all specimens.

The ratio of the out of plane wave deflection amplitude

to the thickness just prior to failure is also given in

table 3.4.2 for all specimens.

The axial shortening of the specimens was recorded

automatically by the compressometer during the loading.

This axial shortening can also be computed from the

strain measured by the long gages located in the web at

the intersection of the web and flanges. A typical plot

of the axial load versus the axial shortening for a stub

column (SC-II 1) obtained from the compressometer and

the strain gages is shown in fig. 3.4.1. In the post-

buckling stage, there is usually a drop in the load after

each load increment and the compressometer curve has

been corrected for this. There is a good agreement be-

tween the two curves. This is typical of the other stub

column axial shortening curves. Attempts by previous in-

vestigators to measure the axial shortening using dial

gages were not as successful, because of a larger least

count of dial gages used (0.001 in.).
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3.4.2 Experimental Results of DeWolf
32

In this section, the results of tests conducted by

h · i 32anot er 1nvest gator on stub columns with unstiffened

elements in compression are presented. In subsequent

sections, these results and the results of the tests

conducted in this investigation will be compared with

the analytical solutions.

32DeWolf tested four stub columns with unsti£fened

elements having a (wit) ratio in the range of 16 to 30.

The section dimensions, material properties and test

results of these four stub columns (UD 1-4) are given in

table 3.4.3. The experimental and theoretical buckling

coefficient (K), and at th~ ultimate load the ratio of

the maximum edge stress to the critical stress

(a la), and the ratio of the effective width to
e max cr

the actual width (b Iw) (assuming the stress at the
e

supported edge to be equal to the yield stress at the

ultimate load of the stub column) are also presented in

table 3.4.3. Specimens UD-l and UD-2 actually did not

undergo local buckling before failure. Any reduction in

the effective width before failure can be attributed to

the effect of initial imperfections. DeWolf has com-

puted a low value of the local buckling coefficient for

these two specimens assuming the local buckling to have
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occured at failure or just prior to the failure.

low values of K (0.5 and 0.64) do not appear to be con-

sistent, when compared with those of UD-3 and UD-4.

Hence, in this investigation realistic values of the

buckling coefficients have been assumed as shown in table

3.4.3, and all other computations are based on these

assumed values of the buckling coefficient.

3.4.3 Comparison With the Analytical Solution

In this section, the experimental results given in

the previous two sections will be compared with the

analytical solution presented in section 2.3 and 2.4.

An analytical equation (eqn. 2.3.35) was derived in the

last chapter for the effective width of unstiffened ele-

ments in the postbuckling range. The initial measurement

and test results seem to indicate the maximum value of

the initial imperfection amplitude to be equal to 0.2

times the thickness of the element. Hence, only this

initial imperfection amplitude will be used in the ana-

lytical representation of postbuckling behavior in this

and following sections. Fig. 3.4.2 shows the variation

of the ratio of the effective width to the actual width

(be/w) as the ratio of the maximum edge stress to the

critical stress (0 /0) is changed.
e max cr There are two

curves, corresponding to the two values of the buckling



coefficient K equal to 0.855 and 1.003.

7 1

These two values

of the buckling coefficient are used, since the buckling

coefficients of the stub columns tested are within this

range. Curves for zero initial imperfection amplitude

are also drawn for the two values of the buckling co

efficient.

For comparison, the test points evaluated in the

previous sections are also plotted in this figure. It

can be seen that there is a very good agreement between

the test results and the analytical solution in the

postbuckling range. The analytical solution has been

derived in the second chapter, assuming that the supported

edge parallel to the direction of applied compression is

free to move in the plane of the element. However, due

to symmetry of the stub columns about an axis passing

through the middle of the web plate, there will be some

restraint against the movement of the supported edge of

the unstiffened elements in the plane of the element.

In addition to this, the initial imperfection amplitude

has been taken to be 0.2 times the element thickness,

which may be too high for narrow flanges. The slightly

conservative nature of the analytical solution in the

postbuckling range can be attributed to these two reasons.

In the prebuckling range, the analytical solution is

very conservative compared to the test results. The ana-
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lytical solution indicates a reduction in the effective

width even for a very small value of the maximum

supported edge stress to critical stress ratio

(0 /0), whereas experimental results seem to in-
e max cr

dicate that the unstiffened elements having a very small

(wit) ratio, hence a large buckling stress, remain fully

effective until yield stress is reached over the entire

width of the element. This can be observed in some of

the test results presented here and it has also been ob-

served by many investigators studying wide flange hot

rolled beams and columns. This difference between the

analytical solution and the experimental results in the

prebuckling range can be attributed to many factors.

Unstiffened compression elements having a small (wit)

ratio may have a very small initial imperfection ampli-

tude and hence little reduction in the effective width

before yielding is reached. Besides, it was pointed out

that even though failure is assumed to occur as soon as

the maximum supported edge stress reaches yield stress,

elements having local buckling stress around or above the

yield stress may have at failure the supported edge strain

greater than the yield strain. This facilitates the

Lng the ultimate load.

spread of plastification into the element, thus increas-

In order to take these factors

into account, the analytical solution can be modified as
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given helow.

1n fig. 3. 4 . 2, i tea n h l' 0 b s c r v l'd t It a t t h l' ; I TJ:I 1 v t i-

cal curves for perfectly flat elements and thE' analvtil':ll

curves for elements with a small initial imperfection

have the same shape in the postbuckling range (0
e max

/0 >1).
cr

Hence, by shifting the curves for the perfectly

flat elements horizontally a certain distance to the left

(towards the vertical axis), they can be made to geneL111v

coincide (in the postbuckling range) wi th the an;]] yt i Cd I

curves for the corresponding elements with an imperfection

amplitude of 0.2 times the thickness of the element. How-

ever, in the prebuckling range (0 /0 <1),
e max cr

the shifted

curves (indicated by dashed lines) deviate from the anCl-

lytical curves for the corresponding elements with initial

imperfections. These shifted curves intersect the line

corresponding to a fully effective i 11 e (h I w= 1 . 0 ) z] l z]
e

certain value of the abscissa (0 /0)
e max cr

different frol11

zero. The shifted curves are still slightly conservativc

in the prebuckling range in comparison to the test results,

though much closer to the test results in the prebucklil1~~

range than the analytical curves. Hence, an effective

width equation for the unstiffL'ned clements' eJastic post-

buckling behavior can be reasonably represented hy the

equation of the shifted curve.

The analytical curve corrl'sponding to zero initial
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imperfection has been shown to be given by the equation

(2.3.36)

from which, the equation for the shifted curve can be

written as

be- =w a
( e max )a + B2

cr

(3.4.l)

where B
2

is the abscissa distance (a /a) by whiche max cr

the curve of a perfectly flat plate has to be shifted

horizontally towards the vertical axis to take into con-

sideration the effect of initial imperfection. For a

given initial imperfection, the value of B2 depends upon

the buckling coefficient K. Table 3.4.4 and fig. 3.4.2

give the relationship between the parameter B2 and the

buckling coefficient K for the assumed initial imper-

fection of 0.2 times thickness. The functional relation-

ship between B2 and K can be written as given below,

through a regression analysis having a correlation co-

efficient of 0.999.

B2 = 0.378-0.768(K-l.18)4 (3.4.2)
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Hence the effective width equation of an unstiffened

element can be written as

b (1-B 1 )e + Bl
(3.4.1)=

w a
( e max

+ B2)a
cr

where

B1
= 0.326 + 0.086 K

2
(2.3.33)

and

B2
= 0.378 - 0.768 (K - 1.18) 4 (3.4.2)

3.4.4 Winter's Unstiffened Element Effective Width

Equation

An effective width equation for unstiffened ele-

h 1 d b d b W· 13ments as a rea y een propose y 1nter.

equation was derived by modifying Von Karman's effective

width equation for stiffened elements to fit the test

results on unstiffened compression elements.

tion can be written in a general form as

b /w = B5!0 70 (1.0-B 6 /o 10 )e cr e max cr e max

The equa-

(3.4.3a)

Substituting eqn. 2.3.34 for ratio b /w in eqn. 3.4.3a,e

it can be written as



o /0 = Bs(/o e /0av cr max cr
- B )6
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(3.4.3b)

Eqn. 3.4.3b makes it easy to obtain constants BS and B6

graphically, since this is an equation for a straight

line in terms of the variables 0 /0 and 10 /0.av cr e max cr

In order to obtain constants B
S

and B
6

, experimental and

analytical investigation results are plotted in fig. 3.4.4.

The two non-dimensional parameters in eqn. 3.4.3b are

chosen as the ordinate and obscissa of the plot. The

curve corresponding to the effective width eqn. 3.4.1,

which is based on the analytical solution, is drawn in

fig. 3.4.4. The buckling coefficient K equal to 0.5 is

used for the curve since it yields a conservative value

of the effective width for the values of K over a major

range. A fully effective element curve (0 =0 ) is
av e max

also presented. Using all this information, a straight

line representing eqn. 3.4.3b is drawn to obtain a con-

servative fit. From

B
6 is found to be

B
S 1.19

and

B
6 = 0.298

this, the value of constants Band
5

Substituting this 1'n eqn 3 4 3. .. a



be/w = 1.19 10 /0 (1.0-0.298/0 /0 )cr e max cr e max
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(3.4.5)

Comparing the coefficients B5 and B
6

in eqn. 3.4.5 and the

coefficients in eqn. 1.2.3, proposed by Winter for un-

stiffened elements, there is only a small difference in

the value of the coefficient B
6

. Equation 3.4.5 is

similar in format to the effective width eqn. 1.2.2 for

stiffened elements which is given below.

b /w = /0 /0 (1.0-0.22/0 /0 )
e cr e max cr e max (1.2.2)

Equation 3.4.5 is plotted along with eqn. 3.4.1 for the

two extreme values of the buckling coefficient

(K = 0.425 and 1.277), in fig. 3.4.5. Eqn. 3.4.5 gives

a conservative value of the effective width over a wide

range, except in the early postbuckling range of the un-

stiffened elements with a low buckling coefficient K.

The effective width given by eqn. 3.4.5 tends to become

more and more conservative in the advanced postbuckling

range.

The effective widths computed using eqn. 3.4.1 and

eqn. 3.4.5 are compared with the effective widths eval-

uated from the experimental results in table 3.4.5. The

effective width eqn. 3.4.1 yields results which vary from

4 percent on the conservative side to 7 percent on the

unconservative side, when compared with the test results.
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Eqn. 3.4.5 when compared with the test results, exhibits

differences from 10 percent on the conservative side to

9 percent on the unconservative side. Both the equations

seem to indicate a good correlation with the test re

sults, except in the advanced postbuck1ing range, where

the eqn. 3.4.5 becomes more conservative.

The ultimate and the preultimate test points are

Plotted in fig. 3.4.6 in terms of the parameters a /0av cr

/0max cr
Curves corresponding to the effective

width equation 3.4.1, for two values of the buckling co-

efficient K (0.855, 1.003), and the effective width

equation 3.4.5 are also plotted in this figure for com-

parison. Preu1timate points generally fallon the con-

servative side of the effective width equations, which

can be attributed to the measurement of the average

rather than the maximum supported edge strain by the

strain gages. The ultimate load points do exhibit a good

correlation with the effective width equations. A

reasonably good correlation between the effective width

equations and stub column test results indicates the

validity of the effective width equations. These equa

tions will be checked with the postbuckling behavior of

the unstiffened compression flanges of flexural members,

in the fifth chapter.
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3.4.4 Out of Plane Deformation

Even though the existence of the postbuckling re

serve of unstiffened elements was recognized long ago,

there has been some reluctance about using this to the

full extent with a uniform factor of safety, as in the

case of stiffened elements. This has been mainly due to

the objection to the unsightly waving of elements in the

service load range. One of the objectives of this in

vestigation has been to measure the amplitude of the out

of plane deformation of unstiffened elements in the post

buckling range to get an idea of the magnitude of the

waving.

The out of plane deformation of the unstiffened

elements was measured during the test, as indicated in

the test procedure. The amplitude of the out of plane

deformation just prior to failure is given in table 3.4.2.

These test points are also plotted in fig. 3.4.7. An

analytical solution to the out of plane deformation am

plitude of perfectly flat plates, given by eqn. 2.3.37,

is also plotted for the values of the buckling coefficient

K equal to 0.855 and 1.003.

All the test points fallon the conservative side of

the analytical solution. There is considerable scatter

in the test points and one could attribute this to the



80

effects of initial imperfection and the normal experi

mental scatter. It is important to realize that real

elements will have out of plane deformation even before

the local buckling stress is reached, whereas a perfectly

flat plate equation does not give any out of plane de

flection prior to the local buckling. However, the de

flection prior to buckling is usually very small and is

not of any interest. Hence, equation 2.3.37 can be used

to compute the amplitude of the out of plane deflection.

It can be seen that the amplitude of the out of plane

deformation of unstiffened elements is not very high,

even at the advanced postbuckling range, as long as there

is some rotational edge restraint, however small it may

be (fig. 2.2.7). Most of the unstiffened elements, with

the exception of equal angles and cruciform sections

under compression, have at least a small rotational

restraint at the supported edge. Consequently, one

should be able to use the available postbuckling strength

of such sections, without any concern about the excessive

waving.

3.5 Summary and Conclusions

Stub column experiments, conducted in the course of

studying the buckling and postbuckling behavior of un

stiffened elements, have been presented in this chapter.
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Material and section properties, test set-up and pro-

cedure, and test results are presented in the first part

of the chapter. The results of the stub column tests

32conducted by another investigator are also included.

The test results have been compared with the analytical

solution to arrive at an effective width equation for

the unstiffened element postbuckling behavior. Two

equations, one based on the analytical solution of the

previous chapter and the other having a format similar

to the effective width equation for stiffened elements,

have been examined (eqs. 3.4.1, 3.4.5).

It is shown in this section that the buckling co-

efficient computed from the experiments, using the mod-

ified surface strain reversal method, compare well with

the theoretical solution. An analytical solution, using

a value of the initial imperfection amplitude equal to

0.2 times the thickness of the element, seems to exhibit

a good agreement with the test results in the post-

buckling range. However, in the prebuckling range, the

analytical solution was conservative, and had to be mod-

ified to account for the progression of plastification

into the element (eqn. 3.4.1). The effective width eqn.

(3.4.5), having the same format as the effective width

equation for stiffened elements, was obtained by a con-

servative fit of experimental and analytical results, and
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is essentially the same as the Winter's equation for un

stiffened elements (eqn. 1.2.3). This equation (eqn.

3.4.5) is generally conservative when compared to the

effective width equation based on the analytical solu

tion (eqn. 3.4.1), except in the early postbuckling

range of elements with a low buckling coefficient K.

Eqn. 2.3.37 gives a conservative result for the am

plitude of out of plane deflection in the range of

interest, namely for stresses above critical stress.

Consequently, this equation can be used to get an idea

of the out of plane deflection of unstiffened elements.

It was observed that the waving of the unstiffened ele

ments may not be objectionable as long as there is at

least some rotational edge restraint at the supported

edge parallel to the direction of loading.



CHAPTER 4

INTERACTION OF THE LOCAL AND THE OVERALL
BUCKLING IN COMPRESSION MEMBERS

4.1 General

Economical design of compression members requires

that the material in a column cross section be distri-

buted as far away from the certroid of the column as

possible. This often results in compression members
I

having thin component elements. It is commonly assumed

in the study of the flexural and torsional instability

of hot-rolled columns ~hat the shape of the cross sec-

tion remains unchanged. However, thin plate elements of

a cold-formed column may buckle locally before the over-

all buckling of the column. This distortion of the columr

cross section reduces the effective stiffness of the

column and the load at which the column becomes unstable.

Consequently, it is important to consider the local

buckling of thin plate elements while studying the over-

all buckling of columns in compression. In this chapter

the effects of the local buckling of the unstiffened

elements on the overall flexural buckling of cold-formed

steel columns will be treated. Before venturing further

into the study of the interaction behavior, it is appro-

priate to review briefly the flexural instability of the

83
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columns.

4.1.1 The Flexural Instability of Columns

A centrally loaded ideally straight column trans-

mits the compressive force passing through the cen

troidal axis without any lateral bending, as long as the

applied force is less than the critical value known as

the buckling load. When the load reaches the critical

value, the column can be in equilibrium either in a

straight configuration or a slightly bent configuration,

as long as the cross section is such as to preclude the

torsional buckling prior to the flexural buckling.

lateral buckling can take place either at a constant

This

load or with a load gradient, depending upon whether the

buckling is elastic or inelastic. Because of initial

imperfections in the column geometry and the eccentricity

of the applied load, the strength of a column, in prac-

tice, is usually less than the critical load of an ideal

column having the same section and mechanical properties.

However, the critical load is of interest since it can

be visualized as being asymptotically approached as the

imperfections tend to zero. In the current design prac-

i 1,49 h
t ce t e reduction in the strength due to the initial

imperfections is taken care of by an appropriate factor

of safety and a proper modification of the design curves.
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The critical load at which a linearly elastic, in-

itia11y straight and concentrically loaded column will

buckle was derived by Euler as

where P is known as the Euler buckling load.e

(4.1.1)

Upon

substituting for the moment of inertia I in terms of the

area A and the radius of gyration r of the cross section,

the formula for the stress a at the Euler buckling loade

is obtained,

ae (4.1.2)

These equations have been derived for the columns with

the hinged-end condition and are usually extended to the

other end conditions by substituting the effective length

(KL) in the place of the actual length L. In order to

avoid any possible confusion between the buckling co-

efficient and the effective length factor K, in all the

column equations the length L instead of KL will be taken

to mean the effective length of the column.

The flexural buckling stress of columns of shorter

length may exceed the proportional limit of the material.

Consequently, for these columns, the Euler equation de-

rived for the elastic range is not directly applicable.
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A detailed review of theories proposed for column buck

ling beyond the proportional limit can be found in the

49
Guide to Design Criteria for Metal Compression Members.

A column loaded beyond the proportional limit without

buckling will start to bend, as the load increases, at

an average stress 0t obtained by substituting the tan

gent modulus Et of the material in the place of the

elastic modulus E in eqn. 4.1.2.

(4.1.3)

Even though the initial bifurcation in the inelastic

range takes place at the tangent modulus stress (eqn.

4.1.3), the lateral deflection increases with an increase

in the average compressive stress, and the upper bound

on the failure stress is given by the reduced modulus

stress 0
r

(4.1.4)

where Er is the reduced modulus, which is a function of

the Youngs modulus E and the tangent modulus E depend
t '

ing upon the cross section.

Structural steel coupons tested in tension exhibit

a nearly linear stress-strain behavior up to the yield
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stress. If this were to be the behavior of compression

members, then one would expect the columns to develop

full yield stress for values of the slenderness ratio

(L/r) less than (L/r) wherey

(L/r) = !rr2 E/ Oy y (4.1.5)

and the buckling stress would be given by the Euler

stress (eqn. 4.1.2) for a value of the slenderness ratio

larger than that given by eqn. 4.1.5. However, when a

stub column is tested to ascertain the stress strain

characteristics in compression, it is found that the

proportional limit is lower than the yield stress, which

is attributable to the presence of residual stresses,

work hardening, and the variation in the yield stress

over the cross section of the column. Fitting a parabola

which joins the Euler buckling curve tangentially, and

gives a conservative estimate of the major and minor axis

flexural buckling stress of wide-flange columns having a

maximum residual stress of 0.30 , the Column Research Couny

ci1 proposed the following equation for the buckling

stress (0 ) of hot rolled steel columns beyond the pro
c

0=0c y

portiona1 limit.

o 2
y (L/r) 2

47T 2E

(4.1.6)
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Extensive research carried out to determine the strength

of hot rolled steel columns is reviewed by the Guide to

b 49 These
Design Criteria1 for Metal Compression Mem ers.

investigations treat analytically and experimentally the

effects of the residual stresses and the initial curva-

ture. One of the general conclusions that can be drawn

from these studies is that the effects of the initial

imperfections and the residual stress are most pronounced

around the slenderness ratio, given by eqn. 4.1.5, where

the Euler buckling stress is equal to the yield stress

of the material. Having gone through the general equa-

tions governing flexural buckling, a cursory treatment

of the research carried out by various investigators in

the area of the interaction of the local and overall

buckling of the compression members will be presented

in the succeeding section.

4.1.2 The Flexural Buckling Strength of Compression

Members With Locally Buckling Elements

The effective areas of the thin compression elements

of cold-formed steel columns decrease with an increase

in the compressive stress. If th 1e co umns are very

slender, they may become unstable even before the effec

tive area of component elements begins to decrease. The

buckling stress of such columns may be obtained by using
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the Euler eqn. 4.1.2 as long as the stress is below the

proportional limit. The cold-formed steel compression

members also exhibit a gradually yielding stress strain

curve in compression. This can be attributed to the non-

linearity of the basic material property before the

yield, the cold work in the process of forming, and the

local buckling. The reduction in the effective area of

thin elements in compression due to local buckling, re-

duces the average compressive stress at failure of stub

columns with thin elements to a value less than the yield

stress, whereas a fully effective stub column will have

an average compressive stress at failure nearly equal to

the yield stress. Consequently, the flexural buckling

stress of the compression members with component ele-

ments buckling locally, cannot be obtained directly from

the equations derived for hot rolled sections designed to

remain fully effective until failure.

The ultimate load of a stub column having thin com-

pression elements that buckle locally can be written as

P = A ffa = Aa Q = P Qu e y y Y
(4.1.7)

where Q is known as the form factor, introduced to take

into account the reduction in the effective area, P isu

the ultimate load, Aeff is the effective area, A is the

total area and P is the load at failure of the fully
y
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h thin elements, and that of
strength of stub columns wit

is the factor QO y instead ofa fully effective section,

o. The Specification for the Design of Cold-Formed
y

Steel Structural Members 2 recommends the use of the

following equation to determine the flexural buckling

strength of the cold-formed structural steel compression

members beyond the proportional limit.

o aQO 
C Y

(4.1.8)

The equation has been obtained by replacing the yield

stress a in the Column Research Council equation (4.1.6)
y

with Qa to account for the reduced effective area. This
y

equation, however, does not consider the reduction in

the radius of gyration as a result of the local buckling.

The buckling strength of slender cold-formed columns is

calculated using the Euler equation (eqn. 4.1.2).

27
Bijlaard et a1 were among the earliest investiga-

tors to study the buckling strength of compression mem

bers with component plate elements in the postbuckling

range. They derived an analytical solution for the flex

ural buckling strength of columns in the intermediate

range of the slenderness ratio. The flexural buckling

strength before the local buckling of the elements was
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taken to be equal to the Euler buckling stress in their

derivation. In the plastic range, the buckling strength

was represented by a Johnson's parabola. The authors

compared their analytical solution with the experimental

results on aluminum tubular and H column specimens and

indicated good agreement. However, they failed to

recognize the reduction, due to initial imperfections,

in effective area even before local buckling. This re-

duction has been found to be discernab1e in the case of

steel members with thin elements. Various other inves-

14 52 53 54 31tigators ' , , , have compared their semi-empirical

solutions for the interaction in the postbuckling range

with the test results. Many of these solutions are

applicable only in the elastic range.

28Graves Smith has presented a theoretical analysis

for the flexural buckling strength of rectangular tubes

in the post buckling range of the component plates. He

has included the large deflection due to the local buck-

ling and the plastification of plate elements in his de-

velopment. He indicates good comparison between his ana-

lytical solution and the results of tests he conducted

using square aluminum tube columns.

DeWo1f 32 conducted tests using cold-formed steel com-

pression members with stiffened and unstiffened elements.

He has compared the results of these tests with theo-



92

retical curves obtained using the effective moment of

inertia in the tangent modulus eqn. 4.1.3. These

effective moments of inertia were arrived at by dis

tributing the effective area of buckled elements pro

perly about the neutral axis. He shows good correla

tion between the test results and theoretical curves.

The theoretical method proposed by DeWolf will be dis

cussed in further detail later in this chapter (section

4.4.3).

4.2 Experimental Investigation of Compression Members

An experimental investigation of compression mem-

bers was conducted to study the interaction of the

flexural buckling of the compression members and the

local buckling of the unstiffened elements. The ob-

jective of this investigation was to determine the

effects of the local buckling of the unstiffened elements

on the overall or flexural buckling of compression mem

bers.

4.2.1 Material Properties

The 18 gage sheets used in fabricating the stub

column specimens were also used in forming the long com

pression specimens. Consequently, the mechanical pro

perties of the specimens determined, as detailed in sec-
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tion 3.2.1, are given in table 3.2.1.

4.2.2 Design of the Specimens

The cross section dimensions of the compression

specimens were the same as those used for the stub

column specimens of the previous chapter. There were

five different H-sections, having the ratio of the flat

width to thickness (wIt) of unstiffened elements in the

range of 30 to 60. Three columns of different lengths,

corresponding to each of the cross sections, were

tested. The lengths of the specimens were chosen so

that the columns buckle in the postbuckling range of

the unstiffened elements. The measured dimensions of

the specimens, the section properties, and the sheets

from which they were fabricated are given in table (4.2.1).

DeWolf 32 tested four different sections having sim

ilar cross sections, but the (wIt) ratios of the un

stiffened elements were in the range of 16 to 30. The

results of his tests will also be presented in this chap

ter to encompass the entire range of interest of the wIt

ratio.

4.2.3 Fabrication and Instrumentation

The column specimens (H section) were fabricated by

gluing, back to back, two channel sections from the same

sheet, which were cold formed by press braking. The form-
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ing and the glueing processes have been described in

section 3.2.3.

One cold-rolled 3/4" end plate was welded to each

plane end of the finished column such that they were

perpendicular to the axis of the column. The welding of

the end plates to the column was carried out in a par-

ticular order, so that there was no residual compressive

stress at the free edge of the unstiffened elements due

to welding. This was done to ensure that the columns

would not fail prematurely due to the crippling of the

unstiffened elements locally at an end of the column,

as a result of the superposition of the applied and the

residual compressive stresses at the free edge of the

unstiffened elements.

Twelve SR-4, A12 and two SR-4, A9 strain gages were

glued to the specimens at mid-height, similar to the stub

columns as shown in fig. 3.2.2. These gages were used

to center the columns during the set-up and also to get

an idea of the axial stiffness of the columns during the

test.

4.2.4 Experimental Set-Up and Procedure

The column tests were performed using the ASTM Des-

Testing of Pinned-End Steelignation STP 4.19, "The

C 1 ,,55
o umns, as a guide. The columns were

end columns, using the fixtures developed

tested as pinned-

at Cornell for
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another series of pinned column tests. 56 The end

plates of the column were set against the ground plates

in the end bearing fixtures. Fig. 4.2.1 shows sections

drawn through the end fixtures. The columns were ori

ented in the fixtures such that the weak axis of the

columns was parallel to the knife edge. Thus the supports

were free to rotate about the knife edge while the col

umn was buckling about the weak axis.

The end plates of the columns were secured by four

bolts in each direction, provided in the box of the end

fixtures. Using the set of eight bolts, the column ends

could be moved horizontally in either direction. The

boxes could also be rotated about a horizontal axis per

pendicular to the knife edge by adjusting the wedges

under the knife edge using a lower set of four bolts.

By using both sets of bolts, any eccentricity of the

axial load on the columns could be corrected.

Seven dial gages were used to measure the trans

verse deflection of the columns, as indicated in fig.

4.2.2. Four of these dial gages were used to measure

the transverse deflections in the direction of the strong

axis at the ends and the center section of the columns,

and the other three were used to measure the deflection

parallel to the weak axis at these sections. Dial gages

were also provided to measure any displacement of the
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end fixtures during the test.

The tests were conducted in a Baldwin testing ma-

chine and a picture of the whole set-up is shown in fig.

4.2.3. The columns were initially loaded to approxi

mately thirty percent of their local buckling load for

the purpose of centering. The eccentricity of the

applied load was checked using the strain gages and the

dial gages at the mid-height of the columns. Any dis

placement of the end fixtures was also recorded. The

uniformity of increase in the strain over the cross

section of the specimen and the lack of any transverse

deflection, indicated that the load was concentric. In

a few of the instances, it was difficult to achieve

uniform compression as measured by the strain gages and

in such cases only the dial gages were relied upon for

the purpose of centering the columns. If the applied

load was found to be eccentric, the load was reduced to

about 200 pounds and the column eccentricity was

corrected by adjusting the two sets of bolts provided for

this purpose in the end fixtures. Once the column had

been centered, the load was reduced to a small initial

load of about 200 pounds to keep all the surfaces in con

tact and thus maintain the alignment and from this load

the test was begun.
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The load was increased during the test by small in

crements, so that the readings could be taken as close

to the failure as possible. Prior to the local buckling

of the elements, the strain gage and dial gage readings

were recorded after the loading valves were shut off and

the load had stabilized. In the postbuckling range, it

was difficult to obtain the stability of load this way,

and the readings were taken by maintaining the load con

stant at a particular level by operating the valves.

Near the flexural buckling load, the transverse deflec

tion of the column increased at a faster rate and the

failure took place following the formation of permanent

kinks in the unstiffened elements on the concave side of

the buckled column. After failure, the transverse de

flection increased with a decrease in the axial load,

indicating instability. Fig. 4.2.4 shows a picture of

all the columns after failure.

The procedure for the evaluation of the test results

and the results of the compression tests will be presented

in the following sections.

4. 3

4.3.1

Background for Evaluation of Experimental Data

Determination of the Elastic Flexural Buckling Load

From Experiments

While an ideal column in the linear elastic range

exhibits bifurcation buckling at the Euler buckling load,
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an actual column, when loaded in compression, does not

d to the effects of imundergo bifurcation buckling ue

h 1 di The realperfections in the geometry and t e oa ng.

columns withstand the compression with very little in-

def lection in the early stages, andcrease in transverse

the deflection grows at an increasing rate near the Euler

buckling load.

Southwel1
57

proposed a method for obtaining the

theoretical flexural buckling stress of a column from

the experimental result of the column with initial im

perfections. He derived the following equation for the

lateral deflection of an elastic column subject to com-

pression.

w
m = Pcr

w
m - w

P
(4.3.1)

where w is the increase in the deflection at the centerm

of the column due to the axial load P, w is the initial

deflection at the same section, and P is the theoret
cr

ica1 flexural buckling load. Equation 4.3.1 defines a

straight line in terms of the variables wand w Ip which
m m

are obtained from the elastic range of the column test in

which P is a reasonably large fraction of P Eqn. 4.3.1
cr

has been derived for compression members having a con-

stant moment of inertia as the load is increased, where

as, the moment of inertia of columns, with locally buck-
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ling unstiffened element, changes due to a change in the

effective area. If the change in the moment of inertia

is taken into account, eqn. 4.3.1 reduces to

w
m

I e
=-

I ecr
x P

cr

w
mp - w (4.3.2)

where I is the effective inertia at the load P ande

I is the effective inertia at the load Pecr cr Plotting

the results of compression tests in terms of the varia-

bles wand w Ip at loads near the critical load, testm m

points lie nearly in a straight line. The slope of the

straight line is nearly equal to the critical load Pcr'
I

loads near the critical e
nearlysince at load -1-- is equal

ecr
to 1. Test points falling on a straight line gives SOme

validity to this assumption. Plotting the result of a

test in terms of the variable in eqn. 4.3.1., (fig. 4.3.1)

the slope of the straight lines gives the theoretical

elastic buckling load.

This procedure was used to determine the flexural

buckling load of all the test specimens. In some of the

tests the failure was very sudden, and in such cases the

buckling load has been taken to be equal to the failure

load. In the next section, the results of the column

tests evaluated in this manner will be presented and will
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be compared with various analytical solutions.

4.4 Evaluation of the Experimental Results

4.4.1 Experimental Results

Results of the long column tests conducted in this

investigation, and the relevant results of similar tests

conducted by a few other investigators, will be presented

in this section. The ultimate load and the theoretical

flexural buckling load, computed as described in the pre-

vious section, are presented in table 4.4.1 for all

fifteen specimens tested in this investigation. The

average flexural buckling stress obtained by dividing the

buckling load by the total area is also given in the table.

The slenderness ratio calculated from the effective length

of the column and the radius of gyration of the total

cross section are other values of interest in the table.

DeWolf
32

tested pinned-end compression members simi-

1ar in shape to the specimens in this investigation

(fig. 3.2.2). The wit ratios of the unstiffened elements

of the specimens were in the range of 16 to 30. The length

of the specimens were chosen so as to have the overall

flexural buckling OCCur in the postbuck1ing range of the

component unstiffened elements. The test set-up and pro-

cedure were the same as described in S ti 4 2 4ec on . . . The
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flexural buckling loads have been assumed to be nearly

the same as the corresponding ultimate load given by

DeWolf
32

. The specimens' dimensions, properties, and

the results of the tests conducted by DeWolf are given

in table 4.4.2. The numbering of the specimens has been

changed from U- in DeWolf's report to UD- in this report.

Bijlaard and Fisher
27

have presented the results of

compression tests on extruded H sections of 75S-76

aluminum alloy. They tested three different H sections

having a flat width to thickness ratio (wit) of unstiff-

ened elements equal to 10.3, 14.3 and 18.14. Correspond-

ing to each of these three sections (J, K and L), columns

of different lengths having a flexural buckling stress in

the postbuckling range of the component unstiffened ele-

ments were tested. A detailed outline of the tests and

27results can be obtained from their publication. The

dimensions and the section properties of their specimens

are presented in table 4.4.3 and fig. 4.4.1.

results are given in table 4.4.4.

The test

All the test results have been presented in the tables

in a format suitable for comparison to the analytical

solutions to be presented in the following sections.

4.4.2 Comparison of Test Results to AISI Specificatio?

Procedure

In this section, the results of the column tests will
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be compared to the flexural buckling strength of 10-

cally buckling columns determined using the procedure

suggested by the AISI Specification for the Design of

Cold-Formed Steel Structural Members. According to the

specification, the buckling strength is given by the two

following equations as discussed in section 4.1.2.

and

L v?7f 2
Ewhen -< -

r- QCJ
y

L~
when ->Y~

r- Qa
y (4.4.1)

where Q is the form factor defined in ti 4 1 2sec on . . .

Substituting for /7f 2E/a in e ti 4 4 1 f 4y qua ons •. rom .1.5.

a /a =P/p =Q_~ (L/r)2
c y y 4 (L/r) 2

y

and

(L/r) 2
a /a =p/p = X

c y y (L/r)2
L /2 Lwhen -> -(-)
r- Q r y (4.4.2)

In eqn. 4.4.2 (L/r) is the
y slenderness ratio of the

columns for which the Euler
buckling stress is equal to
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the yield stress of the material, P is the flexural

buckling load and P is the load on the specimen if they

total area of the cross section yields without buckling

locally. For the stub columns tested the ratio of the

ultimate load to the yield load (P /p ), which is taken
u y

equal to the form factor Q as in the case of columns with

stiffened elements, and the ratio of the slenderness

ratios (L/r)/(L/r) are given in table 4.4.5. The valuesy

of Q given in this table are computed from the stub

column test results. In table 4.4.6, the values of the

same variables are given for the slender columns tested

in this investigation. Column curves corresponding to

eqn. 4.4.2 are plotted in figs. 4.4.2 through 4.4.6 for

the five values of the form factor Q obtained from the

five different size stub columns tested. The results of

the stub column and the slender column tests are also

plotted in the corresponding figures.

The AISI curves, plotted using the Q values from the

test results, are generally unconservative compared to the

slender column test results. The difference between the

theoretical value and the test results increases as the

flat width to thickness ratio of the unstiffened element

increases. The error on the unconservative side is about

55 percent for sections having unstiffened elements with
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a wit ratio of about 60 and decreases to about 4 percent

for the sections having unstiffened elements with a

wit ratio of about 30. It is important to realize that

the curves are drawn for the Q values obtained from the

test results, whereas the Q values calculated on the

basis of the AISI recommendation will be much smaller,

because of the limited use of the postbuck1ing strength

of the unstiffened elements. AISI curves using the q

values suggested by the AISr
2

are also plotted in figs.

4.4.2 through 4.4.6 to indicate the conservative nature

of the existing AISI design procedure.

The AISI eqn. 4.4.1 has been derived from the Column

Research Council (eRC) equation (eqn. 4.1.6) by taking into

account only the reduction in the effective area through

the introduction of the form factor Q. Whereas, as dis-

cussed earlier, the reduction in the effective area leads

also to a reduction in the effective radius of gyration.

This has not been taken into consideration in the eqn.

4.4.1. Any reduction in the radius of gyration in eqn.

4.4.1 leads to a reduction in the buckling stress. Hence,

when the reduction in the effective radius of gyration is

neglected, one should expect to obtain results of an un-

conservative nature. An increase in the wit ratio is

accompanied by an increase in the postbuck1ing range and
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hence a larger decrease in the effective radius of gyra

tion. Consequently, the AISI equation using the Q values

from the test results should give a more unconservative

result as the (wIt) ratio of the unstiffened element in

creases. This reasoning explains the discrepancy between

the AISI curves obtained using the test Q values and the

test results in figs. 4.4.2 through 4.4.6.

In the following sections, theoretical solutions

for the determination of the flexural buckling stress will

be presented which will take into consideration the re

duction in the effective area, as well as the reduction

in the effective radius of gyration due to local buckling.

These theoretical solutions will be compared to the re

sults of the tests presented in tables 4.4.1 through 4.4.4.

4.4.3 Comparison of Test Results to Theoretical Solutions

In the second chapter of this report, an analytical

solution was presented for the elastic postbuckling be

havior of unstiffened elements. As an extension of this,

a method for determining flexural buckling strength will

be presented in this section. The flexural buckling

strength, calculated using some simplifying assumptions

regarding the distribution of the effective area of the

unstiffened elements in the postbuckling range, will also

be presented subsequent to this.
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4.4.3.1 Flexural Buckling Strength from Analytical

Solution

The membrane stress in the postbuck1ing range of the

unstiffened elements, in the direction of the applied

compressive stress (y direction), is given by eqn.

Z.3.15b •

cr =A{(G1+G Z) cos
L
ZTIY + (G

O
+G

3
) }

yy ,xx w ,xx (Z.3.15b)

where L is the length of the local buckling waves. Aw

and the functions GO' GI , GZ' and G
3

are defined in the

second chapter. It was observed in that chapter that the

effective cross section of the unstiffened elements in

the postbuck1ing range varies along the length of the

wave. The average effective section over the length of a

whole wave should be used to calculate the flexural

buckling strength. The flexural buckling strength was

computed for one column section using the average effec-

tive section and the least effective section at y=L /Z
w

and it was found that the difference between the two f1ex-

ural buckling strengths was small.
Since the effective

width equations in the third chapter have been derived for

the section Y=Lw/Z, the effective area corresponding to

this section will be used in the derivation of the flexural

buckling strength.
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The normal membrane stress at section y=L /2 is
w

OyylY=L /2=0=A{(G O+G 3 ) -(G 1 +G
2

) }
w ,xx ,xx

The stress at the supported edge is

(4.4.3)

oe max=qx=O=(Oav)e- A{ E10ncon+2C12+S2(C21+2c24)}
n=4

(2.3.31a)

where constants COn' C1n , C2n are defined in the second

chapter, B=2nw/L and (0 ) is the average membrane stressw av e

over the total area of the element. The ratio of the mem-

brane stress a to the maximum stress 0 can be ob-
e max

tained from eqs. 4.4.3 and 2.3.31a. This ratio is shown

in fig. 4.4.7 for a typical unstiffened element. The

typical redistribution of stress due to local buckling

from the free edge to the supported edge can be seen here.

The redistribution towards the supported edge increases

as the loading progress into the postbuck1ing range. The

effective section properties of an element about any axis

can be obtained by using an effective cross section in

which the thickness is varied according to the ratio of

the membrane stress a to the maximum supported edge

stress 0
e max

Thus
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(4.4.4)

In fig. 4.4.8b, the effective thickness given by equation

4.4.4 is shown for a typical unstiffened element. Using

this equivalent cross section, the effective section pro-

perties and hence the flexural buckling column

be found, following the steps given below.

curves can

1) Assume an average stress over the unstiffened ele-

ments «Oav)e)

2) Calculate the maximum supported edge stress (Oe max)'

distribution of the effective thickness (t
eff

), the

effective area (A
eff

) and the effective moment of

inertia (I eff ), using eqn. 4.4.4.

3) Multiplying the effective area (A
eff

) by the maximum

edge stress (0 ), the total load (P) can be ob-e max

tained, from which the average stress over the cross

section (Oav=P/Atotal) can be found.

4) The effective length L corresponding to the load P

can be obtained from the equation

L= (4.4.5a)

In eqn. 4.4.5a Et is the tangent modulus and A is
total

the total area of the cross section. If the mechanical

properties vary over the cross section, as in the case of

cold-formed members, eqn. 4.4.5a can still be used by
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introducing the summation of the effective section pro-

perties, Eti , and Ii,eff of the corner and flat elements.

Eqn. 4.4.5a becomes

n 2 tnE I
L = i=l ti i,eff

a A
av total

(4.4.5b)

In eqn. 4.4.5b , all the properties with subscript i

correspond to the i
th

element and the summation is over

all the elements in the cross section. The tangent moduli

E
ti

of the elements are calculated at a strain equal to

e , where e is the strain at the supported edge
e max e max

of the unstiffened element. In the specimens tested, the

corners were sharp bends. Consequently, the effect of

strain hardening due to cold working has been neglected.

The tangent modulus in eqs. 4.4.5a and 4.4.5b had to

be computed before these equations could be used. This

58
was done using the Ramberg-Osgood equations to model the

stress-strain curve of the material. The equation ex-

pressing the relationship between the stress and the strain

could be written as

(4.4.6a)

where e is the strain at the stress a, E is the modulus

of elasticity of the material, and constants K1 and n
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were chosen to suit the material stress strain curve.

The constant K
1

is defined by Ramberg-Osgood as,

°= 3/7 (.-!.)l-n
E

(4.4.6b)

i h t the J.'ntercept of the materialwhere 01 s t e stress a

stress strain curve and a line through the origin with

a slope of 0.7 times the Young's modulus E.

For the steel specimens of this investigation and

32 dDeWolf's investigation , 01 has been taken as the yiel

stress of the material and n has been taken to be equal

to 75, since the materials had essentially sharp yield

points. The value of 01 and n for Bij1aard and Fisher's

aluminum specimen were found by curve fitting and are

given in table 4.4.3. The yield stress of these speci-

mens and the modulus of elasticity are also given in the

table. Following the procedure outlined, the column

curves for all the specimens were derived. These curves

will be compared in section 4.4.3.3 to the other approx-

imate solutions to be presented in the next section and

the test results in tables 4.4.1 through 4.4.4.

4.4.3.2 Flexural Buckling Strength from Effective Width

Equations

The analytical procedure outlined in the proceeding
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section for obtaining column curves is long and time con-

suming, and is not a feasible method for routine design.

In this section a procedure for obtaining column curves

using the effective width equations will be presented.

Certain simplifying assumptions regarding the membrane

stress distribution in the unstiffened elements is made,

thus reducing the cumbersome computation with very little

loss of accuracy.

32DeWolf assumed two types of effective cross sections

to compute the effective section properties of compression

members with unstiffened elements. (a) In the first case,

the thickness of the element was assumed to vary linearly

from the actual thickness at the supported edge, to a

reduced thickness at the free edge such that the effective

area was equal to the effective area obtained from an

effective width equation. (b) In the second case, the

whole effective area of an unstiffened element was assumed

to be distributed over a width equal to the effective

width adjacent to the supported edge of the unstiffened

element and the thickness was maintained uniform and equal

to the actual thickness.

I f " 4 4 8 the actual stress distribution overn ~g. .. a,

the width of an unstiffened element and the two assumed

equivalent stress distributions are shown. When the flex-
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i of a memb er in the postbuckling range ofural buckl ng

unstiffe ned elements takes place about anthe component

to the unstiffened elements and nearaxis perpendicular

d d (e.g. wea k axis of an H section), thethe supporte e ge

former assumption (case a) regarding stress distribution

tends to overestimate the effective stiffness of the

member, whereas the latter assumption (case b) tends to

underestimate the effective stiffness of the member.

Figs. 4.4.9b and 4.4.9a show the distribution of the

effective area of the unstiffened elements in columns

according to the two assumptions. In figs. 4.4.9a and

4.4.9b, it has been assumed that the web remains fully

effective until failure. However, any reduction in the

effective area of the web due to local buckling can be

easily accounted for. The flexural buckling stress cal-

culated on the basis of the distribution of the effective

area as in the case (a) provides an upper bound and that

of case (b) provides a lower bound to the flexural

buckling stress based on the actual stress distribution.

The column curves based on the two assumed equivalent

cross sections can be obtained by following the steps

given below.

1) Select a uniform longitudinal compressive strain e;

2) From the stress strain relationship of the material

(eqn. 4.4.6a) determine the tangent modulus E
ti

and
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the stress 0i for the flat and corner elements as

outlined in the last section.

3) Determine the effective area of the flat elements

using an effective width equation.

4) Determine the effective moment of inertia of the sub

elements based on the assumed distribution of the

effective area.

5) Compute the effective area (Aeff=EAi,eff) of the

column cross section.

6) Compute the total force on the column cross section

(P=Eo.A. ff) and the average stress (a =P/A).
1 1,e av

7) Find the length (L) of the column that experiences

the flexural buckling at the load P from eqn. 4.4.5b.

8) Find the L/r from the length L and the radius of

gyration of the total cross section r.

Following the procedure outlined above, the flexural

buckling stress curves for all the specimens were derived

assuming the two equivalent stress distributions (figs.

4.4.9a and 4.4.9b) and using the two effective width

equations (eqs. 3.4.1 and 3.4.5) derived in the third

chapter. In the next section, the results of the tests

presented in the tables 4.4.1 through 4.4.4 will be com-

pared to the theoretical solutions presented in this sec-

tion and the preceding section.
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4.4.3.3 Comparison of Test Results

In figs. 4.4.10 through 4.4.33, the column curves

obtained using the theoretical procedures presented in

sections 4.4.3.1 and 4.4.3.2 are plotted for the test

specimens in tables 4.4.1 through 4.4.4, along with the

corresponding test results. In these figures, the curves

marked "analytical solution" correspond to those obtained

following the procedure outlined in section 4.4.3.1.

Flexural buckling curves have been derived for all the

specimens following the procedure discussed in section

4.4.3.2 using the two effective width equations (eqs.

3.4.1 and 3.4.5) derived in the third chapter. The

effective width equation used is indicated in the title

of the corresponding figure. The stress distributions

assumed for obtaining the effective inertia are in

dicated in the plots by refering to corresponding dis

tributions in fig. 4.4.9. The curve corresponding to

the Euler equation 4.1.2 is also drawn in these figures.

The analytical solution curves in figs. 4.4.10 through

4.4.18 do not join the Euler curve within the range of the

figures because, according to the analytical solution, the

decrease in the effective width of the unstiffened elements

begins from the very onset of compressive stress. The

analytical solution curves, however, become asymptotically

very close to the Euler curves within the range of the
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plots. The effective width solution curves, using eqn.

3.4.1 are also plotted in the same figures' (£1' 4 4 10gs. .._

through 4.4.21). There are two curves corresponding to

the two assumed distributions (fig. 4.4.9) of the effec-

tive area of the unstiffened elements (figs. 4.4.10 through

4.4.21). Generally, the analytical solution curves lie

between these two curves corresponding to the effective

width equations, since the actual effective radius of

gyration lies between the two effective radii of gyration

obtained using the two assumed distributions of the un-

stiffened elements' effective area. The analytical solu-

tion curves fall outside the bounds of the curves based

on the assumed distribution of the effective area in some

regions. This can be attributed to the conservative nature

of the effective width equations, when compared to the

effective width from the analytical solution. In general,

ratio.

the analytical solution curve falls nearer to the curve

obtained by assuming a linear variation of the effective

area (fig. 4.4.9b).

Since, according to the effective width eqn. 3.4.1,

the reduction in the effective width begins only after

the applied compressive stress exceeds a limiting value,

the flexural buckling curves obtained using this equation

merge with the Euler curve above a particular slenderness

This is true with the curves obtained using the
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id h 3 4 5 though in this case the limit-
effective w t eqn. ."

ing value of the slenderness ratio is higher (figs. 4.4.22

through 4.4.33).

In general, the results of the compression tests fall

between the two curves corresponding to the two assumed

effective area distributions and are usually nearer to the

curve corresponding to the rectangular distribution (fig.

4.4.9a). Consequently, the flexural buckling stress com

puted using this effective area distribution (fig. 4.4.9a)

can be expected to yield a conservative and reasonable

estimate of the flexural buckling strength of the com-

pression members in general.

There are certain cases where even this theoretical

result yields an unconservative value of the buckling

strength, as indicated by some of the test points falling

below the curve corresponding to the rectangular distri-

bution of the effective area of unstiffened elements

(fig. 4.4.9a). This happens only for such columns which

have a theoretical flexural buckling stress very nearly

equal to the yield stress of the material. All the theo-

retical solutions have considered only the membrane

stresses in the unstiffened elements and have disregarded

the bending stress due to the local buckling of the ele-

ments. A superposition of the membrane and the bending

compressive stresses in the unstiffened elements may lead

to the yielding of the unstiffened elements at some point
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different from the supported edge, even before the stress

at the supported edge reaches the yield stress. In such a

case, the stiffness of the yielded portion of the un-

stiffened element drops to a very low value,whereas this

has not been considered in the theoretical analysis. In

addition to this, the bending of columns below the flex-

ural buckling load, due ~o initial imperfections, will lead

to an increase in the load on the unstiffened elements

on the concave side of the columns, and this could reduce
•

the stiffness of the column to a value less than that

computed on the basis of the uniform compression of the

column. The redu~tion in the flexural buckling stress,

when the theoretical flexural buckling stress is nearly

equal to the yield stress, can be attributed to these two

reasons. It is difficult, if not impossible, to take into

con~ideration these effects theoretically. A procedure to

approximately accommodate these effects in the computation

of the flexural buckling stress will be presented in the

chapter 6, which deals with the design method of com-

pression members.

Some of the test specimens of Bijlaard and Fisher

buckle at the Euler buckling stress, whereas the theoreti-

~.al solutions indicate a flexural buckling stress less

than the Euler ,buckling stress. (figs. 4.4.19 - 4.4.21,

- 4.4.33). This can be attributed to a lower

of initial imperfection of
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specimens' unstiffened elements, whereas a value of

0.2 t was assumed in the derivation of the theoretical

solution and effective width equations.

4.5 Summary and Conclusions

The results of compression tests on members with un-

stiffened elements were presented. This included the re-

suIts of the tests conducted in this investigation and

the results of the tests on similar specimens by other

investigators.

An analytical solution to obtain the column curves

of members with unstiffened compression elements buckling

locally, was developed. Theoretical solutions, based on

two types of distribution of the effective area of the

unstiffened elements obtained from the effective width

equations, were also presented. The theoretical solu-

tions were compared with the results of the tests on com

pression members.

It can be concluded that the flexural buckling

stresses based on the rectangular distribution of the

effective area of the unstiffened elements adjacent to

the supported edge (fig. 4.9.9a) are generally in good

agreement with the test results. The flexural buckling

stress based on the effective width equation 3.4.5 is
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more conservative in the early postbuckling range than

that obtained using eqn. 3.4.1, due to the conservative

nature of eqn. 3.4.5 in this range.

In Appendix 2 another method for obtaining the

flexural buckling stress of slender columns with thin

unstiffened elements is presented. which is a modified

form of the CRC procedure.



CHAPTER 5

EFFECT OF LOCAL BUCKLING ON FLEXURAL MEMBERS

5.1 General

Flexural members, subjected either to a uniform

bending moment or bending with a moment gradient, are

commonly encountered in structural applications. Gen

erally, such members fail either by local buckling of

the flanges in compression or by lateral buckling. The

lateral buckling of thin walled members depends upon the

unbraced length and the radius of gyration of the com

pression flanges about an axis perpendicular to the di

rection of the lateral deflection. By choosing these

two factors properly, failure due to lateral buckling can

be avoided, and in such cases local buckling of com

pression flanges initiates the failure. In this chapter,

failure of flexural members only due to local buckling

of the unstiffened compression flanges will be studied.

Hot-rolled steel sections are proportioned to avoid

the local buckling of compression flanges in the elastic

range. In fact, compact hot-rolled sections can sustain

compression strain up to the strain hardening range of

the material. These sections can be used in the plastic

120



121

design of indeterminate structures requiring a large in-

elastic rotation capacity at maximum moment sections in

the structure. 33 34M.G. Lay et al ' have presented an

analytical study of wide-flange beams under uniform mo-

ment and moment gradient. They have investigated both the

local buckling of compression flanges and the lateral

buckling. Local buckling of a plate in the inelastic and

the strain hardening ranges has been investigated by

H OJ 26,59aa1 er . An experimental investigation of the post-

elastic behavior of wide flange beams has been conducted

35by Sawyer and an experimental investigation of beams

under moment gradient has been carried out by Lukey

37et al. Experimental and analytical investigations to

study the lateral buckling and the postbuckling strength

of wide-flange beams were performed by Lee and

Galambos. 60,6l All these investigations were carried out

to study the behavior of the hot-rolled steel beams.

The compression elements of cold-formed flexural

members are usually thin. Consequently, these elements

often buckle locally in the elastic range, and rarely do

they withstand compression strain in the strain hardening

range. Therefore, the local buckling is of interest only

in the elastic range and the early stages of the inelas-

tic range (prior to strain hardening), in the design of

the cold-formed flexural members. In this chapter, the
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results of tests conducted on cold-formed flexural mem-

bers with unstiffened elements in compression will be

presented and will be compared with the analytical and

effective width equations already derived in the second

and third chapters.

5.2 Flexural Member Tests

5.2.1 Material Properties

Eleven beam specimens were fabricated from four 4

feet by 10 feet sixteen gage high strength steel sheets

to obtain a large elastic postbuck1ing range. Seven

other beam specimens were formed using two 4 feet by 10

feet twelve gage low carbon commercial grade steel sheets.

Three tensile coupons were tested from each of the six

sheets to obtain the material properties, following the

ASTM Procedure E8-69 on "Tension Testing of Metallic

47
Materials." Tension coupons were also made from the

undisturbed portions of the tested specimens to check the

material properties. The mechanical properties of the

six steel sheets are given in table 5.2.1. The tension

tests generally revealed a sharp yielding stress strain

relationship with yield plateau. Some of the tension

coupons had a proportional limit around two thirds of the

yield stress. However, the departure from linearity was

very small until the yield stress was reached. Strain



123

hardening started at an average strain of 0.02 in./in.

for sheets I through IV and at an average strain of

0.017 in./in. for the sheets V and VI. The average

elongation of a two inch gage length was about 40 per

cent.

Hans Peter Reck, a former researcher at Cornell

University, tested beams with unstiffened elements in

compression. Results of these tests, not reported so

far, are also included in this chapter. The yield stress

of these specimens are presented in table 5.4.1 along

with the test results.

5.2.2 Design of Experimental Specimens

One of the objectives of the beam tests is to study

the elastic and the inelastic local buckling of the un

stiffened compression elements in flexural members. The

beam specimens were designed so that the unstiffened

elements in the members were subjected to compression.

The beam specimens (B-1 through B-18) designed for

this investigation were inverted hat sections (~)

shown in fig. 5.2.1. The specimens were designed to avoid

failure due to ~ateral buckling, and local buckling of

webs as a result of the combined shear and flexural com

pressive stress. The webs were also designed to with

stand the loads without local crippling. The tension and
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compression flanges were designed to minimize the effects

of curling as a result of the beam curvature. The dimen

sions of the specimens, from direct measurement, are

listed in table 5.2.2. Reck's specimens (UP-9 through

UP-12) were I sections, the geometry of which is shown

in fig. 5.2.lb and the measured dimensions are listed in

table 5.2.2. The dimensions are the average of the

measurements at various sections along the length of the

beams. The thickness of the specimens varied slightly ovel

the length of the specimens. All the other dimensions

also varied over the length of the beam due to the forming

process. All the inverted hat specimens were formed

using a sharp die and the inside radius of the bends has

been taken to be zero. The radius of the bend of Reck's

specimens is listed along with the other dimensions in

table 5.2.2.

5.2.3 Fabrication and Instrumentation

The inverted hat specimens were fabricated by press

braking steel sheets of proper dimensions to the desired

shape. The I sections were fabricated by riveting two

press brake formed channel sections back to back. All

the specimens were formed with their axes parallel to the

rolling direction of the sheets. The specimens were cut

to lengths a few inches longer than the center to center
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distances L, of the supports given in table 5.2.2.

Diaphragm stiffeners were welded to the specimens

at the load and support points as shown in fig. 5.2.1.

The specimens were loaded with two equal concentrated

loads equidistant from the supports. The distances from

the support center line to the load center line (LS) are

also given in table 5.2.2. The length of the uniform

moment region was chosen to minimize the effect of res

traint at the load points, on the local buckling of the

unstiffened compression flanges. When required, diaphragm

stiffeners were provided also in the uniform moment region

of the inverted hat sections, to prevent lateral buckling

prior to failure.

Strain gages were glued to the specimens, parallel

to the longitudinal direction of the beams, as shown in

fig. 5.2.lc. In the case of specimens failing in the

elastic range, two pairs of SR-4 A9 gages (6 inch gage

length) were glued to the tension and compression flanges

near the intersection of the webs and the flanges at the

center section of the beams. Six pairs of SR-4 A12 gages

( 1 inch gage length) were glued to the tension and com

pression flanges near the intersection of the webs and

flanges in the uniform moment zone, for specimens fail

ing in the inelastic range, to determine the distribution
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of strains along the length of the beams in the uniform

moment region. In all the specimens, a few pairs of

SR-4 A12 strain gages were glued to both faces of the

unstiffened elements in the uniform moment region near

the free edges, as shown in fig. 5.2.1. These gages were

used to center the specimens in the testing machine and

to determine the local buckling load.

5.2.3 Experimental Set-Up and Procedure

The beam specimens prepared as described in the pre

ceding section were tested in a Baldwin hydraulic testing

machine. The beams were subjected to a uniform bending

moment in the middle using two concentrated loads at equal

distance from the supports. The two concentrated loads

were transmitted through a centrally loaded spreader beam.

A diagram of the test set-up is shown in fig. 5.2.2.

Initially, the beams were loaded to approximately

one third to one half the local buckling load or yield

load, whichever was lower, in order to check the center

ing of the specimens. The symmetry of the loading was

confirmed by the uniformity of increase in the strains

at different sections in the uniform moment region. After

the centering was completed, the load was reduced to a

small value of 200 pounds to start the test.
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The specimens were instrumented to measure the de

flection at mid span and any settlement at the supports

as shown in fig. 5.2.2. The slopes of the beams at two

sections near the two load points were measured using

two inclinometers as indicated in fig. 5.2.2. These in-

clinometers were a combination of a small level and a

micrometer. In addition to the instrument shown in fig.

3.2.4, dial gages were also located at the center section

near the free edges of the unstiffened elements, to

measure the maximum amplitude of the elastic local buck

ling waves.

The beams were loaded in small increments. All the

dial gage, strain gage and inclinometer readings were re

corded after each load increment. In spite of the low

rate of the load increment, a certain relaxation, in

dicated by a drop in the load after the loading valves

were shut, was inevitable in the advanced postbuckling

stages and in the inelastic range. During the relaxation,

there was little change in the dial gage readings and the

strain gage readings changed slightly. When the test was

continued, the load drop was immediately recovered. The

load was increased by a smaller amount near elastic local

buckling and near failure to determine these values as

accurately as possible. Failure was defined as the attain-
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ment of a maximum load and the onset of load shedding.

There were about twelve sets of readings taken before

failure and one set of readings was taken soon after the

load shedding.

A picture of the loading set-up is shown in fig.

5.2.3. Evaluation of the test results will be presented

in the following sections.

5.3 Background for Evaluation of Experimental Data

Before evaluation and discussion of the experimental

results, background information for the evaluation of

the experimental data will be presented in this section.

This will cover the procedures for determining the local

buckling stress, the effective width in the elastic post

buckling range and at the ultimate load, from the ex

perimental data.

The local buckling stresses were determined using

the strain gages located at the free edge of the unstiff

ened compression flanges, following the modified surface

strain reversal method. This method assumes the load

corresponding to the reversal of compressive strain in

crement in the gages on the convex side of the unstiff

ened element local buckling waves to be the local

buckling load. A more detailed description of this method

is presented in section 3.3.1.
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At the center section of the beams, the bending mo-

ment (M), the tensile strain (e ) and the compressive
t

strain (e ) in the flanges near the intersection with the
c

webs, can be determined from the test data. An effective

width can be calculated using any two of the three values.

Consequently, one can compute three values for the

effective width from the three sets of independent values

corresponding to each loading stage. Due to experimental

error, the three values of the effective width are not

the same. Since the tensile strain is usually insensi-

tive to a change in the effective width of the com-

pression flange, the effective width based on the mo-

ment (M) and the tensile strain (e t ) is unreliable.

Among the other two combinations (e -M and e -e ) which-
c c t

ever indicated an effective width nearly equal to the full

width in the early loading stages was used to obtain the

experimental effective width of the unstiffened com-

pression elements in the postbuckling range. The stiff-

ness of beams B-1 and B-2 at the early stages of loading,

calculated using experimental data, was smaller than the

theoretical stiffness based on the measured dimensions.

This difference could not be attributed wholly to the re-

duction in the effective width of the unstiffened com-

pression elements due to initial waving. Consequently,

all the measured dimensions of these two beams were re-
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duced by four percent. These revised dimensions, and

not the measured dimensions, are given in table 5.2.1.

Although smaller load increments were used near the

ultimate load, it was usually difficult to take readings

right at the ultimate load. Therefore, readings were

taken just prior to the ultimate load and at the early

stage of load shedding. The strain and dial gage read

ings at the ultimate load were obtained from the read

ings at these two adjacent loads, by interpolation.

Strain gages were glued at three sections in the

uniform moment region, in the case of beams with com

pression elements buckling locally in the inelastic

range (fig. 5.2.1d). Even though in the early stages of

loading, the strain increments in these gages were uni

form, indicating a uniform moment region, just prior to

the failure the strains at sections near the load points

generally increased at a faster rate than the strains at

the center section. Finally, the failure took place near

one of the load points by the formation of a permanent kink

in the compression element. This faster rate of strain

increment near the load points can be attributed to the

local effects of the concentrated load. In such cases, the

strain at the center section has been used as the ultimate

strain in the evaluation.
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5.4 Evaluation of the Experimental Results

5.4.1 Experimental Results:

Moment Curvature Relationship

Figs. 5.4.1 and 5.4.2 show the typical moment cur

vature relationship at the center section of two beams

B-4 and B-16 respectively. Beam B-4 has a local buckling

stress less than the yield stress and an elastic post

buckling range in which the effective width of the un

stiffened compression flanges is less than the actual

width. In the early prebuckling range, the theoretical

curve based on the full section, and the experimental

curve coincide. However, above a certain moment the ex-

perimental curve becomes non-linear, due to a reduction

in the effective stiffness of the cross section, and de

parts from the fully effective section curve. The exper

imental stiffness decreases monotonically as the bending

moment increases. Failure takes place when the compressive

stress near the flange web intersection, which is the max

imum compressive stress in the locally buckled compression

flange, is nearly equal to the yield stress of the material

The maximum moment at failure is less than the yield mo

ment of the fully effective section, and at failure the

flexural stiffness of the beam is zero. This has been

found typical of all beams having an elastic postbuck1ing
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range, though the reduction in stiffness just prior to

failure is more drastic in the case of beams with a

larger (wit) ratio.

Beam B-16 has an unstiffened compression flange of a

low (wit) ratio, and consequently has a theoretical local

buckling stress larger than the yield stress of the ma-

terial. The unstiffened compression element buckles 10-

cally in the inelastic range at a strain less than the

strain hardening strain, and the section can withstand

bending moments larger than the yield moment of the fully

effective section (fig. 5.4.2). Increase in the load

carried by the beam beyond the local buckling of the un-

stiffened compression flange in the inelastic range is

negligible, because the load shedding begins almost

immediately after the local buckling. Since an inelas-

tic deformation of the order of the strain hardening

strain is required before the plastic moment capacity M
p

of the section can be developed, the moment at failure is

less than the plastic moment capacity of the section (M ) •
P

The theoretical moment curvature relationship of the fully

effective section is also drawn in fig. 5.4.2. The ex-

perimental curve deviates from the theoretical curve just

prior to the yield moment, indicating a reduction in the

experimental stiffness. This can be attributed to the

effects of initial imperfections, and the non-linearity of
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the stress strain relationship prior to the yield stress.

The flexural stiffness decreases monotonically with

increase in the bending moment and becomes zero at fail-

ure. This behavior has been typical of beams with com-

pression elements buckling in the inelastic range.

the theoreticalThe theoretical yield moment (M ),
y

plastic moment capacity (M ) and the experimental ul
p

timate moment (M ) are given in table 5.4.1 for all the
u

beam specimens. Except for the beams B-17 and B-18, all

the beams have an ultimate moment M less than the plastic
u

The beams having an elastic post-moment capacity M .
P

buckling range fail even before reaching the yield moment

The ultimateM of the fully effective beam sections.
y

moment of the beam B-17 is four percent higher than the

plastic moment capacity of the specimen, and that of B-18

is 8 percent higher than the corresponding plastic moment

capacity. The effect of increase in the yield stress of

corners due to cold-forming has been neglected in all

calculations so far, on the basis of the assumption that

the area of corners is small. Whereas, in the case of

beams B-17 and B-18, the ratio of the area of corners to

the area of compression flanges is nearly equal to 10 per-

cent. The ultimate moment (M ) of these beams having a
u

value greater than the ultimate moment capacity of the

beams (M ) can be due to a combination of increase in the
p
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yield stress at corners as a result of cold-forming and

general experimental scatter.

Load Deflection Relationship

A typical load deflection curve of a beam (B-15)

is shown in fig. 5.4.3. Here again, the stiffness of

the beam is linear in the elastic range and is equal to

the stiffness of the fully effective section. However,

the experimental curve departs from the theoretical line

before the yield load is reached, which is attributable

to the effects of initial imperfections and the non

linearity of the stress strain curve just prior to

yielding. The stiffness continues to decrease in the in

elastic range and becomes zero at the failure load, which

is reached almost immediately after the local buckling of

the unstiffened elements in the inelastic range. Loads

corresponding to the beginning of yielding in the uni

form moment region and the formation of a plastic hinge

(M = Mp ) are also indicated in fig. 5.4.3.

Local Buckling and Postbuckling Properties

The experimental local buckling coefficient K for

beams having an elastic postbuckling range, computed as

discussed in the previous section, are given in table 5.4.2.

The stress at the supported edge of the unstiffened ele

ments and the effective width of the elements at the ul-
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timate load are also given for these specimens in table

5.4.2. The compressive strain (e )
cu

at failure in the

unstiffened elements of the beam specimens are pre-

sented in table 5.4.3. These experimental results, along

with the subultimate effective widths computed from the

experiments, will be compared with the analytical solu-

tions in the following sections.

5.4.2 Elastic Local Buckling and Postbuckling Behavior

of Unstiffened Compression Flanges

In this section, the experimental local buckling

and postbuckling behavior of the unstiffened compression

flanges in the beam specimens will be compared with the

analytical solutions derived in chapters 2 and 3.

It was shown that the local buckling stress of the

unstiffened elements depends upon the rotational edge

restraint provided by the supporting elements. It was

easy to compute the rotational edge restraint for the

compression members, because of a uniform stress distri-

bution over the cross section. In the case of flexural

members, only that area of the section on the compression

side of the neutral axis is subjected to compression.

Consequently, the rotational edge restraint based on a

uniform compression over the whole cross section will be

somewhat conservative for beams since the compressive
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stress reduces the stiffness of the supporting elements.

The rotational edge restraint based on no compressive

stress at all on the supporting elements will yield an

unconservative value of the rotational edge restraint,

since the compressive stress on part of the web is disre-

garded. However, for specimens in this investigation,

the effect of the compressive stress on the web will be

negligible, since the webs were designed to be suffi-

ciently stiff under the compressive stress gradient.

The length of the local buckling waves is another fac-

tor influencing the stiffness of the supporting elements.

Although the stiffness increases with a decrease in the

wave length, it has been found
25

that assuming the wave

length to be infinity in the computation of the rota-

tional edge restraint, has a negligible effect on the

value of the buckling coefficient of the unstiffened ele-

ments. This assumption on the conservative side is partly

offset by the slightly unconservative result of disregard_

ing the compressive stress on the supporting elements.

Hence, an infinite length of the local buckling waves and

no compressive stress on the supporting elements are

assumed in computing the rotational edge restraint at the

supported edge of the unstiffened compression flanges.

Based on this assumption, the rotational edge restraint

factor (£R=(w/D')x(M 18 )) for hat sections can be shown
s s
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to be equal to

= 2BC (3BT+2D)
~ D(2BT+D) (5.4.1)

where all the dimensions are indicated in fig. 5.2.la.

Variables M and 9 are the moment and the corresponding
s s

rotation at the supported edge of the element and D' is

the flexural rigidity of the unstiffened element. Simi-

larly, for an ideal 1 section of dimensions shown in fig.

5.2.lb and having an integral web, the rotational edge

restraint factor can be derived to be

£1
ideal

= l2xBC/D (5.4.2a)

The rotational edge restraint factor of unstiffened ele-

ments in the individual channel sections, of which the I

sections are made, is given by

C' = 3xBC /D"'c (5.4.2b)

The rotational edge restraint factor of the actual I

section has been taken to be the average of an ideal I

section rotational edge restraint factor £1 and a
ideal

channel edge restraint factor EC '

E1 = (E
1

+ E
C
)/2 = 7.5BC/D

ideal
(5.4.2c)
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For a perfectly flat unstiffened element, as long as the

local buckling stress is in the elastic range, one can

calculate the local buckling coefficient K assuming a

completely elastic behavior, either from equation 2.2.8b

or from the curve K in fig. 2.2.2. However, in ane

actual unstiffened element, having an elastic local

buckling stress near the yield stress of the material,

the superposition of the flexural compressive stress due

to initial imperfections and the membrane compressive

stress may cause a partial yielding of the unstiffened

element. In such cases, the buckling coefficient of the

element will be given by a value in between the elastic

value (K ) and the plastic value (K ), given by eqn.e p

2.2.20 and fig. 2.2.2. In table 5.4.2, both the elastic

and the plastic buckling coefficients K ,K of the
e p un-

stiffened compression flanges of test specimens are pre-

sented. The experimental buckling coefficient is nearer

to the theoretical elastic buckling coefficient K for
e

larger values of the ratio of the yield stress to the

critical gtress (a la ), and as the local buckling stressy cr

approaches the yield stress of the material, the experi-

mental local buckling coefficient K approaches the theo-

retical plastic buckling coefficient K. The specimenp

UP-12 has a low buckling coefficient due to some inex-

plicable reason, and this test result has been dropped

from further consideration.
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Ratios of the effective width to the actual width

(b fw), the yield stress to the local buckling stresse

(a fa ), and the average compressive stress in the un
y cr

stiffened element to the local buckling stress (a fa )
av cr

at the ultimate load of the beam specimens are presented

in table 5.4.2. These values were also computed at the

subultimate loads for all the specimens and are plotted

in fig. 5.4.4 along with the values at the ultimate load.

The orindate in the figure is the ratio of the average

compressive stress in the unstiffened compression flange

to the local buckling stress (a fa ) and the abscissaav cr

is the ratio of the maximum supported edge stress in the

unstiffened flange to the local buckling stress

(/a fa).
e max cr

The two effective width equations derived in the

third chapter for unstiffened elements are given below.

b (l-B
1

)
e + Bl=

w a
(

e max + B
2

)acr

where

B
1

0.326 + 0.086K
2

B
2 = 0.378 - 0.768(K-l.18)4

and

(3.4.1)

b
e- =

w
1.191a fa (1.0-0.298Ia fa

cr e max cr e
(3.4.5)
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Expressing b /w in terms of ° /0 using eqn. 2.3.34b
e av cr

in the above two equations, we obtain two equations in

terms of 0av/Ocr andJOe max/Ocr'

to these two equations are also plotted in fig. 5.4.4

for comparison with the test results. Two curves

corresponding to eqn. 3.4.1 are plotted for two values

of the buckling coefficient K (K = 0.95 and 0.6), be-

cause the buckling coefficients of the unstiffened

elements in the test specimens were in this range. All

the subultimate points in the plot are on the conser-

vative side of the two effective width equations. This

can be attributed to the average nature of the sub-

ultimate supported edge strain measured from the exper-

iments, whereas the effective width equations have been

derived for the section having the maximum edge strain in

the element. The test points at the ultimate load are

generally located nearer to the curves corresponding to

the two effective width equations.

In fig. 5.4.5, the curves corresponding to the two

effective width equations are again plotted with the ratio

of the effective width to the actual width (b /w) as
e or-

dinate and the ratio of the maximum edge stress to the

critical stress (a /0) as abscissa.
e max cr The test points

at the ultimate load are also plotted in this figure. In

general, there is a reasonably good correlation between

the test results and the two effective width equations.
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In table 5.4.2, the theoretical effective widths of

the test specimens at the ultimate load, computed using

the two effective width equations, have been presented

for comparison with the experimental results. The

effective width eqn. 3.4.1, based on the analytical

solution of Chapter 2, overestimates the effective width

by about 15 percent for unstiffened elements with a large

wit ratio and underestimates the effective width by about

1 percent for unstiffened elements with a small wit ratio.

The effective width equation 3.4.5, having a format sim-

ilar to the AISI equation for the stiffened elements,

underestimates the effective width of the unstiffened

elements having a large wit ratio by about 6 percent and

overestimates the effective width by about 4 percent for

unstiffened elements with a small wit ratio.

As the flat width to thickness ratio (wit) of un-

stiffened elements decreases the local buckling stress

(a ), hence the ratio of the effective width to the
cr

actual width (b Iw) at ultimate load increases.
e

a particular value of the wit ratio, the elements re-

main fully effective up to the yield stress and this

limiting value of the wit ratio will be discussed in the

following section.

5.4.3 Limiting Flat Width to Thickness Ratio

When the ratio of the flat width to the thickness
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(wit) of unstiffened elements is less than a limiting

value, the elements can withstand a compressive stress

up to the yield stress without any perceptible reduction

in the effective width of the element. This can be ob-

served in table 5.4.1, where beam specimens having a low

wit ratio fail at moments higher than the corresponding

yield moment. Since the beam specimens have been de-

signed to yield in the compression flange first, a value

of the ultimate moment higher than the yield moment in-

dicates the complete yielding of the compression elements

without any appreciable reduction in the effective width.

The limiting value of the wit ratio can be obtained

from the effective width equations by setting the ratio

b Iw equal to
e

stituting for

equation

one, substituting a for a , and sub-
y e max

the local buckling stress a the following
cr

a
cr

== 2 2
l2(1-lJ )(w/t) (1.2.1a)

From eqn. 3.4.1

Similarly, from eqn. 3.4.5

(w/t)l == IO.3541T
2

E/12(1-lJ
2

) IK/oim y

(5.4.3)

(5.4.4)
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In fig. 5.4.6, the ratio of the ultimate moment to the

yield moment (M 1M )
u Y

is plotted against the parameter

«w/t)la IK) for all the test points. When the ratio
y

(M 1M ) is greater than one, the unstiffened compression
u y

element is fully effective even up to the yield stress,

since the yielding begins in the compression flange.

The limiting values of the parameter «w/t);a-jK), corn
y

puted using eqs. 5.4.3 and 5.4.4 are also plotted in

fig. 5.4.6. The limit corresponding to eqn. 5.4.3

seems to agree reasonably with the test results, and the

limit corresponding to the eqn. 5.4.4 is conservative.

Members having the unstiffened elements in com-

pression can be designed for the yield strength of the

total cross section, as long as the wit ratio of the

unstiffened elements is less than the limiting value of

the wit ratio. If the wit ratio is larger than the

limiting value, the strength of the effective cross sec-

tion obtained using the effective width equation is to

be used in the design. Unstiffened compression elements,

having wit ratio less than the limiting ratio (w/t)l" ,
1m

can withstand inelastic strain before failure due to local

buckling. The inelastic strain capacity of unstiffened

compression elements will be discussed in the next section.

5.4.4 Inelastic Strain Capacity of Unstiffened Com

pression Elements

It was observed that due to low width to thickness
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ratio, unstiffened compression elements in hot rolled

steel sections can in general withstand compressive

strains as high as the strain hardening strain, whereas

unstiffened elements in cold-formed steel members gener

ally buckle locally in the elastic range, or in the in

elastic range at strains far less than the strain harden

ing strain. In the last section, expressions for the

limiting value of the wIt ratio, below which the un

stiffened elements remain fully effective up to the yield

stress, were derived. In steel flexural members having

unstiffened elements with wIt ratios less than the

limiting value, local buckling takes place in the plastic

range and the ultimate moment is larger than the yield

moment of the section, as a result of the partial p1asti

fication of the webs. Flexural members in table 5.4.1

with the unstiffened compression elements having a wit

ratio of about 8, fail at a moment as high as fifty per

cent above the yield moment. At moments larger than the

yield moment, beam sections experience inelastic rotation,

and this could also be used to redistribute moments from

the maximum moment section to other sections in indeter-

minate structures. In order to use this reserve load

carrying capacity beyond the yield load, one needs to

know the extent of inelastic strain that can be sustained

by the unstiffened elements before failure. In this sec-
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tion, the plastic strain capacity of the unstiffened

elements in steel flexural members will be discussed.

The compressive strain in unstiffened flanges near

the intersection of webs and flanges of beam specimens

at the ultimate load is given in table 5.4.3. If an

unstiffened element buckles locally in the elastic

range, then the failure is assumed to occur when the

maximum strain at the supported edge of the element is

nearly equal to the yield strain of the material.

However, it can be seen from the results presented in

table 5.4.1, that when the elastic local buckling strain

is nearly equal to the yield strain, the strain at the

supported edge at failure can be larger than the yield

strain of the material. This has also been observed by

31
other researchers.

It was perceived during the tests that the beams fail

almost immediately after local buckling in the inelastic

range. Consequently, there should be some correlation

between the plastic local buckling strain and the ultimate

strain capacity of the unstiffened compression flanges

in the beam specimens. In the second chapter, an ex-

pression was derived for the plastic buckling strain of

unstiffened elements having an elastic perfectly plastic

stress strain relationship.

buckling strain is

The equations for the plastic
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(2.2.14)

Two curves representing the equation for two limiting

values of Poisson's ratio (~ = 0.3, 0.5) are plotted in

fig. 5.4.7 in terms of the variables (e ) IK and
cr p p

(wit) • The ultimate compressive strain capacity of the

test specimens, given in table 5.4.3, is also plotted

in fig. 5.4.7 in terms of the same variables. The test

points generally fallon the conservative side of the

curve corresponding to a value of Poisson's ratio of 0.3.

The degree of conservatism increases as the inelastic

buckling strain approaches the yield strain of the

material. This may be attributed to the larger differ-

ence between the ultimate strain and the local buckling

strain in the early stages of the inelastic range. How-

ever, the effect of initial imperfection is also larger

in this region. Consequently, based on the limited ex-

perimental evidence, eqn. 2.2.19 with a value of Poisson's

ratio of 0.3, seems to yield a realistic and conservative

value of the inelastic strain capacity for e~ements having

a (wit) ratio below the limiting value. Elements having

a (wit) ratio larger than the limiting value can be

assumed to fail when the supported edge strain is equal to

the yield strain of the material.



5.5 Summary and Conclusions

The effect of elastic and inelastic local buckling

in flexural members has been dealt with in this chapter.

Results of beam tests with unstiffened flanges in com-

pression have been presented.

The test results have been compared with the two

effective width equations derived in the third chapter.

Expressions for the limiting value of the flat width to

thickness ratio «w/t)l. ) were derived and compared with
1m

the test results. The inelastic compressive strain

capacity of beams with the unstiffened compression

flanges buckling locally in the inelastic range has been

compared with the theoretical plastic buckling strain of

the unstiffened elements.

The two effective width equations were found to

yield a conservative and reasonable result in the pre-

ultimate range of the postbuckling behavior of the test

specimens and they were found to exhibit a reasonably

good correlation at the ultimate load. The expressions

for the limiting value of the (wit) ratio agreed well

with the test results, eqn. 5.4.4 yielding a more conser-

vative limit. The plastic buckling strain calculated

using the value of Poisson's ratio of 0.3 in eqn. 2.2.19

yields a conservative, yet reasonable, value of the

plastic strain capacity of the unstiffened elements buck-
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CHAPTER 6

POSSIBLE DESIGN METHOD

6.1 General

Based on the analytical equations derived in the

preceding chapters and the comparison of these equations

to the test results, design formulations for members

having unstiffened elements in compression will be pre

sented in this chapter.

The Specification for the Design of Cold-Formed

Steel Structural Members
2

recommends a limiting com

pressive stress on the unstiffened elements in order to

prevent excessive out of plane deformations in the post-

buckling range. The stiffened elements on the other

hand, are designed using an effective width equation

which makes complete use of the available postbuckling

strength with a factor of safety.

On the basis of the evidence given in the preceding

chapters, effective width equations will be presented

for the design of the unstiffened elements. An equation

will also be presented for computing the maximum ampli

tude of the out of plane deformation of the unstiffened

elements in the postbuckling range. On the basis of the

experimental and analytical evidence, it can be stated

149
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that the amplitude of the out of plane deformation of

elements having a small or moderate wit ratio is in

consequential as long as there is a small rotational

edge restraint available at the supported edge of the

unstiffened elements.

Procedures for the design of flexural and com

pression members using the effective width equations

will also be presented in this chapter.

6.2 Local Buckling of Unstiffened Element

6.2.1 General

A bifurcation type of local buckling is encountered

only in the case of ideally flat elements. Unstiffened

elements in practice begin to experience out of plane

waving even before the applied compressive stress ex

ceeds the theoretical local buckling stress. However,

it was demonstrated that the amplitude of the local

buckling waves increases at a faster rate only near the

theoretical local buckling stress. Besides, the theo

retical local buckling stress has been found to be an

important parameter in the representation of elastic

postbuckling behavior. Moreover, local buckling of un

stiffened elements in the plastic range is almost

immediately followed by the failure of the unstiffened
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Consequently, computation of the theoretical

local buckling stress is the first step in the design

of members with unstiffened elements in compression.

The theoretical elastic and inelastic local

buckling stresses are functions of the flat width to

thickness ratio (wit) of the unstiffened elements and

a parameter K, known as the local buckling coefficient

(eqn.1.2.la). The local buckling coefficient K, in

turn, is a function of the rotational edge restraint

factor E as illustrated in fig. 2.2.2. The derivation

of the relationship between K and E is given in section

2.2.1 and 2.2.2. The rotational edge restraint factor

depends upon the relative stiffness of the supporting

elements and the unstiffened element and consequently

on the dimensions of the cross section and the stress

on the component elements. In the following section,

a procedure for computing the value of the rotational

edge restraint factor will be presented.

6. 2. 2 Rotational Edge Restraint Factor

In the derivation of the equation for the local

buckling stress of unstiffened elements (sec. 2.2.1 and

2.2.2), the moment at the supported edge of the element

M
r

, and the angle of rotation ¢r were assumed to be pro

portional and the coefficient of proportionality (C
r

=M I¢ ) was assumed to depend on the dimensions of the
r r
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restraining elements. However, it was not mentioned

that the coefficient of proportionality Cr also depends

upon the compressive stress acting on the restraining

element. It is obvious that if both the restraining

element and the unstiffened element buckle at the same

stress, there is no rotational restraint, and the ele

ments behave as plates simply supported along the

common unloaded supported edges. The effect of the

compressive stress on the stiffness of the restraining

element diminishes rapidly as the stiffness of the

restraining element increases.

An exact solution to the stability problems is

possible, though very tedious. Applying the principles

of the moment distribution method to long plate

assemblies, Lundquist, Stowell and Schuette
62

have de

veloped a procedure for the solution of the stability

of plate assemblies. An approximate method of obtaining

the rotation edge restraint, presented by Bleich
25

is

based on the assumptions that the edges where the plates

join remain straight and all plates joining at an edge

rotate by an equal angle during local buckling. Bleich

derives equations for the rotational restraint of

supporting elements, initially disregarding the effect

of compressive stress and later makes proper adjustment

for the compressive stress by means of a correction
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This procedure will be used in this section

to determine the rotational edge restraint of unstiffened

elements.

The restraining element may either be a stiffened

element as in the case of channel, I and inverted hat

(~) sections, or an unstiffened element as in the

case of angle and T sections. Consequently, the pro-

blem is one of deriving equations for the rotational

restraint provided by stiffened and unstiffened elements,

which will be done in the following sections.

6.2.2.1 Channel and I Sections Subjected to Uniform

Compression

In this section, the rotational edge restraint

factor of unstiffened elements, due to the restraint

from the stiffened elements in I and channel sections

subjected to uniform compression, is derived. The

buckled configuration and the free body diagrams of the

individual elements under this deformed state of I and

channel sections are shown in fig. 6.2.la, assuming that

the unstiffened flanges are restrained by the web.

Disregarding the effect of compressive stress on the

restraining element stiffness, the coefficient of pro-

portionality C between the moment M and the angle of
r r

rotation ¢ at the supporting edge is given by
r



C = M !¢r r r
2D !B

r r
(6.2.l)
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where D and B are the flexural rigidity and width of
r r

the restraining element. The value C obtained from
r

6 2 1 1'S conservative, since the buckling wavee qn. ..

length has been assumed to be infinity. The rotational

edge restraint factor (E = CrxBb!Db ) of the unstiffened

elements can be calculated using eqs. 6.2.1 and 2.2.5 as

E = (6.2.2)

where B
b

, Db and t
b

are respectively the width, flexural

rigidity and the thickness of the buckling element,

t
r

is the thickness of the restraining element and N
b

is the number of locally buckling unstiffened elements

of equal stiffness joining at the junction. For example,

the value of Nb is equal to one in the case of Z and

channel sections and is equal to two in the case of I

sections. In eqn. 6.2.2, the effect of compressive stress

on the restraining element has been disregarded. If

the local buckling stress of the restraining element is

equal to the local buckling stress of the buckling ele-

ment, then the rotational edge restraint is zero. Con-

sequently, the effect of the compressive stress on the

restraining element can be approximately taken into
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account by multiplying eqn. 6.2.2 by a correction factor

r which becomes zero when the local buckling stress of

the restraining and the buckling element is the same.
25

The local buckling stress of the restraining and

buckling elements are given by

12(1-~2) (B It ) 2
r r

(6.2.3a)

(0 )b =cr
(6.2.3b)

where K
r

and K
b

are the buckling coefficients of res

training and buckling elements respectively. The

correction factor r, which has to satisfy the following

condition

r = 0

when (0 )b/(o )cr cr r
1

and

as

r -+ 1

(0 )b/(o ) -+ 0cr cr r
(6.2.3c)

can be written as

r =
(0 )b

1- cr
(0 )

cr r
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For the hinged support condition

K = 4.0
r

and K
b

= 0.425 (6.2.3e)

Substituting the values of the buckling coefficients

from eqn. 6.2.3e in 6.2.3d, the correction factor r for

25
this case becomes

2 2 2 2
r = 1-(0.425/4.0)(tb B

r
/t r Bb ) (6.2.30

Thus the equation for the rotational edge restraint

factor E corrected for the effect of compressive stress

on the restraining element can be written using eqs.

6.2.2 and 6.2.3f as

when r > 0 (6.2.4)

Eqn. 6.2.4 is valid only when the local buckling stress

of the restraining element is greater than or equal to

the local buckling stress of the unstiffened element,

that is, when the correction factor r given by eqn.

6.2.3 is greater than or equal to zero. Even though
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this investigation is concerned only with sections in

which the unstiffened elements are restrained by a

stiffened e1ement~ for the sake of completeness the ro-

tationa1 edge restraint factor, when the stiffened e1e-

ments buckle first, will also be presented. An approx-

imate equation for the value of E, when r<O can be

. 25wr1tten as

(6.2.5)

et

when

r < 0

B1eich 25 shows that the local buckling stress ca1-

cu1ated using these approximate values of the rotational

edge restraint factor E given by eqs. 6.2.4 and 6.2.5

compare well with the more exact solution of Lundquist

a1.
62

Following the same procedure, an equation for the

rotational edge restraint factor E of unstiffened e1e-

ments in flexural members will be derived in the fo11ow-

ing section.

6.2.2.2 Channel and I Sections Subjected to Uniform

Bending

In the preceding section, equations for the rota-

tiona! edge restraint factor E were derived for I and
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channel sections subjected to a uniform compressive

stress, as in columns under axial load. Following the

procedure outlined by Bleich
25

for uniformly compressed

member, equation for the rotational edge restraint fac-

tor E, when these cross :sections are subject to a uni-

form bending moment causing a uniform compressive stress

in the unstiffened elements, is derived in this section.

The distribution of the flexural stress over the

cross sections, the distorted shapes due to local

buckling and the freebody diagrams of the elements in-

dicating moments at the common edges are shown in fig.

6.2.lb. The unstiffened compression flanges are assumed

to be restrained by the web elements. The effect of

the moment at the intersection of the tension flange

and web on the rotational edge restraint factor E of the

unstiffened compression element is very small, and is

disregarded. Assuming conservatively the buckling wave

length to be infinity, the coefficient of restraint C
r

of the web not including the effect oft compressive
,

stress on the web is

C = M I<Pr r r

= 3D IB
r r (6.2.6a)

where Dr and Br are the flexural rigidity and the width
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Using eqn.

6.2.6a, the rotational edge restraint factor £ of the

unstiffened element, not including the effect of com-

pressive stress on the web, can be written as

(6.2.6b)

where all the dimensions are shown in fig. 6.2.lb and

N
b

is the number of locally buckling unstiffened

flanges of equal stiffness restrained by the web at the

junction.

Again the effect of compressive stress on the

restraining web can be taken into account approximately

by using the correction factor given by eqn. 6.2.3d.

The buckling coefficient K
b

of a hinged unstiffened

element is equal to 0.425 once again. The buckling

coefficient K of the restraining web subjected to a
r

stress gradient as in fig. 6.2.lb can be conservatively

taken to be equal to 7.8, which is the buckling co-

efficient of a hinged stiffened element subjected to a

compressive stress gradient varying linearly from zero
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4
at one edge to a maximum value at the other edge .

(In a beam experiencing a bending moment, part of the

web is subject to tensile stress, thus increasing its

local buckling coefficient to a value greater than 7.8.

However, it will be shown that for the beams tested in

this investigation the effect of assuming the local

buckling coefficient of the web to be 7.8 conservatively,

is negligible. Table (6.2.2)). Substituting the value

of Kr and Kb in eqn. 6.2.3d, the correction factor r

becomes

r = (6.2.7)

Using the correction factor given by eqn. 6.2.7 and

eqn. 6.2.6b, the rotational edge restraint factor £ of

the unstiffened elements in a beam can be written as

(6.2.8)

In the preceding two sections, equations for the

rotational edge restraint factor £ of the unstiffened

elements restrained by stiffened elements, were derived.

The rotational edge restraint factor £ of unstiffened

elements restrained by unstiffened elements, will be

presented in the following section.
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6.2.2.3 Edge Rotational Restraint Factor of Miscellaneous

Sections Subject to Uniform Compression

Bleich 25 has derived equations for rotational edge

restraint factors of various other sections subject to

a uniform compression. Results for sections with un-

stiffened elements under a uniform compression will be

presented here.

A T section is shown in fig. 6.2.2a. A conservative

equation for the rotational edge restraint provided by

the flanges to the local buckling of the web, when such

a section is subject to a uniform compression, has been

25
derived as

(6.2.9)

where all the dimensions are shown in fig. 6.2.2a.

An angle section is shown in fig. 6.2.2b. When the width

and thickness of the legs are the same, the rotational

edge restraint factor is equal to zero for uniform com-

pression. However, when the legs are not equal, the

narrow leg restrains the local buckling of the wider

unstiffened leg. When the ratio of the width of the

legs (Br/B
b

) is less than 2/3, the buckling coefficient
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25
of the wider leg is larger than 0.504 for long angles.

Any practical cross section can be either realis

tically or conservatively idealized to one of the cases

for which an equation for the rotational edge res

traint has been presented. For example, a Z section

can be idealized as a channel section. The rotational

edge restraint factor € of an unstiffened element under

compression in an inverted hat section (lLJr) can be

conservatively assumed as that of the unstiffened ele

ment in a channel section, having the width of both

unstiffened elements equal to the width of the un

stiffened element of the inverted hat section. Having

computed, using the equations presented, a conservative

yet realistic value of the rotational edge restraint

factor of the unstiffened elements in most common

sections, one can determine the buckling coefficient of

the unstiffened elements following the procedure to be

outlined in the next section.

6.2.3 Elastic and Inelastic Local Buckling

A procedure for calculating the local buckling co

efficient and the local buckling stress of unstiffened

elements will be presented in this section, using the

equations for the rotational edge restraint factor de

rived in the preceding sections and the equations for
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the elastic and plastic local buckling coefficients in

sections 2.2.1 and 2.2.2.

The elastic local buckling coefficient K , of- an
e

unstiffened element having a high aspect ratio (L/w)

and given rotational edge restraint factor E can be

obtained from eqn. 2.2.8b or fig. 2.2.2. Similarly,

the plastic buckling coefficient K of the element,
p

which is always less than or equal to the elastic

buckling coefficient K , can be obtained using eqn.
e

2.2.20 or fig. 2.2.2. The theoretical local buckling

coefficient K of the element depends upon whether the

local buckling takes place in the elastic or inelastic

range of the material.

The local buckling strain (e ) of an element can
cr

be written as

(6.2.10a)

The local buckling coefficient K corresponding to the
y

yield strain e , for a given (wit) ratio, can be ob
y

tained from eqn. 6.2.10a by substituting e
y

for e
cr

K
Y

2 2 2
l2(1-~ ) (wit) e ITT

y
(6.2.l0b)

The local buckling coefficient K of an ideally flat
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element depends upon the relative values of the buckling

coefficients K K and Kp' as given below.
y' e

If K > K then K = K (6.2.lla)
y- e e

If K > K then K = K (6.2.llb)
p- y p

If K > K > K then K >K>K (6.2.llc)
e- y- p e- - p

As in eqn. 6.2.lla, the local buckling coefficient

of an ideally flat unstiffened element K is equal to

the elastic buckling coefficient K , if the local
e

buckling strain obtained by substituting the elastic

buckling coefficient K in eqn. 6.2.10a is less than the
e

yield strain e .
y

buckling strain obtained by using the plastic buckling

coefficient K in eqn. 6.2.10 is greater than the yield
p

strain e , then the local buckling coefficient K is
y

equal to the plastic buckling coefficient K (eqn.
p

6.2.llb). However, in the intermediate range where the

local buckling strain corresponding to the elastic

buckling coefficient is greater than the yield strain

and that corresponding to the plastic buckling coefficient

is less than the yield strain, the local buckling co-

efficient K of the ideally flat element has a value be-

tween the elastic and plastic buckling coefficients.

In general, an unstiffened element of a structural
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member, as a result of initial imperfections. experi-

ences flexural stresses in addition to the applied com-

pressive stress even before local buckling of the ele-

ment. Consequently, superposition of the membrane and

the flexural stress may cause yielding somewhere in the

element before the local buckling of the element, when

the elastic local buckling stress of the element is near

the yield stress of the material. Thus, the plastifi-

cation of an unstiffened element starts at a lower

stress in the case of a real element when compared to

an ideally flat element. As a result. the local buckling

coefficient K of a real unstiffened element starts to

reduce from the value of the elastic local buckling

coefficient K , at an earlier stage than the limit set
e

by eqn. 6.2.l1a, and reduces to the value of the plastic

buckling coefficient K earlier than the limit set by
p

eqn. 6.2.llb.

In order to obtain the limits in the case of actual

unstiffened elements, the elastic and inelastic local

buckling coefficients K and K of the unstiffened ele-
e p

ments in the compression and flexural specimens are

compared with the experimental values of the local buck-

ling coefficient K in tables 6.2.1 and 6.2.2. The
expt.

ratio of the theoretical local buckling coefficient

limit K to the elastic buckling coefficient K is also
y e
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In figure 6.2.3, the results

The experimental

of the compression and flexural specimens of table

6.2.1 and 6.2.2 are plotted in terms of the parameters

(K -K )/(K - K ) and K /K .
expt. pep y e

points, especially those of the built up I sections,

are scattered over a wide range. This can be attri-

buted to the following reasons. The definition of the

local buckling of an unstiffened element

in an experimental specimen (chapter 3) is arbi-

trary because of the lack of a bifurcation type of

buckling. The effect of initial imperfections is most

pronounced near the local buckling stress, especially

when the local buckling takes place near the yield stress

of the material. The effectiveness of connecting two

channel sections to form an I or H section can vary in

a random way. The scatter of the experimental points

can be due to some combination of these reasons. The

parameter (K -K )/(K -K ) also tends to exaggerate
expt. pep

the scatter of the test points.

A straight line originating from K=K at the value
p

of K /K = I and reaching the value of K=K at K /K =5,
y e eye

seems to give a conservative lower limit of the experimen-

tal points. An equation for the local buckling co-

efficient K, based on this fit, can be written as
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K = K when K <K
P y- e

K K +(K -K )(K -K )/4K when K <K <5Kpep y e e e- y- e

K = K when 5K <K
e e- y

(6.2.12)

Eqn. 6.2.12 yields in general a conservative value of the

local buckling coefficient when compared to eqn. 6.2.1la,

b,c, as expected.

The theoretical local buckling coefficients K h
t eory

calculated using eqn. 6.2.12 are presented in table 6.2.1

and 6.2.2 for comparison. In general, the theoretical

values are conservative when compared to test values by

margins as high as 28 percent. Only a few of the theo-

retical results are unconservative, the maximum differ-

ence on the unconservative side being 4 percent. The

mean difference between the experimental and theoretical

values of the buckling coefficient is 12.8 percent on

the conservative side and the coefficient of variation

is 0.723. This information can be qualitatively in-

ferred from fig. 6.2.3, using which eqn. 6.2.12 was de-

duced.

In order to obtain the rotational edge restraint

factor £ for all the beams tested, the distribution of

compressive stress in the web has been assumed to vary

from zero stress at the bottom to the maximum compressive

stress at the top. This, however, is a conservative
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assumption. So as to check the effect of such an

assumption, the buckling coefficients of two beams

(B-1 and UP-II) have been calculated using the actual

distribution of the stress in the webs. The results

of this evaluation is presented at the end of table

6.2.2. It is seen that the effect of assuming the con-

servative stress distribution in the webs makes about

only one percent difference in the theoretical local bu

ling coefficient K of the unstiffened flanges.

As long as the wIt ratio of the unstiffened ele-

ments is larger than the limiting value (wIt)
lim.

governed by eqn. 5.4.3 or 5.4.4, there is a reduction

in the effective width of the unstiffened elements and

failure is assumed to occur when the maximum com-

pressive stress in the element, at the supported edge

parallel to the direction of compression, reaches the

yield stress of the material. However, if the (wIt)

ratio of an unstiffened element is smaller than the

limiting value (w/t)l" ,the element remains fully
~m.

effective until the whole width of the element yields in

compression. In such cases, the elements can undergo

additional plastic strain before failure. It was observE

in the fifth chapter that the failure of the unstiffened

elements, in the plastic range, takes place almost

immediately after local buckling. Consequently, it was
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suggested that the plastic buckling strain given by

eqn. 2.2.19 can be taken as the inelastic strain capa-

city of the unstiffened elements having a (wit) ratio

less than the limiting value (w/t)l. .
1m.

In table 6.2.3, the limiting value of the (wit)

ratio of the unstiffened elements in the flexural

specimens are given. These values have been computed

using eqn. 5.4.3 presented below.

(5.4.3)

4
where B

2
= 0.378-0.768 (K-l.18) . The inelastic strain

capacity (e ) obtained from experimental results are
cu

also given in table 6.2.3. Theoretical values of the

inelastic strain capacity are given in table 6.2.3 for

comparison. The theoretical values have been taken to

be equal to the yield strain when the (wit) ratios of

the elements are greater than the limiting values

(w/t)lim .. When the (wit) ratios are less than the

limiting values (w/t)l· ,1m.
the theoretical inelastic

strain capacity of the unstiffened elements have been

taken as the plastic buckling strain given by eqn.

2.2.19.

(2.2.19)
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The theoretical values are generally on the conserva-

tive side of the experimental values. The mean differ-

ence between the experimental and theoretical values of

the ultimate strain capacity is 23.3 percent on the con-

servative side and the coefficient of variation is 0.91,

The difference is maximum (about 57 percent) for the

elements having a (wit) ratio around the (w/t)l. valuE
1m.

It has been assumed that as long as the (wit) ratic

is greater than (w/t)l. ,the ultimate strain of the1m.

element is equal to the yield strain. However, the

strain at the supported edge of an unstiffened element

having a value of the (wit) ratio near the limiting

value (w/t)lim. can be higher than the yield strain 31

This accounts for the larger difference between the

experimental and theoretical values of the ultimate

strain in this range of the (wit) ratio. The ultimate

strain at this range is very sensitive to initial imper-

fections. Consequently, using a more conservative

theoretical value in this range is justifiable. Using

inelastic strain capacity of the unstiffened elements

given by eqn. 2.2.19, one can obtain the ultimate mo-

ment capacity of a given section and the inelastic ro-

tation capacity at a plastic hinge following the pro

63cedure presented by Reck.

When local buckling stress of unstiffened elements
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is less than the yield stress, the elements can sustain

an additional load in the postbuck1ing range. The

elastic postbuck1ing behavior of unstiffened elements

will be treated in the next section.

6.3 Elastic Postbuck1ing Behavior of Unstiffened

Elements

The effective width of an unstiffened element begins

to decrease prior to failure. when the (wit) ratio of

the element is less than the limiting value given by

eqn. 5.4.3 or 5.4.4. Beyond the elastic local buckling,

the elements can sustain additional load until the maxi-

mum stress at the supported edge parallel to the di-

rection of compression is nearly equal to the yield

stress of the material.

Two equations for computing the effective width

of unstiffened elements. one based on an analytical

derivation and the other empirical equation based on

experimental results. were given in the third chapter.

These equations are

b (1-B
1

)
e

+ B
1

(3.4.1)=w cr
( e max + B

2
)cr cr

where

B
1 = 0.326 + 0.086 K

2
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= 0.378 - 0.768 (K-l.18)4

and

b
e = 1.19/a la (1.0-0.298/0 10 )

w cr e max cr e max
(3.4.5)

where a is the maximum compressive stress at the
e max

supported edge parallel to the direction of compression,

a is the local buckling stress, b is the effective
cr e

width, w is the actual width of the unstiffened ele-

ment, and K is the local buckling coefficient.

The theoretical effective width of unstiffened ele-

ments in the compression and flexural members tested in

this investigation, computed using the theoretical

values of the buckling coefficient in eqs. 3.4.1 and

3.4.5, are compared with the experimental effective width

at the ultimate load of the elements, in table 6.3.1 and

6 • 3 • 2 • In general, the theoretical equations give

reasonably good results. The theoretical results ob-

tained using eqn. 3.4.1 differ from the test values by

a margin of up to 19 percent on the conservative side

and 13 percent on the unconservative side. The mean

difference between the experimental and theoretical

values of the effective widths is 5.1 percent on the con-

servative side and the coefficient of variation is 1.57.

Eqn. 3.4.5 yields results which differ from the test

values up to 17 percent on the conservative side and 16
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The mean difference

between the experimental and theoretical values of the

effective widths is 6.55 percent on the conservative

side and the coefficient of variation is 1.11. The

difference is attributable to both experimental scatter

and theoretical approximation. These two effective

width equations were shown to give sufficiently con

servative theoretical values of the effective width at

the subultimate loads also (figs. 3.4.6, 5.4.4).

Since the variation of the constants B
l

and B
2

even

for the extreme values of the buckling coefficient K

is small, they can be conservatively taken as

Bl = 0.326

B
2

= 0.378 (6.3.1)

for all values of the buckling coefficient K.

The theoretical effective widths of the unstiffened

elements in the test specimens computed using eqn. 3.4.1

and the simplified constants given by eqn. 6.3.1, are

presented along with the ex~erimental effective widths

in tables 6.3.3 and 6.3.4. The theoretical results

differ from the experimental values up to 22 percent on

the conservative side and 7 percent on the unconserva-

tive side. The mean difference and the coefficient of
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variation are 10.9 percent and 0.63 respectively. The

simplified constants given by eqn. 6.3.1 being conser-

vative, the effective widths computed using this value

of the constants are generally more conservative.

An equation for the maximum amplitude of out of

plane deformation of the unstiffened elements was

derived in the third chapter and is presented below.

Z ! t = { (cre rna x -1)yB 3 a
cr

where B3 = 2.727 + 1.135!(K-0.425).

(2.3.37)

This equation, was derived for a perfectly flat element

and was found (fig. 3.4.7) to give conservative yet

realistic results for the amplitude of the deformation

of experimental elements in the range of interest (post

critical range).

The derivation of analytical equations was accom-

plished through an approximation solution of VonKarman's

plate equations, which are valid only in the intermediate

range of out of plane deflection. Consequently the ana-

lytical equation derived should not be used in the case

of unstiffened elements having a large width to thickness

ratio and a large postbuckling range. However, for the
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specimens tested which have unstiffened elements with a

width to thickness ratio of up to 60, the analytical

solution exhibits a good correlation with the test re

sults.

Short compression members and flexural members can

be designed using the procedures outlined so far. A

design procedure for long compression members which fail

as a result of overall flexural buckling will be pre

sented in the next section.

6.4 Analysis of Compression members

Compression members fail by local crippling when

they are short and there is very little overall bending

of the members. As the length of the compression mem

bers increases, the theoretical flexural buckling load

decreases and when the flexural buckling load is less

than the local crippling load, the members fail due to

flexural buckling.

Hot-rolled compression members retain the shape of

their cross section, and can be designed using the tan

gent modulus equation (eqn. 4.1.3) or the Column Re

search Council (CRC) equation (eqn. 4.1.6). On the other

hand, cold-formed compression members usually have thin

plate elements in compression, which may buckle locally
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before the columns fail due to flexural buckling. The

local buckling of the elements leads to a reduction in

the effective section properties of the columns and

hence, a reduction in the flexural buckling load of

the columns. Consequently, computation of the strength

of cold-formed compression members should take into

consideration the effect of local buckling of the plate

elements. In this section, a procedure for the analysis

of cold-formed steel compression members, with locally

unstable unstiffened elements, will be presented.

Effective section properties of compression mem

bers at any axial strain can be calculated following the

steps given below.

1. Select a uniform longitudinal compressive

strain e.

2. From the stress strain relationship of the

material (eqn. 4.4.6a) determine the tangent

modulus Eti , and the stress 0i of the flat and

corner elements at the strain e.

3. Determine the effective area of the flat ele

ments using an effective width equation.

4. Determine the effective moment of inertia

I eff of the subelements about the axis of over

all buckling of the section, assuming that the

effective area of the unstiffened elements is

distributed adjacent to the supported edge as
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shown in fig. 4.4.9a.

5. Calculate the total effective area (Aeff =L

A. ff) of the column.1,e

6. Compute the total force on the column

(P = LO i Ai,eff) and the average stress

( 0 - piA ) from the stress 0. and theav - total 1

effective area Ai,eff of the subelements.

Having obtained the average stress 0 and the
av

section properties of the column at this stress, the

effective length L of the column which will experience

overall buckling at this average stress 0 can be calav

culated using eqn. 4.4.5b

L =

2 n
TI LEI
i=l ti i,eff

a Aav total
(4.4.5b)

In eqn. 4.4.5b, L is the effective length of the column,

A 1 is the total cross sectional area of the column.
tota

This equation is based on the tangent modulus equation

for column flexural buckling.

Column curves are derived for the nine sets of test

columns (LC-I through LC-V and UD-l through UD-4). A

32computer program written by DeWolf , which follows the

steps outlined above, was used with some modification of

the effective width equation and distribution of the

effective area to arrive at the column curves. There are
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three sets of column curves (figs. 6.4.1 through 6.4.9)

for each column corresponding to three of the effective

width equations used to calculate the section properties.

They are: (curve b) obtained using effective width eqn.

3.4.1 in which the coefficients Bl and B
2

are taken as

functions of the local buckling coefficient K; (curve c)

obtained using eqn. 3.4.1 and simplified values of B
I

and

B as given in eqn. 6.3.1; (curve d) obtained using the2

effective width eqn. 3.4.5. In all these cases, theo-

retical buckling coefficients calculated as detailed in

section 6.2.3 are used (Table 6.3.1).

Column test points are also plotted in figs. 6.4.1

through 6.4.9 for a comparison with corresponding theo-

retical column curves. The theoretical curves compare

well with the test results, yielding somewhat conserva-

tive yet realistic values for the column buckling stresses.

These theoretical curves are more conservative than those

derived in chapter 4 (figs. 4.4.10 through 4.4.30), be

cause the theoretical buckling coefficients used in this

chapter are conservative when compared to the experimental

values used in chapter 4.

On the basis of this comparison, it can be concluded

that the flexural buckling strength of columns can be

calculated using the tangent modulus equation in which

the effective section properties, obtained from anyone
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of the effective width equations, are used.

Another procedure, based on a modified version of

the Column Research Council method, is presented in

appendix 2. A step by step method for calculating the

flexural buckling strength of a column using the tangent

modulus method and modified CRC method is also enumerated

in appendix 2. An example showing the method of cal

culating the flexural buckling strength following the step

by step procedure is also presented in appendix 2.

6.5 Summary and Conclusions

Procedures for calculating the strength of members

with unstiffened elements in compression have been pre-

sented. Theoretical equations for calculating the local

buckling stress in the elastic range and the strain

capacity in the plastic range were presented. Equations

for computing the reduced effective width of unstiffened

elements in the elastic postbuckling range were also pre-

sented. Short compression members and flexural members

can be designed using these equations.

Equations were presented for calculating the over

all flexural buckling strength of compression members.

These equations take into account the reduction in the

effective stiffness of the compression members, due to

local buckling.
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The equations presented,realistically model the

local buckling and the postbuckling behavior of un

stiffened elements, and the effect of local buckling on

the flexural and compression member behavior.



CHAPTER 7

SUMMARY AND CONCLUSIONS

7.1 Summary and Conclusion

The elastic and inelastic local buckling and the

postbuckling behavior of unstiffened compression elements

have been investigated analytically and experimentally.

The effect of local buckling on the overall flexural

buckling of columns and the bending of beams with un

stiffened compression elements, has been studied. Methods

for the design of cold-formed steel structural members

with unstiffened compression elements have been pre

sented on the basis of the analytical and experimental

investigations.

In the first chapter a qualitative description of

the elastic and inelastic behavior of the unstiffened

elements was presented. The behavior of members with

unstiffened elements in compression was also discussed.

A brief outline of the purpose and the scope of the in

vestigation was presented.

An analytical solution to the elastic and inelastic

local buckling and the postbuckling behavior of unstiffened

elements was presented in the second chapter. The large

deflection equations of Von Karman were solved by assuming

an approximate wave form for the deflected shape of the

181
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182

The amplitude of the wave was ob-

tained using Galerkin's method. Closed form equations

were derived for the effective width and the maximum

amplitude of deflection of the ideally flat unstiffened

element. The inelastic local buckling strain of the un-

stiffened elements having an elasto-plastic stress strain

23
relationship was obtained using Stowell's equations.

The results of the stub column tests were pre-

sented in the third chapter and were compared with the

analytical solution derived in the second chapter. On

the basis of this comparison an effective width equation

for unstiffened elements with initial imperfections was

presented. Another effective width equation having a

format similar to the AISI effective width equation for

stiffened elements was derived. Both effective width

equations compared well with the results of tests on

stub columns. The analytical equation for the maximum

amplitude of the out of plane deformation of an ideally

flat unstiffened element compared well with the out of

plane deflection of the test specimens at the ultimate

load.

The flexural buckling strength of compression members

with unstiffened elements was investigated in the fourth

chapter. For compression members the AISI specification

design approach was quite conservative. This is primarily
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due to the limit that the sFecification places on the

compressive stress on the unstiffened elements in order

to limit excessive out of plane distortions. Test re-

suIts indicated that the distortion of the unstiffened

elements in the postbuckling range was not objectionable.

Procedure was presented for obtaining the flexural

buckling strength curves for compression members with

unstiffened elements, using the tangent modulus equation.

In this equation the effective section property was sub

stituted to obtain the flexural buckling strength.

The effect of the local buckling of unstiffened ele

ments on the bending of beams was studied in the fifth

chapter. It was found that the proposed effective width

equations realistically modeled the elastic postbuckling

behavior of the beams. The theoretical plastic strain

at the local buckling was found to give a conservative

estimate of the inelastic strain capacity of unstiffened

elements, buckling in the plastic range.

Procedures for the analysis of the strength of short

and long compression members and beams with unstiffened

elements in compression were presented in the sixth

chapter. The theoretical values obtained using these

procedures compared well with the test results. On the

basis of this it can be concluded that the procedures
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presented could be used to calculate the strength members

with unstiffened compression elements, taking full ad

vantage of the postbuckling strength of the elements.

In appendix A an analytical effective width equation

(A .1) is derived for stiffened elements which is based

on Sayed's work. This analytical equation is compared

with Winter's effective width equation for stiffened

elements (eqn. 1.2.3). In appendix B Winter's effective

width equation for stiffened elements (eqn. 1.2.3) is

compared with the effective width equation for un

stiffened elements (eqn. 3.4.5) and the test results.

A procedure for obtaining column flexural buckling curves

based on a modified form of the Column Research Council

equation is also presented in appendix B and compared

with the test results and the tangent modulus column curves.

Finally a step by step procedure and an example are pre

sented in appendix B for calculating the flexural buckling

strength of columns using the tangent modulus and modified

CRC methods.

7.2 Scope for Future Investigation

In this investigation it was assumed that the un

stiffened elements subjected to compression were always

restrained from rotation by the adjoining elements, the

limiting condition being a zero restraint. In some appli-
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cations, as in the case of edge stiffeners, the adjoining

elements may buckle before the unstiffened element, in

which case the unstiffened element behaves as a res-

training element. The effect of this negative res-

traint on the local buckling behavior of the unstiffened

element needs to be investigated.

The unstiffened compression flanges in this inves

tigation were braced at sufficiently close intervals to

avoid lateral buckling of the beams. The effect of local

buckling on the maximum unbraced length and on the lateral

buckling strength of beams is an area which warrants

further research.

The effect of local buckling on the bending of beams

and the flexural buckling of columns was separately in

vestigated. Beam columns are one of the most commonly

encountered members in practice. The effect of local

buckling on the behavior of beam columns is an area of

interest requiring further attention. The effect of local

buckling on torsional flexural buckling of columns is

another area of practical application and has to be looked

into.

These are a few areas of interest where the local

buckling of the unstiffened elements affects the behavior

of a member and hence require further research.



APPENDIX A

EFFECTIVE WIDTH EQUATIONS FOR STIFFENED ELEMENTS

An

derived

effective width equation for stiffened
\

b Wi
12,13, I

y nter is given be ow.

elements

b /w
e

10 70 -0.22 0 /0cr e max cr e max
(1.2.2)

where b is the effective width, w is the actual flat
e

width, 0 is the maximum compressive stress in the
e max

loaded direction at the unloaded supported edge and

o is the local buckling stress of the stiffened ele
cr

ments.
17Sayed has presented an analytical method for

calculating the effective width of stiffened elements

in the elastic postbuckling range, following a pro-

cedure similar to that given here in the second chapter

for an effective width equation of unstiffened ele-

ments. Below an effective width equation for stiffened

elements, based on Sayed's analytical solution and

having the same format as eqn. 3.4.1 derived for un-

stiffened elements, will be presented.

Using eqn. 46c in reference 17, the effective width

equation of perfectly flat stiffened elements with

simply supported unloaded edges free to move in the plane

of the element can be written as

186



b /w =
e

0.746
o /0e max c r

+ 0.254 (A. 1)
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where all the variables are defined above.

Using eqs. 71 and 73 in reference 17, the post-

buckling behavior of stiffened elements with initial

imperfections can be analyzed. Effective width

equation (eqn. A.l) for a perfectly flat plate can be

modified to take into account initial imperfections,

as explained in section 3.4.3 of this report. The

modified form of the effective width equation for a

stiffened element, having an amplitude of initial im-

perfection equal to 0.2 times the thickness of the

element (a value which apparently yields a close

agreement with test results-ref. 17), can be written

as

b /w =
e

0.746
o

( e max + 0.55)
ocr

+ 0.254 (A. 2)

Effective width eqs. 1.2.2 and A.2 are compared in

fig. A .1. The analytical eqn. A.2 and eqn. 1.2.2, on

which the present AISI design equation is based, com-

pare well over a large range of the postbuckling be-

havior.



APPENDIX B

COMPARISON OF EFFECTIVE WIDTH EQUATIONS
AND POSSIBLE DESIGN PROCEDURES

B.1 General

Winter12 proposed an effective width equation

(eqn. 1.2.2) for the postbuck1ing behavior of stiffened

elements, currently being used in the AISI Specification

for the Design of Cold-Formed Steel Structural Mem

2
bers. In Chapter 3 an effective width equation for

unstiffened elements (eqn. 3.4.5) was presented which

is essentially the same as the effective width equation

for unstiffened elements (eqn. 1.2.3) proposed by

Winter
13

on the basis of a research report by Mi11er. 64

In the following sections, the effective width equations

for stiffened elements (eqn. 1.2.2) will be compared

with the effective width equation for unstiffened e1e-

ments (eqn. 3.4.5) in the light of test results.

A procedure, based on the tangent modulus method,

for calculating the flexural buckling strength of

columns with locally buckling unstiffened elements was

presented in chapter 4. A modified form of the Column

Research Council method will be derived in this chapter

for calculating the flexural buckling strength of co1u

188
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and will be compared with the tangent modulus method

and test results. Finally a step by step method for

calculating the flexural buckling strength of columns

with locally buckling unstiffened elements, based on

the two methods, will be presented and an example will

be worked out.

B.2 Comparison of Effective Width Equations and Test

Results of Stub Columns and Beams

Winter13 on the basis of a research conducted by

Miller64 presented the following effective width

equation for the postbuckling behavior of unstiffened

elements.

b /w = 0.8t/E/a (1-0.202(t/w)/E/a max)e e max e
(B.2.l)

Eqn. 1.2.3 is obtained 14 from eqn. B.2.l by using 0.5

for the value of local buckling coefficient (K) in the

equation for the local buckling stress (eqn. 1.2.la).

b /w = 1.191a /a (1.0-0.3/a /a max)e cr e max cr e
(1.2.3)

In chapter 3 on the basis of test results and analytical

solution, an effective width equation (eqn. 3.4.5) was

derived which is essentially the same as eqn. 1.2.3, but

for a small variation in one of the two constants. Eqn.
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5 g iven below, will be referred to as Winter's3 .4. ,

unstiffened element equation (WU).

b Iwe
1.19/0 10 (1.0-0.298/0 /0 max)cr e max cr e

(3.4.5)

Winter 12 presented an effective width equation for

stiffened elements which can be rewritten as shown in

eqn. 1.2.2. Eqn. 1.2.2, given below, will be referred

to as Winter's stiffened element equation (WS).

b Iw = /0 /0 (1.0-0.22/0 /0 max)e c 1:" e rna X c r e
(1.2.2)

WU equation (eqn. 3.4.5) and WS equation (eqn. 1.2.2)

are plotted in fig. B.2.l. The ratio of effective

width to a~tual width (b Iw) is the ordinate and the
e

ratio of maximum edge stress to critical stress

(a la) is the abscissa in fig. B.2.l.
e max cr The test

results (at failure) of stub columns (from tables 3.4.2

and 3.4.3) and beams (from table 5.4.2) are also plotted

in fig. B.2.1. The test results are scattered around

Winter's unstiffened element (WU) equation, whereas

Winter's stiffened element (WS) equation is generally

conservative for unstiffened elements tested.

In tables B.2.1 and B.2.2, the experimental

effective widths at failure of stub columns and beams

are compared with the effective widths given by the two
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The mean error of the effective

widths given by WU equation is 1.6 percent and the

standard deviation is 7.5 percent. The effective

widths obtained using WS equation have a mean error of

10.9 percent and a standard deviation of 7.0 percent.

On the basis of fig. B.2.1 and tables B.2.1 and B.2.2,

it can be concluded that Winter's unstiffened element

(WU) equation (eqn. 3.4.5) yields a more accurate value

of the effective width of unstiffened elements in the

postbuckling range than Winter's stiffened element (WS)

equation (eqn. 1.2.2).

It should be noted, however, that the difference

is most pronounced for large values of a /a
e max cr'

i.e., for large wIt ratios. In the range of most

practical wIt ratios for unstiffened elements, the WS

equation is seen to be usable, though somewhat conser-

vative.

B.3 Flexural Buckling Strength of Columns

The theoretical flexural buckling strength of

columns can be calculated using the two effective width

equations to obtain the effective section properties.

In this section, the theoretical flexural buckling

strengths, calculated using the two procedures:

(1) the tangent modulus method presented in section 4.4.3,

and (2) a modified form of the Column Research Council
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Method, will be compared with the column test results.

B.3.1 Tangent Modulus Method

A procedure for calculating the flexural buckling

strength of columns was presented in section 4.4.3,

which uses the effective section properties and the

tangent modulus equation. The column curves obtained

following this procedure, in which the effective section

properties are calculated using effective width equations

WU (eqn. 3.4.5) and WS (eqn. 1.2.2), are shown in figs.

B.3.1 through B.3.9. In these figures, the average

stress (piA) versus the slenderness ratio (L/r) is

plotted for the nine different column sections tested.

The column test results in tables 4.4.2 and 4.4.3 are

also plotted in these figures.

The figures indicate that the column curves de

rived using WU equations compare well with the test

results but for a few short column test results, whereas

the column curves based on WS equations are generally

conservative for the columns with unstiffened elements.

Again, the differences are more significant for the un

stiffened elements with a large wit ratio, say wit ~ 35.

B.3.2 Modified Column Research Council Method

The Column Research Council Guide to Design Cri-
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teria for Metal Compression Members 49 proposed a pro-

cedure to calculate the flexural buckling strength of

hot-rolled steel columns, taking into consideration

nonlinearity due to residual stresses.

According to the CRC method, the flexural buckling

strength of a slender column is given by the Euler

equation (eqn. 4.1.2) in the range of stress less than

half the yield stress, and above this stress the flexural

buckling stress is given by a parabolic equation. The

two equations can be written as given below.

and

o cr (L/r) 2
when L/r > I2(L/r)

y
(B.3.l)

o =0
cr y

2
o
~(L/r) 2
4n E

when L / r < fi( L / r)
y

(B.3.2)

where

(L / r)
y

(4.1.5)

and a is the flexural buckling stress of columns.
cr

Eqs. (B.3.l) and (B.3.2) can be modified to take

into consideration the effects of local buckling, en-

countered before flexural buckling in cold-formed steel

structural columns, by introducing the effective section

properties instead of total section properties and in-
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terpreting 0 as the stress (0 ff) on the effective
cr e

area (A ) of the column cross section at the flexural
e

buckling load. The stress on the effective area (Oeff)

can be written as

(B.3.3)

where 0 is the average stress on the total area at
av

the flexural buckling load. Using eqn. B.3.3 and

modifications necessary to account for reduction in

effective section as a result of local buckling, eqs.

B.3.l and B.3.2 can be rewritten as

A TI 2Ee
0

A (L / r ) 2av
e

and
2

A 0
(L/r ) 20

e
0

y
=

av A y 4TI
2

E e

(B.3.4)

(B.3.5)

The limiting value of the effective slenderness ratio

(L/r )1" above which eqn. B.3.4 is to be used can beelm.

obtained by equating the average stress (0 ) given by
av

the two equations (eqs. B.3.4 and B.3.5) and is given by

(L/r )1"e 1m I2(L / r)
y (B.3.6)

where (L/r) is defined in eqn. 4.1.5.y Eqs. B.3.4 and
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B.3.5 are the desired modified form of the CRC equations

and give the average flexural buckling stress of cold-

formed structural steel columns. It can be easily shown

that eqn. B.3.4 reduces to Euler equation when the

flexural buckling occurs at a stress below G
l

. (the
1m.

limiting stress below which a compression element is

fully effective). The procedure outlined above will be

referred to as the modified Column Research Council pro-

cedure (modified CRC procedure).

Using the two effective width equations (WU and

WS eqns.) and the modified CRC procedure, column curves

for the nine different sections tested have been com-

puted and are shown in figs. B.3.l0 through B.3.l8.

The ordinate and abscissa in these figures are the

average stress (P/A) and slenderness ratio (L/r) res-

pectively. Corresponding column test results are also

shown in these figures. Column curves obtained using

the WU equation compare well with the test results,

whereas the WS equation is conservative compared to the

test results.

The theoretical values of the flexural buckling

stress from the tangent modulus method using WU eqn.

have good correlation in the case of sections UD-2 and

UD-3 and are unconservative for at least one column in

the case of all other sections. The modified CRC method
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using WU eqn. generally yields theoretical values which in-

dicate good correlation with the test results but for one

column each in the case of sections LC-I and LC-IV.

For columns with unstiffened elements having a low value

of wIt ratio (wIt ~ 30) the modified CRC method tends

to be conservative. On the basis of the figs. B.3.l

through B.3.l8 and the discussion above it appears that

the modified CRC method indicates a better correlation

with the test results, especially in the case of shorter

columns in each section which have the flexural buckling

stresses on the effective areas (Oeff=P/Aeff ) nearly

equal to the yield stress of the material.

In the next section validity of the modified CRC

method for columns with stiffened elements will be in-

32vestigated using the test results of DeWolf .

E.3.3 Columns With Locally Buckling Stiffened Elements

In the previous section, theoretical methods for

calculating the flexural buckling strength of cold-formed

steel columns were presented, and the column curves ob-

tained using these procedures were compared with the

results of tests on columns with unstiffened elements.

In this section, flexural buckling strength curves for

columns with locally buckling stiffened elements will be

arrived at using the modified Column Research Council
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procedure and compared with the stiffened column test

32results of DeWolf.

32
DeWolf tested columns with stiffened elements

in axial compression. The shape of the cross sections

is shown in fig. B.3.l9a. The section dimensions and

properties of the eighteen columns of four different

cross section dimensions are given in table B.3.l. The

test results of the eighteen columns are presented in

table B.3.2.

The effective width equation for stiffened elements,

referred to as WS equation in the last section, gives

the postbuckling effective width of stiffened elements

in compression. This equation is written in terms of

the maximum stress at the supported edge (Oe max) and

the local buckling stress (a ) as shown below.cr

b /w = 10 /0 (1.0-0.22/0 70 max)e cr e max cr e
( 1 . 2 . 2 )

The effective width of stiffened elements can be dis-

tributed as shown in fig. B.3.l9b to obtain the effective

flexural stiffness of stiffened sections about the

minor axis. Using the effective stiffness thus computed

and the modified CRC procedure outlined in the last

section, column curves for stiffened sections could be

obtained.

Column curves for the four sections in table B.3.l
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are shown in figs. B.3.20 through B.3.23. In addition

to the curves corresponding to the Euler and yield stress,

there are three column curves for each section. Two of

these curves are drawn for the maximum and minimum values

of the local buckling coefficient of stiffened elements

(K = 4.0 and 6.97). The third curve is drawn for the

experimental value of the buckling coefficient, ob-

tained by DeWolf. There is a good correlation between

the column curves corresponding to the experimental

values of the buckling coefficient and the test results,

indicating the validity of the modified CRC procedure

for stiffened columns also. Value of the local buckling

coefficient of stiffened elements is usually assumed to

be equal to 4.0 in design. In general, the column

curves corresponding to the lowest value of the local

buckling coefficient (K = 4.0) is slightly conservative.

DeWolf compared the flexural buckling strength of

columns having stiffened elements with the tangent mod

ulus column curves (figs. 6.12-6.15, ref. 32). These

four figures are compared with figs. B.3.20-B.3.23 to

evaluate the relative merit of the modified CRC method.

The modified CRC curves exhibit good correlation in the

case of all the column test results, whereas, the tan

gent modulus method yields unconservative values in the
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case of columns having the flexural buckling stress on

the effective area (Oeff=P/Aeff ) nearly equal to the

yield stress.

B.3.4 Computation of Flexural Buckling Strength of

Columns

Procedures for drawing the column curves for a

given section were presented so far. In this section,

an iterative method for calculating the flexural

buckling strength of a slender cold-formed steel

column of a given section and effective length will be

presented. The procedure will also be illustrated nu-

merically using one of the columns tested.

Steps for Calculating the Flexural Buckling Strength

of Columns with Locally Buckling Unstiffened Elements:

1. Calculate the total area, total moment of in-

ertia and effective length of the column. Calculate

the local buckling stress of flat elements substituting

the relevant values of the local buckling coefficient

(K) • For stiffened elements, the local buckling co-

efficient K could be assumed conservatively to be equal

to 4.0. The local buckling coefficient of unstiffened

elements could be calculated theoretically as described

in section 6.2.
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2. Assume a reasonable value of stress on the

effective area (Oeff=P/Aeff ) corresponding to the

flexural buckling of the column, as an initial estimate.

This can be the flexural buckling stress of the column

section, computed using anyone of the present methods

(AlSl method for example).

3. Calculate the stresses and tangent moduli of

the flat and corner elements at the assumed stress on

the effective area, using the stress strain relation-

ship of the elements.

4. Calculate the effective width of the flat ele-

ments using the proper effective width equation (eqn.

1.2.2 for stiffened elements and eqn. 3.4.5 for un-

stiffened elements).

5. Distribute the effective width of stiffened

and unstiffened elements adjacent to the supported edges

as shown in figs. B.3.l9b, 4.4.9a. Calculate the

effective area (Aeff), effective moment of inertia (leff)

and effective tangent modulus stiffness

6 • Determine the stress

0: E .
i tl.

on the effective

1. ff)·l.,e

area

(oeff) at the flexural buckling using the modified CRC

formula or modified tangent modulus formula given below.
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Modified CRC Formula:

(L/r ) 2
e

when (L/r ) > I2(L/r)
e y (A2.3.6)

= a (1-0 (L/r )2/ 4 'IT
2

E) when (L/r ) < If(L/r)
y y e e y

(A2.3.7)

Modified Tangent Modulus Formula:

2
'IT L (E . I. f f)t1 1,e (A2.3.8)

7. Compare the 0eff calculated in step 6 with the

0eff assumed in step 2. If the difference is more than

an acceptable limit, assume a new value of the 0eff

equal to the average of the assumed and calculated values

from the preceding iteration and repeat steps 3 through

7 •

8. If the difference between the assumed and cal-

culated values of the 0eff is within an acceptable error

margin, calculate the effective stress on all elements

using the stress strain curve of the elements. The

theoretical flexural buckling load of the column is given

by

P = L A a
cr I i,eff i,eff

(A2.3.9)
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Using the steps enumerated, a numerical computation

of the flexural buckling strength of a slender column,

tested in this investigation, is presented below.

Numerical example: (Specimen LC - II)

Step 1. section dimensions and properties:
(fig. 3.2.2)

B = 2.50 in., D = 4.007 in., t = 0.0492 in.,

L = 57.19 in., w = 2.451 in., wit = 49.81,

cr = 30.26 ksi
y

Total area:

A = (4 x w x t) + (2(D 2
2 x t) + 1ft )

= (4 x 2.451 x .0492) + (2 x (4.007 - 2 x .0492)

+ (1f x .0492 2)

A = 0.875 in 2

x t

4I = 1.027 in

Total moment of inertia:

I = (D x (2t) 3) + (4 x t w
3

) 412 x 12 + x w
3

x(w + t)2 = (4.007 x ~(_2__x~.~0~4~9~2~)_)
2 12

3
+ (4 x .0492 x 2·i;1 ) + 4 x 2.451 x .0492

x (2·i 51 + .0492)2

r = lIlA = 11.027/0.875
r = 1.085 in

L/r = 57.19/1.085
L/r = 52.71
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Local buckling coefficient:

K = 0.820 (from table 6.3.1)

K 0.820

a
cr

=

2 2
12(1-11 )(w/t)

2
0.820 x rr x 29500

2
12 x 0.91 x 49.81

a =8.81 ksi
cr

(L/r) = Irr 2 E/a
y y

= Irr 2
x 29500/30.26

Step 2. Assume a value of a
eff

(L/r) =98.1
y

Computations of starting a
eff

value using

the present AISI method.

At a = a
e max y

unstiffened elements:

b = w x 1.191a /a (1-0.297Ia /a )
e,u u cr e max cr max

b = 1.322 in
e,u

stiffened elements:

b = w = (4.007 - 2 x .0492)
e,s S b = 3.909 in

e,s



0.653
0.857

A
eff

= 0.653 in 2

Aeff
A =

A
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Q = 0.746

=0.746 x 30.26 [1 _ 30.26 X
2
52.71

2
]

4 x 'IT x29500

0eff = 21.65 ksi assumed

initial guess



Modified CRC Method:

Step 2,7 Step 3 SteD 4 Step 5 Step 6

Calcu-
lated

Iteration Assumed (0 ) f1a t 0 effe max b (in) A L/r
No. eff r eff eff0 = 0 corner eeff

(in 2)
(ks i)

(ksi) (ksi) unstiffened stiffened (in)

1 20.9 20.9 1.529 3.909 0.693 0.610 93.7 23.4

2 22.1 22.1 1.496 3.909 0.687 0.594 96.3 22.9

3 22.5 22.5 1.486 3.909 0.685 0.592 96.6 22.6

p
cr = (Aeff ,i 0 i,eff)

= 0.685 x 22.6 = 15.54 kips

(0 )
av theory

P /A = 15.54 = 17 8 ksi
cr 0.875 .

(0) = 18.48 ksi
av expt.

(from table 4.4.1)

error = 3.8 % (conservative)
N
o
Ln



Modified Tangent Modulus Method:

Step 2.7 Step 3 Step 4 Step 5 Step 6

Ca1cu-

Iteration Assumed (a ) f1a t b ( in) A 1ated
eff r eff L/re max e

eff a effNo. aeff a unstiffened stiffened (in 2) ( in)= corner
(ksi) (ksi) (ksi)

1 20.9 20.9 1.529 3.909 0.693 0.610 93. 7 33.1

2 27.0 27.0 1.383 3.909 0.664 0.539 106.1 25.8

3 26.4 26.4 1.395 3.909 0.667 0.544 105.1 26.4

p = E acr i Ai • eff i.eff

= 0.667 x 26.4 = 17.61 ksi

p
17.61

(cr a v)
cr 20.12 ksi= = =theory A 0.875

Ca) = 18.48 ksi
av expt.

(from table 4.4.1)
N
o
0'

error = -8.9% (unconservative)
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B.4 Summary and Conclusions

Theoretical values of strength of beams and columns

with unstiffened elements in compression were calcu

lated using the effective width equations for un

stiffened elements (WU eqn., eqn. 3.4.5) and stiffened

elements (WS eqn., eqn. 1.2.2). The column flexural

buckling strength curves were derived using the tangent

modulus method and modified Column Research Council

method. Beam and column test results were compared with

the theoretical values. Column curves for DeWolf's col

umns 32 with stiffened elements, derived using the modi

fied Column Research Council method, were also compared

with his test results. Finally a step by step pro-

cedure for calculating the flexural buckling strength

of a column was given and a numerical example was pre

sented.

Winter's effective width equation derived for

stiffened elements (WS eqn. 1.2.2) is generally con

servative if compared with the experimental effective

width of unstiffened elements. Whereas, Winter's

effective width equation far unstiffened elements (WU

eqn. 3.4.5) indicates a good correlation with the test

results. However the difference between the two

equations is marginal in the case of unstiffened ele-



208

ments having a smaller postbuckling range (elements

having a smaller wit ratio). The column curves ob

tained using the modified Column Research Council

method exhibits a better correlation with the column

test results than the tangent modulus curves, es

pecially when the flexural buckling stress on the

effective area of the column (G
eff

= P/A
eff

) is nearly

equal to the yield stress of the material.

Note fpom the ppoject dipectops: While Mp. Kalyanapaman

states his ppefepence fop the C.R.C. Column Cupve ovep

the Tangent Modulus Method, which is his pepfect pight

as investigato~, we as ppoject dipectops wish to add that

the degpee of accupacy of the two methods to us appeaps

to be about the same. Thepefo~e the choice between the

two methods fop specification and design use could well

be made on the basis of gpeatep genepality op ppacticality.

T. P. and G. W.
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TABLE 2.2.1

LOCAL BUCKLING AND POSTBUCKLING PARAMETERS

OF UNSTIFFENED ELEMENTS

215

E: K n' K B
l B

3e p
0.0 0.428 1.000 0.425 o. 354

0.05 0.504 0.908 0.456 0.354 17.602

0.10 0.535 0.867 0.464 0.354 13.216

0.20 0.578 0.832 0.481 0.356 10.426

0.50 0.663 0.781 0.518 0.362 7.383

1. 00 0.748 0.744 0.557 0.372 6.372

1.50 0.813 0.725 0.589 0.380 5.680

2.00 0.855 0.712 0.609 0.387 5.435

3.00 0.919 0.697 0.641 o . 398 5.054

5.00 1.003 0.684 0.686 0.414 4.676

10.00 1.100 0.672 0.740 0.433 4.328

20.00 1.173 0.668 0.783 0.448 4.156

50.00 1.235 0.666 0.822 0.460 4.029

(Xl 1.287 0.665 0.856 0.469 3.965

K
e

n'

K
P

B1 , B 3

Rotational edge restraint factor

Elastic local buckling coefficient

Modified plasticity index (e Ie )
p e

Plastic local buckling coefficient

Constants in postbuck1ing behavior equations



TABLE 3.2.1

MECHANICAL PROPERTIES OF HOT ROLLED STEEL

SHEETS FOR COLUMN SPECIMENS

(J (J
y u

SHEET NO. (ksi) (ks i)

1 31.59 46.71

2 30.73 47.05

3 30.63 46.07

4 30.26 45.93

5 25.68 43.22

6 31.11 46.13

7 31.29 47.69

8 30.50 45.98

9 31.05 46.32

10 33.18 48.25
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TABLE 3.2.2

STUB COLUMN SPECIMEN DIMENSIONS a

Sheet Area
Specimen No. BC (in) D(in) t (in) wi t (in 2) L (in)

SC - I 1 1 2.873 4.031 0.0490 57.63 0.9485 20.0

SC - I 2 2 2.871 4.032 0.0489 57.71 0.9463 20.0

SC - II 1 5 2.505 3.988 0.0477 51.52 o .8493 17.0

SC - II 2 4 2.498 4.009 0.0489 50.08 0.8711 17.0

SC - III 1 7 2.126 3.998 0.0484 42.93 0.7892 14.0

SC - III 2 6 2.127 4.000 0.0484 42.95 0.7896 14.0

SC - IV 1 7 1.751 2.997 0.0483 35.25 0.6185 12.0

SC - IV 2 8 1.727 3.034 0.0480 34.98 0.6136 12.0

SC - V 1 10 1.497 3.011 0.0487 29 .74 0.5754 10.0

SC - I 2 9 1. 501 3.003 0.0488 29 .76 0.5766 10.0

a - refer to fig. 3.2.2



TABLE 3.4.1

LOCAL BUCKLING COEFFICIENT FROM STUB COLUMN TESTS



TABLE 3.4.2

EXPERIMENTAL EFFECTIVE WIDTH AT ULTIMATE LOAD

0 =0
e max y 0 0 0 0

Specimen (w / t) P (K) av cr e max av b (Z / t)
u (ksi) (ksi) (ksi) 0 0 e/w maxcr cr

SC - I 1 57.63 23.35 31.59 17.54 8.35 3.78 2.10 0.556 2.15

SC - I 2 57.71 21.95 30.73 17.34 7.72 3.98 2.25 0.565 1.91

SC - II 1 51. 52 19.38 25.68 15.74 9.54 2.69 1.65 0.613 1.82

SC - II 2 50.08 21. 78 30.26 17.35 9.69 3.12 1. 79 0.574 1.36

SC - III 1 42.93 19.78 31.29 19.08 13.72 2.28 1.39 0.610 1.16

SC - III 2 42.95 21.70 31.11 19.33 13.81 2.25 1.40 0.622 1.21

SC - IV 1 35.25 17.58 31.29 23.25 21.14 1.48 1.10 0.743 0.96

SC - IV 2 34.98 16.80 30.50 22.12 21.48 1. 42 1.03 0.725 0.83

SC - V 1 29.74 17.70 33.18 26.40 26.40 1.27 1.00 0.787 0.53 N......
\0

SC - V 2 29.76 16.63 31.05 22.46 25.52 1.22 0.88 0.721 0.52



TABLE 3.4.3

STUB-COLUMN SPECIMEN DIMENSIONS a,b

Specimen BC (in) D(in) t (in) wit Area(in 2) L (in) (D-t)/BC

UD - 1 1. 00 3.00 0.058 16.2 0.565 7.4 2.94

UD - 2 1. 25 3.00 0.058 20.55 0.623 9.0 2.35

UD - 3 1. 50 3.00 0.058 24.86 0.681 9.0 1.96

UD - 4 1. 75 3.00 0.058 29.17 0.739 9.0 1.68

EXPERIMENTAL RESULTS

Experimental Theoretical d p 0 =0 0 0 0 bu e max y av e max av e
Specimen o (ks i) K I C Avg. ( k) (ks i) (ks i) 0 0 wcr cr cr

UD - 1 71.12 c 0.700 1.098 0.635 0.784 24.7 41.9 46.63 0.58 0.66 1.100

UD - 2 49.69 c 0.787 1.099 0.716 0.867 25.8 41.9 40.80 0.84 0.82 0.973

UD - 3 35.60 0.825 1.100 0.788 0.908 27.0 41.9 37.29 1.18 1.05 0.890

UD - 4 26.90 0.858 1.095 0.472 0.944 27.4 41.9 32.78 1.56 1.22 0.782

a - Tested by John DeWolf (Ref. 32)

b - Refer to Fig. 3.2.2

c - Based on the assumed buckling
coefficient

d - From Ref. 7

N
N
o



TABLE 3.4.4

INITIAL IMPERFECTION PARAMETER IN

EFFECTIVE WIDTH EQUATION

K B2

.504 0.214

.535 0.248

.578 0.279

.663 0.325

.748 0.350

.813 0.361

.855 0.366

.919 0.375

1.003 0.379

1.100 0.381

1.173 0.379

1.235 0.378

1.287 0.376
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TABLE 3.4.5

COMPARISON OF EFFECTIVE WIDTHS OF STUB

COLUMN UNSTIFFENED FLANGES

222

EXPERIMENTAL Eqn. 3.4.1 Eqn. 3.4.5
Specimen wit 0 e / max % %

K b /w b /w b /w
° e e diff . e diff.cr

SC-I 1 57.63 1.040 3.78 0.556 0.558 -0.5 0.518 6.8

SC-I 2 57.71 0.964 3.98 0.565 0.542 4.0 0.508 10.2

SC-II 1 51.52 0.949 2.69 0.613 0.598 2.4 0.594 3.1

SC-II 2 50.08 0.912 3.12 0.574 0.570 o . 7 O. 560 2.4

SC-III 1 42.93 0.940 2.28 0.610 0.627 -2.8 0.633 -3.7

SC-III 2 42.95 0.955 2.25 0.622 0.631 -1.5 o.636 -2.3

SC-IV 1 35.25 0.982 1. 48 o .743 o . 727 2.1 o. 739 o .5

SC-IV 2 34.98 0.986 1.42 0.725 0.738 -1.8 0.749 -3.4

SC-V 1 29.74 0.876 1.27 0.787 0.762 3.1 0.777 1.2

SC-V 2 29 .76 0.848 1.22 0.721 0.773 -7.2 0.787 -9.2

UD-1 16.20 0.700 0.58 1.100 1.000 9.00 0.952 13.4

UD-2 20.55 0.787 0.84 0.973 0.897 7.80 0.877 9.9

UD-3 24.86 0.825 1.18 0.890 0.783 12.1 0.796 10.6

UD-4 29 .17 0.858 1.56 0.782 o. 706 9 . 7 0.726 7 . 2

a - Using experimental K values



TABLE 4 .2.1

*DIMENSIONS AND SECTION PROPERTIES OF COMPRESSION SPECIMENS

Col. Area I min.Sheet D BC T Length L
(in. 2) (in. 4 )Specimen No. (in. ) (in. ) (in. ) wit (in. ) (in. )

LC-ll 1 4.024 2.866 0.0489 57.61 60.00 63.25 0.9425 1.542

LC-12 1 4.031 2.869 0.0492 7.31 89.00 92.25 0.9495 1.556

LC-13 2 4.006 2.876 0.0488 57 .93 120.00 123.25 0.9408 1.555

LC-I 4 4.007 2.500 0.0492 50.81 53.94 57.19 0.8745 1.030

LC-II2 4 4.018 2.501 0.0487 50.36 86.95 90.20 0.8670 1.021

LC-II3 5 4.008 2.509 0.0489 50.31 120.00 123.25 0.8711 1.035

LC-Ill1 7 4.039 2.113 0.0 93 41.86 47.94 51.19 o .8031 0.624

LC-III2 6 4.015 2.120 0.0483 42.89 84.00 87.25 0.7861 0.617

LC-III3 5 3.990 2.126 0.0488 42.57 120.00 123.25 0.7928 0.629

LC-IV1 9 3.018 1.743 0.0474 35.77 47.97 51.22 0.6057 0.337

LC-IV2 8 3.004 1.726 0.0483 34.74 68.61 71.86 0.6123 0.334

LC-IV3 7 3.015 1.742 0.0492 34.41 90.00 93.25 0.6277 o . 349
N

10 41.90 45.15 0.5757 0.217
N

LC-V1 3.029 1.488 0.0489 29.43 w

LC-V2 3 2.996 1.502 o .0492 29 .53 53.88 57.13 0.5786 0.224

LC-V3 10 3.027 1.490 0.0491 29.35 72.00 75.25 0.5782 0.219

* - Refer to Fig. 3.2.2



TABLE 4.4.1

TEST RESULTS OF COMPRESSION SPECIMENS

Specimen wit L
(in)

area
r
min.
( in)

P
u1 t.

(kip)

P
cr.

(kip)

Per/area

(ks i)

L/r .ml.n.

LC-I1 57.61 63.25 0.943 1.279 14.00 14.96 15.86 49.45

LC-I2 57.31 92.25 0.950 1.280 13.80 14.07 14.81 72.07

LC-I3 57 .93 123.25 0.941 1.286 11.00 11.00 11.69 95.84

LC-Il1 50.81 57.19 0.875 1.085 16.00 16.17 18.48 52.71

LC-II2 50.36 90.20 0.868 1.085 12.80 13.16 15.18 83.13

LC-II3 50.31 123.25 0.871 1.090 9.73 9 .95 11.42 113.07

LC-Ill1 41.86 51.19 0.803 0.881 16.10 16.49 20.54 58.10

LC-III2 42.89 87.25 0.786 0.886 11.00 11.66 14.83 98.48

LC-III3 42.57 123.25 0.793 0.891 8.70 8.83 11.13 138.33

LC-IV1 35.77 51.22 0.606 0.746 11.96 12.19 20.12 68.66

LC-IV2 34.74 71.86 0.612 0.738 10.50 11.29 18.45 97.37

LC-IV3 34.41 93.25 0.628 0.746 8.90 8.96 14.27 125.00

LC-V1 29.43 45.15 0.576 0.614 14.55 14.63 25.40 73.53 N
N
.po.

LC-V2 29.53 57.13 0.579 0.623 12.20 12.65 21.85 91.70

LC-V3 29 . 35 75.25 0.578 0.615 10.75 10.75 18.60 122.36



TABLE 4.4.2

SECTION PROPERTIES AND TEST RESULTS OF DeWOLF'S COMPRESSION SPECIMENS

Specimen w/ t
Area I min. r min. P P / A

(in. 2)
u u

L/r
(in. ) (in. ) (kips) (ksi)

UD-11 16.2 0.5637 0.0778 0.3715 4 .8 24.7 43.82 12.92

UD-12 16.2 0.5637 0.0778 0.3715 20.7 21.4 37.96 55.72

UD-13 16.2 0.5637 0.0778 0.3715 33.1 20.4 36.19 89.10

UD-14 16.2 0.5637 0.0778 0.3715 43.2 12.2 21.64 116.29

UD-21 20.5 0.6217 0.1516 0.4938 5.9 25.4 40.86 11.95

UD-22 20.5 0.6217 0.1516 0.4938 5 .9 26.1 41.98 11. 95

UD-23 20.5 0.6217 0.1516 0.4938 26.2 24.0 38.60 53.06

UD-24 20.5 0.6217 0.1516 0.4938 42.2 20.4 32.81 85.46

UD-25 20.5 0.6217 0.1416 0.4938 53.1 15.0 24.13 107.53

UD-31 24.8 0.6797 0.2617 o .6205 5.9 27.0 39 .72 9.51

UD-32 24.8 0.6797 0.2617 0.6205 26.2 23.6 34.72 42.22

UD-33 24.8 0.6797 0.2617 0.6205 48.2 22.8 33.54 77.68

UD-34 24.8 0.6797 0.2617 0.6205 59.1 18.0 26.48 95.25

UD-41 29.1 0.7377 0.4152 o. 7503 5.9 27 .4 37.14 7.86

UD-42 44.12
N

29.1 0.7377 0.4152 0.7503 33.1 23.4 31.72 N
VI

UD-43 29.1 0.7377 0.4152 o .7503 69.1 20.0 27.25 92.10

a - From reference 32.



TABLE 4.4.3

DIMENSIONS AND SECTION PROPERTIES OF BIJLAARD'S ALUMINUM COMPRESSION SPECIMENS
a

Spec. D BC TF TW w/TF Area
K

0 E N
0 1y

(in. ) (in. ) (in. ) (in. ) (in. ) (ksi) (ksi)

J 1.875 1. 406 0.128 0.125 10.50 0.922 0.741 83.0 10430 28 85.75

K 2.500 1. 906 0.129 0.122 14.30 1.257 0.727 84.0 10430 30 86.38

L 3.000 2.313 0.124 0.126 18.14 1.494 0.760 82.0 10430 25 84.95

a - From reference 27.

N
N
0'



TABLE 4.4.4

SECTION PROPERTIES AND TEST RESULTS OF BIJLAARD'S

ALUMINUM COMPRESSION SPECIMENS a

227

Specimen
L

( in) L/r
P / A

u
(ks i)

J-l 17.62 25.0 62.50

J-2 21.16 30.0 61.00

J-3 24.65 35.0 59.20

J-4 28.84 40.8 56 .30

J-5 29.84 42.5 54.85

J-6 29.84 42.5 55.20

J-7 35.20 50.0 41.75

K-l 24.15 25.0 49.90

K-2 29 .03 30.0 47.60

K-3 33.84 35.0 42.60

K-4 38. 70 40.0 39 .20

K-5 43.53 45.0 36.15

K-6 48.37 50.0 33.80

L-l 29.23 25.0 41.30

L-2 41.10 35.0 32.40

L-3 46.86 40.0 28.80

L-4 52.27 44.9 26.20

L-5 64.48 55.0 23.80

L-6 72.66 62.0 20.65

L-7 72.66 62.0 21.60

L-8 80.97 69.1 20.35

L-9 93.80 80.0 15.60

a - from reference 27.



TABLE 4.4.5

SECTION PROPERTIES AND TEST RESULTS OF STUB COLUMN SPECIMENS

wit
A cry P y P Q Test Q P IA (L I r)Specimen

(in. 2 )
u

=P Ip u
(ksi) (kips) (kips) u y AISI (ksi)

SC-Il 57.63 0.9485 31.59 29.96 23.35 0.779 0.130 24.61 7. 80

SC-I2 57.71 0.9463 30.73 29 .08 21.95 0.755 0.130 23.19 7.81

SC-Ill 51.52 0.8493 25.68 21.81 19.38 0.889 0.196 22.82 7.81

SC-II2 50.08 0.8711 30.26 26.36 21.78 0.826 0.176 25.00 7.84

SC-IIll 42.93 o. 7892 31.29 24.69 19.78 o .801 0.232 25.06 7 .86

SC-III2 42.95 0.7896 31.11 24.56 21.70 0.884 0.233 27.48 7.86

SC-IVI 35.25 0.6185 31.29 19 .35 17.58 0.909 0.344 28.42 7.94

SC-IV2 34.98 0.6136 30.50 18.71 16.80 o.898 0.358 27.38 8.14

SC-Vl 29.74 0.5754 33.18 19.09 17.70 0.927 0.455 30 .76 8.07

SC-V2 29. 76 0.5766 31.05 17.90 16.63 o.929 0.486 28.84 8.04
N
N
00



TABLE 4.4.6

SECTION PROPERTIES AND TEST RESULTS OF SLENDER COMPRESSION SPECIMENS

Specimen wIt Q P P A pIp (LI r) (LI r)
L/ry cr

(in. 2)
y y

(ksi) (kips) (L I r) y

LC-I1 57.61 0.767 31.59 14.96 0.9425 0.5025 96.00 49.45 0.515

LC-I2 57. 31 0.767 31.59 14.07 0.9495 0.4691 96.00 72.07 0.751

LC-I3 57.93 0.767 30.73 11. 00 0.9408 0.3805 97.34 95.84 0.985

LC-II1 50.81 0.858 30.26 16.17 0.8745 0.6111 98.09 52.71 0.537

LC-II2 50.36 0.858 30.26 13.16 0.8670 0.5016 98.09 83.13 0.848

LC-II2 50.31 0.858 25.68 9.95 0.8711 0.4448 106.48 113.07 1.062

LC-III1 41.86 0.843 31.29 16.49 0.8031 0.6562 96.46 58.10 0.602

LC-III2 42.98 0.843 31.11 11.66 0.7861 0.4768 96.74 98.48 1.018

LC-III3 42.57 0.843 25.68 8.83 0.7928 0.4337 106.48 138.33 1.299

LC-IVI 35.77 0.904 31.05 12.19 0.6057 0.6482 96.83 68.66 0.709

LC-IV2 34.74 0.904 30.50 11.29 0.6123 0.6045 97.70 97.37 0.997

LC-IV3 34.41 0.904 31.29 8.96 0.6277 0.4562 96.46 125.00 1.296

LC-V1 29.43 0.928 33.18 14.63 0.5757 0.7659 93.67 73.53 0.785

LC-V2 29.53 0.928 30.63 12.65 0.5786 O. 7138 97.50 91.70 0.941 N
N
\0

LC-V3 29 . 35 0.928 33.18 10.75 0.5782 0.5603 93.67 122.36 1.306



TABLE 5.2.1

MATERIAL PROPERTIES OF HOT ROLLED STEEL SHEETS

FOR BEAM SPECIMENS

Sheet No. 0' (ksi) 0' (ksi)
y u

I 51.0 65.5

II 53.8 69 .5

III 51.3 65.8

IV 50.2 64.5

V 35.9 50.0

VI 33.8 48.5

230
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TABLE 5.2.2

DIMENSIONS OF BEAM SPECIMENS

Spec- Sheet BC BT D t RC wi t LS L
imen No. (in. ) ( in) ( in) (in) (in) ( in) (in)

B-1 I 4.360 7.744 4.047 0.0708 0.00 60.5 19.0 73.0

B-2 II 3.847 7.683 4.023 0.0711 0.00 53.1 19.0 70.0

B- 3 II 3.410 8.140 4.198 0.0750 0.00 44.5 19.0 70.0

B-4 I 2.840 6.139 3. 189 0.0750 0.00 36.9 19.0 58.0

B-5 III 2.278 6.094 3.272 0.0740 0.00 29.8 19.0

B-6 III 1. 868 6.069 3.194 0.0756 0.00 23.7 19.0 58.0

B-7 III 1.529 4.125 2.180 0.0748 0.00 19 .4 16.0 52.0

B-8 IV 1.310 4.151 2.188 0.0735 0.00 16.8 16.0 48.0

B-9 IV 1. 074 4.163 2.182 0.0753 0.00 13.3 16.0 48.0

B-I0 IV 0.870 4.157 2 .177 0.0755 0.00 10.5 16.0 48.0

B-11 IV 0.654 4.150 2 .160 0.0755 0.00 7. 7 16.0 48.0

B-12 V 2.211 5.971 2.996 0.0994 0.00 21. 2 19.0 56.0

B-13 V 2.044 5.891 3.0060.0997 0.00 19 .5 19.0 56.0

B-14 V 1. 761 4.963 2.498 0.0998 0.00 16.6 15.0 45.0

B-15 VI 1. 510 4.969 2.500 0.1002 0.00 14.1 15.0 45.0

B-16 VI 1. 364 5.102 ~.995 0.0993 0.00 12. 7 16.0 45.0

B-17 VI 1.129 3.999 ~.990 0.0997 0.00 10.3 16.0 45.0

B-18 VI 0.887 3.969 2.000 0.1001 0.00 7 .9 16.0 45.0

UP_9 a 1. 680 1. 6 71 3.9780.0600 0.06226.0 21.0 60.0

UP-lOa 1.220 1.241 4-.013 0.0350 0.062 32.1 20.0 60.0

UP-11 a 1. 417 1. 446 4 .005 o.0347 0.06238.020.0 60.0

UP-12 a -- 1. 616 1.648 4 .001 o.0355 0.06242.8 20.0 60.0

--
a - Reck's Specimens



TABLE 5.4.1

THEORETICAL AND EXPERIMENTAL MOMENTS

OF BEAM SPECIMENS

232

M M M K
a

M 1M 0-
wit 10 IKSpec- wit y p u u y y

imen (in-K) (in-K) (in-K) (ksi) y

B-1 60.5 138.7 145.0 81. 7 0.961 0.589 51.0 441

B- 2 53.1 132.3 144.5 80.9 0.934 0.611 53.8 403

B-3 44.5 134.7 156.1 81. 2 0.831 0.603 53.8 358

B-4 36.9 77.6 87.6 54.3 0.791 0.699 51.0 296

B-5 29 .8 67.7 81. 7 52.3 0.798 0.773 51.3 238

B-6 23. 7 58.4 74.2 52.4 0.584 0.897 51.3 222

B-7 19.4 29.5 36.1 25.8 0.619 0.875 51.3 177

B-8 16.8 25.7 32.8 26.4 0.604 1.027 50.2 153

B-9 13. 3 23.0 30.8 27.0 0.586 1.174 50.2 123

B-10 a 10.3 20.0 28.1 25.7 0.568 1.285 50.2 97
B-11 a 7 . 7 17.0 25.1 24.9 0.550 1.465 50.2 74
B-12 21. 2 54.3 66.2 50.6 0.620 0.932 35.9 161
B-13 19.5 51.6 64.1 51.2 0.616 0.992 35.9 149
B-14 16.6 35.9 44.6 34.7 0.618 0.967 35.9 127
B-15 14. 1 30.6 39 .5 34.4 0.604 1.124 33.8 105
8-16 12. 7 21.0 27. 7 25.8 0.618 1.229 33.8 94
B-17 10.3 17.9 23.8 24.9 0.600 1.391 33.8 77
B-18 7.9 15.5 21.6 23.5 0.580 1.156 33.8 60
UP_9 c

26.0 44.0 51.1 36.9 0.747 0.839 42.0 195
UP-10 c 32.1 18.2 21. 8 14.3 0.666 0.786 36.0 236
UP-11 c

38.0 20.0 23.5 15.5 0.804 0.775 36.0 254

a - Experimental K in the elastic range and theoretical
K in the plastic range.p

b - Specimen failed due to lateral buckling.
c - Reck's Specimens



TABLE 5.4.2

ELASTIC LOCAL BUCKLING AND POSTBUCKLING TEST RESULTS OF BEAM SPECIMENS

Experimental Theoretical Experimental Theoretical
Spec- '0 0 0 0 b
imen w/ t

cr K K K Y --.:L- av e
Eqn. 3.4.1 Eqn. 3.4.5(ks 1) e p (kst) 0 0 w
b /w %error b /w %errorcr cr

e e

B-1 60.5 6.99 0.961 0.948 0.660 51.0 7.30 3.06 0.419 .480 -14.6 .392 6.4

B-2 53. 1 8.82 0.920 0.926 0.646 53.8 6.10 2.84 0.466 .491 - 5.4 .424 13.6

B- 3 44.5 11. 21 0.831 0.901 0.632 53.8 4.80 2.40 0.500 .504 - 0.8 .469 6.9

B-4 36.9 15.52 O. 79 1 0.916 0.640 51.0 3. 29 1. 69 0.514 .549 - 6.8 .549 0.0

B-5 29.8 23.54 o. 798 0.874 0.624 51. 3 2.18 1. 21 0.555 .624 -12.4 .644 -3.5

B-6 23. 7 27.70 0.584 0.844 0.604 51. 3 1. 85 1.10 0.595 .658 -10.6 .684 - 3.9

UP_9 a 26.0 29.53 0.747 0.930 0.650 42.0 1. 42 1. 05 o. 739 .728 1.4 .749 - 2.9

uP-tO a 32. 1 1 7 .26 0.666 0.875 0.620 36.0 2.09 1. 30 0.622 .628 1.0 .654 -4.1

UP-II a 38.0 14 . 81 0.804 0.900 0.632 36.0 2.43 1. 48 0.609 .603 1.0 .618 -2.5

UP-12 a 42.8 8.11 0.560 0.925 0.645

---_..>_.~~-,_._-_.,_., .._, ._.._- - '-"-~'----'--'-""'--"-----_.'~-'-'-

a - Reck's Specimens

r-J........
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TABLE 5.4.3

ULTIMATE COMPRESSIVE STRAIN OF BEAM SPECIMEN

Ka x1000 e x1000 IeSpecimen wit e cu ecu cu yK

B-1 60.5 0.961 1.889 1.966 1. 09

B-2 53.1 0.934 1.828 1. 957 1.00

B-3 44.5 0.831 1.771 2.131 0.97

B-4 36.9 O. 791 2.108 2.665 1. 22

B-5 29.8 O. 798 2.256 2.827 1 . 30

B-6 23.7 0.584 3.127 5.354 1. 80

B-7 19.4 0.619 3.160 5.105 1.82

B-8 16.8 0.604 3.820 6.325 2.24

B-9 13.3 0.586 4.500 7.679 2.64

B-10 b
10.3 0.568 3.636

B-11b 7 . 7 0.550 3.280

B-12 21. 2 0.620 2.780 4.484 2.28
B-13 19.5 0.616 2.826 4.588 2.32
B-14 16.6 0.618 3.776 6.110 3.10
B-15 14.1 0.604 3.840 6.358 3.35
B-16 12.7 0.618 4.590 7.427 4.01
B-17 10.3 0.600 5.845 9.742 5.10
B-18 7.9 0.580 8.600 14.828 7.51
UP-9 c 26.0 0.747 1.424 1.906 1. 04
UP-10 c 32.1 0.666 1.220 1.832 0.87
UP-11 c

38.0 0.804 1.220 1.517 0.91

a - Experimental K in the elastic range and theoretical
K in the plastic range.p

b - Specimen failed due to lateral buckling

c - Reck's Specimens



TABLE 6.2.1

LOCAL BUCKLING COEFFICIENT OF UNSTIFFENED ELEMENTS IN SHORT COMPRESSION MEMBERS

K -K
%a expt p

Spec. (w / t) (k~i)Bb/B r
E: K K K K /K K K -K K

diff.e p y y e expt. e p theory

SC-I 1 57.6 31. 6 0.713 5.41 1. 028 0.702 3.94 3.83 1.040 1.037 0.932 10.3

SC-I 2 57.7 30.7 0.721 5.40 1. 028 0.702 3.83 3.73 0.964 0.804 0.925 4.1

SC-II 1 51.5 25.7 0.628 4.69 0.992 0.682 2.56 2.58 0.949 0.861 0.804 15.3

SC-II 2 50.1 30.3 0.623 4.64 0.990 0.680 2.85 2.88 0.912 0.748 0.825 9.5

SC-III1 42.9 31. 3 0.532 3.86 0.962 0.664 2.17 2.25 0.940 0.926 0.757 19.5

SC-I 112 43.0 31.1 0.532 3.86 0.962 0.664 2.16 2.24 0.955 0.977 0.756 20.8

SC-IV 1 35.3 31. 3 0.584 4.31 0.982 0.674 1. 46 1.49 0.982 1. 000 0.711 27.6

SC-IV 2 35.0 30.5 0.569 4.18 0.978 0.670 1.40 1. 43 0.986 1. 026 0.703 28.7

SC-V 1 29.7 32.2 0.497 3.55 0.950 0.660 1.10 1.16 0.876 0.745 0.671 23.3

SC-V 2 29.8 31.1 0.500 3.58 0.952 0.662 1.03 1.08 0.848 0.641 0.668 21. 2

UD-1* 16.2 41. 9 0.333 2.03 0.858 0.610 0.52 0.48 0.610

* 20.6 41. 9 0.417 2.83 0.914 0.640 0.58 0.73 0.640UD-2

* 24.9 41.9 0.500 3.58 0.952 0.662 0.97 1. 02 0.825 0.562 0.663 19.6UD-3

* 0.583 4.30 0.982 0.674 1. 34 1. 36 0.858 0.597 0.702 18.2UD-4 29.2 41.9 N
w
V1

* DeWolf's specimens



TABLE 6.2.2

LOCAL BUCKLING COEFFICIENT OF UNSTIFFENED ELEMENTS IN FLEXURAL MEMBERS

Spec.

0-

(wit) (ksi)Bb/B r K
e

K
P

K -K
exp t. p

K K IK K K -K KY Y e expt. e p theory

%

Diff.

B1 60.5 51.0 1.077 3.06 0.924 0.640 7.00 7.58 0.961 1.130 0.924 3.9

B2 53.1 53.8 0.956 2.70 0.906 0.638 5.69 6.28 0.920 1.052 0.906 1.6

B3 44.5 53.8 0.812 2.24 0.874 0.620 3.99 4 .57 0.831 0.831 0.847 -1.9

B4 36.9 51.0 0.891 2.50 0.890 0.628 2.61 2.93 O. 791 0.622 0.754 4.7

B5 29 .8 51.3 0.696 1.86 0.842 0.604 1. 71 2.03 0.798 0.815 0.665 16.6

B6 23.7 51.3 0.585 1.49 0.810 0.586 1.08 1.33 0.584 0.000 0.605 - 3.5

UP- ~ 26.0 42.0 0.422 4.69 0.990 0.682 1. 0 7 1.08 o . 747 0.211 0.651 12.8

UP-lOt 32.1 36.0 0.304 3.13 0.930 0.644 1. 40 1.50 0.666 0.077 o .639 4 . 1

UP-1l 38.0 36.0 0.354 3.80 0.962 0.662 1. 9 5 2.03 0.804 0.473 0.698 13. 2

UP-It 42.8 36.0 0.404 4.46 0.984 0.680 2.47 2.51 0.560

* 51.0 1.077 3.20 0.930 0.648 7.53B-1 60.5 7.0 0.961 1.102 o .930 3 • 2
(K =33.0)r

UP-II * 38.0 36.0 0.354 4.10 0.970 0.670 1. 9 5 2.01 0.804 0.446 0.706 12. 2
(K =23.9) .-r -

* Rotational restraint by the web calculated using the actual stress
distribution in the web.

T Peter Reck's specimens.
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TABLE 6.2.3

STRAIN CAPACITY OF UNSTIFFENED ELEMENTS IN FLEXURAL

SPECIMENS

Spec. K
(wit) theory 0

Y
(w/t)l"

1m

%
(E) (E) Diff

cu cuexpt theory

B1 60.5 0.924 51.0 17.4 1889 1729 8.5

B2 53.1 0.906 53.8 16.8 1828 1824 o . 2

B3 44.5 0.847 53.8 16.3 1771 1824 -3.0

B4 36.9 0.754 51.0 16.0 2108 1729 18.0

B5 29.8 0.665 51. 3 15.3 2256 1739 22 .9

B6 23.7 0.605 51. 3 14.9 3127 1739 44.4

B7 19.4 0.604 51. 3 14.9 3160 1739 45.0

B8 16.8 0.588 50.2 15.0 3820 1702 55.5

B9 13.3 0.565 50.2 14.8 4500 2903 35 .5

B10* 10.3 0.542 50.2 14.7 3636 4615

B11* 7. 7 0.502 50.2 14.5 3280 7623

B12 21.2 0.590 35.9 17 . 7 2780 1218 56.2

B13 19.5 0.582 35.9 17.6 2826 1218 56.9

B14 16.6 0.604 35.9 17.8 3776 1970 47 .8

B15 14.1 0.588 33.8 18.2 3840 2685 30.1

B16 12.7 0.602 33.8 18.3 4590 3354 26.9

B17 10.3 0.584 33.8 18.2 5845 4952 15.3

B18 7.9 0.555 33.8 18.0 8600 8117 5.6

UP-1 26.0 0.651 42.0 16.8 1424 1424 0.0

UP-2 32.1 o.639 36.0 18.0 1220 1220 0.0

UP-3 38.0 0.698 36.0 18.5 1220 1220 0.0

UP-4 42.8 0.560 36.0 17.5 1220 1220 0.0

* - Specimen failed due to lateral buckling.

Peter Reck's specimens.



TABLE 6.3.1

EFFECTIVE WIDTHS OF UNSTIFFENED ELEMENTS IN SHORT COMPRESSION MEMBERS

Specimen

a a a b
Y K cr --.:y.- (~)

wit (ksi) theory (ksi) a w
cr exp t

Eqn.
b Iw

e

3.4.1
%diff.

Eqn.
b Iw

e

3.4.5
% diff.

SC-I 1 57 . 6 31. 6 o .932 7 .5 4.222 0.556 0.531 4.5 0.495 10.9

SC-I 2 57. 7 30.7 0.925 7.4 4.150 0.565 0.532 5.8 0.499 11.7

SC-II 1 51.5 25.7 0.804 8.1 3.180 0.613 0.556 9 . 3 0.556 9.3

SC-II 2 50.1 30.3 0.825 8.8 3.450 0.574 0.546 4.9 0.538 6. 3

SC-III 1 42.9 31.3 0.757 11.0 2.857 0.610 o .570 6.6 0.580 4.9

SC-III 2 43.0 31.1 0.756 10.9 2.847 0.622 0.570 8 . 3 0.581 6 .6

SC-IV 1 35.3 31.3 0.711 15 .3 2.051 0.743 0.633 14.8 0.658 11.4

SC-IV 2 35.0 30.5 0.703 15.3 1.991 0.725 0.640 11.8 0.666 8 . 2

SC-V 1 29 . 7 33.2 0.671 20.2 1.640 0.787 0.688 12.6 0.713 9 .4

SC-V 2 29.8 31.1 0.668 20.1 1.544 0.721 0.704 2 . 3 0.728 -1.0
N
w
<Xl



cant. TABLE 6.3.1

UD-1*

UD-2*

UD-3*

UD-4*

16.2 41.9 0.610 62.0 0.676 1.100

20.6 41.9 0.640 40.4 1.037 0.973

24.9 41.9 0.663 28.6 1.465 0.890

29.2 41.9 0.702 22.0 1.905 0.782

1.018 7.5

0.835 14.2

0.720 19.1

0.650 16.9

0.924

0.827

0.742

0.676

16.0

15.0

16.7

13.5

* DeWolf's specimens



TABLE 6.3.2

EFFECTIVE WIDTHS OF UNSTIFFENED ELEMENTS IN FLEXURAL MEMBERS

Specimen
o

wit (kSYl.') K ht eory

o

(wit). c!- (b Iw)ll.m cr e expt.

Eqn. 3.4.1 Eqn. 3.4.5
b Iw % cliff. b Iw % cliff.

e e

B1 60.5 51.0 0.924 6 . 7 7.577 0.419 0.475 -13.4 0.386 8.0

B2 53.1 53.8 0.906 8.6 6.280 0.466 0.487 -4.6 0.418 10.2

B3 44.5 53.8 0.847 11.4 4.718 0.500 0.508 -1.6 0.473 5 .4

B4 36.9 51.0 0.754 14.8 3.454 0.514 o .539 -4.9 0.538 -4.6

B5 29.8 51.3 0.665 20.0 2.569 0.555 0.584 5 .2

UP-9* 26.0 42.0 0.651 25.7 1. 636 0.739 0.689 6.8 0.714 3.4

UP-10* 32.1 36.0 0.639 16.5 2.177 0.622 0.618 O. 7 0.644 -3.5

UP-11* 38.0 36.0 0.698 12.9 2.793 0.609 0.570 6.4 0.585 3.9

UP-12* 42.8 36.0 0.560 8.2 4.417 0.500 0.491 1.8 0.486 2.8

* Peter Reck's specimens

N
-l::'
o



TABLE 6.3.3

EFFECTIVE WIDTHS OF UNSTIFFENED ELEMENTS IN SHORT COMPRESSION MEMBERS

a a
b Eqs. 3.4.1 & 6 .3.1a --'i-y cr (~)K a b /w % cliff.

Specimen wit (ksi) theory (ksi) cr w eexpt.

SC-I 1 57.6 31. 6 o .932 7 .5 4.222 0.556 0.472 15.1

SC-I 2 57. 7 30. 7 0.925 7.4 4.150 0.565 0.475 15.9

SC-II 1 51.5 25.7 0.804 8.1 3.180 0.613 0.515 15.9

SC-II 2 50.1 30.3 0.825 8 .8 3.450 0.574 0.502 12.5

SC-III 1 42.9 31. 3 0.757 11.0 2.857 0.610 0.534 12.3

SC-III 2 43.0 31.1 0.756 10.9 2.847 0.622 0.535 14.0

SC-IV 1 35. 3 31. 3 0.711 15.3 2.051 0.743 0.603 18.8

SC-IV 2 35.0 30.5 0.703 15.3 1.991 0.725 0.611 15.7

SC-V 1 29.7 33.2 0.671 20.2 1.640 0.787 0.660 16.1

SC-V 2 29.8 31.1 0.668 20.1 1.544 0.721 0.677 6.1

UD-1* 16.2 41.9 0.610 62.0 0.676 1.100 0.965 12.3

UD- 2* 20.6 41.9 0.640 40.4 1. 037 0.973 0.802 17.6

UD-3* 24.9 41.9 0.663 28.6 1.465 0.890 0.692 22.2

UD-4* 29 . 2 41.9 0.702 22.0 1.905 0.782 0.628 19 .7

N
~

i-'

* DeWolf's specimens



TABLE 6.3.4

EFFECTIVE WIDTHS OF UNSTIFFENED ELEMENTS IN FLEXURAL MEMBERS

a a
b-.-:i- 3.4.1 6 . 3 . 1y

K (w/t)l' a (~) Eqs. &
Specimen w/t (ksi) theory l.m. cr w b /w % diff.exp t. e

B1 60.5 51.0 0.924 6 . 7 7.577 0.419 0.411 1.9

B2 53.1 53.8 0.906 8.6 6.280 0.466 0.427 8.4

B3 44.5 53.8 0.847 11.4 4.718 0.500 0.458 8.4

B4 36.9 51.0 0.754 14.8 3.454 0.514 0.502 2 . 3

B5 29.8 51.3 0.665 20.0 2.569 0.555 0.555 0.0

B6 23.7 51.3 0.605 28.7 1.786 0.595 0.637 -7.1

UP-9* 26.0 42.0 0.651 25.7 1.636 0.739 0.661 10.6

UP-10* 32.1 36.0 0.639 16.5 2.177 0.622 0.598 5.1

UP-11* 38.0 36.0 0.698 12.9 2. 793 0.609 0.539 11.5

UP-12* 42.8 36.0 0.560 8. 2 4.417 0.500 0.466 6 . 8

* Peter Reck's specimens.



TABLE B.2.1 COMPARISON OF EFFECTIVE WIDTIIS - STUB COLUMNS

_._-_ .._~--

Experiment WU eqn. WS eqn.

Specimen w/ t a
e max

b /w b /w % b /w %error error
cr e e ecr

SC II 57.6 3.78 0.556 0.518 6 .8 0.456 18.0

SC 12 57. 7 3.98 0.565 0.508 10.2 0.446 21 . 1

SC III 51. 5 2.69 0.613 0.594 3.1 0.528 13.9

SC 112 50.1 3.12 o .574 0.560 2.4 0./~96 13.6

SC 1111 42.9 2.28 0.61 0.633 - 3.7 0.566 7 . 2

SC 1112 43.0 2.25 0.622 0.636 - 2.3 0.569 8.5

SC IVI 35.3 1. 48 0.743 0.739 0.5 0.673 9 .4

SC IV2 35.0 1. 42 0.725 0.749 - 3.4 0.684 5 . 7

SC VI 29.7 1. 27 0.787 0.777 1 .2 0.714 9 • 3

SC V2 29.8 1. 22 0.721 0.787 -9.2 0.725 o . 5

* 0.58 1.100 0.952 ] 3.4 o .934UD-1 16.2 1 ') • 1

* 0.84 0.973 0.877 9.9 0.829UD- 2 20.6 ] 4 • R

* 0.890 o . 796 o . 734UD-3 24.9 1.18 10.6 1 7 . S

*UD-4 29.2 1. 56 0.782 0.726 7 . 2 0.660 ] 5 .6

_.._._----"---.-.----_.

DeWolf results.
32

* - test
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TABLE B.2.2 COMPARISON OF EFFECTIVE WIDTHS - BEAMS

Experiment WU egn. WS egn.

Specimen wit a e max
b Iw b Iw % b Iw %error errora e e ecr

B1 60.5 7.30 0.419 o. 392 6.4 0.340 18.9

B2 53.1 6.10 0.466 0.424 9 .0 0.369 20.8

B3 44.5 4.80 0.500 0.469 6.2 0.411 17.8

B4 36.9 3.29 0.514 0.549 -6.8 0.484 5 .8

B5 29.8 2.18 0.555 0.644 -16.0 0.576 -3.8

B6 23.7 1.85 0.595 0.684 -15.0 0.616 -3.5

*UP-9 26.0 1.42 0.739 0.749 1.4 0.684 7 .4

*UP-10 32.1 2.09 0.622 0.654 -4.3 0.590 4 . 3

*UP-II 38.0 2.43 0.609 0.618 -1.5 0.551 9 .5

*UP-12 42.8 4.44 0.500 0.485 3.0 0.425 15.0

* - Peter Reck test results.



TABLE B.3.1

DIMENSIONS l AND SECTION PROPERTIES OF COLUMNS WITH STIFFENED ELEMENTS 2

Width-
b

Width-
Thickness Thickness Area of Radius of Experi-

B D T Single Double Full Cross- Gyration mental
Specimen a (in) (i n) (in) Thickness Thickness Section About Weak Buckling

Element Element (in 2 ) Axis (in) Coeffi-
cient

S-l 2.0 3.5 0.058 57.2 16.7 0.86 0.799 4.85

S-2 2. a 5.0 0.058 83. a 16.7 1. 03 0.836 5.37

S- 3 2.0 7 . a 0.058 117.4 16.7 1. 26 0.869 6.11

5-4 2.0 9.0 0.058 151.8 16.7 1.49 0.890 6.90

1 - see fig. A2.3.19a

2 - DeWolf's Specirnen 32



TABLE B.3.2

*TEST RESULTS OF COLUMNS WITH STIFFENED ELEMENTS

246

Specimen

Test
Column
Length

(in)
Effective
Length

(in)

Slender
ness Ratio=
Eff.Length
Rad. 0 f
Gyration

Ultimate
Load
(kips)

Ultimate
Stress=
U1t.Load
Full Area

(ks i)

S-l 10.5 6.8 8.5 34.6 40.5

27.9 31.1 39.0 32.0 37.4

52.0 55.2 69.1 29.6 34.6

88.0 91. 2 114.1 17 .9 20.9

S-2 15.0 9.8 11. 7 34.8 33.9

52.0 55.2 66.0 28.0 27.2

82.0 85.2 102.0 21.3 20.8

99.9 103.1 123.5 17.7 1 7 . 2

S-3 18.1 11.8 13.6 37.0 29.3

22.0 25.2 29.0 35.2 27.8

92.0 95.2 109.8 19.6 15.5

92.0 95.2 109.8 19.0 15.1

92.0 95.2 109.8 18.2 14.4

S- 4 18.9 12.3 13.8 36.7 24.6

34.8 38.0 42.6 33.6 22.6

55.0 58.2 65.5 29.3 19.6

100.0 103.2 116.0 17.6 11.8

119.9 123.1 138.2 13.75 9 .2

* - DeWolf's test resu1ts. 32
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[
Open Sections

LC'Lnn
Lipped Sections

J[ JC - '-

Built-up Sections

Fig. 1.1 COMMON COLD-FORMED STRUCTURAL SHAPES
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Local Buckling of Unstiffened Element

Section Schematic

Fig. 1.2 UNSTIFFENED ELEMENT IDEALIZATION
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Fig. 1.3 OUT OF PLANE DEFORMATION DUE TO LOCAL BUCKLING
OF UNSTIFFENED COMPRESSION ELEHENT
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Machine Head
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Fig. 3.2.3 STUB COLUMN TEST SET-UP AND SPECIMEN SECTION
WITH STRAIN GAGES
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