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ABSTRACT 

This report presents the background and the derivations for the 

determination of the mean maximum loads and the corresponding load 

factors for wind and snow loading for use in Load and Resistance Factor 

Design Criteria for steel building structures. 

i 



1 • INTI~ODlJCTION 

This report is concerned with load factors to be used with wind 

and snow loads in a design method named "Load and Resistance Factor 

Design" (L.R.F.D.). A previous report (l) has presented the general 

background oi this design method as well as the basis for its develop-

ment from a first -order probabilistic theory. In L .R .F. D. a structural 

design is deemed satisfactory if the computed internal forces, as 

determined by structural analysis for the assigned mean loads factored 

by appropriare load factors, are sn~ller than or equal to the factored 

nominal resistance of each stn1ctural ele.me,lt.: 

where 
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factored nominal resistance for limit state k 

resistance factor for the appropriate limit state, 

accounting for the uncertainties of the resistance 

nominal :cet>istauce for the appropriate limit state 

y. Q. J 
1. 1 

factored internal load effect for load 
j 

combination j 

influence factor by which the factored load inten-

sity y f2 is translated into a load effect (e.g., an 

internal force such as bending moment, shear force, 

axial force, torque, etc.) by structural analysis 

luad factor accounting or the uncertainties of 

the load 

load i.ntensit:,,. nr lo<vi dL.te to dead, live, wind, snow, 

etc. , load 

1. 



load factor accounting for the uncertainties of 

structural analysis and geometric and structural 

idealizations. 

It was demonstrated in previous work (1) that the factors 0, y and 
0 

y. can be expressed in terms of the mean values and the coefficients of 
~ 

variation of the respective random variables, and that the factors are 

related to each other through a con~non term called the "safety index" e. 
This safety index is a measure of the reliability of the structural 

element and it is obtained through a process of calibration to an 

existing design criterion. In Ref. 1 such a calibration was performed 

for structural steel members designed according to the current (1976) 

AISC Specification, and a safety index of S = 3 was chosen for the limit 

state of strength c.s being 1·epresentative for structures designed accord-

ing to the 1976 AISC Specification. 

This present report is concerned with the right side of Eq. l, 

i.e., with the load terms corresponding to wind and snow loads. The 

load terms to be determined are the load factors y. and the mean load 
l. 

intensities Q. to be used with the L.R.F.D. criteria developed in Ref. 1. 
~ 

According to the load comoinations used in these criteria it will be 

necessary to define load factors and mean load intensities for the 

maxim:1m lifetime \vind pressure, the maximum annual wind pressure, the 

maximum daily wind pressure, and the ma~dmum annual and the maximum 

lifetime snov1 load intensity. The development will show how the basic 

\vind velocity daL:a given in the distribution maps in ANSI A58.1-1972 (2) 

arc to be used in the L.R.F.D. criteria. 

The appropri.at(~ load cmnbi11ations involving snow and wind in the 

L.Il.F.D. criteria can be enumerated as follows: 

2. 



3. 

Maximum tifetime Hind - Dead 

Dead + Instantaneous Live + Maximum Lifet i.me \-lind 

Dead + Instantaneous Live +- Maximum Lifetime Snow 

Dead + Maximum Li.fet ime Live + Maximum Annual Snow 

Dead + Pondi.ng + Maximum Lifetime Snow 

Dead + Instantaneous Live +· Maximum Daily Wind + Maximum 

Lifetime Temperature 

Dead + :tvlaxim•nn Annual HL,d + Maximum Lifetime Snow. 

The load factors y are deter·mined according to the formula (1) 

y = 1 + 0.55 sv = 1 + 1.65 v (2) 

where S = 3 and V is the coefficient of variation of the appropriate 

load type. 

The idea underlying this list of load combinations is that it is very 

un! ikely that two types of loCld effects will simultaneously reach their 

maximum lifetime value. Thus t::ach combination includes the dead load, 

which is always present, one of the other loads at its maximum lifetime 

value, and the other loads at their instantaneous, annual or daily values, 

as appropriate. Such a scheme of combining the loads has essentially the 

same effect as the use of the 0.75 multiplier used in most current speci-

fications to modify the full nominal code loads in the case of simultaneity 

of occurrence. The scheme proposed herein is more reasonable in that it 

is possible to utilize the fact that the statistics for the different time 

intervals may be different. 

2. STATISTICAL PAI{AMETERS OF WIND LOADS 
-·-·~-·-----··--

In the following, the statistLcal aspects of wind loads on structures 

are discussed. The important random variables characterizing the wind load 

are the maximum wind speed in the service life of the structure, the annual 



maximum wind speed and the daily maximum wind speed. The statistical 

parameters of the lifetime maximum wind speed are derived using the data 

on the annual maximum wind speed. 

2.1 Wind Load Determination According to Current (1976) Practice 

The usual practice for calculating the wind loads on buildings and 

other structures is to use specified minimum design pressures varied 

according to geographical location and height zone above the ground. The 

dynamic action of wind on structures is indirectly accounted for in speci

fying these design pressures. The 1972 version of A58.l of the American 

National Standards Institute (2) and the National Building Code of Canada 

(3) have included procedures which explicitly recognize the dynamic effects 

of wind. 

The procedure for calculating the wind loads according to ANSI A58.1 -

1972 is: 

l. A mean recurrence interval is selected depending on the intended 

operational usage, anticipated life of the structure, degree of wind 

sensitivity and risk to human life and property in case of failure. A 50 

year mean recurrence interval is recommended by ANSI for the design of 

permanent structures. For more important and/or more wind-sensitive 

structures a 100 year mean recurrence interval is recommended. For struc

tures having no human occupants or where there is negligible risk to human 

life, the 25 year mean recurrence interval may be used. 

2. A basic wind speed is selected from the wind maps of the United 

States, corresponding to the mean recurrence interval (Figs. 1, 2 and lA 

in Ref. 2). This speed refers to the annual extreme fastest mile velocity. 

This fastest-mile wind speed is measured by recording the time required 

for a mile of air to pass a fixed point by means of an anemometer which 

makes an electrical contact with the passage of each mile of air. 



') . 

The wind speeds were generally observed at airport or open country 

locations where the exponent in the power law relating velocity and height 

is 1/7. Since the observations may have been taken at different elevations, 

they were adjusted to the standard 30 foot elevation by means of this power 

law prior to the preparation of the wind maps. 

The extreme speeds of each year govern the annual maximum wind wad 

on a structure so only these speeds were considered in determining the 

design values. The annual extreme series for each station, called the 

series of annual extreme miles of wind, were then fitted with a frequency 

distribution to determine the design values associated with variotts prob-

abilities of being exceeded. The associated mean recurrence intervals are 

the reciprocals of these probabilities, and each gives the average tine 

interval in years between the occurrence of all winds exceeding the desigtl 

value. Fisher and Tippett Type II extreme value distributions have been 

employed in this analysis. 

3. Wind speeds corresponding to the specified mean recurrence inteT ·· 

vals selected from the wind maps may be converted to velocity pressures 

using the formula 

(3) 

where q30 is the basic wind pressure, v30 is the basic wind speed and p 

is the air density. For standard air (0.07651 lb per cu. ft.) and 

velocity in miles per hour, velocity pressure q30 in pounds per square 

2 
foot is given by q30 = 0.00256 v30 . 

The effective velocity pressures of wind at various heights above 

the ground are computed using the formula: 

(4) 



6. 

where qz is the effective velocity pressure in psf at height z in ft., 

K is a velocity pressure coefficient which depends upon the type of 
z 

exposure and height above ground and G is a gust factor which depends 

upon the response characteristics of the structure. 

4. The effective velocity pressure varies with height and exposure. 

Three categories of exposure are considered: (A) centers of large cities 

and very rough, hilly terrain; (B) suburban areas, towns, city outskirts, 

wooded areas and rolling terrain; and (C) flat, open country, open flat 

coastal belts, and grassland. For convenience, values of q for ordinary z 

buildings and structures (qz = qF) and for parts and portions (qz = qp) 

have been tabulated in ANSI-A58.1-1972 for a range of speeds as functions 

of height and exposure. 

The effective velocity pressures given by ANSI A58.1 take into 

account the dynamic response to gusts of ordinary buildings and structures 

in a direction parallel to the wind. They do not provide for the effects 

of vortex shedding or instability due to galloping or flutter. ANSI 

recommends a detailed analysis for obtaining the effective velocity 

pressure where a dynamic approach to the action of wind gusts is required. 

5. The resultant wind pressure p acting on an element of an enclosed 

structure is 

p = c q - c q p z pi M (5) 

where qz equals qF or ~ whichever is appropriate, Cp is the external 

pressure coefficient, C . is the internal pressure coefficient and qM is p1 

the corresponding effective velocity pressure (given in Tables 5 and 6 in 

ANSI A58.1). The pressure coefficients define the pressure acting normally 

at local positions on the surface of a building and hence are dependent on 

the external shape and orientation of the building with respect to wind. 



In general the wind pressure acting on a structure or structural 

element can be written as 

a 
W = C q = C K G (0.00256 v30 ) 

p z p z 
(6) 

7. 

where Cp, Kz, G and v30 are all random variables. The mean wind pressure 

W and the coefficient of variation of the wind pressure V can be 
m w 

expressed as functions of the corresponding values of the components: 

a 
Wm - [ (C ) (K ) (G) ][ 0.00256 (V30)m] 

p m z m m 
(7) 

and 

+ (8) 

2.2 Lifetime Maximum Wind Velocity 

Based on wind velocity data from 141 open country stations, which 

were dispersed over the continental U. S., Thorn (4) has suggested that 

the maximum annual wind velocity follows a Type II. Extreme Value dis-

tribution. He has shown that the shape parameter K of this distribution 

is essentially constant for all stations (K = 9.0). Following is a 

derivation of the statistical parameters of the maximum lifetime wind 

speed using the probability model proposed by Thorn. 

The lifetime (n-years) maximum wind speed Y is the maximum of n 

annual maximum wind speeds, x 1 , x2 , ... Xn. Then the probability 

Fy (y) = p [ y ~ y J 

= P [all n of the X. ~ y ] 
1 

The annual maximum wind speeds X. may be treated as statistically 
~ 

independent. 

FY (y) = P [xi s: y ] P [ x 2 ~ y J p (X ~ y] 
n 

= Fx (y) Fx (y) ••• Fx (y) 
1 2 n 

(9) 



8. 

The annual maximum wind speed distribution is assumed to be constant in 

time (i.e., X. are identically distributed with the cumulative distribu-
1. 

tion function FX (x)). Therefore, 

(10) 

Based on the Type 11. Extreme Value probabilistic distribution Thorn 

developed maps for the United States, giving the maximum annual wind 

velocities for mean recurrence intervals of 25, 50 and 100 years. The 

mean Xm and the cotfficient of variation VX of the annual maximum wind 

velocity are obtained using the following expressions: 

(11) 

-~.-;----·-·\ 

ru - ~ ) 
2 1 

p (1 -· -) • K 

1 (12) 

where x50 is the '')0 year" annual maximum wind velocity (as given in the 

ANSI A58.1-1972 wind velocity map for a 50 year recurrence interval- Fig. 

1 in Ref. 2). With K = 9 and using a table of gamma functions, VX is 

calculated by Eq. 12 to be approximately 0.16. 

From Eq. 10 

Writing u 1 == u nl/K 

exp [- n ( u / ] 
y 

Fy (y) = exp [- (u'/y/ J 

(13) 

(14) 

Therefore Y, th<:~ max imurn <J.nnu-':1 1 wind speed, is also distributed according 

to the Type II. r:xrxeme Value probability distribution with the para-

meters of mean 
1 ) 1/K 

Ym = u' f(l - K = Xm n ( 15) 



9. 

and coefficient of variation 

(16) 

Here n is the lifetime of the structure, in years, Y is the mean maximum 
rn 

lifetime wind velocity, X is the mean maximum annual wind velocity (equal 
m 

to 0. 70 times the "n-year" \vind vel,)<.:ity from the n··year .ANSI wind distri-

bution maps) and K = 9. For a 50 year life n = 50 and V = 1.54 X 
m m 

= 

1.08 x50 • The following table gives the relevant &tatistical values for 

a lifetime of 50 years. 

ANSI 50 year 

Basic Wind Velocity, x50 60 mph 70 mph 80 mph 90 mph 

Mean Maximum Annual 

Wind Velocity, Xm = 0. 7 x50 ---~~~ph _____ _:-_~_9_rr_rp_h ______ ._s_6_· _n_tp_h ___ 6_3_n_tp_l_l __ _ 

Mean Maximum Lifetime 

Wind Velocity, Y = X 5(} 19 6.) mph 
m m 

76 mph 86 mph 97 mph 
·------

Similar tables can be constructed for the 25 and 100 year life. 

2.3 Wind Pressure 

The mean wind pressure Tv and the coefficient of variation VW are 
m 

given by Eqs. 7 and 8. In the following the statistics of the contponent 

parameters K , G and C are esti.matecl. 
z p 

The velocity pressure coefficient K depends on the type of exposure ,, 

and on the height above ground at \..rh:lch the wind pressure is r·equired. 

Empirical observations have led ttl the delineation of three exposure 

categories (Type A, B and C in AN:3J A5B .1. as described earlier in this 

report), and for each t:he variation with height is defined by an exponent 

in a power law relationship. The va:dat ion of K with height and exposure 
z 

type is given in Fig. A2 of A.l\lt31·-A':>t:Ll-1972 and the resulting wind pressures 

have been tabulated in the same document as Tables 5 and 6 (Table 5 for qF' 



lU. 

the velocity pressure on the whole structure, and Table 6 for q for parts 
p 

and portions of the structure) for the three exposure types. Since the 

velocity pressure coefficient K is used to cover a broad spectrum of 
z 

exposure conditions, its use in calculating the wind pressure will result 

in some uncertainty in the prediction, characterized by the coefficient of 

variation VK . As the 
z 

relevant information to calculate VK 
z 

able, it will be assumed that VK 
z 

= 0.10 for the purposes of 

is not avail-

this report. 

The reliability of the gust factor G has been studied by Vickery (5) 

and more recently by Ellingwood and Ang (6). The gust factor, as noted 

earlier, depends on wind characteristics, terrain and building character-

istics such as natural frequency, damping, geometry and mode shape. How-

ever, the variation in G is limited to a narrow range. Ellinwood and Ang 

(6) have shown that the mean gust factor is insensitive to variations in 

the natural frequency and the critical damping ratio. This result is 

significant because these quantities are often estimated from empirical 

expressions. The implication is that refined estimates of the dynamic 

characteristics of the system will not improve the mean gust factor 

estimation. Vickery (5) has demonstrated that the mean gust factor is 

insensitive to the mode shape, hence the actual mode shape is not impor-

tant. Formulas and graphs for the determi-nation of the gust factor are 

presented in Sec. A.6.3.4.1 of ANSI-ASB.l-1972, and these have been used 

in the development of the pressure tables (Tables 5 and 6 in ANSI-A58.1-

1972). It will be here assumed that the gust factors implied in these 

tables are taken to be the mean values for ordinary steel buildings. 

Based on the work of Vickery (5) a coefficient of variation VG = 0.12 is 

estimated. 

The pressure coeffictents, C , are the non-dimensional ratios of 
p 

wind-induced pressures on a building to th.e aynamic pressure (velocity 



11. 

pressure) of the wind speed that would be measured at the top of the 

building in the undisturbed air stream. Pressures on the surfaces of 

structures vary considerably with the shape, wind direction and the 

profile of the wind velocity. Pressure coefficients are usually deter-

mined from wind tunnel experiments on small-scale building models. It is 

essential in most cases that these pressures be measured in a wind tunnel 

in which the correct velocity profile is simulated. The pressure coeffi-

cients are all time-averaged values and usually represent spatial 

averages. In view of all these assumptions and simplifications, there 

will be uncertainty in the prediction of C values. Here, it is assumed 
p 

·that the C values used in the development of the pressure tables in ANSIp 

A58.1-1972 are mean values and that the coefficient of variation VC is 
p 

0.10. 

The mean maximum lifetime wind pressure, w1 , the coefficient of 
m 

variation, VW , and the load factor 
L 

Yw , for use in the L.R.F.D. criteria, 
L 

are determined as follows: 

W = ( Mean Maximum Lifetime Wind Velocity )2 ANSI 50-Year Wind Pressure 
L 50-Year ANSI Basic Wind Velocity m 

For a life n = 50 years 

(WL ) = 1.17 (ANSI 50-Year Wind Pressure) 
m 50 

For a life n = 100 years 

(WL ) = 1.36 (ANSI 50-Year Wind Pressure) 
m 100 

For a life n = 25 years 

(W1 ) = 1.00 (ANSI 50-Year Wind Pressure) 
m 25 

(17) 

(18) 

(19) 

(20) 



The coefficient of variation vw is determined from Eq. 8 as 
L 

2 2 a :a 
vtv ~· = VK + VG. + 4 vv = + 0.1 + 0.12 + 4 F .. X 0.16 

L z 30 
= 0.37 

where the individual coefficients of variation were taken from the pre-

viously presented estimates. It should be noted that v30 = VX in the 

previous section, and that this term predominates in Eq. 8. Should the 

other three coefficients of variation be much larger, for example 

VC = VK = VG = 0.15, VW would become equal to 0.41, resulting in a 
p z L 

change in the lead factor y only in the second decimal. 

The load factor Yw for the mean maximum lifetime wind pressure is, 
L 

from Eq. 2, equal to 

Yw = 1 + 0.55 13 vw = 1 + 0.55 x 3 x 0.37 = 1.61-= 1.6 
L L 

The mean maximum annual wind pressure, WA , the coefficient of 
m 

variation, VW , and the load factor y are determined as follows: 
A WA 

\v = ( Mean Maximum Annual Wind Velocity )2 ANSI 50-Year Wind Pressure 
A 50-Year ANSI Basic Wind Velocity m 

(21) 

= 0.49 (ANSI 50-Year Wind Pressure) (22) 

The coefficient of variation VW 
A 

mum lifetime wind pressure. 

= 0.37 and Yw 
A 

= 1.6, as for the maxi-

The mean maximum daily wind pressure, w0 , the coefficient of 
m 

variation, VW , and the load factor, ytll 
D D 

, and the load factor, Yw , 
A 

are determined as follows: 

W = ( Mean Maximum Daily Wind Velosity )2 ANSI 50.;.Year Wind Pr 
D 50-Year ANSI Basic Wind Velocity essure 
m 

(23) 

12. 
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(24) 

Unfortunately no map is provided in ANSI-A58.1-1972 for the statis-

tics of the daily maximum wind velocity. An analysis of 13 locations in 

the continental US is given in Table 1 for a period of one year. This 

table lists the location; the mean fastest mile daily wind speed in 

mph (v30Drn); the corresponding 50 year ANSI wind speed for the same loca

tion from the map in Fig. 1 of ANSI-58.1-1972 (VANS!); the multiplication 

factor 

v30Dm 2 
( ) 

vANS! 

by which ANSI 50-year wind pressure is multiplied to obtain the mean wind 

load intensity from Eq. 23; the coefficient of variation of the daily wind 

(VV ); the coefficient of 
D 

determined by Eq. 24; and 

variation of the daily wind pressure (VW ), 
D 

the load factor (Yw ) for the daily wind effect 
D 

from Eq. 2. The load factor is based on a = 0.55 and~ = 3.0, where~ is 

the safety index. 

In view of the similarities of the results from the various cities it 

is recommended that the design for daily wind in LRFD be based on the 

following rounded off values of the mean daily maximum wind intensity 

0.07 x ANSI 50 yr wind pressure (25) 

and the load factor Yw = 2.3. 
D 

Following is an example calculation to illustrate the determination 

of the factored design wind load intensities for an ordinary structure 

with type B exposure where the wind load is desired at an elevation of 

200 ft. 

From Fig. 1 of ANSI-A58.1-1972, the basic ANSI 50-Year wind velocity 

is estimated as 70 tllf>h~ The effective velocity pressure from Table 5 in 
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ANSI-A58.1-1972 is qF = l..8 psf for a 70 mph..-wirid and a height of 200 ft. 

= 1.6 X 1.17 X 18 = 34 psf 

y (W ) 
WL Lm 100 

= 1.6 X 1.36 X 18 = 39 psf 

Yw (WLm) = l. 6 X l. 00 X 18 = 29 psf 
L 25 

Yw (WArn) = 1.6 X 0.49 X 18 = 14 psf 
A 

Yw (WDm) = 2.3 X 0.07 X 18 = 3 psf 
D 

2.4 .Load Effects Due to Wind in the Structure 

In the previous section it was shown that the load factors to be used 

with mean wind pressures are equal to 1.6 for the maximum lifetime and 

the maximum annual wind, and 2.3 for the maximum daily wind. The develop-

ment of these factors was based on the wind pressure, and the question of 

the effect of this wind pressure on the magnitude of the forces in the 

member to be designed has not been considered. 

When considering this question of the actual load effects due to 

wind in a structural component one has to consider the following: 

1) In the case of a serviceability limit state the whole building, 

including the structure itself and all the non-structural cladding com-

ponents, is intact and there exists a considerable amount of sharing of 

the applied wind pressure. The wind pressure resistance is shared by 

(1) the structural elements which are intended to carry all the wind-

induced forces, (2) the structural elements which are present but have 

not been figured to help in the wind load resisting tasks (e.g., a 

"simple" connection in a braced frame is still able to resist some wind 

induced moments) and (3) by the "cladding" elements such as the walls, 



partitions, slabs, stair-wells, etc. 

2) At the ui.timate limit state it may well be that some of the 

cladding elements have already been lost or :lt least damaged, and here, 

it must be assumed that the rletoigoed structure itself resists the major 

15. 

share of the wind pressure. Howi>..ver, the mechanism o.f: failure is not a 

purely static one, and in some way or other it must involve the dynamic 

properties of the building and the du(:cility of the structure. While 

failure of b:dldings under ,,_Ln._; force~:: is but imperfectly understood, 

there are some parallels tu the failure of steel structures under severe 

earthquake motions where strength, ductility and dynamic properties all 

play an important part .. 

3) Another aspect to be considered is that the nature of the wind 

pressures may not be a~ assumed in the previous analysis: e.g., it might 

be possible to model the lifetime wind by <.mother distribution (Type I 

distribution was used by Al~en in Ref. 7), the statistics of the height, 

roughness, gust and shape factors might be inaccurate (Ref. 7), and there 

might be a reduction of the wind pressure due to directionality of the 

wind (Refs. 7 and 8). 

Unfortunately present state of research is not in any way ready yet 

to give definitive answers to the questions raised above. This is 

especially so in the case nf the ultimate behavior of structures under 

wind, where it .i.s difficult to visualize realistically the failure mech-

anism. ln the absence of definite dnswers it is necessary to look 

elsewhere for a temporary solution, namely, to present satisfactory design 

practice. 

The AISC Specification, in Sec. 1.5.6, permits an increase of 33/o of 

the allowable stresses for any load combination involving wind. If only 
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wind induced forces are present, for example, in a tension brace in a 

diagonally braced frame, the AISC Specification requires the following 

net area: 

(A ) = 
n AISC 

p 
w 

0.6 F (4/3) 
y 

The corresponding area required by LRFD is 

1.1 X 1.6 X 1.17 P 1.1 X 1.6 X 1.17 P 
(A ) = 

n LRFD 
--------~--------~w __ w 

0 F 0.88 F y y 

(26) 

(27) 

where 1.6 is the previously determined wind load factor Yw' 1.1 is the 

analysis factory (Ref. 1), 0 is the resistance factor (0 = 0.88, Ref. 9), 
0 

and 1.17 is the multiplier which translates the ANSI wind pressure, enter-

ing this example through the code-specified wind force P , into the mean 
w 

.maximum 50 yr. lifetime wind pressure. If one divides Eq. 27 by Eq. 26, 

one finds that the brace area required by LRFD is 1.87 times the area 

required by AISC. Similar discrepancies are seen to exist for beams and 

columns, as shown by the upper curves in Figs. 1 and 3 {for the deriva-

tions see the Appendix). While the wind pressure statistics, on which 

the load factor Yw = 1.6 is based, are not by any means without inaccu

racies, the wind velocity statistics are quite reliable, agreeing with 

similar data from Canada and Europe (Refs. 7 and 8). The wind load 

factor is as large as it is because the square of twice the coefficient of 

variation of the wind velocity must be used (Eq. 8). It is, therefore, 

of not too great an advantage to improve the statistical basis for Yw' 

because there is not enough to be gained so as to make up the almost 

100% difference between the AISC and LRFD designs. 

Is the~, the AISC wind design procedure unsafe? It appears to have 

served ·sat~s.factorily for steel structures for. quite a number of years 
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already, and so it can be assumed to be an adequate basis for design. 

If then neither the statistical wind pressure data nor current practice 

are at fault, it must be assumed that the modeling of wind resistance by 

a static structural skeleton is inadequate. As pointed out previously, 

present research is unable to provide rational answers, and as a temporary 

expedient it is suggested that the wind pressure be modified by a multi

plier F < 1.0 to bring the I.RFD wind designs in line with current practice. 

The appendix gives a calibration procedure for beams and columns, and the 

results are given in Figs. 1 and 3, where ratios of LRFD-to-AISC section 

requirements are plotted against the wind pressure-to-dead load ratios 

for F = 1.0, 0.75, 0.6 and 0.5. The reduction factor F = 0.6 appears to 

give a satisfactory ratio between the LRFD and the AISC requirements for 

the types of structural elements considered. In order to be somewhat on 

the conservative side, however, and to account for situations not covered 

in the calibration, it is suggested that the mean wind pressures to be 

used in LRFD be multiplied by a reduction factor F :: 0. 75 until further 

research permits a more rational method dealing with wind load effects in 

structural elements. 

In view of the arguments presented above it is recotmnended that the 

mean maximum wind pressures as determined in the previous section, be 

multiplied by 0. 75 for use in LRFD criteria. However, this modification 

is not to be used in the case where overturning is considered. 
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3. STATISTICAL PARA!ffiTERS OF SNOW LOADS 

The statistical aspects of snow loads on structures are discussed 

in this section. The parameters of snow loading are derived using 

climatological data. It is recognized in the study of load combinations 

that the important random variables characterizing the snow load are the 

maximum snow load in the service life of the structure and the annual 

maximum snow load. The statistical parameters ·Jf the :ifetime maximum 

snow load are derived us:Lng the. data on the annual max~~mum sno-v.: load. 

The load factor to be applied on the mean lifetime maximum snow load 

and on the mean maximum annual snow load are calculated. 

3.1 Snow Load Determination According to_Curre.!!!_ (1976) Practice 

The current version of the American National Standard (1) - ASS.l-

1972 (2) on minimum design loads in buildings and other structures has 

given the following procedure to calculate the snow loads acting on the 

structures: 

1. A mean recurrence. interval is selected depending on the intend

ed operational usage and risk to human life and property in case of 

failure. A 50-year mean recurrence interval is reconnnended for use for 

all permanent structures except those that present an unusually high 

degree of hazard to life and property in the event of failure. In the 

latter case, a 100-year mean recurrence interval is recormnended. For 

structures having no human occupants or where there is negligible risk 

to human life, a 25-year mean recurrence interval may be used. 

2. A basic snow load is selected using Figs. 3, 4 or A7 in Ref. 2 

corresponding to the mean recurrence interval. These figures show the 

isolines of ground snow load for portions of the United States. 



3. The minimum snow load for the design of ordinary and multiple 

series of roofs is determined by multiplying the basic snow load by an 

appropriate snow load coefficient. The basic snow load coefficient, 

C , is taken as 0.8 and is varied to reflect differences in types and 
s 

slopes of roofs and location (e.g. shielding and valleys). 

3.2 Lifetime Maximum Snow Load 

The snow load q acting on a structure is a random variable; it is 

a function of the ground snow load, wind speed and direction, geometry 

of the structure and the temperature gradient between the inside of the 

structure and the outside. Isyumov (10) has investigated the influences 

of these variables on the snow load acting on a structure. However, 

current design practice is to model the roof snow load S as a snow load 

coefficient Cs times the ground snow load q. i.e., 

(28) 

where both C and q are random variables. The statistics of the ground s 

snow load q are obtained from meteorological data. Information on c5 is 

obtained by observations relating the roof snow load to the ground snow 

load. 

From Eq. 28, the mean, S , and the coefficient of variation, V , 
m s 

of roof snow load are calculated as: 

(29) 

r_·-~---;-· 

and V S ~ V V C s + V q (30) 

The statistical parameters of the lifetime maximum snow load are 

derived using the data on the annual maximum snow load. 
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Thorn (11) has presented meteorological data on the annual maximum 

ground snow loads in different parts of the United States. Figs. 5 and 

6, reproduced from Thorn's paper, give the contours of mean and standard 

deviation of the logarithms of water equivalent of ground snow. He has 

observed that the maximum annual snow load follows a lognormal probabil-

ity density function: 
_x )3 

( v ; 

1 X 
. [ exp { - t [ --cr-.£-.n_m_x_ J } } (31) 

~ 

where X is the maximum annual sno't>r load, X is the median of the random 
m 

variable x~ expressed in terms of (tn X) as . m 

... 
X = exp ( (tn X) J m m (32) 

The term (tn X) is the mean of the natural logarithm of the maximum 
m 

annua 1 snow load from Thorn's map (Fig. 5.) and o tn X is the standard 

deviation of tn X from the map in Fig. 6. The probability density 

function fy(Y) of the lifetime maximum snow l0ad Y can be obtained from 

Eq. 31 and Eq. 10. As the integrations involving fX(x) from Eq. 31 

cannot be performed in closed form, the mean and the coefficient of 

variation of the maximum lifetime snow loads were calculated by Monte 

Carlo simulation using Eqs. 31 and 10. Table 2 shows these values for 

ten stations selected to reflect the geographical variations of snow 

load in the United States. This table lists fox· each station the 

values (tn X) and 0'" X (i.e., the mean of the logarithm of the maxi .. m .x.n 

mum annual snow load and the standard deviation of tn X, respectively, 

as obtained from Figs. 5 and 6), and the mean maximum lifetime snow 

load Ym and the coefficient of variation of the maximum lifetime snow 
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load Vy, as determined by the Monte Carlo simulation. The latter 

coefficient of variation is the value V , to be used in Eq. 30. 
q 

Table 2 also gives the statistics of the maximum annual snow load, 

i.e., Xm' the mean and VX the coefficient of variation. For the assumed 

lognormal distribution X and VX can be computed from the data given in 
m 

Figs. 5 and 6 ··by the relationships 

and 

X -
m 

exp [ (tn X) + 
m 

1 
2 (33) 

(34) 

An approximate value of the mean nmximum lifetime snow load intensity 

can be obtained from the expression 

Y = X (1 + K VX) m m (35) 

where Xm and VX are determined from Eqs. 33 and 34, respectively, and 

K = 3.70. The actual value of K, as determined by using Ym from the 

Monte Carlo simulation into Eq. 35, is tabulated also in Table 2. This 

K varies from 3.1 to 4.1, and K = 3.7 is the average value. 

For a given location the designer would look up (tn X)m and ~tn X 

from Fig. 5 and 6, compute X , VX and Y from Eqs. 33, 34 and 35, and m m 

then determine the mean maximum annual snow load intensity by 

= ( 62.4 ) X 
12 m 

in psf (36) 

and the mean lifetime maximum snow load intensity by 

= ( 62.4 ) y 
12 m in psf (37) 
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for use in Eq. 29 as appropriate. The ratio 62.4/12 performs the 

transformation from inches of H20 to the usual psf units. In order to 

permit a more rapid calculation of the mean maximum snow load intensi-

ties, values of qAm and qLm are tabulated in Table 3 for at least one 

location for each of the states in the continental US. 

It should be pointed out that these values of q apply only insofar 

as the charts given by Thorn (Figs. 5 and 6) are valid. Local conditions 

in valleys of mountainous regions will require special treatment. 

3.3 Evaluation of the Snow Load Factor y s 

The load factor y to be applied to the mean snow load S (Eq. 29) 
s m 

is determined by Eq. 2 with the coefficient of variation V from Eq. 30. 
s 

The roof snow load is calculated by multiplying the mean ground snow 

22. 

load ~by a coefficient C5 • This coefficient depends on the wind speed 

and direction, the geometry of the structure and the temperature gradient 

between the inside of the structure and the outside. Although some of 

these factors have been studied expressing all these influences 

by one factor is at best uncertain. ANSI-ASS.l-1972 specifies a basic 

snow load coefficient C = 0.8, which is then modified for different s 

types of roofs, slopes and locations. Here it will be assumed that C 
s 

determined according to ANSI-A58.1-1972 is a mean value having an assumed 

coefficient of variation of Vcs = 0.15. This means that the basic snow 

load coefficient C5 = 0.8 lies between 0.56 and 1.04 with a probability 

of approximately 95 percent. 

The load factor y to be applied to the mean maximum snow loads is 
s 

(38) 
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where 

(39) 

Using v :::: v" from Tab 1e 2 fot: the maximllG\ l ifet:l.m;;:: G.! OW load (.)(lC 
q )_ 

obtains y varying from 1.43 to 1. 97, from which the ave.:-age of l. 7 is 

recommended for use. Thus 

y :;;: 1. 7 ( 40) 
SL 

Similarly, using V = V from Table 2. for the cita·:n•.nura ::mnual snow ioad, 
q X 

a variation of y from l. 7 to :2,6, from which the average of 2. 3 is 

recommended for use, giving 

= 2.3 (41) 

4. SUMMARY 

This report has developed methods for determining mean wind and 

snow load intensities and the corresponding load factors for use with 

the Load and Resistance Factor Design Criteria presented in Ref. 1. 

The wind load determination for ordinary steel structures involves 

the use 1of the reconnnended wind velocity pressure intensities given in 

Tables 5 and 6 of "Building Code Requirements for Minimum Desi.gn Loads 

in Buildings and Other Structures" (ANSI-A58 .1-19'72). The mean maximum 

wind loads are determined by obtaining the value of the velocity pressure 

qANSI for the whole structure, qF, from Table 5, or for part of the 

structure, qp, from Table 6 of AN~>I-A58.1-1972, as appropriate, for the 

type exposure (A, B or C), the height above ground for which the wind 

load is required, and for the 50 .:/_ear wind velocity obtained from Fig. 1 

of ANSI-A58.1-1972. The mean maximum lifetime wind pressure for use in 
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the L.R.F.D. ct:·iteria is then determined as follows: 

50 yr. life: WLm = 1..17 qANSI 

100 yr. life: WLm = 1.36 .qANSI 

25 yr. life: ~" 
:::. 1.00 qANSI Lm 

The load factor corresponding to each of these mean ·~o,rind load intensities 

is Yw = 1.6. 
L 

= O.l~9 qANSI and Yw 
A 

= 1.6 

The mean maximum daily wind pressure is calculated by the formula 

= 0.07 qANSI and = 2.3 

In case of structures for which the ANSI velocity pressure tables 

do not apply, the procedure outlined in this report may be used to 

determine maan loads from the velocity pressures calculated by the 

detailed mathods provided in the Appendix of ANSI-A58.1··1972. 

The mean maxinrum wind pressures obtained above, are to be multiplied 

by 0.75 to account for the translation of wind pressure on the structure 

to wind load effects on the structural component. This factor is not to 

be applied when overturning is considered. 

The snow load determination involves the use of data from Figs. S 

and 6 of this report for ordinary structures not located i.n special snow 

regions. 

s = c Cl 
m s 'm 



where Cs i:: the roof snow load coefficient and ~ is either the mean 

maximum annual (qAm) or lifetime (q1m) ground snow h1ad intensity, as 

appropriate. According to Sec. 7 of ANSI -A58 .1··1972 C :.:. 0.8 shall 
s 

be used unless a modification to account for other than o~dinary roof 

conditions is required (see Sec. 7.2.1 of ANSI-A58.l-1972 for the 

details of this modification). The mean maximum annual _ground snow 

intensity is de.termined by the formula 

62.4 
12 

fexp [ (£n X) + l - m 
] 

2 (o ~ 
-'Ill 

and the mean maximum lifetime ground. snow intensitv is equal to 

;----.. -------·--··-

qLm = qAm (1 + 3.70V exp (O'.en X{~- 1) 

where (tn X) is the mean of the logarithm of the water equivalent oJ 
m 

the ground snow (obtained for any location in the US from Fig. 5) and 

O'_en X is the standard deviation (from Fig. 6). The corresponding load 

factors are y S = 2.3 for the annual snow load and y S = 1. 7 for the 
A L 

lifetime snow load. 

Values of qLm and qAm are given in Table 3 for various locations 

in the US for a close enough spacing so that the ground snow load 

intensity can be directly obtained. It should be pointed out again 

that the procedure does not account for special snow regions. 
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7. NOMENCLATURE 

Cp External wind pressure coefficient 

C . Internal wind pressure coefficient 
p1 

c s 

f 

F 

G 

_(ftn 

K 

K 
z 

n 

p 

p 

Q 

q 

qAm 

X) 

q/v'\fSI. 

qF 

q Lm 

q 
p 

qJO 

R 
n 

s 

s 
m 

m 

Roof snow load coefficient 

Influence factor translating load intensity into load 

effect 

Probability density function 

Cumulative distribution function 

Gust factor 

Mean of logarithm of ground snow, from Fig. 1 

Coefficient in statistical calculations 

Velocity pressure coefficient for wind load 

Lifetime, in years 

Probability 

Effective wind pressure 

Load t~ffect 

Load intensity 

Mean maximum annual ground sno1.v load intensity 

ANSI .50-year wind load intensity 

Wind lu.1d intensity on whole ftr'Jcture 

Mean maximum l:if:etim;.~ ground snow' load :Lntensity 

Wind load tn~ensity on part of structure 

Hind load . . 
Htten~aty at 30 ft. 

Nominal resistance 

Snow load intensity 

Mean snow load intensity 

')] "-·. 



v 

WArn 

WDm 

WLm 

X 

y 

e 
y 

0 J.,n X 

Coefficient of variation, subscripts denoting the 

appropriate variable 

Mean maximum annual wind load intensity 

Mean· maximum daily wind load intensity 

Mean maximum lifetime wind load intensity 

Maximum annual wind velocity or ground snow as a random 

variable 

Maximum lifetime wind velocity or ground snow as a random 

variable 

Safety index 

Load factor, subscripts denoting the appropriate load 

type 

Standard deviation of annual maximum snow intensity from 

Fig. 2 
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TABLE 1: Maximum Daily Wind Statistics for 1974 

. 
Location v30Dm vANSI 

mph mph 

Boston 21 90 

Denver 19 80 

Minneapolis 18 75 

18 80 

St. Lcuis 18 70 

Kansas City 13 70 

Salt Lake City 18 80 

Washington, D.C. 17 

Dallas 17 70 

Atlanta 17 80 

Pittsburgh 16 70 

Seattle 16 80 

New York City 14 RO 

0.05 

0.06 0.38 

0.06 0.33 

0.0.5 0.30 

0.07 0.37 

0.06 0.:59 

0.05 0,39 

o.os 0.36 

0. 06. 0.35 

0.04 0.38 

0.05 0.33 

0.04 0.37 

0.03 0.~2 

v 
WD 

0.67 

0. 78 

0.69 

0.63 

0.76 

0.80 

0. 80 

0.74 

0. 72 

0.78 

0.69 

0. 76 

0.67 

y 
wr) ,_ 

2.1 

2.3 

2.1 

2.0 

2.3 

2.3 

2 ') 

2.2 

2.3 

2.1 

2.3 

2. 1 
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TABLE 2. STATISTICAL PARAMETERS OF ANNUAL MAXIWJM (X) AND LIFETIME MAXIMUM (y) WATER EQUIVALENT 

(INCHES OF WATER) GROUND SNOW 

Station Billings Duluth DesMoines Chicago Kansas St.Louis Indianopolis Detroit Albany 
Hontana Minn. Iowa Ill. City,Mo. Mo. Indiana Mich. N.y. 

(in X) * 0.00 1. 25 0.00 -0.10 -0.30 -0.60 -0.50 -0.25 -0.55 
m 

O'.en X * 0.75 0.40 0.80 0. 70 0.80 0.90 0.75 0.55 0.55 

** Ym(in.H20) 5.78 8.73 6.53 4.63 4.84 4.59 3.50 2.78 6.18 

** v = v 
y q 0.45 0.21 0.49 0.41 0.49 0.57 0.45 0.31 0.31 

K 3.92 3.11 3.93 3.75 3.94 4.10 3.88 3.48 3.49 

Xm ( in . Hz 0) ffo 1.32 3. 78 1.38 1.16 1.02 0.82 0.80 0.91 2.02 

v ift 
X 0.87 0.42 0.95 0.80 0.95 1.12 0.87 0.59 0.59 

(Y )approxiftfft 
m 
in. H20 5.57 9.65 6.23 4.59 4.61 4.22 3.38 2. 90 6.43 

psf 29 50 32 24 24 22 18 15 34 

* obtained from Figs. 1 and 2 

** for 50 yr. life by Monte Carlo simulation 

# from Eqs. 30 and 31 

## from Eq. 32 with K = 3.7 

Caribou 
Maine 

1.50 

0.60 

18.00 

0.34 

3.56 

5.37 

0.66 

18.48 

96 

(.,..) 

0 . 
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TABLE 3. MEAN SNO\v LOAD INTENSITIES FOR VARIOUS U.S. CITIES 

FOR USE IN L.R.F.D. CRITERIA 

City State cr£.n X (£.n X) qAm qLm m 
(psf) (psf) 

Birmingham Alabama 0.99 -1.4 2 12 

Tucson Arizona .90 -1.5 2 9 

Phoenix Arizona .85 -1.0 3 13 

Flagstaff Arizona .40 - .5 3 9 

Little Rock Arkansas .84 -1.4 2 9 

San Francisco ' California .80 -1.0 3 12 

Los Angeles California .86 -1.0 3 14 

Denver Colorado .60 - .5 4 13 

Grand Junction Colorado .85 - .7 4 18 

Hartford Connecticut .70 .o 7 26 

Dover Delaware .90 - .5 5 24 

Atlanta Georgia 0.98 -1.2 3 14 

Boise Idaho .85 -1.0 3 13 

Pocatello Idaho .35 - .5 3 8 

Chicago Illinois .70 - . 1 6 24 

Springfield Illinois .82 - .4 5 23 

South Bend 
' 

Indiana .70 .0 7 26 

Indianapolis Indiana . 75 - .s 4 18 

Dubuque Iowa .82 . 1 8 37 

Des Moines Iowa .80 - .0 7 32 

Kansas City Kansas .80 - .3 5 24 

Wichita Kansas .60 - .5 3 13 

Louisville Kentucky .60 - .8 4 10 
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City State O'.tn X (Ln X) m qAm qLm 
(psf) (psf) 

Paducah Kentucky .92 -1.0 3 15 

New Orleans ' Louisiana 1.0 -2.0 1 7 

Shreveport Louisiana .86 -1.7 1 5 

Augusta Maine .60 1.3 23 78 

Baltimore Maryland .90 - .5 5 24 

Boston Massachusetts .60 .o 6 21 

Marquette Michigan .40 1.5 25 64 

Detroit Michigan .55 - . 25 5 15 

Minneapolis Minnesota .75 .s 11 48 

Duluth Minnesota .40 1.2 20 so 

Jackson Mississippi 0.95 -1.5 1 10 

St. Louis Missouri .90 - .6 4 22 

Great Falls Montana .35 .1 6 14 

Billings Montana .75 .o 4 29 

North Platte Nebraska .40 - .3 6 11 

Lincoln Nebraska .82 .2 9 41 

Winnemucca Nevada .so -1.0 3 6 

Las Vegas Nevada .50 -0.6 2 10 

Concord New Hampshire .ss 0.8 13 43 

Trenton New Jersey .80 .o 7 32 

Raton New Mexico .8 -1.0 3 12 

Albuquerque New Mexico .8 -1.3 1 9 

Las Cruces New Mexico .9 -1.5 2 9 

Albany New York .55 - • 55 11 34 

New York New York .80 .0 7 32 

Raleigh North Carolina .9 -1.0 3 14 
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City State O'tn X (tn X) m qAm qLm 
(psf) (psf) 

Wilmington North Carolina 0.95 -1.2 2 13 

Bismarck North Dakota .4 .2 9 24 

Fargo North Dakota .7 . 1 7 29 

Cleveland Ohio .45 .o 6 16 

Columbus Ohio .5 - .5 4 11 

Cincinnati Ohio .5 - • 7 3 9 

Oklahoma City Oklahoma .6 -0.9 3 9 

Tulsa Oklahoma • 7 -1.0 2 10 

Blue Mountains Oregon .8 .o 7 32 

Eugena Oregon • 7 -1.0 2 10 

Portland Oregon .7 - .3 5 19 

Pittsburgh Pennsylvania .5 - .2 5 14 

Harrisburg Pennsylvania • 7 - . 1 6 24 

Philadelphia Pennsylvania .8 - .3 5 24 

Providence Rhode Island • 7 .o 7 26 

Columbia South carolina 0.95 -1.2 2 13 

Rapid City South Dakota .5 .0 6 18 

Sioux Falls South Dakota .8 .2 9 39 

Memphis Tennessee .92 -1.4 2 10 

Knoxville Tennessee .88 -0.8 3 17 

Amarillo Texas .7 -0.9 3 11 

Forth Worth Texas .8 -1.5 2 7 

Austin Texas .9 -2.0 1 5 

Salt Lake City Utah .25 - .3 4 8 

Lake Powell Area Utah .4 -0.8 3 6 

Montpelier Vermont .6 1.0 17 58 
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City State O'J,n X (irn X) qAm qLm m 
(psf) (psf) 

Richmond Virginia .85 - .6 4 20 

Seattle washington .6 - .8 3 10 

Spokane Washington .6 .o 6 21 

Charleston West Virginia .7 - .8 3 12 

Green Bay Wisconsin .6 .4 9 32 

Madison Wisconsin .8 .o 7 32 

Worland Wyoming .6 .o 6 21 

Cheyenne Wyoming .35 - .3 4 10 
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Fig. 1 Ratios of Be~m Section Moduli for Beams in an Office Building. 
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Fig. 2 Variation of Beam Section Modulus Ratios. 
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Fig. 3 Ratios of Column Areas for Simple Column in a Braced Frame Office 
Building (L = 50 psf). 
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Fig. 5- Mean of the logarithms of the water equivalent of ground snow. 
(From Ref. 11). 

Fig. 6 - Standard deviation of the logarithms of the water equivalent of 
ground snow. (From Ref. 11). 
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APPENDIX: AISC-VERSUS-LRFD BEAM AND COLUMN DESIGNS UNDER WIND LOADING 

The design requirement in Part 2 of the AISC Specification for load 

combinations involving wind loads is that for beams 

where F = specified yield stress 
y 

= plastic section modulus required according to 

Part 2 of the AISC Specification 

= influence factor translating the dead load 

into a bending moment 

= influence factor translating the live load 

intensity into a bending moment 

= influence factor translating the wind load 

intensity into a bending moment 

D = code-specified dead load intensity 
c 

L = code-specified live load intensity, reduced in rc 

w c = 

accordance with ANSI - A58.1 (1972) 

code specified wind load intensity according to 

ANSI - A58.1 (1972. 

An additional requirement is that 

(A-1) 

(A-2) 

It can usually be assumed that both the dead and the live loads act 

in the same direction as uniformly distributed loads, and therefore, 

cD = cL, and thus the plastic section modulus required by the AISC 

Specification under combined wind and gravity loading is equal to 

[1.3 CD De] [ 1 + 
L <w we] z = _!£ + A F D CD De 

(A-3) 
y c 



The design requirement for the plastic section modulus in LRFD 

for the strength limit state is equal to the following equation 

where ¢ = resistance factor, 0 = 0.86 (Ref. 1) 

= plastic section modulus required by LRFD 

= mean dead load intensity 

L = the mean instantaneous live load intensity Im 

(Lim= 12 psf, Ref. 1) 

W = the mean maximum lifetime wind pressure 
m 

F = a factor, yet to be determined, by which the wind 

pressure is reduced to achieve calibration with the 

AISC Specification requirement 

In addition, it is required that 

41. 

(A-4) 

where L is the mean maximum lifetime live load intensity. The value of 
m 

L is determined by the formula (Ref. 1) 
m 

L = 14.9 + 
m 

(A-6) 

in units of psf; AI is the influence area which is equal to twice the 

tributary area Ar for beams and 4 Ar for columns. 

In Ref. 1 it is shown that D = D , and for a SO yr. life the 
m c 

relationship between the ANSI - A58.1 (1972) code-specified wind pressure 

and the mean maximum lifetime wind pressure is W = 1.17 W • Assuming, 
m c 

again; that c 0 = cL' the plastic section modulus required by LRFD is 

2 X 12 
D 

c 
+ 1.6 F x 1.17 (~ ::) } (A-7) 



42. 

The ratio ZL/ZA is plotted versus the wind load-to-dead load moment 
a 

ratio cw Wc/cD Dc in Fig. 1 for a tributary area of Ar = 800 ft (L = rc 

27 psf for an office live load intensity of L = 50 psf, and L = 34 psf) c m 

and for a dead load intensity of 50 psf. Curves show the variation of 

the ratios of the section moduli for F = 1.0, 0.75, 0.6 and 0.5. It is 

evident that if the applied wind pressure is not reduced (i.e., F = 1.0), 

LRFD requires considerably larger sections than the AISC Specification. 

The left corner of each curve, where the ratio is approximately unity, 

corresponds to the case where gravity loading only governs. 

From Fig. 1 it appears that F = 0.6 is the best value for the factor 

by which the wind pressure is reduced to achieve calibration for the 

specific instances for which the curves apply. The curve for F = 0.6 is 

reproduced in Fig. 2, where, in addition, shaded areas define the variation 

of the ratio of the section moduli for the domain of the parameters indi-

cated. The spread becomes smaller as the wind load participation increases, 

and it is largest in the range where the wind load is small. The LRFD-to-

AISC ratio does not, however, go below 90%. 

A similar comparison is shown in Figs. 3 and 4 for simple columns in 

braced frames. In these figures the ratio of the required column areas is 

plotted against the ratio of the code-specified wind load P to the code
w 

specified dead load Dc ~· 

The AISC column area requirement is 

(A-8) 

In addition 

(A-9) 



43. 

The LRFD requirements are (Ref. 1) 

(A )L 0 F = 1.1 (1.1 A_ D + 2.0 A L1 + 1.6 F P ] c cr -"T m -""T m wn (A-10) 

and 

(A )L 0 F ~ 1. 1 ( 1. 1 A_ D + 1. 4 A_ L ] c cr -"T m T m 
(A-ll) 

The column parameters are defined in Sec. 1.6 of the AISC Specifica-

tion and in Ref. 1 as follows: 

(i 
a 

F -- 0.25 ).. ) 
F =· ' ·\:.: 1~' 3 a 5 ,,~;, ...1..6.. 2l. 

3 + e ./2 - 16/2 

for A ~-vz (A-12) 

12 F 
F = I 

a a 23 A 
for A ~vz (A-13) 

0 = 0.86 for A !i: 0.16 (A-14) 

f/J = 0.90 - 0.25 A for 0.16 ~ A ~ 1.0 (A-15) 

0 = 0.65 for A ~ 1.0 (A-16) 

2 
F = F (1 - 0.25 A ) 
cr y 

for A !!a[z (A-17) 

F 
F - ..:t.. 
cr a 

~ 
for A ~..[2 (A-18) 

The curves i~.Figs. 3 and 4 were determined by setting c0 = c1 and 

Pwm = 1.17 Pw' where Pwm is the axial force due to the mean maximum 50 yr. 

lifetime wind pressure, and P is the corresponding force due to the ANSIw 

specified wind pressure. 

An examination of Figs. 3 and 4 indicates that F = 0.6 is again a 

reasonable value for achieving a reasonable correlation with the AISC 

design. The spread is much larger than for beams (see Fig. 4), mainly 

because of the larger variation of the ratio F /0 F • 
a cr 
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