
Missouri University of Science and Technology Missouri University of Science and Technology 

Scholars' Mine Scholars' Mine 

Center for Cold-Formed Steel Structures Library Wei-Wen Yu Center for Cold-Formed Steel 
Structures 

01 Mar 1983 

The influence of local buckling on the structural behavior of The influence of local buckling on the structural behavior of 

singly-symmetric cold-formed steel columns singly-symmetric cold-formed steel columns 

Gale P. Mulligan 

Teoman Peköz 

Follow this and additional works at: https://scholarsmine.mst.edu/ccfss-library 

 Part of the Structural Engineering Commons 

Recommended Citation Recommended Citation 
Mulligan, Gale P. and Peköz, Teoman, "The influence of local buckling on the structural behavior of singly-
symmetric cold-formed steel columns" (1983). Center for Cold-Formed Steel Structures Library. 117. 
https://scholarsmine.mst.edu/ccfss-library/117 

This Technical Report is brought to you for free and open access by Scholars' Mine. It has been accepted for 
inclusion in Center for Cold-Formed Steel Structures Library by an authorized administrator of Scholars' Mine. This 
work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the 
permission of the copyright holder. For more information, please contact scholarsmine@mst.edu. 

http://www.mst.edu/
http://www.mst.edu/
https://scholarsmine.mst.edu/
https://scholarsmine.mst.edu/ccfss-library
https://scholarsmine.mst.edu/ccfss
https://scholarsmine.mst.edu/ccfss
https://scholarsmine.mst.edu/ccfss-library?utm_source=scholarsmine.mst.edu%2Fccfss-library%2F117&utm_medium=PDF&utm_campaign=PDFCoverPages
http://network.bepress.com/hgg/discipline/256?utm_source=scholarsmine.mst.edu%2Fccfss-library%2F117&utm_medium=PDF&utm_campaign=PDFCoverPages
https://scholarsmine.mst.edu/ccfss-library/117?utm_source=scholarsmine.mst.edu%2Fccfss-library%2F117&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:scholarsmine@mst.edu


CCFSS LIBRARY
zz 1 ... 450
c1

Gale P. Mulligan, leoman pe~oz,
1l\E INFLUENCE OF LOCAL BUCKLING
OM lllE SlRUC1URAL BEIIAVI0R OF
SINGLY-SY~E1RIC COLD-FORMED
STeEL COLUMNS

CCFSS LIBRARY Gale P .~~' * 450 THE INFl~~~~~g~~'l~~~n Pekoz,
ON THE STRUCTURAL BE BUCKLING
SINGLY-SYMMETRIC C HAVIOR OF
STEEL COLUMNS OLD-FORMED

_ DATE

-

-

- I

,asullo TO:-------~'
=

-
-
-

Technica1 Ubrary

Center 10r Cold-Formed Steel Structures

UniVersity 01 MiSsouri-RoUa

Ro\\a, MO 65401



Ithaca, N. Y.

Department of Structural Engineering
School of Civil and Environmental Engineering

Cornell University

Report No. 83-1

THE INFLUENCE OF LOCAL BUCKLING
ON THE STRUCTURAL BEHAVIOR OF
SINGLY-SYMMETRIC COLD-FORMED

STEEL COLUMNS

by

Gale P. Mulligan

Teoman PekUz, Project Director

A Research Project Sponsored by
The American Iron and Steel Institute

March 1983





PREFACE

This report is based on a thesis presented to the faculty of

the Graduate School of Cornell University for the degree of Doctor

of Philosophy.

The sponsorship of the American Iron and Steel Institute and

the cooperation of the committees of the Institute are gratefully

acknowledged.



@) Gale Patrick Mulligan 1983

ALL RIGHTS RESERVED



TABLE OF CONTENTS

CHAPTER

1. INTRODUCTION

1.1 General
1.2 Objectives of Research
1.3 Scope of Research

2. POST-BUCKLING BEHAVIOR AND EFFECTIVE WIDTH

Page

1
2
3

2.1 Introduction 5
2.2 Post-Buckling Strength 6

2.2.1 Uniformly Compressed Stiffened Elements 7
2.2.2 Eccentrically Compressed Stiffened Elements 9
2.2.3 Uniformly Compressed Unstiffened Elements 19

2.3 Sub-Ultimate Behavior 21
2.3.1 Thomasson's Approach 23
2.3.2 Present Approach 25

2.4 Summary 28

3. LOCAL BUCKLING INTERACTION

3.1 Introduction 41
3.2 Instability Analysis Using the Finite Strip Method 42

3.2.1 Basis of the Finite Strip Method 42
3.2.2 Comparison of the FEM and FSM 43
3.2.3 Literature Survey 44
3.2.4 Linear Instability Formulation 45
3.2.5 Finite Strip Instability Analysis Program 48

3.3 Local Buckling Interaction in Structural Sections 49
3.3.1 Channel Sections 50
3.3.2 Lipped Channels 52

3.4 Edge Stiffeners 56
3.4.1 Effect of Stiffener Radius on Local Buckling 59

3.5 Post-Local Buckling Interaction 61
3.5.1 Effective Section Method 63

3.6 Summary 65

4. LOCAL AND OVERALL BUCKLING INTERACTION

4.1 Introduction 81
4.2 Literature Survey 81
4.3 Local and Flexural Buckling Interaction 84
4.4 Post-Local and Overall Buckling Interaction 86

4.4.1 Q-Factor Method 86
4.4.2 Effective Section Method 89

4.5 Post-Local Buckling and Beam-Column Behavior 90
4.5.1 Current Analysis Methods 90
4.5.2 Proposed Analysis Method 92

4.6 Summa ry 102

vi



5. EXPERIMENTAL INVESTIGATION

5.1 Introduction 1125.2 Test Specimens 1125.2.1 Test Specimen Design 1145.3 Material Properties 1155.4 Initial Imperfections 1165.4.1 local Initial Imperfection of Stub Columns 1175.4.2 Local and Overall Initial Imperfection of 121Long Columns
126

5.5 Experimental Procedures, Instrumentation, and
Alignment

126
5.5.1 Stub Column Test Procedure·
5.5.2 Long Column Test Procedure 1275.5.3 Instrumentation

1285.5.4 Alignment
1295.5.4.1 Summary of Column Alignment 1325.6 Experimental Results
1335.6.1 Stub Columns
1335.6.1.1 Local Buckling Stresses 1365.6.2 Long Columns
1395.7 Other Experimental Research
1435.7.1 Stub Columns
1435.7.2 Long Columns
1445.8 Summary
146

6. COMPARISON OF EXPERIMENTAL AND THEORETICAL RESULTS

6.1 Introduction
1956.2 Stub Column Evaluation
1956.2.1 General
1956.2.2 Ultimate Strength
1976.2.3 Sub-Ultimate Response
2006.3 Long Column Evaluation
2046.3.1 General
2046.3.2 Ultimate Strength
2066.3.3 Sub-Ultimate Response
2126.4 Evaluation of Other Experimental Research
2166.4.1 Stub Columns
2166.4.2 Long Columns
2186.5 Summary
2187• CONCLUSION

7.1 Summary and Conclusions of Research
2567.2 Future Research
262APPENDIX

A. FINITE STRIP INSTABILITY FORMULATION

A.I Introduction
264

vii



A.2 Finite Strip Formulation 264
A.3 Global Formulation 271

B. NUMERICAL SOLUTION OF THE INSTABILITY PROBLEM

B.1 Introduction 276
B.2 The Eigenproblem and Its Solution 276

B.2.1 Inverse Iteration, Polynomial Iteration, 278
and the Sturm Sequence Property

B.2.2 Determinant Search Algorithm 281
B.3 The Equation Solver 283
B.4 Variable Length and Minimum Buckling Load 284

Analysis

C. VERIFICATION OF FINITE STRIP INSTABILITY ANALYSIS
PROGRAM

C.1 Introduction 289
C.2 Local Buckling 289
C.3 Overall Buckling 291

D. SUB-ULTIMATE RESPONSE FOR STUB COLUMNS 296

E. SUB-ULTIMATE RESPONSE FOR LONG COLUMNS 323

REFERENCES 348

viii



TABLE

2.1

5.1
5.2
5.3
5.4

5.5

5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8

A.l
A.2
A.3

C.l

C.2

C.3

C.4

LIST OF TABLES

Comparison of the Sub-Ultimate Approach of the Present
Study and Thomasson's [1978] Approach

Dimensions of Stub Column Specimens
Dimensions of Long Column Specimens
Tensile Material Properties
Maximum Amplitude of Local Initial Imperfections in
Stub Columns
Maximum Amplitude of Local and Overall Initial
Imperfections in Long Columns
Experimental Results for Stub Columns
Experimental Buckling Coefficients for Stub Columns
Influence of Strain Gage Location on Buckling Coefficient
Experimental Results for Long Columns
Chilver's [1953] Stub Column Tests
Pekoz's [1977] Stub Column Tests
Thomasson's [1978] Long Column Tests
Loughlan's [1979] Long Column Tests

Evaluation of Channel Stub Columns
Evaluation of Lipped Channel Stub Columns
Evaluation of Concentrically Loaded Long Columns
Evaluation of Eccentrically Loaded Long Columns
Evaluation of Chilver's [1953] Stub Columns
Evaluation of Pekoz's [1977] Stub Columns
Evaluation of Thomasson's [1978] Long Columns
Evaluation of Loughlan's [1979] Long Columns

Linear Plane Stress Finite Strip Stiffness Matrix
Second-Order Plate Bending Finite Strip Stiffness Matrix
Consistent Initial Stress Finite Strip Stiffness Matrix
for Longitudinal Membrane Loading

Buckling Coefficients K for a Simply Supported Plate
Under Uniform Axial Compression
Buckling Coefficients Kfor the Structure of Table C.1
Using the Finite Element Method
Buckling Coefficients Kfor a Simply Supported Plate
Subjected to Pure In-Plane Bending
Strong Axis Flexural Buckling of a Single Plate

ix

Page

29

148
149
150
151

152

153
154
155
156
157
158
159
160

221
222
223
224
226
227
228
229

272
273
274

293

293

294

294



FIGURE

2.1
2.2
2.3

2.4
2.5

2.6
2.7

2.8
2.9
2.10
2.11

3.1

3.2

3.3
3.4
3.5
3.6

3.7

3.8

3.9
3.10

3.11
3.12

3.13

4.1

4.2
4.3
4.4
4.5
4.6
4.7
4.8

LIST OF FIGURES

Buckling of a Thin Plate
Loading Conditions
Comparison of Experimental and Theoretical Failure
Loads for Stiffened Plates Under Eccentric Load
Effective Width for Flange Under Stress Gradient
Comparison of Effective Width Approach of Present
Study for Eccentrically Compressed Plates and
LaBoube's [1978] Approach for Beam Webs
Effective Width for Unstiffened Compression Elements
Comparison of Effective Width Approaches for
Unstiffened Compression Elements
Post-Buckling Stress-Strain Response
Thomasson's L1978] Sub-Ultimate Approach
Deviation of Sub-Ultimate Approach
Sub-Ultimate Approach of Present Study

Local Buckling Interaction in a Uniformly Compressed
{Plain} Channel
Local Buckling Interaction in a Uniformly Compressed,
Idealized, Lipped Channel
Flange Buckling for Uniformly Compressed Lipped Channels
Web Buckling for Uniformly Compressed Lipped Channels
Local Buckling Modes in Lipped Channels
Effect of Larger Stiffener on Flange Buckling for
Uniformly Compressed Lipped Channels
Influence of Stress Gradient Across Flange on Flange
Buckling in Lipped Channels
Influence of Stress Gradient Across Flange on Web
Buckling in Lipped Channels
Edge Stiffener
Radius Effect for Idealized Flange-Stiffener Model
Subjected to Uniform Compression
Theoretical Post-Buckling Behavior of Structural Sections
Comparison of Effective Section Approaches for {Plain}
Channels
Comparison of Effective Section Approaches for Lipped
Channels

Interaction of Local and Overall Buckling for a Uniformly
Compressed Channel
Effective Section
Behavioral Assumptions
Strength of Lipped Channel Beam-Columns
Load-Deflection Response of Lipped Channel Beam-Columns
Load-Strain Response of Lipped Channel Beam-Columns
Strength of Lipped Channel Beam-Columns
Load-Deflection Response and Elastic Failure

Page

30
31
32

33
34

35
36

37
38
39
40

68

69 .

70
71
72
73

74

75

76
77

78
79

80

104

105
106
107
108
109
110
111



5.1

5.2

5.3

5.4

5.5

5.6

5.7

5.8

5.9

5.10

5.11

5.12

5.13

5.14

5.15

5.16
5.17
5.18
5.19
5.20

5.21

5.22

5.23
5.24

5.25
5.26
5.27
5.28

5.29

5.30

Test Specimen Cross Section and Typical Strain Gage
Instrumentation
Local Initial Imperfection Measuring Devices for Stub
Columns
Variation of Maximum Local Initial Imperfection with
Flat Width-to-Thickness Ratio for Lipped Channels
Local Initial Imperfection in Web of Channel Stub
Column SC/1 120x60
Local Initial Imperfection in Flanges of Channel Stub
Column SC/1 120x60
Local Initial Imperfection in Flanges of Channel Stub
Column SC/1 60x60
Local Initial Imperfection in Web and Flanges of Lipped
Channel Stub Column SLC/2 120x60
Local Initial Imperfection in Web of Lipped Channel
Stub Column SLC/l 180x60
Local Initial Imperfection in Flanges, at Flange-Lip
Juncture, in Lipped Channel Stub Column SLC/2 180x60
Local Initial Imperfection in Lip of Lipped Channel
Stub Column SLC/2 180x60
Overall Initial Imperfection Measurement and Reduction
for Long Columns
Weak Axis Overall Initial Imperfection of Long Column
CLC/2.1 180x60
Strong Axis Overall Initial Imperfection of Long Column
CLC/2.1 180x60
Overall Initial Imperfection of Long Column CLC/2.1
180x60
Local Initial Imperfection in Flanges, at Flange-Lip
Juncture, of Long Column CLC/2.1 180x60
Stub Column Test Setup
Long Column End Fixture
Long Column Test Setup
Typical Dial Gage Instrumentation
Eccentric Alignment of Long Columns - Longitudinal
Strain Distributions
Axial Load-Strain Response for Lipped Channel Stub
Columns
Strain Gradient in Lipped Channel Stub Columns with
Large Web-to-Flange Ratios
Axial load-Deformation Response for Stub Columns
Stub Column Failure Modes
(a) Channels
(b) Lipped Channels
Determination of Critical Buckling Stress
Web Local Buckling
Section Local Buckling
Comparison of Experimental and Theoretical Buckling
Coefficients for Channels
Comparison of Experimental and Theoretical Buckling
Coefficients for Lipped Channels
Failure Modes for Concentrically Loaded Long Columns

xi

162

163

164

165

166

167

168

169

170

171

172

173

174

175

176

177
178
179
180
180

181

183

184
185

187
188
189
190

191

192



5.31

5.32

6.1

6.2

6.3
6.4
6.5

6.6

6.7

6.8

6.9

6.10
6.11
6.12
6.13
6.14
6.15
6.16
6.17

A.1

B.1

C.1

0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9
0.10
0.11
0.12
0.13
0.14
0.15

Failure Modes for Eccentrically Loaded Long Columns 
with and without Braces
Violent Failure Mode for Test CLC/1 90x90

Maximum Flange Out-of-Plane Deformation for Channel
Sections
Influence of Local Buckling Interaction on Ultimate
Strength for Lipped Channel Sections
Axial Load-Deformation Response For Channel SC/l 90x30
Axial Load-Deformation Response for Channel SC/l 100x60
Axial Load-Deformation Response for Lipped Channel
SLC/2 120x60
Axial Load-Deformation Response for Lipped Channel
SLC/2 180x60
Axial Load-Deformation Response for Lipped Channel
SLC/1 90x90
Axial Load-Deformation Response for Lipped Channel
SLC/1 120x30
Axial Load-Deformation Response for Lipped Channel
SLC/1 270x90
Sub-Ultimate Response for CLC/2 120x60
Sub-Ultimate Response for CLC/2.3 l20x60
Sub-Ultimate Response for CLC/2.4 l20x60
Sub-Ultimate Response for CLC/2.l l20x60
Sub-Ultimate Response for CLC/3 120x60
Sub-Ultimate Response for CLC/1 90x90
Sub-Ultimate Response for CLC/2~2 l80x90
Sub-Ultimate Response for CLC/2.l 180x90

Membrane and Bending Finite Strip Subjected to a
Linearly Varying Longitudinal Edge Load

Determinant Search Algorithm

Plate Buckling Curve for a Simply Supported Plate in
Uniform Compression

SC/1 60x30
SC/1 120x30
SC/2 120x30
SC/1 40x60
SC/2 40x60
SC/1 60x60
SCIl 120x60
SC/1 180x60
SC/2 180x60
SLC/l 60x30
SLC/l 90x30
SLC/l 60x60
SLC/2 60x60
SLC/1 120x60
SLC/1 180x60

193

194

230

231

233
234
235

236

237

238

239

240
242
244
246
248
250
252
254

275

287

295

297
298
299
300
301
302
303
304
305
306
307
308
309
310
311



0.16 SlC/l 240x60 312
0.17 SlC/3 240x60 313
0.18 SlC/1 60x90 314
0.19 SlC/2 60x90 315
0.20 SlC/2 90x90 316
0.21 SlC/l 180x90 317
0.22 SlC/2 180x90 318
0.23 SlC/4 180x90 319
0.24 SlC/5 180x90 320
0.25 SlC/2 270x90 321
0.26 SlC/l 360x90 322

E.1 ClC/1 120x60 324E.2 ClC/4 120x60 326E.3 ClC/5 120x60 328E.4 ClC/1 180x60 330E.5 ClC/2 180x60 332E.6 ClC/3 180x60 334E.7 ClC/4 180x60 336E.8 ClC/l 180x90 338E.9 ClC/2 180x90 340E.10 ClC/3 180x90
342E.11 ClC/l.1 120x30
344E.12 ClC/2.2 120x60
346

xHi



A

B
B

c

D

D-

e

f'

G

G-
I

1
J,j

K

K-

NOTATION

Area or constant

Global matrix of displacement gradients

Constant

Strain matricies

Finite strip width

Constant (constitutive)

Torsional constant

Stress factor or distance to centroid

Plate rigidity or constant

Constitutive or diagonal matrix

Self-weight deflection

Young's modulus

Eccentricity or elevation

Yield stress

Stress

Reduced stress

Shear modulus

Discretization matrix for ~L

Moment of inertia

Diagonal identity matrix

Torsional constants

Buckling coefficient or effective length factor

Stiffness matrix



L

I

1
M

m

~

OR

p

Q

R

r

S

T

T

t

u

v

v

w

w

Small displacement stiffness matrix

Initial stress stiffness matrix

Length

Test length or length associated with the eigenvalue r
Lower triangular matrix

Moment

Harmonic parameter

Shape function matrix

Outside radius

Axial load

Strength reduction factor

Ratio of effectlve-to-full width

Inside radius or radius of gyration

Polar radius of gyration

Stress ratio or section modulus

Membrane line load

Matrix of membrane loads

Thickness

In-plane displacement

Field variable

Volume

In-plane displacement

Eigenvector

Total plate width

Plate flat width or out-of-plane displacement

Location of neutral axis on tensile side of plate

xv



x

-x

y,y- -
9
z

a

e:

~o

~L

n

Coordinate axis

Distance between effective and gross centroids under a uniform

compressive yield stress

Location of shear center from centroid

Location of gross centroid from web

Iteration vectors

Harmonic function

Coordinate axis

Iteration vectors

Null matrix

Coordinate axis

Compression eccentricity, aspect ratio, eigenvalue, or

dimensionless parameter

Stress ratio or torsional constant

Stress reduction factor

Lateral or local deformation, or local or overall initial

imperfection

Nodal displacements (parameters)

Variation symbol

Strain

Yield strain (Fy/E)

Green's strain vector

Linear strains

Nonlinear strains

Iteration parameter

Vector of displacement gradients j



a

A

II

f;

IT

p

a

Q

w

Rotation

Stress ratio or eigenvalue

Poisson1s ratio or eigenvalue

Dimensionless parameter

Potential energy

Rayleigh quotient or density

Stress

Stress vector

Eigenvalue

Subscripts, Superscripts, Abbreviations

a Axial or adequate

act Actual

av Average

b Bending

cr Critical

e.g. Center of gravity

e Edge or effective

exp Experimental

eff.c.g. Effective center of gravity

f Flexural

i,j Generalized reference axes

1 Limiting

max Maximum

min Minimum

xvii



1,2

1,2,3

p

Reference axes or

Reference indicies for the web, flange, and lip, respectively

Plane stress

Elastic

s Stiffener or strong axis

s.c. Shear center

t Torsional

tf Torsional-flexural (combined axial and bending)

tfo Torsional-flexural (axi a1)

th Theoretical

u,ult Ultimate

w Weak axis

y Yield

xviii





CHAPTER 1

INTRODUCTION

1.1 General

Cold-formed steel sections are formed from thin steel sheets, of

typical thickness 0.015-0.25 inches, by either production cold roll

forming or by specialized press braking. As a result, it is possible to

produce economically a variety of cross-sectional shapes, which have high

strength-to-weight ratios. Some structural applications include primary

and secondary load-carrying framing members, such as columns, purl ins and

wall studs; and shear diaphragms, such as floor and roof decks and wall

panels (Yu [1973J). Their design is governed by the American Iron and

Steel Institute (AISI) Specification [1980J, which is unique because of

its generality, e.g., no specific shape is presumed.

The philosophy behind cold-formed steel structural members is illus

trated with the following example, adopted from Seaburg [1981J. Suppose

it is required to design a 10-foot column, of any shape, to support a

given axial load. One solution would be to employ a 3/4-inch square mild

steel bar. However, a subsequent analysis of this slender column would

show that it would fail, by flexural buckling, at a load of only about

500 pounds. Alternately, this same bar could be rolled into a thin strip

about 12 inches wide and, in turn, used as the column. In this case, the

strip would buckle essentially under its own weight. On the other hand,

if this strip is formed, or bent, into the shape, say, of a lipped chan

nel, its load-carrying capacity would be increased by twenty times that of

the original bar.

1
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This simple example illustrates. of course~ that the structural

efficiency of a section is dependent on the manner in which the available

material is distributed, which is a basic property utilized in the design

of cold-fonmed steel members. Equally important is that this property

leads to the proportioning of very thin structural sections which are

prone to local buckling of the individual plate elements, or portions of

the section between bends. It is this latter area that the present

investigation addresses.

1.2 Objectives of Research

The primary objectives of the research described herein are to study

the interaction of local buckling between plate elements in thin-walled

structural sections and to study the influence of local buckling on the

overall modes of behavior. The research is specialized to column and

beam-column applications of singly-symmetric steel shapes, e.g., channels

and lipped channels.

The needs for this research became apparent in previous investiga

tions conducted at Cornell University. DeWolf [1973] studied the behavior

of doubly-symmetric sections with locally buckled stiffened or unstiffened

compression elements. A stiffened element is defined as one which is

supported along both unloaded edges by other plate elements, and an

unstiffened element is defined as one which is supported along the

unloaded supported edge by another plate element and has a free unloaded

edge. later Kalyanaraman [1978] examined, more thoroughly. the behavior

of doubly-s~tric sections with locally buckled unstiffened compression

elements. Both investigations employed an effective width concept (see

Chapter 2) to predict the yield strength, for beams and short columns, and
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the flexural buckling strength, for long columns. Also, Desmond [1978]

studied edge stiffened elements. In this case, an edge stiffened element

is defined as one which is supported along one unloaded edge by a stif

fened element and along the other unloaded edge by a stiffener. Edge

stiffener requirements were derived which made the strength of the edge

stiffened element equivalent to that associated with an identical stif

fened element. Again an effective width concept was employed.

All of the above investigations were necessarily limited in scope to

the specific areas under study. For example, local buckling interaction

with other plate elements was precluded. Thus, the applicability of the

approaches which were developed was left open to question when local

buckling interaction occurred. Also, because these investigations were

limited to doubly-symmetric shapes, analogous procedures for treating the

effects of local buckling in singly-symmetric shapes were not defined.

Finally, a need was established for work in the area of the sub-ultimate

behavior of locally buckled plate elements.

1.3 Scope of Research

The following interrelated areas are within the scope of the present

research project.

o Local buckling interaction between stiffened and unstiffened or edge

stiffened elements in uniformly compressed short columns.

o Sub-ultimate behavior of uniformly compressed elements, with an

emphasis on stiffened elements.

o The influence of local buckling on the overall modes of behavior of

singly-symmetric long columns and beam-columns. This area encompasses

an investigation of stiffened elements subjected to a stress qradient.
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CHAPTER 2 deals with the post-buckling behavior of isolated thin

plates. Effective width approaches for eccentrically compressed stiffened

elements and for the sub-ultimate behavior of uniformly compressed ele

ments are derived. Uniformly compressed stiffened and unstiffened ele

ments are also treated.

CHAPTER 3 studies local buckling interaction in thin-walled struc

tural sections. The finite strip method is employed to formulate the

equations which govern the linear instability of arbitrary plate struc

tures, and the associated numerical solution procedures are discussed.

This method is then used to study the local instability of various thin

walled configurations. Edge stiffeners are also addressed. Next effective

section nlethods, which utilize the approaches from Chapter 2, are defined

for analyzing local buckling interaction in structural sections.

CHAPTER 4 treats the interaction between local and overall buckling.

Existing analysis methods are first reviewed. Then an effective section

method and beam-column analysis method is derived for predicting the

behavior and strength of singly-symmetric shapes. Again the approaches

developed in Chapter 2 are int~grated to define the effective section.

CHAPTER 5 presents the experimental investigation. Stub column tests

of channel and lipped channel sections, and long column and beam-column

tests of lipped channel sections are reported. Information pertaining to

initial imperfections and testing procedures is also included.

CHAPTER 6 verifies the methods developed in Chapters 2-4 by comparing

the predicted results with the empirical data from Chapter 5.

CHAPTER 7 summarizes the research and discusses areas that warrant

further investigation.



CHAPTER 2

POST-BUCKLING BEHAVIOR AND EFFECTIVE WIDTH

2.1 Introduction

Contrary to column behavior, plates exhibit significant strength after

the occurrence of buckling. ~hen this "post-buckling" strength is fully

utilized, a structurally efficient and economical design can be obtained.

In this chapter, methods of utilizing the post-buckling strength of plates

are described. Specifically the following areas are treated: stiffened

compression elements under both uniform and non-uniform (linear) compres

sion, unstiffened compression elements under uniform compression, and

sub-ultimate response.

As an introduction, the simply supported thin flat plate of Figure 2.1

displays in-plane response as long as the applied uniform compressive

stress f remains less than some critical value fcr• At this stage, the

associated internal longitudinal stress distribution is uniform across the

center of the plate. When the applied stress reaches fcr ' a slight buck

ling wave develops in the plate. Then, as the load is increased further,

the out-of-p1ane deformation increases but is restrained by the transverse

stresses that are set up. At the same time, a redistribution of internal

longitudinal stress occurs, from uniform to non-uniform, where the majority

of load resistance is provided by the less deflected portions of the plate.

This process continues until the stress level fe' at the edge 'of the plate,

reaches yield; after which the plate generally fails.

5
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2.2 Post-Buckling Strength

The post-buckling, non-uniform stress distribution shown at the bottom

of Figure 2.1 would unnecessarily complicate practical design. Therefore,

the concept of an "effective width" was introduced by von Karman. et ale

[1932]. In this approach, the non-uniform stress f acting over the plate

width w is replaced by an equivalent uniform stress acting over an effec

tive width we. Equilibrium is maintained by defining the effective width

such that

j w
ftdy = fewet

o
2.1

where fe is the edge stress. After integrating Equation 2.1, the follow

ing relationship between we and w is obtained.

w Iw = f If 2.2e av e
where fav is the average stress acting over the total width w. The

original equation proposed by von Karman for the effective width at

fa i1 ure was

w = 1.9t~ 2.3e y

where E is Young's Modulus, Fy the yield strength, and t the plate thick-

ness.

Equation 2.3 was derived from rather intuitive reasoning and has an

empirical basis. Von Karman recognized that a plate had the ability to

withstand loads above the critical buckling stress f ,defined below (forcr
a complete deviation of fcr see, e.g., Timoshenko and Gere [1961]).

2.4
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where ~ is Poisson's ratio and K is the buckling coefficient which depends

on the type of loading, boundary conditions, and plate aspect ratio. For

a long, or square, uniformly compressed simply supported plate

K= 4, and

f = ~2E/3(1 - ~2)(w/t)2cr 2.5

Further, von Karman reasoned that for a plate stressed beyond the critical

stress, the central buckled portion of the plate could not be counted on

to provide any appreciable load resistance and that the majority of the

load must be carried by the two strips adjacent to the edges of the plate.

Thus, the width w in Equation 2.5 was interpreted as the effective width

we' and the stress fcr was set equal to the yield stress Fy for failure.

If these substitutions are made in Equation 2.5, with ~ = 0.3, the effec

tive width Equation 2.3 follows immediately.

2.2.1 Uniformly Compressed Stiffened Elements

The simply supported plate of Figure 2.1 is a limiting case of a

stiffened compression element. Thus, effective width Equation 2.3 should

be applicable. However, research performed subsequent to von Karman's

original work revealed deficiencies in this equation. First, Equation 2.3

proved inadequate for elements with relatively small width-to-thickness

ratios wit. Also, for design, it was necessary to predict effective

widths associated with stress levels less than the yield condition implied

by Equation 2.3. As a result, a wealth of research followed.

Gerard [1957] reviewed several theoretical. studies and associated

effective width equations for predicting the response of uniformly com

pressed, post-buckled plates. Later, Jombock and Clark [1961] expanded

Gerard's survey to include comparisons with additional effective width
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stiffened compression element. Thus, effective width Equation 2.3 should

be applicable. However, research performed subsequent to von Karman's
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methods. Most recently, Thomasson [1978] included comparisons of effec

tive width approaches employed in the design specifications of various

countries.

The most widely adopted research on stiffened compression elements

was by Winter [1947 and 1948]. He provided extensive experimental data

from which the following semi-empirical effective width equation was

derived.

w = 1.9tIE7f:T1.0 - 0.475~/(w/t)] 2.6e e e
where f is the edge stress. A comparison of the von Karman Equation 2.3

e
and Equation 2.6 reveals that the latter approaches the former for large

plate width-to-thickness ratios wit. The term in brackets in Equation 2.6

represents an experimental modification necessary to account for the

influence of initial imperfections.

The effective width given by Equation 2.6 served as a basis of

governing U.S. specifications for over 20 years (Winter [1970]). Never-

theless, it still represented a conservative approach. Thus, to eliminate

this degree of convervatism, the coefficient 0.475 of Equation 2.6 was

modified to 0.415 (see Winter [1970]), or

w = 1.9tIE7f:t1.0 - 0.415~/(w/t)]e e e 2.7

This modified equation forms the basis of the effective width approach for

stiffened compression elements contained in the present U.S. specification

(AISI [1980]), as well as in several European specifications. Equa-

tion 2.7 is valid for wIt ratios above the following limiting value.

{w/t)l = 1.29/E/fe 2.8

For wIt ratios less than {w/t)l' the compression element is fully effec

tive, i.e., we = w. For later use, Equation 2.7 is rewritten below in

terms of the critical buckling stress f , Equation 2.5.cr
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we/w = Ifcr/fe(1.0 - 0.218/fcr/fe ) 2.9

Similarly, Equation 2.8 is rewritten as a limiting stress ratio.

(fcr/fe)l = 2.17 2.10

The above equation implies that the effects of local buckling become

significant when the stress level exceeds about 50 percent of the theoret

ical buckling stress fcr•

2.2.2 Eccentrically Compressed Stiffened Elements

The previous section reviewed a widely adopted effective width

approach for uniformly compressed stiffened elements. However, the

approach is obviously inadequate when the element is compressed eccentri

cally. The present section deals with an effective width approach for

this situation.

The critical buckling of eccentrically lo~ded plates, with various

boundary conditions, has been investigated thoroughly. Timoshenko [1961]

discussed the critical behavior of plates under in-plane bending, while

Bulson [1969], in an extensive text, reviewed studies of plates with a

wide variety of loading and boundary conditions.

Still, research on the post-buckling behavior of eccentrically

compressed plates progressed rather slowly. Walker [1964] conducted a

theoretical investigation of simply supported, or clamped, eccentrically

loaded plates using Galerkin's method to solve the governing large deflec

tion plate equations of von Karman (see'Chajes [1974]). He also conducted

an experimental investigation on discrete steel plates to justify his '

theoretical predictions. The practicality of Walker's work was limited,

however, due to the inability of his theoretical loading condition of a
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linearly varying end load to represent the experimental loading condition

of a linearly varying end compression (displacement).

Rhodes and Harvey [1971a and b] recognized the limitations of

Walker's work and investigated the post-buckling response of plates sub

jected to either an eccentric loading or an eccentric compression system.

The difference between these two loading systems is illustrated in Fig

ure 2.2. The "loadl' is applied through rigid bars to produce an end dis

placement u which varies linearly across the plate, e.g., u =u{l - ay/w)

where u is the maximum displacement along one longitudinal edge of the

plate and a is an eccentricity factor which is directly proportional to

the plate angle 6. Moreover, two consecutive displaced positions of the

bars, unrler increasing load are represented in Figure 2.2.

An example of constant compression eccentricity is shown in Fig

ure 2.2a. For this case the loading is applied such that after local

buckling the compression eccentricity a remains constant. This implies

that the position of the stress resultant P must change to maintain

equilibrium. Uniform compression (a = 0) is a limiting case of the

loading condition of Figure 2.2a.

An example of constant load eccentricity is shown in Figure 2.2b.

For this case the eccentricity e remains constant throughout the loading

history. Thus, after local buckling, the compression eccentricity a

varies to maintain equilibrium.

If the plate is supported to an equal degree along both unloaded

edges and is loaded concentrically (e =w/2); then the post-buckling

response predicted using either of the loading conditions of Figure 2.2 is

identical. However, if the plate is loaded or compressed eccentrically,
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or has unequal support conditions along its unloaded edges; then the

post-buckling response is very much dependent on the specific loading

condition used in the analysis. In general, the compressive stiffness for

a plate is greater if the load eccentricity is maintained at its original

value than if the original compression eccentricity is maintained (Rhodes

and Harvey [1971b]).

It is noted that the above discussion is limited to the response of a

discrete plate, which is less than practical. For example, in a thin

walled construction application, the plate represents only one component

of the total section, e.g., the flange of a lipped channel. Since the

compressional response is dictated by the total section, rather than by an

individual plate element, the actual loading condition lies somewhere

between the two cases represented in Figure 2.2.

In the original work of Rhodes and Harvey [1971a and b], an adapta

tion of the semi-energy method of Marguerre [1937] was used to solve the

problem. Several numerical examples were considered and were compared to

the experimental results of Walker [1964]. later, Rhodes et ale [1975],

reported additional experimental work on eccentrically loaded, mild steel,

discrete plates. In this later paper, an approximate analysis was per

formed to derive a design expression, which was in agreement with the more

rigorously derived solution. The following expression was derived specif

ically for simply supported plates, at ultimate, under constant load

eccentricity (see Figure 2.2b).

Pu/Fywt = (Ky + 11.4)/Ky[6(e/w) + 0.85] 2.11

where Pu is the ultimate load, e the load eccentricity (constant), w the

plate width, and
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K =F w2t/w2Dy y
D = Et3/12{1 - ~2)

Equation 2.11 is valid for e/w ~ 0.5 and

K > 8[3{e/w) - 1] 2.12y
For values of Ky less than those given by Equation 2.12, the plate is

unbuckled and fails by yielding.

Figure 2.3 shows a comparison of ultimate loads predicted using

Equation "2.11 and the experimental results reported by Walker (1964], with

an average F = 25.5 ksi, and Rhodes et al. [1975] and (1977], with an
y

average F = 37.3 ksi. (The scales used in this figure are such that a
y

single curve based on Equation 2.11, is applicable to both uniform com-

pression and eccentrically loaded plates.) In general, there is good

agreement between experimental and predicted loads. The two horizontal

dashed lines represent theoretical cut-off points given by Equation 2.12

for e/w ratios of 0.5 and 1. Discussion of the other curves shown in the

figure is delayed until later in this section.

The approach discussed above for stiffened elements under eccentric

load is not directly applicable when the element in question represents

only one part of a structural section. Therefore, a more general approach

is adopted which, as will be subsequently shown, is simple yet representa

tive of the actual structural behavior.

An effective width approach is employed in the present study to model

the behavior of a stiffened element under constant compression eccentric

ity. In the approach, which is a modification of original Swedish research

by Thomasson [1978], the following assumptions are made. Elementary beam

theory assumptions are presumed v.alid. Secondly, the effective width is

assumed to be uniquely determined from the edge membrane stresses, f i and
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f j (see Figure 2.4). Lastly, failure is presumed when the maximum mem

brane stress at the edge of the plate reaches yield (Graves Smith [1969],

also see Section 2.3.1).

The effective width is "split" into two parts, wei and wej ' which are

subjected to edge stress levels f i and f j , respectively, where f i > f j
(see Figure 2.4). After local buckling, the portion of the plate sub

"jected to the larger stress is expected to be less effective in resisting

load than the remaining portion, e.g., wei ~ wej •

In Case I of Figure 2.4a, the element is subjected entirely to

compression, where the edge stresses are such that f i > f j > 0 (compres

sion is positive). The proposed expression for wei is

W =w /2ei e
where we is defined by Winter's stiffened plate effective width equation

given by Equation 2.7 with fe = f i • An empirical formula proposed by

Thomasson [1978] is used to determine wej •

wej =wei (1.5 - 0.5 fj/f i ) 2.14

Since this expression is a function of both edge stress levels, the effect

of the stress gradient is included directly in the approach. It is noted

that Equations 2.13 and 2.14 approach Winter's effective width when the

stress state approaches uniform compression, e.g., f j /f i+1.0. Hence, the

present approach is consistent with existing design specifications (AISI

[1980]) for this limiting state. Finally, the total effective width is,

of course, subjected to the constraint

w.+w.<wel eJ-
In the work of Thomasson, a different expression for the effective

width wei was proposed, e.g.,

wei = CtlE71i 2.16
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where C is a constant. Originally Thomasson [1978] used C = 0.76, which

was based apparently on earlier work on web buckling (Thomasson [1973]).

However, the use of Equation 2.16 with C = 0.76 resulted in poor correla

tion when compared with the approach and experiments of Rhodes et ale

[1975]. Therefore, the constant C was modified to 0.95. It is observed

that Equation 2.16 with the modified constant of 0.95 is identical to

one-half of the von Karman equation, Equation 2.3. Also, a comparison of

the present approach, Equation 2.13, and Thomasson·s approach, Equa-

tion 2.16 with C = 0.95, reveals that the former is more conservative.

In addition to the pure compressive case, the possibility of a

tensile edge stress f j must be considered (see Case II of Figure 2.4).

For this case, Equation 2.13 1S still used to calculate wei' but the

effective width wej is determined from

w . = 1.5w . + w 2.17eJ el 0

which is valid for f j < O. This expression, adopted from Thomasson, is

consistent with the effective width wej of Equation 2.14 in the limiting

case of fj~' Again, the total effective width is subjected to the

constraint of Equation 2.15.*

*While this dissertation was in the final stages of preparation, a rele
vant article (Usami [1982]) was published which also examined the post
buckling of plates in combined compression and bending. In this article
a theoretical post-buckling analysis was presented, and an effective
width approach was developed which was in general agreement with the
theoretical results. It is noted that this approach and that of the
present study are very similar, except for a small variation in the
coefficients of the equations. For example, Usami·s expression for wei
is identical to Equation 2.13, and his expressions for wej for fj > 0
and fj < 0 are equal to Equations 2.14 and 2.17, respectively, with the
coefflcient 1.5 changed to 1.44. As a result of this comparison, the
approach pr~posed independently in this section is provided with a
theoretical justification.
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Although not strictly valid, a comparison is made in Figure 2.3

between the approach of this study, Equations 2.13 through 2.15 and 2.17,

and the results and approach of Rhodes et al. [1975J. The inconsistency

in this comparison is due to the different loading conditions; the present

approach assumes constant compression eccentricity, whereas in the work of

Rhodes constant load eccentricity is assumed. Nevertheless, some qualita

tive judgements can be made from this comparison. The curves based on

Equations 2.13 through 2.15 and 2.17 were calculated for several fixed

stress ratios fi/fj with f i held constant at 30 ksi, which was

slightly larger than the weighted average yield stress for the experi

ments. The curve labeled (1) corresponds to uniform compression. In

general, the app.roach of the present study yields conservative results,

and any difference between the approaches is due to the different loading

conditions, as noted earlier. The conservatism noted above for the

constant compression eccentricity case agrees qualitatively with that

reported by Rhodes and Harvey [1971b] for a simply supported plate. These

authors compared the behavior of a plate which was subjected to constant

compression and constant load eccentricities. Initially, in the

pre-buckled state, both loading conditions were identical, i.e., the

compression eccentricity a (see Figure 2.2) was equal to the same value.

For the case of constant load eccentricity, it was shown that after

buckling the compression eccentricity reduced, from its pre-buckling

value, to maintain equilibrium and was less than the value for the

constant compression eccentricity case. Also, the most highly compressed

edge occurred, at y = 0 in Figure 2.2, for the constant compression

eccentricity case which would lead to earlier failure, relative to that

for constant load eccentricity.
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Moreover, it is believed that the condition of constant compression

eccentricity, on which the present approach is based t is more appropriate

for thin-walled structural sections. TypicallYt an eccentrically loaded

section has plate elements which are uniformly and eccentrically

compressed. If, as is generally the case, the uniformly compressed

elements (or their stiffnesses) have a dominating influence on the axial

response of the section, then the loading condition for the eccentrically

compressed elements is more closely approximated by the constant com

pression eccentricity condition. Even if this is not the case, the con

servatism noted earlier for the constant compression eccentricity condi

tion makes it an amenable approach for the general design of eccentrically

compressed stiffened elements.

At this point it is appropriate to discuss the relationship of the

present approach for stiffened elements under eccentric load (stress

gradient) to approaches for beam webs. Also, since previous comparisons

were restricted to f. > f. > 0 (see Figure 2.4a), this discussion serves
1 J

to establish a basis for Equation 2.17, which is valid for f. < 0 (see
J

Figure 2.4b).

As mentioned earlier, the present approach is consistent with exist

ing design methods for the limiting case of uniform compression, i.e.,

with f i = f j . It is not t however, consistent with methods for the limit

ing case of pure bending. For example, LaBoube [1978] proposed a design

method for beam webs which was based on a fully effective web and used

empirical formulas to reduce the moment resistance of the beam. (It

should be noted that LaBoube's approach has been recently adopted by the
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u.s. specification, see AISI [1980a].) In contrast to this, an effective

width concept is used in the present study. It is felt that such an

approach leads to a better physical understanding of the problem.

laBoube [1978] also investigated an effective width approach for beam

webs. In an extensive experimental investigation of steel sections in

bending, the following empirical effective width equation was derived

wei = 61.5 tlRTfT < w 2.18

where wei is defined in Figure 2.4b. (Actually, LaBoube derived two

effective width expressions. One, Equation 2.18, was derived for webs

supported by a stiffened element (compression flange), and another was

derived for webs supported by an unstiffened element. Since these expres

sions were nearly identical, Equation 2.18 is assumed valid for both

cases.) The buckling coefficient K in Equation 2.18 was defined as

K= 4 + 2(1 + 6)3 + 2(1 + 6) 2.19

where 6 = Ifj/fil. This expression is an approximation to the theoretical

elastic buckling coefficient for a simply supported long plate under

bending (Thomasson [1973]) and is valid for fJo/fo < O. Also, the stress, -
factor f' is defined by

f' = 6'Fy 2.20

where 6' is a reduction factor used apparently to account for the amount

of lateral support supplied to the web by the compression flange and the

local buckling interaction between the compression flange and the web.

Ignoring the effects of interaction, 61 is taken as 1.0 and 0.8 for beams

with stiffened and unstiffened compression flanges, respectively.

Finally, the effective width in the compression zone closest to the

neutral axis is ignored (see Figure 2.4b). Therefore,

2.21
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F < 50 ksi; it is interesting to note
y

followed a similar pattern. In the range of

ent values of fj/f i and Fy than

e.g., 213 < f ./f. < -1 and 30 <
J 1

that his experimental results

The ultimate loads predicted using LaBoube's approach, Equations 2.18

through 2.20, and those predicted using the approach of the present study,

Equations 2.13, 2.15, and 2.17, are compared in Figure 2.5 for a simple

plate in bending with f./f. = -0.5 and F = 30 ksi. The vertical scale
J 1 Y

employed in this figure is analogous to the ratio of average to ultimate

stresses. For the moment, discussion is restricted to beam webs with

stiffened compression flanges, e.g., B' = 1.0 in Equation 2.20. In this

case, the approach of the present study is more conservative when compared

with LaBoube's approach for wit ratios less than about 135, and it is less

conservative for larger wit ratios. Although LaBoube investigated differ

those employed to construct Figure 2.5,

approximately 80 < wit < 100, his experimental results indicated a fully

effective web, and for wit greater than 200, his approach deteriorated and

predicted'ultimate loads which were unconservative. Because of the method

that LaBoube used to present his results, it was not possible to directly

compare his experimental effective widths to the effective width approach

of this study; instead it was only possible to extract trends of LaBoube's

approach, such as those noted above.

Also, lower ultimate loads are predicted by LaBoube's approach for

webs supported by unstiffened compression flanges (see Figure 2.5 curve

labeled B1 = 0.8). The lateral support supplied to the flange by an

unstiffened compression element is less than that supplied by a stiffened

element; consequently the effective width is reduced by using B1 < 1.0, in

Equation 2.20, which reduces the load. It is mentioned that LaBoube's

beams were fabricated by connecting two channels together, face-to-face,
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with braces (ties). However, the support supplied to the flange by these

braces must have been inadequate, which necessitated the above reduction.

Further discussion of this problem is contained in Chapter 6.

2.2.3 Uniformly Compressed Unstiffened Elements

Uniformly compressed unstiffened elements, or plates with one

unloaded edge free, can also sustain additional loading after local buck

ling. Winter [1947] recognized this post-buckling strength and proposed

the following unstiffened plate effective width equation, which was based

on empirical work by Miller [1943].

we = 0.8t/E/fe[1.0 - 0.202/E/fe/(w/t)] 2.22

where the effective width we is distributed as indicated in Figure 2.6.

However, in part due to the novelty of the approach, an effective width

concept for unstiffened elements was not as widely accepted as it was for

stiffened elements. This precaution still carries over in present day

specifications (AISI [1980]) for unstiffened elements which are founded,

in part, on elastic and inelastic critical buckling.

Analogous to Equation 2.9, Equation 2.22 is rewritten below in terms

of the critical buckling stress, fcr of Equation 2.4, where one unloaded

edge is assumed to be simply supported, e.g., K = 0.425 in Equation 2.4.

we/w = 1.29/fcr/fe(1.0 - 0.326/fcr/fe) 2.23

In contrast to this, Kalyanaraman [1977,1978] assumed K = 0.5 in

Equation 2.4 to define the critical stress and obtained

2.24



20

Also, on the basis of the form of Equation 2.24 (or equivalently on

the form of Equation 2.9), test results, and an analytical study of

post-buckling behavior of unstiffened elements; Kalyanaraman derived the

following semi-empirical relationship for the effective width.

we/w = 1.19/fcr/fe(1.0 - 0.298/fcr/fe ) 2.25

It is seen that the above more rigorously derived equation is nearly

identical to Equation 2.24.

In addition, Kalyanaraman suggested a general effective width approach

wherein one equation, Equation 2.9, was applied to both unstiffened and

stiffened compression elements. To justify this approach, he showed that

Winter's stiffened plate effective width Equation 2.9 provided a conserva

tive estimate of the unstiffened plate effective width given by Equa-

tions 2.25 or 2.24.

Similarly, a comparison is made between Equations 2.9 and 2.23 in

Figure 2.7 to test Kalyanaraman's approach with respect to the latter

equation which is derived assuming a buckling coefficient Kof 0.425. In

general, Equation 2.9 provides a conservative estimate of the effective

width.

It is interesting to compare the research of Chilver [1953] with

Winter's work. Chilver, on a purely empirical basis, derived the follow

ing effective width equation which was applicable to both stiffened and

unstiffened elements.

w Iw = 0.724(f If )0.3e cr e 2.26
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The above equation is plotted in Figure 2.7 for comparison with Equa

tions 2.9 and 2.23. Overall, Equation 2.9 provides the better agreement

with Chilver's empirical equation.

2.3 Sub-Ultimate Behavior

Winter1s [1947,1948,1970] effective width equations, discussed above,

have proved very successful in predicting ultimate loads, i.e., when the

edge stress is at yield, f e = Fy ' Also, these equations have been em

ployed for predicting the sub-ultimate response, e.g., service load

deflections when fe < Fy ' This has some justification since Winter used,

in addition to ultimate effective width data, sub-ultimate data in deriv

ing his empirical equations. However, recent research by DeWolf [1973J,

Desmond [1978], Kalyanaraman [1978], and others showed that employing the

same effective width equation for both ultimate and sub-ultimate behavior

was inadequate. For example, this approach resulted in adequate predic

tions of strength but resulted in overly conservative predictions of

stiffness.

The intent of the present section is to review the pertinent litera

ture and to propose an approach for predicting the sub-ultimate behavior

of locally buckled plates.

Dawson and Walker [1972] addressed the sub-ultimate problem in

detail, and the following discussion was abstracted from their work.

Consider the post-buckling response of the uniformly compressed, simply
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supported, flat plate of Figure 2.1. The longitudinal membrane stress f

has an average value fav

1 fWf =- fdyav w
o

2.27

and a maximum value f at the edges of the plate. The edge stress variese
periodically along the length, L, and has a maximum value femax and an

average value feav

1 f Lfeav =[
o

2.28

The specific distribution of the edge stress is governed largely by the

boundary constraints along the unloaded sides. For a long plate where the

sides are free to wave (no transverse 'stresses), the maximum edge stress

femax occurs at the crest of a buckle, i.e., femax = fe(x =L/2).

Moreover, the end shortening, u, is defined by

from which
Eu

feav = L

2.29

2.30

Hence, the shortening of the plate is an integrated effect and depends not

on peak values of stress, but on average values of the edge stress. If an

effective width approach is adopted for this situation, a levy [1942] type

effective width definition must be used, e.g.,

we/w = fav/feav 2.31

On the other hand, failure is a local phenomenon and depends on peak

values of stress. Failure of the plate occurs when the maximum, edge,
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membrane stress reaches yield (Graves Smith [1969]), i.e., when f = F ,emax y
and the buckling wave develops into a local kink. In actuality, yielding

occurs through a combination of longitudinal and shear stresses, but the

simplified one-dimensional assumption of failure at f = F agrees withemax y
test results (see later discussions). Finally, von Karman's definition of

effective width is appropriate for ultimate conditions. Thus

we/w =fav/femax 2.32

It should be noted that Equations 2.2 and 2.32 are identical, i.e.,

fe = femax and that the subscript max was omitted in earlier presentations

for convenience only.

The above discussion suggests that two effective width equations

based on the definitions of Equations 2.31 and 2.32 are needed to ade

quately represent the sub-ultimate and ultimate post-buckling response,

respectively. Dawson and Walker [1972] pursued this approach and derived

semi-empirical expressions for modeling both the stiffness and collapse of

post-buckle~ .plates. These expressions, which will not be presented here,

form the basis of the "reduced stress" concept used in British specifica-

tions for cold-formed steel sections (BS 449 [1974], Walker [1975]).

2.3.1 Thomasson's Approach

Thomasson [1978] also investigated the sub-ultimate response of

post-buckled plates and proposed a multi-curve effective width approach

which simulated the theoretical behavior as reported by Graves Smith

[1969]. Indicative of this behavior, including plasticity effects, is a

relatively stiff initial stage which is followed by a gradual loss of

stiffness (decreasing tangent stiffness) as the ultimate stress,

fult = favmax' is approached (see Figure 2.8 where strain equals £ = Ef).
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Eventually, near the ultimate stress, the stiffness vanishes as indicated

by the flat portions of the curves. The effects of plate initial imper

fection 6 in masking critical buckling and decreasing slightly theo
ultimate stress are also shown in Figure 2.8. In all cases yielding,

which is indicated in the figure by upward pointing arrows, provides a

good approximation of the ultimate stress. Also, the stress-strain

response predicted from Winter's effective width Equation 2.9 is shown in

Figure 2.8 to furnish a reasonable estimate of ultimate conditions. Still

the sub-ultimate response predicted by this equation is clearly inadequate.

The stress-strain response based on Thomasson's effective width

approach, which is defined subsequently, is shown in Figure 2.9a. For the

sub-ultimate range, he used an approximation, curve a, of Yamaki's [1959]

theoretical elastic solution for an imperfect plate (60ft =0.1). And

since Winter's effective width Equation 2.9 agreed with the state of

affairs at ultimate (Figure 2.7), Thomasson adopted an approximation,

curve b, of Winter's equation. The transition from sub-ultimate to

ultimate, or from curve a to b, was handled by defining an empirical

curve c.

The associated effective widths are shown in Figure 2.9b. The

specific expressions for curves a and b are as follows:

curve a, R = 0.827A-O• 662 2.33

curve b, R = 0.780A-O• S64 2.34

where A = (fe/fcr)! and R = we/we These equations are fully effective,

i.e., R = 1.0, when

A < 0.75 2.35
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A linear transition curve c is defined from the appropriate intersection

points 1 and y, e.g.,

curve c, R = RI + (Ry - RI)(A - AI)/(Ay - AI) 2.36

where, at ultimate, Ay = (Fy/fcr)i and the corresponding ordinate Ry is

determined from Equation 2.34 with A = A The initial abscissa Al isy.

determined from the following empirical equation

Al = 0.3 + 0.6Ay 2.37

and the corresponding ordinate RI is calculated from Equation 2.33 with

A = Al •

One fault of Thomasson's approach is that the maximum stress, favmax'

occurs prior to yielding, i.e., at fe < Fy; thus an elastic failure is

predicted. This behavior is, to a small extent, visible in Figure 2.9a

which was plotted for a specific Ay value equal to /fO. For the larger

values of Ay typically encountered in practical thin-walled steel

construction, this behavior becomes much more pronounced. Since the

prediction of an elastic failure would only complicate existing design

procedures, an alternate approach is needed. One such approach is pro

posed in the following section.

2.3.2 Present Approach

The sub-ultimate approach of the present study follows Thomasson's

work in simulating the theoretical behavior of a post-buckled plate

(Figure 2.8); however a single curve representation is adopted which

predicts failure by yielding, i.e., at ultimate fe = Fy. Winter's effec

tive width equation (Equation 2.9) is employed in the present approach to

define this ultimate condition. Also, the sub-ultimate response predicted
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with the approach is dependent on the yield strength and reflects, in an

approximate manner, the effects of two-dimensional and surface yielding.

This is more in line with the actual behavior (Figure 2.8) than that

predicted by Equation 2.9 which is independent of the yield stress, at

f < F .e y
The approach is derived by assuming the following relationship

between the average and edge stresses.

S = A + BA + CA 2 + DA 3 2.38

where S = fav/fcr ' A = {fe/fcr}l, and A-D are constants. The constants

are determined from the four boundary conditions at the transition from

fully effective to partially effective, point f, and at the final or

ultimate point y (Figure 2.10).

Winter's effective width Equation 2.9 is assumed valid for establish

ing the boundary conditions. This equation is first rewritten in terms of

the parameters S and A as the linear function

Sw = A - 0.218 2.39

Equation 2.39 is also shown in Figure 2.10. The intercepts of Equa-

tions 2.38 and 2.39 follow immediately as

S(A f } = Sw{Af}

S(Ay} =Sw{Ay}

where Ay = (Fy/fcr}i and the initial abscissa Af is calculated from

Equation 2.10, or Af = 0.6789. The slope at the initial point f is

assumed consistent with the fully effective curve ($ = x2 ), or

2.40

2.41

2.42
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Lastly, the slope at the final point y is assumed as follows

dSI =0
dA A

Y

which is compatible with the theoretical behavior (Figure 2.8). The above

four boundary conditions, Equations 2.40 through 2.43, permit explicit

determination of the constants A-D of Equation 2.38.

o = 2[(1 - Af}Ay - 0.218]/(Af - Ay}3

C = Af/(Af - Ay} - 1.5D(Af + Ay}

B = -A (2C + 3DA )
Y Y

A = A1(1 - B/Af - C - AfD}

2.44

2.45

2.46

2.47

2.48

Figure 2.11a illustrates the stress-strain response predicted from

Equation 2.38 where a smooth transition into the post-buckling range is

indicated. Also, in the sub-ultimate range, good agreement is obtained

between Equation 2.38 and Yamaki's [1959] theoretical elastic solution for

an imperfect post-buckled plate. Although these characteristics are

important, the most important factor is that Equation 2.38 does not suffer

from the deficiency noted earlier for Thomasson's approach and that

failure is predicted at fe = Fy'

The effective width equation corresponding to Equation 2.38 is

R = A/A 2 + B/A + C + DA

where R = we/wand all other parameters are defined previously. This

expression is presented in Figure 2.11b, where Winter's effective width

Equation 2.9 is also shown for comparison.

Finally, the effective widths predicted with Equation 2.48 and

Thomasson's approach of Equations 2.33-2.36 are compared in Table 2.1 for

several values of A~ (=Fy/fcr) and fe/Fy ratios. It is noted
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that a value of A2 equal to 128 corresponds approximately to a flat
y

width-to-thickness ratio, wit, of 500 for a mild steel (Fy = 30 ksi)

plate element. Table 2.1 shows that for moderate values of A~, less

than 16, larger effective widths are predicted with Equation 2.48,

relative to Thomasson's approach. This indicates that a stiffer axial

response is associated with Equation 2.48 for this range of A~. On the

other hand, larger effective widths are predicted with Thomasson's

approach for larger values of A~. Moreover, the worst disagreement

between Equation 2.48 is obtained for intermediate values of the parameter

f IF , but as the limiting value of f IF = 1 is approached, theeye Y
disagreement between the two approaches diminishes.

2.4 Summary

The post-buckling strength of plates and associated effective width

approaches were discussed in this chapter. First, past and current

effective width methods for uniformly compressed stiffened elements were

reviewed. Then, eccentrically compressed stiffened elements were treated.

For this case, an effective width approach was proposed which was consis

tent with current specification equations for the limiting state of

uniform compression. Next, various effective width methods were compared

for analyzing uniformly compressed unstiffened elements, and the unified

approach of employing a single effective width equation for both unstiff

ened and stiffened compression elements was verified. Lastly, the sub

ultimate behavior of post-buckled compression elements was invesiigated,

and Swedish research in this area was reviewed. For this case, an effec

tive width approach was derived which was again consistent with existing

design specifications.
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Generally, the work presented in this chapter was limited to isolated

plate elements. The more practical application of this work to structural

sections is taken up in the following two chapters.
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Table 2.1 COMPARISON OF THE SUB-ULTIMATE APPROACH OF THE
PRESENT STUDY AND THOMASSON I S [I978] APPROACH

w (Eq. 2.48)/w (Thomasson*)e e
f IF I .1 .2 .3 .4 .5 .6 .7 .8 .9 1.0e y

,,2 Iy

2 1. 1. 1.010 1.066 1.085 1.079 1.066 1.062 1.051 1.034

4 1. 1.067 1.110 1.109 1.087 1.064 1.057 1.051 1.045 1.039

8 1.064 1.125 1.111 1.078 1.036 1.024 1.018 1.016 1.020 1.027

16 1.125 1.107 1.062 1.012 0.976 0.965 0.963 0.969 0.982 1.004

32 1.112 1.050 0.989 0.933 0.905 0.898 0.902 0.915 0.938 0.974

64 1.058 0.974 0.906 0.849 0.831 0.829 0.838 0.858 0.891 0.940

128 0.985 0.891 0.823 0.770 0.758 0.760 0.774 0.801 0.843 0.904

*Eqs. 2.33-2.36
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f<fcr

f>fcr

Figure 2.1 BUCKLING OF A THIN PLATE

simply supported
on all edges
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Figure 2.3 COMPARISON OF EXPERIMENTAL AND THEORETICAL
FAILURE LOADS FOR STIFFENED PLATES UNDER
ECCENTRIC LOAD (After Rhodes et a1. [1975])
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Figure 2.6 EFFECTIVE WIDTH FOR UNSTIFFENED
COMPRESSION ELEMENTS
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Figure 2.7 COMPARISON OF EFFECTIVE WIDTH APPROACHES
FOR UNSTIFFENED COMPRESSION ELEMENTS
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Figure 2.8 POST-BUCKLING STRESS-STRAIN RESPONSE
(After Graves Smith [1969])
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CHAPTER 3

LOCAL BUCKLING INTERACTION

3.1 Introduction

The discussions of the previous chapter were generally limited to

isolated plates. However, in construction applications the behavior of

structural sections, cold-formed out of thin steel sheets, is more impor

tant. It is convenient to consider such sections to be composed of a

series of interconnected plates, and of primary concern is how buckling of

one plate affects the buckling and post-buckling response of the remaining

plates that comprise the section. In such an instance, a theoretical

local buckling analysis predicts simultaneous buckling of all component

plates due to continuity conditions which are enforced at the plate

junctures. It is not immediately clear whether this behavior is exhibited

in an actual (imperfect) thin-walled section. Also of concern is how the

component plates interact in the post-buckling range.

In the present chapter, the numerical method employed to analyze the

instability of general thin-walled sections is first discussed. Then the

theoretical response for local buckling interaction in thin-walled sections

is established by analyzing several common structural shapes under various

support and loading conditions. Also, edge stiffener requirements are

reviewed and discussed. Finally, the post-buckling response of thin-walled

sections is treated using an effective section concept.

41



42

3.2 Instability Analysis Using the Finite Strip Method

Typically, the instability of thin plates and thin-walled structures

is governed by partial differential equations which, for problems of even

moderate complexity, prove extremely difficult to solve. Hence, approxi

mate numerical methods must be adopted. Of these, the energy methods have

been the most widely used (Timoshenko and Gere [1961J).

In recent years, the finite element method (FEM), which may be

considered an outgrowth of the classical energy methods, has proved to be

a powerful tool in instability analysis, as well as in other areas of

structural mechanics (Gallagher [1975J). In this method the continuum is

discretized as an assemblage of elements that are "joined" together at

discrete points with due consideration given to continuity and equilib

rium. The formulation yields a set of algebraic equations, in terms of

generalized parameters, from which the solution is obtained. In some

cases this solution can be very costly, and even prohibitive, which is

especially true in an instability analysis. Therefore, it is advantageous

to seek methods which reduce the computational effort, but at the same

time retain the basic advantages of the finite element method. One such

method that satisfies these requirements is the topic of this section 

the finite strip method (FSM) (Cheung [1976J).

3.2.1 Basis of the Finite Strip Method

The basis of the finite strip method, which has been alternately

described as a semi-analytical finite element method (Zienkiewicz [1977J),

lies in the choice of the trial solution of the problem. For example,

consider the two-dimensional (2-D) problem of seeking some unknown func

tion u (x,y) which satisfies the following partial differential equation



~(u) = 0
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3.1

over a domain n (area)·and which satisfies certain boundary conditions.

In the FSM, the Kantorovich method (Crandall [1956]) is used for selection

of an approximate solution u* of the form
M

u* (x,y) = L: XmYm 3•2
m

where Ym(y) are known independent functions of y alone which satisfy, a

priori, the geometric boundary conditions on the y = constant boundaries

and Xm(x) 'are unknown functions of x alone. When the trial solution u* is

substituted into the governing equation, Equation 3.1, and when the y

integration is performed, a set of Mordinary differential equations are

obtained in terms of the Xm• These equations must then be solved with the

appropriate boundary conditions on the x = constant boundaries to obtain

the X. This is usually accomplished by the application of some weighted
m

residual or stationary functional method, depending on the original

statement of the problem.

3.2.2 Comparison of the FEM and FSM

Since the finite strip method is basically a special form of the

finite element method, it is useful to compare the discretizations used in

each method, say for a 2-D problem.

In the FEM the field variable ~ is discretized as a product of known

shape functions N and selected nodal parameters which are in general

unknown, i.e.,

u = Nt.- 3.3

The shape functions ~ are dependent on both independent variables, x and

y, and are normally derived from a polynomial representation of ~.
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In the FSM the field variable ~ is also discretized as a product of

shape .functions and nodal parameters

~ =L: Ym~~m
m

However, the shape functions are now derived from a polynomial representa-

tion in one direction, x in this case, and a continuously differentiable

series Y in the other direction, e.g., a Fourier series. And if them .

series portion of the shape function is chosen appropriately, the discreti-

zation of Equation 3.4 replaces effectively the original 2-D problem with

Muncoupled 1-0 problems.

Due to the reduction in dimensionality, the FSM possesses certain

advantages over the FEM. Usually the formulation results in a smaller

number of equations with a small bandwidth which, in turn, reduces the

core requirements necessary for solution. This is especially important in

an analysis for instability which requires a relatively large computational

effort. Also, the amount of input an~ output is drastically reduced.

The FSM is not without disadvantages. One of which is that the

method is limited to structures in which the material properties and

geometry are constant in a coordinate direction. Another disadvantage is

that for the solution to "uncouple," as discussed above, the discretization

must satisfy certain boundary conditions. Nevertheless, for structures

that satisfy these requirements, the FSM is a powerful analytical tool.

3.2.3 Literature Survey

The finite strip method was first developed by Cheung [1968] for the

analysis of elastic slabs. In this reference, results were presented for

slabs with various support conditions, and a comp~ri$on was made with
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results obtained using the FEM. The FSM was then applied to the analysis

of folded plate structures by Cheung [1969] who combined a flat plate

bending finite strip with a plane stress strip to model both the bending

and membrane actions. Numerical examples were presented and compared with

alternate methods of analysis. Other applications and developments

related to the FSM may be found in a recently published text by Cheung

[1976].

The application of the FSM to instability problems has been a more

recent development. Przemieniecki [1973] was one of the first researchers

to investigate the instability of plates and thin-walled sections using

the FSM. He developed geometric stiffness matricies for a state of

uniform biaxial compression and presented several numerical examples.

However, his analysis was limited by an assumption which required all

plate junctures to remain perfectly straight. This assumption was later

relaxed by Plank and Wittrick [1974], thus allowing for an interaction

between local and overall buckling modes. Recently, Graves Smith and

Sridharan [1978a] extended the FSM for analyzing the buckling of plate

structures under arbitrary loading. Also, a method was presented [1978b]

for analyzing the post-local buckling of thin-walled structures under end

compression. Finally, Hancock [1979J proposed a variant of the FSM for

predicting the post-buckling behavior of columns with plate imperfections.

3.2.4 Linear Instability Formulation

The equations governing instability are derived below from the more

general large displacement-small strain formulation for a geometrically

nonlinear problem (Zienkiewicz [1971,1977]).* A stationary functional

*It is noted that for conciseness the derivation of an explicit finite
strip representation is relegated to Appendix A.
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method is employed where the functional is defined by the total potential

energy of an elastic structure,

n • i f ET2dV - ~~
v

where £T = Green's strain vector (superscript T indicates transpose), 2 =

vector of Piola-Kirchhoff stresses, and f = generalized conservative

forces associated with the generalized displacements~. A total lagrangian
. -

description of Equation 3.5 is adopted in which the volume, V, is refer

enced to the undeformed state.

First, the usual finite element discretization of the field variable

is made as

u = N~- -- 3.6

where the vector ~ is chosen as a set of nodal displacements. Further,

Green1s strain £ is expressed conveniently as the sum of linear infinitesi

mal strains fa and nonlinear strains £l' e.g.,

f = fo + fL

where the fa and fl are linearly and quadratically dependent on the ~,

respectively. Using the finite element discretization of Equation 3.6

allows the strains to be written as

3.7

f = ~o~ + ~l~/2 3.8

where the strain matricies ~o and ~l are independent and linearly depend

ent on ~, respectively (Wood et. al~ [1978]). Next, the stresses, which

for the case of small strains correspond with the true stresses (Zienkie

wicz [1971]), are related to the strains by the following isotropic

constitutive law.

a = De- -- 3.9
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w~ere D is a matrix of elastic constants. While, with Equations 3.8 and

3.9, it is now possible to discretize the potential energy n; this repre

sentation is not pursued here. Instead, the discussion proceeds directly

to the instability formulation.

The stationarity of the total potential energy, Equation 3.5, defined

by

on = 0 3.10

where 0 is the variation symbol, would lead to the equilibrium requirements

for the problem. This criterion i~ not, however, sufficient to define

instability; it only serves to define a stationary point of n which may

represent stable, neutral, or unstable equilibrium (Gallagher [1975]). In

order to establish the type of equilibrium, the second variation of the

functional must be employed. Therefore, instability is defined by the

load (stress) for which 02n ceases to be positive-definite (Dym [1974]),

or for neutral equilibrium by

02n = 0 3.11

Applying this energy criterion to the previous formulation leads to the

following linearized instability condition.

(K + K )06 = 0 3.12
-0 -0 -

where K is the usual symmetric small displacement stiffness matrix and K
-0 -0

is the symmetric initial stress matrix which accounts for the effects of

the membrane forces (stresses). Both these matricies are defined below.

~o =~~6Q~odV 3.13
v

~a = .I:(a~~/a~)2dV 3.14

Actually, the criterion of Equation 3.11 leads to a more complicated

expression than that given by Equation 3.12, e.g., see Zienkiewicz [1977].
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However) for the structures and loading to be considerea here) Equa-

tion 3.12 is sufficient. Furthermore) in the present development it is

assumed that the stresses defining ~o are obtained from an independent)

linear (membrane) analysis) that their spacial distribution remains

constant during buckling) and that these stresses are related by a common

factor A. This allows Equation 3.12 to be restated as

(K + AK lOA =0 3.15
-0 -0-

The above equation is identified immediately as a standard eigenproblem

from which the eigenvalue represents the buckling load and the eigenvector

represents the buckling mode. Explicit finite strip forms of the matri

cies that define Equation 3.15 are derived in Appendix A.

3.2.5 Finite Strip Instability Analysis Program

A special purpose computer program) which was based on the finite

strip method (see Appendix A) and on the theory discussed earlier in this

section, was developed to analyze the linear elastic instability of

thin-walled structures of arbitrary cross section. As a result of the

finite strip discretization) the analysis is specialized to structures

with constant longitudinal geometry and material properties and to struc

tures with rigid diaphragm) end support conditions. Also) only linearly

varying, longitudinal) edge tractions (loading) are considered. Because

both in-plane and out-of-plane response are included in the analysis)

prediction of local, flexural) torsional) or combination buckling modes is

possible.

The instability condition of Equation 3.15 is solved using an in-core

determinant search algorithm) after Bathe [1971)1976J, which combines

several eigensolution techniques in an effective and efficient manner.
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This algorithm, its underlying theory, and progran~ing details are dis

cussed in Appendix B.

Because the buckling of any thin-walled structure is very much

dependent on its length, two types of analyses are incorporated in the

program, a constant length and variable length analysis. The variable

length analysis uses a unique storage scheme to eliminate the necessity of

reforming the governing stiffness matricies each time the length is

changed (see Appendix B.4). Also an option is included in the variable

length analysis for a minimum buckling load solution which is automatically

determined, if it exists, using polynomial interpolation (see Appen-

dix B.4).

Another feature of the program is that dynamic allocation storage, as

described by Bathe [1976J, is utilized. In this scheme all essential

information is stored, in vector form, in a central one-dimensional array

which is updated during different phases of the analysis to minimize

storage requirements. This storage scheme proved very effective in the

present program where different types of analysis were possible.

Finally, it is noted that automatic data generation schemes are

implemented in the program to simplify input requirements.

The program is verified in Appendix C where the results of analyzing

several plate problems are compared with known solutions.

3.3 Local Buckling Interaction in Structural Sections

The instability of a thin-walled section may be considered to be

controlled by one of the plate elements that comprise the cross section.

As, the buckling load for this controlling element is exceeded, it is

no longer capable, by itself, of resisting the applied load. Therefore,
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it must rely on the restraint provided by the remaining elements until the

buckling load of the overall section is reached.

This type of local buckling interaction in thin-walled sections ;s

investigated here. Specifically, channel and lipped channel sections are

analyzed for instability, under various support and loading conditions,

using the finite strip method discussed in the previous section. All

analyses employ a Poisson ratio of 0.3 and a discretization consisting of

four finite strips, each, for the web (stiffened element) and flanges

(unstiffened or edge stiffened elements), and one strip for the lip (edge

stiffener). This discretization was found sufficient to produce satisfac

tory results. Also, the analyses are restricted to local buckling where

the web-flange junctures are assumed to remain straight which precludes

overall modes. This restriction is relaxed later, in Chapter 4, to study

interaction of local and overall buckling. Moreover, if all plate junc

tures are presumed to remain straight, it is necessary to model only the

flexural action. All results discussed in this section are valid for

buckling in a mode with one longitudinal half-wave.

3.3.1 Channel Sections

First, the instability of uniformly compressed channel sections is

investigated. Symmetry of the buckling mode is assumed, and only one-half

of the channel is analyzed which reduces the computational effort.

The results of the analysis in the form of minimum buckling coeffi

cients, Kmin , are presented in Figure 3.1 for various flange-to-web width

ratios, wZ/wl. The critical length, L ; which is also presented in thiscr
figure as the web aspect ratio, L /Wl; represents the value that iscr
associated with K '. Excellent correlation is observed between themln
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finite strip results and a known solution (Kroll et. ale [1943]). Also,

for W2/Wl ratios approaching zero (0), the web buckling coefficient, K1 ,

approaches the theoretical result for a plate with simply supported

longitudinal edges, i.e., K1 = 4.0, and for W2/wl approaching infinity,

the flange buckling coefficient, K2, approaches the result for a plate

with fixed and free longitudinal edge supports, i.e., K2 = 1.25.

As mentioned previously, one plate element is usually responsible for

buckling of the overall section. This response is indicated in Figure 3.1.

For W2/Wl ratios less than the limiting value indicated by the vertical

dashed line (W2/Wl ~ 0.35), which was established from Kroll et. ale

[1943], the web element initiates buckling and forces the flange element

to buckle prematurely and simultaneously. And for W2/Wl ratios above this

limiting value, the flange element initiates buckling. It is interesting

to observe that in this range, W2/wl > 0.35, a larger critical length,

L ,is obtained due to the dominating influence of the flange whichcr
requires a relatively large half-wavelength. Also, for W2/Wl equal to the

limiting value, the web and flanges buckle independently at the same

stress level. The corresponding buckling coefficients K1 and K2 are

slightly larger than their simply supported values of 4.0 and 0.425,

respectively, because the section is forced to buckle at a half-wavelength

which is different from that associated with each isolated (simply sup-

ported) element.

Compatibility conditions established at plate element junctures

require all elements of the section to buckle simultaneo~sly. Thus, the

following general relationship exists between the buckling coefficients

for the web and flange.
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Kz = K1(wz/Wl)Z

which is valid for uniformly compressed sections of constant thickness.

3.3.2 Lipped Channels

For lipped channels, the addition of a lip or edge stiffener compli-

cates the behavior. As a result, the findings of several finite strip

instability analyses are discussed here. First, an idealized lipped

channel is analyzed in uniform compression. Then the response of an

actual section, is investigated, and the effect of stiffener (lip) size is

examined. Finally, the influence of non-uniform, linear, edge-compression

is studied. Symmetry is employed in the analysis of only the idealized

lipped channel, and reference is made to the introduction of Section 3.3

for other details of the analyses.

The local buckling response for an idealized lipped channel under

uniform longitudinal compression is investigated first. To simplify

matters, the lip is assumed to provide sufficient rigidity (out-of-plane)

to force the lip-flange juncture to remain straight and is assumed to

provide negligible torsional restraint. Consequently, an idealized

section is analyzed where the lip is replaced by a simple support.

The results of the analysis are shown in Figure 3.2 which are similar

to that obtained for plain channels (see Figure 3.1). For a WZ/Wl ratio

equal to the limiting value of one (1), the web buckles into a square wave,

independent of the restraint provided by the flange, and vice-versa. The

associated minimum buckling coefficients for the web and flange are the

same as that for a simply supported square plate, i.e., K1 = Kz = 4. Also,

for w2/Wl ratios less than this limiting value, the restrained web initi

ates buckling, which is indicated by K1 > 4. Conversely, for W2/Wl > 1,
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the restrained flange initiates buckling and forces premature instability

of the web, i.e., K1 < 4. Moreover, the finite strip results approach

the theoretical results for plates with fixed-fixed longitudinal edge

supports, K1 = 6.97, and with fixed-hinge supports, K2 = 5.41, as the w2/wl

ratio approaches zero (0) and infinity, respectively. Finally, Equa-

tion 3.16, which relates K1 to K2, is equally valid for the case under

study and, in fact, is valid for any section under uniform compression.

The assumptions made earlier with respect to the lip are now removed,

and the response of an actual lipped channel, including the lip, is

investigated. Also, to determine the influence of web buckling, the

analysis is conducted for sections with four different Wl/W2 ratios, all

greater than one (1). Uniform compression is assumed, and the width of

the lip, w3' is chosen to satisfy the edge stiffener requirements (Desmond

[1978J) defined in Section 3.4. Further, symmetry is not employed, in

this and all subsequent analyses, to preclude any artificial constraint on

the buckling mode.

The results of the analyses are presented in Figures 3.3 and 3.4

where the numbers in parentheses refer to the Wl/W2 ratios. These results

are valid for buckling with one longitudinal half-wave, i.e., m = 1 in

Equations A.4 and A.5. Results for higher order buckling modes, i.e., for

m > 1, are obtained simply from the m = 1 curve by keeping the ordinates

constant and multiplying the abscissas by m.

The flange buckling coefficient, K2, is presented, in Figure 3.3, as

a function of the flange aspect ratio, L/W2, where L is the length.

Generally, three extremes are observed; see points labeled a, b, and c;

and the associated buckling modes are portrayed in Figure 3.5, for the

specific wl/w2 ratio equal to two (2). A local buckling mode is observed
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for the primary minimum, point a, and occurs at relatively small aspect

ratios, L/wz. This buckling mode indicates clearly the restraining effect

of the flange on the web. For the secondary minimum, point c, the flange

buckles in a local-torsional mode at relatively large aspect ratios. Due

to this mode of action, the restraining effect of the flange on the web is

now absent. The buckling mode associated with the peak of the curve,

point b, is a mixture of the local and local-torsional modes described

above. For aspect ratios intermediate to points a through c, buckling

modes similar to those in Figure 3.5 are obtained.

As the parameter Wl/WZ is increased, the buckling response deviates

from that described above. This is indicated in Figure 3.3 where the peak

of the curves becomes less pronounce as Wl/W2 is increased. For a web-to

flange ratio of four (4), the peak no longer exists, and only the primary

minimum is observed. In this case, the buckling modes are either local

(Figure 3.5a) or local-torsional (Figure 3.5c) to the left and right of

the minimum, respectively.

The web buckling coefficient, Kl , is presented in Figure 3.4, and

because of the similarity of this figure to Figure 3.3, discussion is

limited. Again, the response of Kl is influenced by the Wl/W2 ratio, but

the magnitude associated with the primary minimum is only slightly affect

ed by changes in this parameter.

Instability is governed by the absolute minimum buckling coefficient,

Kmin · For example, in Figures 3.3 and 3.4, the minimum buckling coeffi

cient is associated with the primary minimum point on the curves; conse

quently the local buckling mode of Figure 3.5a governs the response. In

this respect, it is observed that web buckling has a detrimental influence

on the minimum flange buckling coefficients of Figure 3.3. Also, good
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agreement is obtained between the K. of Figures 3.3 and 3.4, and themln
results of Figure 3.2 for the idealized lipped channel. These findings

are, of course, influenced by the edge stiffener, which is discussed next.

To investigate the influence of the edge stiffener, an analysis is

repeated for the section from Figure 3.3 which has Wl/W2 = 2, but the lip

size, w3' is doubled. The results of this analysis (W3/W2 = 0.426) are

compared with those of the original analysis (W3/W2 = 0.213) in Figure 3.6

where the flange buckling coefficient, K2 , is presented. The correspond

ing web buckling coefficient, K1 , may be obtained from Equation 3.16. It

is seen that doubling the size of the stiffener affects only the secondary

minimum, which is raised. And the primary minimum, which governs buckling,

remains unaffected.

There is a. limit to the response described above. For example, a

larger stiffener could initiate buckling which would change the response.

Also, a smaller stiffener could lower the secondary minimum to the point

where it governs buckling. In effect, these are the reasons why design

specifications place requirements on stiffener size (see Section 3.4).

Next, the behavior of a lipped channel compressed by non-uniform,

longitudinal, edge compression is examined. There is no known solution to

this problem which has practical applications for sections subjected to

combined axial and bending action. The longitudinal stress f at a distance

x from the web (see insert on Figure 3.7) is defined by the linear rela-

tionship

f = f 1(1 - CX/W2) 3.17

where f 1 is the stress level at the web, x =0, and c is a stress factor.

A rectangular lipped channel is analyzed for instability under different

stress conditions, or various values of c. The results are shown in
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Figures 3.7 and 3.8 where the buckling coefficients for the flange, K2,

are based on the maximum stress level and the web buckling coefficients,

K
I

, are based on the web stress. Note that for c = -0.5, flange buckling

is delayed with respect to the results for uniform compression, but that

for c = 0.5, it is the same in the region of the primary minimum (see

Figure 3.7). Another observation is that the stress distribution defined

by c = -0.5 exaggerates web buckling in the local-torsional mode of

Figure 3.5c· (see Figure 3.8).

3.4 Edge Stiffeners

As discussed above, the size of the lip or edge stiffener affects the

local buckling behavior. This is recognized in the current design specifi

cation (AISI [1980]) which stipulates the following minimum stiffener

moment of inertia, about its own centroidal axis.

I . = 1.83t4 [ (w/t)2 - 4000/F ]-1 3.18smln y
where w is the flat-width of the edge stiffened element, e.g., the flange

of a lipped channel, and Fy the yield stress in ksi. Equation 3.18 has

been verified experimentally and has a theoretical basis (Winter [1970]).

If the edge stiffener is proportioned to meet the above requirement, then

the edge stiffened element may be considered a stiffened element for

design purposes.

More recently, Desmond [1978] proposed edge stiffener requirements

which were based on linear instability theory, an ultimate strength

criterion, and experiments. Similar to Equation 3.18, Desmond's require

ments depend on the width-to-thickness ratio wIt and yield strength, but

three different requirements are defined depending on the range of the wIt
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ratio. A general limiting width-to-thickness ratio (w/t)" which follows

from Equations 2.10 and 2.4, is employed where
~

(w/t)l = 110.8(K/Fy )2 3.19

The factor K is the buckling coefficient of the compression element. For

relatively small wit ratios the compression element is fully effective

without a stiffener. Also ignoring any rotational restraint at the sup-

ported longitudinal edge, the other edge being free; the buckling coeffi

cient K in Equation 3.19 is 0.425. Therefore, for

wit < (w/t)lu = 110.8(0.425/Fy )1

I sa = 0

where I is the adequate stiffener moment of inertia about its ownsa
centroidal axis. For the second or "fully effective" range,

(w/t)lu < wit < (w/t)ls = 110.8(4/Fy)t

lsa [(w/t)/(w/t)ls - (w/t)lu/(w/t)lsJ3
~ =.120 [1.0 - (w/t)lu/ (w/t)ls]3

where (w/t}lu and (w/t}ls are defined in Equations 3.20a and 3.21a,

respectively. The stiffener requirement of Equation 3.21b was empirically

justified and was derived such that buckling and yielding occurred simul

taneously. It is noted that a buckling coefficient of four (4) was

employed in defining (w/t)ls from Equation 3.19. Above, (w/t)ls only

elastic buckling occurs. In this range, Desmond found that basing a

stiffener requirement on that derived from a buckling criterion, defined

below, was insufficient to provide the edge stiffened element with the

post-buckling strength of a similar stiffened element. (A stiffener

requirement based on a buckling criterion is defined as one which forces

the local and local-torsional buckling modes to occur simultaneously, see

Section 3.3.) Therefore, he employed an ultimate strength criterion where



58

an adequate stiffener was defined as that which provided the edge stiff

ened element with a strength equal to that for a fully stiffened element.

Based on this criterion, the following requirement was formulated using a

statistical correlation between several hypothetical stiffener requirements

and experimental data. For the third or "post-buckling" range,

wit > (w/t)ls 3.22a

Isa/t4 = 115(w/t)/(w/t)ls + 5 3.22b

In addition, a restriction was placed on the overall stiffener depth Os'

defined as the sum of the stiffener depth w3 and the inner radius r (see

Figure 3.9a), to preclude the detrimental effects of stiffener buckling

interacting with the edge stiffened element, e.g.,

D < 0.25w 3.23
s -

The calculation of the stiffener property I must admit the possibil-sa
ity of a partially effective stiffener depth Wg. Therefore, the effective

area distribution of Figure 3.9b is employed. The effective width of the

stiffener w3e is determined from the stiffened plate effective width

Equation 2.9,

we/w = Ifcr/fe (1.0 - 0.218/fcr/fe) 2.9

with the critical stress equal to that for an unstiffened element, e.g.,

K = 0.425 in Equation 2.4, and with f equal to the yield stress F. Thene y
the effective area w3ext is distributed as indicated in the figure. It is

noted that a straight segment approximation of the actual stiffener radius

is used in Figure 3.9. At first, in accordance with Desmond, the actual

radius was employed for calculation of the stiffener properties; however,

Desmond's original stiffener calculations could not be duplicated using

this approach. Instead, the straight segment approximation of Figure 3.9

provided good agreement with Desmond's calculations and, therefore, was
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adopted in this study. This approximation is, of course, limited to

relatively small radius-to-thickness ratios, r/t.

Some interesting observations follow from the local buckling inter

action study of Section 3.3.2 where the edge stiffener size of w3 = 0.213wz

was established from Equation 3.22 with F = 30 ksi and wz/t = 60. From
y

Figure 3.3, it is observed that for a square lipped channel (wl/wz = 1),

where the effects of web buckling are small, this edge stiffener size is

just adequate to force the local buckling mode of Figure 3.5a to govern,

i.e., the minimum buckling coefficient for the flange is associated with

the primary minimum. Another observation follows from Figure 3.6 where

the effect of a larger stiffener is investigated, including the influence

of web buckling. In this figure it is seen that using a larger stiffener

is ineffective in changing the minimum buckling coefficient of the flange

due to the dominating influence of the web.

Moreover, local buckling interaction affects the stiffener require-

mente For example, if the buckling criterion defined earlier is used to

establish a stiffener requirement, then a smaller requirement would result

for sections where the web initiates buckling, i.e., for wl/WZ > 1, as

compared to a requirement established for a section where the influence of

the web is small, i.e., for Wl/WZ = 1 (refer to Fiqure 3.3).

3.4.1 Effect of Stiffener Radius on Local Buckling

In the local buckling studies of Section 3.3.2, the edge stiffener

was approximated by a sharp right angled lip. Yet actual edge stiffeners

include a transitionary radius (see Figure 3.9). Also, curved stiffeners

formed entirely from a circular bend are used in practical applications.
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Therefore, it is important to establish how this radius influences the

local buckling response.

In the present section the effect of the stiffener radius is studied

using an idealized flange-stiffener model (see Figure 3.10). This ideal

ized model is chosen to preclude local buckling interaction with other

elements, and the longitudinal edge support is treated as simply supported

and fixed in order to bound the support that exists in an actual section.

Two different edge stiffeners - a sharp right angled lip and one quarter

of a hollow cylinder, or arc - are examined and are proportioned to meet

Desmond's stiffener requirements for Fy = 30 ksi and W2/ t = 60. This

results in dimensions for the right angled lip and arc of W3/ t = 12.8 and

r/t = 10.06, respectively (see Figure 3.9). The stiffener moment of

inertia Is for the arc is calculated using the actual cross section.

Finally, the finite strip method of Section 3.2 is employed to analyze the

model in uniform compression, where four, one, and six straight finite

strips are used for the discretizations of the flange, lip, and arc,

respectively.

In general, the arc stiffener is less effective than the equivalent

right angled lip (see Figure 3.10). For example, a smaller buckling

coefficient K2 is associated with the flange-arc model. Also, the buck

ling modes corresponding to Figure 3.10 are similar to those indicated for

the flange in Figure 3.5. It is interesting to note that for a simply

supported edge, the flange-stiffener model does not exhibit a secondary

minimum (see Section 3.3.2), and that the buckling coefficient decreases

continually for l/W2 greater than about four (4). This is due to the

complete absence of any rotational restraint at the supported, unloaded

edge, and the associated buckling mode is torsional about an enforced axis

of rotation.
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A relatively simple method to account for the reduced buckling

strength due to the effect of the stiffener radius would be to include a

portion of the radius in the definition of the flat-width w, e.g., w =

Wz + r where Wz is the flat-width of the edge stiffened element and r the

radius of the stiffener. Because of the direct dependence of the stiff

ener requirements on w (see Section 3.4), this results in a larger

required stiffener which, in turn, offsets at least partially the effect

of the radi us. *

3.5 Post-Local Buckling Interaction

While the problem of local buckling interaction in thin-walled

sections has been investigated in the past by numerous researchers, the

behavior after the occurrence of local buckling has received relatively

little attention. Rhodes and Harvey [1976] investigated the theoretical

post-buckling behavior of plain channel struts under compression and

bending. Their analysis was an extension of earlier work (Rhodes and

Harvey [1971a]) on single plates where the semi-energy method of Marguerre

[1937] was utilized to obtain unknown coefficients of an assumed deflected

form. The extension involved enforcing compatibility between plate

elements of the section. Because the deflected form was assumed to remain

unchanged after buckling, with only a different magnitude, a constant

post-buckling tangent stiffness was obtained, e.g., curve "a" in Fig-

ure 3.11b where P and u represent the axial load and displacement, respec

tively. This figure is discussed in more detail shortly.

*Note that this method has no quantitative basis.
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As in local buckling interaction (see Section 3.3), the restraint

provided by one plate element of a section to another could also affect

the behavior, i.e., the restraint could change in the post-buckling realm.

This aspect was investigated by Rhodes [1978] who included the effects of

changing rotational restraints and changing deflected form. These effects

were found to lead to significant changes in the post-buckling stiffness

at loads only slightly in excess of the buckling load. Therefore, in this

same paper, Rhodes studied the effects of changing restraint in more

detail, where to simplify the analysis the deflected form was assumed to

remain constant after buckling. In brief, some very interesting results

were obtained from an analysis of the uniformly compressed square box

section of Figure 3.lla, which had unequal thickness, t 1 and tz. The

load-end displacement for the specific case of tdtz =.2 is shown in

Figure 3.11b. From the results, the following behavior was postulated.

At initial buckling indicated by Pcr ' the initial reduction in tangent

stiffness to curve "a" was primarily due to buckling of the restrained

thinner plates, while the thicker plates remained relatively unaffected.

Then at a larger load, a form of "secondary local buckling" occurred where

the thicker plates developed substantial out-of-plane deflections. The

associated end displacement was slightly less than u which represented. s
the value at which the thicker plates would buckle if their unloaded edges

were simply supported. In this range of end displacement the thicker

plates behaved as if simply supported but with initial imperfections

induced by the buckled thinner plates. After secondary buckling, the

restraint between plates reduced significantly and approached a simple

support condition.
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Frieze [1978] also investigated the post-buckling behavior of thin

walled sections where there was interaction between the component plates.

The governing differential equations were cast into finite difference form

and then solved using a dynamic relaxation technique. Plasticity and

residual stress effects were included. The theoretical model was corre

lated with experimental data and was found to yield slightly conservative

failure predictions. Frieze also included a comparison between theoreti

cal failure loads for uniformly compressed square box sections, with

unequal thicknesses and (w/t)max ~ 80, and theoretical failure loads

obtained by treating the component plates as if simply supported and

isolated. In general, the latter simpler approach predicted failure loads

within 3% of those obtained by analyzing the actual section.

3.5.1 Effective Section Method

The above theoretical studies of post-local buckling interaction in

thin-walled sections suggest the possibility of a very simplified analysis

approach wherein the component plate elements are treated as isolated.

This approach is investigated here for singly-symmetric sections using an

effective section method defined by the effective widths of the individual,

simply supported, plate elements. A method used to account for local

buckling interaction between the plate elements is also investigated for

comparison with the simply supported plate results.

A loading condition of uniform compression (constant compression

eccentricity) is assumed. Further, the length of the section is restrict

ed such that web-flange intersections remain straight, e.g., as in short

struts where buckling in overall modes is not critical. From the results

of Section 2.2.3, the stiffened plate effective width Equation 2.9 is
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employed to calculate the effective widths of all plate elements, both

stiffened and unstiffened. This equation is written in the following

generalized form.

w /t-= 163.3~ [1 - 35.6/K/fe/(w/t)]
e e

where all terms were defined previously. The above equation is valid for

wIt ratios greater than the limiting width-to-thickness ratio (w/t), of

(w/t), = 110.a/K/fe
3.25

For wIt ratios less than this value the element if fully effective. The

effective section is obtained by applying Equation 3.24 to all component

elements. The actual manner in which the effective widths are distributed

is irrelevant due to the assumption of uniform compression. The axial

load P is determined from

P = feAe 3.26

where Ae is the area of the effective section. At failure, the ultimate

load P is determined from Equation 3.26 with f = F •
u e y

The effective section method described above is applied to channels

and lipped channels with various web-to-flange ratios wl/w2, and the

results are presented in Figures 3.12 and 3.13. These results are based

on ultimate conditions with F =30 ksi; thus the vertical axis is equiva-y

lent to the ratio of average-to-ultimate stresses. For the lipped chan-

nels, the edge stiffeners are designed to meet Desmond's requirements (see

Section 3.4), and are assumed fully effective. Finally, and most impor

tantly, the curves in Figures 3.12 and 3.13 are based on two different

assumptions. For the dashed curves it is assumed that there is no inter

action between the component elements. Therefore, simply supported

boundary conditions are employed where the buckling coefficient K in
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Equation 3.24 is taken equal to 0.425 and 4.0 for unstiffened and stiff

ened elements, respectively. The discontinuity in the dashed curves

represents the transition of the web, element 1, from fully to partially

effective. For the solid curves, it is assumed that there is full inter

action between the component elements, and the elastic local buckling

coefficients from Figures 3.1 and 3.2 are assumed valid for the channels

and lipped channels, respectively.

As shown in Figure 3.12 for channel sections, when the Wl/W2 ratios

are small, accounting for local buckling interaction yields larger ultimate

loads relative to loads that are calculated by treating the component

plates as simply supported. However, for larger wl/W2 ratios, which are

more practical in actual applications, it does not matter whether inter

action is accounted for or not; the ultimate loads are nearly identical.

In contrast to this, significant differences are obtained for lipped

channels with large wl/W2 ratios (see Figure 3.13). This time the largest

ultimate loads are associated with the simply supported boundary condi

tions.

3.6 Summary

The problem of local buckling interaction in thin-walled sections was

investigated in this chapter. First, the numerical methods employed to

solve the instability problem were discussed. The finite strip method was

used for the problem discretization. A general formulation for linear

instability was reviewed where the details were relegated to Appendix A.

The special purpose finite strip instability analysis program, developed

in this study, was then addressed. The determinant search algorithm

employed for the eigensolution and other special features of the analysis
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program were discussed in Appendix B. The program was verified by analyz

ing several simple plate examples in Appendix C.

Second, local buckling interaction in structural sections, subjected

to longitudinal compression, was investigated using the aforementioned

program. Channel and lipped channel sections were studied thoroughly.

For the latter, the effects of the edge stiffeners and non-uniform compres

sion were included; both of which were found to significantly affect the

local buckling response.

Third, edge stiffeners were discussed, and current and proposed

design requirements were reviewed. Also, a simple model was analyzed to

investigate the effect of stiffener radius on the local buckling behavior.

The results showed that a stiffener formed into the shape of an arc was

less effective in resisting buckling than an equivalent right angled lip.

Finally, the behavioral aspects of post-local buckling interaction in

thin-walled sections were established by reviewing the pertinent litera

ture. This provided, at least, partial justification for a simplified

analysis method wherein the component plates were treated as isolated and

simply supported. For this purpose, an effective section method was

presented where the effective widths of the component elements were

determined using the stiffened plate effective width equation. Also, an

effective section method was defined to account for local buckling inter

action in thin-walled sections where the interactional critical buckling

stresses of each element were used to calculate the respective effective

widths. Jhe ultimate loads predicted using this method were then compared

with those predicted by treating the component plates as simply supported.

A discussion of the sUitability of these methods for predicting the
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response of actual thin-walled sections is postponed until Chapter 6 where

experimental justification is provided.

All of the work presented in this chapter was restricted to only

local buckling effects. The influence of overall buckling and bending

where the cross section displaces in an overall mode is investigated

subsequently.
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Figure 3.5 LOCAL BUCKLING MODES IN LIPPED CHANNELS
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CHAPTER 4

LOCAL AND OVERALL BUCKLING INTERACTION

4.1 Introduction

The problem of local and overall buckling interaction is addressed in

this chapter. Thus, the j~nctures of component plate elements of a

thin-walled section which were previously constrained to remain straight

(Chapter 3) are now allowed to deflect. This introduces other modes of

behavior which must be considered. In general, these other modes are

adversely affected by local buckling of the component plates. For exam

ple, due to the effects of local buckling, the flexural buckling strength

is weakened when compared to the strength without local buckling effects.

More specifically, the behavior and strength of thin-walled, singly

symmetric columns and beam-columns is studied. An analysis method,

utilizing an effective section concept, is derived to predict the sub

ultimate and ultimate response.

4.2 Literature Survey

Early work in the field of interactional buckling was conducted by

Bijlaard and Fisher [1952J who investigated the effects of local buckling

on flexural and torsional buckling of thin-walled sections. No post-local

buckling effects were included. Later, these same authors (Bijlaard and

Fisher [1953J) extended their analysis to include post-local buckling

effects through the use of an "equivalent post-buckling modulus," Eeq .

This was used to reduce the Euler buckling stress fcr as follows

81
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f = ~2E I(L/r)2cr eq
where L is the column length and r the radius of gyration. In the inelas-

tic range a Johnson parabola was employed. Theoretical strength predic

tions were in good agreement with reported experimental results for square

aluminum box sections. However, post-local buckling effects were insig

nificant due to the small width-to-thickness ratios studied, e.g., wit =

30 and 50.

Graves Smith [1969] also researched theoretically the problem of

interaction of local and flexural buckling of thin-walled aluminum box

sections. An "apparent bending stiffness" was employed to account for

local buckling effects. Again, good agreement was obtained between

theoretical and experimental ultimate loads for sections with small wit

ratios, wIt = 50.

Investigations into imperfection sensitivity of symmetric thin-walled

columns was initiated by van der Neut [1969 and 1973]. A simplified model

was utilized to study the effects of two types of imperfection: local

plate out-of-flatness and column out-of-straightness. The model consisted

of two load carrying flanges connected by webs, which were rigid in shear

and laterally, but had no longitudinal stiffness. In the so-called

" t"« h E 1op lmum range were u er and local buckling occurred simultaneously,

the model was found to be very sensitive to both types of imperfections

mentioned above, i.e., the imperfections caused a significant reduction in

load carrying capacity. This mode of action was very similar to that

observed for shell-type structures. Gilbert and Cal1adine [1974] extended

van der Neut's work and proposed an imperfect column strength approach via

a Perry column formula (see Walker (1975]).
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The interaction of local and flexural buckling has also been studied

in thin-walled stiffened panels, such as bridge decks, by Tvergaard

[1973a,b], Tulk and Walker [1976], and Fok, et. ale [1976]. Similar to

van der Neut's results, these structures also exhibited imperfection

sensitivity.

DeWolf [1973,1974], and later Kalyanaraman [1977,1978], accounted for

local buckling effects through the use of an effective width concept. The

flexural buckling strength of cold-formed steel, symmetric columns was

predicted by both a tangent modulus approach, e.g., Equation 4.1 with Eeq
replaced by the tangent modulus Et , and a SSRC (Structural Stability

Research Council) column formula (Johnston [1976]). Both methods were

iterative and effective section properties were utilized. The load

capacities predicted by these methods correlated well with experimental

results reported by these authors. The latter method, based on the SSRC

formula, is discussed in detail below (Section 4.4). In addition to

flexural buckling, the effective width concept has been employed to

predict torsional-flexural buckling in locally buckled, thin-walled

sections by Wang and Pao [1980].

Interaction of local and flexural buckling in singly-symmetric,

thin-walled, steel sections, such as lipped channels, has been investi

gated by Loughlan [1979,1980]. Concentric and eccentric loading was

considered, and sophisticated theoretical predictions were in good agree

ment with experimental results. In a later paper, Rhodes and Loughlan

[1980] presented a simplification of earlier work wherein local buckling

effects were accounted for using an effective width method. However,

because only one element - the web or stiffened element - was assumed to

be partially effective, their analysis method had limited applications.
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Similarly, Thomasson [1978] (also see Konig and Thomasson [1980])

derived a method to analyze interactional buckling of singly-symmetric,

thin-walled sections. An effective section was employed to account for

local buckling; however, in addition, the variation of the effective

section along the length of the column was included. To verify his

theoretical approach, Thomasson tested lipped channel, steel columns; with

and without longitudinal intermediate stiffeners for the web. In general,

the theoretical predictions correlated well with the experimental results.

Lastly, interaction of local and overall buckling is recognized in

current design specifications. In the U.S., the "Q-factor method" is

employed to reflect local buckling effects by reducing the basic yield

strength (AISI [1980]). This method is described below in Section 4.4.

4.3 Local and Flexural Buckling Interaction

In this section the interaction between local and flexural buckling

is studied for a uniformly compressed channel section. Post-local buck

ling is not included. In order to restrict the overall response to

flexural buckling, the dimensions of the section are chosen as W2 = 0.2Wl'

where Wz and wI refer to the widths of the flange and web, respectively

(see Figure 4.1). The section is analyzed for instability using the

finite strip method of Chapter 3. All component plate junctures are

allowed to deflect, and the discretization consists of four finite strips

for each flange and the web. Only buckling in a single longitudinal

half-wave is considered.

The critical buckling stress fcr ' nondimensionalized with respect to

Young's modulu~ E, is presented in Figure 4.1 as a function of the web

aspect ratio L/Wl' For small L/Wl ratios, less than about 2, the buckling
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response is predominantly local, and the associated buckling mode is shown

in the insert to Figure 3.1. Also, the minimum buckling coefficient K .mln
associated with W2/Wl = 0.2 in Figure 3.1 is approximately equal to the

buckling coefficient associated with the critical stress of Figure 4.1 at

L/Wl =1. This indicates that overall buckling effects are negligible for

small aspect ratios which is reinforced by inspection of the buckling

mode. For larger aspect ratios L/Wl > 4, the buckling response is pre

dominantly flexural where the section translates about the weak axis with

little or no local plate buckling. In this range the flexural buckling

strength predicted by the finite strip method is in excellent agreement

with that obtained from Euler's Equation 4.2.

4.2

where r is the minimum radius of gyration. In the intermediate range of

2 < L/Wl < 4, the buckling response is a mixture of local and flexural.

However, this interaction is inconsequential because local buckling in a

higher number of longitudinal half-waves, which is not considered in the

analysis, would govern in this range of L/Wl.

For comparison the theoretical results of Wittrick and Williams

[1971] are also shown in Figure 4.1. These results are in good agr.eement

with the finite strip results, and any discrepancies are due to the

different values of Poisson's ratio, ~, used in the respective analyses

which are noted on the figure.
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4.4 Post-local and Overall Buckling Interaction

4.4.1 Q-Factor Method

The effect of local buckling in reducing column strength is accounted

for in the AISI Specification [1980] by the Q-factor method (Winter

[1970]).

Short, concentrically loaded, compression members which are not

subject to local buckling fail by simple yielding at

P = AFu y

where Pu is the ultimate load, A the full cross-sectional area, and Fy the

yield .strength. However, when the member buckles locally, a reduced

ultimate load is obtained, e.g.,

P = A Fu e y

where Ae is the effective area of the cross section (see Section 3.5.1),

The ultimate load given by Equation 4.4 may be reinterpreted as the result

of a reduced strength QFy. Thus, from Equation 4.3,

Pu = A(QFy)

where by definition Q is a factor less than unity (1) that accounts for

the effects of local buckling. Equating Equations 4.4 and 4.5 yields

4.6

From the above discussion it is seen that, for short compression

members, the effects of local buckling on simple yielding may be accounted

for through the use of a reduced stress QF The effects of local buck-y.

1 ;n9 on other failure modes, such as flexural buckling in longer members,

are handled similarly by simply replacing the yield stress in equations

developed for compact sections (no local buckling) with the reduced stress
QFy .
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One failure mode for a concentrically loaded compression member is

flexural buckling. For this case the buckling stress ff is predicted

using the SSRC column curve (Johnston [1976], Winter [1970]). Thus

for ff > QFy/2

ff = QFy - (QFy)2/4ff
for ff < QFy/2

ff = ff = TI
2E/(Kf L/r)2

4.7a

4.7b

4.7c

4.7d

where ff is the elastic Euler buckling stress, r the minimum radius of

gyration, and Kf the column effective length factor, e.g., Kf = 1 for a

column with simply supported ends. The buckling stress ff of Equa

tion 4.7b is for inelastic buckling. Actually, this stress, Equa-

tion 4.7b, with Q = 1 was derived for hot-rolled members to approximate

the effects of residual stresses due to cooling and gradual yielding

behavior. These effects are also present in cold-formed members; however

the residual stresses are now due to the forming process.

Other failure modes for concentrically loaded compression members are

torsional and torsional-flexural. These modes are especially critical for

thin-walled sections due to their open cross sections. However, because

the present study is concerned with singly-symmetric sections, where the

shear center and centroid do not coincide, only torsional-flexural buck-

4.8d

4.8a

4.8b

4.8c

ling is considered. For this case, the torsional-flexural buckling stress

f
tfo

is predicted by (Chajes et. ale [1966], Winter [1970])

for f tfo > QFy/2

f tfo = QFy - (QFy)2/4ftfO

for f tfo < QFy/2

f tfo = ftfo
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where f' is the elastic torsional-flexural stress
tfo

fifo =is [(ffx + fi) - ((ffx + fi)2 - 4BffXf i)!)] 4.9

The elastic torsional buckling stress fi is given by

fi = [GJ + n2ECw/(KtL)2]/Ar~ 4.10

where G is the shear modulus, J St. Venant's torsion constant, Cw tor

sional warping constant, Kt effective length factor for torsion, and ro

the polar radius of gyration. Also,

B = 1 - (x /r )2 4.11
o 0

where x defines the location of the shear center from the centroid (see
o

Figure 4.2). Finally, the elastic flexural buckling stress ffx' about the

x axis, follows from Equation 4.7d as

ffx = n2E/(KfxL/rx) 4.12

where Kf is the x axis effective length factor and r the x axis radiusx x
of gyration. The definitions of the geometric parameters J, .Cw' and etc.,

are contained in AISI [1971]. It is noted that the inelastic torsional

flexural buckling stress, Equation 4.8b, is approximated by a parabolic

law which is identical to that employed for inelastic flexural buckling.

Another point worth mentioning is that the Q-factor method for torsional

buckling, Equation 4.8, actually results in a double counting of the local

buckling effects. For instance, the local and torsional buckling stresses

for a simply supported (longitudinal ends) equal leg angle or cruciform

are identical (McGuire [1968]). For other shapes this effect is less

pronounced, but it is still present (Winter [1970]).
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4.4.2 Effective Section Method

DeWolf [1973], and later Kalyanaraman [1978], proposed treating the

effects of local buckling in a more direct manner than is presently done

in the AISI Specification [1980]. They proposed a modified SSRC method

for flexural buckling and employed an effective width concept to account

for local buckling. In this method the effective stress fe is determined

from

for f > F /2 4.13ae y

f = F - F 2/4f' 4.13be y y e

for f < F /2 4.13ce y

fe = f~ = n2E/(KfL/re)2 4.13d

where r is the radius of gyration for the effective section and f' thee e
elastic flexural buckling stress. Since the effective stress fe is

dependent on the effective radius of gyration which is, in turn, dependent.

on the effective stress (see the next paragraph), an iterative procedure

must be adopted to solve for the unknown stress fee It is noted that

these authors also investigated a tangent modulus approach, e.g., Equa

tion 4.13d with E replaced by the tangent modulus Et • However, the

approximation to the tangent modulus implied by Equation 4.13b provided

very good correlation with experimental data.

DeWolf studied uniformly-compressed, doubly-symmetric, built-up, box

sections and calculated the effective width we of the stiffened compres

sion elements from Equation 2.9,

We/W = Ifcr/fe (1.0 - 0.218/fcYlfe) 2.9

which is dependent on the effective or edge stress level fee The effec

tive width was distributed symmetrically as in Figure 2.1.
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4.5 Post-Local Buckling and Beam-Column Behavior

Local buckling also affects the strength of eccentrically loaded

thin-walled members. For singly-symmetric open shapes, such as lipped

channels, which are bent in the plane of symmetry (about the y axis in

Figure 4.2), failure may occur by flexural yielding or by torsional

flexural buckling. Methods to treat this special case are discussed

below. To simplify ~atters it is assumed that the member is bent in

single curvature by equal end moments.

4.5.1 Current Analysis Methods

In the AISI Specification [1980] yielding, in singly-symmetric

shapes, by combined compression and bending is dealt with by the normal

interaction formula

f If + fblf b(l - f Iff') < 1.0 4.14a ua u a -

where the axial stress fa is equal to the axial load P divided by the

gross area, PIA; the maximum bending stress fb equals the bending moment M

divided by the section modulus Se' fb = MIS; f is the ultimate stresse ua
under concentric loading; and fUb 1s the ultimate stress under bending

only. Also the term,

1/(1 - f/ff) 4.15

where ff is the Euler stress of Equation 4.7d, represents the approximate

magnification factor and accounts for the additional moment resulting from

the applied load and the deflection of the beam-column.

The effects of local buckling are included in Equation 4.14 by a

II mixed method. 1I For the axial response they are accounted for by the
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Q-factor method, and for bending they are accounted for through an effec-

tive section. Therefore, the ultimate stress fua is determined from

Equation 4.7 where failure can occur by flexural buckling about either the

y or x axes. For lipped channels the ultimate bending stress f Ub is taken

equal to the yield stress, Fy ' where lateral buckling is excluded, and the

local buckling effects are treated using an effective section from which

the effective section modulus Se is determined. It is important to note

that the present specification (AISI [1980]) only contains methods for

determining the effective widths of uniformly compressed elements.

Therefore, situations which arise in beam-columns, where the element ;s

subjected to a stress gradient (see Section 2.2.2), can not be handled in

a consistent manner.

A singly-symmetric shape with eccentric loading about the y axis (see

Figure 4.2) can also fail suddenly by torsional-flexural buckling. Thus,

for a given section, both this failure mode and flexural yielding, by

Equation 4.14, must be examined to see which is critical. Generally,

flexural yielding will govern if the axial load P is applied on the shear

center side of the centroid, e.g., e is positive in Figure 4.2. There

fore, this case is not considered here, and reference is made to Pekoz

[1969J and Yu [1973].

For loads applied on the side of the centroid opposite the shear

center, the torsional-flexural buckling stress f tf is calculated from

for f tf > QFy/2 4.16a

f tf = QFy - (QFy}2/4ftf 4.16b

for f tf < QFy/2 4.16c

f tf = f tf 4.16d
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. torsl'onal-flexural buckling stress f t' f is determined from theThe elastlc

interaction formula

fif/fifo + fbtf/fbt(1 - fif/fty) =1.0

where fifo is given by Equation 4.9, fbtf is the maximum compression

stress caused by ftf , fty is calculated from Equation 4.7d with r = ry '

and fl is the maximum compressive stress caused by the elastic critical
bt

moment, Mi.

MI = -Aff' [j - (j2 + r 2(ft' /ff' ))1]t x 0 x
where j is a geometrical parameter defined in AISI [1980] or Yu [1973],

and other parameters have been defined previously.

Again, from Equation 4.16b, inelastic buckling is approximated by a

parabolic equation, and the Q-factor method is employed to account for

local buckling. Also, the moment magnification effects due to the stress

(load) fif are included in Equation 4.17.

As is evident from the above discussion, the prediction of the

torsional-flexural buckling stress is quite complex. Nevertheless the

method reviewed has proved successful in representing this phenomenon

(PekoZ [1969]). This statement applies mainly to sections when local

buckling is not present. When local buckling is present, i.e., when

Q < 1; very little, if any, experimental data exists to support the

method. This deficiency also applies to the Q-factor method for pre

dicting torsional-flexural buckling of concentrically loaded members

(Section 4.4.1).

4.5.2 Proposed Analysis Method

In this section an analysis method is proposed for predicting the

sub-ultimate behavior and strength of thin-walled, singly-symmetric,
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lipped channel columns and beam-columns. Following work by DeWolf [1973J

and Thomasson [1978J, an effective section is employed to account for

local buckling of the plate elements.

The method is based on the following assumptions: (1) elementary

beam theory (Timoshenko [1955]) is valid for the locally buckled section;

(2) bending is about the y axis only (see Figure 4.2); (3) the lip or edge

stiffener is supported against local-torsional buckling (see Section 3.3.2

and Figure 3.5c) by some external constraint, e.g., this constraint could

be provided by intermediate lateral (y direction) braces placed between

the lips or by connection of the lips to wall sheathing; (4) the effective

section is determined from the maximum edge stress levels at the midheight

of the column and is assumed constant along the length; and (5) the

maximum load resistance is reached when the maximum strain reaches yield

or when unstable equilibrium is experienced, i.e., when the load decreases

with increasing strain.

Assumption (3) eliminates dependence of the analysis method on

requirements associated with edge stiffeners and increases the applica-

bility of the method to other thin-walled shapes such as doubly-symmetric

box sections. This assumption is relaxed in Chapter 6 where additional

requirements are placed on the method for analyzing lipped channels.

The effective section of Figure 4.2 is used to account for local

buckling. Because bending is about the y axis, the web and lips are

uniformly compressed at stress levels f 1 and f 2 , respectively. The

effective width of the lips, w ,follows from Equation 3.24 as
3e

w It = 163.3/R /f [1.0 - 35.6/K /f I(w It)J
3e 3 2 3 2 3

4.19
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where the buckling coefficient for the lip, K3, is taken as its simply

supported value of 0.425. The effective width for the web, Wl e ' follows

from the sub-ultimate (and ultimate) approach of Chapter 2, i.e.,

w Iw =A/~2 + B/~ + C + D~ 4.20
Ie I

where ~ = (f If )1 and the constants A-D are defined by Equations 2.44
I Crt

through 2.47. Ignoring local buckling interaction, the critical stress

f is taken as its simply supported value, e.g., Equation 2.4 with KI = 4.cn
Equations 2.4 and 2.44 through 2.47 are all referenced to the web element.

The effective widths for the flanges, wand w ,are slightly
2el 2e2

more complicated to define. In general, these are determined from the

approach for eccentrically compressed stiffened elements covered in

Section 2.2.2. Thus, for the general edge stresses f. > f. > 0 (Fig-
1 J

the following expression for w . is
2eJ

ure 2.4a)

w . = w 122el 2e

where w2e is defined by Equation 3.24 with fe' K, and ~ replaced by

K2 = 4, and W2' respectively. The expression for the other portion

effective width w . is
2eJ

w2ej = W2ei (1.5 - 0.5f
j / f

i
)

For the case of f j < 0 (Figure 2.4b)

valid

4.21

f. ,
1

of the

4.22

w . = 1.5w . + w
2eJ 2el 0 4.23

The loading state represented in Figure 4.2 is such that the maximum

compressive stress occurs along side one (1). Therefore, the portion of

the effective width closer to the web is defined by Equation 4.21 with i =

1, and the other portion is defined from either Equations 4.22 or 4.23

with j = 2, depending on whether the stress level f2 is compressive (f
2

>

0) or tensile.
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For a loading state where the maximum compressive stress occurs along

side two (2), the effective widths for the flange are calculated as

described above, but the reference axes are reversed, e.g., i = 2 and j =

1.

The stresses f k at the midheight of the beam-column are determined

from the usoal formulas (Timoshenko [1955J) supplanted with the effective

section prrip~rti~s.

f k = PIA ± (Pe ck/I ) sec (pL/2) ... k = 1,2 4.24
'e e e

where k = 1 defines the stress in the web (along reference line 1) and k =

2 defines the stress in the lips; ck defines the appropriate distance from

the effective centroid, eff. e.g., or neutral axis to the web or lips; ee

is the eccentricity of loading with respect to the effective centroid, e
e

is positive as shown in Figure 4.2; A and I are the effective area ande e

moment of inertia, respectively; L is the length of the beam-column; and

p = (P/EIe)~' In writing Equation 4.24, it is assumed that the effective

section is constant along the length as determined from f k. Because of

this dependence and the basic form of Equation 4.24, the two equations

generated by Equation 4.24 are inherently nonlillear in the three variables

In order to ohtain a solution to EQuation 4.24, it is

necessary to make several behavioral assumptions with respect to the

load-strain response. In this discussion it is assumed that the web

dominates the local buckling response; therefore the effective centroid is

assumed to locate at a position to the right (positive x direction in

Figure 4.2) of the gross centroid. Although this assumption is not
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strictly necessary, it simplifies matters and covers most practical

thin-walled applications. Accordingly the load-strain response is sep

arated into three separate cases depending on the location of the applied

load (see Figure 4.3). If the eccentricity e, referenced to the gross

centroid, e.g., is positive (negative x direction in Figure 4.2), then the

strain (1 along reference axis one (1) increases continually with load

until failure at (1 = ( as shown in Figure 4.3a. Conversely, if the
y

eccentricity e is negative and has an absolute value greater than the

parameter xy ' which is defined below, then the strain (2 increases con

tinually with load (see Figure 4.3c). In this case, the strain (2 is

always greater than (1' The characteristic parameter xy shown in Fig

ure 4.3c is defined as the distance between the gross centroid and the

effective centroid for the section under a uniform compressive stress at

.Yield. Because the stress levels are known, e.g., f 1 = f 2 = Fy' this

latter location may be calculated directly from the corresponding effec

tive section.

The remaining case covers eccentricities in the range of lei < x
y

where e is negative (see Figure 4.3b). For this case, the possibility of

a strain reversal for £2 is admitted. One possible load-strain curve is

shown in the center of Figure 4.3b where a strain reversal occurs before

the uniform compressive state, at (1 = (2 = £, is reached. Also, it may

OCcur that (2 does not reverse before reaching £ which is not shown in the

figure. The ultimate load capacity is reached when either edge strain, (1

or (2' reaches yield or when elastic unloading is encountered.
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An incremental-iterative algorithm is employed to solve Equation 4.24

which allows the complete load-strain history to be traced. The solutions

for load eccentricities shown in Figures 4.3a and 4.3c are straightforward

and are discussed first. In general, the larger strain is chosen as the

incremental strain, which is indicated by arrows in the figures. This

strain is increased continuously in strain increments corresponding to a

stress of one (1) ksi. It is noted that the possibility of a strain

reversal for the smaller strain precludes it from being used as the

incremental strain. Then, for a fixed total level for the incremental

strain, the remaining unknown strain (stress) is calculated using an

iterative procedure based on one of the equations generated from Equa-

tion 4.24. The associated load level P is determined from the other

equation generated from Equation 4.24 using the secant method (Hornbeck

[1975]).

The solution for load eccentricities in the range indicated in

Figure 4.3b are obtained in a similar manner. Initially, the larger

strain E2 is chosen as the incremental strain. Then at E2 = E, which is

defined below, the incremental strain is switched to El' The parameter E

defines the strain level that is associated with uniform compression,

El = E2 = E, and is solved for using a bisection routine (Hornbeck

[1975]). The switching of the incremental strain is necessary because of

the possibility of a strain reversal for E2'

Once convergence is obtained in the iteration loop, for a fixed

incremental strain, the associated lateral deflection 6 at the midheight

of the beam-column is calculated from

6 = e [1 - cos(pL/2)]/cos(pL/2)e 4.25
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All calculations are performed in double precision due to the sensi

tivity of the algorithm to small changes in the effective section.

Further, a relative error tolerance of 1 x 10-6 is used in the iteration

loop.

Typical results predicted from the above analysis method are pre-

sented and are discussed in the remainder of this section. The following

two lipped channel sections are analyzed (refer to Figure 4.2).

wIlt
wz/t

W3/ t

OR (i n. )

t (in.)
l (in.)
F
y

(ksi)

CLC/AV 120x60

123.2
60.4
11.5

0.163
0.047
75.23
32.06

CLC/AV 180x60

186.1
60.7
11.8
0.158
0.047
95.07
33.70

where OR refers to the outside radius of the corners.

The variation of the ultimate strength, P , with eccentricity, e, is
u

presented in Figure 4.4 for CLC/AV 120x60. In general, the asymmetrical

response is due to the asymmetry of the lipped channel. Above a limiting

*eccentricity of about e = -0.3, failure is predicted by flexural yielding

at reference axis one (1), i.e., (1 = (. A positive lateral deflection 6.y

is associated with eccentricities in this range. Below the limiting

eccentricity, failure is predicted by flexural yielding at axis two (2)

and negative lateral deflections 6. are experienced. It is interesting to

note that the ultimate load P, associated with a uniform stress at yield,

i.e., with £1 = £2 = £y' is never reached due to yielding along side two

*inches.
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(2). Also, an extreme sensitivity to eccentricity is experienced near the

peak of the response, predicted by Equation 4.24, where small changes in

eccentricity produce significant changes in behavior and ultimate load.

As shown in Figure 4.4, it is possible to increase the strength;

relative to the strength associated with a concentrically loaded section,

i.e., with e = 0; by loading the section within a certain range of nega

tive eccentricities. However, this increased strength also increases the

possibility of other failure modes, such as flexural or torsional-flexural

buckling, which have to be considered. To investigate this aspect, the

flexural buckling load Pe is calculated from Equation 4.13 for buckling

about the y axis with simply supported ends, and the torsional-flexural

buckling load Ptf is calculated from Equation 4.16 for torsionally and

flexurally (x axis) fixed end conditions. (The specific end conditions

employed here agree with the experimental application considered in

Chapter 5. Also the flexural buckling load was determined from the

modified SSRC method of Equation 4.13 because of its consistency with the

effective section method of Equation 4.24. Comparisons of these and other

methods discussed in this chapter with experimental results are included

in Chapter 6.) A conservative approach is adopted to calculate the loads

Pe and Ptf ; the effective section properties and the Q-factor are assumed

constant at the values computed for a section subjected to a uniform com

pressive stress at yield. For a certain range of negative eccentricities

(Figure 4.4), the torsional-flexural buckling controls over both flexural

buckling and flexural yielding and, therefore, limits the strength.

The sub-ultimate response predicted from Equations 4.24 is considered

next. In Figure 4.5, the axial load is plotted as a function of the

lateral deflection 6, Equation 4.25, for various eccentricities (e).
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Initially, at low stress levels, the concentrically loaded lipped channel

(e = 0) behaves as a normal column without out-of-plane deflection. Then,

after local buckling, the centroid shifts to an effective location which

induces a moment and corresponding out-of-plane deflection. Hence, local

buckling transforms the behavior from pure axial to combined bending and

axial (beam-column) behavior. This mode of action is not recognized in

design specifications that apply the Q-factor method to singly-symmetric

sections for predicting flexural buckling, e.g., Equation 4.7.

The behavior for other eccentricities, i.e., for e f 0, is similar;

however it starts out in the beam-column mode. For example, at e =
*-0.295, the lipped channel deflects initially in the negative direction

(Figure 4.5). Then, at higher load levels, the deflection reverses

direction due to the effects of local buckling. This reduces and even

tually changes the sign of the effective eccentricity. Torsional-flexural

buckling prevents the section from returning to its undeflected position.

The load-edge strain response associated with the various eccentric

ities considered in Figure 4.5 is presented in Figure 4.6. The response

is highly nonlinear and dependent on the position of the axial load.

For eccentricities e greater and smaller than about -0.295: the ultimate

load is controlled by yielding at reference axes one (1) and two (2),

*respectively. At e = -0.295, the strain £2 reverses just prior to yield-

ing, and the ultimate load is controlled by £1 = £ , without considering
y

torsional-flexural buckling. However, for slightly smaller eccentrici-

*ties, i.e., e < -0.295, the strain £2 controls which causes the sensi-

tivity to eccentricity noted earlier. Also, in the range of e < -0.295:

the post-buckling response of the web is important, even though £1 < (y'

because the web has a relatively large influence on the effective section.

*inches.
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The second section, CLC/AV 180x60, which is defined subsequent to Eq

uation 4.25, is analyzed next, and the variation of ultimate strength with

eccentricity is presesnted in Figure 4.7. A major difference between the

response predicted for this section and that discussed previously for CLCI

AV 120x60 (Figure 4.4) is that the former is prone to an elastic failure

mode over a certain range of negative eccentricities. The response indi

cated in Figure 4.8 is representative of this mode of failure; for example,

subsequent to reaching ultimate the load decreases to the value Py which

is the load at initiation of yielding. Actually, for the specific eccentri

city considered in Figure 4.8, the strength is limited by inelastic flexural

buckling at the load Pe , but this is irrelevant to the present discussion.

Extensive calculations, which are not presented here, indicate that

the elastic failure noted above is caused by interaction between local and

overall buckling. Typically, elastic failure commences when the stress

level in the web, reference axis one (1), is within about 20% of yielding.

Consequently, a small post-local buckling tangent stiffness is associated

with the web, e.g., this is illustrated in the advanced stages of the

response predicted from Equation 2.38 in Figure 2.lla. At the same time;

overall buckling, or beam-column action, affects the system through its

effect on the bending moment. And when elastic failure occurs, typical

values for the parameter pL/2 of the moment magnification factor sec(pL/2)

of Equation 4.24 range from about n/2.9 to ~2.6. Since a value for pL/2

of n/2 is associated with elastic flexural buckling, the beam-column

effect is strongly apparent. Individually these two effects - local

buckling and beam-column moment maginfication - produce stable response,

but when combined they interact to produce an unstable response of the

type shown in Figure 4.8. Finally, it is noted that Thomasson [1978] has
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observed analytically a similar elastic failure mode for relatively

slender, concentrically loaded, lipped channel, long columns.

4.6 Summary

The problem of local and overall buckling interaction was studied in

this chapter. A thorough survey of the available literature revealed that

the effects of local buckling on overall buckling were treated by a

variety of methods, of which the effective section method was the most

widely adopted. Also, the survey revealed that, in certain circumstances,

local and overall buckling of thin-walled sections interact to produce an

imperfection sensitivity, especially when the local and overall buckling

loads are nearly equal. This mode of behavior does not preclude the

use of an effective section method to account for local and overall

buckling interaction because such methods generally include indirect means

which allow for the effects of imperfections in reducing the strength,

e.g., through effective width equations and inelastic column curves.

However, as discussed later (Chapter 6), the above mode of behavior must

be recognized when applying these methods.

Then local and flexural bucking interaction in a uniformly compressed

channel section was investigated using the finite strip method of Chap

ter 3, and good agreement was obtained with a known solution. However,

because post-local buckling effects were not considered, such an analysis

has limited practicality.

Next the Q-factor method was reviewed for treating post-local buck

ling interaction with flexural and torsional-flexural buckling. In

addition, the modified SSRC method was discussed for predicting flexural

buckling in locally buckled sections.
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Finally, the effects of post-local buckling on beam-column behavior

were studied. Current analysis methods for flexural yielding and tor

sional-flexural buckling were briefly reviewed. Then an analysis method

was derived for predicting the sub-ultimate behavior and strength of

singly-symmetric lipped channel columns and beam-columns. In this method,

local buckling effects were accounted for through the use of an effective

section. Also, an incremental-iterative algorithm was discussed to solve

the governing beam column equations. The derived analysis method was then

applied to two representative lipped channels in order to illustrate their

behavior under concentric and eccentric loading. One of these sections

was shown to be prone to an elastic failure due to the interaction between

local and overall buckling.

Further evaluations and comparisons of the methods discussed in this

chapter are postponed until Chapter 6.
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CHAPTER 5

EXPERIMENTAL INVESTIGATION

5.1 Introduction

The experimental investigation to study the influence of local

buckling on the structural behavior and on the strength of cold-formed

steel columns is discussed in this chapter. The investigation is divided

into two major areas. One area deals with testing stub co1umns t which

have small 1ength-to-minimum radius of gyration ratios to preclude overall

buckling effects. The primary objective of these tests is to provide

quantitative information on local and post-local buckling interaction in

structural sections. More specifica11Yt lipped channels and (plain)

channels are investigated t and the local buckling interaction is provided

simply by varying t in a systematic manner t the cross-sectional dimensions

of the sections.

The other area deals with long column tests. Typically the length is

now increased to introduce overall modes and to allow interaction of local

buckling and beam-column response. Singly-symmetric lipped channels of

varying lengths are tested under concentric and eccentric loads.

5.2 Test Specimens

All test specimens were fabricated by press-braking thin sheets of 16

and 18 gage steel into the desired cross-sectional shapes (Yu [1973J). A

local sheet metal shop was used for the fabrication t which was generally

of good quality.

112
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The cross sections and related parameters for the channel and lipp~d

channel test specimens are defined in Figure 5.1. The web, flange, and

lip are referenced by the subscripts 1, 2, and 3, respectively, and the

flat widths and overall widths are labeled wi and Wi (i = 1,2,3), respec

tively. Other information contained in this figure is discussed later.

The cross-sectional dimensions of the stub and long columns are

reported in Tables 5.1 and 5.2, respectively. These were obtained from

measurements taken at the two quarter-points, of the length, nearest the

ends, and the results were then averaged. Thus, an effort was made to

account for any lengthwise variation of the dimensions.

A special designation is used to identify each specimen, e.g., SLC/I

120x60. In this example, the IISLC II refers to a Stub (column) Lipped Chan-

ne1, the 111 11 refers to an original cross section, and the II 120x601' refers

to the approximate web and flange width-to-thickness ratios, wilt and

w2/t, respectively. Other specimens use the following identifiers. IISC II

and IICLe n refer to Stub (column) Channels and (long) Column Lipped Chan

nels. A 112 11 refers to a duplicate specimen or to one having a different

length.

All specimens with an integer designation are concentrically loaded,

and those with a mixed number designation, e.g., "2.1", are eccentrically

loaded about the y axis defined in Figure 5.1b. The specific eccentrici

ties are presented later in this chapter.

Several different lipped channel cross sections were tested as stub

columns. These included flange width-to-thickness ratios, w2/t, ranging

from 30 to about 90 and web width-to-thickness ratios, wilt, ranging from

60 to 360. Likewise, several channel cross sections were tested as stub
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columns. Two specific w2/t ratios of 30 and 60 were studied with wIlt

ratios ranging from 40 to 180.

Thus, a total of twelve (12) different lipped channel cross sections

and eight (8) different channel cross sections were investigated, for a

total of 36 stub columns, including duplicate specimens and those having a

different length. This wide range of parameter variation was judged

adequate for providing the quantitative information needed to study local

buckling interaction in the specific structural sections under considera

tion.

For the long columns, which are set out in Table 5.2, five different

lipped channel cross sections were investigated. The specific sections

were chosen to match several of the stub columns under study. Various

lengths and loading conditions, either concentric or eccentric, were

considered for each section yielding a total of 22 long columns. Several

sections employed braces or ties which were welded to the lips (see

Figure 5.1 and Table 5.2). This extra support was provided to the flanges

to study its influence on the behavior and strength of the section.

5.2.1 Test Specimen Design

The design of the stub columns consisted of choosing a length short

enough to preclude the· detrimental effects of overall buckling modes, but

sufficiently long so as not to restrict the local buckling behavior. For

this purpose the recommendations of Technical Memorandum No.3 of the

Structural Stability Research Council (SSRC), "Stub-Column Test Proce

dure," reprinted in Johnston [1976], were utilized. These stipulate a

length less than twenty times the least radius of gyration, L < 20r . ,mln
but greater than three times the largest dimension of the cross section,
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In most cases, it was possible to choose a length to satisfy

L/w and L/r. ratios in Table 5.6.
max mln

However, in a few cases, a length of 3wmax proved larger than 20rmin ;

therefore, two specimens were designed with lengths equal to approximately

L > 3wmax .

these requirements, e.g., see the

20rmin and 3wmax .

The design of the long columns consisted of choosing the cross

sectional dimensions and length such that weak axis flexural buckling was

the governing overall mode. This involved preventing torsional-flexural

buckling for the singly symmetric, open shaped sections. For these

purposes, the procedures of Chapter 4 were employed, e.g., Equations 4.13

and 4.16.

Finally, the edge stiffeners or lips of the lipped channels were

proportioned, in most cases, to meet the stiffener requirements proposed

by Desmond [1978a,b] (see Section 3.4). Further discussion of the edge

stiffeners is postponed until Chapter 6, where all experimental. results

are critically evaluated.

5.3 Material Properties

The material properties of the specimens were determined from stan

dard tensile tests (ASTM [1975]) of at least three coupons. The coupons

were cut from the virgin steel sheets, before fabrication of the speci

mens, and were aligned parallel to the rolling direction of the sheets.

This direction was also parallel to the forminq direction of the sections.

The average material oroperties are presenterl in Table 5.3. In most

cases the material exhibited sharp yielding behavior; however, there were

two exceptions to this. Material VII had a low proportional limit of

approximately 0.6 times the yield stress but had an extended yield plateau.
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And material XXII exhibited gradual yielding behavior. In both cases the

0.2% offset method was used to define the yield stress.

The modulus of elasticity, E, was determined graphically from load

strain plots for all tensile tests. These plots were automatically

produced by an extensometer and chart recorder. The mean value of E for

59 sharp yielding tests is 29.29 x 10 3 ksi with a standard deviation of

3.65 x 10 3 ksi. This result is slightly lower than the mean value of E =

30.0 X 10 3 ksi reported by Venkataramaiah et. ale [1980] for 63 tensile

tests and the mean value of E = 31.3 X 10 3 ksi reported by Thomasson

[1978] for 36 tests. As a result, the comparable value of E = 29.5 X

10 3 ksi recommended by the AISI Specification [1980] is assumed valid for

use in this study.

Further, it is assumed that the tensile yield strength provides a

conservative estimate of the compressive strength and that the cold

working effects at the corners of the section are negligible when describ

ing the material properties of the overall cross section.

5.4 Initial Imperfections

The behavior and strength of thin compression elements (plates) and

columns are clearly influenced by the presence of initial imperfections

(Yamaki [1959], Timoshenko and Gere [1961]). Therefore, in this study,

the initial imperfections were measured systematically.

Two types of imperfection are of interest: local and overall. Local

imperfections are defined as the deviations from flatness of the various

plate elements and as the deviations from perfect cross-sectional geometry

(fabrication type). Overall imperfections refer to the deviations from

straightness of the column.
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5.4.1 Local Initial Imperfection of Stub Columns

The devices used to measure local initial imperfection in stub

columns are shown in Figure 5.2. The relatively simple device number

one (1) determines the out-of-flatness of stiffened and edge-stiffened

elements, as referenced to their longitudinal edges. It consists of a

ground bar, and fixed and movable support points, where the latter are

established at a constant distance from the top of the bar. The imper

fection is calculated based on measurements taken with (see figure) and

without the device using an independent O.OOl-inch dial gage.

A slightly more complicated device number two (2), in Figure 5.2, is

used to measure the fabrication type of local imperfection, which is

specialized here to mean the deviations of the flange element from a right

angle established off of the corners of the web. The major difference of

this device is that it incorporates a perfectly square, ground bar.

Again, the imperfection is calculated from O.OOl-inch dial gage measure

ments taken with (see figure) and without the device.

The sources of error associated with the local initial imperfection

measuring devices are an imperfection in the device itself, e.g., out-of

flatness of the ground bar; error in placement; and dial gage error.

Therefore, the accuracy of measurement is of the order of a few thou

sandths of an inch.

It is mentioned that the devices of Figure 5.2 are not capable of

detecting any overall twist of the section, which was observed visually in

several of the specimens.

The maximum amplitudes of local initial imperfections, 6max , and

associated imperfection-to-thickness ratios, 6max/t, are reported in

Table 5.4 for a wide sampling of the specimens. These maximums were
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determined from measurements taken at discrete points spaced typically

about an inch apart along the length. The initial imperfection at the

centerline of the web and flanges, 8web and 8fl ., respectively, were

obtained using imperfection measuring device one (1) and, therefore, refer

to the out-of-flatness of the elements (see the figure at the bottom of

Table 5.4). In contrast, the initial imperfections of the flange, at the

flange-lip juncture, and of the lip, 8fl.lip an~ 8lip ' respectively,

were determined using imperfection measuring device two (2). Therefore

these refer to the fabrication type described earlier (see the figure at

the bottom of Table 5.4).

Generally, the out-of-flatness of the webs and flanges increases with

increasing flat width-to-thickness ratio. This tendency in lipped chan

nels is shown in Figure 5.3 where the maximum imperfection of the web and

flanges, 8web and 8fl ., is plotted as a function of their width-to

thickness ratios, wit. The scattering of the imperfections about the

best-fit (linear regression) line is typical for this type of data.

A similar correlation between the imperfection 8web for plain chan

nels and the parameter wit was not observed. Also, this imperfection is

generally larger than the comparable imperfection for lipped channels (see

Table 5.4). These differences are attributed to the larger torsional

flexibility of the channel's cross section which makes such sections more

susceptible to local imperfection. This hypothesis is reinforced when the

fabrication imperfections 8fl.lip for the channels and lipped channels are

compared; again, the channel imperfection is generally much larger.
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Also, relatively large local initial imperfections are found in the

lips of the specimens (see 6. of Table 5.4). This is caused by fabrica
l1p

tion difficulties associated with forming unstiffened elements having very

small width-to-thickness ratios.

The typical longitudinal variation of local initial imperfection in

stub columns is presented in Figures 5.4 through 5.10. In these figures,

the imperfection 6 is plotted against the ratio of column station (longi

tudinal distance from one end) z to column length L. The sign convention

associated with the imperfection is depicted in the figures.

In Figure 5.4 the longitudinal variation of local imperfection at the

web1s centerline (t) is shown for a typical channel section, SCll 120x60.

It follows roughly a sinusoidal distribution, with large amplitudes

occurring at the ends of the specimen.

The local imperfections (fabrication type) of the flanges for the

same section are shown in Figure 5.5. Their variation resembles closely a

half-wave of a cosine function. Because the imperfection for both flanges

is in the same (common) direction, the section exhibits an asymmetry of

imperfection about a plane parallel to the flanges and through the center

line of the web.

A different longitudinal variation of flange local imperfection

(fabrication type) is observed in Figure 5.6 for another specimen, SCll

60x60. This time it is linear along the length. In addition, the trans

verse variation of imperfection across the flanges is indicated from a

comparison of the imperfection at the flange tip, 62' and the value at

the centerline of the flange, 63' both at a constant z/L. The variation

is nonlinear with the maximum amplitude occurring at the tip of the

flange.
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Similarly, for lipped channels, the longitudinal variation of local

imperfection is shown in Figures 5.7 through 5.10. In Figure 5.7 the

local imperfection of the web and flanges, obtained using measuring device

one (1) of Figure 5.2a, is plotted for specimen SlC/2 120x60. Again the

variation is sinusoidal, and the largest amplitude occurs in the element

with the larger wIt ratio, i.e., in the web.

The transverse variation, at constant z/l, of web local imperfection

for specimen SlC/2 180x60 is indicated in Figure 5.8, where 61 and 62

refer to the imperfection at the centerline and quarter point, respec

tively. From the magnitudes shown, the transverse variation increases

quite rapidly from the web-flange juncture to the quarter point and then

flattens out across the central quarter of the web.

The local imperfection in the flanges, at the flange-lip juncture, of

specimen SlC/2 180x60 is shown in Figure 5.9. This is the fabrication

type, obtained using imperfection measuring device two (2) of Figure 5.2b,

and represents the deviations of the flange from a right angle established

off of the web. Very large magnitudes are experienced near the ends of

the specimen which is typical for this type of imperfection.

Lastly, the local imperfection (fabrication type) of the lips of

specimen SlC/2 180x60 is given in Figure 5.10. Again the variation is

sinusoidal along the length.

Other researchers have reported data on local initial imperfections.

Thomasson [1978] presented probably the most interesting results for

thin-walled, lipped channel, long columns. He included local imperfection

contours for the webs, maximum amplitudes, and mean values. All reported

data was obtained using an imperfection measuring device very similar to

that shown in Figure 5.2a (device 1); therefore the imperfections were
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referenced to the longitudinal edges of the web. For web wit ratios of

468, 319, 319, and 214, the following maximum centerline web imperfections

were reported: 6max of .087, .118, .098, and .028 (inches) and 6
max

/t of

3.44, 3.19, 2.60, and 0.49, respectively. This data reinforces and

extends the conclusions based on Table 5.4 and Figure 5.3 (see associated

discussions) that larger imperfections are exoected with larger wIt ratios.

Another researcher, Kalyanaraman [1978], presented some limited data

on local imperfections of flanges of thin-walled channels (see Fig-

ure 5.1a). Frqm a random sampling, a maximum amplitude of 0.2t was

reported. However, because the details of measurement, type of imper

fection, and associated wit ratios were not reported, the use of this data

is questionable.

5.4.2 local and Overall Initial Imperfections of long Columns

Initial imperfections in long columns are addressed in this section.

Both local and overall imperfections are obtained using the scheme pre

sented in Figure 5.11a (Oat [1980]). First, the column is placed in a

horizontal position, resting on welded end plat~s. Then the elevation, at

a station z along the column, is determined by sighting through a survey

or's level to an optical tooling scale placed on the column. The level is

mounted with a special optical micrometer which is capable of reading

directly to 0.001 inches, and the verticality of the scale is maintained

by means of a bubble level. After taking readings at stations 3 to

4 inches apart, a closure check is made to ensure that no movement

occurred in the level or specimen. The error associated with this method

is due to micrometer error and scale placement, and is estimated to be on

the order of a few thousandths of an inch.
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The elevations determined above must be reduced to correct for any

out-of-levelness of the column. For this purpose, the following procedure

is utilized where reference is made to the sloping imperfect column of

Figure 5.11b. The initial and final elevations ei and ef are measured at

the distances zi and zf along the column, and are not measured at the ends

of the column due to the presence of welds. The reduction formula for the

overall imperfection 6z at a distance z is derived as

6z = ez - ei - (ef - ei}(z - zi}/(zf - zi) 5.1

where ez is the associated elevation. A negative 6z is indicated in

Figure 5.11b.

Because the column is resting on end plates, it is also necessary to

account for the self-weight deflection dz of the column. For this purpose

the following correction is applied to 6z (Equation 5.1), e.g., 6(cor

rected} = 6z - dz•

d = (pl4/24Er2)(~ - 2~3 + ~4} 5.2z
where ~ = z/l, p = density of steel = 2.836 x 10-4 k/in. 3, and r is the

radius of gyration about an axis perpendicular to the deflection. The

above equation assumes simply supported ends.

The weak axis (y axis in Figure 5.1) overall imperfection 6w obtained

from Equation 5.1, where the subscript z is implied, and the value cor

rected for self-weight deflection, Equation 5.2, are shown in Figure 5.12.

The imperfection represents an average of two sets of measurements taken

along the edges of the web. Edge measurements are employed to eliminate

the effect of web local imperfections, and the average is employed to

correct for twisting of the cross section. Some twisting occurs naturally
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in the specimens, and additional twisting is int~oduced simply by resting

the specimens on the two independent end plates. The latter ;s unavoid

able due to the low torsional stiffness of the thin open sectio~s.

The weak axis imperfection 6 varies roughly, in Figure 5.12, as aw
sine wave, and the maximum amplitude occurs just to one side of center.

Due to the forming process, the web locates generally on the concave side

of the deflected shape, which is indicated by the sign convention shown in

the insert to the figure. Also, the self-weight deflection is seen to be

too large to ignore.

The determination of the strong axis (x axis in Figure 5.1) overall

imperfection, 6s ' differs from ~hat described above. It is based on two

sets of measurements: one with the strong axis placed parallel with the

horizontal (one flange upward) and one with the section rotated 1800

(other flange upward). The individual imperfection for each set, 61 and

62' calculated from Equation 5.1 and uncorrected for self-weight, is shown

in Figure 5.13. These differ in magnitude and deflect in the same common

direction. The overall strong axis imperfection 6 is obtained by averag-
s

ing the imperfections 6 1 and 62 Which eliminates the need for a self-

weight correction. The results are plotted in Figure 5.14 and are com

pared with the weak axis overall imperfection 6 , which is corrected for
w

self-weight. Both imperfections 6 and 6 have a similar longitudinalw s
variation and location of maximum amplitude, but the magnitude of 6 is

w
larger due to the smaller bending resistance in the weak axis direction.

Local imperfections for the flanges are also determined using the

measurement device of Figure 5.11. This imperfection is the fabrication

type discussed earlier and represents approximately the deviations from a
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right angle established off of the web. It is obtained by first position

ing the web as close as possible to vertical, which proved difficult due

to the unavoidable twisting of the section. Then the imperfection is

calculated simply by subtracting the elevations of the flange at the

flange-web juncture from those at the flange-lip juncture. Since the

method is self-correcting for any out-of-1eve1ness of the column, Equa

tion 5.1 is unnecessary. Also, a relatively large error is expected for

the above method due to errors in vertical placement of the web.

The local imperfection in the flanges of a representative column is

presented in Figure 5.15. Typical of this imperfection is the large

values that are exhibited at the ends of the specimen (see also Figure 5.9

for stub columns). Sharp peaks are also observed due to welding braces to

the section (see Figure 5.1). It is not known what effect, if any, this

welding induced distortion has on the behavior and strength.

A summary of maximum amplitudes for local and overall imperfections

of several long columns is reported in Table 5.5. The maximum flange

local imperfection 6~~~liP (fabrication type - see figure of Table 5.4)

and associated 6/t values are, in general, much larger than the comparable

stub column imperfections of Table 5.4. Consequently, the length inf1u-

ences this type of imperfection.

The maximum amplitudes of overall initial imperfection and associated

L/6 values are reported in the remainder of Table 5.5. The weak axis

overall imperfection 6w ranges from L/6871 to L/1227, and the strong axis

overall imperfection 6s ranges from L/12000 to L/3159. A statistical

analysis of the data is not appropriate due to the large scatter of

values.
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It is informative to compare the above maximum overall imperfections

with existing specification recommendations. The AISC [1975] Specifica

tion, which is primarily intended for hot rolled steel shapes, stipulates

that the overall imperfection in compression members should not exceed

1/1000 of the length between points of lateral support, or

~ < L/1000

Likewise, the Swedish Code for Sheet Metal Construction StBK-N5 [1977], as

reported by Thomasson [1978], places the following restrictions on maximum

overall imperfections ~

~ < 2 X 10-5 L(L/r) for L/r > 50 5.4a

~ < L/1000 . for L/r ~ 50 5.4b

where r is the radius of gyration. It is observed that the latter Swedish

requireme'nt, Equation 5.4b, is identical to the AISC Equation 5.3.

Lastly, the analogous American specification for cold-formed steel mem

bers, AISI [1980], does not place restrictions on maximum overall imper-

fection.

All overall imperfections reported in Table 5.5 satisfy the above

requirements. For the Swedish limitations, Equation 5.4a is applicable

for the specimens whose l/r ratios range from about 60 to 100 (see

Table 5.9 for specific l/r values).

Information on maximum overall initial imperfections has been re

ported by others. Oat [1980] presented results for 49 relatively stocky

cold-formed steel specimens and described various methods of measurement

to obtain overall imperfections. He reported maximum imperfections which

varied from l/12200 to l/240, and the values for nine specimens exceeded

L/1000. It is believed that these very large imperfections were not due

to actual crookedness of the column and were, rather, due to inaccuracies
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in the methods of measurement (especially Method 2 described by Oat

[1980], page 282). If consideration is given to only the measurements

obtained from the method which is similar to that used in the present

study (see Figure 5.11a), the maximum overall imperfection of the twelve

corresponding specimens varies between L/12200 and L/1205 and satisfies

the requirement of Equation 5.3.

Thomasson [1978] investigated thin-walled sections, which had a

constant L/r ratio of 70, and reported an absolute maximum overall imper

fection of L/2500. Therefore, his results satisfy the above requirements,

e.g., Equations 5.3 and 5.4a.

5.5 Experimental Procedures, Instrumentation, and Alignment

5.5.1 Stub Column Test Procedure

Technical Memorandum No.3 of the SSRC, "Stub-Column Test Procedure,"

(Johnston [1976]) was employed, in part, for the tests. The ends of the

stub columns were machine ground, hand filed, and lapped with a lapping

compound and plate. A few specimens proved too flexible (large wit) or

too large to be machine ground; hence these were finished entirely by

hand. The tolerance on end flatness was less than one thousandth of an

inch. No special effort was made to ensure parallelism of the two ends.

Then the specimen was set to bear on ground, cold-rolled steel, bearing

plates, which were centered in either a Southwark-Emery (300,000-pound

capacity) or a Baldwin (400,000-pound capacity) hydraulic testing machine.

Hydrostone bedding was used between the bearing plates and fixed machine
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heads in an effort to distribute the load and to correct for any out-of

parallelism of the specimen ends. The overall stub column test setup is

shown in Figure 5.16.

After successful alignment was obtained (see Section 5.5.4), the

specimens were tested using a static method where the load and strains

were allowed to stabilize at each load increment. If any load shedding

occurred the load was increased to the original value and allowed to, .

stabilize again before any readings were taken. Typical load increments

of not more than 5% of the ultimate load were employed, and smaller

increments were used once local instability or the ultimate load were

approached.

5.5.2 Long Column Test Procedure

Technical Memorandum No.4 of the SSRC, "Procedure for Testing

Centrally Loaded Columns," (Johnston [1976]) was used, in part, for these

tests. The ends of the specimens were only roughly prepared by hand

filing. Then 3/4-inch hot-rolled steel plates were welded to the ends of

the specimen. Sequential, intermittent welding, on both sides of the

cross section, was employed in an effort to control weld-induced distor

tion (Salmon and Johnson [1971]).

Special end fixtures developed by Pekoz [1967] were used in the long

column tests (see Figure 5.17). These provided a pinned-end condition

(knife edge) about the weak axis and a fixed-end condition about the

strong axis. Also, the fixtures were equipped with wedges and positioning

screws which facilitated alignment. Hydrostone bedding was used between

the end plates of the specimen and fixtures. Finally, it is noted that
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these end fixtures have been employed successfully, in the past, by other

Cornell University researchers (DeWolf [1973], Kalyanaraman [1978], and

Dat [1980]).

An alternate procedure was used for test CLC/1.1 120x30 only. This

consisted of using steel half-rounds between ground end plates and the

testing machine. The ends of this specimen were prepared as described in

Section 5.5.1 and were set to bear on the plates; no welding was used.

A Southwark-Emery (300,000-pound capacity) long column hydraulic

testing machine was used for all column tests. The typical long column

test setup is shown in Figure 5.18. A loading procedure identical to that

described above for stub columns was employed.

5.5.3 Instrumentation

Typical experimental instrumentation consisted of several strain and

dial gages placed at the midheight of the column. All strain gages were

single wire type W64, Precision Measurement Company, with a gage length of

0.64 inches. The strain gage instrumentation, as shown in Figure 5.1,

employed paired gages at all locations. These gages supplied information

on alignment, local instability of the plate elements, and membrane

strains.

The strains were monitored during the tests with a Hewlett Packard

computer data acquisition system, which proved very useful in a couple of

respects. First, the system provided real time displays of reduced data.

This feature facilitated alignment and general monitoring of the test.

Second, all data was stored on cassettes which allowed for easy processing

at a later date; in fact, many of the figures in this and later chapters

were computer generated.
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The dial gage instrumentation consisted of several O.OOI-inch gages,

placed at the midheight of the column (see Figure 5.19). These gages were

employed to measure local and overall (lateral) deflections. The axial

deformation was measured for only stub columns, using a O.OOOl-inch dial

gage. During the initial stages of testing, the long columns were instru

mented with dial gages to monitor the movement of the ends of the column,

and end fixtures, relative to the testing machine heads. Since no move

ment was detected, the use of these gages was abandoned.

5.5.4 Alignment

The special alignment procedures used to ensure concentric or eccen

tric loading of stub and long columns are described in this section. All

stub columns were loaded concentrically, but the loading conditions for

the long columns varied.

Alignment for concentric loading was based on a uniform strain

condition at the midheight of the column; thus the influences of initial

imperfections were minimized. The alignment procedure consisted of

monitoring the strains at load increments up to the minimum of 0.75 Pcrl
or 0.5 Pu. The load Pcrl is the critical load, of the section, associated

with the local buckling stress of a simply supported plate of width-to

thickness ratio equal to that of the largest element. The load P
u

is the

estimated ultimate load. Since small loads proved unsatisfactory, an

absolute minimum alignment load of 0.15 Pu was established. If the

relative error ER of the corner membrane strains, which is defined below,

was less than about 15%, then alignment was considered satisfactory.

ER = (MAX - MIN)/MIN 5.5
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where MAX and MIN are the maximum and minimum corner membrane strains at

midheight, respectively. For only channel sections the "corner" strain of

relatively small flanges (W2/t ~ 30) was established from the strain gages

located at the tip.of the flanges, and for relatively large flanges

(W2/t ~ 60) the corner strain was established from the "optional" gages

defined in Figure S.la, which were located at the center of the flange.

For all other specimens the corner membrane strains were obtained from the

gages located on the longitudinal edges of the flanges.

Initially, the concentrically loaded specimens were centered in the

testing machine using geometrical alignment (SSRC Technical Memorandum

No.4, Johnston [1976]). Geometrical alignment consists of centering the

specimen, in the testing machine, at its gross centroid. Rarely did this

procedure result in proper alignment due to the unavoidable dimensional

imperfections, initial imperfections, and slight out-of-flatness at the

ends of the stub columns.

Improper alignment of the stub columns was corrected by the following

method. First, the top machine head was separated from the hardened

hydrostone bedding. Then, thin metal shims, typically 0.001 and

0.002 inches thick, were placed on the hydrostone to adjust the position

of applied loading. Extra precautions must be exercised during this phase

so as not to move the stub column. Next, the machine head was slowly

lowered into contact, and alignment was again checked. This process was

repeated as necessary. In general, alignment was a very time-consuming

procedure which took typically several hours. Still, the method repre

sents a considerable improvement over methods used in the past which

consisted of physically moving the specimen and recasting the hydrostone
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(see Dat [1980] and Desmond [1978a], to name a few). Once satisfactory

alignment was obtained, a ~mall load of 100 to 200 pounds was maintained

on the specimen; from which point the test was started.

The eccentrically loaded long columns were aligned similarly using

the longitudinal membrane strain distributions. However, this time actual

and theoretical strains were compared (Figure 5.20). The corresponding

load levels were identical to those described above for concentric align

ment. Two separate comparisons were made, one each about the strong and

weak axes. The strong axis alignment consisted of comparing the two

actual corner strains along reference axis a, £act1a and £act2a' to those

along reference axis b, £act1b and £act2b' respectively. A relative error

ER estimate, defined below, was used for the comparison.

ER = IEactia - £actibl/min(IEactial,l£actibl) ••• i = 1,2 5.6

where I I indicates absolute value, min ( ) indicates minimum, and for i =

1,2 the alignment is defined along axes 1 and 2, respectively (see Fig

ure 5.20). If the two errors defined by Equation 5.6 were less than 15%,

strong axis alignment was considered satisfactory.

Weak axis alignment was determined from a comparison of actual

strains Eact against theoretically predicted strains £th (see Fig-

ure 5.20). The theoretical strains £thi' along axes one (i = 1) and two

(i = 2) were defined by the approximate beam-column formulas (see Chap

ter 4)

Ethi = PlEA ± Peci/EI(1'- P/Pcr) .•• i =1,2 5.7

where P is the axial load, e the alignment eccentricity relative to the

gross centroid, A the area, I the weak axis moment of -inertia, c. the
1
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distance from the gross centroid the appropriate strain gages, and a minus

sign is associated with i = 2. The critical buckling load P is given bycr
Pcr = n2EI/L2 5.8

The· strains €thi' in Equation 5.7, were assumed small; thus local buckling

effects were negligible, and all cross-sectional properties were based on

the gross cross section. Again, a relative error estimate was used for

the comparison. Thus,

ER = I€thi - €actijl/€thi •• i = 1,2 and j = a,b 5.9

If the four separate errors given by Equation 5.9 were less than 15%, weak

axis alignment was considered satisfactory. It is noted that an error

tolerance of less than 15% proved impractical.

Improper alignment of either the concentrically or eccentrically

loaded long columns was corrected by using the positioning screws and/or

wedges provided in the end fixtures. After alignment was obtained, a

small load of 150 to 200 pounds was maintained on the specimen.

5.5.4.1 Summary of Column Alignment

All test specimens, except those noted below, satisfied the alignment

criteria discussed in the previous section. Many specimens had error

tolerances of less than 10%.

The specimens which did not satisfy the alignment criteria include:

SLC/1 240x60, SLC/2 360x90, SC/1 60x60, and CLC/2 180x60. For one speci-

men, SLC/1 120x30, the alignment was close, and an error of approximately

20% was observed at the alignment load. For another specimen, CLC/2.2

180x60, alignment was satisfactory at loads less than, and equal to, the

alignment load, but at slightly higher loads strong axis alignment deteri

orated and proved unsatisfactory.
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5.6 Experimental Results

The experimental results for the stub and long columns of the present

study are reported in this section. Information on ultimate strengths,

local buckling behavior (stub columns), sub-ultimate response (stub

columns), loading eccentricity (long columns), and failure modes are

included. However, because the information discussed in this section is

intended to serve as an introduction to the subsequent chapter, reference

is made to that chapter for a more comprehensive presentation, including

comparisons with theoretical predictions.

5.6.1 Stub Columns

The experimental ultimate loads, Puexp; associated length-to-minimum

radius of gyration (gross section) ratios, L/rmin ; and ratios of maximum

longitudinal membrane edge-to-yield strain, €u/€y; are reported in

Table 5.6. The maximum edge strains €u were obtained from strain gage

readings on the flanges, closest to the flange-web junctures, at loads

within 3% of ultimate. Typically, the € I€ ratios ranges from about 0.7
u y

to greater than 1.0. The larger values of € I€ are generally experienced
u y

for the lipped channels with fully effective flanges, e.g., SLC/- -x30,

and for the channel sections, SC. One test, SLC/2 360x90, exhibits a

relatively low €u/€y ratio of 0.56 which is caused by poor alignment (see

Section 5.5.5).

As noted above, the maximum membrane edge strain € failed in
u '

general, to reach a yield condition. Since this condition {yielding} is

assumed in a theoretical analysis (Chapter 2), it is important to estab

lish possible reasons for this behavior. One reason is due to the small



134

tangent stiffness of a locally buckled plate near the ultimate load (see

Figure 2.8). Thus, the edge strain, which is measured just prior to

ultimate, increases dramatically with the small additional load that is

necessary to reach ultimate. A second .and related reason is that the

maximum axial membrane strain may not be representative of the maximum

principal membrane strain, which ultimately controls failure. Discussion

of this reason is continued in Section 5.6.2. A third reason is that edge

yielding may not be indicative of failure because of prior surface yield

ing on the crests of the buckles. In general, surface yielding occurred

on the lips, flanges, and webs of the specimens with small wit ratios.

However, it is believed that surface yielding is not critical for the type

of specimens under study here, but may control failure for specimens which

have unstiffened plate elements with eccentric loading toward the free

edges of these elements. A final reason is due to the physical position

ing of the strain gages. For example, the edge strain at midheight of the

column, where the gages were placed, may not coincide with the maximum

edge strain. Also, the strain gages were necessarily placed at a small

distance (transverse) from the edges of the elements and, therefore, were

influenced by local buckling.

Ordinarily, the uniformly compressed lipped channel stub columns

maintain a uniform strain condition across their cross section throughout

the loading history. This behavior is illustrated in Figure 5.21a where

the strains at reference axes one (1) and two (2) are nearly identical for

all loads P. Another example is contained in Figure 5.21b where the

strains begin to diverge from each other, by relatively small amounts,

after local buckling of the flanges and web, which is indicated by the

kink in the load-strain response.



135

In contrast, for lipped channels with relatively large web wIlt

ratios, the uniform strain condition is violated, and large strain gradi

ents are experienced across the flanges. This behavior is illustrated in

Figure 5.22 where there are now significant differences between the

strains at the two reference axes. These differences occur after buckling

of the web element which forces the flange-lip assembly to rotate about

the web-flange juncture. In turn, this reduces the effectiveness of the

flange and causes the strain gradient. It is noted that deflections, at

the flange-lip juncture, in a direction perpendicular to the flange were

observed experimentally for all lipped channels. Yet this deflection,

which increased with increasing web-to-flange width ratios wl/w2, seemed

to alter significantly the response of only the specimens with relatively

large wl/w2 ratios.

Generally, the axial deformation is predicted better from strain

gages than that predicted from dial gages (DeWolf [1973]). This is

illustrated in Figure 5.23 where the axial load-deformation response is

plotted for a typical lipped channel specimen. The curve labeled "dial

gage" is obtained directly from the dial gage readings; whereas the curve

labeled "strain gages" is obtained indirectly from the strain gage read

ings at the four corners of the section. Because the latter curve is in

better correspondence, at low load levels, with the fully effective (gross

cross section) curve, the strain gages are adopted in this study to

calculate the axial deformation. The disagreement between the dial gage

and fully effective curves at low load levels is apparently caused by the

initial seating of the stub column ends, which are not perfectly flat due

to small imperfections, against the base plates. It is noted that good

agreement is obtained between the dial gage readings and deformation



136

calculated from the strain gage readings for specimens with small wit

ratios, but this agreement deteriorates as the wit ratios are increased.

The common failure mode of the stub columns was by the formation of a

kink in the section, usually near midheight (see Figure 5.24). The kink

was observed to form at the location of the largest amplitude of the local

buckling half-waves(s). In this respect the specimens with larger plate

aspect ratios had several half-waves. Also, for the specimens with large

web wIlt ratios, equal to 240 and 360, the kink formed usually closer to

the ends of the specimen. Stable load shedding, where the load decreased

slightly and then stabilized, and small drift in the gages provided an

indication that collapse was imminent.

5.6.1.1 Local Buckling Stresses

The major parameter for consideration in a local buckling study is

the critical buckling stress fcr Yet this quantity is rather indefinite

in nature due to local initial imperfections present in a real plate.

Nevertheless, several approximate methods have been proposed for its

experimental determination (Johnson [1966J). Of these, the modified

strain reversal method is adopted in the present study due to the method's

ease of instrumentation and interpretation of results. In this method,

the compressed plate is instrumented with paired strain gages placed at

the same location and on either side of the plate (see Figure 5.25). As

the plate is initially compressed, the gages read essentially the same

strain level. However, when the plate begins to buckle, the readings

start to deviate from each other due to flexural waving. The resulting

tensile strain on the convex side of the plate causes eventually a reversal
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of the total strain (gage 10), i.e., it overcomes the strain component due

to the axial load. The maximum strain level on the convex side is defined

as the critical strain £cr'

The load-strain response indicated in Figure 5.25 was typical for

plate elements with small wit ratios but was not typical for elements with

larger wit ratios. This is exemplified in Figure 5.26 where the buckling

response is indicated for a web with a wit ratio three times that of the

web in Figure 5.25, In the latter, only one strain reversal occurs;

whereas in the former multiple strain reversals occur which is attributed

to a constantly changing buckled shape. The critical strain is defined at

the point of first strain reversal ••Also, from Figure 5.26, the membrane

strain is observed to remain relatively constant, after local buckling,

but decreases as the ultimate load is approached.

The local buckling response for a complete section is illustrated in

Figure 5.27. First, the web element buckles at the critical strain £crll'

Again, the strain histories for the web indicate that the buckled form

changes as the load is increased. Next, the flange buckles at £cr17 where

the buckling mode is primarily local (Figure 3.5a). It is noted that

buckling of the web and flange do not occur simultaneously. Eventually,

the flange buckling switches to a local-torsional mode (Figure 3.5c) at

the critical strain Ecr19 ' Failure occurs soon after this stage is

reached.

Not all specimens followed the exact behavior indicated in Fig-

ure 5.27, However, it demonstrates that the assumption of simultaneous

buckling of all elements (Chapter 3) is violated for an actual thin-walled

section.



138

The buckling strain histories, such as those contained in Fig

ures 5.25 through 5.27, are used to calculate the associated elastic

buckling coefficients K. from
1

Ki = 12Ecr(1 - ~2)(wi/t)2/n2 •• i = 1,2,3 5.10

where wi is the flat width of the ith element. The results are reported

in Table 5.7. Double values are indicated for K2 and K3 because the

section has two flanges and two lips.

The experimental buckling coefficients of Table 5.7 are compared

graphically, in Figures 5.28 and 5.29, to the theoretical values from

Chapter 3 (Figures 3.1 and 3.2), for channels and lipped channels, respec

tively. It is recalled that the theoretical (numerical) analysis of

Chapter 3 accounts for local buckling interaction between the plate

elements of a section. For channels (Figure 5.28) there is fair corre

lation between the theoretical and experimental web buckling coefficients,

Ki • But the theoretical buckling coefficients for the flanges, K2,

overestimate the experimental results, which lie closer to the simply

supported value of K2 = 0.425.

Similar results are observed in Figure 5.29 for the lipped channels.

In this case, there is fair correlation between the theoretical and

experimental buckling coefficients for the flanges, K2, but the theoreti

cal predictions of the web buckling coefficient, Ki , are unconservative.

It is important to discuss the factors which affect the experimental

buckling coefficients. One obvious factor, which influences even the

theoretical predictions, is the length of the section. Since this factor

was considered in the design of the specimens (Section 5.2.1), it is
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relatively unimportant. A second and most crucial factor is the uneveness

across the ends of the specimens. This causes"the affected element to

buckle prematurely (belatedly) which is substantiated by the extremely low

buckling coefficients reported in Table 5.7, e.g., for specimen SLC/2

360x90, K1 = O. It appears that this factor is especially critical for

unstiffened elements (flanges of channels) and web elements with large

flat width ratios, WI/t. The last factor concerns positioning of the

strain gages. If the gages happen to be located near a point of inflec

tion in the buckled shape, they will give too high of an estimate of the

buckling coefficient. It is recalled that the strain gages, used to

obtain the buckling coefficients of Table 5.7, were generally positioned

at the midheight of the stub column.

The last factor, discussed above, was investigated by instrumenting

several lipped channels with additional pairs of buckling strain gages

(Vann et. al. [1973]). These gages were placed at the same location on

the cross section as those at the centerline (midheight) but were spaced

at a distance z along the length. The distance z was taken equal to

approximately one-half of the flat width of the appropriate plate element.

The buckling coefficients, obtained from the additional strain gages, are

compared in Table 5.8 against the values obtained from the gages at the

centerline (C). In short, the additional gages give mixed results which

agrees with conclusions reached in another investigation (Mulligan

[1979]).

5.6.2 Long Columns

The experimental results for the long columns are reported in

Table 5.9. The ratios of test length to minimum radius of gyration,
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Ilrmin , range from 40 to 100 which provides a broad data base. The test

length I accounts for the offset in the center of rotation due to the end

fixtures and base plates, and differs from the specimen length L, in

Table 5.2, by 2 x 1.5 inches. Also, as discussed earlier, several columns

are tested with braces (see Figure 5.1). For a given cross section, both

concentric and eccentric loading conditions are studied. The experimental

eccentricities e listed in Table 5.9 are defined as positive toward the

shear center (see Figure 5.1). For reference the distance x which defines

the location of the gross centroid relative to the web is also listed in

this table.

Because the response is very sensitive to the position of the applied

load (see Section 4.5.2), the experimental eccentricity is determined from

actual test measurements and differs from the alignment eccentricity

discussed in Section 5.5.4. More specifically, the experimental eccen

tricity is determined from

e = (£1 - £2) EI (1 - P/Pcr )/P(C1 + C2) 5.11

where all notation is defined following Equation 5.7. The load P and the

average strains £1 and £2 are obtained from test measurements, and Equa

tion 5.11 is applied at several load levels, up to the alignment load (see

Section 5.5.4). The results are then averaged to obtain the experimental

eccentricities listed in Table 5.9. Generally, these eccentricities

differed from the alignment values by less than 10%.

In addition, the ratios of maximum membrane edge strain, obtained

within 8% of the ultimate load, to yield strain, £u/£y' are reported in

Table 5.9. The reference axis, either one (1) or two (2), where the
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maximum edge strain occurs is also indicated (see Figure 5.20). In most

cases the E IE ratios for 10ng··co1umns with flange flat width ratios,, u y

wz/t, equal to 60 exceed the corresponding values for equivalent stub

columns (Table 5.6). However, for wz/t equal to 90, the opposite is true,

and the long column E IE ratios are less.u y

For several tests the maximum edge strain, EU' failed to reach

yielding. The reasons for this behavior were discussed in Section 5.6.1.

However, in the present case, the effect noted earlier of low post

buckling plate stiffness, near ultimate, is exaggerated due to beam-column

behavior (Timoshenko [1955]). Also, Thomasson [1978] investigated experi

mentally the appropriateness of using the maximum axial membrane strain to

represent failure. He found this stress (strain) to be of the same order

as both the principal stress, which was within 10 0 of the axial direction,

and the effective stress of von Mises yield criterion (Timoshenko [1956J).

Moreover, calculations of the maximum surface effective stress indicated

yield had occurred. It is mentioned that Thomasson observed relatively

low values of the maximum membrane edge strain (axial), e.g., see Sec

tion 5.7.2. A final reason for the low values of E
U

is the failure modes

which are discussed next.

Typical failure modes for the concentrically loaded long columns,

without braces, are shown in Figure 5.30. Collapse was initiated by the

formation of a kink usually at the midheight of the column. And similar

to the results for the stub columns, stable load shedding and drifting of

the gages occurred just prior to collapse. Generally, failure was gradu

a1.



142

The failure modes for two eccentrically loaded columns with and

without braces, ClC/2.1 and ClC/2.2 180x90, respectively, are compared in

Figure 5.31. For the column without braces, failure occurred near the end

of the specimen and was gradual. Also note the relatively low value of

E /E that is observed for this test (Table 5.9). On the other hand, the
u y

column with braces failed suddenly, near the center, and displayed signif-

icant differences in lateral deflections at the two corners, i.e., the

individual deflections obtained from dial gages A and B of Figure 5.19.

This indicated twisting of the section and torsional-flexural buckling.

One column, ClC/1 90x90, without braces collapsed violently by an

elastic local-torsional failure of the flanges (see Figure 5.32). The

collapse of the individual flanges was shifted in phase and occurred away

from the midheight of the specimen. Because difficulties were encountered

when fabricating this square section (WI =wz), the flanges had large

local initial imperfections* (fabrication type) which interacted adversely

with local-torsional buckling of the flanges to produce premature failure.
,

The failure modes for the remaining specimens are briefly summarized

below. For almost all specimens failure was gradual. An exception to

this was test ClC/2.2 180x60 which failed violently. For this test

failure occurred initially in only one flange due to improper strong axis

alignment ~Section 5.5.5). Also, the majority of specimens failed near

the midheight. The exceptions to this include ClC/2.4 120x60 and ClC/3

180x90 which failed near the ends. Finally, significant twisting of the

cross section was noted for tests ClC/2.1 180x60, ClC/2 180x90, and ClC/3

180x90.

*These imperfections were observed visually and were not actually meas
ured.
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From the above discussion, the braces are seen to significantly

effect the strength and behavior of the specimens. A more direct evalu

ation consists of equating the ultimate strengths (Table 5.9) of the six

sections which have comparable dimensions and loading conditions. Al

though not strictly applicable due to variations in the yield strength and

dimensions, the mean ultimate loads for the braced and unbraced sections

are 11.3 and 9.8k., respectively, which indicates the braces are quite

effective. Equally important, braces were not used for several tests

which experienced low maximum edge strains.

Finally, the local buckling stresses for the long columns are not

reported because of the effect of the longitudinal stress gradient (see

Section 3.3.2) which changes continually with increasing load (see Sec

tion 4.5.2). However, it is mentioned that the web buckling coefficients,

KI , followed generally the results discussed earlier for stub columns.

5.7 Other Experimental Research

In this section the experimental research of others is briefly

reviewed. Reference is implied to previous discussions.

5.7.1 Stub Columns

In the early fifties, Chilver [1953] presented an interesting and

widely referenced paper on the stability and strength of thin-walled steel

struts (short columns). Results were reported for tests on channel and

lipped channel sections, from which empirical methods of strength predic

tion were derived. Chilver's test results are reviewed in Table 5.10.
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The yield strengths were obtained from compression tests of representative

material. Also, for a constant cross section, several tests were conduct-

ed on specimens with different lengths, and the minimum ultimate load was

reported. The associated lengths were not reported. Actually, Chilver

reported ultimate (average) stresses, and not loads; hence the loads

listed in Table 5.10 were obtained from independent calculations. Lastly,

it is observed that a majority of Chilver's specimens had relatively small

element wit ratios.

More recently, Pekoz [1977] conducted exploratory research on cold

formed steel channel and lipped channel sections. In this study the ends

of the specimens were hand filed to a plane, and in some cases, copper end

pads were used to distribute the load. For the specimens listed in

Table 5.11, Pekoz stated that the stub column length requirements dis-

cussed in Section 5.2.1 were satisfied, e.g., L > 3xwmax and L < 20r ..- mln
Since the lengths of the channel sections were not reported, this can not

be verified. However, the lengths were reported for the lipped channel

sections, and in general these sections satisfied the above requirements.

Finally, the yield strengths associated with the thickness t =0.02 and

0.06 inches were 43.77 and 32.92 ksi, respectively.

5.7.2 Long Columns

Thomasson [1978], in a comprehensive study, reported tests of con

centrically loaded, lipped channel, steel columns (see Table 5.12).

Geometrical alignment was used for these tests where the specimen was

centered in roller bearing end fixtures (simple support about the weak

axis). The specimens were held in the fixtures by locking guide bars, and
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copper or neoprene shims were used between the specimen and top plate of

the fixtures. Since the center of rotation of the fixture was not coinci

dent with the ends of the specimen, a correction of 2 x 3.74 inches was

added to the specimen length L = 98.4 inches to define the test length

I = 105.9 inches. Also, thin braces (1.18" x 0.12" strips), spaced at

11.8 inches, were used between the lips, similar to the L brace of Fig

ure 5.1. Because Thomasson failed to mention the manner of brace con-

nection but discussed "holes" in the lips, it was assumed that the braces

were attached by screws. Extensive experimental measurements were made

using strain and dial gages. And in one test, A104, an attempt was even

made to define the local buckling pattern by preload~ng the specimen

before attaching the strain gages. However, when the specimen was actual

ly tested, the buckling pattern shifted which negated the above procedure.

The ratios of maximum membrane edge strain (axial), at the midheight

and at the web-flange juncture, to yield strain, E IE , are listed in
u y

Table 5.12. These values were obtained graphically from load-strain plots

reported by Thomasson at loads within about 5% of ultimate. Generally,

the maximum edge strain failed to reach yield, and reasons for this

behavior were discussed in Section 5.6.2. The very low value of E IE for
u y

test A155 was caused by misalignment about the strong axis.

Thomasson also tested lipped channel sections with one and two

longitudinal (intermediate) stiffeners in the web. A review of these

tests is not included here. However, it is noted that several sections

failed prematurely in a local-torsional flange mode. Thomasson discussed

this and reasoned that the intermediate stiffeners increased the stiffness
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of the web which caused the lips to carry a higher stress level relative

to a similar section without intermedi~te stiffeners. Thus, the risk of

local-torsional flange failure was accentuated. Apparently the thin

braces, which were relatively weak in compression, and their method of

connection, with screws, were inadequate.

Another researcher (Loughlan [1979]) conducted an experimental study

of thin-walled, lipped channel, steel columns. The specimens incorporated

relatively large stiffeners and were subjected to both concentric and

positive eccentric loading (see Table 5.13). Moreover, a simply supported

boundary condition was provided about the weak and strong axes by special

end fixtures. These consisted of a hardened and polished spherical

support pin and loading block with a matching spherical recess. To

facilitate alignment, special guide bars, situated on the fixtures, and

calibrated positioning handles were used. Because the end fixtures af

fected the location of the center of rotation, the test length [, in

Table 5.13, was calculated assuming a correction of 2 x 1.52 inches. The

yield strengths associated with the thicknesses, t, approximately equal to

0.03 and 0.06 inches were 35.10 and 33.79 ksi., respectively.

5.8 Summary

To sum up, the experimental investigation of the present study was

reported in this chapter. The first phase concentrated on concentrically

loaded (uniform compression), channel and lipped channel, stub columns.

Extensive measurements of the specimens revealed large initial imperfec

tions. And, to facilitate concentric alignment, special procedures were

described, which proved very successful. Then the experimental results

were discussed. Local buckling coefficients (stresses) for the individual
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copper or neoprene shims were used between the specimen and top plate of
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using strain and dial gages. And in one test, A104, an attempt was even

made to define the local buckling pattern by preloadi~g the specimen
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behavior were discussed in Section 5.6.2. The very low value of € I€ for
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test A155 was caused by misalignment about the strong axis.

Thomasson also tested lipped channel sections with one and two

longitudinal (intermediate) stiffeners in the web. A review of these

tests is not included here. However, it is noted that several sections

failed prematurely in a local-torsional flange mode. Thomasson discussed

this and reasoned that the intermediate stiffeners increased the stiffness
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of the web which caused the lips to carry a higher stress level relative

to a similar section without intermedi~te stiffeners. Thus, the risk of

local-torsional flange failure was accentuated. Apparently the thin

braces, which were relatively weak in compression, and their method of

connection, with screws, were inadequate.

Another researcher (Loughlan [1979]) conducted an experimental study

of thin-walled, lipped channel, steel columns. The specimens incorporated

relatively large stiffeners and were subjected to both concentric and

positive eccentric loading (see Table 5.13). Moreover, a simply supported

boundary condition was provided about the weak and strong axes by special

end fixtures. These consisted of a hardened and polished spherical

support pin and loading block with a matching spherical recess. To

facilitate alignment, special guide bars, situated on the fixtures, and

calibrated positioning handles were used. Because the end fixtures af

fected the location of the center of rotation, the test length [, in

Table 5.13, was calculated assuming a correction of 2 x 1.52 inches. The

yield strengths associated with the thicknesses, t, approximately equal to

0.03 and 0.06 inches were 35.10 and 33.79 ksi., respectively.

5.8 Summary

To sum up, the experimental investigation of the present study was

reported in this chapter. The first phase concentrated on concentrically

loaded (uniform compression), channel and lipped channel, stub columns.

Extensive measurements of the specimens revealed large initial imperfec

tions. And, to facilitate concentric alignment, special procedures were

described, which proved very successful. Then the experimental results

were discussed. Local buckling coefficients (stresses) for the individual
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plate elements, obtained from strain gage measurements, were compared

against the theoretical predictions of Chapter 3. Generally, the agree

ment between experimental and theoretical buckling coefficients was fair

for channels but deteriorated for lipped channels. One reason for this

poor correlation was that the plate elements of the test specimens buckled

at different loads which contradicted the theoretical assumption of

simultaneous buckling of all plate elements. Also, in several tests, the

maximum membrane edge strain, at the web-flange juncture, failed to reach

the yield strain. The reasons for this behavior were discussed at length

in the text. Even though the specimens were uniformly compressed, a

strain gradient across the flanges was observed for the lipped channels

with relatively large webs. This response was caused by local buckling of

the web which reduced the effectiveness of the flange.

The second phase of the investigation concentrated on concentrically

and eccentrically loaded, lipped channel, long columns. Again extensive

measurements revealed large local and overall initial imperfections. For

the latter, the imperfection was less than one thousandth of the length.

Also, an alignment procedure was described which employed comparisons of

actual to predicted strains. Then the experimental results were dis

cussed. Generally, the specimens failed gradually by flexural yielding.

However, several specimens failed either by torsional-flexural buckling or

local-torsional collapse of the flanges, and, in some cases, the failure

mode was violent. Finally, the strength and behavior of some columns were

significantly affected by the use of braces which tied the flanges to

gether.

Discussion of the experimental results is continued in the next

chapter where they are compared to theoretical. predictions.
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*Table 5.1 DIMENSIONS OF STUB COLUMN SPECIMENS

Specimen WI (in.) W2 W3 t OR L Material t

SLC/1 60x30 3.252 1.639 0.388 .0482 0.150 11.95 XII
SLC/1 90x30 4.594 1.634 0.389 .0480 0.152 11.98 XII
SLC/1 120x30 6.070 1.656 0.380 .0482 0.170 10.96 XII

SLC/1 60x60 3.144 3.217 0.678 .0473 0.121 18.02 I
SLC/2 60x60 3.126 3.212 0.680 .0477 0.117 18.02 I
SLC/1 120x60 5.961 3.226 0.681 .0473 0.125 17.98 I
SLC/2 120x60 5.938 3.238 0.666 .0471 0.123 17.98 I
SLC/1 180x60 8.984 3.214 0.689 .0472 0.121 22.02 I
SLC/2 180x60 8.969 3.223 0.691 .0469 0.131 26.97 I
SLC/1 240x60 11.81 3.223 0.681 .0469 0.125 22.00 I
SLC/2 240x60 11.84 3.230 0.694 .0470 0.142 35.97 I I
SLC/3 240x60 11.80 3.220 0.682 .0471 0.125 21. 97 I

SLC/l 60x90 3.178 4.492 0.753 .0449 0.144 25.50 V
SLC/2 60x90 3.156 4.496 0.756 .0449 0.150 25.48 V
SLCIl 90x90 4.523 4.492 0.757 .0446 0.149 25.47 IV
SLC/2 90x90 4.508 4.488 0.758 .0450 0.146 25.48 IV
SLC/1 180x90 11.07 5.723 1.347 .0612 0.148 35.09 VI
SLC/2 180x90 11.08 5.754 1.315 .0610 0.156 35.10 VI
SLC/3 180x90 8.828 4.480 0.762 .0481 0.164 25.47 VII
SLC/4 180x90 8.805 4.531 0.746 .0502 0.166 25.50 X
SLC/5 180x90 8.789 4.523 0.768 .0508 0.172 25.51 X
SLC/1 270x90 13.06 4.523 0.750 .0501 0.166 30.00 X
SLC/2 270x90 13.02 4.543 0.750 .0502 0.166 38.24 XI
SLC/1 360x90 17.36 4.476 0.755 .0490 0.158 29.99 IX
SLC/2 360x90 17.38 4.476 0.752 .0493 0.150 50.99 VII I

SCIl 60x30 3.230 1.609 .0484 0.168 9.976 XII
SCIl 90x30 4.609 1.612 .0478 0.164 10.94 XII
SCIl 120x30 6.102 1. 612 .0472 0.172 8.961 XII
SC/2 120x30 6.117 1.605 .0482 0.168 16.85 XII

SCIl 40x60 2.051 3.095 .0480 0.152 15.14 XXII
SC/2 40x60 2.095 3.093 .0481 0.152 15.14 XXII
SCIl 60x60 3.058 3.080 .0479 0.125 9.141 XXII
SC/1 100x60 5.070 3.077 .0481 0.125 15.14 XXII
SCIl 120x60 6.125 2.973 .0474 0.156 18.98 XII
SCIl 180x60 8.844 2.984 .0476 0.164 17.98 XII
SC/2 180x60 8.852 2.980 .0476 0.164 24.98 XI I

*Refer to Fig. 5.1 for definition of cross-sectional parameters.

tRefer to Table 5.3 for definition of material properties.
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*Table 5.2 DIMENSIONS OF LONG COLUMN SPECIMENS

Specimen W1 (in.) W2 W3 t OR L Materi al tt

CLC/l.1 120x30 6.094 1.640 0.362 .0482 0.131 17.96 XlI

CLC/1 120x60 6.164 3.193 0.713 .0447 0.154 60.00 V
CLC/2 120x60 6.141 3.192 0.671 .0450 0.152 72.02 III
CLC/2.1 120x60t 6.172 3.171 0.710 .0474 0.168 72.00 XV
CLC/2.2 120x60 6.156 3.182 0.728 .0484 0.166 72.72 XIV
CLC/2.3 120x60t 6.148 3.183 0.712 .0476 0.166 72.66 XIV
CLC/2.4 120x60t 6.140 3.191 0.714 .0476 0.164 72.00 Xill
CLC/3 120x60 6.180 3.192 0.671 .0455 0.154 118.1 111
CLC/4 120x60 6.117 3.197 0.694 .0454 0.156 118.0 III
CLC/5 ·120x60t 6.164 3.169 0.720 .0480 0.164 72.00 XlII

CLC/1 180x60 9.117 3.199 0.680 .0450 0.152 69.01 IV
CLC/2 180x60 9.133 3.194 0.688 .0448 0.156 92.12 V
CLC/2 .1 180x60t 9.164 3.177 0.707 .0478 0.156 92.05 XXI
CLC/2.2 180x60 9.102 3.187 0.741 .0481 0.156 92.09 XX
CLC/3 180x60 9.141 3.194 0.684 .0442 0.150 115.0 V
CLC/4 180x60t 9.078 3.199 0.726 .0484 0.164 92.03 XVllI

CLC/1 90x90 4.516 4.480 0.778 .0484 0.166 96.16 XVI

CLC/1 180x90 8.742 4.496 0.785 .0478 0.162 72.07 XV
CLC/2 180x90 8.773 4.476 0.766 .0477 0.166 96.07 XV 11
CLC/2.1 180x90t 8.719 4.484 0.766 .0475 0.152 96.03 XVIII
CLC/2.2 180x90 8.750 4.492 0.773 .0482 0.164 96.19 XVI
CLC/3 180x90t 8.766 4.488 0.753 .0481 0.166 96.16 XIX

*Refer to Fig. 5.1 for definition of cross-sectional parameters.

ttRefer to Table 5.3 for definition of material properties.
tBraces used, refer to Fig. 5.1.
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Table 5.3 TENSILE MATERIAL PROPERTIES

*Material

I
II
III
IV
V
VI
VIIt
VIII
IX
X
XI
XII
XIII
XIV
XV
XVI
XVII
XVI II
XIX
XX
XXI
XXI Itt

Yield
Stress (ksi)

33.39
34.63
31.95
32.59
32.41
59.80
53.42
29.33
29.20
28.83
29.49
32.79
32.47
31.82
31.82
34.34
35.42
33.06
33.85
34.34
34.98
51. 62

Ultimate
Stress (ksi)

45.72
46.65
46.04
46.66
46.43
79.35
71.13
42.27
42.15
42.10
42.29
43.58
45.11
45.03
44.69
45.51
46.39
44.55
45.17
45.68
45.93
64.08

Percent
Elongation

38
40
47
46
44
22
29
48
49
47
49
41
41
43
42
42
42
42
42
46
39
22

*Unless noted otherwise, all sharp yielding.

tLow proportional limit, 0.2% offset used to define
yield stress.

ttGradual yielding, 0.2% offset used to define yield
stress.
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Table 5.4 MAXIMUM AMPLITUDE OF LOCAL INITIAL
IMPERFECTIONS IN STUB COLUMNS

Web Flange Lip
Specimen * * * *t,max t,max/t max t,max/~ t,max t,max/t t,max t,m~x/t

web web t,f1 .1 i p . f1 .11 p fl. flo 1i p 11 p

SCIl 40x60 .020 0.42 .036 0.75 _t
.128 2.67

SCIl 60x60 .016 0.33 .061 1.27
.095 1.98

SCIl 100x60 .049 1.02 .132 2.74
.122 2.54

SCIl 120x60 .011 0.23 .145 3.06
.127 2.68

SCIl 180x60 .042 0.88 .192 4.03
.091 1.91

SLC/2 60x60 .008 0.17 .026 0.54 .004 0.08 .008 0.17
.020 0.42 .007 0.15 .011 0.23

SLC/2 120x60 .009 0.19 .013 0.28 .004 0.08 .004 0.08
.005 0.11 .004 0.08 .008 0.17

SLC/2 180x60 .013 0.28 .044 0.94 .008 0.17 .012 0.26
.056 1.19 .006 0.13 .008 0.17

SLC/2 240x60 .040 0.85 .019 0.40 .010 0.21 .009 0.19
.049 1.04 .008 0.17 .006 0.13

SLCIl 60x90 .005 0.11 .012 0.27 .036 0.80
.017 0.38 .043 0.96

SLC/l 90x90 .006 0.13 .013 0.29 .014 0.31
.009 0.20 .014 0.31

SLC/5 180x90 .015 0.30 .005 0.10 .024 0.47
.005 0.10 .019 0.37

tNot measured or not applicable.

*In inches, where: l t1 f1 . 1i p t1f l.

t
~eb

for SC. for SLC
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Table 5.5 MAXIMUM AMPLITUDE OF LOCAL AND OVERALL
INITIAL IMPERFECTIONS IN LONG COLUMNS

Local Overa 11
Specimen * maxt maxt

Amax Amax/ t L/Amax L/AmaxA Asfl •1i p fl .1 i p w w s

CLC/2.1 120x60 .287 6.05 .042 1714. .020 3600.
.163 3.44

CLC/2.2 120x60 .102 2.11 .012 6060. .017 4278 •
•139 2.87

CLC/2.3 120x60 .113 2.37 .038 1912. .023 3159.
.111 2.33

CLC/2.4 120x60 .067 1.41 .045 1600. .021 3428 •
•075 1.58

CLC/4 120x60 .054 1.19 .063 1873. .011 10727 •
•070 1.54

CLC/5 120x60 .060 1.25 .045 1600. .006 12000•
•083 1. 73

CLC/2 180x60 .115 2.57 .038 2424. .016 5758.
.092 2.05

CLC/2.1 180x60 .164 3.43 •068 1354• .021 4383.
.136 2.84

CLC/2.2 180x60 .039 0.81 .034 2708. .007 13156.
.103 2.14

CLC/4 180x60 .216 4.46 .075 1227. .023 4001.
.094 1.94

CLC/2.1 180x90 .178 3.75 .071 1352. .029 3311.
.160 3.37

CLC/2.2 180x90 .215 4.46 .014 6871. .017 5658.
.078 1. 62

*See figure at bottom of Table 5.4, in inches.

tSee Fig. 5.14, in inches.
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Table 5.6 EXPERIMENTAL RESULTS FOR STUB COLUMNS

Specimen L/wmax L/rmin** Puexp(k) E /E *
U Y

SLC/1 60x30 4.0 20.0 10.40 1.06
SLC/1 90x30 2.8 20.8 10.05 0.89
SLC/1 120x30 1.9 19.7 10.15 1.43
SLC/1 60x60 6.1 15.0 13.20 0.78
SLC/2 60x60 6.1 15.1 13.60 0.78
SLC/1 120x60 3.1 15.0 13.00 0.74
SLC/2 120x60 3.2 15.0 13.60 0.79
SLC/1 180x60 2.5 19.1 12.80 0.72
SLC/2 180x60 3.1 23.4 12.80 0.81
SLC/1 240x60 1.9 19.9 12.80 0.84
SLC/2 240x60 3.1 32.4 12.00 0.72
SLC/3 240x60 1.9 19.9 12.60 0.88
SLC/l 60x90 6.1 18.2 11.50 0.75
SLC/2 60x90 6.1 18.3 11.80 0.97
SLC/1 90x90 6.0 15.4 11.90 0.96
SLC/2 90x90 6.0 15.4 12.00 1.03
SLC/l 180x90 3.3 16.3 31.15 0.85
SLC/2 180x90 3.3 16.2 31.40 0.90
SLC/3 180x90 3.0 15.7 15.20 1.18
SLC/4 180x90 3.0 15.6 13.80 0.70
SLC/5 180x90 3.0 15.6 14.60 0.73
SLC/1 270x90 2.4 19.1 13.60 0.81
SLC/2 270x90 3.0 24.2 14.00 0.90
SLC/1 360x90 1.8 20.2 12.50 0.70SLC/2 360x90 3.0 34.4 11.20 0.56
SCIl 60x30 3.4 19.4 7.40 0.85SCIl 90x30 2.6 22.3 7.35 0.77SCIl 120x30 1.6 19.2 7.80 . 1.16SC/2 120x30 2.9 36.4 7.10 1.53
SC/1 40x60 5.1 16.6 7.88 0.95SC/2 40x60 5.1 16.2 7.89 0.94SC/1 60x60 3.1 9.0 9.16 1.09SCIl 100x60 2.6 15.1 9.20 1.02SCIl 120x60 3.3 20.0 8.20 1.02SCIl 180x60 2.1 19.8 8.52 0.85SC/2 180x60 2.9 27.6 8.50 1.57

*EU = maximum membrane strain
Ey =yield strain

**Based on gross cross section
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Table 5.7 EXPERIMENTAL BUCKLING COEFFICIENTS
FOR STUB COLUMNS

Specimen Web Flanges Lips
K1 K2 K2 K3 K3

SLC/1 60x30 3.32 * 0.81 t t
SLC/1 90x30 . 3.46 t t t t
SLC/1 120x30 1.53 t t t t

SLC/1 60x60 3.09 3.08 3.40 * 0.145
SLC/2 60x60 2.96 3.05 3.11 0.119 0.120
SLC/1 120x60 2.74 2.40 2.51 * *
SLC/2 120x60 2.81 2.95 3.09++ * 0.129
SLC/1 180x60 2.05 2.82 2.78++ 0.064 0.040
SLC/2 180x60 2.82 * 2.92 * 0.027
SLC/1 240x60 4.70 * * * *
SLC/2 240x60 3.34 1.60++ 1.52++ * *
SLC/3 240x60 1.80 * 1.69** * *

SLC/1 60x90 1.87 3.59 3.04 0.146 *
SLC/2 60x90 1.71 3.53 3.04++ 0.085 0.086
SLC/1 90x90 2.94 2.77 3.34++ 0.111 0.090
SLC/2 90x90 3.24 2.01 3.89++ 0.067 0.086
SLC/1 180x90 3.15 1.48 1.55 0.112 0.070
SLC/2 180x90 3.03 2.47 2.21 0.116 '0.120
SLC/3 180x90 3.01 1.97 1.82 0.048 0.064
SLC/4 180x90 3.12 3.49** 3.79++ 0.030 0.061
SLC/5 180x90 2.03 1.44++ 1.56 0.084 *
SLC/1 270x90 1. 78 2.71 2.66 * 0.106
SLC/2 270x90 0.56 2.15++ 1.67 * 0.066
SLC/1 360x90 O. 2.52** 2.74** * *
SLC/2 360x90 O. 2.12 2.19 0.080 0.032

SC/1 60x30 1.94 0.566 0.486
SC/1 90x30 2.94 0.332 0.426
SCIl 120x30 3.31 0.174 0.642
SC/2 120x30 2.13 0.195 0.138

SC/1 40x60 1.46 o. 0.050
SC/2 40x60 1.09 0.302 O.
SCIl 60x60 0.802 0.282 0.261
SC/1 100x60 2.93 0.317 0.271
SC/1 120x60 4.39 0.141 0.168
SCIl 180x60 4.71 0.032 0.151
se/2 180x60 0.390 0.197 0.085

*Buckling not detected. **Flange buckling in local-torsional mode.

tNot measured. ++F1ange buckling in local mode with
subsequent buckling in local-torsional
mode.
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Table 5.8 INFLUENCE OF STRAIN GAGE LOCATION ON
BUCKLING COEFFICIENT

Web Flanges
Specimen *K1 @t. z K1 @z K2 @t z K2 @z

SLC/2 60x90 1.71 2.25 2.30 3.53 2.25 3.82
3.14 2.25 3.04

SLC/1 90x90 2.94 2.25 3.33 2.77 2.25 3.14
3.94 2.25 3.34

SLC/5 180x90 2.45 4.22 2.03 2.89 2.00 1.44
3.11 2.00 1.56

SLC/2 270x90 0.71 6.34 0.56 2.54 2.00 2.15
1.67 2.00 1.81

SLC/2 360x90 O. 8.50 0.40 2.12 2.00 3.60
2.19 2.00 4.00

*z = di stance from t, in inches.
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Table 5.9 EXPERIMENTAL RESULTS FOR LONG COLUMNS

Specimen tt e (i n. ) x (i n. )tt Puexp (k) *L/r . E:u/ E:y (1,2)mln

CLC/1.1 120x30 36.3 -0.203 0.380 8.00 1.14 ( 2)

CLC/1 120x60 53.1 O. 1.047 9.80 0.82 (1)
CLC/2 120x60 63.7 O. 1.035 10.40 0.96 (1)
CLC/2.1 120x60t 63.8 -0.536 1.036 10.30 1.14 (2)
CLC/2.2 120x60 64.0 -0.534 1.047 8.75 0.80 ( 2)
CLC/2.3 120x60t 64.1 0.982 1.043 6.75 0.80 (1)
CLC/2.4 120x60t 63.1 -0.212 1.048 12.40 0.65 (2)
CLC/3 120x60 102.8 O. 1.032 8.20 1.04 (1)
CLC/4 120x60 102.2 O. 1.046 8.40 1.14 (1)
CLC/5 120x60t 63.7 O. 1.039 11.80 0.83 (1)

CLC/l 180x60 63.2 O. 0.857 9.60 1.10 (1)
CLC/2 180x60 83.5 O. 0.856 8.75 0.85 (1 )
CLC/2.1 180x60t 83.7 -0.424 0.854 10.40 0.80 (2)
CLC/2.2 180x60 82.9 -0.397 0.870 10.00 0.77 ( 2)
CLC/3 180x60 103.6 O. 0.855 7.60 0.94 (1 )
CLC/4 180x60t 82.8 O. 0.871 10.80 0.72 (1)

CLC/l 90x90 60.1 O. 1. 791 11.00 0.48 (1 )

CLC/l 180x90 45.9 O. 1.403 12.30 0.89 (1)
CLC/2 180x90 61.0 O. 1.386 12.10 0.64 (1)
CLC/2.1 180x90t 60.8 -0.521 1.394 12.50 0.91 (2)
CLC/2.2 180x90 60.8 -0.515 1.396 8.75 0.65 (2)
CLC/3 180x90t 61.0 O. 1.387 11.80 0.71 (1)

*E:y =yield strain
E: = maximum membrane strainu
(1) II II II @ flange-web juncture.
( 2) II II II @flange-lip juncture.

.tBraces used, refer to Fig. 5.1.

ttBased on gross cross section.
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*Table 5.10 CHILVER1S [1953] STUB COLUMN TESTS

WI (in.) W2 W3 t Yield p (k)Specimen wIlt w2/t Stress (ksi) uexp

Channels

C1 12 14 2.0 2.0 .128 49.28 35.5
C2 12 10 2.0 1.5 .128 54.21 29.0
C3 16 18 1.25 1.25 .064 41.66 8.68
C4 19 21 1.5 1.5 .064 46.59 9.22
C5 41 33 1.625 1.25 .036 44.58 4.07
C6 17 19 1.0 1.0 .048 48.83 4.98
C7 24 19 1.0 0.75 .036 43.23 2.88
C8 7 9 0.875 0.875 .080 59.58 10.7
C9 27 14 4.0 2.0 .128 47.49 41.7
CI0 79 40 4.0 2.0 .048 26.66 5.28
Cll 121 40 6.0 2.0 .048 26.66 5.56
C12 163 40 8.0 2.0 .048 29.12 5.54

Lipped Channels

LC1 121 38 6.0 2.0 0.5 .048 42.56 12.4
LC2 46 18 5.75 2.5 1.0 .116 39.87 52.0
LC3 58 27 5.0 2.5 0.5 .080 42.56 25.5LC4 46 24 4.0 2.25 0.375 .080 35.62 23.9LC5 40 21 3.5 2.0 0.375 .080 44.13 24.6LC6 27 10 4.0 1. 75 0.625 .128 46.14 50.8LC7 19 8 3.0 1.5 0.375 .128 47.04 35.9LC8 39 12 2.75 1.0 0.5 .064 47.49 14.5LC9 30 8 2.75 1.0 0.5 .080 47.94 19.4LCI0 35 14 1.875 0.875 0.25 .048 50.40 7.66LCn 32 17 1. 75 1.0 0.25 .048 54.66 9.22LC12 204 69 10.0 3.5 0.75 .048 26.66 9.48LC13 163 79 8.0 4.0 0.75 .048 27.10 10.2LC14 121 79 6.0 4.0 0.75 .048 27.78 9.26LClS 79 79 4.0 4.0 0.75 .048 26.66 9.43LC16 38 38 2.0 2.0 0.375 .048 28.00 7.26

*Refer to Fig. 5.1 for definition of cross-sectional parameters.Assume OR = 2t.



*Table 5.11 PEKOZ·S [1977] STUB COLUMN TESTS

Specimen w/t w2/t WI (in.) W2 W3 t L L/r . PLeXp (k)mln

Channelst

P4 37 10 2.382 0.699 - .059 ** <20 7.42
P6$ 37 10 2.382 0.699 - .059 ** <20 7.25
P8 37 10 2.382 0.699 - .059 ** <20 7.64
P5$ 75 10 4.665 0.699 - .059 ** <20 8.49
P7$ 75 10 4.665 0.699 - .059 ** <20 8.15
P9 75 10 4.665 0.699 - .059 ** <20 8.15
P2.14 96 15 5.945 1.181 - .059 11.81 37.6 9.33

Lipped Channelstt

P2.1 149 45 3.307 1.063 0.295 .022 13.78 35.7 3.24 ......
c.n

P2.2 146 44 3.228 1.043 0.226 .022 10.63 29.0 2.74 ex>

P2.3 50 46 1.157 1.071 0.323 .022 10.55 25.6 3.28
P2.4 51 46 1.185 1.087 0.220 .022 8.07 20.1 3.01
P2.6 97 98 6.012 6.031 1.417 .059 19.68 8.6 19.9
P2.7 97 97 6.016 6.020 2.146 .059 19.68 8.3 22.5
P2.8 97 97 6.016 6.020 0.772 .059 19.68 9.1 20.9
P2.9 97 38 6.004 2.508 1.224 .059 19.68 19.6 19.8
P2.10 97 38 6.004 2.508 0.394 .059 19.68 22.7 15.8
P2.11 97 38 6.004 2.508 0.654 .059 19.68 21. 3 17.0
P2.12 96 16 5.945 1. 212 0.394 .059 11.81 29.8 11. 2
P2.13 96 16 5.945 1.212 0.169 .059 11.81 34.4 9.78

*Refer to Fig. 5.1 for definition of cross-sectional parameters. $Copper end pads used.

**Not reported.

tOR = 0.138 in.

ttAssume for t = .022 in., OR = 0.041 in.
for t = .059 in., OR = 0.138 in.



*Table 5.12 THOMASSON1S [1978] LONG COLUMN TESTS

Specimen WIlt w2/t WI (in.) W2 W3 t Yield Llrmin Puexp (k) E IE
Stress (ksi) u y

All 465 152 11.80 3.974 .784 .025 56.71 74.7 3.60 t
A74 466 153 11.82 3.990 .824 .025 57.29 74.0 3.64 0.84
A75 465 153 11.80 3.982 .800 .025 57.72 74.4 3.48 0.55
A76 449 146 11.84 3.970 .808 .026 41. 77 74.6 3.26 t

AI0l 315 103 11.84 3.994 .814 .037 67.30 74.4 8.30 t
AI02 315 103 11.84 3.994 .806 .037 66.72 74.5 7.87 0.61
Al03 314 103 11.82 3.998 .790 .037 66.72 74.5 8.34 t
AI04 305 99 11.78 3.959 .787 .038 68.89 75.3 7.76 0.56

A15l 204 66 11.84 3.994 .828 .057 55.40 74.7 17.2 t ....
U'I

A152 208 67 11.87 3.993 .823 .056 54.97 74.8 15.7 t \0

A153 215 70 11.86 3.983 .846 .054 57.29 74.7 16.0 t
A154 212 69 11.89 4.007 .949 .055 57.00 73.1 16.4 t
A155 211 69 11.84 4.024 .957 .055 55.11 72.7 12.8 0.41
A156 211 68 11.84 3.984 .858 .055 55.26 74.5 15.5 t

*All had concentric loading; braces, 1.18" x 0.12" strips, spaced @ 11.8"; and OR = t + 0.059".
Refer to Fig. 5.1 for definition of cross-sectional parameters.

tStrains not measured.



*Table 5.13 LOUGHLANIS [1979] LONG COLUMN TESTS

Specimen wIlt w2/t WI (in.) W2 W3 t L L/rmin
- Puexp (k)e x

II 120 58 4.030 2.023 0.758 .032 72.0 94.0 0.292 0.743 3.12
L2 124 59 4.012 2.019 0.773 .031 48.0 63.8 0.294 0.747 3.60
L3 126 75 4.076 2.502 1.017 .031 72.0 74.7 0.402 1.019 3.52
L4 121 73 4.046 2.504 1.016 .032 60.0 62.7 0.404 1.022 3.78
L5 124 75 4.032 2.511 1.029 .031 48.0 50.9 0.407 1.021 4.10
L6 158 59 5.065 2.023 0.751 .031 72.0 95.3 0.066 0.669 3.80
L7 156 59 5.007 2.018 0.758 .031 60.0 80.0 0.066 0.672 3.97
L8 156 59 5.011 2.022 0.769 .031 48.0 64.6 0.066 0.677 4.31
L9 158 75 5.062 2.500 1.016 .031 72.0 75.0 0.184 0.934 4.34
LIO 157 75 5.046 2.512 1.020 .031 60.0 62.7 0.186 0.942 4.57
L11 151 73 5.022 2.509 1.023 .032 48.0 50.8 0.186 0.943 4.65
LI2 182 58 6.013 2.030 0.762 .032 72.0 96.3 0.182 0.620 3.35

.....
O'l

L13 183 58 6.024 2.024 0.790 .032 60.0 80.7 0.183 0.624 3.53
0

LI4 182 57 6.006 2.019 0.765 .032 48.0 65.8 0.181 0.616 3.85
LI5 191 75 6.092 2.503 1.014 .031 72.0 75.6 O. 0.861 4.90
LI6 185 73 6.093 2.508 1.024 .032 60.0 63.4 O. 0.866 5.18
L17 188 75 6.016 2.511 1.022 .031 48.0 51.2 O. 0.872 5.31
LI8 221 60 7.040 2.007 0.758 .031 72.0 99.3 0.220 0.560 3.13
LI9 220 59 7.007 2.018 0.761 .031 60.0 82.9 0.222 0.566 3.39
L20 214 57 7.027 2.020 0.787 .032 48.0 66.7 0.224 0.572 3.67
L21 222 75 7.051 2.509 1.009 .031 72.0 76.4 0.159 0.804 3.86
L22 222 75 7.052 2.511 1.012 .031 60.0 64.1 0.159 0.805 4.42
L23 219 75 6.981 2.512 1.033 .031 48.0 51. 7 0.161 0.815 4.14

Table continued on next page.



Table 5.13 continued

Specimen WI (in.) L L/rmin
...!..

Puexp (k)wIlt w2/t W2 W3 t e x

L24 91 28 6.061 2.005 0.731 .064 72.0 100.1 O. 0.601 14.8
l25 89 35 6.059 2.495 1.000 .065 72.0 77.2 0.083 0.857 16.0
L26 88 34 6.052 2.494 1.007 .066 60.0 64.8 0.083 0.859 16.4
L27 89 35 6.025 2.499 1.011 .065 48.0 52.3 0.083 0.864 16.6
L28 107 28 7.074 2.004 0.740 .064 72.0 102.0 0.106 0.555 11.5
L29 105 27 7.063 2.009 0.740 .065 60.0 85.5 0.106 0.558 12.6
L30 104 27 6.998 1.998 0.745 .065 48.0 69.4 0.106 0.558 13.6
L31 107 35 7.081 2.499 1.001 .064 72.0 78.0 O. 0.797 17.0
L32 107 35 7.070 2.490 1.007 .064 60.0 65.7 O. 0.796 17 .0
L33 106 35 7.022 2.505 1.044 .064 48.0 52.6 O. 0.813 18.0

* ~

Refer to Fig. 5.1 for definition of cross-sectional parameters. 0\
~

Assume OR = t + .059 11
•



162

w
t..- 1

r w1 ./
/' web

.....

I OR~
, strain

- .......
gage

V optional w2 W2

flange t-. l+-

I I I

(a) Channel

2

w

optional brace, L 1/2" x 1/2" x
t x w1. spaced at w1 (approx.)
(long columns only)

(b) Lipped Channel

3

t..-
1

I·
w1

·1
'/ web

OR~"
~ strain

+e ·-r
-""- gage- + .y

~ c.g.
x Ww2

flange t ... .....
I lip I

,
"-

.-;'--

~

I I

L
W3 .."

-x

Figure 5.1 TEST SPECIMEN CROSS SECTION AND TYPICAL
STRAIN GAGE INSTRUMENTATION



163

ground bar
dial gage

(a) Devi ce 1

square ground bar

point support

moveab1e support

~----"I

specimen

(b) Device 2

Figure 5.2 LOCAL INITIAL IMPERFECTION MEASURING
DEVICES FOR STUB COLUMNS



164

0.04

6web
=•

_--J---_ ,
1.-6 =x, flo

- t = 18 gage. 0.03e.... (no. identical pts.)........
<J..
e
0....
+.J
U
(l)
4-
~
(l)
0-
E 0.02.....

....
~....
+.J X....
e.....
E •
::l
E X.... •x X
~

:E:

0.01 x
•

80
wit

160 240

Figure 5.3 VARIATION OF MAXIMUM LOCAL INITIAL IMPERFECTION
WITH FLAT WIDTH-TO-THICKNESS RATIO FOR
LIPPED CHANNELS



-.03

-.
e:
.~-
<l..
e:
0.,...
+' O.(,)
OJ
~

~
OJ
0-
S-
r-
IO.,...
+'.,...
e:....

+.03

Column Station/Length (z/L)

Figure 5.4 LOCAL INITIAL IMPERFECTION IN WEB OF CHANNEL
STUB COLUMN SCll 120x60

+b.

t

*SC/1 120x60*

I-'

'"U1



N
<J
+

~

<J
+

o

.
o

166

...J
.........
N iC

0
\J:)
x

0
N
~

~

.........
u z:
V') :E
iC ::::>

...J
0
U

co
::::>
~
V')

...J
l.LJ
z:
z:
c::(
:I:
U

LJ..
0

V')
l.LJ
~
z:
c::(
...J
LJ..

z:-z:
0-~
U
l.LJ
LJ..
0::
l.LJ
a..
:E-
...J
c::(
-0
~ \J:)
-x
ZO
-N
~

...J
c::( ~
U .........
Ou
...J V')

LO.
LO

Q)
~
:::::I
0'1

'r-
LJ..

.
+



167

...J
lLJ
Z
Z
c::(
:::I:
U

U.
o
V)
lLJ
<.!J
Z
c::(
...J
U.

Z......
zo......
t>0
lLJ \0
U.X
~O
lLJ \0
0
;:::..............

U
...J V)
c::(
...... %
1-:::::
...... ::::>
Z...J
...... 0

U
...J
c::( co
U::::>
01
...J V)

.....
w...

('t')

<J

U")

o

0 ...J oft
0. .......
\0.... N
X

0
..-

\0
<J
+

..-.......
U
V)
oft

('t') N
<J <J
+ +

N,.... N,.....
+



168

N
.........
U
...J
Vl
-Ie

M
<J u.
+ 0

Vl
LLJ
~
z:
c:r::
...J
U. 0

I.D
ox
z: 0
c:r::N

r-
c:o
l..LJN

r- 3 .........
<J U

z: ...J
..... Vl

z: z:
o ::E
..... ::::>
t-...J
UO
l..LJU
U.
0::: c:o
l..LJ ::::>
a.. t-
::EVl.....

...J
...J l..LJ
c:r::z:
..... z:
t- c:r::
..... ::::c
z: U.....

0
...J l..LJ
c:r::a..
ua..
0 .....
...J ...J

"
LO

OJ
s..
::::l
0).....
u.

N
<J
+

r
r-
c:r::

<J
+

M
o.

.
o M

o
+



M
o.

-<J
+

N
<J
+

169

.
o

iC
0
~x
0co-
N.......
U z:-J

~V)
::::>iC -J
0
U

co
::::>
t-
V)

-J
I.J.I
Z
z:
e::r::
:::t:
U

0
I.J.I
0..
0.......
-J

LI...
0

co
I.J.I
3:

Z-
Z
0.....
t-
U
I.J.I
LI...
0:::
I.J.I
0..
~-
-J
e::r::O
-~t-X
-0
z:CO..... ..-
-INe::r:: .......
uu
o -J
-J V)

co.
LO

f.
~

~....
I.J..

M
o.
+



170

~
o.
+

.
o

0 -oJ
......... *..... N 0

N ~
<l X
+ 0co.....

N
.........
U
-oJ
(/)

* ..
LLJ
0::
::::>
I-

..... u

<l
:z:

+
::::>
OJ

c.......
-oJ

I
LLJ
~
:z:
«
-oJ
LL.

0
I- ~
«x

0.. co
(/) .....
LLJ
~N
:z: .........
«u
-oJ -oJ

LO
LL.(/). :z: :z:

0 ..... ::E..... ::::>
<l :z: -oJ

00
..... U
I-
Uco
LLJ ::::>
LL.I-
0:: (/)
LLJ
c.. -oJ
:::ELLJ..... :z:

:z:
-oJ«
« ::I:
..... U
I-
..... Cl
:z: LLJ
..... c..

c..
-oJ .....
«-oJ
uo :z:
-oJ .....

0'1

LO

QJs..
::l
~.....

LL.

~
o



171

C\J
........
U
....J
V)
it

ito
\0
X
o
co.-

o ....J. ........
r- N

r-
<l
+

-J
W
Z

~:r:
u
Cl
w
a..
a..--J

u..
0

a..--J

Z-
Z
0
..... 0
I- \0
UX
WO
u.. co
c:::: r-
W
a.. C\J
::E: ........
-u

....J
....J V)
<
~~
-:::::>
Z....J
-0

U
-J
<co
U:::::>
01-
-J V)

0.....
L()

<IJ
S-
:::l
0'1

'''-u..

C\J
<lr---......., +

l"")

o .
o ('t')

o.
+



172

optical tooling scale

surveyor1s level mounted
with optical micrometer
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specimen resting
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(a) Measurement (after Dat [1980])
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(exaggerated)

_Sl._

.1
(b) Reducti on

Figure 5.11 OVERALL INITIAL IMPERFECTION MEASUREMENT
AND REDUCTION FOR LONG COLUMNS
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Figure 5.16 STUB COLUMN TEST SETUP
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Figure 5.18 LONG COLUMN TEST SETUP
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Fi gure 5.31 FAILURE MODES FOR ECCENTRICALLY LOADED LONG COLUMNS
- WITH AND WITHOUT BRACES -
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Figure 5.32 VIOLENT FAILURE MODE FOR TEST CLC/l 90x90





CHAPTER 6

COMPARISON OF EXPERIMENTAL AND THEORETICAL RESULTS

6.1 Introduction

In the present chapter the experimental results are compared with the

theoretical predictions obtained from the methods of Chapters 2 through 4.

The primary concern is an evaluation of the effective section method as

applied to singly-symmetric stub and long columns, and beam-columns.

However, comparisons with current, or proposed, design methods are also

included. Finally, both ultimate strength and sub-ultimate response are

considered.

6.2 Stub Column Evaluation

6.2.1 General

The stub columns test results are evaluated with respect to the

effective section method of Section 3.5.1, where a loading condition of

uniform compression is assumed. The response for all stub columns is

predicted using two separate approaches to define the effective section.

In one approach, Winter's stiffened plate effective width Equation 2.9 is

applied to all component plate elements of the section. Thus

we/w = Ifcr/fe (1.0 - 0.218/fcr/fe) 2.9

where the critical stress is calculated from

fer = Kn 2E/12(1 - ~2)(W/t)2 2.4
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Also,
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The specific support conditions assumed to define the buckling coefficient

Kare defined subsequently. The second approach employs the sub-ultimate

effective width Equation 2.48 for all component elements, or

w /w = A/A 2 + B/A + C + DA 2.48
e
A = (f /f )1 and the constants A-D are defined in Section 2.3.2.

e cr
in a few cases, Thomasson's [1978] equations of Section 2.3.1 are

used to determine the effective widths of all component elements and are

compared with the approaches defined above.

Once the effective area A is defined from the individual elemente
contributions, the axial load P is simply calculated from

P = f A 3.26
e e

At ultimate conditions the edge stress is set equal to the yield stress,

i.e., fe = Fy ' and the effective width approaches of Equations 2.9 and

2.48 give identical results.

In addition, the influence of local buckling interaction between

component plate elements is investigated by evaluating two different

ultimate loads, Pus and Pui ' Only the strengths predicted via Equa-

tion 2.48, or equivalently Equation 2.9, are included in this evaluation.

For the calculation of Pus' local buckling interaction is ignored; accord

ingly the buckling coefficient K, in Equation 2.4, is taken equal to the

simply supported values of K = 0.425 for unstiffened elements and K = 4.0

for stiffened and edge stiffened elements. It is noted that these values

are also employed in all sub-ultimate predictions, i.e., in Equations 2.9,

2.48, or Thomasson's equations, all with f < F. For the calculation ofe y

Pui ' local buckling interaction is presumed, and the buckling coefficients

K are obtained from a finite strip local instability analysis of the
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Moreover, the edge stiffeners of the lipped channels are evaluated

against Desmond's [1978] requirements which are reviewed in Section 3.4.

The adequate (required) stiffener centroidal moment of inertia is desig-

nated as I ,and the actual stiffener moment of inertia, I , is calcu-sa s

lated using the approximation and effective area distribution of Fig-

ure 3.9b.

6.2.2 Ultimate Strength

The predicted ultimate loads Pus and Pui defined above are compared,

in Table 6.1, with the experimental values, Puexp ' for channel stub

columns. Generally, the ultimate load P ,which is calculated assumingus
simply supported boundary conditions between plate elements, provides slightly

better overall correlation with experimental results. For the eleven

tests, the mean strength ratio Puexp/Pus of 1.079 is slightly conservative

and deviates by 8.8% on the average. However, the other ultimate load

P ., which accounts for local buckling interaction, yields approximately
Ul

the same correlation; for example, the mean strength ratio P /P. anduexp Ul

associated standard deviation are 1.102 and 5.6%, respectively.

While either of the predicted ultimate loads evaluated above provides

acceptable correlation with experimental results for channel sections,

their acceptability may actually be dictated by excessive waving of the

unstiffened flanges. This aspect is examined in Figure 6.1 where the

maximum out-of-plane deformation 6max at the free edge of the flange,

obtained just prior to failure, is plotted against the web-to-flange width

ratio, Wl/W2. The positive slope of the best-fit lines, which are ob

tained from a linear regression analysis of the data points for each
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flange width-to-thickness ratio, wz/t, indicates that local buckling

interaction affects the waving of the flanges ..More important though are

the magnitudes of the deformation. These increase with increasing wz/t

ratio and for large wz/t ratios, equal to 60, exceed four times the

thickness of the element. In contrast to this, Kalyanaraman [1978J

reported deformations for comparable flanges of only about one-half those

measured in the present study. This difference is due to the restraint

provided, to the flanges, by the relatively compact webs of the built-up

"I" sections tested by Kalyanaraman. Since this type of support is

normally unavailable in all construction applications, it appears that the

lilnitations placed on unstiffened compression elements (flanges) by the

AISI Specification [1980] may be warranted, e.Q., noticeable deformations

are expected for w2/t > 30, and the maximum allowable w2/t ratio is

1imi ted to 60.

Next, the predicted ultimate loads Pus and Pui are compared, in

Table 6.2, with the experimental results for lipped channel stub columns.

In all but one case, the edge stiffeners satisfy Desmond's requirements,

i.e., Is > Isa which are defined in the preceding section. The exception,

SLC/3 180x90, is eliminated from consideration. The first three speci

mens, with wz/t ~ 30, fall in Desmond's fully effective (flange) range,

and the rest fall in the post-buckling range. Moreover, most stiffeners

dre fully effective, e.g., see Equation 2.9 in Section 3.4.

Two other sections, SLC/2 240x60 and SLC/2 360x90, are also eliminat

ed from consideration because of improper alignment and/or because of

their large length-to-minimum radius of gyration ratios (see Sec-

tion 5.5.4.1 and Table 5.6). Also large, overall, lateral deflections

occurred for these tests, which were not observed for comparable but
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shorter specimens. It is noted that improper alignment of SLC/1 120x30

and SLC/1 240x60 did not seem to affect their strength; therefore these

tests are included in the following evaluation.

From the statistical evaluations of the remaining twenty-two lipped

channels presented in Table 6.2, it is seen that the predicted ultimate

load Pus' which disregards local buckling interaction between plate

elements, provides the better correlation when compared with the experi-

mental results. A mean strength ratio, Puexp/Pus' of 0.968 is obtained

which deviates by about 4% on the average. Further, this strength ratio

shows a general tendency of decreasing with increasing web-to-flange.width

ratio, Wl/W2. Yet the largest discrepancy which occurs for test SLC/2

360x90 is unconservative by only 12%.

The other ultimate load Pui ' which accounts for local buckling

interaction, provides more conservative predictions of strength. In this

case, the mean strength ratio Puexp/Pui and associated standard deviation

are 1.126 and 10.6%, respectively. Also, the conservatism of this pre

dicted load is especially evident for lipped channels with large Wl/W2

ratios.

Better agreement with experimental results is obtained when local

buckling interaction is ignored; therefore the corresponding ultimate load

P is examined in more detail below. The diminishing correlation,us
noted earlier, of this load with increasing wl/W2 ratio is shown in

Figure 6.2a. (Note the exaggerated and broken scale that is used for the

vertical axis.) The best-fit lines are obtained from a linear regression

analysis of the data points for each flange w2/t ratio. As discussed in

Section 5.6.1, one reason for this behavior, for large wl/W2 ratios, is

local buckling interaction which is not recognized in the method that is
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used to calculate Pus. Although this is true, the flange W2/ t ratio has

about the same effect, and as this parameter is increased, the strength

ratio P /P decreases. The effect of W2/t is particularly clear when
uexp us

local buckling interaction is absent, i.e., when Wl/W2 ~ 1.0. In this

case increasing the wz/t ratio from 60 to 90 causes approximately a 10%

decrease in the strength ratio.

The above findings suggest that the method used to calculate the

ultimate load Pus for lipped channels has limited applicability and that

extrapolating this method to sections with large flange W2/t ratios

(greater than 90) in combination with large Wl/WZ ratios (greater than

three) may lead to unconservative predictions of strength.

For completeness, the influence of the web-to-flange width ratio,

wl/W2, on the predicted ultimate. load Pui ' which accounts for local

buckling interaction, is investigated in Figure 6.2b. In this figure the

strength ratio Puexp/Pui is plotted as a function of the wl/W2

ratio, and best fit lines are drawn through the data points for each

flange W2/t ratio. It is observed from Figure 6.2b that the correlation

between predicted and experimental ultimate strengths are again influenced

by the Wl/W2 ratio (compare Figures 6.2a and b). Moreover, the method

used to calculate Pui is excessively conservative for lipped channels

with large flange W2/t ratios in combination with large Wl/W2 ratios.

6.2.3 Sub-Ultimate Response

Next the sub-ultimate response of the stub columns is evaluated. As

discussed in Section 6.2.1, various effective width approaches are used to

define the effective section. For each approach the predicted axial

load-deformation (shortening) response is compared with experimental
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results. Because the predicted ultimate strengths are in general agree

ment with the experimental results when local buckling interaction is

ignored, all sub-ultimate calculations are performed assuming simply

supported boundary conditions between plate elements. Also, unless Doted

otherwise, the experimental axial deformation is based on the average of

the membrane strains near the flange-web junctures for channels and near

the flange-web and flange-lip junctures for lipped channels. Only repre

sentative results for a limited number of stub columns are presented here,

and the evaluation of the remaining specimens is contained in Appendix 0,

Figures 0.1 through 0-26.

First, the sub-ultimate response for channel stub columns is evalu

ated. Figure 6.3 compares the experimental axial load-deformation for

test SCl1 90x30 against that predicted from the two effective section

methods which are defined from either Equation 2.9 or 2.48. While both

these equations yield conservative predictions of deformation, the sub

ultimate approach of the present study, Equation 2.48, is in better

agreement with the experimental results. Of course, both equations, 2.9

and 2.48, give identical results at ultimate (yielding) which is indicated

by the intersection of the two corresponding curves.

The axial response for a channel section, SCl1 100x60, with a flange

width-to-thickness ratio equal to twice that considered above is evaluated

in Figure 6.4. For this test the axial shortening predicted via Equa

tion 2.48 is in excellent accord with experimental results over the full

load range.

Other channel stub columns are considered in Appendix 0, Figures 0.1

through 0.9. Generally, the sub-ultimate deformation predicted from



202

Equation 2.48 agrees well with experimental results and leads to uncon

servative predictions in only one case, e.g., test SC/2 180x60 of Fig

ure 0.9. Since good correlation is obtained for a nearly identical but

shorter test, SCl1 180x60 of Figure 0.8, the unconservatism noted above

for SC/2 180x60 is probably caused by its relatively large length (see

Section 5.2.1 and L/rmin ratio of Table 5.6).

Second, the sub-ultimate response for lipped channel stub columns is

evaluated in Figures 6.5 through 6.9. In the first figure, 6.5, the

experimental axial load-deformation response for SLC/2 120x60 is compared

with the results predicted from Equations 2.9 and 2.48. Again, both these

equations give conservative predictions of deformation, and the response

predicted from Equation 2.48 is in better correspondence with the experi

mental results. Only when the predicted ultimate load is approached does

the response predicted from Equation 2.48 deviate from the experimental

results. This disagreement is caused by the use of Equation 2.9 as a

boundary condition when deriving the sub-ultimate Equation 2.48 in Chap

ter 2 (see Equation 2.41).

Another lipped channel, SLC/2 180x60, is evaluated in Figure 6.6.

This time even better correlation, as compared with that of Figure 6.5, is

obtained between Equation 2.48 and the experimental results. Also, shown

in Figure 6.6 is the response predicted from Thomasson's [1978] effective

width approach, e.g., Equations 2.33 through 2.37. Generally, his ap

proach predicts slightly more conservative deflections than those pre

dicted from the sub-ultimate approach of the present study, i.e., than

Equation 2.48. A case where there is a larger discrepancy between the

response predicted from these two approaches is shown in Figure 6.7.
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Up to this point it has been entirely satisfactory to base the

experimental axial deformation, for lipped channels, on the average of the

membrane strains at the flange-lip and flange-web junctures (corners).

However, for sections with relatively large web-to-flange ratios, wl/W2'

this basis is affected by local buckling interaction and leads to an

unconservative approximation of the actual deformation. Buckling of the

web element has an adverse effect on the flange-lip assembly and produces

effectively a concentration of axial stiffness around the flange-web

junctures. Therefore, a more accurate representation of the actual

deformation is obtained by basing the experimental deformation on the

strains at the flange-web junctures only.

The above response is illustrated in Figure 6.8 for test SLC/l 120x30

which has fully effective flanges (no local buckling) and has Wl/W2 ~ 4.

Both the aforementioned experimental deformations are included for com

parison, where the label II ••• 4 corner strains" refers to the membrane

strains at the flange-lip and flange-web junctures. Although the experi

mental response for this section is affected by local buckling inter

action, the deformation predicted from Equation 2.48 and by ignoring any

interaction correlates well with the experimental values (based on the

flange-web strains).

The axial response for test SLC/l 270x90, shown in Figure 6.9, is

also affected by local buckling interaction. Again, the experimental

deformation which is based on the flange-web strains is more representa

tive of the actual response, and the experimental deformation which is

based on the "4 corner strains" (see above discussion) is shown only to

indicate that there is an interactional effect. For this test, the

deformation predicted from Equation 2.48 is slightly unconservative in the
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lower half of the load range but develops improved correlation as the load

is increased. Finally, test SLC/1 270x90 is particularly interesting

since it exhibits the stiffening action that is usually associated with

post-buckled plates.

All remaining lipped channel stub columns are evaluated in Appen

dix 0, Figures 0.10 through 0.26. In most cases, good correlation is

observed between the sub-ultimate predictions of Equation 2.48 and the

experimental results. However, because several sections are affected by

local buckling interaction, the limitations stated at the end of the

ultimate strength evaluation (in Section 6.2.2), seem equally applicable

to sub-ultimate predictions.

6.3 Long Column Evaluation

6.3.1 General

The response predicted with the effective section method of Sec-

tion 4.5.2 is compared below against the experimental results for long

columns and beam-columns. The effective section is defined in Figure 4.2,

and the effective widths are determined from:

for the web (element number 1 of Figure 4.2),

W1e/w1 = A/A2 + B/A + C + OA 4.20

A= (fI/fcrl )! and A-O are constants defined in Sec-

tion 4.5.2.

for the flanges (element number 2),

w2ei = w2e/2 4.21

where 6.1
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and for f. > 0,
J

w2ej = w2ei (1.5 - 0.5fj /fi )

or for f j < 0,

w . = 1.5w . + w2eJ 2el 0

where if fl > f2 then i = 1 and j = 2, or

if f 1 < f 2 then i = 2 and j = 1

and for the lips (element number 3),

4.22

4.23

W3e/W 3 = Ifcr3/f2 (1.0 - 0.218/fcr3/f2) 6.2

where the general critical buckling stress fcrn is defined as

fcrn = KnTI2E/12(1 - ~2)(wn/t)2 • n = 1,2,3 6.3

and the buckling coefficients Kn are taken as K1 = K2 = 4.0 and K3 =

0.425.

The edge stresses f 1 and f 2 along reference axes one (1) and two (2) in

Figure 4.2 are calculated from

f k = P/Ae ± (Peeck/l e) sec (pL/2) .•.• k = 1,2 4.24

where p = (P/EIe)i and the section properties Ae , Ie' ee' and

ck are referenced to the effective section. The associated lateral

deflection ~ at the midheight of the column is given by

~ = e [1 - cos(pL/2)]/cos(pL/2)e 4.25

Reference is made to Chapter 4 for the definition of all variables that

are not defined above. Finally, the ultimate load which is calculated

from the effective section method is designated as P .
u

As discussed in Section 4.5.2, the ultimate load may actually be

limited by either flexural buckling or torsional-flexural buckling. The

load associated with the former is calculated from the modified SSRC

approach of Equation 4.13 and is designated as Pe , and the latter is
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calculated from the Q-factor method of Equation 4.16 and is designated as

Ptf . (See Section 4.5.2 for the details of these calculations.)

An alternate effective section approach is also investigated where

Winter's stiffened plate effective width equation is applied to the web,

e. g. ,

w Iw = If If (1.0 - 0.218/fcrl/fl)Ie 1 cn I

In all other respects this approach is identical to the effective section

method described above. Generally both these methods give identical

predictions of ultimate strength, and the major difference arises in the

predictions of sub-ultimate response.

For the concentrically loaded long columns, a comparison is made

between the experimental ultimate loads, Puexp ' and an approach where the

flexural buckling strength is used to define ultimate conditions. The

buckling strength is calculated from the modified SSRC load, defined

previously, and from the Q-factor load, Pf , which is based on Equa-

tion 4.7.

Also, the edge stiffeners (lips) are evaluated with respect to

Desmond's requirements of Section 3.4.

6.3.2 Ultimate Strength

The predicted ultimate strengths described above are compared in

Table 6.3 against the experimental results for the concentrically loaded

long columns. All specimens have edge stiffeners which satisfy Desmond's

requirements. Further, one specimen, CLC/1 180x60, had improper align

ment, and two others, CLC/2&3 180x90, failed in a torsional-flexural mode.

Because these factors did not detract significantly from the strengths of
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these columns, they are included in the comparison. Also, specimen CLC/1

90x90 and the last column of Table 6.3 are excluded from the present

comparison and are discussed subsequently.

First, the flexural buckling loads, Pf and Pe , are evaluated against

the experiment results. This evaluation is included to determine the

accuracy of the current Q-factor method (Pf ) of the AISI Specification

[1980J and the modified SSRC method (Pe), which was proposed recently for

specification adoption, as applied to concentrically loaded, singly-

symmetric, lipped channels. From the statistical evaluation presented at

the bottom of Table 6.3, it is apparent that the predicted loads Pf and Pe
are nearly identical and that both give unconservative (15%) predictions

of ultimate strength. The reason for this unconservatism is that the

Q-factor and modified SSRC methods, on which the respective loads Pf and

P are based, do not recognize the actual beam-column behavior exhibitede

by the locally buckled columns.

On the other hand, the actual behavior of the columns is recognized

by the effective section method of Section 4.5.2, which is based on

beam-column theory. From Table 6.3, the associated ultimate loads Pare
u

slightly conservative; a mean strength ratio Puexp/Pu of 1.136 is obtained

which deviates on the average by about 4%. It is noted for two slender

columns, CLC/3&4 120x60, an elastic failure is predicted. The cause of

this behavior is discussed in Section 4.5.2. Also, when the alternate

effective section is employed, i.e., when Equation 6.4 is applied to the

web; slightly different ultimate loads, noted at the bottom of Table 6.3,

are predicted for only the two columns noted above. Calculations of the

torsional-flexural buckling load, Ptf' which are not presented here, show
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that this mode of failure is not critical for any of the concentrically

loaded columns.

The effect of lateral support for the edge stiffened elements

(flanges) can be assessed in Table 0.3 by comparinq the strength rntios

P /P of IIduplicate ll columns which were tested with and withoutuexp u
braces, e.g., the pairs CLC/5&2 120x60, CLC/4&2 180x60, and CLC/3&2

180x90. Although this effect is dependent on the dimensions of the

section, the specific columns noted above are proportioned such that they

are not appreciably influenced by the use of braces. (Recall that the

results for CLC/2 180x60 are affected by poor alignment. Also, a compari-

son of strength ratios, and not the experimental ultimate loads, is

appropriate because of small differences in dimensions and material for

the "duplicate" columns.)

While the concentrically loaded columns are evaluated above in a

straightforward manner, a corresponding evaluation for the eccentrically

loaded columns is more complicated. Several of these columns are loaded

eccentrically such that the load carrying capacity is maximized; conse-

quently the possibility of flexural or torsional-flexural buckling is

increased.

Moreover, eccentric loading on the side of the gross centroid oppo

site the shear center, negative eccentricity in Figure 4.2, causes a

larger proportion of the load to be carried by the edge stiffener and

exaggerates the problem with edge stiffened elements that was alluded to in

Chapters 2, 4, and 5. For example, LaBoube's effective width approach for

beam webs was discussed in Section 2.2.2 where a reduction factor was

employed to account for the inadequate support provided, to the web, by
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unstiffened compression elements; the effective section method of Sec

tion 4.5.2 was restricted to edge stiffened elements which were con

strained externally against local-torsional buckling, e.g., by braces; and

the sometimes sudden nature of local-torsional buckling of unbraced edge

stiffened elements (flanges) was illustrated in Section 5.6.2. Basically,

the problem with unbraced edge stiffened elements is that, when the aspect

ratio is large, the ever present initial imperfections (fabrication type)

interact with the overall modes of action and degrade their structural

strength.

A related problem was investigated by Douty [1962] for laterally

unbraced webs of thin-walled beams of open secti~n, where bending was

about the major axis, e.g., lipped channels with bending about the y axis

in Figure 5.1a (e = -~, pure moment). The strength of the webs was

determined by treating a portion of the compression flange and web as a

column on an elastic foundation subject to torsional-flexural buckling. A

rather complex design method was formulated and was verified experimen

tally. Douty's method was never adopted directly by the AISI Specifica

tion [1980], probably because of its complexity; instead his method was

relegated to a related publication (AISI [1971]).

A similar approach is taken here for sections with unbraced edge

stiffened elements where the strength is limited by instability of the

unbraced element. If the edge stiffener (lip) is designed according to

Desmond's requirements and if local buckling interaction, with the web, is

ignored, then the local and local-torsional buckling modes for the edge

stiffened element are synonymous. This serves to define the buckling

stress of the latter mode which is critical for failure of the unbraced

element. In order to prevent this mode it is necessary to limit the edge
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stress f 2, at the flange-lip juncture, to values less than the buckling

stress, e.g.,

f < f 6.5
2 - cr2

where f is defined by Equation 6.3 with n = 2 and K2 = 4.0. The abovecr2
equation is employed in conjunction with the effective section method of

Section 4.5.2 (or the alternate effective section discussed in the prelim

inaries), and when the stress f 2 reaches the equality given in Equa-

tion 6.5, the limiting stress ultimate load, Pul ' is attained. Equa-

tion 6.5 applies, of course, to only sections with unbraced edge stiffened

elements. Now, with an approach for unbraced elements defined, it is

possible to proceed with the evaluation of the long columns.

The eccentrically loaded long columns (beam-columns) are evaluated in

Table 6.4, which is quite complicated due to the nature of the problem.

For reference, the notation used to identify the various predicted ulti

mate loads is reviewed at the bottom of the table. Also, the symbol x

indicates that the predicted ultimate load does not control, and the load

which does control is underlined. Further, two sections, CLC/2.1&2.2

180x60, are eliminated from this evaluation. For the first section, poor

agreement is obtained between the predicted flexural buckling load, P ,
e

and the experimental strength. This does not invalidate the method used

to predict the load Pe; in fact, because of the experimental torsional

flexural failure mode, it suggests that the method used to predict the

torsional-flexural buckling load, Ptf , is inadequate when Q < 1 (partially

effective), as discussed at the end of Section 4.5.1. For the second

section, CLC/2.2 180x60, the response is affected by poor lateral align

ment.
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As is evidenced in Table 6.4, good correlation is obtained between

predicted and experimental strengths for the remaining beam-columns.

Flexural yielding is predicted quite well by the effective section method

of Section 4.5.2; for example, the mean of the strength ratios P /Puexp u
(numbers without parentheses) equals 1.046 which has a standard deviation

of 0.103.* It is noted that a slightly unconservative result (9%) is

obtained for CLC/1.1 120x30 because of its large web-to-flange width

ratio. Torsional-flexural buckling is predicted for only CLC/2.1 180x90,

and the associated strength ratio PuexpfPtf equals 0.924. Finally,

local-torsional buckling of the unbraced flanges is predicted, from

Equation 6.5 and the effective section method of Section 4.5.2, for three

sections, including CLCf1 90x90 of Table 6.3. The corresponding mean

strength ratio Puexp/Pul (of the numbers without parentheses) and standard

deviation are 1.132 and 0.180, respectively.* The wide spread of the

results for this last predicted load is caused by variances in the local

imperfection. Also, the load Pul predicted for CLe/1 90x90 is somewhat

conservative (27%); however this degree of conservatism seems warranted in

view of the sudden failure mode that is associated with this specimen.

Overall, the mean ratio of experimental to predicted ultimate

strength for the twenty concentrically and eccentrically loaded long

columns of Tables 6.3 and 6.4 is 1.107 which has a standard deviation of

about 9%.

*Because of the limited number of tests, these statistical analyses may
not be meaningful.
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Again, the ultimate loads predicted using the alternate effective

section approach, i.e., applying Equation 6.4 to the web, are listed in

Table 6.4 (numbers in parentheses) for comparison purposes. The differ

ences between these loads and those predicted when Equation 4.20 is

applied to the web are small, and the major difference arises in sub

ultimate predictions.

6.3.3 Sub-Ultimate Response

Next, the sub-ultimate response of the long columns is evaluated.

The theoretical response is predicted using both the effective section

method of Section 4.5.2 and, for comparison, the alternate effective

section approach where Equation 6.4 is applied to the web, defined in

Figure 4.2. Both these methods are reviewed in Section 6.3.1. The

predicted response is compared against two independent experimental

measurements. One is the axial load-membrane strain history where the

strains at reference axes (1) and (2) in Figure 4.2 are obtained by

extrapolating the readings from the strain gages located near the flange

web and flange-lip junctures (see Figure 5.1b). Actually, two sets of

membrane strains are obtained, one for each flange, and the results are

averaged. The other measurement is the axial load-lateral deflection

where the deflection is determined from the average of dial gages A and B

in Figure 5.19.

Only representative columns are evaluated in this section. For

example, the relative response for nearly identical (geometry and material

properties) columns with varying load eccentricities are compared in

Figures 6.10 through 6.13; the response ,for a slender column is presented

in Figure 6.14; and the effects of local-torsional flange failure and
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torsional-flexural buckling are illustrated in Figures 6.15 through 6.16

and Figure 6.17, respectively. An evaluation of the remaining specimens

is contained in Appendix E, Figures E.1 through E.12.

The predicted and experimental strain histories for the concentri-

cally loaded test CLC/2 120x60 are compared in Figure 6.10a, where a

positive strain indicates compression. Generally, good correlation is

obtained when the effective section method of Section 4.5.2 is employed.

For comparison with this, the correlation with experimental results

deteriorates when the alternate effective section is used. This is

especially noticeable for the strain at reference axis (1) where the

majority of load resistance is provided. The corresponding axial load

versus lateral deflection response is presented in Figure 6.10b, where a

positive deflection is in the direction opposite to the shear center (see

Figure 4.2). As expected, the deflection is predicted better with the

method of Section 4.5.2, and excessively conservative predictions are

obtained using the alternate method. Also, the behavior of this column is

interesting because it illustrates the inadequacies of the flexural

buckling strength approach which was evaluated in Table 6.3. At low load

levels the response is purely axial, without any lateral deflection. But

at higher load levels it changes due to the effects of local buckling, and

lateral deflections occur. Ultimately the transformed (partially effec

tive) beam-column fails by flexural yielding.

The beam-column effects are exaggerated for the response shown in

Figure 6.11 for test CLC/2.3 120x60, which has a positive eccentricity, e,

*of 0.982. (The eccentricity is defined as positive for values on the

shear center side of the gross centroid, see Figure 4.2.) The effective

section method of Section 4.5.2 tracks the strain history (Figure 6.11a)

*inches.
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quite well and provides excellent predictions of lateral deflection

(Figure 6.11b).

The maximum load resistance for the CLC/2- 120x60 series of tests is

*acquired when the eccentricity equals -0.212, i.e., for test CLC/2.4

120x60 of Figure 6.12. For this test a state of nearly uniform compres

sion is obtained at ultimate (see Figure 6.12a). The effective section

method of Section 4.5.2 provides better agreement with sub-ultimate

strains, and any discrepancies are caused by the sensitivity to eccen

tricities which are discussed in Section 4.5.2. The corresponding lateral

deflections are set out in Figure 6.12b. In this case, the lateral

deflections predicted with the alternate effective section are extremely

unconservative.

*A larger eccentricity, e = -0.536, is considered in Figure 6.13 for

test CLC/2.1 120x60. For this test excellent correlation with experi

mental strains (Figure 6.13a) is provided by the effective section method

of Section 4.5.2. In addition, this method predicts slightly different

ultimate loads than those predicted with the alternate effective section

because failure is controlled by yielding along- reference axis (2).

Finally, the sub-ultimate lateral deflections predicted with the method of

Section 4.5.2 are in very good correspondence with the experimental

results (Figure 6.13b), and the deflections predicted with the alternate

method are again unconservative.

The response for a slender, concentrically loaded column (CLC/3

120x60) is illustrated in Figure 6.14. Although hardly perceptible in

this figure, an elastic failure is predicted with the effective section

method of Section 4.5.2 due to the interaction between local and overall

buckling. Nevertheless, this method provides good correlation with

*inches.
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experimental strains (Figure 6.14a) and deflections (Figure 6.14b). Also,

the kink in the response (Figure 6.14) predicted with the above method is

caused by the different flange effective width equations employed for

compression and tension, e.g., Equations 4.22 and 4.23.

For the tests previously evaluated, the possibility of an elastic

local-torsional failure of the flange was excluded due either to the use

of lateral braces (Figure 5.1) or the low strain levels that were experi

enced along reference axis (2). A case where this mode of failure occurs

violently is considered in Figure 6.15 for the unbraced, concentrically

loaded test CLC/1 90x90. In this instance, the predicted response is

limited by the ultimate load Pul which is defined from the limiting

critical strain ECr2 (or stress) obtained from Equation 6.S, e.g., see

Figure 6.1Sa. Slightly different loads Pul are obtained depending on

whether the effective section method of Section 4.S.2 or the alternate

effective section are employed. Reasonable agreement with experimental

results is obtained with the former method for sub-ultimate strains

(Figure 6.1Sa) and lateral deflections (Figure 6.15b).

Another case where local-torsional flange failure limits the response

is presented in Figure 6.16. For this test (CLC/2.2 180x90) which has

eccentric loading towards the unsupported side of the flange, e.g., e =

-0.51S: the effective section method of Section 4.S.2 provides good

correlation with the experimental results.

The response considered in Figure 6.16 is drastically changed when a

nearly identical section (geometry, material properties, and loading) is

furnished with braces, e.g., test CLC/2.1 180x90 of Figure 6.17. In this

case, torsional-flexural buckling limits the response, which is indicated

experimentally, in Figure 6.17b, by twisting of the section. (The IIdots"

*inches.
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.shown in this figure represent the individual lateral deflections that are

associated with the dial gages A and B of Figure 5.19, and the "plus

signs" represent the average values.) Again, the effective section method

of Section 4.5.2, which ignores torsional-flexural action, provides good

correspondence with the experimental sub-ultimate strains (Figure 6.17a)

and deflections (Figure 6.17b), and the alternate effective section

provides unconservative predictions because the effective (actual) eccen

tricity is misjudged. Ultimate conditions for this column are defined at

the torsional-flexural buckling load, Ptf •

6.4 Evaluation of Other Experimental Research

The experimental research of others, discussed in Section 5.7, is

evaluated here. This research is important because it extends the data

base on which the effective section method is founded. Discussions are

kept to a minimum, and reference is implied to previous sections where all

notation is defined.

6.4.1 Stub Columns

Chilver's [1953] stub columns are evaluated in Table 6.5. For the

channel sections, the ultimate Joad Pus' which is based on the effective

section method and on the assumption of simply supported plate boundary

conditions, produces very satisfactory results when compared to the

experimental strengths. The associated mean strength ratio P /P anduexp us
standard deviation for the twelve channels are 0.970 and 0.074, respec-

tively. In contrast to this unsatisfactory comparisons of experimental and

predicted strengths, which contradict the findings of the present study,

are obtained for the lipped channels, particularly for LClO and LC12
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through LC15. Note that only the lipped channels with adequate edge

stiffeners, i.e., with Is > Isa ' are evaluated in Table 6.5.

As noted earlier, Chilver failed to report the lengths that were

associated with his specimens. Also, alignment procedures were not

discussed. Because these two factors - length and alignment - were found,

in the present study, to affect the strength of stub columns; it is

entirely plausible to assume that they affected Chilver's results also and

contributed to premature failure of the specimens noted above.

The stub columns investigated by Pekoz [1977] are evaluated in

Table 6.6. Again, for the channels, entirely satisfactory agreement is

obtained between predicted and experimental strengths; for example, the

mean strength ratio Puexp/Pus and standard deviation for the seven tests

are 1.026 and 0.044, respectively.

A corresponding evaluation of the adequately stiffened (I > I ). s sa
lipped channels of Table 6.6 is complicated by the fact that several of

the specimens do not satisfy the requirement of Equation 3.23. This

requirement, rewritten below, was established by Desmond [1978] to pre

clude the detrimental effect of stiffener buckling on edge stiffened

elements.

o < 0.25ws - 2
6.6

where Os = w
3

+ r (see Figure 3.9a). For the specimens which do not

satisfy Equation 6.6, it is necessary to employ the following equation,

proposed by Desmond, for calculation of the flange buckling coefficient,

K2 •

K
2

= 5.25 - 5Ds/W2 6.7

All other aspects of the method used to predict the ultimate load Pus

remain unchanged.
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The predicted strengths P , where Equation 6.7 is employed asus
necessary, are compared, in Table 6.6, with the experimental results of

the lipped channels tested by Pekoz. In brief, good correlation is

obtained and the mean strength ratio P /P for the seven tests equals, uexp us

1.014.

6.4.2 Long Columns

The c0ncentrically loaded, lipped channel, long columns investigated

by Thomasson [1978] are evaluated in Table 6.7. It is recalled from

Chapter 5 that braces were used to support the flanges and that the

columns had extremely large plate flat width-to-thickness ratios. Also,

one column, A155, is excluded from the evaluation due to improper align

ment. For the remaining thirteen columns, the ultimate load Pu which is

based on the effective section method of Section 4.5.2 is in good accord

with the experimental results. Overall, a mean strength ratio Puexp/Pu of

1.076 is predicted which deviates on the average by about 5%.

Similarly, the thirty-three long columns of Loughlan [1979J are

evaluated in Table 6.8. In this case, both concentrically and eccentric

ally loaded columns were tested, and large edge stiffeners were employed.

From this table, good correspondence between predicted and experimental

strengths is observed; the mean strength ratio P /P and associateduexp u
standard deviation are 1.099 and 0.086, respectively.

6.5 Summary

The effective section method which was developed for analyzing

uniformly compressed, thin-walled, stub columns was evaluated with respect

to the experimental results for channel and lipped channel sections. In



219

br;ef~ the predicted ultimate strengths were in excellent correspondence

with the experimental values when local buckling interaction between

component plate elements was ignored. On the other hand, occounting for

local buckling interaction through the critical buckling stress parameter

of the effective width equation (2.48 or 2.9) provided somewhat conserva

tive predictions of strength. This was especially noticeable of lipped

channels with large web-to-flange width ratios, wl/w2 > 2.

The effective section method which ignored local buckling interaction

was also evaluated for predicting the sub-ultimate response for stub

columns. When the sub-ultimate effective width equation (2.48) was

employed, the predicted axial deformation correlated well with experimen

tal results; however, when the stiffened plate effective width equa-

tion (2.9) was employed, the predicted deformation was too conservative.

Overall, the effective section method which employed the sub-ultimate

effective width Equation 2.48 and which ignored local buckling interaction

produced good correlation with both experimental sub-ultimate response and

strength. Still it proved necessary to place limitations on this method.

For channel sections, excessive out-of-plane deformations, exceeding four

times the thickness, were observed at ultimate for flanges (unstiffened

element) with large flat width-to-thickness ratios, w2/t ~60, which may

prove unacceptable. Also, for lipped channels, the correlation between

predicted and experimental results deteriorated for sections with large

web-to-flange ratios, Wl/w2 ~3, in combination with large flanqe width

to-thickness ratios, w2/ t z90.

Next, the long columns were evaluated. A comparison of the exper

mental results for concentrically loaded lipped channels and the Q-factor

and modified SSRC methods for predicting flexural buckling showed that
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these methods overestimated the strength. In contrast to this, the effective

section and beam-co1un analysis method, which was developed in Chapter

4, provided good predictions of the actual flexural yielding strength.

To prevent local-torsional failure of the long columns with laterally

unbraced flanges (edge stiffened element), it proved necessary to limit

the stress, in the flange, to its local buckling value. This mode of

failure was especially critical for eccentric loading toward the lip (edge

stiffener) but was not restricted to this situation. Satisfactory agree

ment with experimental ultimate loads was obtained with this limiting

stress approach provided that it was used in conjunction with the effec

tive section analysis method.

An evaluation of the remaining eccentrically loaded 10nq columns

demonstrated good correlation between the experimental strengths and the

values predicted with the effective section analysis method. However,

mixed results were obtained with the Q-factor method for predicting

torsional-flexural buckling.

The effective section analysis method was also compared with the

experimental sub-ultimate response for long columns. Comparison with the

independent measurements of longitudinal edge strains and lateral deflec

tions showed good agreement with the predicted values when the sub-ulti

mate effective width equation (2.48) was employed for the web (stiffened

element) But when the stiffened plate effective width equation (2.9) was

employed, the predicted sub-ultimate response was unsatisfactory, and, in

some cases, was unconservative.

Finally, the effective section method for stub and long columns was

evaluated with respect to the experimental research of others. In brief,

this evaluation reinforced the findings discussed above.
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Table 6.1 EVALUATION OF CHANNEL STUB COLUMNS

Specimen Puexp
Puexp Puexp

Pus t P . t
(k) Ul

All SCI

1 60x30 7.40 1.113 1.079
1 90x30 7.35 1.084 1.056
1 120x30 7.80 1.144 1.173
2 120x30 7.10 1.006 1.032

1 40x60 7.88 0.953 1.075
2 40x60 7.89 0.947 1.072
1 60x60 9.16 1.068 1.173
1 100x60 9.20 1.019 1.022
1 120x60 8.20 1.176 1.142
1 180x60 8.52 1.183 1.148
2 180x60 8.50 1.180 1.146

Mean (N = 11) 1.079 1.102
Standard deviation 0.088 0.056

t p determined using simply supported
US

buckling coefficients.

pui determined using interactional
buckling coefficients.
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Table 6.2 EVALUATION OF LIPPED CHANNEL STUB COLUMNS

Specimen

All SLC/

1 60x30
1 90x30
1 120x30

1 60x60
2 60x60
1 120x60
2 120x60
1 180x60
2 180x60
1 240x60
2 240x60
3 240x60

1 60x90
2 60x90
1 90x90
2 90x90
1 180x90
2 180x90
3 180x90
4 180x90
5 180x90
1 270x90
2 270x90
1 360x90
2 360x90

35.92§§
36.64
33.60§

220.6§
216.9§
223.7§§
211.5
233.5§
240.3§
229.7§
241.9§§
227.7

346.3
351.6
358.0
350.1
434.7
427.2
264.5
246.8§
260.3§
252.5§
250.9§
276.1§
267.6§

1.493
1.544
1.538

1.137
1.126
1.153
1.080
1.202
1.234
1.175
1.229

. 1.171

1.227
1.248
1.260
1.242
1.202
1.174
0.794
1.034
1.109
1.058
1.037
1.134
1.099

10.40
10.05
10.15

13.20
13.60
13.00
13.60
12.80
12.80
12.80
12.00
12.60

11.50
11.80
11.90
12.00
31.15
31.40
15.20
13.80
14.60
13.60
14.00
12.50
11.20

Puexp
P t
us

1.072
1.014
0.999

1.024
1.043
0.974
1.030
0.952
0.957
0.957
0.863*
0.935

0.932
0.953
0.951
0.946
0.920
0.929
0.762*
0.954
0.983
0.935
0.945
0.884
0.784*

Puexp
P . t

Ul

1.106
1.123
1.151

1.024
1.043
1.121
1.187
1.221
1.226
1.301
1.167*
1.270

0.963
0.984
0.951
0.946
1.090
1.099
0.897*
1.123
1.155
1.221
1.234
1.230
1.094*

Mean (N = 22)
Standard deviation

0.968
0.045

1.126
0.106

§Fully effective stiffener.
t
Pus determined using simply supported buckling coefficients.

Pu; determined using interactional buckling coefficients.

*Not included in statistical evaluation, see text.
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§
EVALUATION OF CONCENTRICALLY LOADED LONG COLUMNS

All ClCI

1 120x60
2 120x60
3 120x60
4 120x60+
5 120x60

1 180x60
2 180x60'
3 180x60+
4 180x60

316.9" 1.191 0.783** 0.775** 0.838** 1.274001

Specimen

90x90

I It4
S

307.0
249.4
240.4
269.9
254.1

259.9
273.0
273.0
254.5

1.566
1.288
1.257
1.407
1.408

1.326
1.397
1.397
1.396

Puexp
(k)

9.80
10.40
8.20
8.40

11.80

9.60
8.75
7.60

10.80

11.00

Puexp
P *f

0.846
0.928
0.816
0.832
0.929

0.823
0.792
0.748
0.847

Puexp
P *e

0.845
0.925
0.822
0.837
0.926

0.827
0.801
0.768
0.855

Puexp
P *u

1.057
1.162
1.1080

1. 124 0

1.157

1.162
1.148
1.160
1.223

Puexp
p *ul

x
x
x
x
x

x
x
x
x

Mean (N = 12)
Standard deviation

1 180x90
2 180x90
3 180x90+

332.3"
307.3"
287.8

1.273
1.122
1.080

12.30++ 0.886
12.10++ 0.838
11.80 0.830

0.843
0.052

0.884
0.840
0.833

0.847
0.046

1.135
1.108
1.088

1.136
0.043

x
x
x

~ Partially effective stiffener, all others fully effective.
++ Braces used, refer to Figure 5.1.

Experimentally observed torsional-flexural failure.
I Poor alignment.
* P = flexural buckling load - Q-factor method.

pf = flexural buckling load - modified SSRC method.
pe = flexural yielding ultimate load - effective section method of
uSection 4.5.2. For Puexp/Pul column of table, refer to Table 6.4.

o Elastic failure predicted.
When Eq. ~.4 is applied to web, Puexp/Pu = 1.110, 1.126 for ClC/3&4,

respect lYe ly.
00 When Eq. 6.4 is applied to web, Puexp/Pul = 1.207.

# Refer to Table 6.4.
** Not included in statistical evaluation, see text.

§ Concentric with respect to gross section.



Table 6.4 EVALUATION OF ECCENTRICALLY LOADED LONG COLUMNS

Puexp
P P P P

Specimen e I It" I/Isa
pe~p uexp uexp ~p

P * Ptf* Pul *s (k) u e

All CLCI

1.1 120x30 -0.203 28.76 1.024 8.00 0.911 (0.851) x x x

2.1 120x60+ -0.536 180.4 1.404 10.30 1.109 (1.087) x x x
2.2 120x60+ -0.534 177.7 1.444 8.75 0.908x (0.891) x x 0.929 (0.913)
2.3 120x60+ 0.982 180.7 1.392 6.75 1.142 -# x x x
2.4 120x60 -0.212 183.2 1.384 12.40 1.024 - x x x

2.1 180x60+ -0.424 189.3 1.283 10.40++ 0.808°x(0.828) 0.821** 0.820x x
2.2 180x60' -0.397 187.1 1.475 10.00 0.809° (0.815)** x x x N

N

180x90+ 12.50++
~

2.1 -0.521 268.1" 1.164 0.879x - x 0.924 x
2.2 180x90 -0.515 266.4" 1.161 8.75 0.586x - x O.613x 1.192 (1.150)

Mean
Standard Deviation
N

Refer to following page for footnotes.

1.046
0.103
4

1.132
0.180
3°°



Table 6.4 - Continued

~ Partially effective stiffener, all others fully effective.
++ Braces used, refer to Figure 5.1.

Experimentally observed torsional-flexural failure.
x Predicted load does not control or not applicable.
I Poor alignment.
* P = flexural yielding ultimate load - effective section method: no. without parentheses indicates

E~. 4.20 applied to web, as in Section 4.5.2, no. with parentheses indicates Eq. 6.4 applied to
web.
P = flexural buckling load - modified SSRC method.
pe = torsional-flexural buckling load - Q-factor method.
pti = limiting stress ultimate load, refer to above description of Pu•

N P~ = (Pu)' refer to above description of Pu•
o Elastic failure predicted.
00 Includes CLCl1 90x90 of Table 6.3.
** Not included in statistical evaluation, see text. N

N
<.n
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Table 6.5 EVALUATION OF CHILVER'S [1953] STUB COLUMNS

Specimen I /t4 I/I sa
Puexp Puexp

s (k) Pus

Channels

C1 35.5 1.121
C2 29.0 0.913
C3 8.68 1.096
C4 9.22 0.959
C5 4.07 1.018
C6 4.98 0.950
C7 2.88 0.941
C8 10.7 0.948
C9 41.7 0.972
C10 5.28 0.920
Cll 5.56 0.931
C12 5.54 0.866

Mean (N = 12) 0.970
Standard deviation 0.074

Lipped Channels

LC2 44.63 20.66 52.0 1.004LC6 7.016 * 50.8 1.087
LC7 1.195 * 35.7 1.010LC8 32.58 * 14.5 0.944LC9 15.84 * 19.4 0.967LC10 8.698 * 7.66 0.856LC11 8.698 1.644 9.22 0.910LC12 288.3 1.517 9.48 0.785LC13 288.3 1.312 10.2 0.826LC14 288.3 1.296 9.26 0.744LC15 288.3 1.323 9.43 0.795

Mean (N = 11) 0.902
Standard deviation 0.110

* Stiffener not required.
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Table 6.6 EVALUATION OF PEKOZ'S [1977] STUB COLUMNS

Specimen I /t4
IsII sa

Puexp Puexp
s (k) Pus

Channels

P4 7.42 1.063
P6 7.25 0.039
P8 7.64 1.094
P5 8.49 1.033
P7 8.15 0.991
P9 8.15 0.991
P2.14 9.33 0.972

Mean (N = 7) 1.026
Standard deviation 0.044

Lipped Channels

182.7 1.134 3.24 +
P2.1 1.047+
P2.3 227.7 1.402 3.28 1.113
P2.6 721.6 2.437 19.9 0.913+
P2.7 1198. 4.054 22.5 1.051+
P2.9 538.1 4.848- 19.8 1.095+
P2.12 19.60 74.8 11.2 0.966
P2.13 1.094 4.176 9.78 0.910

Mean (N = 7) 1.014
Standard deviation 0.084

+ Equation 6.7 employed.
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Table 6.7 EVALUATION OF THOMASSON'S [1978] LONG COLUMNS

Specimen I /t 4
s

Puexp
(k)

Puexp
P

u

All 667.2 1.110 3.60 1.061
A74 671.1 1.106 3.64 1.062
A75 658.6 1.084 3.48 1.016
A76 929.6 1.874 3.26 1.009

A101 404.2 0.912 8.30 1.120
A012 401.9 0.910 7.87 1.065
A103 391.4 0.886 8.34 1.130
A104 365.2 0.844 7.76 0.998

A151 197.8 0.759 17.2 1.124
A152 203.9 0.772 15.7 1.065
A153 232.0 0.832 16.0 1.142
A154 284.2 1.034 16.4 1.118
A155 293.6 1.082 12.8 0.880*
A156 232.9 0.886 15.5 1.081

Mean (N = 13) 1.076
Standard deviation 0.048

* Not included in statistical evaluation.
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Table 6.8 EVALUATION OF LOUGHLAN1S [1979J LONG COLUMNS

P
Specimen e I /t4 Puexp

uexp
(in. ) I/I sa Pus ( k)

L1 0.292 701.4 3.849 3.12 1.012
L2 0.294 772.8 4.116 3.60 1.012
L3 0.402 1116. 4.736 3.52 0.980
L4 0.404 1081. 4.728 3.78 0.951
L5 0.407 1126. 4.789 4.10 1.049
L6 0.066 733.8 3.900 3.80 1.121
L7 0.066 746.3 3.977 3.97 1.060
L8 0.066 765.8 4.072 4.31 1.066
L9 0.184 1116. 4.736 4.34 1.116
UO 0.186 1119. 4.726 4.57 1.104
L11 0.186 1087. 4.748 4.65 1.011
L12 0.182 708.4 3.873 3.35 1.071
U3 0.183 756.5 4.149 3.53 1.017
U4 0.181 713.5 3.924 3.85 1.025
U5 O. 1114. 4.723 4.90 1.152
U6 O. 1088. 4.754 5.18 1.079
L17 O. 1120. 4.735 5.31 1.109
L18 0.220 746.3 4.000 3.13 1.129
L19 0.222 751.6 4.005 3.39 1.101
L20 0.224 751.3 4.129 3.67 1.040
L21 0.159 1109. 4.693 3.86 1.035
L22 0.159 1112. 4.700 4.42 1.133
L23 0.161 1129. 4.767 4.14 1.008+
L24 O. 108.6 4.409 14.8 1.361
L25 0.083 262.6 3.374 16.0 1.179
L26 0.083 257.2 3.570 16.4 1.105
L27 0.083 269.8 3.437 16.6 1.086+
L28 0.106 112.8 4.595 11.5 1.245+
L29 0.106 107.5 4.721 12.6 1.195
L30 0.106 109.8 4.991 13.6 1.172
L31 O. 273.7 3.231 17.0 1.235
L32 O. 277.7 3.340 17.0 1.164
L33 O. 303.1 3.535 18.0 1.158

Mean (N = 33) 1.099
Standard deviation 0.086

+ Elastic failure predicted.
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(a) effective section method with Eq. 2.48
(b) effective section method with Eq. 2.9
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e = -0.212
(1),(2) reference axes - Fig. 4.2
(a) effective section method - §4.5.2
(b) alternate effective section, Eq. 6.4
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CHAPTER 7

CONCLUSION

7.1 Summary and Conclusions of Research

The influence of local buckling on the structural behavior and

strength of cold-formed steel columns was studied in the research

described herein. Specifically, the study was concerned with singly

symmetric shapes where local buckling interaction occurred between the

component plate elements and where local buckling interacted with overall

modes of action. For these situations analysis methods were derived which

correlated well with the results of an experimental investigation. An

effective section approach was followed throughout the study in an effort

to unify existing and proposed methods for treating the effects of local

buckling.

CHAPTER 2 dealt with the post-buckling behavior of isolated thin

plates. Eccentrically compressed stiffened elements (plates) were inves

tigated, and an effective width approach was proposed which was consistent

with current design specifications. This approach was a modification to

empirical Swedish research.

The sub-ultimate response of uniformly compressed, post-buckled

plates was also treated. For this case an effective width approach was

derived which simulated theoretical solutions and behavior. While the

purpose of this approach was to provide a means of accurately predicting

256
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service load (sub-ultimate) deflections, it was equally applicable to

ultimate conditions. In the latter instance the approach was again

consistent with current design specifications.

Finally, uniformly compressed stiffened and unstiffened elements were

addressed, and the unified effective width approach for these elements was

reestablished.

CHAPTER 3 studied the more practical application of local buckling in

structural sections where interaction occurred between the component plate

elements. Generally this work precluded overall modes of action.

The finite strip method was employed to formulate the equations which

governed the linearized elastic instability of thin-walled structures.

Special numerical procedures and algorithms were developed to enable

computer generation and solution of the resulting system of equations.

The specifics of the formulation, solution methods, and program verifica

tion were considered in Appendices A-C, respectively. Overall, the

methods which were developed proved very effective for analyzing the

instability of the type of structure under study.

Next, the finite strip method was applied to uniformly compressed

thin-walled channel and lipped channel sections which established the

characteristics of local buckling interaction. For the latter section,

the effects of non-uniform compression and of edge stiffeners were also

investigated and found to significantly affect the response.

Then edge stiffeners were discussed in greater detail, and current

and proposed stiffener requirements were reviewed. In addition, an

idealized flange-stiffener model was analyzed to study the influence of
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stiffener radius on instability. The results showed that an arc shaped

stiffener was less effective in resisting buckling than an equivalent

(equal moment of inertia) right angled lip.

Finally, an effective section method was defined to account for

post-local buckling interaction in uniformly compressed stub columns. The

interactional effect was reflected thorough the critical buckling stress

term of an effective width equation from Chapter 2. A simpler method was

also suggested wherein local buckling interaction was ignored. Based on a

comparison of the ultimate strengths predicted by these methods for short

channel and lipped channel sections, it was observed that, at least

theoretically, the interactional effect was more important for the latter

section.

CHAPTER 4 treated the interaction between local and overall buckling

in long columns. This chapter was prefaced with an illustrative example

of local and flexural buckling interaction for a channel section. Then

current analysis (design) methods for locally buckled columns and beam

columns were reviewed. This included the Q-factor method for flexural and

torsional-flexural buckling, the modified SSRC method for flexural buck

ling, and a "mixed" method for flexural yielding.

Next, an analysis method was derived to predict the sub-ultimate

response and strength of singly-symmetric, lipped channel columns and

beam-columns. Local buckling effects were taken into account directly by

an effective section which was defined with the methods of Chapter 2. The

usual beam-column formulas supplanted with the effective section proper

ties formed the basis of the analysis method. Because the effective



259

section was dependent on the stress, and vice versa, an iterative solution

procedure proved necessary. The effective section analysis method was

then applied to representative long columns. These analyses demonstrated

that for a certain range of loading eccentricities it was possible to

increase the strength of singly-symmetric lipped channel columns over that

associated with concentric loading conditions.

CHAPTER 5 reviewed the experimental investigation, which was sepa

rated into two areas. The first dealt with the stub column tests (uniform

compression) of cold-formed steel channels and lipped channels. The

required local buckling interaction between component plate elements was

provided by systematically varying the cross-sectional dimensions of the

sections. The second area dealt with the long column tests of concentric

ally and eccentrically loaded lipped channels. Several "duplicate" long

columns were equipped with intermittent lateral braces (lip to lip) to

support the flanges (edge stiffened elements). The objective of the long

column tests was to study the influence of local buckling on the overall

modes of behavior. Extensive measurements of local and overall initial

imperfections were reported, and special alignment procedures were dis

cussed, for both the stub and long column tests.

For the stub columns, poor correlation was obtained between the

experimental local buckling stresses and the theoretical values from

Chapter 3. This behavior was especially noticeable for the buckling

stresses that were associated with the flanges (unstiffened elements) of

channels and webs (stiffened elements) of lipped channels. Also, the

theoretical assumption of simultaneous buckling of all component plate
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elements was, in general, violated experimentally. Finally, a strain

gradient was observed, across the flanges, for lipped channels with

relatively large web-to-flange ratios.

For the long columns, a comparison of the ultimate strengths of the

"dup1icate" sections which were tested with and without braces revealed

that this extra support increased the load resistance. In addition, some

columns, without braces, failed suddenly by a local-torsional collapse of

the flanges, even though the edge stiffeners were designed to meet the

requirements that were reviewed in Chapter 3.

CHAPTER 6 compared the theoretical and experimental results. The

effective section method developed in Chapter 3 was evaluated for predict

ing the sub-ultimate response and strength of the channel and lipped

channel stub columns. The sub-ultimate predictions included the sub

ultimate approach from Chapter 2.

The effection section method which ignored local buckling interaction

of the component plate elements provided good correlation with the experi

mental strengths of channel and lipped channel stub columns (N = 33, M=

1.005, S = 0.081).* Also, the stiffened plate effective width approach

(Equation 2.9) was found to predict sub-ultimate deflections which were

excessively conservative when compared with actual test measurements. In

contrast to this, good correlation with sub-ultimate response was obtained

with the sub-ultimate effective width approach (Equation 2.48) which was

proposed in this study.

*N = number of tests, M= mean of experimental to predicted strength
ratios, and S = standard deviation.
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For the long columns, the experimental results were compared to the

values predicted with the methods of Chapter 4. Again, both strength and

sub-ultimate response were considered. Also, a method was developed for

analyzing lipped channels with laterally unsupported flanges (edge stiff

ened elements).

The effective section and beam-column analysis method developed in

Section 4.5.2 provided good correlation with the strengths (N = 16, M=

1.114, S = 0.071) and sub-ultimate response of the concentrically and

eccentrically loaded, long column, lipped channels. Moreover, the analy

sis approach developed to predict the strength associated with 10ca1

torsional failure of the columns with laterally unsupporte~ flanges agreed

with limited experimental results (N = 3, M= 1.132, S = 0.180).

In contrast to the above, current analysis methods, e.g., the Q

factor and modified SSRC methods for flexural buckling, were found to

produce unconservative estimates of the actual strength for the concen

trically loaded long columns (N = 12; M= 0.843,0.847; S = 0.052,0.046;

respectively). Also, the sub-ultimate response predicted with the stiff

ened plate effective width equation (2.9) proved unsatisfactory and, in

some cases, was unconservative when compared to the experimental results.

Finally, the experimental results reported by other researches were

evaluated with respect to the effective section methods of Chapters 3 and

4. This included tests of channel and lipped channel stub columns and

lipped channel long columns. In brief, this evaluation reinforced the

findings discussed above.
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7.2 Future Research

As a result of this study, the following areas for future research

have been identified.

1. Local Buckling Interaction - While the present study addressed

this quite thoroughly, the experimental program was necessarily limited in

scope. For example, the maximum flange width-to-thickness ratios, W2/t,

were limited to 60 (unstiffened elements) for channels and to 90 (edge

stiffened element) for lipped channels. Also the correlation of the

methods developed for analyzing stub columns showed a tendency of decreas

ing when compared to the experimental results for lipped channel sections

with large flange W2/t ratios. in combination with large web-to-flange

width ratios, Wl/W2' Therefore, additional research of these areas is

warranted.

Likewise, in long column applications, the behavior of lipped chan

nels with large W2/t and Wl/W2 ratios needs to be investigated. Research

in this area should include additional testing of eccentrically loaded

lipped channel columns with laterally unsupported flanges.

2. Eccentrically Compressed Unstiffened Elements - A thorough

investigation of this area is needed. Present effective width approaches

for uniformly compressed unstiffened elements are inadequate because they

assume that the maximum stress occurs along the supported edge which is

incorrect when the loading is applied eccentrically toward the free edge.

Also, it is expected that these elements will be sensitive to initial

imperfections and local-torsional failure, similar to that observed in the

present study for edge stiffened elements. An experimental program is

recommended which includes stub and long column and beam-column tests of

channel sections.
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3. Torsional-Flexural Buckling - Little, if any, experimental

evidence exists to support the Q-factor method for torsional-flexural

buckling when the section is buckled locally, i.e., when Q < 1. Moreover,

in the present study, mixed results were obtained with this method when

failure occurred in a torsional-flexural mode. The research on biaxially

loaded open sections which is currently underway at Cornell University

could be expanded to include the above area.

4. Beam-Columns - The present investigation concentrated on

thin-walled lipped channel beam-columns where the loading was applied

eccentrically about the minor axis (y axis of Figure S.1b). A corre

sponding investigation is needed where bending is applied about the major

axis. The effective width approach developed for eccentrically compressed

stiffened elements seems applicable, but requires verification.

5. Stiffeners - Arc shaped edge stiffeners were found theoretically,

in the present study, to be less effective in resisting local buckling of

the supported plate than right angled lip stiffeners of equal moment of

inertia. Because certain economies are realized in forming arc shaped

stiffeners, it is recommended to conduct further research on this stiff

ener shape. It is noted that the recently proposed edge stiffener

requirements, which were reviewed in Chapter 3, were based on tests of

sections with right angled lip edge stiffeners. Research in this area

could also include a study of plate elements with more than one stiffener,

e.g., multiple intermediate (longitudinal) stiffeners and intermediate

stiffeners used in conj~nction with edge stiffeners. To the author's

knowledge, no experimental investigation has been conducted in these

areas.



APPENDIX A

FINITE STRIP INSTABILITY FORMULATION

A.1 Introduction

Explicit forms of the finite strip discretization and instability

formulation discussed in Chapter 3 are derived here. The specific formu

lation combines a second-order plate bending finite strip and a linear

plane stress strip (Cheung [1968,1969]). Since these discretizations are

complete and continuous, a convergent solution is expected (Zienkiewicz

[1977]).

A.2 Finite Strip Formulation

A typical plate bending-membrane finite strip is shown in Figure A.1.

A displacement formulation is adopted where the field variable ~; consist

ing of the in-plane displacements u and v, and the out-of-plane displace

ment w; is related to the local degrees of freedom (nodal displacements) 6

by

= Lu v wJT =
NP 0 6P
-m - -m

u N6 = A.I--
Nb 6b

0 -m -m

where the superscripts b and p refer to (plate)-bending and plane stress,

respectively, and Q represents an appropriate matrix of zeros. Four

degrees of freedom are employed along each nodal line (side) of the strip,

e. g. ,

A.2
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A.3

The shape functions NP are derived from a linear polynomial in the trans
-m

verse direction and harmonic functions in the longitudinal direction,

o

o ~sinamY

o

o
A.4

where ~ = x/b and am = mn/L.

On the other hand, the shape functions ~~ are chosen as the product

of a beam function in the transverse direction and a harmonic function Ym

in the longitudinal direction

Nb = Y L(I - 3~2 + 2~3) b~(1 - 2~ + ~2) (3~2 - 2~3) b~(~2 - ~)J A.5-m m
where Ym = sinamY' A.6

It is noted that the discretization of Equation A.I satisfies the

boundary conditions associated with a rigid diaphragm at the ends of the

strip. Furthermore, only one harmonic m of the general finite strip

discretization given by*
M

u = ~ N /).
4..J -m-m

A.7

m

is considered in Equation A.I. This restriction is equivalent to assuming

that there is no interaction between the various local buckling modes

represented by the Mharmonics. Actually, for the specific boundary and

loading conditions to be considered here, the various harmonics do uncou

ple, and the one harmonic discretization of Equation A.I is .sufficient.

Thus, the subscript m will be dropped for convenience only but is implic

itly assumed in the development which follows.

*Equation A.7 is equivalent to Equation 3.4 with the Y
m

included in ~.
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Next, the infinitesimal strain-displacement relations are introduced

as

f~ = ~u/ax av/ay au/ay + av/a~T

for plane stress and

A.8

A.9

for linearized plate bending where the strai.ns are defined as the plate

curvatures. Combining the above strain-displacement relations with the

non-linear contributions allows the total strain vector f' Equation 3.7,

to be written as

A.I0

A typical term of the nonlinear strain fL' which accounts for the coupling

of in-plane and out-of-plane action, is given by

A.ll

Thus, it is seen that all the terms of Green's strain are retained, where

the terms in w model the local buckling modes and those in u and v model

the overall modes (Graves Smith and Sridharan [1978a]).

Further, a vector of displacement gradients is introduced as

where

e =Ie e IT
LX -t1

A.12

e = I au/ax av/ax aw/a~T-x L,;

§y = l2u/ ay av/ay aw/a~T

This equation allows the nonlinear strain fL to be conveniently expressed

as

A.13



267

where the matrix A is defined by

eT
Q-x

A = 0 eT- - -y

eT eT
-y -x

Introducing the finite strip discretization of Equation A.I into Equa

tion A.13 allows the nonlinear strains to be written in terms of nodal

displacements as

eY = !AG~-L --- A.14

From a comparison of the above equation and the second term on the right

hand-side of Equation 3.8,

f = §o~ + !§L~

the linear strain matrix §L is identified as

B = AG-L --

3.8

A.IS

Moreover, if the discretization of Equation A.I is also introduced into

the infinitesimal strains, Equations A.8 and A.9, the total strain f of

Equation A.IO follows as

A.16

where the small displacement strain matrix B and the linear strain matrix
-0

§L of Equation 3.8 are separated into their plane stress and bending

components.

Next, the stresses £' defined below

cr = Lcr cr cr : M M M JT = L crP- x y xy I X Y xy -
are related to the strains by the following

tive law

A.17

isotropic, elastic constitu-
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! is a diagonal identity matrix, and the Tx' etc., are membrane loads.

The form of the initial stress matrix given above verifies its symmetric

nature. Moreover, in the present formulation, only a longitudinal membrane

loading, T , is considered.
y

is followed where the same shape functions that are used in the v displace-

ment discretization, Equation A.4, are employed, i.e.,

Ty = (1 - ~)TYI + ~TY2

where ~,= x/b and the TY1 and TY2 are the magnitudes of the membrane

loading along sides one (1) and two (2), respectively (Figure A.1).

Again, K is broken down into its plane stress and bending components as
-0

A.26

An explicit form of the above equation is listed in Table A.3. In this

table, it is noted that the coefficients of K are dependent on stress
-0

levels and geometric properties. Du~ to the latter dependence, K is
-0

alternately described as a geometric stiffness matrix.

It is informative at this point to consider the effect of including

several terms in the finite strip discretization, e.g., employing Equa

tion A.7 instead of the one term discretization of Equation A.1. It is

not necessary to differentiate between'plane stress or bending by the

superscripts p and b, respectively, because the result is the same for

both. First, Equation A.7 is written in expanded form as

u = L~l ~2 ••• ~m ••• NMJ L~l ~2 ••• ~m ••• ~MJT A.27

where the series is terminated at the Mth term. For this discretization

the small displacement stiffness matrix, ~o' can be shown to take the

following form (Cheung [1976]).
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-0

Kll
~21
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A.28

~Ml ~MM

with ~mn = ~~~m(CQ}~ondV A.29

And if the expressions for the strain matrix B are derived from expan-
-0

sions of the type in Equations A.l, A.4, and A.5, the general stiffness

matrix of Equation A.29 is found to include the following two harmonic

integrals

l L
sin (m~y/L}sin(n~y/L}dy

j L
cos(m~y/L}cos(n~y/L}dy

o

A.30

which are zero for all m ; n due to the orthogonality of the harmonic

functions. Therefore, only the diagonal stiffness matricies, with m = n,

of Equation A.28 survive the integration.

An entirely similar situation arises for the initial stress matrix

K. The several termed discretization of Equation A.27 gives rise to a
-0

general stiffness matrix of the form of Equation A.28 which includes the

two harmonic integrals of Equation A.30. Again only the matricies with

m = n survive the integration.

When the above results for K and K are combined, the total system
-0 -0

(K +AK}et. 3.15
-0 -0-

uncouples, and the original assumption pertaining to a one harmonic

discretization is justified (see Equation A.l and related discussions).

Physically, for each harmonic m, the solution of Equation 3.15 yields the

corresponding buckling mode, e.g., with m = 1, the buckling mode has only
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one longitudinal wave. The matricies given in Tables A.l through A.3 are

general and include the harmonic parameter m.

A.3 Global Formulation

The equations governing the instability of an entire structure are

obtained by "summing" the stiffness contributions of the various finite

strips. Symbolically this is written as

K= L K A.31- -ss

where the summation is over all strips s. One point worth noting is that,

in the transformation from local to global coordinates implied by Equa-

tion A.31, the "extra degree of freedom ll complication sometimes encoun

tered in a finite element formulation (see Chapter 13 of Zienkiewicz

[1977J) does not arise in a finite strip formulation. This is due to the

unique representation of the u and w displacements in the longitudinal

direction (see Equations A.4 and A.5).
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Table A.l LINEAR PLANE STRESS FINITE STRIP STIFFNESS MATRIX

Kl K2 K4 -K5

KP = ELt/2(1 _ ~2)
-0

Kl = (lib + (1 - ~)ba~/6)

K2 = (3~ - 1)am/4

K3 = (ba2/3 + (1 - ~)/2b)m
K4 = (-lib + (1 - ~)ba~/12)

K5 = -(~ + 1)am/4

K6 = (ba2/6 + (~ - 1)/2b)m
am = mn/L
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Table A.2 SECOND-ORDER PLATE BENDING FINITE STRIP STIFFNESS MATRIX

Kl K2 K4 -K5

Kl =
K2 =

K3 =

K4 =
K5 =
K6 =

(6/b 3 + 6a2/5b + l3a4/70)m m
(3/b 2 + (p/2 + 1/10)a 2 + llb2a4/420)m m
(2/b + 2ba~/15 + b3a~/2l0)

(-6/b 3 - 6a2/5b + 9ba4/l40)m m

(-3/b 3 - a2/IO + l3b2a4/840)m m

(l/b - ba~/30 - b3a~/280)

am = mlT/L
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Table A.3 CONSISTENT INITIAL STRESS FINITE STRIP STIFFNESS MATRIX
FOR LONGITUDINAL MEMBRANE LOADING (SEE FIGURE A.I)

KI 0 K2 0

0 K2
0

0

K = C
-0 K5 K7 KIO

symmetric K8 KII

KI2

KI3

C = b(m~)2/I680L

KI = 70(3Tyl + Ty2 )

K2 = 70(Tyl + Ty2 )

K3 = 70(Tyl + 3Ty2 )

K4 =8(30Tyl + 9Ty2 )

K5 = 2b(15Tyl + 7Ty2 )

K6 = b(5Tyl + 3Ty2 )

K7 = 54(TYI + Ty2 )

K8 = 2b(6Tyl + 7Ty2 )

K9 = 24(3Tyl + IOTy2 )

KIO = -2b(7Tyl + 6Ty2 )

KII = -3b(Tyl + Ty2 )

KI2 = -2b(7Tyl + I5Ty2 )

KI3 = b2(3TYI + 5Ty2 )
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Figure A.l MEMBRANE AND BENDING RNITE STRIP SUBJECTED
TO A LINEARLY VAxYING LONGITUDINAL EDGE LOAD



APPENDIX B

NUMERICAL SOLUTION OF THE INSTABILITY PROBLEM

B.1 Introduction

In the preceding appendix all the ingredients necessary for the

formulation of the equations governing the instability problem were

defined, but the method of solution was not established. The present

appendix addresses this aspect, and the specific solution method and

corresponding computer program are discussed.

B.2 The Eigenproblem and Its Solution

The basic problem is to obtain an eigensolution of the global

instability equations given in Equation 3.15 which is rewritten in the

following form

Kv = AK v
-0-

B.l

where _K is the small displacement stiffness matrix, K the initial stress
-0

stiffness matrix, and Aand yare the eigenvalue and corresponding

eigenvector. Since only the smallest buckling load is of interest in an

instability analysis, the solution method outlined here is concerned with

obtaining the smallest positive eigenvalue of Equation B.l. Alternately,

the following inverse system may be formed

K v = ~Kv B.2
-0- --

where the eigenvalue ~ = l/A. In this case, the largest positive

eigenvalue is required.

276
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The choice of which of the above systems to solve depends on the

specific solution method being utilized. For example, some methods

require the matricies K and K to possess certain properties. Therefore,
- -0

the properties of these matricies need to be established before selecting

the solution method.

The matricies of the systems B.1 or B.2 are both symmetric and

banded. Further, K_ is positive definite and K is, in general,
-0

indefinite. In the two systems, only real eigenvalues are defined, but

these may be negative as well as positive. Negative eigenvalues occur

when the structure can buckle with the primary loading reversed (Jennings

[19771). Thus, the possibility of negative eigenvalues must be recognized

in the development of a solution process. Finally, the order of the

instability equations defining a specific problem will generally be small.

This is due to the use of the FSM.

Based on the small system size, it might at first be thought that one

of the more standard methods, such as forward iteration applied to

Equation B.2, is applicable for the eigenso1ution. However, convergence

of the power method (forward iteration) depends on the selection of the

initial starting vector and the properties of the eigensystem. For

example, if the system B.2 has two dominant eigenvalues which are equal in

magnitude but of opposite sign, the method converges to two alternating

eigenvectors (Jennings [1977J). This case was actually encountered in the

present study when, in the early stages of program development, the power

method of eigenso1ution was under investigation. It is noted that for this

case the eigenvalue converged to an incorrect result. Therefore, a more

reliable solution method was sought adopting the philosophy that such an

algorithm was worth some trade off in solution cost.
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In the present study the determinant search method (Bathe and Wilson

[1976], Bathe [1971]) was employed for the eigensolution. This method,

which proved very successful, combines several of the more standard

techniques of eigensolution in an effective and efficient way. First, an

implicit polynomial iteration scheme is used to obtain an approximation to

the desired eigenvalue. In using this scheme, it is recognized that

convergence may be slow and that the cost of solution may be high because

a factorization is performed at each iteration. Thus, at this stage, the

desired eigenvalue is obtained to some relatively high tolerance. Next,

the system is shifted at the approximate eigenvalue obtained from poly-

nomial iteration, and inverse iteration is used to obtain the eigenvalue

to the final desired accuracy. The purpose of the above shifting is to

accelerate the convergence characteristics of inverse iteration. The two

basic methods, i.e., polynomial and inverse iteration, that make up the

determinant search technique are described in the next section, along with

another useful eigenproperty.

B.2.1 Inverse Iteration, Polynomial Iteration, and the Sturm Sequence

Property

Inverse iteration (Bathe and Wilson [1976]) is used to obtain the

smallest eigenvalue Al and associated eigenvector vI of the system

Kv = AK v B.1
-0-

where K is assumed positive definite. The first step of the solution

process is to obtain a factorization of K. In this study, a LOLT

factorization is adopted, e.g.,

K = LOLT
- --- B.3
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where b is a lower triangular matrix having unit diagonals and Qis a

diagonal matrix. Next, an initial iteration vector ~1 is assumed, usually

equal to a unit vector, and assuming Yl = ~o~1 the iteration proceeds as

follows for k = 1,2, •

~~k+l = lk

.lk+l = ~o-gk+l

.lk+l

lk+l = (-T - )1
~k+l lk+l

where P(~k+l) is the Rayleigh quotient.

B.4a

B.4b

B.4c

B.4d

In the above algorithm a Euclid-

B.5

ean normalization is adopted. The iteration step given by Equation B.4a

is solved for ~k+l using the factorization of Equation B.~ and the well

known processes of forward elimination and back~substitution. As k + ~,

the Rayleigh quotient and iteration vector ~k+l' which is defined

below, converge to Al and Yl' respectively.

~k+l

~k+l =
(- - )1
~k+l .lk+l

In practice the iteration is terminated once some error criterion is

satisfied, e.g.,

ER < TOL B.6

where ER is the error estimate and TOL the specified tolerance. If a

relative error estimate is chosen, then ER is given by
A~+l - A~

ER = ---- B.7
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where the current and previous approximations of the Al are given by A~+l

and A~t respectively. For 2s-digit accuracy in the eigenvalue t the

tolerance TOL is taken as 10-2s. The corresponding eigenvector is then

accurate to about s-digits.

In polynomial iteration (Bathe et ale [1976])t it is chosen to solve

for the roots of the characteristic polynomial p(A) of Equation B.l t i.e. t

P(A) = det(K - AK ) = 0 B.8
- -0

Given that an approximation to Al has been obtained and that the factor

ization of (K - AK ) exists as
- -0

(K - AK ) = LDLT
- -0 ---

the value of P(A) is effectively calculated by

P(A) = TId ..
. 11
1

where d.. are elements of Q.
11

Now t assuming that at the kth stage of iteration there are two

approximations a k_l and a k to Alt such that a k_l < a kt the next

approximation is calculated using

B.lO

B.ll

If the variable n = It the above equation reduces to normal secant itera-

tion t in which a k+l ~ Alt and as k + ~t a k+1 + AI' However t convergence

may be slow for this case. To accelerate convergence the variable n is

taken greater than one t and the method is now identified as accelerated

secant iteration. Caution is advised when using n > 1 since the method may

now jump over one or more roots. However t for n =2t the iteration scheme

can jump over only one root (Bathe [1976]). Satisfactory convergence is

obtained when the second term on the right-hand-side of Equation B.1l is

less than one-half the final tolerance.
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One final attribute of an eigensystem is the Sturm sequence property.

First, it is assumed that at some shift equal to a the LDLT factorization

of (K - aK ) can be accomplished. The Sturm property then states that
- -0

II ••• the number of negative elements Q is equal to the number of

eigenvalues smaller than a. 1I (Bathe [1976], page 375) This very important

property is used extensively in the determinant search algorlthm described

in the next section.

B.2.2 Determinant Search Algorithm

The in-core determinant search algorithm developed for this study is

discussed here. Since the algorithm is based on work by Bathe

[1971,1976], his work is appropriately acknowledged.

The algorithm consists of three phases. In the first phase, inverse

iteration and the Sturm sequence property are used to obtain a lower bound

for A1 of the system B.1. The next phase involves employing Secant

iteration and the Sturm sequence property to obtain a closer lower bound

of A1. Assuming the current estimate of A1 to be given by I, the inverse

system B.2 is now shifted at 11I such that all its eigenvalues are nega

tive. In the last phase, inverse iteration is applied to the shifted

system from which the final eigenvalue and eigenvector are ultimately

obtained.

A flow chart of the complete algorithm is shown in Figure B.1 where

the notation used requires explanation. The variables IT and NITE refer

to the number of iterations and maximum number of iterations, respec

tively. The variable I refers to the current estimate of A1, and n is the

constant of Equation B.11. Finally, a Sturm sequency check is indicated
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by the variable NSC which is equal to the number of negative diagonal

elements of 0 at the current shift.

As mentioned earlier, the first phase of the algorithm uses inverse

iteration to find a lower bound on the smallest positive eigenvalue Al of

the system B.1. Once the error criterion is satisfied (see Equations B.6

and B.7), a conservative estimate of Al is taken as (1 - .01) times the

value obtained from inverse iteration. However, since the tolerance used

to terminate the iteration is relatively high, the algorithm may have

accepted convergence to some other eigenvalue Ai where Ai > AI. There

fore, the Sturm sequence property is used to ensure that the algorithm

returns a conservative estimate of AI. If there exists NSC (>0) negative

diagonal elements in the factorization at the current shift I, the next

estimate for I is taken as the previous value divided by (NSC + 1). This

process is repeated until NSC = O. It is noted that the algorithm recog

nizes possible failure of inverse iteration in which case the Sturm loop

is utilized to recover A < AI.

At this stage there exists only one starting value for polynomial

iteration, and two are needed. Therefore, I/2 is selected for the other

starting value. Initially accelerated secant iteration, Equation B.11

with n = 2, is used to accelerate convergence. However, since the objec

tive of this phase is to obtain a lower bound, the algorithm switches to

normal secant iteration once it is detected that the iteration has jumped

over AI. Secant iteration is terminated when the error criterion is

satisfied (see Section B.2.1) or when it proves uneconomical to obtain a

shift in the vicinity of AI' i.e., IT ~ NITE. The final phase of the
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algorithm is entered with the latest estimate of Al equal to I. A shift

of Iii is now imposed on the system B.2 as

(K - III K)v = wKv B.12
-0 - - --

where w is the eigenvalue of the shifted system. Inverse iteration is

used to obtain the smallest negative eigenvalue Wl of this system to about

8-digit accuracy. The largest eigenvalue, ~n' of the original system B.2

is then calculated from

B.13

Finally, the smallest eigenvalue of the system is determined by

B.14

B.3 The Equation Solver

The equation solver that is used in conjunction with the determinant

search algorithm of the previous section must possess special features for

the total algorithm to run successfully. These features and the equation

solver developed in this study are discussed here.

Probably the most important requirement placed on the equation solver

is that it must be efficient. Therefore, an in-core skyline solver is

implemented. The skyline solver proves efficient because no reduction

operations are performed on zero elements outside the skyline of a matrix.

In addition, storage requirements are reduced since it is necessary to

store only the elements within the skyline. More information on the

skyline method of solution is given by Bathe [1976].

The special features of the equation solver are now discussed. One

obvious feature is that the solver must be able to factorize indefinite
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systems, i.e., negative elements of Q in the LDLT factorization must be

allowed. Such systems arise primarily in the polynomial iteration phase

of th eigenvalue routine. Also in this phase, it is assumed that a LDL T

factorization exists, and since the factorization is performed by Gaussian

elimination without pivoting; the factorization cannot be guaranteed. The

reason for this is that multiplier growth (Bathe [1976J) can occur. How-

ever, this is easily detected, and in the present solver a flag is re

turned to indicate its occurrence. Once multiplier growth is encountered,

the current shift is changed slightly, and the factorization is reattempt

ed. The ability to proceed in this manner follows from the fact that the

specific shift obtained from polynomial iteration does not affect the

final accuracy of the eigenvalues (Bathe [1976]).

Two final points deserve mentioning. One is that the Sturm sequence

count is incorporated in the LDLT factorization portion of the solver

which eliminates the need for an extra loop on Q. Secondly, the calcula

tion of the determinant is also included in the solver. In this calcula-

tion, scaling factors are incorporated because the magnitude of the

determinant can easily overflow the largest number allowed on the com-

puter.

B.4 Variable Length and Minimum Buckling Load Analysis

The local buckling behavior of simple plates is well-known (Timo

shenko and Gere [1961]). Typically this behavior is represented in the

form of plate buckling curves such as that shown in Figure C.1, where the

buckling coefficient K (stress) is plotted against the plate aspect ratio

a. In this figure it is seen that the buckling coefficient acquires a
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minimum value at some specific aspect ratio. This behavior is similar for

other thin plates and thin-walled structures. Therefore, it is advantag

eous to have an automatic way of generating curves such as that described

above, i.e., through a "variable length analysis," and, if necessary, to

have an automatic way of obtaining the minimum buckling stress, i.e.,

through a "minimum buckling load analysis." In this section the proce

dures developed for these analyses are discussed.

In a variable length analysis it is assumed that some initial length,

final length, and length increment are given. Thus an effective scheme

would consist merely of a simple loop on the length over the range of

interest. However, the necessity of reformulating the global stiffness

matricies governing the problem, Equation B.1, for each length may be

eliminated by recognizing the dependence of ~ and ~o on the length. For

example, the small displacement matrix ~ is assembled as a sum of the

following matricies

~ = ~l(C) + ~2(L) + ~3(1/L) + ~4(1/L3) B.15

where ( ) indicates dependence and c is a constant. A similar breakdown

of the initial stress matrix is not necessary since K = K (l/L). In the
-0 -0

computer implementation of Equation B.15, each of the matricies K. are-,
stored separately. Thus, for a given length the matricies K and K are

- -0

obtained simply by multiplying each of the K. and K by a length
-, -0

factor and using Equation B.15.

The minimum buckling load analysis assumes the existence of a smooth

curve, Al(L), which relates the smallest eigenvalue, Al, of the system of

Equation B.1 to the length, L. Further three known starting values

(iA1,Li); i = 1,2,3; are assumed to exist which bracket the required
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minimum eigenvalue, A1min , such that lAl > 2Al < 3Al. Since the length

associated with A1min is generally unknown, it is necessary to use the

variable length analysis, say with a rather large length increment, to

bracket its location. Once this location is bracketed, quadratic inter

polation is employed to estimate the length [ that is associated with

A1min . Then the actual eigenvalue I associated with the length [ is

determined by updating the stiffness matricies, e.g., through Equa-

tion B.15, and resolving Equation B.1. At stage this stage there are four

sets (.A1,L.) of points describing the Al(L) curve. One of these sets is
1 1

eliminated by a complicated procedure, which is not described here,

leaving three sets with lAl > 2Al < 3Al. The above process is repeated

until the difference between the current minimum, I, and the previous

minimum, 2Al' is less than some specified tolerance. Also in the actual

computer implementation of the above algorithm, it was found necessary to

monitor the differences liAl - i+1A11 for i = 1,2 to preserve numerical

stabil ity.
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INITIAL INVERSE ITERATION
FOR LOWER BOUND

yes

no

x = X(l - ER}

no

yes

x = X{l. - .Ol}

=0

x = X{l/{NSC + I} n =2

yes

SECANT
ITERATION

>-no~-.STOP

{continued on next page}

FIGURE B.l. DETERMINANT SEARCH ALGORITHM
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BACKSTEP USING BISECTION
OF LATEST VALUES

> 0

= 0

n = 1

SHIFT

FINAL INVERSE
ITERATION

yes

yes

END

no

no

STOP

FIGURE B.1. continued





APPENDIX C

VERIFICATION OF FINITE STRIP INSTABILITY ANALYSIS PROGRAM

C.l Introduction

The finite strip, instability analysis, computer program and underly

ing theory are· verified in the present appendix by analyzing several

simple plates for local and overall instability. Accordingly, the results

obtained from these analyses are compared against known solutions. Also,

a comparison is made with results obtained using the finite element

method.

C.2 Local Buckling

Local buckling of single plates with various support and loading

conditions are treated first. The analyses are performed at the wave

length which corresponds to the known minimum buckling solution. Because

the response is limited to local buckling, all in-plane degrees of freedom

are restrained.

The results offered in the following examples are given in terms of

the buckling coefficient Kwhich is related to the buckling stress f bycr

the well-known expression

f
cr

= K~2E/(12(1 - ~2)(W/t)2) C.l

where w is the total width of the plate. Further, a Poisson ratio ~ of

0.3 is assumed in all 'analyses discussed here.

First, the classic example of the buckling of a simply supported

plate under uniform axial compression is considered. For this case it is

known that the minimum buckling coefficient occurs for a square plate.

289
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This information and symmetry are employed in the analysis. The results

obtained using several finite strip idealizations are listed in Table C.1.

All results are excellent.

The above case was also investigated by Kapur and Hartz [1966] using

the finite element method. Their results are presented in Table C.2 where

it is seen that the buckling coefficient approaches the exact value from

below. This is due to the use of a non-conforming plate bending element

in the analysis. A comparison of the FSM and the FEM may be made by

examining Tables C.1 and C.2. Because Kapur did not take advantage of

symmetry, the number of equations NEQ listed in Table C.1 should be

multiplied by two when making this comparison. The economy and accuracy

of the finite strip method are clearly demonstrated.

Another example considered here is the buckling of a simply supported

plate subjected to in-plane bending. This is an important practical

problem in the design of webs for wide flange sections. In addition, this

problem has unique eigenvalue characteristics, e.g., the smallest two

eigenvalues (buckling loads) are equal in absolute value but of opposite

sign. Although there is no exact solution for this problem, Timoshenko

[1961] has obtained an approximate solution using an energy method. The

results generated by the FSM are listed in Table C.3. Again, the results

are excellent.

Finally, a uniformly compressed simply supported plate with II vari

able ll length is analyzed to test the variable length and minimum buckling

load solution algorithms (see Section B.4). Four strips and symmetry are

used for the calculations. The results are shown in the plate buckling

curve of Figure C.l, where the buckling coefficient K is plotted as a

function of plate aspect ratio a. At the minimum point of the curve, the
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buckling coefficient differs from the exact value by 0.001%, and the

associated length differs from its--exact value by about 0.03%.

C.3 Overall Buckling

In this section, the overall buckling of a single plate is investi

gated. The term overall buckling is .defined here to include flexural,

torsional, lateral, or combination buckling modes.

First, strong axis (z-axis, see Figure A.1) flexural buckling of a

uniformly compressed plate is studied. Hence, all out-of-plane degrees of

freedom were restrained. The exact results for this case are derived

from the usual Euler column buckling formula written here in terms of a

critical line load (T )y cr
(T) = TI 2EI/wL2 C.2y cr

where I is the moment of inertia and w the total plate width. Next, the

strong axis I = tw 3/12 is substituted into the above formula which yields

(T) = TI 2Etw2/12L2 C.3
y cr

The results obtained using the FSM are listed in Table C.4. The differ-

ences from the exact values, Equation C.3, are attributed to the lateral

expansion of the plate (a Poisson effect) which is not accounted for in

the one-dimensional theory of column buckling. However, these differences

tend to disappear as more strips are employed in the an~lysis.

Flexural buckling about the weak axis (x-axis, see Figure A.1) is now

examined. The exact solution is obtained by substituting I = wt 3/12 into

the Euler Equation C.2, e.g.,

(T) = TI 2Et 3/12L 2 C.4y cr
For this case all degrees of freedom are freed and one finite strip proves

satisfactory. The finite strip results differ from the exact value,

Equation C.4, by 0.001%.
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Representation of the other buckling modes, such as torsional, is not

possible using a single plate. The reason for this is that, in the

formulation, there is no coupling between bending and membrane behavior

for flat structures. However, for a thin-walled structure that is made up

of a series of plates, interconnecting at angles, these other overall

modes are possible since the coupling is now represented.
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Table C.1 BUCKLING COEFFICIENTS K FOR A SIMPLY SUPPORTED
PLATE UNDER UNIFORM AXIAL COMPRESSION

No. of strips NEQ* K % Error

1 2 4.0086 0.216

2 4 4.0005 0.013

4 8 4.0000 0.001

exact resu lts 4.0
(Timoshenko [1961])

*NEQ = no. of equations

Table C.2 BUCKLING COEFFICIENTS K FOR THE STRUCTURE OF
TABLE C.1 USING THE FINITE ELEMENT METHOD
(AFTER KAPUR AND HARTZ [1966])

No. of elements NEQ K % Error

9 20 3.645 -8.88

16 39 3.77 -5.75

36 95 3.887 -2.80

64 175 3.933 -1.68

100 279 3.96 -1.00

144 407 3.977 -0.58
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Table C.3 BUCKLING COEFFICIENTS K FOR A SIMPLY SUPPORTED
PLATE SUBJECTED TO PURE IN-PLANE BENDING

No. of strips

2

4

6

known solution
(Timoshenko [1961])

NEQ

4

8

12

K

25.455

23.965

23.897

23.9

% Error

6.506

0.273

-0.013

Table C.4 STRONG AXIS FLEXURAL BUCKLING OF A SINGLE PLATE*

No. of strips NEQ %Error

1 4 2.7106 9.855

2 6 2.5276 2.442

3 8 2.4937 1.067

4 10 2.4819 0.586

6 14 2.4734 0.242

*L = 1000.0, b = 10.0, t = 1.0, E = 30000.0, p = 0.3
Exact results = Equation C.3
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4.4

4.2

4.0
this study

minimum

3.8 .L

Aspect ratio a = L/w

Figure C.l PLATE BUCKLING CURVE FOR ASIMPLY SUPPORTED
PLATE IN UNIFORM COMPRESSION





APPENDIX D

SUB-ULTIMATE RESPONSE FOR STUB COLUMNS

Note: This appendix contains graphs of the axial load-deformation re

sponse for channel and lipped channel stub columns which are not presented

in Chapter 6. Reference is made to Section 6.2 for relevant discussions.

Also, the following notation is employed:

(a) refers to the effective section method with Equation 2.48 and

(b) refers to the effective section method with Equation 2.9.
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APPENDIX E

SUB-ULTIMATE RESPONSE FOR LONG COLUMNS

Note: This appendix contains graphs of the axial load-strain and the

axial load - lateral deflection responses for the columns and beam-columns

which are not presented in Chapter 6. Reference is made to Section 6.3

for relevant discussions. Also, the following notation is employed:

(1), (2) refer to the reference axes of Figure 4.2,

(a) refers to the effective section method of paragraph 4.5.2, and

(b) refers·to the alternate effective section method discussed in

paragraph 6.3.1.
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