Illustrative examples based on the ASCE standard specification for the design of cold-formed stainless steel structural members

Shin-Hua Lin
Wei-wen Yu
Missouri University of Science and Technology, wwy4@mst.edu
Theodore V. Galambos

Follow this and additional works at: https://scholarsmine.mst.edu/ccfss-library
Part of the Structural Engineering Commons

Recommended Citation

Lin, Shin-Hua; Yu, Wei-wen; and Galambos, Theodore V., "Illustrative examples based on the ASCE standard specification for the design of cold-formed stainless steel structural members" (1991). Center for Cold-Formed Steel Structures Library. 174.
https://scholarsmine.mst.edu/ccfss-library/174

[^0]
Civil Engineering Study 91-2
 Cold-Formed Steel Series

Final Report

ILLUSTRATIVE EXAMPLES BASED ON THE ASCE STANDARD SPECIFICATION FOR THE DESIGN OF COLD-FORMED STAINLESS STEEL STRUCTURAL MEMBERS

by
Shin-Hua Lin
Consultant Engineering Design \& Management Inc.
St. Louis, Missouri
Wei-Wen Yu
Project Director
University of Missouri-Rolla
Theodore V. Galambos
Consultant
University of Minnesota
A Research Project Sponsored by the Nickel Development Institute and Chromium Centre
December 1991
Department of Civil Engineering Center for Cold-Formed Steel Structures
University of Missouri-Rolla
Rolla, Missouri

PREFACE

During the past four years, two methods were developed for the design of stainless steel structural members at the University of Missouri-Rolla with consultation of Professor T. V. Galambos at the University of Minnesota. One of the methods is based on the load and resistance factor design (LRFD) and the other is based on the allowable stress design (ASD). Both design methods are now included in the new ASCE Standard 8-90, Specification for the Design of Cold-Formed Stainless Steel Structural Members.

At the September 21, 1990 meeting of the Control Group of the ASCE Stainless Steel Cold-Formed Section Standards Committee held in Washington, D.C., the urgent need for design examples using the new ASCE Standard was discussed at length. The University of Missouri-Rolla was asked to submit a proposal for preparation of such illustrative examples beginning October 1 , 1990.

During the period from October 1990 through December 1991, a total of 27 illustrative problems have been prepared as included herein. Most of the given data used for these examples are similar to those used in the 1986 edition of the AISI Cold-Formed Steel Manual except that for each problem, two examples are illustrated by using LRFD and ASD methods.

The research work reported herein was conducted in the Department of Civil Engineering at the University of Missouri-Rolla with the consulting work provided by Dr. Shin-Hua Lin and Professor T. V. Galambos. The financial assistance provided by the Nickel Development Institute and the Chromium Centre is gratefully acknowledged. Appreciation is also expressed to Dr. W. K. Armitage, Mr. J. P. Schade, Professor P. Van der Merwe and Professor G. J. Van den Berg for their technical review and suggested revisions.

TABLE OF CONTENTS

PREFACE ii
I. INTRODUCTION 1
II. COMPUTATION OF SECTIONAL PROPERTIES OF COLD-FORMED SECTIONS USING LINEAR METHOD 1
III. CORRELATION OF SPECIFICATION AND ILLUSTRATIVE EXAMPLES 2
IV. ILLUSTRATIVE EXAMPLES 12
A. FLEXURAL MEMBERS
Example 1.1 Channel w/Unstiffened Flanges (LRFD) 13
Example 1.2 Channel w/Unstiffened Flanges (ASD) 29
Example 2.1 Channel w/Stiffened Flanges (LRFD) 31
Example 2.2 Channel w/Stiffened Flanges (ASD) 42
Example 3.1 C-Section w/Bracing (LRFD) 44
Example 3.2 C-Section w/Bracing (ASD) 53
Example 4.1 Z-Section w/Stiffened Flanges (LRFD) 55
Example 4.2 Z-Section w/Stiffened Flanges (ASD) 64
Example 5.1 Deep Z-Section w/Stiffened Flanges (LRFD) 66
Example 5.2 Deep Z-Section w/Stiffened Flanges (ASD) 82
Example 6.1 Hat Section (LRFD) 84
Example 6.2 Hat Section (ASD) 95
Example 7.1 Hat Section w/Intermediate Stiffener (LRFD) 98
Example 7.2 Hat Section w/Intermediate Stiffener (ASD) 111
Example 8.1 I-Section w/Unstiffened Flanges (LRFD) 114
Example 8.2 I-Section w/Unstiffened Flanges (ASD) 121
Example 9.1 Channel w/Lateral Buckling Consideration (LRFD) 122
Example 9.2 Channel w/Lateral Buckling Consideration (ASD) 136
Example 10.1 Hat Section Using Inelastic Reserve Capacity (LRFD) 140
Example 10.2 Hat Section Using Inelastic
Reserve Capacity (ASD) 147
Example 11.1 Deck Section (LRFD) 148
Example 11.2 Deck Section (ASD) 176
Example 12.1 Cylindrical Tubular Section (LRFD) 182
Example 12.2 Cylindrical Tubular Section (ASD) 184
Example 13.1 Flange Curling (LRFD) 185
Example 13.2 Flange Curling (ASD) 190
Example 14.1 Shear Lag (LRFD) 192
Example 14.2 Shear Lag (ASD) 198
B. COMPRESSION MEMBERS
Example 15.1 C-Section (LRFD) 199
Example 15.2 C-Section (ASD) 208
Example 16.1 C-Section w/Wide Flanges (LRFD) 210
Example 16.2 C-Section w/Wide Flanges (ASD) 219
Example 17.1 I-Section (LRFD) 221
Example 17.2 I-Section (ASD) 228
Example 18.1 I-Section with Lips (LRFD) 230
Example 18.2 I-Section with Lips (ASD) 237
Example 19.1 T-Section (LRFD) 239
Example 19.2 T-Section (ASD) 246
Example 20.1 Tubular Section - Square (LRFD) 248
Example 20.2 Tubular Section - Square (ASD) 252
Example 21.1 Tubular Section - Round (LRFD) 253
Example 21.2 Tubular Section - Round (ASD) 256
C. BEAM-COLUMN MEMBERS
Example 22.1 C-Section (LRFD) 257
Example 22.2 C-Section (ASD) 283
Example 23.1 Tubular Section (LRFD) 290
Example 23.2 Tubular Section (ASD) 298
D. CONNECTIONS
Example 24.1 Flat Section w/Bolted Connection (LRFD) 301
Example 24.2 Flat Section w/Bolted Connection (ASD) 304
Example 25.1 Flat Section w/Lap Fillet Welded Connection (LRFD) 306
Example 25.2 Flat Section w/Lap Fillet Welded Connection (ASD) 308
Example 26.1 Flat Section w/Groove Welded Connection in Butt Joint (LRFD) 309Example 26.2 Flat Section $w /$ Groove Welded Connectionin Butt Joint (ASD)311
Example 27.1 Built-Up Section- Connecting Two Channels (LRFD) 312
Example 27.2 Built-Up Section- Connecting Two Channels (ASD) 317

I. INTRODUCTION

This publication cantains 54 examples for calculation of sectional properties, and the design of beams, compression members, beam-columns, and connections. They are prepared for the purpose of illustrating the application of various provisions of the new ASCE Standard 8-90, Specification for the Design of Cold-Formed Stainless Steel Structural Members.

II. COMPUTATION OF SECTIONAL PROPERTIES OF COLD-FORMED
 SECTION USING LINEAR METHOD

In the calculation of sectional properties of cold-formed stainless steel sections, the computation can be simplified by using a so-called linear method, in which the material of the section is considered to be concentrated along the centerline of the steel sheet and the area elements replaced by straight or curved "line elements." The thickness dimension, t, is introduced after the linear computations have been completed. This method has long been used for the design of cold-formed carbon steel sections.*

In the application of the linear method, the total area of the section is found from the following relation:

Area $=\mathrm{L} \mathrm{x}$ t
where " L " is the total length of all line elements.
The moment of inertia of the section, I , is found from the following relation:
$I=I^{\prime} \times t$

[^1]where "I'" is the moment of inertia of the centerline of the steel sheet.
The section modulus is computed as usual by dividing I or $I^{\prime} x t$ by the distance from the neutral axis to the extreme fiber, not to the centerline of the extreme element.

First power dimensions, such as x, y, and r (radius of gyration) are obtained directly by the linear method and do not involve the thickness dimension.

When the flat width of an element is reduced for design purpose, the effective design width, b, is used directly to compute the total effective length, $L_{\text {eff }}$, of the line elements, as shown in the examples.

The element into which most sections may be divided for application of the linear method consist of straight lines and circular arcs. For convenient reference, the moments of inertia and location of centroid of such elements are identified in the sketches and formulas in Fig. 1, Properties of Line Elements.

The formulas for line elements are exact, since the line as such has no thickness dimension; but in computing the properties of an actual element with a thickness dimension, the results will be approximate for the reasons given in the AISI Manual.
III. CORRELATION OF SPECIFICATION AND ILLUSTRATIVE EXAMPLES

The tables on pages 4 through 11 provide an easy cross reference between design provisions of the Specification and the illustrative examples. The first table is based on the type of design examples. The second table is based on various sections of the Specification.

$$
\begin{aligned}
& \mathrm{I}_{1}=\left[\frac{\cos ^{2} \theta}{12}\right] l^{3}=\frac{\ln 2}{12} \\
& \mathrm{I}_{2}=\left[\frac{\sin ^{2} \theta}{12}\right] l^{3}=\frac{\ln :}{12}
\end{aligned}
$$

θ (expressed in radians) $=0.01745 \theta$ (expressed in degrees and decimals thereof)
$l=\left(\theta_{2}-\theta_{1}\right) \mathrm{R}$
$\mathrm{c}_{1}=\frac{\sin \theta_{2}-\sin \theta_{1}}{\theta_{2}-\theta_{1}} R, \quad \mathrm{c}_{2}=\frac{\cos \theta_{1}-\cos \theta_{2}}{\theta_{2}-\theta_{1}} \mathrm{R}$
$I_{1}=\left[\frac{\theta_{2}-\theta_{1}+\sin \theta_{2} \cos \theta_{2}-\sin \theta_{1} \cos \theta_{1}}{2}-\frac{\left(\sin \theta_{2}-\sin \theta_{1}\right)^{2}}{\theta_{2}-\theta_{1}}\right] R^{3}$
$\mathrm{I}_{2}=\left[\frac{\theta_{2}-\theta_{1}-\sin \theta_{2} \cos \theta_{2}+\sin \theta_{1} \cos \theta_{1}}{2}-\frac{\left(\cos \theta_{1}-\cos \theta_{1}\right)}{\theta_{1}-\theta_{1}}\right] R^{3}$
$I_{12}=\left[\frac{\sin 2 \theta_{2}-\sin ^{2} \theta_{1}}{2}+\frac{\left(\sin \theta_{2}-\sin \theta_{1}\right)\left(\cos \theta_{2}-\cos \theta_{1}\right)}{\theta_{2}-\theta_{1}}\right] R^{3}$
$=\left[\frac{\theta_{2}-\theta_{1}+\sin \theta_{2} \cos \theta_{2}-\sin \theta_{1} \cos \theta_{1}}{2}\right] R^{3}, I_{4}=\left[\frac{\theta_{2}-\theta_{1}-\sin \theta_{2} \cos \theta_{2}+\sin \theta_{1} \cos \theta_{1}}{2}\right] R^{3}, I_{34}=\left[\frac{\sin ^{2} \theta_{2}-\sin ^{2} \theta_{1}}{2}\right] R^{3}$

ZASE I: $\theta_{1}=0, \theta_{2}=90^{\circ}$

$l=1.57 \mathrm{R}, c=0.637 \mathrm{R}$
$I_{1}=I_{2}=0.149 \mathrm{R}^{3}$
$I_{12}=-0.137 R^{3}$
$I_{3}=I_{4}=0.785 \mathrm{R}^{3}$
$I_{34}=0.5 R^{3}$

CASE II: $\theta_{1}=0, \theta_{2}=\theta$

$$
\begin{aligned}
& l=\theta R \\
& c_{1}=\frac{R \sin \theta}{\theta} \\
& c_{2}=\frac{R(1-\cos \theta)}{\theta}
\end{aligned}
$$

$I_{1}=\left[\frac{\theta+\sin \theta \cos \theta}{2}-\frac{\sin \theta}{\theta}\right] R^{3}, I_{3}=\left[\frac{\theta-\sin \theta \cos \theta}{2}-\frac{(1-\cos \theta)^{2}}{\theta}\right] R^{3}$
$\mathrm{I}_{1:}=\left[\frac{\sin ^{2} \theta}{2}+\frac{\sin \theta(\cos \theta-1)}{\theta}\right] R^{3}$
$\mathrm{I}_{3}=\left[\frac{\theta+\sin \theta \cos \theta}{2}\right] \mathrm{R}^{3}, \quad \mathrm{I}_{4}=\left[\frac{\theta-\sin \theta \cos \theta}{2}\right] \mathrm{R}^{3}$
$I_{34}=\left[\frac{\sin ^{2} \theta}{2}\right] R^{3}$
Figure 1 Properties of Line Elements

CROSS REFERENCE BY EXAMPLE TO SPECIFICATION SECTION

```
PROBLEM NO. *
TITLE OF EXAMPLE
USE OF SECTION NO.
```

A. FLEXURAL MEMBERS

1
Channe1 w/Unstiffened Flanges
1.5.1,1.5.2,1.5.5,
2.1.1,2.2.1,2.2.2,2.3.1,
3.3.1.1, App. E.

2
Channel w/Stiffened Flanges
1.5.1,1.5.2,1.5.5,2.1.1,
2.1.2,2.2.1,2.2.2,
2.4,2.4.2,3.3.1.1,

App. E.
3
C-Section w/Bracing
1.5.1,1.5.2,1.5.5,2.1.1,
2.1.2,2.2.1,2.2.2,2.4,
2.4.2,3.3.1.1,

App. E.
4
Z-Section w/Stiffened Flanges
1.5.1,1.5.2,1.5.5,2.1.1,
2.1.2,2.2.1,2.2.2,2.4,
2.4.2,3.3.1.1,

App. E.

* Two design examples are included for each problem. The first example uses the LRFD method and the second example uses the ASD method.

Deep Z-Section w/Stiffened Flanges

Hat Section

Hat Section w/Intermediate
Stiffener

I-Section w/Unstiffened F1anges

Channel w/Lateral Buckling Consideration

Hat Section Using Inelastic Reserve Capacity

Deck Section
1.5.1,1.5.2,1.5.5, 2.2.1,2.1.1,2.2.2, 2.4,2.4.2,3.3.1.1, App. E.
1.5.1,1.5.2,1.5.5,
2.1.1,2.1.2,2.2.1, 2.2.2,3.3.1,3.3.1.1, 3.3.2,3.3.4,App. E. 1.5.1,1.5.2,1.5.5, 2.1.1,2.1.2,2.2.1,2.2.2, 2.4,2.4.1,3.3.1,3.3.1.1, App. E.
1.5.5,2.1.1,2.2.1,2.2.2, 3.3.1.1,3.3.1.2, App. E.
1.5.5,2.1.1,2.2.1,2.2.2, 2.3.1,3.3.1.1,3.3.1.2, 3.3.2,3.3.3,3.3.4,
3.3.5,App. E.
1.5.5,2.1.1,2.1.2,2.2.1, 2.2.2,3.3.1.1, App. E.
1.5.5,2.1.1,2.1.2,
2.2.1,2.2.2,2.4, 2.4.2,3.3.1.1,3.3.2,
3.3.3,3.3.4,App. E.

Flange Curling

Shear Lag
Cylindrical Tubular Section
-
B. COMPRESSION MEMBERS

15

16

17

18

19

20

21

C-Section

C-Section w/Wide Flanges

I-Section

I-Section w/Lips

T-Section

Tubular Section - Square

Tubular Section - Round
$1.5 .5,3.6,3.6 .1$, App. E
1.5.5,2.1.1,2.2.1,2.2.2, 2.3.1,3.3.1.1,App. E 2.1.1,2.1.2,2.2.1,2.2.2, 3.3.1.1,App. E
1.5.5,2.1.1,2.2.1,2.4,
2.4.2,3.4,3.4.1,3.4.2,
3.4.3,App. B, App. E
1.5.5,2.1.1,2.2.1,
$2.4,2.4 .2,3.4,3.4 .1$,
3.4.2,3.4.3,App. E
1.5.5,2.2.1,2.2.2,2.4,
2.4.2,3.4.1,3.4.2,
3.4.3,App. B, App. E
1.5.5,2.2.1,2.2.2,2.4,
2.4.2,3.4.1,3.4.2,
3.4.3,App. E
1.5.5,2.2.1,2.2.2,2.4,
2.4.2,3.4.1,3.4.2,
3.4.3,App. E
1.5.5,2.1.1,2.2.1,
3.4,3.4.1,App.E
1.5.5,3.4.1,3.6,
3.6.1,3.6.2,App. E
C. BEAM-COLUMN MEMBERS

22

23
C-Section

Tubular Section
D. CONNECTIONS Connection in Butt Joint

Flat Section w/Bolted Connection	$3.2,5.3,5.3 .1,5.3 .2$,
	$5.3 .3,5.3 .4$, App. E
Flat Section w/Lap Fillet Welded	$5.2,5.2 .2$, App. E
Connection	

Flat Section w/Groove Welded

Built-Up Section - Connecting Two Channels
1.5.5,2.1.2,2.2.1,
2.2.2,2.4,2.4.2,3.3.1.2.
3.4,3.4.1,3.4.2,
3.4.3,3.5,App. E
1.5.5,2.1.1,2.1.2, 2.2.1,2.2.2,3.3.1.1, 3.4,3.4.1,3.5,App. E
5.2,5.2.1,App.E 4.1,4.1.1,5.2.3,App.E

1. General Provisions
1.1
1.2
1.3
1.4
1.5
1.5.1 $1,2,3,4,5,6,7$
1.5.2
$1,2,3,4,5,6,7$
1.5.3
1.5 .4
1.5 .5
$1,2,3,4,5,6,7,8,9,10,11,12,13$, $15,16,17,18,19,20,21,22,23$
1.6
2. Elements
2.1
2.1.1
$1,2,3,4,5,6,7,8,9,10,11,13,14$, $15,16,17,20,21,22,23$
2.1.2
$2,3,4,5,6,7,10,11,14,19,20,21$, 22,23

[^2]2.2
2.2 .1
$1,2,3,4,5,6,7,8,9,10,11,13,14$, $15,16,17,18,19,20,22,23$
$1,2,3,4,5,6,7,8,9,10,11,13,14$, 22,23
2.3
2.3.1
2.3.2
2.4
2.4 .1
2.4 .2
2.5
2.6

3. Members

3.1
3.2

21
3.3

3.3 .1	6,7
3.3 .1 .1	$1,2,3,4,5,6,7,8,9,10,11,13$,
	14,23
3.3 .1 .2	$8,9,22$
3.3 .2	$6,9,11$
3.3 .3	9,11
3.3 .4	$6,9,11$
3.3 .5	9
3.4	9

$15,16,17,18,19,20,21,22,23$
$15,16,17,18,19,22$
$15,16,17,18,19,22$
22,23
12,21
12,21

3.4 .1
3.4 .2
3.4 .3
3.5
3.6
3.6 .1
3.6 .2
3.6 .3

3.7

4. Structural Assemblies
4.1

27
4.1 .1
4.1 .2
4.2
4.3
4.3 .1
4.3 .2
4.3.3

5. Connections and Joints

5.1

5.2

5.2 .1
5.2 .2
5.2 .3
5.3
5.3.1

21

27
\qquad
5.3 .2 24
5.3 .3 24
5.3.4 24

24 24 24
6. Tests

6. Tests
6.1

6.1
6.2
6.3

App. B Modified Ramberg-Osgood 15,17 Equation

App. E Allowable Stress Design All examples using ASD method (ASD)
IV. ILLUSTRATIVE EXAMPLE

EXAMPLE 1.1 CHANNEL W/UNSTIFFENED FLANGES (LRFD)

By using the Load and Resistance Factor Design (LRFD) method, determine the design flexural strength, $\Phi_{b} M_{n}$, based on initiation of yielding. Also determine the effective moment of inertia for deflection determination at the service moment. Use the following two types of stainless steels: (A) Type 301, 1/4-Hard and (B) Type 409. Assume dead load to live load ratio $D / L=$ $1 / 5$ and $1.2 \mathrm{D}+1.6 \mathrm{~L}$ governs the design.

Corner Line Element

Figure 1.1 Section for Example 1.1

Given:

1. Section: $6^{\prime \prime} \times 1.625^{\prime \prime} \times 0.060^{\prime \prime}$ channel with unstiffened flanges.
2. Compression flange braced against lateral buckling.

Solution:

(A) Type 301 Stainless Steel, 1/4-Hard.

1. Calculation of the design flexural strength, $\Phi_{b} M_{n}$:
a. Properties of 90° corners:
$\mathrm{r}=\mathrm{R}+\mathrm{t} / 2=3 / 32+0.060 / 2=0.124 \mathrm{in}$.
Length of arc, $u=1.57 \mathrm{r}=1.57 \times 0.124=0.195 \mathrm{in}$.
Distance of c.g. from center of radius,
$c=0.637 \mathrm{r}=0.637 \times 0.124=0.079 \mathrm{in}$.
b. Computation of I_{x}, S_{e}, and M_{n} :

For the first approximation, assume a compression stress of $\mathrm{f}=\mathrm{F}_{\mathrm{y}}=50 \mathrm{ksi}$ (yield strength in longitudinal compression, Table Al of the Standard Specification) in the top fiber of the section and that the web is fully effective.

Compression flange: $k=0.50$ (for unstiffened compression element, see Section 2.3.1)

$$
\begin{aligned}
& \mathrm{w} / \mathrm{t}=1.471 / 0.060=24.52<50 \text { OK (Section 2.1.1-(1)-(iii)) } \\
& \lambda=(1.052 / \sqrt{\mathrm{k}})(\mathrm{w} / \mathrm{t}) \sqrt{\mathrm{f} / \mathrm{E}_{\mathrm{O}}}
\end{aligned}
$$

The initial modulus of elasticity, E_{0}, for Type 301 stainless steel is obtained from Table A4 of the Standard, i.e., $E_{0}=27000 \mathrm{ksi}$.
$\lambda=(1.052 / \sqrt{0.50})(24.52) \sqrt{50 / 27000}=1.570>0.673$
$\rho=[1-(0.22 / \lambda)] / \lambda$
(Eq. 2.2.1-3)
$=[1-(0.22 / 1.570)] / 1.570=0.548$
b $=\rho \omega$
(Eq. 2.2.1-2)
$=0.548 \times 1.471$
$=0.806 \mathrm{in}$.

Effective section properties about x-axis:

Element	```L Effective Length (in.)```	```y Distance from Top Fiber (in.)```	$\underset{\left(\text { in. }^{2}\right)}{\text { Ly }}$	$\begin{gathered} \mathrm{Ly}^{2} \\ \left(\text { in. }{ }^{3}\right) \end{gathered}$	I^{\prime} About Own Axis (in. ${ }^{3}$)
Web	5.692	3.000	17.076	51.228	15.368
Upper Corner	0.195	0.075	0.015	0.001	--
Lower Corner	0.195	5.925	1.155	6.846	--
Compression Flange	0.806	0.030	0.024	0.001	--
Tension Flange	1.471	5.970	8.782	52.428	--
Sum	8.359		27.052	110.504	15.368

Distance from top fiber to x-axis is

$$
y_{c g}=27.052 / 8.359=3.236 \mathrm{in} .
$$

Since the distance from top compression fiber to the neutral axis is greater than one half the beam depth, a compression stress of 50 ksi will govern as assumed (i.e., initial yield is in compression).

To check if web is fully effective (Section 2.2.2):

$$
\begin{aligned}
\mathbf{f}_{1} & =[(3.236-0.154) / 3.236] \times 50=47.62 \mathrm{ksi}(\text { compression }) \\
\mathbf{f}_{2} & =-[(2.764-0.154) / 3.236] \times 50=-40.33 \mathrm{ksi}(\text { tension }) \\
\Psi & =f_{2} / f_{1}=-40.33 / 47.62=-0.847 \\
\mathbf{k} & =4+2(1-\Psi)^{3}+2(1-\Psi) \\
& =4+2[1-(-0.847)]^{3}+2[1-(-0.847)] \\
& =20.296 \\
\mathbf{h} & =w=5.692 \mathrm{in} ., \mathrm{h} / \mathrm{t}=\mathrm{w} / \mathrm{t}=5.692 / 0.060=94.87
\end{aligned}
$$

$$
\begin{align*}
\mathrm{h} / \mathrm{t} & =94.87<200 \text { OK }(\text { Section } 2.1 .2-(1)) \\
\lambda & =(1.052 / \sqrt{20.296})(94.87) \sqrt{47.62 / 27000}=0.930>0.673 \\
\rho & =[1-(0.22 / 0.930)] / 0.930=0.821 \\
\mathrm{~b}_{\mathrm{e}} & =0.821 \times 5.692=4.673 \mathrm{in} . \\
\mathrm{b}_{2} & =\mathrm{b}_{\mathrm{e}} / 2 \tag{Eq.2.2.2-2}\\
& =4.673 / 2=2.337 \mathrm{in} . \\
\mathrm{b}_{1} & =\mathrm{b}_{\mathrm{e}} /(3-\Psi) \\
& =4.673 /[3-(-0.847)]=1.215 \mathrm{in} .
\end{align*}
$$

(Eq. 2.2.2-1)

The effective widths, b_{1} and b_{2}, of web are defined in Figure 2 of the Standard.

$$
b_{1}+b_{2}=1.215+2.337=3.552 \mathrm{in} .
$$

Compression portion of the web calculated on the basis of the effective section $=y_{c g}-0.154=3.236-0.154=3.082 \mathrm{in}$.

Since $b_{1}+b_{2}=3.552$ in. >3.082 in., $b_{1}+b_{2}$ shall be taken as 3.082 in.. This verifies the assumption that the web is fully effective.

$$
\begin{aligned}
I_{x}^{\prime} & =L_{y^{2}+I_{1}^{\prime}}-L_{y^{2}}^{c g} \\
& =110.504+15 \\
& =38.339 \mathrm{in}^{3} \\
\text { Actual } I_{x} & =I_{x}^{\prime} \\
& =38.339 x 0.060 \\
& =2.300 \mathrm{in} .4 \\
& =I_{x} / y_{c g} \\
S_{e} & =2.300 / 3.236 \\
& =0.711 \mathrm{in} .{ }^{3} \\
& =S_{e} F_{y}
\end{aligned}
$$

$$
=110.504+15.368-8.359(3.236)^{2}
$$

(Eq. 3.3.1.1-1)

$$
\begin{aligned}
& =0.711 \times 50 \\
& =35.55 \mathrm{kips}-\mathrm{in}
\end{aligned}
$$

c. The design flexural strength, $\Phi_{b} M_{n}$, based on initiation of yielding is determined as follows: (Section 3.3.1.1(1))
$\phi_{b} \quad=0.85$ (for section with unstiffened compression flanges)
$\Phi_{b} M_{n} \quad=0.85 \times 35.55=30.22 \mathrm{kips}-\mathrm{in}$. (positive bending)
2. Calculation of the effective moment of inertia for deflection determination at the service moment M_{s} :

The unfactored loads are used to determine the section properties for deflection determination. For a load combination of $1.2 \mathrm{D}+1.6 \mathrm{~L}$, the service moment can be determined as follows:

$$
\begin{aligned}
\phi_{b} M_{n} & =1.2 M_{D L}+1.6 M_{L L} \\
& =\left[1.2\left(M_{D L} / M_{L L}\right)+1.6\right] M_{L L} \\
& =[1.2(1 / 5)+1.6] M_{L L} \\
& =1.84 M_{L L} \\
M_{L L} & =\phi_{b} M_{n} / 1.84=30.22 / 1.84=16.42 \mathrm{kips}-\mathrm{in} . \\
M_{s} & =M_{D L}+M_{L L} \\
& =(1 / 5+1) M_{L L} \\
& =1.2(16.42)=19.70 \mathrm{kips}-\mathrm{in} .
\end{aligned}
$$

where

$$
\begin{aligned}
& M_{D L}=\text { Moment determined on the basis of nominal dead load } \\
& M_{L L}=\text { Moment determined on the basis of nominal live load }
\end{aligned}
$$

stress f under this service moment M_{s}. Knowing f, proceeds as usual to obtain S_{e} and checks to see if (f $x S_{e}$) is equal to M_{s} as it should. If not, reiterate until one obtains the desired level of accuracy.
a. For the first iteration, assume a stress of $f=F_{y} / 2=25 \mathrm{ksi}$ in the top and bottom fibers of the section and that the web is fully effective.

For deflection determination, the value of E_{r}, reduced modulus of elasticity determined by using Eq. (2.2.1-7), is substituted for E_{0} in Eq. (2.2.1-4). For a compression and tension stresses of $f=25 \mathrm{ksi}$, the corresponding $E_{S C}$ and $E_{s t}$ values for Type 301 stainless steel are obtained from Table A2
or Figure A1 of the Standard as follows:
$E_{S C}=25650 \mathrm{ksi}, \quad E_{s t}=27000 \mathrm{ksi}$
$E_{r}=\left(E_{s c}+E_{s t}\right) / 2$
(Eq. 2.2.1-7)
$=(25650+27000) / 2=26325 \mathrm{ksi}$
Thus, for compression flange:

$$
\begin{aligned}
\lambda & =(1.052 / \sqrt{0.50})(24.52) \sqrt{25 / 26325}=1.124>0.673 \\
\rho & =[1-(0.22 / 1.124)] / 1.124=0.716 \\
b_{d} & =\rho w \\
& =0.716 \times 1.471=1.053 \mathrm{in} .
\end{aligned}
$$

Effective section properties about x-axis:
$L=8.359-0.806+1.053=8.606 \mathrm{in}$.
$L y=27.052-0.024+1.053 \times 0.030=27.060$ in 2
$L y^{2}=110.504-0.001+1.053(0.030)^{2}=110.504$ in. ${ }^{3}$

$$
I_{1}^{\prime}=15.368 \mathrm{in}^{3}
$$

$y_{c g}=27.060 / 8.606=3.144$ in. which is greater than one half beam depth. Thus, the top compression fiber controls the determination of S_{e}.

To check if web is fully effective (Section 2.2.2-(2)):

$$
\begin{aligned}
& \mathbf{f}_{1}=[(3.144-0.154) / 3.144] \times 25=23.78 \mathrm{ksi} \\
& \mathbf{f}_{2}=-[(2.856-0.154) / 3.144] \times 25=-21.49 \mathrm{ksi} \\
& \Psi=-21.49 / 23.78=-0.904 \\
& \mathbf{k}=4+2[1-(-0.904)]^{3}+2[1-(-0.904)]=21.613
\end{aligned}
$$

For a compression stress of $f=23.78 \mathrm{ksi}$ and a tension stress of $f=21.49 \mathrm{ksi}$, the values of $E_{s c}$ and $E_{s t}$ are found as follows: $E_{s c}=26244 \mathrm{ksi}, \quad \mathrm{E}_{\mathrm{st}}=27000 \mathrm{ksi}$.

$$
\begin{aligned}
E_{r} & =\left(E_{S C}+E_{s t}\right) / 2 \\
& =(26244+27000) / 2=26622 \mathrm{ksi}
\end{aligned}
$$

$$
\lambda=(1.052 / \sqrt{21.613})(94.87) \sqrt{23.78 / 26622}=0.642<0.673
$$

$$
\begin{equation*}
\mathrm{b}_{\mathrm{e}}=\mathrm{w} \tag{Eq.2.2.1-1}
\end{equation*}
$$

$$
=5.692 \mathrm{in}
$$

$$
\mathrm{b}_{2}=5.692 / 2=2.846 \mathrm{in} .
$$

$$
b_{1}=5.692 /[3-(-0.904)]=1.458 \mathrm{in}
$$

Compression portion of the web calculated on the basis of the effective section $=3.144-0.154=2.990$ in..

Since $b_{1}+b_{2}=4.304$ in. >2.990 in., $b_{1}+b_{2}$ shall be taken as 2.990 in.. This verifies the assumption that the web is fully effective.

$$
\begin{aligned}
I_{\mathbf{x}}^{\prime} & =110.504+15.368-8.606(3.144)^{2} \\
& =40.804 \mathrm{in} .^{3} \\
\text { Actual } I_{\mathbf{x}} & =40.804 \times 0.060 \\
& =2.448 \mathrm{in} .^{4} \\
& =2.448 / 3.144=0.779 \mathrm{in} .^{3} \\
S_{e} & =f \times S_{e}=25 \times 0.779 \\
M & =19.48 \mathrm{kips}-\mathrm{in} .<\mathrm{M}_{\mathbf{s}}=19.70 \mathrm{kips}-\mathrm{in} .
\end{aligned}
$$

Need to do another iteration by increasing f.
b. For the second iteration, assume $f=25.50 \mathrm{ksi}$ in the top and bottom fibers of the section and that the web is fully effective.

Compression flange:

For a stress of $f=25.50 \mathrm{ksi}, \mathrm{E}_{\mathrm{sc}}=25375 \mathrm{ksi}$ and $\mathrm{E}_{\mathrm{st}}=27000 \mathrm{ksi}$, and $E_{r}=(25375+27000) / 2=26188 \mathrm{ksi}$. Thus,

$$
\begin{aligned}
& \lambda=(1.052 / \sqrt{0.50})(24.52) \sqrt{25.50 / 26188}=1.138>0.673 \\
& \rho=[1-(0.22 / 1.138)] / 1.138=0.709 \\
& b_{d}=0.709 \times 1.471=1.043 \mathrm{in} .
\end{aligned}
$$

Effective section properties about x-axis:

$$
\mathrm{L}=8.359-0.806+1.043=8.596 \mathrm{in} .
$$

$$
L y=27.052-0.024+1.043 \times 0.030=27.059 \mathrm{in}^{2}
$$

$L y^{2}=110.504-0.001+1.043(0.030)^{2}=110.504$ in. 3
$I_{1}^{\prime}=15.368 \mathrm{in} .^{3}$
$y_{c g}=27.059 / 8.596=3.148$ in. which is greater than one half beam depth. Thus, the top compression fiber controls the determination of S_{e}.

To check if web is fully effective:

$$
\begin{aligned}
& \mathbf{f}_{1}=[(3.148-0.154) / 3.148] \times 25.50=24.25 \mathrm{ksi} \\
& \mathbf{f}_{2}=-[(2.825-0.154) / 3.148] \times 25.50=-21.85 \mathrm{ksi} \\
& \Psi=-21.85 / 24.25=-0.901 \\
& \mathbf{k}=4+2[1-(-0.901)]^{3}+2[1-(-0.901)]=21.542
\end{aligned}
$$

For a compression stress of $f=24.25 \mathrm{ksi}, \mathrm{E}_{\mathrm{sc}}=26063 \mathrm{ksi}$, and for a tension stress of $f=21.85 \mathrm{ksi}, E_{s t}=27000 \mathrm{ksi}$. Thus, $E_{r}=(26063+27000) / 2=26532 \mathrm{ksi}$.
$\lambda=(1.052 / \sqrt{21.542})(94.87) \sqrt{24.25 / 26532}=0.650<0.673$
$b_{e}=5.692 \mathrm{in}$.
$b_{2}=5.692 / 2=2.846 \mathrm{in}$.
$b_{1}=5.692 /[3-(-0.901)]=1.459 \mathrm{in}$.
Compression portion of the web calculated on the basis of the effective section $=3.148-0.154=2.994 \mathrm{in}$.

Since $b_{1}+b_{2}=4.305$ in. >2.994 in., $b_{1}+b_{2}$ shall be taken as 2.994 in.. This verifies the assumption that the web is fully effective.

$$
\begin{aligned}
I_{X}^{\prime} & =110.504+15.368-8.596(3.148)^{2} \\
& =40.686 \mathrm{in.}^{3} \\
\text { Actual } I_{X} & =40.686 \mathrm{x} 0.060 \\
& =2.441 \mathrm{in.}^{4} \\
& =2.441 / 3.148=0.775 \mathrm{in} .^{3}
\end{aligned}
$$

$$
\begin{aligned}
M & =f \times S_{e}=25.50 \times 0.775 \\
& =19.76 \text { kips-in. }=M_{s} O K
\end{aligned}
$$

Thus, use $I_{x}=2.441$ in. ${ }^{4}$ for deflection determination.
(B) Type 409 Stainless Steel.

1. Calculation of the design flexural strength, $\Phi_{b} M_{n}$:
a. Properties of 90° corners:

From Case (A) above,
$r=0.124$ in. $\quad u=0.195 \mathrm{in} ., \quad c=0.079 \mathrm{in}$.
b. Computation of I_{x}, S_{e}, and M_{n} :

For the first approximation, assume a compression stress of $f=F_{y}=30 \mathrm{ksi}$ (yield strength in longitudinal compression, Table A1 of the Standard Specification) in the top fiber of the section and that the web is fully effective.

Compression flange: $k=0.50$ (for unstiffened compression element, see Section 2.3.1)

$$
\begin{align*}
& \mathrm{w} / \mathrm{t}=1.471 / 0.060=24.52<50 \mathrm{OK} \text { (Section 2.1.1-(1)-(iii)) } \\
& \lambda=(1.052 / \sqrt{\mathrm{k}})(\mathrm{w} / \mathrm{t}) \sqrt{\mathrm{f} / \mathrm{E}_{\mathrm{o}}} \tag{Eq.2.2.1-4}
\end{align*}
$$

The initial modulus of elasticity, E_{0}, for Type 409 stainless
steel is obtained from Table A5 of the Standard, i.e., $\mathrm{E}_{\mathrm{o}}=27000 \mathrm{ksi}$.

$$
\begin{aligned}
& \lambda=(1.052 / \sqrt{0.50})(24.52) \sqrt{30 / 27000}=1.216>0.673 \\
& \rho=[1-(0.22 / \lambda)] / \lambda
\end{aligned}
$$

$$
\begin{aligned}
& =[1-(0.22 / 1.216)] / 1.216=0.674 \\
\mathrm{~b} & =\rho \mathrm{w} \\
& =0.674 \times 1.471 \\
& =0.991 \mathrm{in} .
\end{aligned}
$$

(Eq. 2.2.1-2)

Effective section properties about x-axis:

Element	L Effective Length (in.)	```y Distance from Top Fiber (in.)```	$\begin{gathered} \text { Ly } \\ \left(\text { in. }{ }^{2}\right) \end{gathered}$	$\begin{gathered} L y^{2} \\ \left(\text { in. }{ }^{3}\right) \end{gathered}$	$\begin{aligned} & I^{\prime} \\ & \text { About } \\ & \text { Own } \\ & \text { Axis } \\ & \left(\text { in. }{ }^{3}\right. \text {) } \end{aligned}$
Web	5.692	3.000	17.076	51.228	15.368
Upper Corner	0.195	0.075	0.015	0.001	--
Lower Corner	0.195	5.925	1.155	6.846	--
Compression Flange	0.991	0.030	0.030	0.001	--
Tension Flange	1.471	5.970	8.782	52.428	--
Sum	8.544		27.058	110.504	15.368

Distance from top fiber to x-axis is

$$
y_{c g}=27.058 / 8.544=3.167 \mathrm{in}
$$

Since the distance from top compression fiber to the neutral axis is greater than one half the beam depth, a compression stress of 30 ksi will govern as assumed (i.e., initial yield is in compression).

To check if web is fully effective (Section 2.2.2):

$$
\begin{aligned}
\mathbf{f}_{1} & =[(3.167-0.154) / 3.167] \times 30=28.54 \mathrm{ksi}(\text { compression }) \\
\mathbf{f}_{2} & =-[(2.833-0.154) / 3.167] \times 30=-25.38 \mathrm{ksi}(\text { tension }) \\
\Psi & =\mathbf{f}_{2} / \mathbf{f}_{1}=-25.38 / 28.54=-0.889
\end{aligned}
$$

$$
\begin{align*}
\mathrm{k} & =4+2(1-\Psi)^{3}+2(1-\Psi) \\
& =4+2[1-(-0.889)]^{3}+2[1-(-0.889)] \\
& =21.259 \\
\mathrm{~h} & =w=5.692 \mathrm{in.}, \mathrm{~h} / \mathrm{t}=\mathrm{w} / \mathrm{t}=5.692 / 0.060=94.87 \\
\mathrm{~h} / \mathrm{t} & =94.87<2000 \mathrm{OK}(\text { Section } 2.1 .2-(1)) \\
\mathrm{A} & =(1.052 / \sqrt{21.259})(94.87) \sqrt{28.54 / 27000}=0.704>0.673 \\
\rho & =[1-(0.22 / 0.704)] / 0.704=0.977 \\
\mathrm{~b}_{\mathrm{e}} & =0.977 \times 5.692=5.561 \mathrm{in} . \\
\mathrm{b}_{2} & =\mathrm{b}_{\mathrm{e}} / 2 \tag{Eq.2.2.2-2}\\
& =5.561 / 2=2.781 \mathrm{in} . \\
\mathrm{b}_{1} & =\mathrm{b}_{\mathrm{e}} /(3-\Psi) \tag{Eq.2.2.2-1}\\
& =5.561 /[3-(-0.889)]=1.430 \mathrm{in} .
\end{align*}
$$

The effective widths, b_{1} and b_{2}, are defined in Figure 2 of the Standard.
$b_{1}+b_{2}=1.430+2.781=4.211$ in.
Compression portion of the web calculated on the basis of the
effective section $=y_{c g}-0.154=3.167-0.154=3.013 \mathrm{in}$.

Since $b_{1}+b_{2}=4.211$ in. >3.013 in., $b_{1}+b_{2}$ shall be taken as 3.013 in.. This verifies the assumption that the web is fully effective.

$$
\begin{aligned}
I_{x}^{\prime} \quad & =L y^{2}+I_{1}^{\prime}{ }_{1}-\mathrm{Ly}^{2}{ }_{\mathrm{cg}} \\
& =110.504+15.368-8.544(3.167)^{2} \\
& =40.177 \text { in. }^{3}
\end{aligned}
$$

$$
\begin{aligned}
\text { Actual } I_{x} & =I^{\prime} x^{t} \\
& =40.177 \times 0.060 \\
& =2.411 \text { in. }
\end{aligned}
$$

$$
\begin{align*}
\mathrm{S}_{\mathrm{e}} & =\mathrm{I}_{\mathrm{x}} / y_{\mathrm{cg}} \\
& =2.411 / 3.167 \\
& =0.761 \mathrm{in}^{3} \\
M_{\mathrm{n}} \quad & =\mathrm{S}_{\mathrm{e}} \mathrm{~F}_{\mathrm{y}} \tag{Eq.3.3.1.1-1}\\
& =0.761 \times 30 \\
& =22.83 \mathrm{kips}-\mathrm{in} .
\end{align*}
$$

c. The design flexural strength, $\Phi_{b} M_{n}$, based on initiation of yielding is determined as follows: (Section 3.3.1.1(1))
$\Phi_{\mathrm{b}} \quad=0.85$ (for section with unstiffened compression flanges)
$\Phi_{b} M_{n} \quad=0.85 \times 22.83=19.41 \mathrm{kips}-\mathrm{in}$. (positive bending)
2. Calculation of the effective moment of inertia for deflection determination at the service moment M_{s} :

The unfactored loads are used to determine the section properties for deflection determination. For a load combination of 1.2D+1.6L, the service moment can be determined as follows:

$$
\begin{aligned}
\Phi_{b} M_{\mathrm{n}} & =1.2 M_{\mathrm{DL}}+1.6 M_{\mathrm{LL}} \\
& =\left[1.2\left(M_{\mathrm{DL}} / M_{L L}\right)+1.6\right] M_{\mathrm{LL}} \\
& =[1.2(1 / 5)+1.6] M_{\mathrm{LL}} \\
& =1.84 M_{\mathrm{LL}} \\
M_{L L} & =\Phi_{b} M_{\mathrm{n}} / 1.84=19.41 / 1.84=10.55 \mathrm{kips}-\mathrm{in} . \\
M_{\mathrm{s}} & =M_{D L}+M_{L L} \\
& =(1 / 5+1) M_{\mathrm{LL}} \\
& =1.2(10.55)=12.66 \mathrm{kips}-\mathrm{in} .
\end{aligned}
$$

where

$$
\begin{aligned}
& M_{D L}=\text { Moment determined on the basis of nominal dead load } \\
& M_{L L}=\text { Moment determined on the basis of nominal live load }
\end{aligned}
$$

The procedure is iterative: one assumes the actual compressive stress f under this service moment M_{s}. Knowing f, proceeds as usual to obtain S_{e} and checks to see if ($f \times S_{e}$) is equal to M_{s} as it should. If not, reiterate until one obtains the desired level of accuracy.
a. For the first iteration, assume a stress of $f=F_{y} / 2=15 \mathrm{ksi}$ in the top and bottom fibers of the section and that the web is fully effective. For deflection determination, the value of E_{I}, reduced modulus of elasticity determined by Eq. (2.2.1-7), is substituted for E_{o} in Eq. (2.2.1-4). For a compression and tension stress of $f=15 \mathrm{ksi}$, the corresponding E_{sc} and $\mathrm{E}_{\text {st }}$ values for Type 409 stainless steel are obtained from Table A3 or Figure A2 of the Standard as follows:

$$
E_{s c}=26850 \mathrm{ksi}, \quad E_{s t}=26930 \mathrm{ksi}
$$

$$
\begin{equation*}
E_{r}=\left(E_{s c}+E_{s t}\right) / 2 \tag{Eq.2.2.1-7}
\end{equation*}
$$

$=(26850+26930) / 2=26890 \mathrm{ksi}$
Thus, for compression flange:

$$
\begin{align*}
\lambda & =(1.052 / \sqrt{0.50})(24.52) \sqrt{15 / 26890}=0.862>0.673 \\
\rho & =[1-(0.22 / 0.862)] / 0.862=0.864 \\
b_{d} & =\rho w \tag{Eq.2.2.1-6}\\
& =0.864 \times 1.471=1.271 \mathrm{in} .
\end{align*}
$$

Effective section properties about x-axis:
$\mathrm{L}=8.544-0.991+1.271=8.824 \mathrm{in}$.
$L y=27.058-0.030+1.271 \times 0.030=27.066 \mathrm{in} .^{2}$
$L y^{2}=110.504-0.001+1.271(0.030)^{2}=110.504$ in 3
$I_{1}^{\prime}=15.368 \mathrm{in} .{ }^{3}$
$y_{c g}=27.066 / 8.824=3.067$ in. which is greater than one half beam depth. Thus, the top compression fiber controls the determination of S_{e}.

To check if web is fully effective (Section 2.2.2-(2)):

$$
\begin{aligned}
& \mathrm{f}_{1}=[(3.067-0.154) / 3.067] \times 15=14.25 \mathrm{ksi} \\
& \mathrm{f}_{2}=-[(2.933-0.154) / 3.067] \times 15=-13.59 \mathrm{ksi} \\
& \Psi \quad=-13.59 / 14.25=-0.954 \\
& \mathbf{k} \quad=4+2[1-(-0.954)]^{3}+2[1-(-0.954)]=22.829
\end{aligned}
$$

For a compression stress of $f=14.25 \mathrm{ksi}$ and a tension stress of $f=13.59 \mathrm{ksi}$, the values of $E_{s c}$ and $E_{s t}$ are found as follows, respectively: $E_{s c}=26890 \mathrm{ksi}, \mathrm{E}_{\mathrm{st}}=26940 \mathrm{ksi}$.

$$
\begin{aligned}
E_{r} & =\left(E_{s c}+E_{s t}\right) / 2 \\
& =(26890+26940) / 2=26920 \mathrm{ksi} \\
\lambda & =(1.052 / \sqrt{22.829})(94.87) \sqrt{14.25 / 26920}=0.481<0.673 \\
b_{e} & =w \\
& =5.692 \mathrm{in} . \\
b_{2} & =5.692 / 2=2.846 \mathrm{in} . \\
b_{1} & =5.692 /[3-(-0.954)]=1.440 \mathrm{in} .
\end{aligned}
$$

Compression portion of the web calculated on the basis of the effective section $=3.067-0.154=2.913 \mathrm{in}$.

Since $b_{1}+b_{2}=4.286$ in. >2.913 in., $b_{1}+b_{2}$ shall be taken as 2.913 in.. This verifies the assumption that the web is fully effective.

$$
\begin{aligned}
I_{x}^{\prime} & =110.504+15.368-8.824(3.067)^{2} \\
& =42.869 \mathrm{in.}^{3} \\
\text { Actual } I_{x} & =42.869 \times 0.060 \\
& =2.572 \mathrm{in.}^{4} \\
& =2.572 / 3.067=0.839 \mathrm{in}^{3} \\
\mathrm{~S}_{\mathrm{e}} & =\mathrm{f} \times \mathrm{S}_{\mathrm{e}}=15 \times 0.839 \\
M & =12.59 \mathrm{kips}-\mathrm{in} . \cong \mathrm{M}_{\mathrm{s}}=12.66 \mathrm{kips}-\mathrm{in} . \quad \text { (close enough) }
\end{aligned}
$$

Therefore, need no further iteration. Use $I_{x}=2.572$ in. ${ }^{4}$ for deflection determination.

Use the data given in Example 1.1 (Figure 1.1) to determine the allowable moment, M_{a}, by using the Allowable Stress Design (ASD) method on the basis of initiation of yielding. Also determine the effective moment of inertia for deflection determination at the allowable moment. Use Type 301 stainless steel, 1/4-Hard: $\mathrm{F}_{\mathrm{y}}=50 \mathrm{ksi}$.

Solution:

1. Calculation of the allowable moment, M_{a} :

The effective section properties calculated by the ASD method are the same as those determined in Example 1.1 by the LRFD method. Therefore, the allowable moment can be determined in accordance with Appendix E of the Standard as follows:

```
\Omega=1.85 (Safety Factor stipulated in Table E of the Standard)
```

$M_{n}=35.55$ kips-in. (obtained from Example 1.1)
$M_{a}=M_{n} / \Omega$
$=35.55 / 1.85$
$=19.22 \mathrm{kips}-\mathrm{in}$.
2. Calculation of the effective moment of inertia for deflection determination at the allowable moment M_{a} :

For deflection determination on the basis of the ASD method, the effective moment of inertia is determined by the same procedures given in Example 1.1 for the LRFD method, except that the computed moment $M\left(=f x S_{e}\right)$ should be equal to M_{a}.

From the results of Example 1.1 , it can be seen that by assuming a compression stress of $f=F_{y} / 2=25 \mathrm{ksi}$, the computed $f \times S_{e}=$ $25 \times 0.779=19.48$ kips-in., which is close to the allowable moment, $M_{a}=19.22$ kips-in. Therefore, the computed $I_{x}=2.448 \mathrm{in}^{4}$ can be used for deflection determination.

EXAMPLE 2.1 CHANNEL W/STIFFENED FLANGES (LRFD)

By using the Load and Resistance Factor Design (LRFD) method, determine the design flexural strength, $\Phi_{b} M_{n}$, based on initiation of yielding. Also determine the effective moment of inertia for deflection determination at the service moment. Use Type 301 stainless steel, 1/4-Hard. Assume dead load to live load ratio $D / L=1 / 5$ and $1.2 D+1.6 \mathrm{~L}$ governs the design.

Corner Line Element

Figure 2.1 Section for Example 2.1

Given:

1. Section: $6^{\prime \prime} \times 1.625^{\prime \prime} \times 0.060^{\prime \prime}$ channel with stiffened flanges.
2. Compression flange braced against lateral buckling.

Solution:

1. Calculation of the design flexural strength, $\Phi_{b} M_{n}$:
a. Properties of 90° corners:
$r=R+t / 2=3 / 32+0.060 / 2=0.124 \mathrm{in}$.
Length of arc, $u=1.57 r=1.57 \times 0.124=0.195 \mathrm{in}$.

Distance of c.g. from center of radius,
$c=0.637 \mathrm{r}=0.637 \times 0.124=0.079 \mathrm{in}$.
b. Computation of I_{x}, S_{e}, and M_{n} :

For the first approximation, assume a compression stress of $f=F_{y}=50 \mathrm{ksi}$ (yield strength in longitudinal compression, Table A1 of the Standard) in the top fibers of the section and that the web is fully effective.

Compression flange: (Section 2.4.2)

$$
\begin{aligned}
\mathrm{w} & =1.317 \mathrm{in} . \\
\omega / \mathrm{t} & =1.317 / 0.060=21.95 \\
\mathrm{~S} & =1.28 \sqrt{E_{\mathrm{o}} / \mathrm{f}}
\end{aligned}
$$

(Eq. 2.4-1)
E_{0} value for Type 301 stainless steel is obtained from Table A4
of the Standard Specification, i.e., $E_{0}=27000 \mathrm{ksi}$.
$\mathrm{S}=1.28 \sqrt{27000 / 50}=29.74$
$S / 3=9.91<(w / t)=21.95<S=29.74$
$I_{a}=399 t^{4}\{[(\omega / t) / s]-0.33\}^{3}$
(Eq. 2.4.2-6)
$=399(0.060)^{4}[(21.95 / 29.74)-0.33]^{3}$
$=0.000351$ in. ${ }^{4}$
D $=0.450 \mathrm{in}$.
$\mathrm{d}=0.296$ in., $\mathrm{d} / \mathrm{t}=0.296 / 0.060=4.93$
$I_{s}=d^{3} t / 12$
(Eq. 2.4-2)
$=(0.296)^{3}(0.060) / 12=0.000130 \mathrm{in} .^{4}$
$\mathrm{D} / \mathrm{w}=0.450 / 1.317=0.342,0.25<\mathrm{D} / \mathrm{w}=0.342<0.80$
$\mathrm{k}=[4.82-5(\mathrm{D} / \mathrm{w})]\left(\mathrm{I}_{\mathrm{s}} / \mathrm{I}_{\mathrm{a}}\right)^{\mathrm{n}}+0.43 \leq 5.25-5(\mathrm{D} / \mathrm{w})$
(Eq. 2.4.2-9)
$\mathrm{n}=1 / 2$

$$
[4.82-5(0.342)](0.000130 / 0.000351)^{1 / 2}+0.43=2.323
$$

$$
5.25-5(0.342)=3.540>2.323
$$

Use $\mathrm{k}=2.323$
Since $I_{s}<I_{a}$, the stiffener is considered to be a simple lip. $w / t=21.95<50$ OK (Section 2.1.1-(1)-(i))

$$
\begin{aligned}
\lambda & =(1.052 / \sqrt{\mathrm{k}})(\mathrm{w} / \mathrm{t}) \sqrt{\mathrm{f} / \mathrm{E}_{\mathrm{O}}} \\
& =(1.052 / \sqrt{2.323})(21.95) \sqrt{50 / 27000}=0.652<0.673 \\
\mathrm{~b} & =w \\
& =1.317 \mathrm{in} . \text { (i.e. compression flange fully effective) }
\end{aligned}
$$

Compression (upper) stiffener:
$\mathrm{k}=0.50$ (unstiffened compression element)
$d / t=4.93$

Also conservatively assume $f=50 \mathrm{ksi}$ as used in top compression fiber.

$$
\lambda=(1.052 / \sqrt{0.50})(4.93) \sqrt{50 / 27000}=0.316<0.673
$$

therefore,

$$
\begin{aligned}
d_{s}^{\prime}= & d^{\prime}=0.296 \text { in. } \\
d_{s}= & d_{s}^{\prime}\left(I_{s} / I_{a}\right) \leq d_{s}^{\prime} \\
= & 0.296(0.000130 / 0.000351) \\
= & 0.110 \text { in. }<0.296 \text { in. } \\
d_{s}= & 0.110 \text { in. (i.e. compression stiffener is not fully } \\
& \text { effective) }
\end{aligned}
$$

Effective section properties about x -axis:

Element	```L Effective Length (in.)```	```y ymance from Top Fiber (in.)```	$\begin{gathered} \mathrm{Ly} \\ \left(\mathrm{in}^{2}{ }^{2}\right) \end{gathered}$	$\begin{gathered} \mathrm{Ly}^{2} \\ \left(\text { in. }{ }^{3}\right) \end{gathered}$	I^{\prime} About Own Axis (in. ${ }^{3}$)
Web	5.692	3.000	17.076	51.228	15.368
Upper Corners	$2 \times 0.195=0.390$	0.075	0.029	0.002	--
Lower Corners	$2 \times 0.195=0.390$	5.925	2.311	13.691	--
Compression Flange	1.317	0.030	0.040	0.001	--
Upper Stiffener	0.110	0.209	0.023	0.005	--
Tension Flange	1.317	5.970	7.862	46.939	--
Lower Stiffener	0.296	5.698	1.687	9.610	0.002
Sum	9.512		29.028	121.476	15.370

Distance from top fiber to x-axis is

$$
y_{c g}=29.028 / 9.512=3.052 \mathrm{in} .
$$

Since the distance from top compression fiber to the neutral axis is greater than one half the beam depth, a compression stress of 50 ksi will govern as assumed (i.e., initial yield is in compression).

To check if web is fully effective (Section 2.2.2):

$$
\begin{aligned}
\mathrm{f}_{1} & =[(3.052-0.154) / 3.052] \times 50=47.48 \mathrm{ksi}(\text { compression }) \\
\mathrm{f}_{2} & =-[(2.948-0.154) / 3.052] \times 50=-45.77 \mathrm{ksi}(\text { tension }) \\
\Psi & =\mathrm{f}_{2} / \mathrm{f}_{1}=-45.77 / 47.48=-0.964 \\
\mathbf{k} & =4+2(1-\Psi)^{3}+2(1-\Psi) \\
& =4+2[1-(-0.964)]^{3}+2[1-(-0.964)] \\
& =23.079
\end{aligned}
$$

$$
\begin{align*}
& h \quad=w=5.692 \mathrm{in} ., \mathrm{h} / \mathrm{t}=\mathrm{w} / \mathrm{t}=5.692 / 0.060=94.87 \\
& \mathrm{~h} / \mathrm{t}=.94 .87<200 \text { OK (Section 2.1.2-(1)) } \\
& \lambda=(1.052 / \sqrt{23.079})(94.87) \sqrt{47.48 / 27000}=0.871>0.673 \\
& p=[1-(0.22 / \lambda)] / \lambda \tag{Eq.2.2.1-3}\\
& =[1-(0.22 / 0.871)] / 0.871=0.858 \\
& \mathrm{~b}_{\mathrm{e}}=\mathrm{pw} \\
& =0.858 \times 5.692=4.884 \mathrm{in} . \\
& b_{2}=b_{e^{\prime}} \\
& =4.884 / 2=2.442 \mathrm{in} . \\
& b_{1}=b_{e} /(3-\psi) \\
& =5.037 /[3-(-0.964)]=1.232 \mathrm{in} \text {. }
\end{align*}
$$

$$
b_{1}+b_{2}=1.232+2.442=3.674 \mathrm{in} .
$$

Compression portion of the web calculated on the basis of the effective section $=y_{c g}-0.154=3.052-0.154=2.898 \mathrm{in}$.

Since $b_{1}+b_{2}=3.674$ in. >2.898 in., $b_{1}+b_{2}$ shall be taken as 2.898 in.. This verifies the assumption that the web is fully effective.

$$
\begin{aligned}
I_{x}^{\prime} \quad & =L y^{2}+I_{1}^{\prime}{ }_{1}-L y^{2}{ }_{c g} \\
& =121.476+15.370-9.512(3.052)^{2} \\
& =48.245 \mathrm{in}^{3}
\end{aligned}
$$

$$
\begin{aligned}
\text { Actual } I_{x} & =I_{x}^{\prime} \\
& =48.245 \times 0.060 \\
& =2.895 \mathrm{in} .4 \\
S_{e} & =I_{x} / y_{c g}
\end{aligned}
$$

$$
\begin{align*}
& =2.895 / 3.052 \\
& =0.949 \mathrm{in}^{3} \\
M_{\mathrm{n}} & =\mathrm{S}_{\mathrm{e}} \mathrm{~F}_{\mathrm{y}} \tag{Eq.3.3.1.1-1}\\
& =0.949 \times 50 \\
& =47.45 \mathrm{kips}-\mathrm{in} .
\end{align*}
$$

c. The design flexural strength, $\Phi_{b} M_{n}$, based on initiation of yielding is determined as follows: (Section 3.3.1.1(1))

$$
\begin{array}{ll}
\phi_{\mathrm{b}} & =0.90 \text { (for section with stiffened compression flanges) } \\
\Phi_{\mathrm{b}} \mathrm{M}_{\mathrm{n}} & =0.90 \times 47.45=42.71 \mathrm{kips}-\mathrm{in} .
\end{array}
$$

2. Calculation of the effective moment of inertia for deflection determination at the service moment M_{s} :

The unfactored loads are used to determine the section properties for deflection determination. For a load combination of 1.2D+1.6L, the service moment can be determined as follows:

$$
\begin{aligned}
\Phi_{b} M_{\mathrm{n}} & =1.2 M_{\mathrm{DL}}+1.6 M_{\mathrm{LL}} \\
& =\left[1.2\left(\mathrm{M}_{\mathrm{DL}} / M_{\mathrm{LL}}\right)+1.6\right]_{\mathrm{M}}{ }_{\mathrm{LL}} \\
& =\{1.2(1 / 5)+1.6]_{\mathrm{M}} \\
& =1.84 M_{\mathrm{LL}} \\
M_{\mathrm{LL}} & =\Phi_{\mathrm{b}} M_{\mathrm{n}} / 1.84=42.71 / 1.84=23.21 \mathrm{kips}-\mathrm{in} . \\
M_{\mathrm{s}} & =M_{\mathrm{DL}}+M_{\mathrm{LL}} \\
& =(1 / 5+1) M_{\mathrm{LL}} \\
& =1.2(23.21)=27.85 \mathrm{kips}-\mathrm{in} .
\end{aligned}
$$

where

$$
\begin{aligned}
& M_{D L}=\text { Moment determined on the basis of nominal dead load } \\
& M_{L L}=\text { Moment determined on the basis of nominal live load }
\end{aligned}
$$

The procedure is iterative: one assumes the actual compressive stress f under this service moment M_{s}. Knowing f, one proceeds as usual to obtain S_{e} and checks to see if (f $x S_{e}$) is equal to M_{s} as it should. If not, reiterate until one obtains the desired level of accuracy. (Section 2.2.1-(2))
a. For the first iteration, assume a stress of $f=F_{y} / 2=25 \mathrm{ksi}$ in the top and bottom fibers of the section andthat the web is fully effective.

Compression flange:

$$
\begin{aligned}
\mathrm{S} & =1.28 \sqrt{27000 / 25}=42.07 \\
\mathrm{~S} / 3 & =14.02<(\mathrm{w} / \mathrm{t})=21.95<\mathrm{S}=42.07 \\
\mathrm{I}_{\mathrm{a}} & =399(0.060)^{4}[(21.95 / 42.07)-0.33]^{3} \\
& =0.000036 \mathrm{in}^{4} \\
\mathrm{I}_{\mathrm{s}} / \mathrm{I}_{\mathrm{a}} & =0.000130 / 0.000036=3.61 ; 5.25-5(\mathrm{D} / \mathrm{w})=3.540 \\
\mathrm{k} & =(4.82-5(0.342)](3.61)^{1 / 2}+0.43=6.339>3.540 \\
\text { Use } \mathrm{k} & =3.540
\end{aligned}
$$

For deflection determination, the reduced modulus of elasticity, E_{r}, shall be substituted for E_{o} in Eq. (2.2.1-4). For a compression and tension stresses of $f=25 \mathrm{ksi}$, $E_{r}=26325 \mathrm{ksi}$ as obtained from Example 1.1.
$\lambda=(1.052 / \sqrt{3.540})(21.95) \sqrt{25 / 26325}=0.378<0.673$ $b_{d}=1.317$ in. (i.e. compression flange fully effective)

Compression (upper) stiffener:

Again assume conservatively $f=25 \mathrm{ksi}$ as used in top compression fiber and the corresponding $E_{r}=26325 \mathrm{ksi}$.
$\lambda=(1.052 / \sqrt{0.50})(4.93) \sqrt{25 / 26325}=0.226<0.673$
Therefore, $d_{s}^{\prime}=0.296 \mathrm{in}$.
Since $I_{s} / I_{a}=3.25>1.0$, it follows that $d_{s}=d_{s}$
$=0.296$ in. (i.e. compression stiffener fully effective).

Thus, one concludes that the section is fully effective.

$$
y_{c g}=6 / 2=3.000 \text { in. (from symmetry) }
$$

Full section properties about x -axis:

| | | y
 Distance
 from |
| :--- | :--- | :--- | :--- | :--- |
| Element | | |

Since section is singly symmetric about x-axis and fully
effective, top compression fiber may be used in computing S_{e}.

To check if web is fully effective: (Section 2.2.2-(2))
$\mathbf{f}_{1}=[(3.000-0.154) / 3.000] \times 25=23.72 \mathrm{ksi}($ compression $)$
$f_{2} \quad=-23.72 \mathrm{ksi}($ tension $)$

$$
\begin{aligned}
\psi & =-23.72 / 23.72=-1.000 \\
\mathrm{k} & =4+2[1-(-1)\}^{3}+2\{1-(-1)\rfloor=24.000
\end{aligned}
$$

For a compression and tension stresses of $f=23.72 \mathrm{ksi}$, the corresponding $E_{s c}$ and $E_{s t}$ values are as follows:

$$
\begin{align*}
\mathrm{E}_{\mathrm{sc}} & =26256 \mathrm{ksi}, \text { and } \mathrm{E}_{\mathrm{st}}=27000 \mathrm{ksi} \\
\mathrm{E}_{\mathrm{r}} & =\left(\mathrm{E}_{\mathbf{s c}}+\mathrm{E}_{\mathrm{st}}\right) / 2 \tag{Eq.2.2.1-7}\\
& =26628 \mathrm{ksi} \\
\mathrm{~A} & =(1.052 / \sqrt{24})(94.87) \sqrt{23.72 / 26628}=0.608<0.673 \\
\mathrm{~b}_{\mathrm{e}} \quad & =\mathrm{w} \\
& =5.692 \mathrm{in} . \\
\mathrm{b}_{2} & =5.692 / 2=2.846 \mathrm{in} . \\
\mathrm{b}_{1} & =5.692 /[3-(-1)]=1.423 \mathrm{in} . \\
\mathrm{b}_{1}+\mathrm{b}_{2} & =4.269 \mathrm{in} .
\end{align*}
$$

(Eq. 2.2.1-1)
(Eq. 2.2.1-1)

Compression portion of the web $=3.000-0.154=2.846 \mathrm{in}$. Since $b_{1}+b_{2}=4.269 \mathrm{in} .>2.846 \mathrm{in} ., \mathrm{b}_{1}+\mathrm{b}_{2}$ shall be taken as 2.846 in. . This verifies the assumption that the web is fully effective.

$$
\begin{aligned}
I_{x}^{\prime} & =34.216+15.372=49.588 \mathrm{in} .^{3} \\
\text { Actual } I_{x} & =49.588 \times 0.060=2.975 \mathrm{in} .^{4} \\
& =2.975 / 3.000=0.992 \mathrm{in} .^{3} \\
\mathrm{~S}_{\mathrm{e}} & =\mathrm{f} \times \mathrm{S}_{\mathrm{e}}=25 \times 0.992 \\
\mathrm{M} & =24.80 \mathrm{kips}-\mathrm{in} .<\mathrm{M}_{\mathrm{s}}=27.85 \mathrm{kips}-\mathrm{in} .
\end{aligned}
$$

Need to do another iteration by increasing f.
b. After several trials, assume that a stress of $f=28.07 \mathrm{ksi}$ in the top and bottom fibers of the section and that
the web is fully effective.

Compression flange:

$$
\begin{aligned}
\mathrm{S} & =1.28 \sqrt{27000 / 28.07}=39.70 \\
\mathrm{~S} / 3 & =13.23<(w / t)=21.95<\mathrm{S}=39.70 \\
\mathrm{I}_{\mathrm{a}} & =399(0.060)^{4}[(21.95 / 39.70)-0.33]^{3} \\
& =0.000057 \mathrm{in}^{4} \\
\mathrm{I}_{\mathrm{s}} / \mathrm{I}_{\mathrm{a}} & =0.000130 / 0.000057=2.28 \\
\mathrm{k} & =[4.82-5(0.342)](2.28)^{1 / 2}+0.43=5.126>3.540 \\
\text { Use } \mathrm{k} & =3.540
\end{aligned}
$$

For a compression and tension stresses of $f=28.07 \mathrm{ksi}$ it is found that $E_{s c}$ and $E_{s t}$ are equal to 23950 ksi and 27000 ksi , respectively.
$\mathrm{E}_{\mathrm{r}} \quad=(23950+27000) / 2=25475 \mathrm{ksi}$
$\lambda=(1.052 / \sqrt{3.54})(21.95) \sqrt{28.07 / 25475}=0.407<0.673$
$b_{d}=1.317 \mathrm{in}$. (i.e. compression flange fully effective)

Compression (upper) stiffener:
f conservatively taken as for top compression fiber.
$\lambda=(1.052 / \sqrt{0.50})(4.93) \sqrt{28.07 / 25475}=0.243<0.673$
$\mathrm{d}^{\prime}{ }_{s}=0.296 \mathrm{in}$.
Since $I_{s} / I_{a}=2.28>1.0$, it follows that $d_{s}=d_{s}$
$=0.296$ in. (i.e. compression stiffener fully effective).

Thus, the section is fully effective.

$$
y_{c g}=6 / 2=3.000 \text { in. }(\text { from symmetry })
$$

Full section properties are the same as were found in the first iteration. Thus, as before, top compression fiber may be used in computing S_{e}.

To check if web is fully effective:

```
\(f_{1}=[(3.000-0.154) / 3.000] \times 28.07=26.63 \mathrm{ksi}(\) compression \()\)
\(f_{2}=-26.63 \mathrm{ksi}(\) tension \()\)
\(\Psi \quad=-26.63 / 26.63=-1.000\)
\(k=24.000\)
```

For a compression and tension stresses of $f=26.63 \mathrm{ksi}$, it is found that $E_{S c}$ and $E_{s t}$ are equal to 24754 ksi and 27000 ksi , respectively.

$$
\begin{array}{ll}
E_{\mathbf{r}} & =(24754+27000) / 2=25877 \mathrm{ksi} \\
\lambda & =(1.052 / \sqrt{24})(94.87) \sqrt{26.63 / 25877}=0.654<0.673 \\
b_{e} & =w=5.692 \mathrm{in} .
\end{array}
$$

Hence, as in first iteration, $b_{1}+b_{2}=2.846$ in. and thus the web is fully effective as assumed.

$$
\begin{aligned}
\mathrm{I}_{\mathrm{x}} & =2.975 \text { in. }^{4} \\
\mathrm{~S}_{\mathrm{e}} & =0.992 \mathrm{in.}^{3} \\
\mathrm{M} & =\mathrm{f} \times \mathrm{S}_{\mathrm{e}}=28.07 \times 0.992 \\
& =27.85 \mathrm{kips}-\mathrm{in} .=\mathrm{M}_{\mathrm{S}} \quad \mathrm{OK}
\end{aligned}
$$

Thus, use $I_{x}=2.975$ in. ${ }^{4}$ for deflection determination.

EXAMPLE 2.2 CHANNEL W/STIFFENED FLANGES (ASD)

Use the data given in Example 2.1 (Figure 2.1) to determine the allowable moment, M_{a}, by using the Allowable Stress Design (ASD) method on the basis of initiation of yielding. Also determine the effective moment of inertia for deflection determination at the allowable moment. Use Type 301 stainless steel, $1 / 4$-Hard: $\mathrm{F}_{\mathrm{y}}=50 \mathrm{ksi}$.

Solution:

1. Calculation of the allowable moment, M_{a} :

The effective section properties calculated by the ASD method are the same as those determined in Example 2.1 for the LRFD method. Therefore, the allowable moment can be determined in accordance with Appendix E of the Standard as follows:

```
\Omega=1.85 (Safety Factor stipulated in Table E of the Standard)
    Mn
```



```
        = 47.45/1.85
        =26.65 kips-in.
```

2. Calculation of the effective moment of inertia for deflection determination at the allowable moment, M_{a} :

For deflection determination on the basis of the ASD method, the effective moment of inertia is determined by the same procedures given in Example 2.1 for the LRFD method, except that the computed moment $M\left(=f x S_{e}\right)$ should be equal to M_{a}.

From the results of Example 2.1, it can be seen that by assuming a compression stress of $f=28.07 \mathrm{ksi}$, the computed $\mathrm{S}_{\mathrm{e}}=0.992 \mathrm{in} .^{3}$ which is based on the fully effective section. If the assumed stress is equal to $f=26.86 \mathrm{ksi}$, the effective section modulus is also determined by the full section properties, i.e., $S_{e}=0.992$ in. ${ }^{3}$. This will give $\mathrm{fxS}_{\mathrm{e}}=26.65 \mathrm{kips}-\mathrm{in}$. , which is equal to M_{a}

Therefore, the computed $I_{x}=2.975$ in 4 of the full section properties can be used for deflection determination.

EXAMPLE 3.1 C-SECTION W/BRACING (LRFD)

By using the Load and Resistance Factor Design (LRFD) method, determine the design flexural strength, $\phi_{b} M_{n}$, based on initiation of yielding. Also determine the effective moment of inertia for deflection determination at the service moment. Use Type 304 stainless steel, $1 / 4$-Hard. Assume dead load to live load ratio $D / L=1 / 5$ and $1.2 \mathrm{D}+1.6 \mathrm{~L}$ governs the design.

Corner Line Element

Figure 3.1 Section for Example 3.1

Given:

1. Section: $6^{\prime \prime} \times 1.625^{\prime \prime} \times 0.060^{\prime \prime}$ channel with stiffened flanges.
2. Compression flange braced against lateral buckling.

Solution:

1. Calculation of the design flexural strength, $\Phi_{b} M_{n}$:
a. Properties of 90° corners:

$$
r=R+t / 2=3 / 32+0.060 / 2=0.124 \mathrm{in} .
$$

Length of arc, $u=1.57 \mathrm{r}=1.57 \mathrm{x} 0.124=0.195 \mathrm{in}$.
Distance of c.g. from center of radius,
$c=0.637 \mathrm{r}=0.637 \times 0.124=0.079 \mathrm{in}$.
b. Computation of I_{x}, S_{e}, and M_{n} :

For the first approximation, assume a compression stress of $f=F_{y}=50 \mathrm{ksi}$ (yield strength in longitudinal compression, Table Al of the Standard) in the top fiber of the section and that the web is fully effective.

Compression flange:

$$
\begin{align*}
& \mathrm{w}=1.317 \mathrm{in} . \\
& \mathrm{w} / \mathrm{t}=1.317 / 0.060=21.95 \\
& \mathrm{~S}=1.28 \sqrt{E_{o} / \mathrm{f}} \tag{Eq.2.4-1}
\end{align*}
$$

The initial modulus of elasticity, E_{0}, for Type 304 stainless steel is obtained from Table A4 of the Standard, i.e., $E_{0}=27000 \mathrm{ksi}$.
$S=1.2827000 / 50=29.74$
$S / 3=9.91<(w / t)=21.95<S=29.74$
$I_{a}=399 t^{4}\{[(w / t) / S]-0.33\}^{3}$
(Eq. 2.4.2-6)
$=399(0.060)^{4}[(21.95 / 29.74)-0.33]^{3}$
$=0.000351$ in. ${ }^{4}$
$\mathrm{D}=0.600 \mathrm{in}$.
$\mathrm{d}=0.446 \mathrm{in} ., \mathrm{d} / \mathrm{t}=0.446 / 0.060=7.43$
$I_{s}=d^{3} t / 12$
(Eq. 2.4-2)
$=(0.446)^{3}(0.060) / 12=0.000444$ in. ${ }^{4}$
$D / w=0.600 / 1.317=0.456,0.25<D / w=0.456<0.80$
$\mathbf{k}=[4.82-5(\mathrm{D} / \mathrm{w})]\left(\mathrm{I}_{\mathrm{s}} / \mathrm{I}_{\mathrm{a}}\right)^{\mathrm{n}}+0.43 \leq 5.25-5(\mathrm{D} / \mathrm{w})$
(Eq. 2.4.2-9)

```
    n = 1/2
    [4.82-5(0.456)](0.000444/0.000351)}\mp@subsup{)}{}{1/2}+0.43=3.26
    5.25-5(0.456)=2.970<3.267
    Use k = 2.970
Since I Is > I and D/w < 0.8, the stiffener is not considered
as a simple lip.
    w/t = 21.95<90 OK (Section 2.1.1-(1)-(i))
    \lambda = (1.052/\sqrt{}{k})(w/t)\sqrt{}{f/E}\mp@subsup{E}{0}{}
                                    (Eq. 2.2.1-4)
    =(1.052/\sqrt{}{2.970})(21.95)\sqrt{}{50/27000}=0.577<0.673
b = w
    (Eq. 2.2.1-1)
    = 1.317 in. (i.e. compression flange fully effective)
```

Compression (upper) stiffener:
$k=0.50$ (unstiffened compression element)
$d / t=7.43$
f can be conservatively taken equal to 50 ksi as used in the
top compression fiber.

$$
\lambda=(1.052 / \sqrt{0.50})(7.43) \sqrt{50 / 27000}=0.476<0.673
$$

Therefore,

$$
\begin{aligned}
d_{s}^{\prime} & =d_{s}=0.446 \text { in. } \\
d_{s} & =d_{s}^{\prime}\left(I_{s} / I_{a}\right) s^{\prime} \\
= & 0.446(0.000444 / 0.000351) \\
= & 0.564 \text { in. }>0.446 \mathrm{in} . \\
d_{s}= & 0.446 \text { in. (i.e. compression stiffener is fully } \\
& \text { effective) }
\end{aligned}
$$

Thus, one concludes that the section is fully effective.

$$
y_{c g}=6 / 2=3.000 \text { in. (from symmetry) }
$$

Full section properties about x-axis:

Since section is singly symmetric about x-axis and fully effective, a compression stress of 50 ksi will govern as assumed. (At the bottom tension fiber a tensile stress of 50 ksi will develop simultaneously from symmetry).

To check if web is fully effective: (Section 2.2.2)

$$
\begin{aligned}
\mathrm{f}_{1} & =[(3.000-0.154) / 3.000] \times 50=47.43 \mathrm{ksi}(\text { compression }) \\
\mathrm{f}_{2} & =-47.43 \mathrm{ksi}(\text { tension }) \\
\Psi & =f_{2} / \mathrm{f}_{1}=-47.43 / 47.43=-1.000 \\
& =4+2(1-\Psi)^{3}+2(1-\Psi) \\
& =4+2[1-(-1)]^{3}+2(1-(-1)] \\
& =24.000 \\
\mathrm{~h} & =\mathrm{w}=5.692 \mathrm{in} ., \mathrm{h} / \mathrm{t}=\mathrm{w} / \mathrm{t}=5.692 / 0.060=94.87 \\
\mathrm{~h} / \mathrm{t} & =94.87<200 \text { OK (Section } 2.1 .2-(1))
\end{aligned}
$$

$$
\begin{aligned}
\lambda & =(1.052 / \sqrt{24})(94.87) \sqrt{47.43 / 27000}=0.854>0.673 \\
\rho & =[1-(0.22 / \lambda)] / \lambda \\
& =[1-(0.22 / 0.854)] / 0.854=0.869 \\
b_{e} & =\rho w \\
& =0.869 \times 5.692=4.946 \mathrm{in} . \\
b_{2} & =b_{e} / 2 \\
& =4.946 / 2=2.473 \mathrm{in} . \\
b_{1} & =b_{e} /(3-\Psi) \\
& =4.946 /[3-(-1)]=1.237 \mathrm{in} .
\end{aligned}
$$

(Eq. 2.2.1-3)
(Eq. 2.2.1-2)
(Eq. 2.2.2-2)
(Eq. 2.2.2-1)

The effective widths, b_{1} and b_{2}, of web are defined in Figure 2 of the Standard.

$$
b_{1}+b_{2}=1.237+2.473=3.710 \mathrm{in} .
$$

Compression portion of the web $=y_{c g}-0.154=3.000-0.154$ $=2.846 \mathrm{in}$.

Since $b_{1}+b_{2}=3.710$ in. >2.846 in., $b_{1}+b_{2}$ shall be taken as 2.846 in.. This verifies the assumption that the web is fully effective.

$$
\begin{aligned}
I_{x}^{\prime} & =\mathrm{Ly}^{2}+\mathrm{I}_{1}^{\prime} \\
& =36.044+15.383 \\
& =51.427 \mathrm{in} .{ }^{3}
\end{aligned}
$$

Actual $\mathrm{I}_{\mathrm{x}}=\mathrm{I}_{\mathrm{x}} \mathrm{t}^{\mathrm{t}}$

$$
=51.427 \times 0.060
$$

$$
=3.086 \text { in. }{ }^{4}
$$

$$
\mathrm{S}_{\mathrm{e}} \quad=\mathrm{I}_{\mathrm{x}} / \mathrm{y}_{\mathrm{cg}}
$$

$$
=3.086 / 3.000
$$

$$
=1.029 \mathrm{in.}^{3}
$$

$$
\begin{align*}
M_{\mathrm{n}} & =\mathrm{S}_{\mathrm{e}} \mathrm{~F}_{\mathrm{y}} \tag{Eq.3.3.1.1-1}\\
& =1.029 \times 50 \\
& =51.45 \mathrm{kips}-\mathrm{in} .
\end{align*}
$$

c. The design flexural strength, $\Phi_{b} M_{n}$, based on initiation of yielding is determined as follows: (Section 3.3.1.1(1))
$\Phi_{\mathrm{b}} \quad=0.90$ (for section with stiffened compression flanges)
$\Phi_{b} M_{n} \quad=0.90 \times 51.45=46.31$ kips-in.
2. Calculation of the effective moment of inertia for deflection determination at the service moment M_{s} :

The unfactored loads are used to determine the section properties for deflection determination. For a load combination of $1.2 \mathrm{D}+1.6 \mathrm{~L}$, the service moment can be determined as follows:

$$
\begin{aligned}
\Phi_{b} M_{\mathrm{n}} & =1.2 M_{D L}+1.6 M_{L L} \\
& =\left(1.2\left(M_{D L} / M_{L L}\right)+1.6\right] M_{L L} \\
& =[1.2(1 / 5)+1.6] M_{L L} \\
& =1.84 M_{L L} \\
M_{L L} & =\Phi_{b} M_{n} / 1.84=46.31 / 1.84=25.17 \mathrm{kips}-\mathrm{in} . \\
M_{s} & =M_{D L}+M_{L L} \\
& =(1 / 5+1) M_{L L} \\
& =1.2(25.17)=30.20 \mathrm{kips}-\mathrm{in} .
\end{aligned}
$$

where

$$
\begin{aligned}
& M_{D L}=\text { Moment determined on the basis of nominal dead load } \\
& M_{L L}=\text { Moment determined on the basis of nominal live load }
\end{aligned}
$$

The procedure is iterative: one assumes the actual compressive
stress f under this service moment M_{s}. Knowing f, one proceeds as usual to obtain S_{e} and checks to see if (f X_{e}) is equal to M_{s} as it should. If not, reiterate until one obtains the desired level of accuracy. (Section 2.2.1-(2))

After several iterations with beginning a stress of $f=F_{y} / 2$, the following only gives the results of final iteration.

Assume that a stress of $f=29.35 \mathrm{ksi}$ in the top and bottom
fibers of the section and that the web is fully effective.

Compression flange:

$$
\begin{aligned}
\mathrm{S} & =1.28 \sqrt{27000 / 29.35}=38.82 \\
\mathrm{~S} / 3 & =12.94<\mathrm{w} / \mathrm{t}=21.95<\mathrm{S}=38.82 \\
\mathrm{I}_{\mathrm{a}} & =399(0.060)^{4}[(21.95 / 38.82)-0.33)^{3} \\
& =0.000067 \mathrm{in.}^{4} \\
\mathrm{I}_{\mathrm{s}} / \mathrm{I}_{\mathrm{a}} & =0.000444 / 0.000067=6.627 \\
\mathrm{k} & =[4.82-5(0.456)](6.627)^{1 / 2}+0.43=6.969>2.970 \\
\mathrm{k} & =2.970
\end{aligned}
$$

For deflection determination, the reduced modulus of elasticity, E_{r}, is substituted for E_{o} in Eq . (2.2.1-4). For a compression and tension stresses of $f=29.35 \mathrm{ksi}$, the corresponding $E_{s c}$ and $E_{\text {st }}$ values for Type 304 stainless steel are obtained from Table A2 or Figure A1 of the Standard as follows:

$$
\begin{align*}
\mathrm{E}_{\mathbf{s c}} & =23089 \mathrm{ksi}, \text { and } \mathrm{E}_{\mathbf{s t}}=26933 \mathrm{ksi} \\
\mathrm{E}_{\mathbf{r}} & =\left(\mathrm{E}_{\mathbf{s c}}+\mathrm{E}_{\mathbf{s t}}\right) / 2 \tag{Eq.2.2.1-7}\\
& =(23089+26933)=25011 \mathrm{ksi} \\
\lambda & =(1.052 / \sqrt{2.970})(21.95) \sqrt{29.35 / 25011}=0.459<0.673
\end{align*}
$$

```
b}\mp@subsup{d}{d}{}=1.317 in. (i.e. compression flange fully
    effective)
```


Compression (upper) stiffener:

f can be conservatively taken equal to 29.35 ksi as used in the the compression fiber.

$$
\lambda=(1.052 / \sqrt{0.50})(7.43) \sqrt{29.35 / 25011}=0.379<0.673
$$

therefore, $d^{\prime}{ }_{s}=0.446 \mathrm{in}$.
Since $I_{s} / I_{a}=6.627>1.0$, it follows that $d_{s}=d_{s}$
$=0.446$ in. (i.e. compression stiffener fully effective).

Thus the section is fully effective.

$$
y_{c g}=6 / 2=3.000 \mathrm{in} .(\text { from symmetry })
$$

And since the section is singly symmetric about x-axis, top compression fiber (and also bottom tension fiber) may be used in computing S_{e}.

To check if web is fully effective:

$$
\begin{array}{ll}
f_{1} & =\{(3.000-0.154) / 3.000\} \times 29.35=27.84 \mathrm{ksi}(\text { compression }) \\
f_{2} & =-27.84 \mathrm{ksi}(\text { tension }) \\
\Psi & =f_{2} / f_{1}=-27.84 / 27.84=-1.000 \\
k & =24.000
\end{array}
$$

For a compression and tension stresses of $f=27.84 \mathrm{ksi}$,
the values of $E_{S c}$ and $E_{s t}$ are found as follows:

$$
E_{s c}=24090 \mathrm{ksi}, \mathrm{E}_{\mathrm{st}}=27000 \mathrm{ksi} .
$$

$$
\begin{equation*}
\mathrm{E}_{\mathrm{r}}=(24090+27000) / 2 \tag{Eq.2.2.1-7}
\end{equation*}
$$

$$
=25550 \mathrm{ksi}
$$

$$
\lambda=(1.052 / \sqrt{24})(94.87) \sqrt{27.84 / 25550}=0.672<0.673
$$

$\mathrm{b}_{\mathrm{e}}=\mathrm{w}$
(Eq. 2.2.1-1)
$=5.692 \mathrm{in}$.
$\mathrm{b}_{2}=5.692 / 2=2.846 \mathrm{in}$.
$b_{1}=5.692 /[3-(-1)]=1.423 \mathrm{in}$.
$\mathrm{b}_{1}+\mathrm{b}_{2}=4.269 \mathrm{in}$. $>$ compression portion of the web $=2.846 \mathrm{in}$.
thus $b_{1}+b_{2}$ shall be taken as 2.846 in.. This verifies the assumption that the web is fully effective.

Full section properties are the same as that used in determination of $\phi_{b} M_{n}$ since the section is fully effective.
$I_{x}=3.086$ in. ${ }^{4}$
$\mathrm{S}_{\mathrm{e}}=1.029 \mathrm{in}^{3}$
$\mathrm{M} \quad=\mathrm{fxS} \mathrm{S}_{\mathrm{e}}=29.35 \times 1.029$
$=30.20 \mathrm{kips}-\mathrm{in} .=\mathrm{M}_{\mathrm{s}} \mathrm{OK}$
Thus, use $I_{x}=3.086$ in. ${ }^{4}$ for deflection determination.

Rework Example 3.1 to determine the allowable moment, M_{a}, by using the A1lowable Stress Design (ASD) method on the basis of initiation of yielding. Also determine the effective moment of inertia for deflection determination at the allowable moment.

Solution:

1. Calculation of the allowable moment, M_{a} :

The effective section properties calculated by the ASD method are the same as those determined in Example 3.1 for the LRFD method. Therefore, the allowable moment can be determined in accordance with Appendix E of the Standard as follows:
$\Omega=1.85$ (Safety Factor stipulated in Table E of the Standard)
$M_{n}=51.45$ kips-in. (obtained from Example 3.1)
$M_{a}=M_{n} / \Omega$
(Eq. E-1)
$=51.45 / 1.85$
$=27.81$ kips-in.
2. Calculation of the effective moment of inertia for deflection determination at the allowable moment M_{a} :

For deflection determination on the basis of the ASD method, the effective moment of inertia is determined by the same procedures given in Example 3.1 for the LRFD method, except that the computed moment $M\left(=f_{e}\right)$ should be equal to M_{a}.

From the results of Example 3.1, it is found that for a stress of $\mathrm{f}=29.35 \mathrm{ksi}$, the section is fully effective. Therefore, it can be seen that by assuming a stress of $\mathrm{f}=27.03 \mathrm{ksi}$ (which isless than 29.35 ksi) the section will also be fully effective, i.e., $\mathrm{S}_{\mathrm{e}}=1.029$ in. 3 Thus,
$M=S_{e} \times 27.03$
$=27.81 \mathrm{kips}-\mathrm{in} .=\mathrm{M}_{\mathrm{a}}$ OK
Therefore, the computed $I_{x}=3.083 \mathrm{in}^{4}$ can be used for deflection determination.

EXAMPLE 4.1 Z-SECTION W/STIFFENED FLANGES (LRFD)

By using the Load and Resistance Factor Design (LRFD) method, determine the design flexural strength, $\Phi_{b} M_{n}$, based on initiation of yielding. Also determine the effective moment of inertia for deflection determination at the service moment. Use Type 301 stainless steel, $1 / 4$-Hard. Assume dead load to live load ratio $D / L=1 / 5$ and $1.2 D+1.6 \mathrm{~L}$ governs the design.

Figure 4.1 Section for Example 4.1

Given:

1. Section: $6^{\prime \prime} \times 1.500^{\prime \prime} \times 0.060^{\prime \prime}$ 2-section with stiffened flanges.
2. Compression flange braced against lateral buckling.

Solution:

1. Calculation of the design flexural strength, $\Phi_{b} M_{n}$:
a. Properties of 90° corners:
$r=R+t / 2=3 / 32+0.060 / 2=0.124 \mathrm{in}$.

Length of arc, $u=1.57 \mathrm{r}=1.57 \times 0.124=0.195 \mathrm{in}$.

Distance of c.g. from center of radius,
$c=0.637 \mathrm{r}=0.637 \times 0.124=0.079 \mathrm{in}$.
b. Properties of 135° corners:
$\mathrm{r}=\mathrm{R}+\mathrm{t} / 2=3 / 32+0.060 / 2=0.124 \mathrm{in}$.
Length of arc, $u=\left(45^{\circ} / 180^{\circ}\right)(3.14) r=0.785 r=0.785 \times 0.124$
$=0.097 \mathrm{in}$.
Distance of c.g. from center of radius,
$c_{1}=r \sin \theta / \theta=\left(0.124 \times \sin 45^{\circ}\right) / 0.785=0.112 \mathrm{in}$.
c. Computation of I_{x}, S_{e}, and M_{n} :

For the first approximation, assume a compression stress of $f=F_{y}=50 \mathrm{ksi}$ (yield strength in longitudinal compression, Table A1 of the Standard) in the top fiber of the section and that the web is fully effective.

Compression flange:

```
w = 1.346 in.
w/t = 1.346/0.060 = 22.43
S = 1.28\sqrt{}{E/f}
E
S = 1.28\sqrt{}{27000/50}=29.74
S/3 = 9.91<w/t = 22.43< S = 29.74
I
            = 399(0.060)4[(22.43/29.74)-0.33] }\mp@subsup{}{}{3
            =0.000395 in.4
    d = 0.600 in., d/t = 0.600/0.060 = 10
\(\mathrm{E}_{\mathrm{o}}=27000 \mathrm{ksi}\) (Table A4 of the Standard)
\(\mathrm{S} \quad=1.28 \sqrt{27000 / 50}=29.74\)
S/3 \(=9.91<w / t=22.43<S=29.74\)
\(I_{a}=399 t^{4}\{[(\omega / t) / S\}-0.33\}^{3}\)
\(=399(0.060)^{4}[(22.43 / 29.74)-0.33]^{3}\)
\(=0.000395\) in. \({ }^{4}\)
\(\mathrm{d} \quad=0.600 \mathrm{in} ., \mathrm{d} / \mathrm{t}=0.600 / 0.060=10\)
```

$$
\begin{aligned}
& \mathrm{D}=\mathrm{d}+0.154 \tan (\theta / 2)=0.600+0.154 \tan \left(45^{\circ} / 2\right)=0.664 \mathrm{in} . \\
& I_{s} \quad=d^{3} t \sin ^{2} \theta / 12 \\
& \text { (Eq. 2.4-2) } \\
& =(0.600)^{3}(0.060) \sin ^{2}\left(45^{\circ}\right) / 12=0.000540 \text { in. }{ }^{4} \\
& I_{s} / I_{a}=0.000540 / 0.000395=1.367 \\
& \mathrm{D} / \mathrm{w}=0.664 / 1.346=0.493,0.25<\mathrm{D} / \mathrm{w}=0.493<0.80 \\
& \mathrm{k}=\{4.82-5(\mathrm{D} / \mathrm{w})\}\left(\mathrm{I}_{\mathrm{s}} / \mathrm{I}_{\mathrm{a}}\right)^{\mathrm{n}}+0.43 \leq 5.25-5(\mathrm{D} / \mathrm{w}) \\
& \text { (Eq. 2.4.2-9) } \\
& \mathrm{n} \quad=1 / 2 \\
& {[4.82-5(0.493)](1.367)^{1 / 2}+0.43=3.183} \\
& 5.25-5(0.493)=2.785<3.183 \\
& \mathrm{k} \quad=2.785 \\
& \text { Since } \mathrm{I}_{\mathrm{s}}>\mathrm{I}_{\mathrm{a}} \text { and } \mathrm{D} / \mathrm{w}<0.8 \text {, the stiffener is not considered } \\
& \text { as a simple lip. } \\
& \mathrm{w} / \mathrm{t}=22.43<90 \text { OK (Section 2.1.1-(1)-(i)) } \\
& \lambda=(1.052 / \sqrt{\mathrm{k}})(\mathrm{w} / \mathrm{t}) \sqrt{\mathrm{f} / \mathrm{E}_{\mathrm{O}}} \\
& \text { (Eq. 2.2.1-4) } \\
& =(1.052 / \sqrt{2.785})(22.43) \sqrt{50 / 27000}=0.608<0.673 \\
& \text { b }=\text { w } \\
& \text { (Eq. 2.2.1-1) } \\
& =1.346 \text { in. (i.e. compression flange fully effective) }
\end{aligned}
$$

Compression (upper) stiffener:
$\mathrm{k} \quad=0.50$ (unstiffened compression element)
$\mathrm{d} / \mathrm{t}=10.00$
f conservatively taken equal to 50 ksi as in top compression fiber.
$\lambda=(1.052 / \sqrt{0.50})(10.00) \sqrt{50 / 27000}=0.640<0.673$
Therefore,

$$
\begin{align*}
d_{s}^{\prime} & =d=0.600 \mathrm{in} . \\
d_{s} & =d_{s}^{\prime}\left(I_{s} / I_{a}\right) \leq d_{s}^{\prime} \tag{Eq.2.4.2-11}\\
& =0.600(1.367)
\end{align*}
$$

```
    =0.820 in. > 0.600 in.
d
    effective)
```

Thus, one concludes that the section is fully effective.

$$
y_{c g}=6 / 2=3.000 \mathrm{in} .(\text { from symmetry })
$$

Full section properties about x axis:

Element	$\begin{gathered} \mathrm{L} \\ (\text { in. }) \end{gathered}$	```Distance from Centerline of Section (in.)```	$\begin{gathered} {L y^{2}}^{\left(i n .^{3}\right)} \end{gathered}$	I' About Own Axis (in. ${ }^{3}$)
Web	5.692	--	--	15.368
Stiffeners	$2 \times 0.600=1.200$	2.722	8.891	0.018
90° Corners	$2 \times 0.195=0.390$	2.925	3.337	--
135° Corners	$2 \times 0.097=0.194$	2.958	1.697	--
Flanges	$2 \times 1.346=2.692$	2.970	23.746	--
Sum	10.168		37.671	15.386

Since section is singly symmetric about x-axis and fully effective, a compression stress of 50 ksi will govern as assumed. (At the bottom tension fiber a tensile stress of 50 ksi will develop simultaneously from geometry).

To check if web is fully effective: (Section 2.2.2)

$$
\begin{aligned}
& \mathbf{f}_{1}=[(3.000-0.154) / 3.000] \times 50=47.43 \mathrm{ksi}(\text { compression }) \\
& \mathbf{f}_{2}=-47.43 \mathrm{ksi}(\text { tension })
\end{aligned}
$$

$$
\begin{align*}
\Psi & =f_{2} / f_{1}=-47.43 / 47.43=-1.000 \\
\mathrm{k} & =4+2(1-\Psi)^{3}+2(1-\Psi) \\
& =4+2[1-(-1)]^{3}+2[1-(-1)] \\
& =24.000 \\
\mathrm{~h} & =w=5.692 \mathrm{in} ., \mathrm{h} / \mathrm{t}=\mathrm{w} / \mathrm{t}=5.692 / 0.060=94.87 \\
\mathrm{~h} / \mathrm{t} & =94.87<200 \text { oK (Section } 2.1 .2-(1)) \\
\lambda & =(1.052 / \sqrt{24})(94.87) \sqrt{47.43 / 27000}=0.854>0.673 \\
\rho & =\{1-(0.22 / \lambda)] / \lambda \tag{Eq.2.2.1-3}\\
& =\{1-(0.22 / 0.854)] / 0.854=0.869 \\
\mathrm{~b}_{\mathrm{e}} & =\rho w \tag{Eq.2.2.1-2}\\
& =0.869 \times 5.692=4.946 \mathrm{in} . \\
\mathrm{b}_{2} & =\mathrm{b}_{\mathrm{e}} / 2 \tag{Eq.2.2.2-2}\\
& =4.946 / 2=2.473 \mathrm{in} . \\
\mathrm{b}_{1} & =\mathrm{b}_{\mathrm{e}} /(3-\Psi) \\
& =4.946 /[3-(-1)]=1.237 \mathrm{in} .
\end{align*}
$$

(Eq. 2.2.2-1)

The effective widths of web, b_{1} and b_{2}, are defined in Figure 2 of the Standard.

$$
\mathrm{b}_{1}+\mathrm{b}_{2}=1.237+2.473=3.710 \mathrm{in} .
$$

Compression portion of the web $=y_{c g}-0.154$

$$
\begin{aligned}
& =3.000-0.154 \\
& =2.846 \mathrm{in} .
\end{aligned}
$$

Since $b_{1}+b_{2}=3.710$ in. >2.846 in., $b_{1}+b_{2}$ shall be taken as 2.846 in.. This verifies the assumption that the web is fully effective.

$$
\begin{aligned}
\mathrm{I}_{\mathrm{x}}^{\prime} \quad & =\mathrm{Ly}^{2}+\mathrm{I}_{1}^{\prime} \\
& =37.671+15.386
\end{aligned}
$$

$$
\begin{align*}
& =53.057 \mathrm{in.}^{3} \\
\text { Actual } I_{x} & =I_{x}^{\prime} t^{t} \\
& =53.057 \times 0.060 \\
& =3.183 \mathrm{in} .^{4} \\
& =I_{x} / y_{c g} \\
S_{e} & =3.183 / 3.000 \\
& =1.061 \mathrm{in} .^{3} \\
& =S_{e} F_{y} \tag{Eq.3.3.1.1-1}\\
M_{n} & =1.061 \times 50 \\
& =53.05 \mathrm{kips}-\mathrm{in} .
\end{align*}
$$

d. The design flexural strength, $\Phi_{b} M_{n}$, based on initiation of yielding is determined as follows: (Section 3.3.1.1(1))
$\phi_{b} \quad=0.90$ (for section with stiffened compression flanges)
$\Phi_{b} M_{n} \quad=0.90 \times 53.05=47.75$ kips-in.
2. Calculation of the effective moment of inertia for deflection determination at the service moment M_{S} :

The unfactored loads are used to determine the section properties for deflection determination. For a load combination of $1.2 \mathrm{D}+1.6 \mathrm{~L}$, the service moment can be determined as follows:

$$
\begin{aligned}
\Phi_{b} M_{\mathrm{n}} & =1.2 \mathrm{M}_{\mathrm{DL}}+1.6 \mathrm{M}_{\mathrm{LL}} \\
& =\left[1.2\left(\mathrm{M}_{\mathrm{DL}} / \mathrm{M}_{\mathrm{LL}}\right)+1.6\right] \mathrm{M}_{\mathrm{LL}} \\
& =[1.2(1 / 5)+1.6] \mathrm{M}_{\mathrm{LL}} \\
& =1.84 \mathrm{M}_{\mathrm{LL}} \\
M_{\mathrm{LL}} & =\Phi_{\mathrm{b}} \mathrm{M}_{\mathrm{n}} / 1.84=47.75 / 1.84=25.95 \mathrm{kips}-\mathrm{in} .
\end{aligned}
$$

$$
\begin{aligned}
M_{s} & =M_{D L}+M_{L L} \\
& =(1 / 5+1) M_{L L} \\
& =1.2(25.95)=31.14 \mathrm{kips}-\mathrm{in} .
\end{aligned}
$$

where

$$
\begin{aligned}
& M_{D L}=\text { Moment determined on the basis of nominal dead load } \\
& M_{L L}=\text { Moment determined on the basis of nominal live load }
\end{aligned}
$$

The procedure is iterative: one assumes the actual compressive stress f under this service moment M_{s}. Knowing f, one proceeds as usual to obtain S_{e} and checks to see if ($f \times \mathrm{S}_{\mathrm{e}}$) is equal to M_{s} as it should. If not, reiterate until one obtains the desired level of accuracy. (Section 2.2.1-(2))

After several trials with first iteration using $f=F_{y} / 2$, the following only gives the results of final iteration.

Assume that a stress of $f=29.35 \mathrm{ksi}$ in the top and bottom fibers of the section and that the web is fully effective.

Compression flange:

$$
\begin{aligned}
\mathrm{S} & =1.2827000 / 29.35=38.82 \\
\mathrm{~S} / 3 & =12.94<\mathrm{w} / \mathrm{t}=22.43<\mathrm{S}=38.82 \\
\mathrm{I}_{\mathrm{a}} & =399(0.060)^{4}[(22.43 / 38.82)-0.33]^{3} \\
& =0.000079 \mathrm{in} .{ }^{4} \\
\mathrm{I}_{\mathrm{s}} / \mathrm{I}_{\mathrm{a}} & =0.000540 / 0.000079=6.835 \\
\mathrm{k} & =[4.82-5(0.493)](6.835)^{1 / 2}+0.43=6.587>2.785 \\
\text { Use } \mathrm{k} & =2.785
\end{aligned}
$$

For a compression and tension stresses of $\mathrm{f}=29.35 \mathrm{ksi}$, the values
of $E_{s c}$ and $E_{s t}$ are found as follows:
$\mathrm{E}_{\mathrm{sc}}=23089 \mathrm{ksi}, \mathrm{E}_{\mathrm{st}}=26933 \mathrm{ksi}$.
$\mathrm{E}_{\mathrm{r}}=(23089+26933) / 2$
$=25011 \mathrm{ksi}$
$\lambda=(1.052 / \sqrt{2.785})(22.43) \sqrt{29.35 / 25011}=0.484<0.673$
$b_{d}=1.346$ in. (i.e. compression flange fully effective)

Compression (upper) stiffener:
f can be conservatively taken equal to 29.35 ksi as used in the top compression fiber.

$$
\lambda=(1.052 / \sqrt{0.50})(10.00) \sqrt{29.35 / 25011}=0.510<0.673
$$

therefore, $d^{\prime}=0.600 \mathrm{in}$.
Since $I_{s} / I_{a}=6.835>1.0$, it follows that $d_{s}=d_{s}^{\prime}$ $=0.600$ in. (i.e. compression stiffener fully effective).

Thus, the section is fully effective.
$y_{c g}=6 / 2=3.000 \mathrm{in}$. (from symmetry)
And since the section is singly symmetric about x-axis, top compression fiber may be used in computing S_{e}.

To check if web is fully effective:

```
\(f_{1}=[(3.000-0.154) / 3.000] \times 29.35=27.84 \mathrm{ksi}(\) compression \()\)
\(f_{2}=-27.84 \mathrm{ksi}(\) tension \()\)
    \(\Psi \quad=f_{2} / f_{1}=-27.84 / 27.84=-1.000\)
    \(\mathrm{k}=24.000\)
```

For a stress of $f=27.84 \mathrm{ksi}$, the $\mathrm{E}_{\mathrm{r}}=25550 \mathrm{ksi}$, which is
determined in Example 3.1.
$\lambda=(1.052 / \sqrt{24})(94.87) \sqrt{27.84 / 25550}=0.672<0.673$
$b_{e}=w$
(Eq. 2.2.1-1)
$=5.692 \mathrm{in}$.
$\mathrm{b}_{2}=5.692 / 2=2.846 \mathrm{in}$.
$b_{1}=5.692 /[3-(-1)]=1.423 \mathrm{in}$.
$\mathrm{b}_{1}+\mathrm{b}_{2}=4.269 \mathrm{in} .>$ compression portion of the web $=2.846 \mathrm{in}$.
thus $\mathrm{b}_{1}+\mathrm{b}_{2}$ shall be taken as 2.846 in.. This verifies the assumption that the web is fully effective.

Full section properties are the same as that used in the determination of $\phi_{b} M_{n}$ since the section is fully effective.
$I_{x}=3.183$ in. ${ }^{4}$
$\mathrm{S}_{\mathrm{e}}=1.061 \mathrm{in} .^{3}$
$\mathrm{M} \quad=\mathrm{fx} \mathrm{S} \mathrm{e}_{\mathrm{e}}=29.35 \times 1.061$
$=31.14 \mathrm{kips}-\mathrm{in} .=\mathrm{M}_{\mathrm{s}}$ OK

Thus, use $I_{x}=3.183$ in. ${ }^{4}$ for deflection determination.

EXAMPLE 4.2 Z-SECTION W/STIFFENED FLANGES (ASD)

Use the data given in Example 4.1 (Figure 4.1) to determine the allowable moment, M_{a}, by using the Allowable Stress Design (ASD) method on the basis of initiation of yielding. Also determine the effective moment of inertia for deflection determination at the allowable moment. Use Type 301 stainless steel, 1/4-Hard: $\mathrm{F}_{\mathrm{y}}=50 \mathrm{ksi}$.

Solution:

1. Calculation of the allowable moment, M_{a} :

The effective section properties calculated by the ASD method are the same as those determined in Example 4.1 for the LRFD method. Therefore, the allowable moment can be determined in accordance with Appendix E of the Standard as follows:

```
\Omega=1.85 (Safety Factor stipulated in Table E of the Standard)
M
Ma}=\mp@subsup{M}{n}{}/
    = 53.05/1.85
    =28.68 kips-in.
```

2. Calculation of the effective moment of inertia for deflection determination at the allowable moment, M_{a} :

For deflection determination on the basis of the ASD method, the effective moment of inertia is determined by the same procedures given in Example 4.1 for the LRFD method, except that the computed
$M\left(=f x S_{e}\right)$ should be equal to M_{a}.

From the results of Example 4.1 , it can be seen that by using a stress of $f=29.35 \mathrm{ksi}$, the computed $S_{e}=1.061$ in. ${ }^{3}$ which is based on the fully effective section. If the assumed stress is equal to $f=27.03 \mathrm{ksi}$, the effective section modulus is also determined by the full section properties, i.e., $S_{e}=1.061$ in. ${ }^{3}$. This will give $\mathrm{fxS}_{\mathrm{e}}=28.68 \mathrm{kips}-\mathrm{in} .$, which is equal to M_{a}

Therefore, the computed $I_{x}=3.183$ in ${ }^{4}$ of the full section properties is used for deflection determination.

EXAMPLE 5.1 DEEP Z-SECTION w/STIFFENED FLANGES (LRFD)

By using the Load and Resistance Factor Design (LRFD) method, determine the design flexural strength, $\phi_{b} M_{n}$, based on initiation of yielding. Also determine the effective moment of inertia for deflection determination at the service moment. Use Type 301 stainless steel, $1 / 4$-Hard. Assume dead load to live load ratio $D / L=1 / 5$ and $1.2 D+1.6 L$ governs the design.

Figure 5.1 Section for Example 5.1

Given:

1. Section: $9.5^{\prime \prime} \times 1.500^{\prime \prime} \times 0.060^{\prime \prime}$ Z-section with stiffened flanges.
2. Compression flange braced against lateral buckling.

Solution:

1. Calculation of the design flexural strength, $\Phi_{b} M_{n}$:
a. Properties of 90° corners:
$r=R+t / 2=3 / 32+0.060 / 2=0.124 \mathrm{in}$.

Length of arc, $u=1.57 r=1.57 \times 0.124=0.195 \mathrm{in}$.
Distance of c.g. from center of radius,
$c=0.637 \mathrm{r}=0.637 \times 0.124=0.079 \mathrm{in}$.
b. Properties of 135° corners:
$r=R+t / 2=3 / 32+0.060 / 2=0.124 \mathrm{in}$.
Length of arc, $u=\left(45^{\circ} / 180^{\circ}\right)(3.14) r=0.785 r=0.785 \times 0.124$
$=0.097$ in.

Distance of c.g. from center of radius,
$c_{1}=r \sin \theta / \theta=\left(0.124 \times \sin 45^{\circ}\right) / 0.785=0.112 \mathrm{in}$.
c. Computation of I_{x}, S_{e}, and M_{n} :

For the first approximation, assume a compression stress of $f=F_{y}=50 \mathrm{ksi}$ (yield strength in longitudinal compression as given in Table A1 of the Standard) in the top fiber of the section and that the web is fully effective.

Compression flange:

$$
\begin{array}{ll}
\mathrm{w} & =1.346 \mathrm{in} . \\
\mathrm{w} / \mathrm{t} & =1.346 / 0.060=22.43 \\
\mathrm{~S} & =1.28 \sqrt{E_{0} / \mathrm{f}} \\
\mathrm{E}_{\mathrm{o}} & =27000 \mathrm{ksi}(\text { Table A4 of the Standard) } \\
\mathrm{S} & =1.28 \sqrt{27000 / 50}=29.74 \\
\mathrm{~S} / 3 & =10.36<\mathrm{w} / \mathrm{t}=24.52<\mathrm{S}=31.09 \\
\mathrm{I}_{\mathrm{a}} & =399 \mathrm{t}^{4}\{[(w / \mathrm{t}) / \mathrm{S})-0.33\}^{3} \tag{Eq.2.4.2-6}\\
& =399(0.060)^{4}[(22.43 / 29.74)-0.33]^{3}
\end{array}
$$

$$
\text { (Eq. } 2.4-1 \text {) }
$$

```
            =0.000395 in.4
    d = 0.600 in., d/t = 0.600/0.060 = 10
    D = d+0.154tan(0/2) = 0.600+0.154tan(45 /2) = 0.664 in.
    I
    =(0.600)3}(0.060)\mp@subsup{\operatorname{sin}}{}{2}(4\mp@subsup{5}{}{\circ})/12=0.000540 in.4,
    I
    D/w = 0.664/1.346 = 0.493, 0.25< D/w = 0.493<0.80
    k = [4.82-5(D/w)](I
    n = 1/2
    [4.82-5(0.493)](1.367)}\mp@subsup{}{}{1/2}+0.43=3.18
    5.25-5(0.493) = 2.785< 3.183
    use k = 2.995
Since I 
as a simple lip.
w/t = 22.43< 90 OK (Section 2.1.1-(1)-(i))
\lambda = (1.052/\sqrt{}{k})(w/t)\sqrt{}{f/E}
                                    (Eq. 2.2.1-4)
            =(1.052/\sqrt{}{2.785})(22.43)\sqrt{}{50/27000}=0.608<0.673
b = w
    (Eq. 2.2.1-1)
    = 1.346 in. (i.e. compression flange fully effective)
```

Compression (upper) stiffener:
$\mathrm{k} \quad=0.50$ (unstiffened compression element)
$\mathrm{d} / \mathrm{t}=10.00$
f conservatively taken equal to 50 ksi as in top compression fiber.

$$
\lambda=(1.052 / \sqrt{0.50})(10.00) \sqrt{50 / 27000}=0.640<0.673
$$

Therefore,

$$
\begin{align*}
& d_{s}^{\prime}= \\
& d_{s}=0.600 \text { in. } \tag{Eq.2.4.2-11}\\
& d_{s}=d_{s}^{\prime}\left(I_{s} / I_{a}\right) \leq d_{s}^{\prime} \\
& \text { Since } I_{s} / I_{a}=1.367>1.000 \\
& d_{s}= \\
& \quad d_{s}^{\prime}=0.600 \text { in. (i.e. compression stiffener is fully } \\
& \quad \text { effective) }
\end{align*}
$$

Thus, one concludes that the section is fully effective.

$$
y_{c g}=9.5 / 2=4.750 \text { in. (from symmetry) }
$$

It follows that a compression stress of $f=50 \mathrm{ksi}$ will govern as assumed.

To check if web is fully effective (Section 2.2.2):

$$
\begin{align*}
\mathrm{f}_{1} & =[(4.750-0.154) / 4.750] \times 50=48.38 \mathrm{ksi}(\text { compression }) \\
\mathrm{f}_{2} & =-48.38 \mathrm{ksi}(\text { tension }) \\
\Psi & =f_{2} / f_{1}=-48.38 / 48.38=-1.000 \\
\mathrm{k} & =4+2(1-\Psi)^{3}+2(1-\Psi) \\
& =4+2[1-(-1)]^{3}+2[1-(-1)] \\
& =24.000 \\
\mathrm{~h} & =w=9.192 \mathrm{in} ., \mathrm{h} / \mathrm{t}=\mathrm{w} / \mathrm{t}=9.192 / 0.060=153.20 \\
\mathrm{~h} / \mathrm{t} & =153.20<2000 \mathrm{~K}(\text { Section } 2.1 .2-(1)) \\
\lambda & =(1.052 / \sqrt{24})(153.20) \sqrt{48.38 / 27000}=1.393>0.673 \\
\mathrm{p} & =[1-(0.22 / \lambda)] / \lambda \tag{Eq.2.2.1-3}\\
& =[1-(0.22 / 1.393)] / 1.393=0.604 \\
b_{e} & =\rho w \tag{Eq.2.2.1-2}\\
& =0.604 \times 9.192=5.552 \mathrm{in} . \\
b_{2} & =b_{\mathrm{e}} / 2 \tag{Eq.2.2.2-2}\\
& =5.552 / 2=2.776 \mathrm{in} .
\end{align*}
$$

$$
\begin{align*}
\mathrm{b}_{1} & =\mathrm{b}_{\mathrm{e}} /(3-\Psi) \tag{Eq.2.2.2-1}\\
& =5.552 /[3-(-1)]=1.388 \mathrm{in} .
\end{align*}
$$

The effective widths of web, b_{1} and b_{2}, are defined in Figure 2 of the Standard.

$$
b_{1}+b_{2}=1.388+2.776=4.164 \mathrm{in} .
$$

Compression portion of the web $=y_{c g}-0.154$

$$
\begin{aligned}
& =4.750-0.154 \\
& =4.596 \mathrm{in} .
\end{aligned}
$$

Since $b_{1}+b_{2}=4.164$ in. <4.596 in., it follows that the web is not fully effective. Hence $y_{c g}=4.750$ as assumed.

The procedure to determine the location of the neutral axis (N.A.) based on partially effective web is iterative. We start with $y_{c g}=4.750$ in. and from Figure 2 of the Standard, scale b_{1}, b_{2} already computed with respect to $y_{c g}=4.750 \mathrm{in}$. Then we proceed to compute a new N.A. and hence $b_{1}+b_{2}$. If $\left(b_{1}+b_{2}\right)$ is the same as before, the solution stabilizes and the location of N.A. is calculated according to this ($b_{1}+b_{2}$). If ($b_{1}+b_{2}$) differ than before, one reiterates in the same manner until $b_{1}+b_{2}$ stabilizes.

Thus, for the first iteration, the web is divided into three segments: $b_{1}=1.388$ in., ineffective portion of web, and $b_{2}(=2.776)+4.750-0.154$ $=7.372$ in.. Thus the ineffective portion of web $=9.192-1.388-7.372=$ 0.432 in..

The compression flange and stiffener remain fully effective since nothing is altered in their calculations.
$\left.\begin{array}{ccccc}\hline & & \begin{array}{c}\text { y } \\ \text { Distance } \\ \text { from }\end{array} \\ \text { Top Fiber } \\ \text { (in.) }\end{array}\right]$

```
\(y_{c g}=L y / L=64.164 / 13.236\)
    \(=4.848\) in. (measured from top compression fiber)
    \(\mathrm{f}_{1}=\{(4.848-0.154) / 4.848](50)=48.41 \mathrm{ksi}(\) compression \()\)
    \(\mathrm{f}_{2}=-[(9.5-4.848-0.154) / 4.848](50)=-46.39 \mathrm{ksi}(\) tension \()\)
    \(\Psi \quad=-46.39 / 48.41=-0.958\)
    \(\mathrm{k}=4+2(1-(-0.958))^{3}+2(1-(-0.958))\)
            \(=22.929\)
\(\lambda=(1.052 / \sqrt{22.929})(153.20) \sqrt{48.41 / 27000}=1.425>0.673\)
\(\rho=[1-(0.22 / 1.425)] / 1.425=0.593\)
\(b_{e} \quad=0.593 \times 9.192=5.451 \mathrm{in}\).
\(b_{2}=5.451 / 2=2.726\) in.
\(b_{1}=5.451 /[3-(-0.958)]=1.377\) in.
\(b_{1}+b_{2}=4.103 \mathrm{in} .=4.164 \mathrm{in}\). Therefore, need to reiterate.
```

For the second iteration:
$b_{1}=1.377 \mathrm{in}$.
$\mathrm{b}_{2}+\left(9.5-\mathrm{y}_{\mathrm{cg}}\right)-0.154=2.726+9.5-4.848-0.154=7.224 \mathrm{in}$.
Ineffective portion of web $=9.192-1.377-7.224=0.591 \mathrm{in}$.

Effective section properties about x-axis:

Element	$\begin{gathered} \mathrm{L} \\ \text { (in.) } \end{gathered}$	```y Distance from Top Fiber (in.)```	$\underset{\left(\text { in. }^{2}\right)}{\text { Ly }}$
b_{1}	1.377	0.843	1.161
$\mathrm{b}_{2}+\left(9.5-\mathrm{y}_{\mathrm{co}}\right)-0.154$	7.224	5.734	41.422
Compressioh flange	1.346	0.030	0.040
Compression stiffener	0.600	0.278	0.167
Top 90° corner	0.195	0.075	0.015
Top 135° corner	0.097	0.042	0.004
Bottom 135° corner	0.097	9.458	0.917
Bottom 90° corner	0.195	9.425	1.838
Bottom stiffener	0.600	9.222	5.533
Tension flange	1.346	9.470	12.747
Sum	13.077		63.844

$$
\begin{aligned}
\mathrm{y}_{\mathrm{cg}}= & 65.844 / 13.077=4.882 \mathrm{in} . \quad \text { (measured from top } \\
& \text { compression fiber) } \\
\mathrm{f}_{1}= & {[(4.882-0.154) / 4.882](50)=48.42 \mathrm{ksi} } \\
\mathrm{f}_{2}= & -((9.5-4.882-0.154) / 4.882](50)=-45.72 \mathrm{ksi} \\
\psi= & -45.72 / 48.42=-0.944 \\
\mathrm{k}= & 4+2[1-(-0.944)]^{3}+2[1-(-0.944)]=22.580 \\
\lambda \quad= & (1.052 / \sqrt{22.580})(153.20) \sqrt{48.42 / 27000}=1.436>0.673 \\
\rho \quad= & {[1-(0.22 / 1.436)] / 1.436=0.590 }
\end{aligned}
$$

$$
\begin{aligned}
& \mathrm{b}_{\mathrm{e}}=0.590 \times 9.192=5.423 \mathrm{in} . \\
& \mathrm{b}_{2}=5.423 / 2=2.712 \mathrm{in} . \\
& \mathrm{b}_{1}=5.423 /[3-(-0.946)]=1.374 \mathrm{in} . \\
& \mathrm{b}_{1}+\mathrm{b}_{2}=4.086 \mathrm{in} .=4.103 \mathrm{in} . \text { Therefore, need to reiterate. }
\end{aligned}
$$

For the third iteration:

$$
\mathrm{b}_{1}=1.374 \mathrm{in} .
$$

$$
\mathrm{b}_{2}+\left(9.5-\mathrm{y}_{\mathrm{cg}}\right)-0.154=2.712+9.5-4.882-0.154=7.176 \mathrm{in} .
$$

$$
\text { Ineffective portion of web }=9.192-1.374-7.176=0.642 \mathrm{in} .
$$

Effective section properties about x-axis:
$\mathrm{L}=13.026 \mathrm{in}$.
Ly $=63.736$ in. 2
$y_{c g}=63.736 / 13.026=4.893 \mathrm{in}$.
$f_{1}=\{(4.893-0.154) / 4.893\rceil(50)=48.43 \mathrm{ksi}$
$f_{2}=-[(9.5-4.893-0.154) / 4.893](50)=-45.50 \mathrm{ksi}$
$\Psi \quad=-45.50 / 48.43=-0.940$
$\mathrm{k}=4+2[1-(-0.940)]^{3}+2[1-(-0.940)]=22.483$
$\lambda=(1.052 / \sqrt{22.483})(153.20) \sqrt{48.43 / 27000}=1.440>0.673$
$\rho=[1-(0.22 / 1.440)] / 1.440=0.588$
$\mathrm{b}_{\mathrm{e}}=0.588 \times 9.192=5.405 \mathrm{in}$.
$b_{2}=5.405 / 2=2.703 \mathrm{in}$.
$b_{1}=5.405 /[3-(-0.940)]=1.372 \mathrm{in}$.
$b_{1}+b_{2}=4.075 \mathrm{in} .=4.086 \mathrm{in}$. Therefore, need to reiterate.

For the fourth iteration:

$$
\mathrm{b}_{1}=1.372 \mathrm{in} .
$$

$\mathrm{b}_{2}+\left(9.5-\mathrm{y}_{\mathrm{cg}}\right)-0.154=2.703+9.5-4.893-0.154=7.156 \mathrm{in}$.
Ineffective portion of web $=9.192-1.372-7.156=0.664 \mathrm{in}$.

Effective section properties about x-axis:
$\mathrm{L}=13.004 \mathrm{in}$.

Ly $=63.689$ in. ${ }^{2}$
$y_{c g}=63.689 / 13.004=4.898 \mathrm{in}$.
$\mathbf{f}_{1}=[(4.898-0.154) / 4.898](50)=48.43 \mathrm{ksi}$
$\mathrm{f}_{2}=-[(9.5-4.898-0.154) / 4.898](50)=-45.41 \mathrm{ksi}$
$\Psi=-45.41 / 48.43=-0.938$
$\mathrm{k}=4+2[1-(-0.938))^{3}+2[1-(-0.938)]=22.434$
$\lambda=(1.052 / \sqrt{22.434})(153.20) \sqrt{48.43 / 27000}=1.441>0.673$
$\rho=[1-(0.22 / 1.441)] / 1.441=0.588$
$b_{e}=0.588 \times 9.192=5.405 \mathrm{in}$.
$\mathrm{b}_{2}=5.405 / 2=2.703$ in.
$b_{1}=5.405 /[3-(-0.938)]=1.373 \mathrm{in}$.
$b_{1}+b_{2}=4.076 \mathrm{in}$. close enough to 4.075 in.
Thus, the solution stabilizes.

Hence we now compute the location of N.A. and moment of inertia using $b_{1}=1.373$ in. and $b_{2}=2.703 \mathrm{in}$.

Effective section properties about x-axis:

Element	$\begin{gathered} \mathrm{L} \\ (\mathrm{in} .) \end{gathered}$	```y Distance from Top Fiber (in.)```	$\underset{\left(\text { in. }^{2}\right)}{ }$	$\begin{gathered} \mathrm{Ly}^{2} \\ \left(\text { in. }{ }^{3}\right. \text {) } \end{gathered}$	$\begin{gathered} I^{\prime} 1 \\ \text { About } \\ \text { Own } \\ \text { Axis } \\ \left(\text { in. }{ }^{3}\right. \text {) } \end{gathered}$
b_{1}	1.373	0.841	1.155	0.971	0.216
$\mathrm{b}_{2}+\left(9.5-\frac{1}{y_{c s}}\right)-0.154$	7.151	5.771	41.268	238.160	30.473
Compressior flange	1.346	0.030	0.040	0.001	--
Compression stiffener	0.600	0.278	0.167	0.046	0.009
Top 90° corner	0.195	0.075	0.015	0.001	--
Top 135° corner	0.097	0.042	0.004	--	--
Bottom 135° corner	0.097	9.458	0.917	8.677	--
Bottom 90° corner	0.195	9.425	1.838	17.322	--
Bottom stiffener	0.600	9.222	5.533	51.027	0.009
Tension flange	1.346	9.470	12.747	120.710	--
Sum	13.000		63.684	436.915	30.707

Distance from top fiber to x-axis is

$$
y_{c g} \quad=63.684 / 13.000=4.899 \mathrm{in} .
$$

Since the distance from top compression fiber to the neutral axis is greater than one half the beam depth ($=4.750$ in.), a compression stress of 50 ksi will govern as assumed.

$$
\begin{aligned}
I_{x}^{\prime} & =L^{2}+I_{1}^{\prime}{ }_{1}-\mathrm{Ly}_{\mathrm{cg}} \\
& =436.915+30.707-13.000(4.899)^{2} \\
& =155.619 \mathrm{in}^{3} \\
\text { Actual } I_{x} & =I_{x}^{\prime} t^{\prime} \\
& =155.619 x 0.060 \\
& =9.337 \mathrm{in} .4 \\
S_{e} & =I_{x} / y_{\mathrm{Cg}}
\end{aligned}
$$

$$
\begin{align*}
& =9.337 / 4.899 \\
& =1.906 \text { in. }^{3} \\
M_{\mathrm{n}} \quad & =\mathrm{S}_{\mathrm{e}} \mathrm{~F}_{\mathrm{y}} \tag{Eq.3.3.1.1-1}\\
& =1.906 \times 50 \\
& =95.30 \mathrm{kips}-\mathrm{in} .
\end{align*}
$$

d. The design flexural strength, $\Phi_{b} M_{n}$, based on initiation of yielding is determined as follows: (Section 3.3.1.1(1))
$\Phi_{\mathrm{b}} \quad=0.90$ (for section with stiffened compression flanges)
$\Phi_{b} M_{n} \quad=0.90 \times 95.30=85.77$ kips-in.
2. Calculation of the effective moment of inertia for deflection determination at the service moment M_{s} :

The unfactored loads are used to determine the section properties for deflection determination. For a load combination of 1.2D+1.6L, the service moment can be determined as follows:

$$
\begin{aligned}
\Phi_{b} M_{n} & =1.2 M_{D L}+1.6 M_{L L} \\
& =\left[1.2\left(M_{D L} / M_{L L}\right)+1.6\right] M_{L L} \\
& =(1.2(1 / 5)+1.6] M_{L L} \\
& =1.84 M_{L L} \\
M_{L L} & =\Phi_{b} M_{n} / 1.84=85.77 / 1.84=46.61 \mathrm{kips}-\mathrm{in} . \\
M_{s} & =M_{D L}+M_{L L} \\
& =(1 / 5+1) M_{L L} \\
& =1.2(46.61)=55.93 \mathrm{kips}-\mathrm{in} .
\end{aligned}
$$

where

$$
M_{D L}=\text { Moment determined on the basis of nominal dead load }
$$

$$
M_{L L}=\text { Moment determined on the basis of nominal live load }
$$

The procedure is iterative: one assumes the actual compressive stress f under this service moment M_{S}. Knowing f, one proceeds as usual to obtain S_{e} and checks to see if (f $x S_{e}$) is equal to M_{s} as it should. If not, reiterate until one obtains the desired level of accuracy. (Section 2.2.1-(2))
a. For the first iteration, assume a stress of $f=30 \mathrm{ksi}$ in the top and bottom fibers of the section and that the web is fully effective.

Compression flange:

$$
\begin{array}{ll}
\mathrm{S} & =1.28 \sqrt{27000 / 30}=38.40 \\
\mathrm{~S} / 3 & =12.80<\mathrm{w} / \mathrm{t}=22.43<\mathrm{S}=38.40 \\
\mathrm{I}_{\mathrm{a}} & =399(0.060)^{4}[(22.43 / 38.40)-0.33]^{3} \\
& =0.000085 \mathrm{in.}^{4} \\
\mathrm{I}_{\mathrm{s}} / \mathrm{I}_{\mathrm{a}} & =0.000540 / 0.000085=6.353 \\
\mathrm{k} & =[4.82-5(0.493)](6.353)^{1 / 2}+0.43=6.366>2.785 \\
\text { Use } k & =2.785
\end{array}
$$

For deflection determination, the value of E_{r}, reduced modulus of elasticity determined by using Eq. (2.2.1-7), is substituted for E_{o} in Eq. (2.2.1-4).

For a compression and tension stresses of $f=30 \mathrm{ksi}$, the corresponding $E_{s c}$ and $E_{s t}$ values for Type 301 stainless steel are obtained from Table A2 or Figure A1 of the Standard as follows:

$$
\begin{aligned}
E_{s c} & =22650 \mathrm{ksi}, \quad E_{s t}=26900 \mathrm{ksi} \\
E_{r} & =\left(E_{s c}+E_{s t}\right) / 2 \\
= & (22650+26900) / 2=24775 \mathrm{ksi} \\
\lambda \quad & (1.052 / \sqrt{2.785})(22.43) \sqrt{30 / 24775}=0.492<0.673 \\
b_{d} \quad & 1.346 \mathrm{in} .(\text { i.e. compression flange fully } \\
& \text { effective) }
\end{aligned}
$$

Compression (upper) stiffener:
f can be conservatively taken equal to 30 ksi as used in the top compression fiber.

$$
\lambda \quad=(1.052 / \sqrt{0.50})(10.00) \sqrt{30 / 24775}=0.518<0.673
$$

therefore, $d_{s}^{\prime}=0.600 \mathrm{in}$.
Since $I_{s} / I_{a}=6.353>1.0$, it follows that $d_{s}=d^{\prime}$
$=0.600$ in. (i.e. compression stiffener fully effective).
Thus, section is fully effective (since web was assumed
fully effective).

$$
y_{c g}=9.5 / 2=4.750 \mathrm{in} .(\text { from symmetry })
$$

To check if web is fully effective:

$$
\begin{array}{ll}
\mathbf{f}_{1} & =[(4.750-0.154) / 4.750](30)=29.03 \mathrm{ksi} \\
\mathbf{f}_{2} & =-29.03 \mathrm{ksi} \\
\Psi & =-29.03 / 29.03=-1.000 \\
\mathbf{k} & =24.000
\end{array}
$$

For a compression and tension stresses of $\mathrm{f}=29.03 \mathrm{ksi}$, it is found that the vlues of $E_{S c}$ and $E_{s t}$ are equal to 23305 ksi
and 26950 ksi , respectively.

$$
\begin{equation*}
E_{r}=\left(E_{s c}+E_{s t}\right) / 2 \tag{Eq.2.2.1-7}
\end{equation*}
$$

$$
\begin{array}{ll}
& =(23305+26950) / 2=25130 \mathrm{ksi} \\
\lambda & =(1.052 / \sqrt{24})(153.20) \sqrt{29.03 / 25130}=1.118>0.673 \\
\rho & =(1-(0.22 / 1.118)] / 1.118=0.718 \\
b_{e} & =0.718 \times 9.192=6.600 \mathrm{in} . \\
b_{2} & =6.600 / 2=3.300 \mathrm{in} . \\
b_{1} & =6.600 /[3-(-1)]=1.650 \mathrm{in} .
\end{array}
$$

Compression portion of the web $=y_{c g}-0.154$
$=4.750-0.154=4.596 \mathrm{in}$.

$$
\mathrm{b}_{1}+\mathrm{b}_{2}=4.950 \mathrm{in} .>4.596 \mathrm{in} .
$$

Thus $b_{1}+b_{2}$ shall be taken as 4.596 in. This verifies the assumption that the web is fully effective.

Full section properties about x-axis:

Web		-9.192	--	64.722	
Stiffeners	$2 \times 0.600=1.200$	4.472	23.999	0.018	
90° corners	$2 \times 0.195=0.390$	4.675	8.524	--	
135° corners	$2 \times 0.097=0.194$	4.708	4.300	--	
Flanges	$2 \times 1.346=2.692$	4.720	59.973	--	

Sum
96.796
64.740

$$
\begin{aligned}
I_{\mathbf{x}}^{\prime} & =\mathrm{Ly}^{2}+\mathrm{I}_{1}^{\prime} \\
& =96.796+64.740=161.536 \mathrm{in} .{ }^{3} \\
I_{\mathbf{x}} & =161.536(0.060)=9.692 \mathrm{in} .4 \\
S_{e} & =I_{\mathbf{x}} / y_{c g}=9.692 / 4.750=2.040 \mathrm{in.}^{3}
\end{aligned}
$$

$M \quad=f \times S_{e}=30 \times 2.040$
$=61.20 \mathrm{kips}-\mathrm{in}$. not equal to $M_{\mathrm{s}}=55.93 \mathrm{kips}-\mathrm{in}$.
Thus, need to reiterate.

However, one sees that we need to assume a smaller stress than 30 ksi and since the section was fully effective for $f=30 \mathrm{ksi}$, it will be fully effective for $\mathrm{f}<30 \mathrm{ksi}$.

Thus $\mathrm{S}_{\mathrm{e}}=2.040 \mathrm{in}^{3}$
Therefore, the correct f at $M_{s}=M_{s} / S_{e}=55.93 / 2.040$
$=27.42 \mathrm{ksi}$. and $I_{x}=9.692$ in. ${ }^{4}$ for deflection determination.

Remark:

It was clearly seen that in the calculation of $\phi_{b} M_{n}$, the assumption of the web being fully effective was not true. However, it would be interesting to see the percentage of error if one neglected the partial effectiveness of the web and proceeded with the assumption of a fully effective web.

To demonstrate: neglect the partial effectiveness of the web in the first approximation in the calculation of $\phi_{b} M_{n}$.

Thus the whole section is fully effective. Full section properties about x -axis (from part 2):

```
I
Se = 2.040 in. }\mp@subsup{}{}{3
\mp@subsup{D}{b}{}\mp@subsup{M}{n}{}=0.90(2.040\times50)=91.80 kips-in.
% error = (91.80-85.77)/85.77 x100% = 7.03%
```

Since the percentage of error is small, one could rationalize that in practical cases to get a first-hand quick answer one could assume the web being fully effective.

Use the data given in Example 5.1 (Figure 5.1) to determine the allowable moment, M_{a}, by using the Allowable Stress Design (ASD) method on the basis of initiation of yielding. Also determine the effective moment of inertia for deflection determination at the allowable moment. Use Type 301 stainless steel, $1 / 4$-Hard: $F_{y}=50 \mathrm{ksi}$.

Solution:

1. Calculation of the allowable moment, M_{a} : The effective section properties calculated by the ASD method are the same as those determined in Example 5.1 for the LRFD method. Therefore, the allowable moment can be determined in accordance with Appendix E of the Standard as follows:
```
\Omega=1.85 (Safety Factor stipulated in Table E of the Standard)
M
Ma}=\mp@subsup{M}{n}{}/\Omega\quad (Eq.E-1
    = 95.30/1.85
    = 51.51 kips-in.
```

2. Calculation of the effective moment of inertia for deflection determination at the allowable moment, M_{a} : For deflection determination on the basis of the ASD method, the effective moment of inertia is determined by the same procedures given in Example 5.1 for the LRFD method, except that the computed moment $M\left(=f x S_{e}\right)$ should be equal to M_{a}.

From the results of Example 5.1 , it can be seen that by using a a stress of $f=30 \mathrm{ksi}$, the computed $S_{e}=2.040$ in. ${ }^{3}$ which is based on the fully effective section. If one assumes a smaller stress of $f=25.25 \mathrm{ksi}$, the effective section modulus will also be determined on the basis of its full cross section, i.e., $S_{e}=2.040$ in. ${ }^{3}$ Therefore, $f x S_{e}=25.25 \times 2.040=51.51 \mathrm{kips}-\mathrm{in} .$, which is equal to M_{a} determined above.

Therefore, the computed $I_{x}=9.692$ in ${ }^{4}$ obtained from the full section properties can be used for deflection determination.

EXAMPLE 6.1 HAT SECTION (LRFD)

(Complete Flexural Design)
By using the Load and Resistance Factor Design (LRFD) method, check the adequacy of the hat section given in Figure 6.1 for bending moment, shear, web crippling, and deflection. Use Type 316 stainless steel, 1/4-Hard. Assume dead load to live load ratio $D / L=1 / 5$ and $1.2 \mathrm{D}+1.6 \mathrm{~L}$ governs the design.

Figure 6.1 Section for Example 6.1

Given:

1. Section: Hat section, as shown in sketch.
2. Span length: $L=8 \mathrm{ft} .$, with simple supports, no overhang, and 6-in. support bearing lengths.
3. Nominal Loading: Live $=250 \mathrm{lb} / \mathrm{ft} . ;$ Dead $=20 \mathrm{lb} / \mathrm{ft}$.

Solution:

1. Properties of 90° corners:

Corner Radius, $r=R+t / 2=3 / 32+0.060 / 2=0.124 \mathrm{in}$.

Length of arc, $u=1.57 \mathrm{r}=1.57 \times 0.124=0.195 \mathrm{in}$.
Distance of c.g. from center of radius, $c=0.637 r=0.637 \times 0.124=0.079 \mathrm{in}$. The moment of inertia, I^{\prime}, of corner about its own centroidal axis is negligible.
2. Nominal Section Strength, M_{n} (Section 3.3.1.1)

```
a. Procedure I - Based on Initiation of Yielding
    Computation of }\mp@subsup{I}{x}{},\mp@subsup{S}{e}{},\mathrm{ and }\mp@subsup{M}{n}{}\mathrm{ : (first approximation)
    * Assume a compressive stress of f = F y = 50 ksi in the
    top fiber of the section. (See Table A1 of the Standard
    for yield strength.)
    * Also assume web is fully effective.
```


Element 4:

$h / t=3.692 / 0.060=61.53<(h / t)_{\max }=200$ OK (Section 2.1.2-(1))
Assumed fully effective

Element 5:
$w / t=8.692 / 0.060=144.9<400$ OK (Section 2.1.1-(1)-(ii))
$\mathrm{k}=4$
$\lambda=(1.052 / \sqrt{k})(w / t) \sqrt{f / E_{O}}$
(Eq. 2.2.1-4)
E_{o} is equal to 27000 ksi , which is obtained from Table A4 of the Standard.
$\lambda=(1.052 / \sqrt{4})(144.9) \sqrt{50 / 27000}=3.280>0.673$
$\rho=[1-(0.22 / \lambda)] / \lambda$
(Eq. 2.2.1-3)

$$
\begin{aligned}
& =[1-(0.22 / 3.280)] / 3.280=0.284 \\
\mathrm{~b} & =\rho \mathrm{w} \\
& =0.284 \times 8.692 \\
& =2.469 \mathrm{in} .
\end{aligned}
$$

Effective section properties about x-axis:

Element	$\begin{gathered} \text { L } \\ \text { Effective Length } \\ \text { (in.) } \end{gathered}$	```y Distance from Top Fiber (in.)```	$\begin{gathered} \text { Ly } \\ \left(\text { in. }{ }^{2}\right) \end{gathered}$	$\begin{gathered} L y^{2} \\ \left(\text { in. }{ }^{3}\right) \end{gathered}$	$\begin{gathered} I^{\prime} \\ \text { About } \\ \text { Own } \\ \text { Axis } \\ \text { (in. }{ }^{3} \text {) } \end{gathered}$
1	$2 \times 0.596=1.192$	3.548	4.229	15.005	0.035
2	$4 \times 0.195=0.780$	3.925	3.062	12.016	--
3	$2 \times 2.692=5.384$	3.970	21.375	84.857	--
4	$2 \times 3.692=7.384$	2.000	14.768	29.536	8.388
5	2.469	0.030	0.074	0.002	--
6	$2 \times 0.195=0.390$	0.075	0.029	0.002	--
Sum	17.599		43.537	141.418	8.423

The distance from the top fiber to the neutral axis is

$$
y_{c g}=\mathrm{Ly} / \mathrm{L}=43.537 / 17.599=2.474 \mathrm{in} .
$$

Since the distance from top compression fiber to the neutral
axis, $y_{c g}$, is greater than one half the beam depth, a
compressive stress of F_{y} will govern as assumed.

$$
\begin{aligned}
I_{x}^{\prime} & =L y^{2}+I_{1}^{\prime}-L y_{c g}^{2} \\
& =141.418+8.423-17.599(2.474)^{2} \\
& =42.12 \text { in. }^{3}
\end{aligned}
$$

Actual $I_{x}=t I_{x}^{\prime}$

$$
=(0.060)(42.12)=2.53 \text { in. }{ }^{4}
$$

Check Web

$$
\begin{equation*}
b_{2}=b_{e} / 2 \tag{Eq.2.2.2-2}
\end{equation*}
$$

$$
=3.640 / 2=1.820 \mathrm{in} .
$$

$$
b_{1}=b_{e} /(3-\Psi)
$$

(Eq. 2.2.2-1)

$$
\begin{aligned}
& \mathrm{f}_{1}=(2.320 / 2.474)(50)=46.89 \mathrm{ksi}(\text { compression }) \\
& f_{2}=-(1.372 / 2.474)(50)=-27.73 \mathrm{ksi}(\text { tension }) \\
& \Psi \quad=\mathrm{f}_{2} / \mathrm{f}_{1}=-27.73 / 46.89=-0.591 \\
& \mathrm{k} \quad=4+2(1-\Psi)^{3}+2(1-\Psi) \\
& \text { (Eq. 2.2.2-4) } \\
& =4+2[1-(-0.591)]^{3}+2[1-(-0.591)] \\
& =15.24 \\
& \lambda \quad=(1.052 / \sqrt{k})(w / t) \sqrt{f / E_{0}}, \quad f=f_{1} \\
& \text { (Eq. 2.2.1-4) } \\
& =(1.052 / \sqrt{15.24})(61.53) \sqrt{46.89 / 27000}=0.691>0.673 \\
& \rho=[1-(0.22 / \lambda)] / \lambda \\
& \text { (Eq. 2.2.1-3) } \\
& =[1-(0.22 / 0.691)] / 0.691=0.986 \\
& \mathrm{~b}_{\mathrm{e}} \quad=\rho_{w} \\
& \text { (Eq. 2.2.1-2) } \\
& =0.986 \times 3.692 \\
& =3.640 \mathrm{in} .
\end{aligned}
$$

$$
\begin{aligned}
&= 3.640 /[3-(-0.591)]=1.014 \text { in. } \\
& b_{1}+b_{2}= 1.014+1.820=2.834 \text { in. }>2.320 \text { in. (compression } \\
& \text { portion of web, see sketch shown above) } \\
& \text { Therefore, web is fully effective. }
\end{aligned}
$$

$$
\begin{align*}
\mathrm{S}_{\mathrm{e}} & =\mathrm{I}_{\mathrm{x}} / \mathrm{y}_{\mathrm{cg}} \\
& =2.53 / 2.474 \\
& =1.02 \mathrm{in}^{3} \\
M_{\mathrm{n}} & =\mathrm{S}_{\mathrm{e}} \mathrm{~F}_{\mathrm{y}} \tag{Eq.3.3.1.1-1}\\
& =(1.02)(50) \\
& =51.0 \mathrm{kips}-\mathrm{in} .
\end{align*}
$$

b. Procedure II - Based on Inelastic Reserve Capacity

$$
\begin{aligned}
& \begin{aligned}
\lambda_{1} & =\left(1.11 / \sqrt{F_{y} / E_{0}}\right) \\
& =(1.11 / \sqrt{50 / 27000})=25.79 \\
\lambda_{2} & =\left(1.28 / \sqrt{F_{y} / E_{0}}\right) \\
& =(1.28 / \sqrt{50 / 27000})=29.74 \\
w / t & =8.692 / 0.06=144.9
\end{aligned} \\
& \text { For } w / t>\lambda_{2}, C_{y}=1
\end{aligned} \text { Maximum compressive strain }=C_{y} e_{y}=e_{y} .
$$

3. Design Flexural Strength, $\Phi_{b} M_{n}$ (Section 3.3.1)

$$
\begin{aligned}
& \Phi_{\mathrm{b}}=0.90 \text { (for section with stiffened compression flanges) } \\
& \Phi_{\mathrm{b}} \mathrm{M}_{\mathrm{n}}=0.90 \times 51.0=45.9 \mathrm{kips}-\mathrm{in} .
\end{aligned}
$$

The factored load combination is as follows:

$$
\mathrm{w}_{\mathrm{u}}=1.2 \mathrm{w}_{\mathrm{DL}}+1.6 \mathrm{w}_{\mathrm{LLL}}=1.2(0.02)+1.6(0.25)=0.424 \mathrm{kips} / \mathrm{ft}
$$

Maximum required flexural strength for a simply supported beam is

$$
\begin{aligned}
M_{u} & =w_{u} L^{2} / 8=0.424(8)^{2}(12) / 8 \\
& =40.70 \text { kips-in. }<\Phi_{b} M_{n}=45.9 \text { kips-in. OK }
\end{aligned}
$$

4. Strength for Shear On1y (Section 3.3.2)

The required shear strength at any section shall not exceed the design shear strength $\Phi_{\mathrm{v}} \mathrm{V}_{\mathrm{n}}$:

$$
\begin{align*}
\Phi_{\mathrm{v}} & =0.85 \\
V_{\mathrm{n}} & =4.84 \mathrm{E}_{\mathrm{o}} t^{3}\left(\mathrm{G}_{\mathrm{s}} / \mathrm{G}_{\mathrm{o}}\right) / \mathrm{h} \tag{Eq.3.3.2-1}\\
\mathrm{v}_{\mathrm{n}} & =\mathrm{V}_{\mathrm{n}} /(\mathrm{ht}) \\
& =4.84 \mathrm{E}_{\mathrm{o}}\left(\mathrm{G}_{\mathrm{s}} / \mathrm{G}_{\mathrm{o}}\right) /(\mathrm{h} / \mathrm{t})^{2}
\end{align*}
$$

In the determination of the shear strength, it is necessary to select a proper value of G_{s} / G_{o} for the assumed stress from Table A12 or Figure A9 of the Standard. For the first approximation, assume a shear stress of $v=F_{y} / 2=25 \mathrm{ksi}$ and the corresponding value of G_{s} / G_{o} is equal to 0.888 . Thus, $h / t=3.692 / 0.060=61.53$ $\mathrm{v}_{\mathrm{n}}=4.84(27000)(0.888) /(61.53)^{2}$
$=30.7 \mathrm{ksi}>$ assumed stress $\mathrm{v}=25 \mathrm{ksi} \mathrm{NG}$

For a second approximation, assume a stress of $\mathrm{f}=28.82 \mathrm{ksi}$ and its corresponding value of G_{s} / G_{o} is 0.836 .

$$
\begin{aligned}
\mathrm{v}_{\mathrm{n}} & =4.84(27000)(0.836) /(61.53)^{2} \\
& =28.85 \mathrm{ksi}=\text { assumed stress } \mathrm{OK}
\end{aligned}
$$

Therefore, the total shear strength, V_{n}, for hat section is

$$
v_{n}=(2 \text { webs })\left(v_{n}\right)(h t)
$$

$$
\begin{aligned}
& =2(28.85)(3.692 \times 0.060) \\
& =12.78 \mathrm{kips}
\end{aligned}
$$

The design shear strength is determined as follows:

$$
\begin{aligned}
& \Phi_{\mathrm{v}} \mathrm{~V}_{\mathrm{n}}=0.85(12.78)=10.85 \mathrm{kips} \\
& \Phi_{\mathrm{v}} \mathrm{~V}_{\mathrm{n}}<2\left(0.95 \mathrm{~F}_{\mathrm{yv}} \mathrm{ht}\right)=2(0.95 \times 42 \times 3.692 \times 0.06)=17.68 \mathrm{kips} \mathrm{OK} \\
& \text { (The shear yield strength, } \mathrm{F}_{\mathrm{yv}} \text {, is obtained from Table A1 } \\
& \text { of the Standard.) }
\end{aligned}
$$

Maximum Required Shear Strength $=$ Reaction

$$
\mathrm{V}_{\mathrm{u}}=\mathrm{w}_{\mathbf{u}} \mathrm{L} / 2=0.424(8) / 2=1.70 \mathrm{k}<\Phi_{\mathrm{v}} \mathrm{~V}_{\mathrm{n}}=10.85 \mathrm{k} \text { OK }
$$

5. Web Crippling Strength for End Reaction (Section 3.3.4)

$$
\begin{aligned}
& \mathrm{R} / \mathrm{t}=(3 / 32) / 0.06=1.563<60 \mathrm{~K} \\
& \mathrm{~h} / \mathrm{t}=3.692 / 0.06=61.53<200
\end{aligned}
$$

$$
\begin{align*}
\mathrm{P}_{\mathrm{n}} & =\mathrm{t}^{2} \mathrm{C}_{3} \mathrm{C}_{4} \mathrm{C}_{\theta}[331-0.61(\mathrm{~h} / \mathrm{t})][1+0.01(\mathrm{~N} / \mathrm{t})] \tag{Eq.3.3.4-1}\\
\mathrm{C}_{3} & =(1.33-0.33 \mathrm{k}) \mathrm{k} \\
\mathrm{k} & =\mathrm{F}_{\mathrm{y}} / 33=50 / 33=1.515 \\
\mathrm{C}_{3} & =[1.33-0.33(1.515)](1.515)=1.257 \\
\mathrm{C}_{4} & =(1.15-0.15 \mathrm{R} / \mathrm{t}) \leq 1.0 \text { but not less than } 0.50
\end{align*}
$$

(Eq. 3.3.4-12)
(Eq. 3.3.4-21)
$(1.15-0.15 R / t)=[1.15-0.15(1.563)]=0.916 \leq 1.0 \mathrm{OK}$

$$
>0.50 \mathrm{OK}
$$

$$
\begin{aligned}
& \mathrm{C}_{4}= 0.916 \\
& \mathrm{C}_{\theta}= 0.7+0.3(\theta / 90)^{2} \\
&= 0.7+0.3(90 / 90)^{2}=1.0 \\
& \mathrm{P}_{\mathrm{n}}=(0.06)^{2}(1.257)(0.916)(1.0)[331-0.61(61.53)] \\
& \mathrm{x}[1+0.01(6 / 0.06)]=2.43 \mathrm{k} / \mathrm{web} \\
& \mathrm{P}_{\mathrm{n}}=(2 \text { webs })(2.43 \mathrm{k} / \mathrm{web})=4.86 \mathrm{k} \\
& \Phi_{\mathrm{w}}= 0.70 \\
& \Phi_{\mathrm{w}} \mathrm{P}_{\mathrm{n}}= 0.70(4.86)=3.40 \mathrm{k} \\
& \text { Reaction }=1.70 \mathrm{k}<\Phi_{\mathrm{w}} \mathrm{P}_{\mathrm{n}}=3.40 \mathrm{k} 0 \mathrm{~K}
\end{aligned}
$$

6. Deflection Determination at Service Moment M_{s}

$$
\begin{aligned}
& \text { Find } I_{e f f} \text { at } M_{s}=w L^{2} / 8=0.27(8)^{2}(12) / 8=25.92 \mathrm{kips}-\mathrm{in} . \\
& \text { Computation of } I_{\text {eff }} \text {, first approximation } \\
& \text { * Assume a stress of } f=0.6 F_{y}=30 \mathrm{ksi} \text { in the top and } \\
& \text { bottom fibers of the section. } \\
& \text { * Also assume web is fully effective. }
\end{aligned}
$$

Element 5:

For deflection determination, the value of E_{r}, reduced modulus of elasticity determined by using Eq. (2.2.1-7), is substituted for E_{o} in Eq. (2.2.1-4). For a compression and tension stresses of $f=30 \mathrm{ksi}$, the corresponding $E_{s c}$ and $E_{s t}$ values for Type 316 stainless steel are obtained from Table A2 or

Figure A1 of the Standard as follows:

$$
E_{s c}=22650 \mathrm{ksi}, \quad E_{s t}=26900 \mathrm{ksi}
$$

$$
\begin{array}{rlrl}
\mathrm{E}_{\mathrm{r}} & =\left(\mathrm{E}_{\mathrm{sc}}+\mathrm{E}_{\mathrm{st}}\right) / 2 & \\
& =(22650+26900) / 2=24775 \mathrm{ksi} \\
\text { Thus, for compression flange (Element 5): 2.2.1-7) } \\
\lambda & =(1.052 / \sqrt{4})(144.9) \sqrt{30 / 24775}=2.652>0.673 & & \text { (Eq. 2.2.1-4) } \\
\rho & =[1-(0.22 / 2.652)] / 2.652=0.346 & & \text { (Eq. 2.2.1-3) } \\
\mathrm{b}_{\mathrm{d}} & =\rho w & & \text { (Eq. 2.2.1-6) } \\
& =0.346(8.692)=3.007 \mathrm{in.} &
\end{array}
$$

Effective section properties about x-axis:

Element			$\begin{gathered} \text { Ly } \\ \left(\text { in. }^{2}\right) \end{gathered}$	$\begin{gathered} L y^{2} \\ \left(\text { in. }{ }^{3}\right) \end{gathered}$	$\begin{aligned} & \text { I' } \\ & \text { About } \\ & \text { Own } \\ & \text { Axis } \\ & \left(\text { in. }{ }^{3}\right. \text {) } \end{aligned}$
1	$2 \times 0.596=1.192$	3.548	4.229	15.005	0.035
2	$4 \times 0.195=0.780$	3.925	3.062	12.016	--
3	$2 \times 2.692=5.384$	3.970	21.375	84.857	--
4	$2 \times 3.692=7.384$	2.000	14.768	29.536	8.388
5	3.007	0.030	0.090	0.003	--
6	$2 \times 0.195=0.390$	0.075	0.029	0.002	--
Sum	18.137		43.553	141.419	8.423

The distance from the top fiber to the neutral axis is

$$
\begin{array}{ll}
y_{c g} & =\mathrm{Ly} / \mathrm{L}=43.553 / 18.137=2.401 \mathrm{in} . \\
I^{\prime} \\
& =L y^{2}+I_{1}^{\prime}{ }_{1}-\mathrm{Ly}_{\mathrm{cg}}{ }_{\mathrm{cg}} \\
& =141.419+8.423-18.137(2.401)^{2} \\
& =45.29 \mathrm{in}^{3}{ }^{3}
\end{array}
$$

$$
\text { Actual } I_{\text {eff }}=t I_{\text {eff }}^{\prime}
$$

$$
=(0.060)(45.29)=2.72 \text { in. }{ }^{4}
$$

Check Web

* Should be fully effective

$$
\begin{align*}
\mathrm{f}_{1} & =(2.247 / 2.401)(30)=28.08 \mathrm{ksi}(\text { compression }) \\
\mathrm{f}_{2} & =-(1.445 / 2.401)(30)=-18.05 \mathrm{ksi}(\text { tension }) \\
\Psi & =\mathrm{f}_{2} / \mathrm{f}_{1}=-18.05 / 28.08=-0.643 \\
\mathrm{k} & =4+2(1-\Psi)^{3}+2(1-\Psi) \\
& =4+2[1-(-0.643)]^{3}+2[1-(-0.643)] \\
& =16.16 \tag{Eq.2.2.1-4}
\end{align*}
$$

(Eq. 2.2.2-4)
$\lambda \quad=(1.052 / \sqrt{k})(\omega / t) \sqrt{f / E_{r}}, \quad f=f_{1}$
For a compression stress of $f_{1}=28.08 \mathrm{ksi}$ and a tension stress of $f_{2}=18.05 \mathrm{ksi}$, the values of $E_{s c}$ and $E_{s t}$ are found as follows: $\mathrm{E}_{\mathrm{sc}}=24000 \mathrm{ksi}, \mathrm{E}_{\mathrm{st}}=27000 \mathrm{ksi}$.

$$
\begin{align*}
\mathrm{E}_{\mathrm{r}} & =(24000+27000) / 2 \tag{Eq.2.2.1-7}\\
& =25500 \mathrm{ksi} \\
\mathrm{~A} & =(1.052 / \sqrt{16.16})(61.53) \sqrt{28.08 / 25500}=0.534<0.673 \\
\mathrm{~b} & =\mathrm{w} \\
\mathrm{~b}_{\mathrm{e}} & =3.692 \mathrm{in} . \\
\mathrm{b}_{2} & =\mathrm{b}_{\mathrm{e}} / 2 \\
& =3.692 / 2=1.846 \mathrm{in} .
\end{align*} \quad \text { (Eq.2.2.1-7) } \quad \text { (Eq. 2.2.2-1) }
$$

$$
\begin{aligned}
\mathrm{b}_{1}= & \mathrm{b}_{\mathrm{e}} /(3-\Psi) \\
= & 3.692 /[3-(-0.643)]=1.007 \mathrm{in} . \\
\mathrm{b}_{1}+\mathrm{b}_{2}= & 1.013+1.846=2.859 \text { in. }>2.216 \text { in. (compression } 2 \\
& \text { portion of web, see the sketch shown above) }
\end{aligned}
$$

Therefore, web is fully effective.

$$
\begin{aligned}
S_{e f f} & =I_{e f f} / y_{c g}=2.72 / 2.401=1.13 \mathrm{in}^{3}{ }^{3} \\
M & =S_{e f f}\left(0.6 \mathrm{~F}_{\mathrm{y}}\right) \\
& =(1.13)(30) \\
& =33.9 \mathrm{kips}-\mathrm{in} .
\end{aligned}
$$

To determine $I_{\text {eff }}$ at $M_{s}=25.92 \mathrm{kips}-\mathrm{in}$., an approximation is used by extrapolating the following values:
(1) $M=51.00$ kips-in., $I=2.53$ in. ${ }^{4}$
(2) $M=33.90$ kips-in., $I=2.72$ in. ${ }^{4}$
(3) $M=25.92$ kips-in., $I=$?

$$
\begin{aligned}
(25.92-33.9) /(\mathrm{I}-2.72) & =(33.9-51.0) /(2.72-2.52) \\
-7.98 & =-90.00(\mathrm{I}-2.72) \\
0.0887 & =\mathrm{I}-2.72 \\
\mathrm{I} & =2.81 \mathrm{in.}^{4}
\end{aligned}
$$

Use $I=2.81$ in. ${ }^{4}$ in deflection calculations.
Deflection $=5 \mathrm{WL}^{4} / 384 \mathrm{E}_{\mathrm{o}} \mathrm{I}$

EXAMPLE 6.2 HAT SECTION (ASD)

Rework Example 6.1 by using the Allowable Stress Design (ASD) method.

Solution:

1. Calculation of the allowable moment, M_{a} :

The effective section properties calculated by the ASD method are the same as those determined in Example 6.1 for the LRFD method. Therefore, the allowable moment can be determined in accordance with Appendix E of the Standard as follows:
$\Omega=1.85$ (Safety Factor stipulated in Table E of the Standard)
$M_{\mathrm{n}}=51.0 \mathrm{kips}-\mathrm{in}$. (obtained from Example 6.1)
$M_{a}=M_{n} / \Omega$
(Eq. E-1)
$=51.0 / 1.85$
$=27.57 \mathrm{kips}-\mathrm{in}$.
The maximum applied moment, $M_{\text {max }}=W L^{2} / 8$
$M_{\text {max }}=(0.25+0.02)(8)^{2}(12 ") / 8=25.92$ kips-in. <27.57 kips-in. OK
2. Strength for Shear On1y.

The nominal shear strength at the section was calculated in
Example 6.1.(4) as follows:

$$
\begin{aligned}
\mathrm{v}_{\mathrm{n}} & =(2 \text { webs })\left(\mathrm{v}_{\mathrm{n}}\right)(\mathrm{ht}) \\
& =2(28.85)(3.692 \times 0.060) \\
& =12.78 \mathrm{kips}
\end{aligned}
$$

The allowable shear strength is determined as follows:

$$
\begin{aligned}
& \mathrm{V}_{\mathrm{a}}=\mathrm{V}_{\mathrm{n}} / \Omega=12.78 / 1.85 \\
& \mathrm{~V}_{\mathrm{a}}=6.91 \mathrm{kips}<2 \mathrm{x}\left(0.95 \mathrm{~F}_{\mathrm{yv}} \mathrm{ht}\right) / 1.64=11.35 \mathrm{kips},
\end{aligned}
$$

Use $\mathrm{V}_{\mathrm{a}}=6.91 \mathrm{kips}$

Maximum Shear Force $=$ Reaction

$$
V_{u}=w L / 2=0.27(8) / 2=1.08 \mathrm{k}<\mathrm{V}_{\mathrm{a}}=6.91 \mathrm{kips} 0 \mathrm{~K}
$$

3. Web Crippling Strength.

The nominal web crippling strength was determined in Example 6.1 as follows:

$$
\begin{aligned}
\mathrm{P}_{\mathrm{n}}= & (0.06)^{2}(1.257)(0.916)(1.0) 331-0.61(61.53) \\
& \mathrm{x} 1+0.01(6 / 0.06)=2.43 \mathrm{k} / \mathrm{web} \\
\mathrm{P}_{\mathrm{n}}= & (2 \text { webs })(2.43 \mathrm{k} / \mathrm{web})=4.86 \mathrm{k} \\
\Omega= & 2.0 \text { (for single web) } \\
\mathrm{P}_{\mathrm{a}}= & \mathrm{P}_{\mathrm{n}} / \Omega \\
= & 4.86 / 2.0=2.43 \mathrm{kips} \\
\text { Reaction }= & 1.08 \mathrm{kips}<\mathrm{P}_{\mathrm{a}}=2.43 \mathrm{kips} \quad \mathrm{OK}
\end{aligned}
$$

4. Deflection Determination at Allowable Moment M_{a} For deflection determination on the basis of the ASD method, the effective moment of inertia is determined by the same procedures given in Example 8.1 for the LRFD method, except that the computed momemt $M\left(=f x S_{e}\right)$ should be equal to M_{a}.

From the results of Example 6.1, it can be seen that to determine the moment of inertia $I_{\text {eff }}$ at $M_{a}=25.57 \mathrm{kips}-\mathrm{in}$., an approximation can be used by extrapolating the following values:
(1) $M=51.00$ kips-in., $I=2.53 \mathrm{in} .^{4}$
(2) $M=33.90$ kips-in., $I=2.72$ in. ${ }^{4}$
(3) $M=25.57$ kips-in., $I=$?
$(25.57-33.9) /(\mathrm{I}-2.72)=(33.9-51.0) /(2.72-2.53)$

$$
\mathrm{I}=2.81 \mathrm{in} .^{4}
$$

Use $I=2.81$ in. ${ }^{4}$ in deflection calculations.
(Deflection $\left.=5 \mathrm{wL}^{4} / 384 \mathrm{E}_{\mathrm{o}} \mathrm{I}\right)$

EXAMPLE 7.1 HAT SECTION w/INTERMEDIATE STIFFENER (LRFD)

By using the Load and Resistance Factor Design (LRFD) method, determine the design flexural strength, $\Phi_{b} M_{n}$, based on initiation of yielding. Also determine the effective moment of inertia for deflection determination at the service moment. Use Type 316 stainless steel, 1/4-Hard. Compare structural economy of this section with an almost identical section without an intermediate stiffener computed in Example 6.1.

Figure 7.1 Section for Example 7.1

Given:

1. Section: Hat section, as shown in sketch.
2. Dead load to live load ratio $\mathrm{D} / \mathrm{L}=1 / 5$ and $1.2 \mathrm{D}+1.6 \mathrm{~L}$ governs the design.

Solution:

1. Properties of 90° corners:

Corner Radius, $r=R+t / 2=3 / 32+0.060 / 2=0.124 \mathrm{in}$.
Length of arc, $u=1.57 \mathrm{r}=1.57 \times 0.124=0.195 \mathrm{in}$.

Distance of c.g. from center of radius,
$c=0.637 \mathrm{r}=0.637 \times 0.124=0.079 \mathrm{in}$.
The moment of inertia, I^{\prime}, of corner about its own centroidal axis is negligible.
2. Nominal Section Strength, M_{n} (Section 3.3.1.1)

Computation of I_{x}, S_{e}, and M_{n} for the first approximation:

* Assume a compressive stress of $f=F_{y}=50 \mathrm{ksi}$ in the top fiber of the section. (See Table Al of the Standard for yield strength values.)
* Also assume web is fully effective.

Element 4:
$h / t=3.692 / 0.060=61.53<200$ OK (Section 2.1.2-(1))
Assumed fully effective

Element 5:

$$
\begin{aligned}
\mathrm{E}_{\mathrm{o}} & =27000 \mathrm{ksi}(\text { Table A4 of the Standard) } \\
\mathrm{S} & =1.28 \sqrt{\mathrm{E}_{\mathrm{o}} / \mathrm{f}} \\
& =1.28 \sqrt{27000 / 50}=29.74 \\
\mathrm{~b}_{\mathrm{o}} / \mathrm{t} & =8.692 / 0.060=144.9<400 \text { OK (Section 2.1.1-(1)-(ii)) } \\
3 \mathrm{~S} & =3(29.74)=89.22
\end{aligned}
$$

For $b_{o} / t>3 S$ (Case III)

$$
\begin{align*}
\mathrm{I}_{\mathrm{a}} & =\mathrm{t}^{4}\left\{\left[128\left(\mathrm{~b}_{\mathrm{o}} / \mathrm{t}\right) / \mathrm{S}\right]-285\right\} \tag{Eq.2.4.1-9}\\
& =(0.06)^{4}\{[128(144.9) / 29.74]-285\}=0.004038 \mathrm{in} .4
\end{align*}
$$

Determine full section properties of stiffener 7:
All inner radii $=3 / 32$
$r=R+t / 2=3 / 32+0.060 / 2=0.124 \mathrm{in}$.
$\mathrm{u}=1.57 \mathrm{r}=1.57(0.124)=0.195 \mathrm{in}$.
$c=0.637 r=0.637(0.124)=0.079 \mathrm{in}$.

Distance from top fiber to the neutral axis is

$$
y_{c g}=L y / L=0.4870 / 1.480=0.329 \mathrm{in} .
$$

Total area of section, $L t=(1.480)(0.060)=0.0888$ in. ${ }^{2}$

$$
\begin{aligned}
I_{s}^{\prime} & =L y^{2}+I_{1}^{\prime}-L y_{c g}^{2} \\
& =0.2106+0.0071-1.480(0.329)^{2} \\
& =0.0575 \mathrm{in}^{2} .^{3} \\
\text { Actual } I_{s} & =t I_{s}^{\prime} \\
& =(0.060)(0.0575)=0.00345 \mathrm{in} .4
\end{aligned}
$$

Reduced Area of Stiffener

Element 9:

Stiffened element, $k=4$

$$
\begin{align*}
& \mathrm{f}=\mathrm{F}_{\mathrm{y}}=50 \mathrm{ksi} \\
& w / t=0.350 / 0.060=5.83<400 \text { OK (Section 2.1.1-(1)-(ii)) } \\
& \lambda=(1.052 / \sqrt{k})(w / t) \sqrt{f / E_{o}} \\
& =(1.052 / \sqrt{4})(5.83) \sqrt{50 / 27000}=0.132<0.673 \\
& b=w \\
& \text { (Eq. 2.2.1-4) } \\
& =0.350 \text { in. (fully effective) } \\
& A_{s}=L t=0.0888 \text { in. }{ }^{2} \\
& A_{s}=A_{s}^{\prime}\left(I_{s} / I_{a}\right) \leq A_{s}^{\prime} \tag{Eq.2.4.1-11}\\
& =0.0888(0.00345 / 0.00439) \\
& =0.0888(0.7859) \\
& =0.0698 \text { in. }{ }^{2}<A_{s}{ }_{s} \mathrm{OK} \\
& L_{S}=\left(A_{S} / t\right)=(0.0698 / 0.060)=1.163 \mathrm{in} .
\end{align*}
$$

Continuing with element 5:

$$
\begin{align*}
k & =3\left(I_{s} / I_{a}\right)^{1 / 3}+1 \leq 4 \tag{Eq.2.4.1-10}\\
& =3(0.7859)^{1 / 3}+1=3.768<40 K
\end{align*}
$$

$w / t=4.098 / 0.060=68.30$
$\lambda=(1.052 / \sqrt{k})(w / t) \sqrt{f / E_{o}}$
(Eq. 2.2.1-4)
$=(1.052 / \sqrt{3.768})(68.30) \sqrt{50 / 27000}=1.593>0.673$
$\rho=(1-0.22 / \lambda) / \lambda$
(Eq. 2.2.1-3)
$=(1-0.22 / 1.593) / 1.593=0.541$
$\mathrm{b}=\rho \mathrm{w}$
(Eq. 2.2.1-2)
$=0.541(4.098)=2.217 \mathrm{in}$.

Effective section properties about x-axis:

Element	```L (in.)```	$\begin{aligned} & y \\ & \text { Distance } \\ & \text { from } \\ & \text { Top Fiber } \\ & \text { (in.) } \end{aligned}$	$\begin{gathered} \mathrm{Ly} \\ \left(\mathrm{in}^{2}{ }^{2}\right) \end{gathered}$	$\begin{gathered} \mathrm{Ly}^{2} \\ \left(\mathrm{in} .{ }^{3}\right) \end{gathered}$	$\begin{gathered} \text { I' }^{1} \\ \text { About } \\ \text { Own } \\ \text { Axis } \\ \left(\text { in. }^{3}\right) \end{gathered}$
1	$2 \times 0.596=1.192$	3.548	4.229	15.005	0.035
2	$4 \times 0.195=0.780$	3.925	3.062	12.016	--
3	$2 \times 2.692=5.384$	3.970	21.375	84.857	--
4	$2 \times 3.692=7.384$	2.000	14.768	29.536	8.388
5	$2 \times 2.217=4.434$	0.030	0.133	0.004	--
6	$2 \times 0.195=0.390$	0.075	0.029	0.002	--
7	Stiffener 1.163	0.329	0.383	0.126	0.058
Sum	20.727		43.979	141.546	8.481

The distance from the top fiber to the neutral axis is

$$
y_{c g}=L y / L=44.018 / 21.035=2.093 \mathrm{in} .
$$

Since the distance from the top compression fiber to the neutral axis is greater than one half the beam depth, a compressive stress of F_{y} will govern as assumed.

$$
\begin{aligned}
I_{x}^{\prime} \quad & =\mathrm{Ly}^{2}+\mathrm{I}_{1}^{\prime}-\mathrm{Ly}_{\mathrm{cg}}^{2} \\
& =141.546+8.481-20.727(2.122)^{2} \\
& =56.70 \mathrm{in.}^{3}
\end{aligned}
$$

Actual $\mathrm{I}_{\mathrm{x}}=\mathrm{tI}^{\prime}{ }_{\mathrm{x}}$

$$
=(0.060)(56.70)=3.40 \mathrm{in} .^{4}
$$

Check Web

$$
\begin{aligned}
& f_{1}=(1.968 / 2.122)(50)=46.37 \mathrm{ksi} \text { (compression) } \\
& f_{2}=-(1.724 / 2.122)(50)=-40.62 \mathrm{ksi}(\text { tension }) \\
& \Psi \quad=f_{2} / f_{1}=-40.62 / 46.37=-0.876 \\
& k=4+2(1-\psi)^{3}+2(1-\psi) \\
& \text { (Eq. 2.2.2-4) } \\
& =4+2(1-(-0.876)]^{3}+2[1-(-0.876)] \\
& =20.96 \\
& \lambda \quad=(1.052 / \sqrt{k})(w / t) \sqrt{f / E_{0}}, \quad f=f_{1} \\
& =(1.052 / \sqrt{20.96})(61.53) \sqrt{46.37 / 27000}=0.586<0.673 \\
& \text { b }=\mathrm{w} \\
& b_{e}=3.692 \text { in. } \\
& b_{2}=b_{e} / 2 \\
& =3.692 / 2=1.846 \mathrm{in} \text {. } \\
& b_{1}=b_{e} /(3-\psi) \\
& =3.692 /[3-(-0.876)]=0.953 \mathrm{in} \text {. } \\
& b_{1}+b_{2}=0.953+1.846=2.799 \mathrm{in} \text {. > } 1.939 \mathrm{in} \text {. (compression } \\
& \text { portion of web, see sketch shown above) }
\end{aligned}
$$

Therefore, web is fully effective.

$$
S_{e}=I_{x} / y_{c g}
$$

$$
\begin{align*}
& =3.40 / 2.122 \\
& =1.60 \text { in. }^{3} \\
M_{\mathrm{n}} & =S_{e} F_{y} \tag{Eq.3.3.1.1-1}\\
& =(1.60)(50) \\
& =80.0 \mathrm{kips}-\mathrm{in} .
\end{align*}
$$

3. Design Flexural Strength, $\phi_{b} M_{n}$ (Section 3.3.1)
$\Phi_{b}=0.90$ (for section with stiffened compression flanges)
$\Phi_{b} M_{n}=0.90 \times 80.0=72.00 \mathrm{kips}-\mathrm{in}$.
4. Deflection Determination at Servive Moment M_{s}

The unfactored loads are used to determine the section properties for deflection determination. For a load combination of 1.2D+1.6L, the service moment can be determined as follows:

$$
\begin{aligned}
\Phi_{b} M_{\mathrm{n}} & =1.2 M_{D L}+1.6 M_{L L} \\
& =\left[1.2\left(M_{D L} / M_{L L}\right)+1.6\right] M_{L L} \\
& =[1.2(1 / 5)+1.6] M_{L L} \\
& =1.84 M_{L L} \\
M_{L L} & =\phi_{b} M_{n} / 1.84=72.00 / 1.84=39.13 \mathrm{kips}-\mathrm{in} . \\
M_{s} & =M_{D L}+M_{L L} \\
& =(1 / 5+1) M_{L L} \\
& =1.2(39.13)=46.96 \text { kips-in. }
\end{aligned}
$$

where

$$
\begin{aligned}
& M_{D L}=\text { Moment determined on the basis of nominal dead load } \\
& M_{L L}=\text { Moment determined on the basis of nominal live load }
\end{aligned}
$$

Find $I_{\text {eff }}$ at $M_{s}=46.96 \mathrm{kips}-\mathrm{in}$.

Computation of $\mathrm{I}_{\text {eff }}$, first approximation

* Assume a stress of $\mathrm{f}=0.6 \mathrm{~F}_{\mathrm{y}}=30 \mathrm{ksi}$ in the top and bottom fibers of the section.
* Web is fully effective, because it was fully effective at a higher stress gradient.
* Element 9 of the stiffener, which was fully effective at f = 50 ksi will also be fully effective at $f=30 \mathrm{ksi}$.

Element 5:

$$
\begin{aligned}
\mathrm{S} & =1.28 \sqrt{\mathrm{E}_{\mathrm{o}} / \mathrm{f}}, \quad \mathrm{f}=30 \\
& =1.28 \sqrt{27000 / 30}=38.40 \\
\mathrm{~b}_{\mathrm{o}} / \mathrm{t} & =144.9 \\
3 \mathrm{~S} & =3(38.40)=115.20
\end{aligned}
$$

For $\mathrm{b}_{\mathrm{o}} / \mathrm{t}>3 \mathrm{~S}$ (Case III)

$$
\begin{aligned}
\mathrm{I}_{\mathrm{a}} & =\mathrm{t}^{4}\left\{\left[128\left(\mathrm{~b}_{\mathrm{o}} / \mathrm{t}\right) / \mathrm{s}\right]-285\right\} \\
& =(0.06)^{4}\{[128(144.9) / 38.40]-285\}=0.002566 \mathrm{in} .^{4} \\
\mathrm{I}_{\mathrm{s}} & =0.00345 \mathrm{in.}^{4} \\
\mathrm{k} & =3\left(\mathrm{I}_{\mathrm{s}} / \mathrm{I}_{\mathrm{a}}\right)^{1 / 3}+1 \leq 4 \\
& =3(0.00345 / 0.002566)^{1 / 3}+1=4.311>4 \\
\mathrm{k} & =4 \\
\mathrm{w} / \mathrm{t} & =68.30
\end{aligned}
$$

For deflection determination, the value of E_{r}, reduced modulus of elasticity determined by using Eq. (2.2.1-7), is substituted for E_{0} in Eq. (2.2.1-4). For a compression and tension stresses of $f=30 \mathrm{ksi}$, the corresponding $E_{s c}$ and $E_{s t}$ values for

Type 316 stainless steel are obtained from Table A2 or Figure A1 of the Standard as follows:

$$
\begin{aligned}
E_{s c} & =22650 \mathrm{ksi}, \quad E_{s t}=26900 \mathrm{ksi} \\
E_{r} & =\left(E_{s c}+E_{s t}\right) / 2 \\
& =(22650+26900) / 2=24775 \mathrm{ksi}
\end{aligned}
$$

Thus, for compression flange (Element 5):

$$
\begin{aligned}
\lambda & =(1.052 / \sqrt{\mathrm{k}})(w / \mathrm{t}) \sqrt{\mathrm{f} / \mathrm{E}_{\mathrm{r}}}, \mathrm{f}=30 \mathrm{ksi} \\
& =(1.052 / \sqrt{4})(68.30) \sqrt{30 / 24775}=1.250>0.673 \\
\rho \quad & =(1-0.22 / \lambda) / \lambda \\
& =(1-0.22 / 1.250) / 1.250=0.659 \\
\mathrm{~b} \quad & =\rho w \\
& =0.659(4.098)=2.701 \mathrm{in} .
\end{aligned}
$$

Stiffener, Element 7:

$$
\begin{align*}
A_{s} & =A_{s}^{\prime}\left(I_{s} / I_{a}\right) S A_{s}^{\prime} \tag{Eq.2.4.1-11}\\
& =0.0888(0.00345 / 0.002566) \\
& =0.133 \mathrm{in}^{2}>A_{s}^{\prime} \\
A_{s} & =A_{s}^{\prime}=0.0888 \mathrm{in.}^{2} \\
L_{s} & =A_{s} / t=0.0888 / 0.060=1.480 \mathrm{in} .
\end{align*}
$$

Element	$\begin{gathered} \text { L } \\ \text { Effective Length } \\ \text { (in.) } \end{gathered}$	```y Distance from Top Fiber (in.)```	$\begin{gathered} \text { Ly } \\ \left(\text { in. }^{2}\right) \end{gathered}$	$\begin{gathered} L y^{2} \\ \left(\text { in. }{ }^{3}\right) \end{gathered}$	$\begin{gathered} \text { I' }^{\prime} \\ \text { About } \\ \text { Own } \\ \text { Axis } \\ \text { (in. }{ }^{3} \text {) } \end{gathered}$
1	$2 \times 0.596=1.192$	3.548	4.229	15.005	0.035
2	$4 \times 0.195=0.780$	3.925	3.062	12.016	--
3	$2 \times 2.692=5.384$	3.970	21.375	84.857	--
4	$2 \times 3.692=7.384$	2.000	14.768	29.536	8.388
5	$2 \times 2.701=5.402$	0.030	0.162	0.005	--
6	$2 \times 0.195=0.390$	0.075	0.029	0.002	--
7	Stiffener 1.480	0.329	0.487	0.160	0.058
Sum	22.012		44.112	141.581	8.481

Distance from top fiber to the neutral axis is

$$
\begin{aligned}
& y_{c g} \quad=L y / L=44.112 / 22.012=2.004 \mathrm{in} . \\
& I^{\prime}{ }_{\text {eff }} \quad=L y^{2}+I^{\prime}{ }_{1}-L y^{2}{ }_{c g} \\
& =141.581+8.481-22.012(2.004)^{2} \\
& =61.66 \text { in. }{ }^{3} \\
& \text { Actual } I_{\text {eff }}=t I^{\prime} \text { eff } \\
& =(0.060)(61.66)=3.70 \text { in. }{ }^{4} \\
& \mathrm{~S}_{\mathrm{eff}} \quad=\mathrm{I}_{\mathrm{eff}} / \mathrm{y}_{\mathrm{cg}}=3.70 / 2.004=1.85 \mathrm{in} .^{3} \\
& M \quad=S_{e f f}\left(0.6 F_{y}\right) \\
& =(1.85)(30) \\
& =55.5 \text { kips-in. }>M_{S}=46.96 \text { kips-in. NG }
\end{aligned}
$$

Computation of $I_{\text {eff }}$: second approximation by extrapolating the following data to obtain the stress value
(1) $M=80.00 \mathrm{kips}-\mathrm{in} ., f=\mathrm{F}_{\mathrm{y}}=50 \mathrm{ksi}$
(2) $M=55.50$ kips-in., $f=0.6 \mathrm{~F}_{\mathrm{y}}=30 \mathrm{ksi}$
(3) $M=46.96 \mathrm{kips}-\mathrm{in} ., \mathrm{f}=$? $(f-30) /(30-50)=(46.96-55.5) /(55.5-80.0)$

$$
f=23.03 \mathrm{ksi}
$$

* Compressive stress of $f=23.03 \mathrm{ksi}$ in the top fiber of section
* Web is fully effective
* Element 9 of stiffener is fully effective

Element 5:

$$
\begin{aligned}
\mathrm{S} & =1.28 \sqrt{E_{\mathrm{o}} / \mathrm{f}}, \mathrm{f}=23.03 \mathrm{ksi} \\
& =1.28 \sqrt{27000 / 23.03}=43.83 \\
\mathrm{~b}_{\mathrm{o}} / \mathrm{t} & =144.9 \\
3 \mathrm{~S} & =3(43.83)=131.49
\end{aligned}
$$

(Eq. 2.4-1)

For $b_{0} / t>3 S$ (Case III)

$$
\begin{align*}
\mathrm{I}_{\mathrm{a}} & =\mathrm{t}^{4}\left\{\left[128\left(\mathrm{~b}_{0} / \mathrm{t}\right) / \mathrm{s}\right]-285\right\} \tag{Eq.2.4.1-9}\\
& =(0.06)^{4}\{[128(144.9) / 43.83]-285\}=0.00179 \mathrm{in} .4 \\
\mathrm{I}_{\mathrm{s}} & =0.00345 \mathrm{in} .4 \\
\mathrm{k} & =3\left(\mathrm{I}_{\mathrm{s}} / \mathrm{I}_{\mathrm{a}}\right)^{1 / 3}+1 \leq 4
\end{align*}
$$

(Eq. 2.4.1-10)
Since $I_{s} / I_{a}>1, k=4$

$$
w / t=68.30
$$

$\lambda=(1.052 / \sqrt{\mathrm{k}})(\mathrm{w} / \mathrm{t}) \sqrt{\mathrm{f} / \mathrm{E}_{\mathrm{r}}}, \mathrm{f}=23.03 \mathrm{ksi}$
For a compression and tension stresses of $f=23.03 \mathrm{ksi}$, it is founf that the values of E_{SC} and E_{st} are equal to 26390 ksi and 27000 ksi , respectively.

$$
\begin{aligned}
\mathrm{E}_{\mathrm{r}} & =(26390+27000) / 2 \\
& =26695 \mathrm{ksi} \\
\lambda \quad & =(1.052 / \sqrt{4})(68.30) \sqrt{23.03 / 26695}=1.055>0.673
\end{aligned}
$$

(Eq. 2.2.1-7)

$$
\begin{aligned}
\rho & =(1-0.22 / \lambda) / \lambda \\
& =(1-0.22 / 1.055) / 1.055=0.750 \\
\mathrm{~b} & =\rho \mathrm{w} \\
& =0.750(4.098)=3.074 \mathrm{in} .
\end{aligned}
$$

(Eq. 2.2.1-2)

Stiffener, Element 7:

$$
\begin{equation*}
A_{s}=A_{s}^{\prime}\left(I_{s} / I_{a}\right) \leq A_{s}^{\prime} \tag{Eq.2.4.1-11}
\end{equation*}
$$

Since $I_{s} / I_{a}>1$
$A_{s}=A_{s}^{\prime}=0.0888$ in. ${ }^{2}$
$L_{s}=A_{s} / t=0.0888 / 0.060=1.480 \mathrm{in}$.

Effective section properties about x-axis:

Element	$\begin{gathered} \text { L } \\ \text { Effective Length } \\ \text { (in.) } \end{gathered}$	```y Distance from Top Fiber (in.)```	$\begin{gathered} \text { Ly } \\ \left(\mathrm{in} .^{2}\right) \end{gathered}$	$\begin{gathered} L y^{2} \\ \left(\text { in. }{ }^{3}\right) \end{gathered}$	$\begin{gathered} I^{\prime} \\ \text { About } \\ \text { Own } \\ \text { Axis } \\ \left(\text { in. }{ }^{3}\right) \end{gathered}$
1	$2 \times 0.596=1.192$	3.548	4.229	15.005	0.035
2	$4 \times 0.195=0.780$	3.925	3.062	12.016	--
3	$2 \times 2.692=5.384$	3.970	21.375	84.857	--
4	$2 \times 3.692=7.384$	2.000	14.768	29.536	8.388
5	$2 \times 3.074=6.148$	0.030	0.184	0.006	--
6	$2 \times 0.195=0.390$	0.075	0.029	0.002	--
7	Stiffener 1.480	0.329	0.487	0.160	0.058
Sum	22.758		44.134	141.582	8.481

Distance from top fiber to the neutral axis is

$$
\begin{array}{ll}
y_{c g} & =\mathrm{Ly} / \mathrm{L}=44.134 / 22.758=1.939 \mathrm{in} . \\
I^{\prime} & =\mathrm{eff} \\
& =141.582+\mathrm{I}^{\prime}{ }_{1}-\mathrm{Ly}_{\mathrm{cg}} \\
& =8.481-22.758(1.939)^{2}
\end{array}
$$

$$
\begin{aligned}
& =64.50 \text { in. }^{3} \\
\text { Actual } I_{\text {eff }} & =t I^{\prime} \text { eff } \\
& =(0.060)(64.50)=3.87 \text { in. }^{4} \\
& =I_{\text {eff }} / y_{c g}=3.87 / 1.939=2.00 \text { in. }^{3} \\
S_{\text {eff }} & =(2.00)(23.03)=46.06 \text { kips-in. close to } M_{s} O K
\end{aligned}
$$

Use $I=3.87$ in. ${ }^{4}$ in deflection calculations
5. Comparison of sections with and without intermediate stiffeners.
\(\left.$$
\begin{array}{ccc}\hline \begin{array}{c}\text { Hat } \\
\text { Section }\end{array} & \begin{array}{c}\text { Total Area } \\
\text { (in. }\end{array}
$$ \& Design Flexural Strength

(kips-in.)\end{array}\right]\)| | |
| :--- | :--- |
| Without Stiffener | 1.43 |
| With Stiffener | 1.49 |

Increase in weight $=(1.49-1.43) / 1.43 \times 100 \%=4.2 \%$
Increase in moment capacity $=(72.00-45.90) / 45.90 \times 100 \%=56.9 \%$

EXAMPLE 7.2 HAT SECTION W/INTERMEDIATE STIFFENER (ASD)

Rework Example 7.1 by using the Allowable Stress Design (ASD) method.

Solution:

1. Calculation of the allowable moment, M_{a} :

The effective section properties calculated by the ASD method are the same as those determined in Example 7.1 for the LRFD method. Therefore, the allowable moment can be determined in accordance with Appendix E of the Standard as follows:
$\Omega=1.85$ (Safety Factor stipulated in Table E of the Standard)
$M_{n}=80.0 \mathrm{kips}-i n$. (obtained from Example 7.1)
$M_{a}=M_{n} / \Omega$
(Eq. E-1)
$=80.0 / 1.85$
$=43.24 \mathrm{kips}-\mathrm{in}$.
2. Deflection Determination at Allowable Moment M_{a} For deflection determination on the basis of the ASD method, the effective moment of inertia is determined by the same procedures given in Example 7.1 for the LRFD method, except that the computed moment $M\left(=f_{e} S_{e}\right)$ should be equal to M_{a}.

Computation of $I_{\text {eff }}$: assume that

* A stress of $f=20.50 \mathrm{ksi}$ in the top and bottom fibers of section
* Web is fully effective
* Element 9 of stiffener is fully effective

Element 5:

$$
\begin{align*}
\mathrm{s} & =1.28 \sqrt{E_{o} / f}, \quad f=20.50 \mathrm{ksi} \tag{Eq.2.4-1}\\
& =1.28 \sqrt{27000 / 20.50}=46.45 \\
\mathrm{~b}_{\mathrm{o}} / \mathrm{t} & =144.9 \\
3 \mathrm{~S} & =3(46.45)=139.35
\end{align*}
$$

$$
\text { For } b_{0} / t>3 S \text { (Case III) }
$$

$$
\begin{align*}
\mathrm{I}_{\mathrm{a}} & =\mathrm{t}^{4}\left\{\left[128\left(\mathrm{~b}_{\mathrm{o}} / \mathrm{t}\right) / \mathrm{S}\right]-285\right\} \tag{Eq.2.4.1-10}\\
& =(0.06)^{4}\{[128(144.9) / 46.45]-285\}=0.00148 \mathrm{in} .^{4} \\
\mathrm{I}_{\mathrm{s}} & =0.00345 \mathrm{in.}^{4} \\
\mathbf{k} \quad & =3\left(\mathrm{I}_{\mathrm{s}} / \mathrm{I}_{\mathrm{a}}\right)^{1 / 3}+1 \leq 4
\end{align*}
$$

$$
\text { Since } I_{s} / I_{a}>1, k=4
$$

$$
w / t=68.30
$$

$$
\lambda \quad=(1.052 / \sqrt{k})(w / t) \sqrt{f / E_{r}}, f=20.50 \mathrm{ksi}
$$

For a compression and tension stresses of $£=20.50 \mathrm{ksi}$, it is found that the values of $E_{s c}$ and $E_{s t}$ are equal to 26900 ksi and 27000 ksi , respectively.

$$
\begin{aligned}
\mathrm{E}_{\mathbf{r}} & =(26900+27000) / 2 \\
& =26950 \mathrm{ksi} \\
\lambda & =(1.052 / \sqrt{4})(68.30) \sqrt{20.50 / 26950}=0.991>0.673 \\
\rho & =(1-0.22 / \lambda) / \lambda \\
& =(1-0.22 / 0.991) / 0.991=0.785 \\
b & =\rho w
\end{aligned} \quad(\text { Eq. } 2.2 .1-7)
$$

Stiffener, Element 7:

$$
\begin{equation*}
A_{s}=A_{s}^{\prime}\left(I_{s} / I_{a}\right) \leq A_{s}^{\prime} \tag{Eq.2.4.1-11}
\end{equation*}
$$

Since $I_{s} / I_{a}>1$

$$
\begin{aligned}
& A_{s}=A_{s}^{\prime}=0.0888 \mathrm{in.}^{2} \\
& L_{s}=A_{s} / t=0.0888 / 0.060=1.480 \mathrm{in} .
\end{aligned}
$$

Effective section properties about x-axis:

Element	$\begin{gathered} \text { L } \\ \text { Effective Length } \\ \text { (in.) } \end{gathered}$	y Distance from Top Fiber (in.)	$\begin{gathered} \text { Ly } \\ \left(\text { in. }^{2}\right) \end{gathered}$	$\begin{gathered} L y^{2} \\ \left(\text { in. }{ }^{3}\right) \end{gathered}$	$\begin{gathered} \text { I' }^{\prime} \\ \text { About } \\ \text { Own } \\ \text { Axis } \\ \left(\text { in. }{ }^{3}\right) \end{gathered}$
1	$2 \times 0.596=1.192$	3.548	4.229	15.005	0.035
2	$4 \times 0.195=0.780$	3.925	3.062	12.016	--
3	$2 \times 2.692=5.384$	3.970	21.375	84.857	--
4	$2 \times 3.692=7.384$	2.000	14.768	29.536	8.388
5	$2 \times 3.217=6.434$	0.030	0.193	0.006	--
6	$2 \times 0.195=0.390$	0.075	0.029	0.002	--
7	Stiffener 1.480	0.329	0.487	0.160	0.058
Sum	23.044		44.143	141.582	8.481

Distance from top fiber to the neutral axis is

$$
\begin{aligned}
& y_{c g} \\
& =\mathrm{Ly} / \mathrm{L}=44.143 / 23.044=1.916 \mathrm{in} . \\
& I^{\prime}{ }_{\text {eff }} \quad=L y^{2}+I^{\prime}{ }_{1}-L y^{2}{ }_{c g} \\
& =141.582+8.481-23.044(1.916)^{2} \\
& =65.47 \text { in. }{ }^{3} \\
& \text { Actual } I_{e f f}=t I^{\prime} \text { eff } \\
& =(0.060)(65.47)=3.93 \mathrm{in} .^{4} \\
& S_{\text {eff }} \quad=I_{\text {eff }} / y_{c g}=3.93 / 1.916=2.05 \mathrm{in}^{3} \\
& M \quad=(2.05)(20.50)=42.03 \text { kips-in. close to } M_{a} O K \\
& \text { Use } I=3.93 \text { in. }{ }^{4} \text { in deflection calculations }
\end{aligned}
$$

By using the Load and Resistance Factor Design (LRFD) criteria, determine the design flexural strength of an I-section (Fig. 8.1) used as a simply supported beam. Assume that the span length is 8 ft . with laterally braced at both ends and midspan and that the beam carries uniform load. Use Type 301, 1/4-Hard, stainless steel.

Figure 8.1 Section for Example 8.1

Solution:

1. Nominal section strength (Section 3.3.1.1).
a. Procedure I - based on initiation of yielding

For this I-section, the elastic section modulus of the effective section, S_{e}, based on initiation of yielding can be obtained from Example 1.1 for a channel section. Therefore,

$$
\mathrm{S}_{\mathrm{e}} \quad=2 \mathrm{x}(0.711)=1.422 \mathrm{in}^{3}
$$

$$
\begin{align*}
M_{\mathrm{n}} & =\mathrm{S}_{\mathrm{e}} \mathrm{~F}_{\mathrm{y}} \tag{Eq.3.3.1.1-1}\\
& =1.422 \times 50=71.10 \mathrm{kips}-\mathrm{in} .
\end{align*}
$$

b. Procedure II - based on inelastic reserve capacity

Since the member is subjected to lateral bcukling, therefore this provision does not apply in this example. Then,

$$
\begin{aligned}
& \left(M_{n}\right)_{1}=71.10 \mathrm{kips}-\mathrm{in} \\
& \Phi_{\mathrm{b}} \\
& =0.85 \\
& \Phi_{\mathrm{b}}\left(M_{n}\right)_{1}
\end{aligned}=0.85 \times 71.10=60.44 \mathrm{kips}-\mathrm{in} .
$$

2. Lateral buckling strength (Section 3.3.1.2).

The following equations used for computing the sectional properties for I-section without lips are adopted from the Part III of Cold-Formed Steel Design Manual (1986), American Iron and Steel Institute, Washington, D.C.

Basic parameters used for calculating the section properties of an I-section without lips:

$$
\mathbf{r} \quad=\mathrm{R}+\mathrm{t} / 2=3 / 32+0.060 / 2=0.124 \mathrm{in} .
$$

From the sketch $a=5.692$ in., $b=1.471$ in., $c=1.471$ in., $A^{\prime}=6.0$ in., $\quad B^{\prime}=1.625$ in., $\quad C^{\prime}=1.625$ in., $a=1.00$ (For I-section)
$\bar{a} \quad=A^{\prime}-(t / 2+\alpha t / 2)=6.0-(0.060 / 2+0.060 / 2)=5.94 \mathrm{in}$.
$\overline{\mathrm{b}} \quad=\mathrm{B}^{\prime}-\mathrm{t} / 2=1.625-0.06 / 2=1.595 \mathrm{in}$.
$\bar{c} \quad=\alpha\left(C^{\prime}-t / 2\right)=1.625-0.06 / 2=1.595 \mathrm{in}$.
$\mathrm{u} \quad=1.57 \mathrm{r}=1.57 \times 0.124=0.195 \mathrm{in}$.
$x \quad=a / 2=2.97$ in.
a. Area:

$$
\begin{aligned}
A & =t[2 a+2 b+2 u+a(2 c+2 u)]=t[2 a+2 b+2 c+4 u) \\
& =0.06(2 \times 5.692+2 \times 1.471+2 \times 1.471+4 \times 0.195) \\
& =1.083 \text { in. }^{2}
\end{aligned}
$$

b. Moment of inertia about x-axis:

$$
\begin{aligned}
I_{x}= & 2 t\left\{a(a / 2+r)^{2}+0.0833 a^{3}+0.358 r^{3}+a\left[c(a+2 r)^{2}\right.\right. \\
& \left.\left.+u(a+1.637 r)^{2}+0.149 r^{3}\right]\right\}-A(x)^{2} \\
= & 2 x 0.06\left[5.692(5.692 / 2+0.124)^{2}+0.0833(5.692)^{3}\right. \\
& +0.358(0.124)^{3}+1.471(5.692+2 x 0.124)^{2} \\
& \left.+0.195(5.692+1.637 \times 0.124)^{2}+0.149(0.124)^{3}\right]-1.083(2.97)^{2} \\
= & 5.357 \text { in. }^{4}
\end{aligned}
$$

c. Moment of inertia about y-axis:

$$
\begin{aligned}
I_{y}= & 2 t\left\{b(b / 2+r+t / 2)^{2}+0.0833 b^{3}+u(0.363 r+t / 2)^{2}+0.149 r^{3}\right. \\
& \left.+a\left[c(c / 2+r+t / 2)^{2}+0.0833 b^{3}+u(0.363 r+t / 2)^{2}+0.149 r^{3}\right]\right\} \\
= & 2 t\left[b(b / 2+r+t / 2)^{2}+c(c / 2+r+t / 2)^{2}+2 \times 0.0833 b^{3}+2 u(0.363 r+t / 2)^{2}\right. \\
& \left.+2 \times 0.149 r^{3}\right] \\
= & 2 \times 0.06\left[1.471(1.531 / 2+0.124)^{2}+1.471(1.531 / 2+0.124)^{2}\right. \\
& +2 \times 0.0833 x(1.471)^{3}+2 \times 0.195(0.363 \times 0.124+0.06 / 2)^{2} \\
& \left.+2 \times 0.149 \times(0.124)^{3}\right] \\
= & 0.343 \mathrm{in}^{4}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\mathrm{S}_{\mathrm{f}} & =\mathrm{I}_{\mathrm{x}} / \mathrm{y}_{\mathrm{cg}}=5.357 / 3.0=1.786 \mathrm{in}^{3} \\
\mathrm{C}_{\mathrm{b}} & =1.75+1.05\left(\mathrm{M}_{1} / \mathrm{M}_{2}\right)+0.3\left(\mathrm{M}_{1} / \mathrm{M}_{2}\right)^{2} \\
& =1.75+1.05\left(0 / \mathrm{M}_{\max }\right)+0.3\left(0 / \mathrm{M}_{\max }\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& =1.75<2.3 \\
I_{y c} & =I_{y} / 2=0.343 / 2=0.172 \text { in. } .^{4} \\
M_{c} & =\pi^{2} E_{o} C_{b}\left(E_{t} / E_{o}\right) d I_{y c} / L^{2} \\
M_{n} & =S_{c}\left(M_{c} / S_{f}\right) \\
& =S_{c} f \\
f & =M_{c} / S_{f} \\
= & (1 / 1.786)\left(\pi^{2} \times 27000 \times 1.75 \times 6 \times 0.172 /(4 \times 12)^{2}\right)\left(E_{t} / E_{o}\right) \\
& =116.95\left(E_{t} / E_{o}\right)
\end{aligned}
$$

In the determination of the lateral buckling stress, it is necessary to select a proper ratio of E_{t} / E_{o} from Table A10 or Figure A7 in the Standard for the assumed stress. For the first approximation, assume a compressive stress of $f=32 \mathrm{ksi}$. From Table A10, the corresponding value of E_{t} / E_{o} is found to be equal to 0.42 . Thus,

$$
\begin{aligned}
f_{1}= & 116.95 \times 0.42 \\
& =49.12 \mathrm{ksi}>\text { assumed stress } \mathrm{f}=32 \mathrm{ksi}
\end{aligned}
$$

Because the computed stress is larger than the assumed value, the further successive approximation is needed.

Assume $f=38.5 \mathrm{ksi}$, and

$$
E_{t} / E_{0}=0.33
$$

$$
\mathbf{f}_{1}=116.95 \times 0.33
$$

$=38.49 \mathrm{ksi}=$ assumed stress $\mathrm{f}=38.5 \mathrm{ksi}$ OK
Therefore,
$\mathrm{f} \quad=\mathrm{M}_{\mathrm{c}} / \mathrm{S}_{\mathrm{f}}=38.47 \mathrm{ksi}$

Properties of 90° corners:
$r=R+t / 2=3 / 32+0.060 / 2=0.124 \mathrm{in}$.

Length of arc, $u=1.57 \mathrm{r}=1.57 \times 0.124=0.195 \mathrm{in}$.
Distance of c.g. from center of radius,
$c=0.637 \mathrm{r}=0.637 \times 0.124=0.079 \mathrm{in}$.
Determination of elastic section modulus of the effective section calculated at a stress of $f=38.47 \mathrm{ksi}$ in the extreme compression fiber (assume the webs are fully effective):

Compression flange: $\mathbf{k}=0.50$ (unstiffened compression element)

$$
\begin{align*}
& w / t=1.471 / 0.06=24.52<50 \text { OK (Section 2.1.1-(1)-(iii)) } \\
& \lambda=(1.052 / \sqrt{k})(w / t) \sqrt{f / E_{0}} \\
& \text { (Eq. 2.2.1-4) } \\
& =(1.052 / \sqrt{0.50})(24.52) \sqrt{38.47 / 27000}=1.377>0.673 \\
& \rho=(1-0.22 / \lambda) / \lambda \tag{Eq.2.2.1-3}\\
& =(1-0.22 / 1.377) / 1.377=0.610 \\
& \text { b } \quad=\rho \mathrm{w} \\
& =0.610 \times 1.471 \\
& =0.897 \mathrm{in} . \\
& \text { (Eq. 2.2.1-2) }
\end{align*}
$$

Effective section properties about x axis:

Element	```L Effective Length (in.)```		$\begin{gathered} \text { Ly } \\ \left(\text { in. }^{2}\right) \end{gathered}$	$\begin{gathered} L y^{2} \\ \left(\text { in. }{ }^{3}\right) \end{gathered}$	$\begin{gathered} I^{\prime} \\ \text { About } \\ \text { Own } \\ \text { Axis } \\ \text { (in. }{ }^{3} \text {) } \end{gathered}$
Webs	11.384	3.000	34.152	102.456	30.736
Upper Corners	0.390	0.075	0.029	0.002	--
Lower Corners	0.390	5.925	2.310	13.691	--
Compression Flanges	1.794	0.030	0.054	0.002	--
Tension Flanges	2.942	5.970	17.564	104.856	--
Sum	16.900		54.109	221.007	30.736

Distance from top fiber to x-axis is

$$
y_{c g}=54.109 / 16.90=3.202 \mathrm{in} .
$$

Since the distance of top compression fiber from neutral axis is greater than one half the beam depth, a compression stress of $\mathrm{f}=38.47 \mathrm{ksi}$ will govern.

To check if webs are fully effective (Section 2.2.2):
$\mathrm{f}_{1}=[(3.202-0.154) / 3.202] \times 38.47=36.62 \mathrm{ksi}($ compression $)$
$\mathrm{f}_{2}=-[(2.798-0.154) / 3.202] \times 38.47=-31.77 \mathrm{ksi}($ tension $)$
$\psi \quad=f_{2} / f_{1}=-31.77 / 36.62=-0.868$
$k=4+2(1-\Psi)^{3}+2(1-\Psi)$
(Eq. 2.2.2-4)
$=4+2[1-(-0.868)]^{3}+2[1-(-0.868)]$
$=20.772$
$h \quad=\omega=5.692 \mathrm{in} ., \mathrm{h} / \mathrm{t}=\mathrm{w} / \mathrm{t}=5.692 / 0.06=94.87$
$\mathrm{h} / \mathrm{t}=54.47<200$ OK (Section 2.1.2-(1))
$\lambda=(1.052 / \sqrt{20.772})(54.47) \sqrt{36.62 / 27000}=0.463<0.673$
$\mathrm{b}_{\mathrm{e}}=\mathrm{w}$
(Eq. 2.2.1-1)
$=5.692 \mathrm{in}$.
$b_{2}=b e^{/ 2}$
$=5.692 / 2=2.846 \mathrm{in}$.
$b_{1}=b_{e} /(3-\Psi)$
(Eq. 2.2.2-1)
$=5.692 /[3-(-0.868)]=1.472 \mathrm{in}$.
Compression portion of the web calculated on the basis of the
effective section $=y_{c g}-0.154=3.202-0.154=3.048 \mathrm{in}$.

Since $\mathrm{b}_{1}+\mathrm{b}_{2}=4.318$ in. >3.048 in., $\mathrm{b}_{1}+\mathrm{b}_{2}$ shall be taken as 3.048 in.. This verifies the assumption that the webs are
fully effective.

$$
\begin{aligned}
I_{x}^{\prime} & =L y^{2}+I_{1}^{\prime}-L_{c g}^{2} \\
& =221.007+30.736-16.90(3.202)^{2} \\
& =78.471 \text { in. }^{3}
\end{aligned}
$$

Actual $I_{x}=I^{\prime}{ }_{x}{ }^{t}$
$=78.471 \times 0.06$
$=4.708$ in. ${ }^{4}$
$S_{c} \quad=I_{x} / y_{c g}$
$=4.708 / 3.202$
$=1.470$ in. 3
Therefore,

$$
\begin{aligned}
&\left(M_{n}\right)_{2}=S_{c} f=1.470 \times 38.47 \\
&=56.55 \mathrm{kips}-\mathrm{in} . \\
&=0.85 \\
& \Phi_{b} \\
& \Phi_{b}\left(M_{n}\right)_{2}=0.85 \times 56.55 \\
&=48.07 \mathrm{kips-in} .\left\langle\Phi_{b}\left(M_{n}\right)_{1}=60.44\right. \text { kips-in. }
\end{aligned}
$$

Therefore, $\Phi_{b} M_{n}=48.07 \mathrm{kips-in}$. (i.e., lateral buckling strength controls).

By using the Allowable Stress Design (ASD) method, rework Example 8.1 to determine the allowable bending strength of the I-section (Fig. 8.1).

Solution:

1. Nominal section strength

$$
\begin{aligned}
& M_{n}=S_{e} F_{y} \\
&=1.422 \times 50=71.10 \mathrm{kips}-\mathrm{in} . \text { (see Example 8.1) } \\
&\left(M_{n}\right)_{1}=71.10 \mathrm{kips}-\mathrm{in} . \\
& \text { Allowable bending strength } \\
&=1.85 \\
& \Omega\left(M_{a}\right)_{1}= \\
& 71.10 / 1.85=38.43 \mathrm{kips}-\mathrm{in} .
\end{aligned}
$$

2. Lateral buckling strength

$$
\begin{aligned}
M_{\mathrm{n}} & =S_{c}\left(M_{\mathrm{c}} / \mathrm{S}_{\mathrm{f}}\right) \\
& =\mathrm{S}_{\mathrm{c}} \mathrm{f} \\
\mathrm{f} & =M_{\mathrm{c}} / \mathrm{S}_{\mathrm{f}}=38.47 \mathrm{ksi} \\
\mathrm{~S}_{\mathrm{c}} & =1.470 \mathrm{in}^{3}
\end{aligned}
$$

(For detailed calculations, see Example 8.1)

$$
\left(M_{n}\right)_{2}=1.470 \times 38.47=56.55 \mathrm{kips}-\mathrm{in} .
$$

Allowable lateral buckling strength

$$
\begin{aligned}
& \Omega=1.85 \\
& \left(M_{a}\right)_{2}=56.55 / 1.85=30.57 \mathrm{kips}-\mathrm{in}
\end{aligned}
$$

Therefore, $M_{a}=30.57$ kips-in. (i.e., lateral buckling controls)

EXAMPLE 9.1 CHANNEL W/LATERAL BUCKLING CONSIDERATION (LRFD)

Complete Flexural Design, Unstiffened Compression Flange

By using the LRFD criteria, check the adequacy of a channel section (Fig. 9.1) to be used as a flexural member and to support a nominal live load of $200 \mathrm{lb} / \mathrm{ft}$. and a nominal dead load of $40 \mathrm{lb} / \mathrm{ft}$. Assume that the beam is continuous over three 10 ft . spans with 6 in . and $31 / 2$ in. bearing lengths at interior and exterior supports, respectively. Also assume that, for each span, the compression flange is braced at the center and a quarter point of span, and $K_{x}=K_{y}=1.0$. Use Type $304,1 / 4$-Hard, stainless stee 1 .

Figure 9.1 Section for Example 9.1

Solution:

1. Nominal section strength, M_{n} (Section 3.3.1.1).
a. Procedure I - based on initiation of yielding

Properties of 90° corners:
$\mathrm{r}=\mathrm{R}+\mathrm{t} / 2=3 / 16+0.135 / 2=0.255 \mathrm{in}$.
Length of arc, $u=1.57 \mathrm{r}=1.57 \times 0.255=0.40 \mathrm{in}$.
Distance of c.g. from center of radius,
$\mathrm{c}=0.637 \mathrm{r}=0.637 \times 0.255=0.162 \mathrm{in}$.

Computation of I_{x}, S_{e}, and M_{n} :
For the first approximation, assume a compression stress of $\mathrm{f}=\mathrm{F}_{\mathrm{y}}=50 \mathrm{ksi}$ (yield strength in longitudinal compression, Table A1 of the Standard Specification) in the top fiber of the section and that the web is fully effective.

Compression flange: $\mathrm{k}=0.50$ (for unstiffened compression element, see Section 2.3.1 of the Standard)
$\mathrm{w} / \mathrm{t}=1.177 / 0.135=8.72<50$ OK (Section 2.1.1-(1)-(iii))
$\lambda=(1.052 / \sqrt{k})(w / t) \sqrt{f / E_{0}}$
(Eq. 2.2.1-4)
The initial modulus of elasticity, E_{o}, for Type 304 stainless
steel is obtained from Table A4 of the Standard, i.e., $\mathrm{E}_{\mathrm{o}}=27000 \mathrm{ksi}$.
$\lambda=(1.052 / \sqrt{0.50})(8.72) \sqrt{50 / 27000}=0.558<0.673$
$\mathrm{b}=\mathrm{w}$
(Eq. 2.2.1-1)
$=1.177 \mathrm{in}$.

Effective section properties about x-axis:

Element	L Effective Length (in.)	```y Distance from Top Fiber (in.)```	$\begin{gathered} \text { Ly } \\ \left(\text { in. }^{2}\right) \end{gathered}$	$\begin{gathered} L y^{2} \\ \left(\text { in. }{ }^{3}\right) \end{gathered}$	$\begin{aligned} & I^{\prime} \\ & \text { About } \\ & \text { Own } \\ & \text { Axis } \\ & \left(\text { in. }{ }^{3}\right. \text {) } \end{aligned}$
Web	6.354	3.500	22.239	77.837	21.378
Upper Corner	0.400	0.161	0.064	0.010	--
Lower Corner	0.400	6.839	2.736	18.709	--
Compression Flange	1.177	0.068	0.080	0.005	--
Tension Flange	1.177	6.933	8.160	56.574	--
Sum	9.508		33.279	153.135	21.378

Distance from top fiber to x -axis is

$$
y_{c g}=33.279 / 9.508=3.500 \mathrm{in} .
$$

Since the distance from top compression fiber to the neutral
axis is equal to one half the beam depth, a compression
stress of 50 ksi will govern as assumed (i.e., initial
yield is in compression).

To check if web is fully effective (Section 2.2.2):
$\mathrm{f}_{1}=[(3.500-0.323) / 3.500] \times 50=45.39 \mathrm{ksi}($ compression $)$
$\mathrm{f}_{2}=-[(3.500-0.323) / 3.500] \times 50=-45.39 \mathrm{ksi}($ tension $)$
$\Psi \quad=\mathrm{f}_{2} / \mathrm{f}_{1}=-45.39 / 45.39=-1.00$
$k \quad=4+2(1-\Psi)^{3}+2(1-\Psi)$
(Eq. 2.2.2-4)
$=4+2[1-(-1.00)]^{3}+2[1-(-1.00)]$
$=24.00$
$h \quad=w=6.354 \mathrm{in} ., \mathrm{h} / \mathrm{t}=\mathrm{w} / \mathrm{t}=6.354 / 0.135=47.07$

$$
\begin{align*}
\mathrm{h} / \mathrm{t} & =47.07<200 \text { OK (Section 2.1.2-(1)) } \\
\lambda & =(1.052 / \sqrt{24.0})(47.07) \sqrt{45.39 / 27000}=0.414<0.673 \\
\mathrm{~b}_{\mathrm{e}} & =6.354 \mathrm{in} . \\
\mathrm{b}_{2} & =\mathrm{b}_{\mathrm{e}} / 2 \tag{Eq.2.2.2-2}\\
& =6.354 / 2=3.177 \mathrm{in} . \\
\mathrm{b}_{1} & =\mathrm{b}_{\mathrm{e}} /(3-\Psi) \\
& =6.354 /[3-(-1.0)]=1.589 \mathrm{in} .
\end{align*}
$$

(Eq. 2.2.2-1)

The effective widths, b_{1} and b_{2}, of web are defined in Figure 2 of the Standard.

$$
\mathrm{b}_{1}+\mathrm{b}_{2}=1.589+3.177=4.766 \mathrm{in} .
$$

Compression portion of the web calculated on the basis of the effective section $=y_{c g}-0.154=3.50-0.323=3.177 \mathrm{in}$.

Since $b_{1}+b_{2}=4.766$ in. >3.177 in., $b_{1}+b_{2}$ shall be taken as 3.177 in.. This verifies the assumption that the web is fully effective.

$$
\begin{aligned}
I_{x}^{\prime} & =\mathrm{Ly}^{2}+\mathrm{I}_{1}^{\prime}{ }_{1}-\mathrm{Ly}_{\mathrm{Cg}}^{2} \\
& =153.135+21.378-9.508(3.50)^{2} \\
& =58.04 \mathrm{in} .{ }^{3}
\end{aligned}
$$

Actual $I_{x}=I^{\prime}{ }_{x}{ }^{t}$

$$
=58.04 \times 0.135
$$

$$
=7.835 \mathrm{in} .^{4}
$$

$$
S_{e} \quad=I_{x} / y_{c g}
$$

$$
=7.835 / 3.50
$$

$$
=2.239 \text { in. }^{3}
$$

$$
\begin{equation*}
\left(M_{n}\right)_{1} \quad=S_{e} F_{y} \tag{Eq.3.3.1.1-1}
\end{equation*}
$$

$$
=2.239 \times 50
$$

```
= 111.95 kips-in.
```

b. Procedure II - based on inelastic reserve capacity

For unstiffened compression element, $C_{y}=1$.
Maximum compressive strain $=C_{y} e_{y}=e_{y}$.
Therefore, the nominal ultimate moment, M_{n}, is the same as the $\left(M_{n}\right){ }_{1}$ determined by Procedure I because the compression flange will yield first.
2. Lateral buckling strength, M_{n} (Section 3.3.1.2).

The following equations used for computing the sectional properties for channel with no lips are based on the information in Part III of Cold-Formed Steel Design Manual (1986), American Iron and Steel

Institute, Washington, D.C.
a. Basic parameters used for calculating the sectional properties:
(For a Channel with no lips)
$\mathrm{r} \quad=\mathrm{R}+\mathrm{t} / 2=3 / 16+0.135 / 2=0.255 \mathrm{in}$.
From the sketch, $A^{\prime}=7.0 \mathrm{in} ., \quad B^{\prime}=1.50 \mathrm{in}$. $a=0.0$ (For sections with no lips)
a $\quad=A^{\prime}-(2 r+t)$
$=7.0-(2 \times 0.255+0.135)=6.355 \mathrm{in}$.
$\bar{a} \quad=A^{\prime}-t=7-0.135=6.865 \mathrm{in}$.
$\mathrm{b} \quad=\mathrm{B}^{\prime}-[\mathrm{r}+\mathrm{t} / 2+\mathrm{a}(\mathrm{r}+\mathrm{t} / 2)]=1.5-(0.255+0.135 / 2)=1.177 \mathrm{in}$.
$\overline{\mathrm{b}} \quad=\mathrm{B}^{\prime}-(\mathrm{t} / 2+\mathrm{at} / 2)=1.5-0.135 / 2=1.433 \mathrm{in}$.
$u \quad=1.57 \mathrm{r}=1.57 \times 0.255=0.40 \mathrm{in}$.
b. Area:

$$
A \quad=t[a+2 b+2 u]
$$

```
=0.135(6.355+2\times1.177+2\times0.40)
=1.284 in. }\mp@subsup{}{}{2
```

c. Moment of inertia about x-axis:

$$
\begin{aligned}
\mathrm{I}_{\mathrm{X}}= & 2 \mathrm{t}\left[0.0417 \mathrm{a}^{3}+\mathrm{b}(\mathrm{a} / 2+\mathrm{r})^{2}+\mathrm{u}(\mathrm{a} / 2+0.637 \mathrm{r})^{2}+0.149 \mathrm{r}^{3}\right] \\
= & 2 \mathrm{x} 0.135\left[0.0417(6.355)^{3}+1.177(6.355 / 2+0.255)^{2}\right. \\
& \left.+0.4(6.355 / 2+0.637 \times 0.255)^{2}+0.149(0.255)^{3}\right] \\
= & 7.839 \mathrm{in}^{4}
\end{aligned}
$$

d. Distance bwtween centroid and web centerline:

```
\overline{x}}=(2t/A)[b(b/2+r)+u(0.363r)
    =(2x0.135/1.284)[1.177(1.177/2+0.255)+0.4(0.363\times0.255)]
    =0.217 in.
```

e. Moment of inertia about y-axis:

```
I
    = 2x0.135[1.177(1.177/2+0.255)2+0.0833(1.177) 3}+0.356(0.255)3]
            -1.284(0.217)2
            =0.204 in.4
```

f. Distance between shear center and web centerline:

$$
\begin{aligned}
\mathrm{m} & =\left[\overline{\mathrm{b}} \mathrm{t} /\left(12 \mathrm{I}_{\mathrm{x}}\right)\right]\left[3 \overline{\mathrm{~b}}(\overline{\mathrm{a}})^{2}\right] \\
& =[1.433 \times 0.135 /(12 \times 7.839)]\left[3 \times 1.433 \times(6.865)^{2}\right] \\
& =0.417 \mathrm{in} .
\end{aligned}
$$

g. Distance between centroid and shear center:

$$
x_{0} \quad=-(\bar{x}+m)=-(0.217+0.417)=-0.634 \mathrm{in} .
$$

h. St. Venant torsion constant:

$$
\begin{aligned}
\mathrm{J} & =\left(\mathrm{t}^{3} / 3\right)[\mathrm{a}+2 \mathrm{~b}+2 \mathrm{u}] \\
& =\left[(0.135)^{3} / 3\right][6.355+2 \times 1.177+2 \times 0.4] \\
& =0.0078 \mathrm{in.}^{4}
\end{aligned}
$$

i. Warping Constant:

$$
\begin{aligned}
C_{w}= & \left(t \bar{a}^{2} \bar{b}^{3} / 12\right)(3 \bar{b}+2 \bar{a}) /(6 \bar{b}+\bar{a}) \\
= & {\left[0.135(6.865)^{2}(1.433)^{3} / 12\right] } \\
& x(3 \times 1.433+2 \times 6.865) /[6(1.433)+6.865] \\
= & 1.819 \mathrm{in.}^{6}
\end{aligned}
$$

j. Radii of gyration:

$$
\begin{aligned}
r_{x} & =\sqrt{\left(I_{x} / A\right)}=\sqrt{(7.839 / 1.284)}=2.47 \mathrm{in} . \\
r_{y} & =\sqrt{\left(I_{y} / A\right)}=\sqrt{(0.204 / 1.284)}=0.40 \mathrm{in} . \\
r_{0}^{2} & =r_{x}^{2}+r_{y}^{2}+x_{o}^{2} \\
& =(2.47)^{2}+(0.40)^{2}+(-0.634)^{2} \\
& =6.662 \mathrm{in} . \\
r_{0} & =2.581 \mathrm{in.}
\end{aligned}
$$

Therefore, for determining the lateral buckling stress:

$$
M_{n} \quad=S_{c}\left(M_{c} / S_{f}\right)
$$

where M_{c} is the critical moment calculated in accordance with
Eq. (3.3.1.2-4) of the Standard.

$$
S_{f} \quad=I_{x} / y_{c g}=7.836 / 3.5=2.239 \mathrm{in}^{3}
$$

$$
\begin{aligned}
\mathrm{C}_{\mathrm{b}} & =1.75+1.05\left(\mathrm{M}_{1} / \mathrm{M}_{2}\right)+0.3\left(\mathrm{M}_{1} / \mathrm{M}_{2}\right)^{2} \\
& =1.75+1.05(-0.0063 / 0.10)+0.3(-0.0063 / 0.10)^{2}=1.685<2.3
\end{aligned}
$$

where M_{1} and M_{2} are determined from the moment diagram at the interior support.

$$
\begin{equation*}
M_{c}=C_{b} r_{o} A \sqrt{\sigma_{e y} \sigma_{t}} \tag{Eq.3.3.1.2-4}
\end{equation*}
$$

where

$$
\begin{array}{ll}
\sigma_{e y} & =\left[\left(\pi^{2} E_{0}\right) /\left(K_{y} L_{y} / r_{y}\right)^{2}\right]\left(E_{t} / E_{0}\right) \\
\sigma_{t} & =\left[1 /\left(A r_{0}^{2}\right)\right]\left[G_{0} J+\left(\pi^{2} E_{o} C_{w}\right) /\left(K_{t} L_{t}\right)^{2}\right]\left(E_{t} / E_{0}\right) \tag{Eq.3.4.2-1}
\end{array}
$$

Therefore,

$$
\begin{aligned}
\sigma_{e y}= & {\left[\left(\pi^{2} \times 27000\right) /(1.0 \times 2.5 \times 12 / 0.40)^{2}\right]\left(E_{t} / E_{o}\right) } \\
= & 47.14\left(E_{t} / E_{o}\right) \\
\sigma_{t}= & {[1 /(1.284 \times 6.662)]\left[\left(10500 \times 0.0078+\pi^{2} \times 27000 \times 1.819 /(1.0 \times 2.5 \times 12)^{2}\right]\right.} \\
& x\left(E_{t} / E_{o}\right) \\
= & 72.54\left(E_{t} / E_{o}\right) \\
M_{n}= & S_{c}\left(M_{c} / S_{f}\right) \\
= & S_{c} f
\end{aligned}
$$

where,

$$
\begin{aligned}
f & =M_{c} / S_{f} \\
& =(1 / 2.239)(1.685 \times 2.581 \times 1.284 \times \sqrt{47.14 \times 72.54})\left(E_{t} / E_{o}\right) \\
& =145.84\left(E_{t} / E_{o}\right) \mathrm{ksi}
\end{aligned}
$$

In the determination of the lateral buckling stress, it is necessary to select a proper ratio of E_{t} / E_{0} from Table A10 or Figure A7 in the Standard for the assumed stress. For the first approximation, assume a compressive stress of $f=32 \mathrm{ksi}$. From Table A10, the corresponding value of E_{t} / E_{o} is found to be equal to 0.42 . Thus,
$f_{1}=145.84 \times 0.42$
$=61.25 \mathrm{ksi}>$ assumed stress $\mathrm{f}=32 \mathrm{ksi}$
Because the computed stress is larger than the assumed value, the further successive approximation is needed. After several trials, assume $f=42.12 \mathrm{ksi}$, and

```
\(E_{t} / E_{0}=0.2888\)
\(\mathrm{f}_{1}=145.84 \times 0.2888\)
    \(=42.12 \mathrm{ksi}=\) assumed stress \(\mathrm{f}=42.12 \mathrm{ksi}\) OK
```

Therefore,
$\mathrm{f} \quad=\mathrm{M}_{\mathrm{C}} / \mathrm{S}_{\mathrm{f}}=34.50 \mathrm{ksi}$

It is noted that from the calculation of Part 1(a), the section is fully effective for $f=F_{y}=50 \mathrm{ksi}$. Therefore, for the lateral buckling stress of $f=42.12 \mathrm{ksi}$, the section will also be fully effective.

Thus,
$\left(M_{n}\right)_{2}=S_{c} f=2.239 \times 42.12=94.30 \mathrm{kips}-\mathrm{in}$.
3. Design flexural strength, $\Phi_{b} M_{n}$

Based on the above calculations, the lateral buckling stress $\left(M_{n}\right)_{2}$
is less than the nominal section strength $\left(M_{n}\right)_{1}$. Therefore,
lateral buckling governs the design.
$M_{n}=94.30 \mathrm{kips}-\mathrm{in}$.
$\Phi_{b}=0.85$
$\Phi_{b} M_{n}=0.85 \times 94.30=80.16 \mathrm{kips}-\mathrm{in}$.
This value can be used for both positive and negative bending.

$$
w_{u}=1.2 w_{D L}+1.6 w_{L L}=1.2(0.04)+1.6(0.20)=0.368 \mathrm{kips} / \mathrm{ft} .
$$

For a continuous beam over three equal spans, the maximum bending moment is negative and occurs over the interior supports. It is given by

$$
\begin{aligned}
\mathrm{M}_{\mathrm{u}} & =0.100 \mathrm{w}_{\mathrm{u}} \mathrm{~L}^{2}=0.100(0.368)(10)^{2}(12) \\
& =44.16 \text { kips-in. }<\phi_{\mathrm{b}} \mathrm{M}_{\mathrm{n}}=80.16 \text { kips-in. OK }
\end{aligned}
$$

4. Strength for Shear Only (Section 3.3.2)

The required shear strength at any section shall not exceed the design shear strength $\phi_{V} V_{n}$:

$$
\begin{align*}
\Phi_{v} & =0.85 \\
V_{n} & =4.84 E_{o} t^{3}\left(G_{s} / G_{o}\right) / h \tag{Eq.3.3.2-1}\\
v_{n} & =V_{n} /(h t) \quad(\text { in terms of design shear stress }) \\
& =4.84 E_{o}\left(G_{s} / G_{o}\right) /(h / t)^{2}
\end{align*}
$$

In the determination of the shear strength, it is necessary to select a proper value of G_{s} / G_{o} for the assumed stress from Table A12 or Figure A9 of the Standard. For the first approximation, assume a shear stress of $v=F_{y} / 2=25 \mathrm{ksi}$ and the corresponding value of G_{S} / G_{o} is equal to 0.888 . Thus,
$h / t=6.354 / 0.135=47.07$
$v_{n}=4.84(27000)(0.888) /(47.07)^{2}$
$=52.38 \mathrm{ksi}>$ assumed stress $\mathrm{v}=25 \mathrm{ksi} \mathrm{NG}$

For a second approximation, assume a stress of $\mathrm{f}=38.30 \mathrm{ksi}$ and its corresponding value of G_{s} / G_{0} is 0.648 .

$$
\begin{aligned}
\mathbf{v}_{\mathrm{n}} & =4.84(27000)(0.648) /(47.07)^{2} \\
& =38.24 \mathrm{ksi} \cong \text { assumed stress (close enough) OK }
\end{aligned}
$$

Therefore, the total shear strength, V_{n}, for hat section is

$$
V_{n}=(2 \text { webs })\left(v_{n}\right)(h t)
$$

$$
\begin{aligned}
& =2(38.24)(6.354 \times 0.135) \\
& =32.80 \mathrm{kips}
\end{aligned}
$$

The design shear strength is determined as follows:

$$
\begin{aligned}
& \Phi_{\mathrm{V}} V_{\mathrm{n}}=0.85(32.80)=27.88 \mathrm{kips} \\
& \Phi_{\mathrm{V}} V_{\mathrm{n}}<2\left(0.95 \mathrm{~F}_{\mathrm{yv}} \mathrm{ht}\right)=2(0.95 \mathrm{x} 42 \mathrm{x} 6.354 \mathrm{x} 0.135)=34.23 \mathrm{kips} 0 \mathrm{~K} \\
& \text { (The shear yield strength, } \mathrm{F}_{\mathrm{yv}} \text {, is obtained from Table A1 } \\
& \text { of the Standard.) }
\end{aligned}
$$

The maximum required shear strength is given by

$$
\begin{aligned}
V_{u} & =0.600 w_{u} L \\
& =(0.600)(0.368)(10)=2.21 \mathrm{kips}<\Phi_{v} V_{n}=27.88 \mathrm{kips} 0 K
\end{aligned}
$$

5. Strength for combined bending and shear (Section 3.3.3).

At the interior supports there is a combination of web bending and web shear:

$$
\begin{array}{llrl}
\Phi_{b} M_{n} & =80.16 \mathrm{kips}-\mathrm{in} . & M_{u} & =44.16 \mathrm{kips}-\mathrm{in} . \\
\Phi_{\mathrm{v}} V_{\mathrm{n}} & =27.88 \mathrm{kips} & V_{u} & =2.21 \mathrm{kips}
\end{array}
$$

For unreinforced webs

$$
\begin{aligned}
& \left(M_{u} / \phi_{b} M_{n}\right)^{2}+\left(V_{u} / \phi_{v} V_{n}\right)^{2} \leq 1.0 \\
& (44.16 / 80.16)^{2}+(2.21 / 27.88)^{2}=0.31<1.00 K
\end{aligned}
$$

(Eq. 3.3.3-1)
6. Web crippling strength (Section 3.3.4).

```
R/t = (3/16)/0.135 = 1.389<6 OK
    h/t = 6.354/0.135=47.07<200 OR
    N/t = 3.0/0.135=22.22<210 OK (at end support)
    N/t = 6.0/0.135=44.44<210 OK (at interior support)
```

Table 2 of the Standard applies:
For end reactions: (Eq. 3.3.4-2)

For interior reactions: (Eq. 3.3.4-4)

$$
\begin{align*}
& \mathrm{k} \quad=\mathrm{F}_{\mathrm{y}} / 33=50 / 33=1.515 \\
& \text { (Eq. 3.3.4-21) } \\
& \mathrm{C}_{1}=(1.22-0.22 \mathrm{k}) \mathrm{k} \quad \text { (Eq. 3.3.4-10) } \\
& =[1.22-0.22(1.515)](1.515)=1.343 \\
& \mathrm{C}_{2} \stackrel{\perp}{=}(1.06-0.06 \mathrm{R} / \mathrm{t}) \\
& =[1.06-0.06(1.389)]=0.977<1.0 \mathrm{OK} \\
& C_{3}=(1.33-0.33 \mathrm{k}) \mathrm{k} \\
& =[1.33-0.33(1.515)](1.515)=1.258 \\
& C_{4}=(1.15-0.15 \mathrm{R} / \mathrm{t}) \leq 1.0 \text { but not less than } 0.50 \text { (Eq. 3.3.4-13) } \\
& 1.15-0.15 \mathrm{R} / \mathrm{t}=1.15-0.15(1.389)=0.942 \leq 1.0 \mathrm{OK} \\
& >0.50 \text { OK } \\
& C_{4}=0.942 \\
& C_{\theta}=0.7+0.3(\theta / 90)^{2} \tag{Eq.3.3.4-20}\\
& =0.7+0.3(90 / 90)^{2}=1.0
\end{align*}
$$

For end reaction:

$$
\begin{aligned}
\mathrm{P}_{\mathrm{n}}= & \mathrm{t}^{2} \mathrm{C}_{3} \mathrm{C}_{4} \mathrm{C}_{\theta}[217-0.28(\mathrm{~h} / \mathrm{t})][1+0.01(\mathrm{~N} / \mathrm{t})] \\
= & (0.135)^{2}(1.258)(0.942)(1.0)[217-0.28(47.07)] \\
& x[1+0.01(22.22)]=5.38 \mathrm{kips} \\
\Phi_{\mathrm{W}}= & 0.70 \\
\Phi_{\mathrm{W}} \mathrm{P}_{\mathrm{n}}= & 0.70(5.38)=3.77 \mathrm{kips}
\end{aligned}
$$

End reaction is given by

$$
\begin{aligned}
\mathrm{R} & =0.400 \mathbf{w}_{\mathbf{u}}^{\mathrm{L}} \\
& =(0.400)(0.368)(10)=1.47 \mathrm{kips}<\Phi_{\mathbf{w}} \mathrm{P}_{\mathrm{n}}=3.77 \mathrm{kips} 0 \mathrm{~K}
\end{aligned}
$$

For interior reaction:

$$
\begin{align*}
P_{n}= & t^{2} C_{1} C_{2} C_{\theta}[538-0.74(\mathrm{~h} / \mathrm{t})][1+0.007(\mathrm{~N} / \mathrm{t})] \tag{Eq.3.3.4-4}\\
= & (0.135)^{2}(1.343)(0.977)(1.0)[538-0.74(47.07)] \\
& x[1+0.007(44.44)]=15.79 \mathrm{kips}
\end{align*}
$$

$$
\begin{aligned}
& \Phi_{W}=0.70 \\
& \Phi_{W} P_{n}=0.70(15.79)=11.05 \mathrm{kips}
\end{aligned}
$$

Interior reaction is given by

$$
\begin{aligned}
\mathrm{R} & =1.10 w_{u} \mathrm{~L} \\
& =(1.10)(0.368)(10)=4.05 \mathrm{kips}<\Phi_{w} P_{\mathrm{n}}=11.05 \mathrm{kips} 0 K
\end{aligned}
$$

7. Combined bending and web crippling strength (Section 3.3.5).

At the interior supports there is a combination of web bending and web crippling:

$$
\begin{array}{rlrl}
\Phi_{b} M_{n} & =80.16 \mathrm{kips}-\mathrm{in} . & M_{u}=44.16 \mathrm{kips}-\mathrm{in} . \\
\Phi_{w} P_{n} & =11.05 \mathrm{kips} & & R=4.05 \mathrm{kips}
\end{array}
$$

For shapes having single unreinforced webs:

$$
\begin{aligned}
& 1.07\left(R / \Phi_{w} P_{n}\right)+\left(M_{u} / \Phi_{b} M_{n}\right) \leqslant 1.42 \\
& 1.07(4.05 / 11.05)+(44.16 / 80.16)=0.943<1.420 \mathrm{OK}
\end{aligned}
$$

8. Deflection due to service live load.

From the result of sectional properties calculated in item (1) of this example, the section is fully effective at $\mathrm{F}_{\mathrm{y}}=50 \mathrm{ksi}$.

$$
S_{x}=S_{e}=2.239 \text { in. }^{3}
$$

Therefore, for any stress f which is less than $F_{y}=50 \mathrm{ksi}$, the section will be fully effective, i.e.,

$$
I_{x} \quad=7.835 \text { in }^{4}
$$

This value can be used for deflection determination.

The maximum deflection occurs at a distance of 0.446 L from the exterior supports. It is given by

$$
\Delta \quad=0.0069 w L^{4} /\left(E_{o} I_{x}\right)
$$

Thus, the live load deflection is calculated as follows:

$$
\begin{aligned}
\Delta \quad & =0.0069(0.20)(10)^{4}(12)^{3} /(27000 \times 7.835) \\
& =0.113 \mathrm{in.}
\end{aligned}
$$

The live load deflection is 1 imited to $1 / 240$ of the span, i.e., $\mathrm{L} / 240=10 \times 12 / 240=0.5 \mathrm{in} .>0.113 \mathrm{in} . \mathrm{OK}$

From the above calculations, it can be concluded that the section is adequate.

EXAMPLE 9.2 CHANNEL W/LATERAL BUCKLING CONSIDERATION (ASD)

By using the ASD method, rework Example 9.1 for the same given data.

Solution:

1. Nominal section strength, M_{n}

For detailed calculations see Example 9.1.

$$
\begin{aligned}
\left(M_{n}\right)_{1} & =S_{e} F_{y} \\
& =2.239 \times 50 \\
& =111.95 \mathrm{kips}-\mathrm{in}
\end{aligned}
$$

2. Lateral buckling strength, M_{n} For detailed calculations see Example 9.1.

$$
\begin{aligned}
\left(M_{n}\right)_{2} & =S_{c} f \\
& =2.239 \times 42.12 \\
& =94.30 \mathrm{kips}-\mathrm{in}
\end{aligned}
$$

3. Allowable bending strength, Ma

$$
\begin{aligned}
M_{n} & =94.30 \text { kips-in. (based on lateral buckling strength) } \\
\Omega & =1.85 \\
M_{a} & =94.30 / 1.85=50.97 \text { kips-in. }
\end{aligned}
$$

This value can be used for both positive and negative bending.

$$
\mathrm{w}=w_{\mathrm{DL}}+w_{\mathrm{LL}}=0.04+0.20=0.24 \mathrm{kips} / \mathrm{ft}
$$

For a continuous beam over three equal spans, the maximum bending moment is negative and occurs over the interior supports. It is given by $M=0.100 w L^{2}=0.100(0.24)(10)^{2}(12)$ $=28.80 \mathrm{kips}-\mathrm{in} .<\mathrm{M}_{\mathrm{a}}=50.97 \mathrm{kips}-\mathrm{in} . \mathrm{OK}$
4. Strength for Shear Only

The required shear strength at any section shall not exceed the allowable shear strength V_{a} :

$$
\begin{aligned}
\mathrm{V}_{\mathrm{n}} & =(2 \text { webs })\left(\mathrm{v}_{\mathrm{n}}\right)(\mathrm{ht}) \\
& \left.=2(38.24)(6.354 \times 0.135) \text { (See Example } 9.1 \text { for } \mathrm{v}_{\mathrm{n}}\right) \\
& =32.80 \mathrm{kips}
\end{aligned}
$$

The allowable shear strength is determined as follows:
$\Omega \quad=1.85$
$\mathrm{V}_{\mathrm{a}}=32.80 / 1.85=17.73 \mathrm{kips}$
V_{a} shall be less than the allowable shear yielding strength, i.e.,
$\mathrm{V}_{\mathrm{a}}<2\left(\mathrm{~F}_{\mathrm{yv}}^{\mathrm{ht}}\right) / 1.64=43.94 \mathrm{kips} \mathrm{OK}$
(The safety factor used for shear yielding is 1.64 , and the shear yield strength, F_{yv}, is obtained from Table Al of the Standard.)

The maximum required shear strength is given by

$$
\begin{aligned}
\mathrm{V} & =0.600 \mathrm{wL} \\
& =(0.600)(0.24)(10)=1.44 \mathrm{kips}<\mathrm{V}_{\mathrm{a}}=17.73 \mathrm{kips} 0 \mathrm{~K}
\end{aligned}
$$

5. Strength for combined bending and shear

At the interior supports there is a combination of web bending and web shear:

$$
\begin{array}{ll}
M_{a}=50.97 \text { kips-in. } & M=28.80 \mathrm{kips}-\mathrm{in} . \\
\mathrm{V}_{\mathrm{a}}=17.73 \mathrm{kips} & \mathrm{~V}=1.44 \mathrm{kips}
\end{array}
$$

For unreinforced webs

$$
\begin{aligned}
& \left(M / M_{a}\right)^{2}+\left(V / V_{a}\right)^{2} \leq 1.0 \\
& (28.80 / 50.97)^{2}+(1.44 / 17.73)^{2}=0.326<1.00 K
\end{aligned}
$$

6. Web crippling strength

See Example 9.1 for detailed calculations.
For end reaction:

$$
\begin{aligned}
\mathrm{P}_{\mathrm{n}}= & \mathrm{t}^{2} \mathrm{C}_{3} \mathrm{C}_{4} \mathrm{C}_{\theta}[217-0.28(\mathrm{~h} / \mathrm{t})][1+0.01(\mathrm{~N} / \mathrm{t})] \\
= & (0.135)^{2}(1.258)(0.942)(1.0)[217-0.28(47.07)] \\
& x[1+0.01(22.22)]=5.38 \mathrm{kips}
\end{aligned}
$$

$\Omega=2.00$
$\mathrm{P}_{\mathrm{a}}=5.38 / 2.0=2.69 \mathrm{kips}$
End reaction is given by

$$
\begin{aligned}
\mathrm{R} & =0.400 \mathrm{wL} \\
& =(0.400)(0.240)(10)=0.96 \mathrm{kips}<\mathrm{P}_{\mathrm{a}}=2.69 \mathrm{kips} 0 \mathrm{~K}
\end{aligned}
$$

For interior reaction:

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{n}}= \mathrm{t}^{2} \mathrm{C}_{1} \mathrm{C}_{2} \mathrm{C}_{\theta}[538-0.74(\mathrm{~h} / \mathrm{t})][1+0.007(\mathrm{~N} / \mathrm{t})] \\
&=(0.135)^{2}(1.343)(0.977)(1.0)[538-0.74(47.07)] \\
& x[1+0.007(44.44)]=15.79 \mathrm{kips} \\
& \Omega= 2.00 \\
& \mathrm{P}_{\mathrm{a}}= 15.79 / 2.0=7.90 \mathrm{kips} \\
& \text { Interior reaction is given by } \\
& \mathrm{R}= 1.10 \mathrm{WL} \\
&=(1.10)(0.240)(10)=2.64 \mathrm{kips}<\mathrm{P}_{\mathrm{a}}=7.90 \mathrm{kips} 0 \mathrm{~K}
\end{aligned}
$$

7. Combined bending and web crippling strength

At the interior supports there is a combination of web bending and web crippling:

$$
\begin{array}{rlrl}
\mathrm{M}_{\mathrm{a}} & =50.97 \mathrm{kips}-\mathrm{in} . & \mathrm{M} & =28.80 \mathrm{kips}-\mathrm{in} . \\
\mathrm{P}_{\mathrm{a}} & =7.90 \mathrm{kips} & \mathrm{R} & =2.64 \mathrm{kips}
\end{array}
$$

For shapes having single unreinforced webs:

```
\(1.07\left(R / P_{a}\right)+\left(M / M_{a}\right) \leq 1.42\)
\(1.07(2.64 / 7.90)+(28.80 / 50.97)=0.923<1.420 \mathrm{OK}\)
```

8. Deflection due to service live load.

From the result of sectional properties calculated in item (1) of Example 9.1, the section is fully effective at $\mathrm{F}_{\mathrm{y}}=50 \mathrm{ksi}$.

Therefore, for a stress $f=42.12 \mathrm{ksi}$ which is less than $F_{y}=50 \mathrm{ksi}$, the section will be fully effective, i.e.,
$I_{x}=7.835$ in. ${ }^{4}$
This value can be used for deflection determination.

The maximum deflection occurs at a distance of 0.446 L from the exterior supports. It is given by
$\Delta \quad=0.0069 w L^{4} /\left(E_{0} I_{x}\right)$
Thus, the live load deflection is calculated as follows:

$$
\begin{aligned}
\Delta \quad & =0.0069(0.20)(10)^{4}(12)^{3} /(27000 \times 7.835) \\
& =0.113 \mathrm{in} .
\end{aligned}
$$

The live load deflection is limited to $1 / 240$ of the span, i.e., $\mathrm{L} / 240=10 \times 12 / 240=0.5 \mathrm{in} .>0.113 \mathrm{in} . \mathrm{OK}$

From the above calculations, it can be concluded that the section is adequate.

EXAMPLE 10.1 HAT SECTION USING INELASTIC RESERVE CAPACITY (LRFD)

(Inelastic Reserve Capacity)

By using the Load and Resistance Factor Design (LRFD) method, determine the design flexural strength, $\Phi_{b} M_{n}$. Use Type 301 stainless steel, annealed.

Figure 10.1 Section for Example 10.1

Given:

1. Section: Hat section, as shown in sketch.
2. Top flange continuously supported.
3. Span $=8 \mathrm{ft} .$, simply supported.

Solution:

1. Properties of 90° corners:

Corner Radius, $r=R+t / 2=3 / 16+0.135 / 2=0.255 \mathrm{in}$.
Length of arc, $u=1.57 \mathrm{r}=1.57 \times 0.255=0.400 \mathrm{in}$.
Distance of c.g. from center of radius,
$c=0.637 \mathrm{r}=0.637 \times 0.255=0.162 \mathrm{in}$.

I' of corner about its own centroidal axis $=0.149 \mathrm{r}^{3}$
$=0.149(0.255)^{3}=0.003$ in. ${ }^{3}$. This is negligible.
2. Nominal Section Strength (Section 3.3.1.1)
a. Procedure I - Based on Initiation of Yielding

Computation of I_{x}, S_{e}, and M_{n} for the first approximation:

* Assume a compressive stress of $f=F_{y c}=28 \mathrm{ksi}$ (yield strength in longitudinal compression, see Table A1 of the Standard) in the top fiber of the section.
* Assume web is fully effective.

Element 3:

$h / t=2.354 / 0.135=17.44<200$ OK (Section 2.1.2-(1))

Assumed fully effective

Element 5:

```
\(w / t=3.854 / 0.135=28.55<400\) OK (Section 2.1.1-(1)-(ii))
    \(\mathrm{k}=4\)
```

 \(\lambda=(1.052 / \sqrt{k})(\omega / t) \sqrt{f / E_{o}}\)
 $E_{0}=27000 \mathrm{ksi}$ is obtained from Table A4 of the Standard.
$\lambda=(1.052 / \sqrt{4})(28.55) \sqrt{28 / 28000}=0.475<0.673$
$\mathrm{b}=\mathrm{w}$
(Eq. 2.2.1-1)
$=3.854$ in. (Fully effective)

Effective section properties about x-axis:

Element	$\begin{gathered} \text { L } \\ \text { Effective Length } \\ \text { (in.) } \end{gathered}$	```y Distance from Top Fiber (in.)```	$\begin{gathered} \text { Ly } \\ \left(\text { in. }{ }^{2}\right) \end{gathered}$	$\begin{gathered} L y^{2} \\ \left(\text { in. }{ }^{3}\right) \end{gathered}$	$\begin{gathered} I^{\prime} \\ \text { About } \\ \text { Own } \\ \text { Axis } \\ \left(\text { in. }{ }^{3}\right. \text {) } \end{gathered}$
1	$2 \times 1.347=2.694$	2.933	7.902	23.175	--
2	$2 \times 0.400=0.800$	2.839	2.271	6.448	--
3	$2 \times 2.354=4.708$	1.500	7.062	10.593	2.174
4	$2 \times 0.400=0.800$	0.161	0.129	0.021	--
5	3.854	0.068	0.262	0.018	--
Sum	12.856		17.626	40.255	2.174

The distance from the top fiber to the neutral axis is

$$
\begin{aligned}
& y_{\mathrm{cg}}=\mathrm{Ly} / \mathrm{L}=17.626 / 12.856=1.371 \mathrm{in} . \\
& \left(3.000-\mathrm{y}_{\mathrm{cg}}\right) / \mathrm{y}_{\mathrm{cg}}=(3.0-1.371) / 1.371=1.188 \\
& 1.188 \mathrm{xF} \mathrm{yc}_{\mathrm{yc}}=33.264 \mathrm{ksi}>\mathrm{F}_{\mathrm{yt}}=30 \mathrm{ksi} \mathrm{NG} \\
& \left(\mathrm{~F}_{\mathrm{yt}}\right. \text { is the yield strength in longitudinal tension, see Table A1 } \\
& \text { of the Standard.) }
\end{aligned}
$$

Since the computed stress in tension flange is larger than the specified yield strength, $\mathrm{F}_{\mathrm{yt}}=30 \mathrm{ksi}$, the compression stress of $F_{y c}$ will not govern as assumed. The actual
compressive stress will be less than $F_{y c}$ and so the
flange will still be fully effective. The tension flange
will yield first. Section properties will not change.
Therefore,

$$
\begin{aligned}
I_{x}^{\prime} & =L y^{2}+I_{1}^{\prime}-L y_{c g}^{2} \\
& =40.255+2.174-12.856(1.371)^{2} \\
& =18.26 \text { in. }
\end{aligned}
$$

$$
\begin{aligned}
\text { Actual } I_{x} & =t I_{x}^{\prime} \\
& =(0.135)(18.26)=2.47 \text { in. }{ }^{4}
\end{aligned}
$$

Check Web

Assume a stress of $f=30 \mathrm{ksi}$ at the bottom of tension fiber.

$$
\begin{aligned}
\mathrm{f}_{1} & =(1.048 / 1.629)(30)=19.30 \mathrm{ksi}(\text { compression }) \\
\mathrm{f}_{2} & =-(1.306 / 1.629)(30)=-24.05 \mathrm{ksi}(\text { tension }) \\
\Psi & =f_{2} / \mathrm{f}_{1}=-24.05 / 19.30=-1.246 \\
\mathbf{k} & =4+2(1-\Psi)^{3}+2(1-\Psi) \\
& =4+2[1-(-1.246)]^{3}+2[1-(-1.246)] \\
& =31.15
\end{aligned}
$$

(Eq. 2.2.2-4)
$\lambda=(1.052 / \sqrt{k})(w / t) \sqrt{f / E_{0}}, \quad f=f_{1}$
(Eq. 2.2.1-4)
For annealed Type 301 stainless steel, E_{o} value is equal to
28000 ksi , which is given in Table A4 of the Standard.
$\lambda=(1.052 / \sqrt{31.15})(17.44) \sqrt{19.30 / 28000}=0.086<0.673$
$\mathrm{b} \quad=\boldsymbol{w}$
(Eq. 2.2.1-1)
$b_{e}=2.354 \mathrm{in}$.
$b_{2}=b_{e} / 2$
(Eq. 2.2.2-2)
$=2.354 / 2=1.177 \mathrm{in}$.

$$
\begin{aligned}
& \mathrm{b}_{1}= \mathrm{b}_{\mathrm{e}} /(3-\Psi) \\
&= 2.354 /[3-(-1.246)]=0.554 \mathrm{in} . \\
& \mathrm{b}_{1}+\mathrm{b}_{2}= 0.554+1.177=1.731 \mathrm{in} .>1.048 \mathrm{in} . \text { (compression } \\
& \text { portion of web, see the sketch shown above) } \\
& \text { Therefore, web is fully effective. } \\
& \mathrm{S}_{\mathrm{e}}= \mathrm{I}_{\mathrm{x}} /\left(\mathrm{d}-\mathrm{y}_{\mathrm{cg}}\right)=2.47 /(3-1.371)=1.516 \text { in. }{ }^{3} \\
& \mathrm{M}_{\mathrm{n}}= \mathrm{S}_{\mathrm{e}} \mathrm{~F}_{\mathrm{y}} \\
&=(1.516)(30) \\
&= 45.48 \mathrm{kips}-\mathrm{in} .
\end{aligned}
$$

b. Procedure II - Based on Inelastic Reserve Capacity

$$
\begin{aligned}
& \lambda_{1}=\left(1.11 / \sqrt{F_{y c} / E_{o}}\right) \\
&=(1.11 / \sqrt{28 / 28000})=35.10 \\
& \lambda_{2}=\left(1.28 / \sqrt{F_{y c} / E_{o}}\right) \\
&=(1.28 / \sqrt{28 / 28000})=40.48 \\
& w / t=28.55 \\
& \text { For } w / t<\lambda_{1}=35.10 \\
& C_{y}=3.0
\end{aligned}
$$

Compute location of e_{y} on strain diagram, the summation of longitudinal forces should be zero.

Refer to equations from Reck, Pekoz, and Winter, "Inelastic Strength of Cold-Formed Steel Beams," Journal of the Structural Division, November 1975, ASCE.

Distance from neutral axis to the outer compression fiber, y_{c} : $\mathrm{t}=0.135 \mathrm{in}$.

$$
\begin{aligned}
b_{t} & =2(1.670)=3.340 \mathrm{in} . \\
b_{c} & =4.500 \mathrm{in} . \\
d & =3.000 \mathrm{in} . \\
y_{c} & =(1 / 4)\left(b_{t}-b_{c}+2 d\right) \\
& =(1 / 4)[3.340-4.500+2(3.000)]=1.210 \mathrm{in} . \\
y_{p} & =y_{c} / c_{y} \\
& =1.21 / 3.0=0.403 \mathrm{in} . \\
y_{t} & =d-y_{c} \\
& =3.000-1.210=1.790 \mathrm{in} . \\
y_{c p} & =y_{c}-y_{p} \\
& =1.210-0.403=0.807 \mathrm{in} . \\
y_{t p} & =y_{t}-y_{p} \\
& =1.790-0.403=1.387 \mathrm{in} .
\end{aligned}
$$

Summing moments of stresses in component plates:

$$
\begin{aligned}
M_{n}= & F_{y} t\left\{b_{c} y_{c}+2 y_{c p}\left[y_{p}+\left(y_{c p} / 2\right)\right]+(4 / 3) y_{p}^{2}\right. \\
& \left.+2 y_{t p}\left[y_{p}+\left(y_{t p} / 2\right)\right]+b_{t} y_{t}\right\}
\end{aligned}
$$

$$
M_{n}=28(0.135)\{4.500(1.210)+2(0.807)[0.403+(0.807 / 2)]
$$

$$
\begin{aligned}
& \quad+(4 / 3)(0.403)^{2}+2(1.387) 0.403+(1.387 / 2)+3.340(1.790) \\
& M_{n}=60.42 \text { kips-in. } \\
& M_{n} \text { shall not exceed } 1.25 S_{e} F_{y}=1.25(45.48)=56.85 \mathrm{kips}-\mathrm{in} . \\
& \text { Therefore, } \\
& M_{n}=1.25 S_{e} F_{y}=56.85 \text { kips-in. }
\end{aligned}
$$

The inelastic reserve capacity is used in this example because the following conditions are met: (Section 3.3.1.1(2))

1) Member is not subject to twisting, lateral, torsional, or torsional-flexural buckling.
2) The effect of cold-forming is not included in determining the yield point, F_{y}.
3) The ratio of depth of the compressed portion of the web to its thickness does not exceed λ_{1}, $(1.210-0.323) / 0.135=6.57<\lambda_{1}=35.10 \mathrm{OK}$
4) The shear force does not exceed $0.35 F_{y}$ times the web area, $h \mathrm{x}$ t.

This still needs to be checked for a complete design.
5) The angle between any web and the vertical does not exceed 30°.
3. Design Flexural Strength, $\Phi_{b} M_{n}$

$$
\begin{aligned}
& \Phi_{b}=0.90 \text { (for section with stiffened compression flanges) } \\
& \Phi_{b} M_{n}=0.90 \times 56.85=51.17 \mathrm{kips}-\mathrm{in} .
\end{aligned}
$$

Rework Example 10.1 by using the Allowable Stress Design (ASD) method.

Solution:
Calculation of the allowable moment, M_{a} :
The effective section properties calculated by the ASD method are the same as those determined in Example 10.1 for the LRFD method. Therefore, the allowable moment can be determined in accordance with Appendix E of the Standard as follows:
$M_{a}=M_{n} / \Omega$
$\Omega=1.85$ (Safety Factor stipulated in Table E of the Standard) The nominal section strength based on inelastic reserve capacity is as follows:
$M_{n}=56.85 \mathrm{kips}-\mathrm{in}$. (obtained from Example 10.1)
$M_{a}=M_{n} / \Omega$
$M_{a}=56.85 / 1.85$ $=30.73 \mathrm{kips}-\mathrm{in}$.

By using the Load and Resistance Factor Design (LRFD) method, determine the design flexural strength, $\Phi_{b} M_{n}$, based on initiation of yielding. Also determine the effective moment of inertia for deflection determination at the service moment. Compute the factored uniform load, w_{u}, as controlled either by bending or deflection. Use Type 201 stainless steel, 1/4-Hard. Assume dead load to live load ratio $D / L=1 / 5$ and $1.2 D+1.6 \mathrm{~L}$ governs the design.

Figure 11.1 Section for Example 11.1

Given:

1. Section: Deck section, as shown in sketch.
2. Deck is continuous over three $10^{\prime}-0^{\prime \prime}$ spans.
3. Deflection due to service live load is to be limited to $1 / 240$ of the span.

Corner Properties:

$$
\begin{aligned}
\theta & =75.96^{\circ} \\
R & =1 / 8^{\prime \prime} \\
r & =0.155^{\prime \prime} \\
a & =r \sin \left(90^{\circ}-75.96^{\circ}\right) \\
& =0.155^{\prime \prime} \sin 14.04^{\circ} \\
& =0.0376^{\prime \prime} \\
b & =t / 2+r-a \\
& =0.060^{\prime \prime} / 2+0.155^{\prime \prime}-0.0376^{\prime \prime} \\
& =0.147^{\prime \prime}
\end{aligned}
$$

$$
\begin{aligned}
b^{\prime} & =b-t / 2 \\
& =0.147^{\prime \prime}-0.060^{\prime \prime} / 2 \\
& =0.117^{\prime \prime} \\
b^{\prime} / b^{\prime \prime} & =\cos \left(90^{\circ}-75.96^{\circ}\right) \\
b^{\prime \prime} & =b^{\prime} / \cos 14.04^{\circ} \\
& =0.117^{\prime \prime} / \cos 14.04^{\circ} \\
& =0.121^{\prime \prime}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{h}^{\prime}= & 4.000^{\prime \prime} / \cos 14.04^{\circ} \\
= & 4.123^{\prime \prime} \\
\mathrm{h}= & \mathrm{h}^{\prime}-2 \mathrm{~b}^{\prime \prime}-\mathrm{t} / \cos 14.04^{\circ} \\
= & 4.123^{\prime \prime}-2\left(0.121^{\prime \prime}\right) \\
& -0.06^{\prime \prime} / \cos 14.04^{\circ} \\
= & 3.819^{\prime \prime}
\end{aligned}
$$

Solution:

1. Full Section Properties:

Elements 2 and 6:
Corner Radius, $r=R+t / 2=1 / 8+0.060 / 2=0.155 \mathrm{in}$.
Angle, $\theta=75.96^{\circ}=1.326 \mathrm{rad}$
Length of arc, $u=\theta r=1.326(0.155)=0.206 \mathrm{in}$.
Distance of c.g. from center of radius,
$c_{1}=r \sin \theta / \theta=0.155(\sin 1.326) / 1.326=0.113 \mathrm{in}$.
The moment of inertia, $I^{\prime}{ }_{1}$, of arc element about its own centroidal axis is negligible.

Element 3:
$1=3.819 \mathrm{in}$.
$\theta=14.04^{\circ}$

```
\(\cos \theta=0.9701\)
\(I_{1}^{\prime}=\left(\cos ^{2} \theta 1^{3}\right) / 12=\left[(0.9701)^{2}(3.819)^{3}\right] / 12=4.368\) in. \({ }^{3}\)
```


Element 7:

$1=1.000 \mathrm{in}$.
$\theta=14.04^{\circ}$
$\cos \theta=0.9701$
$I_{1}^{\prime}=\left(\cos ^{2} \theta 1^{3}\right) / 12=\left[(0.9701)^{2}(1)^{3}\right] / 12=0.0784 \mathrm{in} .^{3}$
Distance from top fiber to the centroid of full section is $y=4-0.147-(1.000 / 2) \cos 14.04^{\circ}=3.368 \mathrm{in}$.
2. Section Modulus for Load Determination - Based on Initiation of Yielding

Since the effective design width of flat compressive elements is a function of stress, iteration is required.

Computation of I_{x}, S_{e}, and M_{n} for the first approximation:

* Assume a compressive stress of $f=F_{y}=50 \mathrm{ksi}$ in the top fiber of the section. (See Table A1 of the Standard for F_{y} value.)
* Assume web is fully effective.

Element 3:

$h / t=3.819 / 0.060=63.65<2000 K$ (Section 2.1.2-(1))
Assumed fully effective

Element 4:

```
    \(w / t=2.000 / 0.060=33.33<400\) OK (Section 2.1.1-(1)-(ii))
    \(\mathbf{k}=4\)
```

$\lambda=(1.052 / \sqrt{k})(W / t) \sqrt{f / E_{o}}, f=F_{y}$
(Eq. 2.2.1-4)
From Table $A 4$ of the Standard, E_{o} value is equal to 27000 ksi in
longitudinal compression for Type 201, 1/4-Hard, stainless steel.
$\lambda=(1.052 / \sqrt{4})(33.33) \sqrt{50 / 27000}=0.754>0.673$
$\rho=(1-0.22 / \lambda) / \lambda$
(Eq. 2.2.1-3)
$=(1-0.22 / 0.754) / 0.754=0.939$
b $=\rho w$
(Eq. 2.2.1-2)
$=0.939 \times 2.000$
$=1.878 \mathrm{in}$.

Effective section properties about x-axis:

Element		y Distance from Top Fiber (in.)	$\begin{gathered} \text { Ly } \\ \left(\text { in. }^{2}\right) \end{gathered}$	$\begin{gathered} L y^{2} \\ \left(\text { in. }{ }^{3}\right) \end{gathered}$	$\begin{gathered} I^{\prime} \\ \text { About } \\ \text { Own } \\ \text { Axis } \\ \left(\text { in. }{ }^{3}\right) \end{gathered}$
1	1.000	3.970	3.970	15.761	--
2	$5 \times 0.206=1.030$	3.928	4.046	15.892	--
3	$4 \times 3.819=15.276$	2.000	30.552	61.104	17.472
4	$2 \times 1.878=3.756$	0.030	0.113	0.003	--
$5 \& 8$	$2 \times 2.000=4.000$	3.970	15.880	63.044	--
6	$4 \times 0.206=0.824$	0.072	0.059	0.004	--
7	1.000	3.368	3.368	11.343	0.078
Sum	26.886		57.988	167.151	17.550

The distance from the top fiber to the neutral axis is

$$
y_{c g}=\mathrm{Ly} / \mathrm{L}=57.988 / 26.886=2.157 \mathrm{in} .
$$

Since the distance from the top compression fiber to the neutral axis is greater than one half of the deck depth,
a compressive stress of F_{y} will govern as assumed.

$$
\begin{aligned}
I_{x}^{\prime} \quad & =L y^{2}+I_{1}^{\prime}-L y_{c g}^{2} \\
& =167.151+17.550-26.886(2.157)^{2} \\
& =59.61 \mathrm{in} .{ }^{3}
\end{aligned}
$$

Actual $I_{x}=t I^{\prime}{ }_{x}$
$=(0.060)(59.61)=3.58 \mathrm{in} .{ }^{4}$

Check Web

$\mathrm{f}_{1}=(2.010 / 2.157)(50)=46.59 \mathrm{ksi}($ compression $)$
$\mathrm{f}_{2}=-(1.696 / 2.157)(50)=-39.31 \mathrm{ksi}($ tension $)$
$\psi \quad=\mathrm{f}_{2} / \mathrm{f}_{1}=-39.31 / 46.59=-0.844$
$\mathrm{k}=4+2(1-\Psi)^{3}+2(1-\Psi)$
(Eq. 2.2.2-4)
$=4+2[1-(-0.844)]^{3}+2[1-(-0.844)]$
$=20.23$
$\lambda \quad=(1.052 / \sqrt{k})(w / t) \sqrt{f / E_{O}}, f=f_{1}$
(Eq. 2.2.1-4)
$=(1.052 / \sqrt{20.23})(63.65) \sqrt{46.59 / 27000}=0.618<0.673$
b $=\mathrm{w}$
(Eq. 2.2.1-1)
$\mathrm{b}_{\mathrm{e}}=3.819 \mathrm{in}$.
$b_{2}=b_{e} / 2$

```
            \(=3.819 / 2=1.910 \mathrm{in}\).
                    \(b_{1}=b_{e} /(3-\Psi)\)
                            \(=3.819 /[3-(-0.844)]=0.993 \mathrm{in}\).
\(b_{1}+b_{2}=0.993+1.910=2.903 \mathrm{in} .>2.002 \mathrm{in}\). (compression
            portion of web, see the sketch shown above.)
Therefore, web is fully effective.
\[
\begin{align*}
S_{e} & =I_{x} / y_{c g} \\
& =3.58 / 2.157 \\
& =1.66 \mathrm{in} .^{3} \\
M_{n} & =S_{e^{\prime}} F_{y}  \tag{Eq.3.3.1.1-1}\\
& =(1.66)(50) \\
& =83.0 \mathrm{kips}-\mathrm{in} .
\end{align*}
\]
\[
\Phi_{\mathrm{b}} \quad=0.90 \text { (for section with stiffened compression flanges) }
\]
\[
\Phi_{b} M_{n}=0.90 \times 83.0=74.7 \text { kips-in. }
\]
```

3. Moment of Inertia for Deflection Determination - Positive Bending

The unfactored loads are used to determine the section properties for deflection determination. For a load combination of 1.2D+1.6L, the service moment can be determined as follows:

$$
\begin{aligned}
\Phi_{b} M_{\mathrm{n}} & =1.2 \mathrm{M}_{\mathrm{DL}}+1.6 \mathrm{M}_{\mathrm{LL}} \\
& =\left[1.2\left(\mathrm{M}_{\mathrm{DL}} / \mathrm{M}_{\mathrm{LL}}\right)+1.6\right] \mathrm{M}_{\mathrm{LL}} \\
& =[1.2(1 / 5)+1.6] \mathrm{M}_{\mathrm{LL}} \\
& =1.84 \mathrm{M}_{\mathrm{LL}} \\
M_{L L} & =\Phi_{\mathrm{b}} \mathrm{M}_{\mathrm{n}} / 1.84=74.70 / 1.84=40.60 \mathrm{kips}-\mathrm{in} . \\
M_{s} & =M_{D L}+M_{L L}
\end{aligned}
$$

$$
\begin{aligned}
& =(1 / 5+1) M_{L L} \\
& =1.2(40.60)=48.72 \mathrm{kips}-\mathrm{in} .
\end{aligned}
$$

where
$M_{D L}=$ Moment determined on the basis of nominal dead load
$M_{L L}=$ Moment determined on the basis of nominal live load

Computation of $I_{\text {eff }}$ for the first approximation:

* Assume a stress of $f=28.66 \mathrm{ksi}$ in the top and bottom fibers of the section.
* Since the web was fully effective at a higher stress gradient, it will be fully effective at this stress level.

Element 4:

$$
w / t=33.33
$$

$$
k=4
$$

For deflection determination, the value of E_{r}, reduced modulus of elasticity determined by using Eq. (2.2.1-7), is substituted for E_{o} in Eq. (2.2.1-4). For a compression and tension stresses of $f=28.66 \mathrm{ksi}$, the corresponding $E_{S C}$ and $E_{S t}$ values for Type 201 stainless steel are obtained from Table A2 or Figure A1 of the Standard as follows:

$$
E_{s c}=23550 \mathrm{ksi}, \quad E_{s t}=26970 \mathrm{ksi}
$$

$$
\begin{equation*}
E_{r}=\left(E_{s c}+E_{s t}\right) / 2 \tag{Eq.2.2.1-7}
\end{equation*}
$$

$$
=(23550+26970) / 2=25260 \mathrm{ksi}
$$

Thus, for compression flange (Element 4):

$$
\begin{aligned}
\lambda & =(1.052 / \sqrt{k})(\omega / \mathrm{t}) \sqrt{\mathrm{f} / \mathrm{E}_{r}} \\
& =(1.052 / \sqrt{4})(33.33) \sqrt{28.66 / 25260}=0.591<0.673
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{b}_{\mathrm{d}} & =\mathrm{w} \\
& =2.000 \text { in. (Fully effective) }
\end{aligned}
$$

(Eq. 2.2.1-5)

Note: All elements are fully effective.

Effective section properties about x-axis:

Element		```y Distance from Top Fiber (in.)```	$\begin{gathered} \text { Ly } \\ \left(\text { in. }^{2}\right) \end{gathered}$	$\begin{gathered} L y^{2} \\ \left(\text { in. }{ }^{3}\right) \end{gathered}$	$\begin{gathered} I^{\prime} \\ \text { About } \\ \text { Own } \\ \text { Axis } \\ \text { (in. }{ }^{3} \text {) } \end{gathered}$
1	1.000	3.970	3.970	15.761	--
2	$5 \times 0.206=1.030$	3.928	4.046	15.892	--
3	$4 \times 3.819=15.276$	2.000	30.552	61.104	17.472
4	$2 \times 2.000=4.000$	0.030	0.120	0.004	--
$5 \& 8$	$2 \times 2.000=4.000$	3.970	15.880	63.044	--
6	$4 \times 0.206=0.824$	0.072	0.059	0.004	--
7	1.000	3.368	3.368	11.343	0.078
Sum	27.130		57.995	167.152	17.550

The distance from the top fiber to the neutral axis is

$$
y_{c g}=L y / L=57.995 / 27.130=2.138 \mathrm{in} .
$$

Since the distance from the top compression fiber to the neutral axis is greater than one half the deck depth, the compressive stress of 28.66 ksi will govern as assumed.

$$
\begin{aligned}
I_{\text {eff }}^{\prime} & =L y^{2}+I_{1}^{\prime}-{L y_{c g}^{2}} \\
& =167.152+17.550-27.130(2.138)^{2} \\
& =60.69 \text { in. } .^{3}
\end{aligned}
$$

$$
\text { Actual } I_{e f f}=t I_{e f f}^{\prime}
$$

$$
=(0.060)(60.69)=3.64 \text { in. }{ }^{4}
$$

$$
\begin{aligned}
\mathrm{S}_{\mathrm{eff}} & =\mathrm{I}_{\mathrm{eff}} / \mathrm{y}_{\mathrm{cg}}=3.64 / 2.138=1.70 \mathrm{in.}^{3} \\
& =\mathrm{S}_{\mathrm{eff}}(28.66) \\
& =(1.70)(28.66) \\
& =48.72 \mathrm{kips}-\mathrm{in} .=\mathrm{M}_{\mathrm{s}} \text { OK }
\end{aligned}
$$

Thus, use $I_{\text {eff }}=3.64$ in. ${ }^{4}$ for deflection calculations.
4. Section Modulus for Load Determination - Negative Bending (Based on Initiation of Yielding)

Following a similar procedure as in positive bending.
Computation of I_{x}, S_{e} and M_{n} for the first approximation:

* Assume a compressive stress of $f=F_{y}=50 \mathrm{ksi}$ in the
bottom fiber of the section.
* Assume web is fully effective.

Element 3:
$\mathrm{h} / \mathrm{t}=3.819 / 0.060=63.65<200 \mathrm{OK}$ (Section 2.1.2-(1))
Assumed fully effective

Element 1:
$w / t=1.000 / 0.060=16.67<500 \mathrm{~K}$ (Section 2.1.1-(1)-(iii))
$\mathrm{k}=0.50$
$\lambda=(1.052 / \sqrt{0.50})(16.67) \sqrt{50 / 27000}=1.067>0.673$
$\rho=(1-0.22 / \lambda) / \lambda$
(Eq. 2.2.1-3)
$=(1-0.22 / 1.067) / 1.067=0.744$
b $=\rho w$
(Eq. 2.2.1-2)
$=0.744 \times 1.000$
$=0.744 \mathrm{in}$.

Element 5:

Same as element 4 in positive bending case.
$\mathrm{b}=1.878 \mathrm{in}$.

Element 8:

$$
\begin{aligned}
& \mathrm{w} / \mathrm{t}
\end{aligned}=2.000 / 0.060=33.33<50 \text { OK (Section 2.1.1-(1)-(iii)) } \begin{aligned}
& \mathrm{S}=1.28 \sqrt{\mathrm{E}_{\mathrm{o}} / \mathrm{f}} \\
&=1.28 \sqrt{27000 / 50}=29.74 \\
& \text { For } w / t>S
\end{aligned}
$$

$$
I_{a}=t^{4}\{[115(w / t) / s]+5\}
$$

$$
=(0.060)^{4}\{[115(33.33) / 29.74]+5\}
$$

$$
=0.00174 \mathrm{in} .4
$$

$$
I_{s}=d^{3} t \sin ^{2} \theta / 12
$$

$$
=(1.000)^{3}(0.060)\left(\sin 75.96^{\circ}\right)^{2} / 12=0.00471 \text { in. }{ }^{4}
$$

$$
\mathrm{D}=1.000+0.185 \tan \left(75.96^{\circ} / 2\right)=1.144 \mathrm{in} .
$$

$$
D / w=1.144 / 2.000=0.572
$$

For $0.25<\mathrm{D} / \mathrm{w}<0.80$

$$
\begin{aligned}
& \mathrm{k}=[4.82-5(\mathrm{D} / \mathrm{w})]\left(\mathrm{I}_{\mathrm{s}} / \mathrm{I}_{\mathrm{a}}\right)^{1 / 3}+0.43 \leq 5.25-5(\mathrm{D} / \mathrm{w}) \\
& {[4.82-5(0.572)](0.00471 / 0.00174)^{1 / 3}+0.43=3.162} \\
& 5.25-5(0.572)=2.390<3.162 \\
& \mathrm{k}=2.390 \\
& \lambda=(1.052 / \sqrt{2.390})(33.33) \sqrt{50 / 27000}=0.976>0.673 \\
& \rho=(1-0.22 / \lambda) / \lambda \\
& \text { (Eq. 2.2.1-3) } \\
& =(1-0.22 / 0.976) / 0.976=0.794 \\
& \text { b }=\rho w \\
& \text { (Eq. 2.2.1-2) } \\
& =0.794(2.000)=1.588 \mathrm{in} .
\end{aligned}
$$

Element 7:

$$
\begin{aligned}
& \mathrm{I}_{\mathrm{s}}=0.00471 \mathrm{in} .^{4} \text { (calculated previously) } \\
& \mathrm{I}_{\mathrm{a}}=0.00174 \mathrm{in} .^{4} \text { (calculated previously) } \\
& \mathrm{d} \quad=1.000 \mathrm{in} .
\end{aligned}
$$

Assume a maximum stress in element, $f=F_{y}=50 \mathrm{ksi}$, although it will be actually less.

$$
\mathrm{k}=0.50
$$

$$
w / t=1.000 / 0.060=16.67<50 \text { OK (Section 2.1.1-(1)-(iii)) }
$$

$$
\lambda=(1.052 / \sqrt{k})(w / t) \sqrt{f / E_{O}}
$$

$$
=(1.052 / \sqrt{0.50})(16.67) \sqrt{50 / 27000}=1.067>0.673
$$

$$
\rho=(1-0.22 / \lambda) / \lambda
$$

(Eq. 2.2.1-3)

$$
=(1-0.22 / 1.067) / 1.067=0.744
$$

b $=\rho w$
(Eq. 2.2.1-2)

$$
=0.744(1.000)=0.744 \mathrm{in} .
$$

$$
\mathrm{d}_{\mathrm{s}}^{\prime}=0.744 \mathrm{in}
$$

$$
\begin{equation*}
d_{s}=d_{s}^{\prime}\left(I_{s} / I_{a}\right) \leq d_{s}^{\prime} \tag{Eq.2.4.2-11}
\end{equation*}
$$

Since $I_{s} / I_{a}>1$

$$
\begin{aligned}
& d_{s}=d_{s}^{\prime}=0.744 \mathrm{in} . \\
& I_{1}^{\prime}=\left(d_{s}\right)^{3} \sin ^{2} \theta / 12=(0.744)^{3}\left(\sin 75.96^{\circ}\right)^{2} / 12=0.032 \mathrm{in.}^{3}
\end{aligned}
$$

The distance from top fiber to the centroid of the reduced section is $y=4-0.147-(0.744 / 2) \cos 14.04^{\circ}=3.492 \mathrm{in}$.

Effective section properties about x-axis:

Element	```L (in.)```	```y Distance from Top Fiber (in.)```	$\underset{(\mathrm{Ly}}{\left.\mathrm{in}^{2}\right)}$	$\begin{aligned} & \mathrm{Ly}^{2} \\ & \left(\mathrm{in} .^{3}\right) \end{aligned}$	$\mathrm{I}^{\prime} 1$ About Own Axis (in. ${ }^{3}$)
1	0.744	3.970	2.954	11.726	--
2	$5 \times 0.206=1.030$	3.928	4.046	15.892	--
3	$4 \times 3.819=15.276$	2.000	30.552	61.104	17.472
4	$2 \times 2.000=4.000$	0.030	0.120	0.004	--
5	1.878	3.970	7.456	29.599	--
6	$4 \times 0.206=0.824$	0.072	0.059	0.004	--
7	0.744	3.492	2.598	9.072	0.020
8	1.588	3.970	6.304	25.028	
Sum	26.084		54.089	152.429	17.504

The distance from top fiber to the neutral axis is (see sketch below)

$$
y_{c g}=L y / L=54.089 / 26.084=2.074 \mathrm{in} .
$$

The corresponding tension stress can be computed as follows:

$$
\begin{aligned}
& y_{c g} /\left(4.00-y_{c g}\right)=2.074 /(4.00-2.074)=1.077 \\
& 1.077 \mathrm{xF}_{\mathrm{yc}}=1.077 \times 50=53.85 \mathrm{ksi}<\mathrm{F}_{\mathrm{yt}}=75 \mathrm{ksi} \mathrm{OK}
\end{aligned}
$$

Because the distance of the top fiber from the neutral axis is greater than one half the deck depth, and also because the computed tension stress is less than the specified value, the compressive stress of $f=F_{y}$ will govern as assumed.

$$
\begin{aligned}
f_{t} & =(2.074 / 1.926)(50) \\
& =53.85 \mathrm{ksi}<F_{y t} 0 K
\end{aligned}
$$

Check Web:

$$
\begin{align*}
& f_{1}=(1.779 / 1.926)(50)=46.18 \mathrm{ksi}(\text { compression }) \\
& f_{2}=-(1.927 / 1.926)(50)=-50.03 \mathrm{ksi}(\text { tension }) \\
& \Psi \quad=\mathrm{f}_{2} / \mathrm{f}_{1}=-50.03 / 46.18=-1.083 \\
& k=4+2(1-\Psi)^{3}+2(1-\Psi) \\
& \text { (Eq. 2.2.2-4) } \\
& =4+2[1-(-1.083)]^{3}+2[1-(-1.083)] \\
& =26.24 \\
& \lambda=(1.052 / \sqrt{k})(w / t) \sqrt{f / E_{0}}, \quad f=f_{1} \\
& \text { (Eq. 2.2.1-4) } \\
& =(1.052 / \sqrt{26.24})(63.65) \sqrt{46.18 / 27000}=0.541<0.673 \\
& \text { b } \quad=w \\
& \text { (Eq. 2.2.1-1) } \\
& b_{e}=3.819 \mathrm{in} . \\
& b_{2}=b_{e} / 2 \tag{Eq.2.2.2-2}\\
& =3.819 / 2=1.910 \mathrm{in} \text {. } \\
& b_{1}=b_{e} /(3-\Psi) \tag{Eq.2.2.2-1}\\
& =3.819 /[3-(-1.083)]=0.935 \mathrm{in} . \\
& b_{1}+b_{2}=0.935+1.910=2.845 \mathrm{in} .>1.763 \mathrm{in} \text {. (compression } \\
& \text { portion of web, see sketch shown above) }
\end{align*}
$$

Therefore, web is fully effective.

Check Element 7:
Assume the maximum stress in element, $f=46.18 \mathrm{ksi}$

$$
\begin{aligned}
\mathrm{k} & =0.50 \\
\omega / \mathrm{t} & =16.67
\end{aligned}
$$

$$
\begin{align*}
& \lambda=(1.052 / \sqrt{k})(w / t) \sqrt{f / E_{0}} \\
& =(1.052 / \sqrt{0.50})(16.67) \sqrt{46.18 / 27000}=1.026>0.673 \\
& \rho=(1-0.22 / \lambda) / \lambda \\
& \text { (Eq. 2.2.1-4) } \\
& \text { (Eq. 2.2.1-3) } \\
& =(1-0.22 / 1.026) / 1.026=0.766 \\
& b=\rho w \\
& =0.766(1.000)=0.766 \mathrm{in} . \\
& \mathrm{d}^{\prime}{ }_{\mathrm{s}}=0.766 \mathrm{in} . \\
& d_{s}=d_{s}^{\prime}{ }_{s}\left(I_{s} / I_{a}\right) \leq d_{s}
\end{align*}
$$

Since $I_{s} / I_{a}>1$

$$
\begin{aligned}
& d_{s}=d_{s}^{\prime}=0.766 \mathrm{in} . \\
& I_{1}^{\prime}=\left(d_{s}\right)^{3} \sin ^{2} \theta / 12=(0.766)^{3}\left(\sin 75.96^{\circ}\right)^{2} / 12=0.035 \mathrm{in}^{3}
\end{aligned}
$$

The distance from top fiber to the centroid of the reduced section is

$$
y=4-0.147-(0.766 / 2) \cos 14.04^{\circ}=3.481 \mathrm{in}
$$

Determine section properties, but only the properties of element 7 have changed

$$
\begin{aligned}
& \Delta \mathrm{L}=0.766-0.744=0.022 \mathrm{in} . \\
& \Delta \mathrm{Ly}=(0.766)(3.481)-2.598=0.068 \mathrm{in} .^{2} \\
& \Delta \mathrm{~L} y^{2}=0.766(3.481)^{2}-9.072=0.210 \mathrm{in} .^{3} \\
& \Delta \mathrm{I}_{1}^{\prime}=0.035-0.032=0.003 \mathrm{in} .^{3}
\end{aligned}
$$

Therefore,
$\mathrm{L}=26.084+0.022=26.106 \mathrm{in}$.
$\mathrm{Ly}=54.089+0.068=54.097 \mathrm{in} .^{2}$

$$
\begin{aligned}
& L y^{2}=152.429+0.210=152.639 \mathrm{in.}^{3} \\
& \mathrm{I}_{1}^{\prime}=17.504+0.003=17.507 \mathrm{in}^{3}
\end{aligned}
$$

The distance from top fiber to the neutral axis is

$$
\begin{aligned}
\mathrm{y}_{\mathrm{cg}} & =\mathrm{Ly} / \mathrm{L}=54.097 / 26.106=2.072 \mathrm{in} . \\
\mathrm{f}_{\mathrm{t}} & =(2.072 / 1.928)(50)=53.73 \mathrm{ksi}<\mathrm{F}_{\mathrm{yt}}=75 \mathrm{ksi} \mathrm{OK} \\
\mathrm{I}_{\mathrm{x}}^{\prime} & =\mathrm{Ly}^{2}+\mathrm{I}_{1}^{\prime}-\mathrm{Ly}_{\mathrm{cg}} \\
& =152.639+17.507-26.106(2.072)^{2} \\
& =58.07 \mathrm{in.}^{3}
\end{aligned}
$$

Actual $I_{x}=t I^{\prime}{ }_{x}$

$$
=(0.060)(58.07)=3.48 \text { in. } .^{4}
$$

$$
\mathrm{S}_{\mathrm{e}} \quad=\mathrm{I}_{\mathrm{x}} /\left(4.00-\mathrm{y}_{\mathrm{cg}}\right)
$$

$$
=3.48 /(4.00-2.072)
$$

$$
=1.80 \mathrm{in.}^{3}
$$

$$
\begin{equation*}
M_{n} \quad=S_{e} F_{y} \tag{Eq.3.3.1.1-1}
\end{equation*}
$$

$$
=(1.80)(50)
$$

$$
=90.0 \text { kips-in. }
$$

$$
\Phi_{\mathrm{b}} \quad=0.85 \text { (for section with unstiffened compression flanges) }
$$

$$
\Phi_{b} M_{n} \quad=0.85 \times 90.0=76.5 \mathrm{kips}-\mathrm{in}
$$

5. Moment of Inertia for Deflection Determination - Negative Bending

The unfactored loads are used to determine the section properties for deflection determination. For a load combination of $1.2 \mathrm{D}+1.6 \mathrm{~L}$, the service moment can be determined as follows:

$$
\phi_{b} M_{n}=1.2 M_{D L}+1.6 M_{L L}
$$

$$
\begin{aligned}
& =\left[1.2\left(M_{D L} / M_{L L}\right)+1.6\right] M_{L L} \\
& =[1.2(1 / 5)+1.6] M_{L L} \\
& =1.84 M_{L L} \\
M_{L L} & =\Phi_{b} M_{n} / 1.84=76.50 / 1.84=41.58 \mathrm{kips}-\mathrm{in} . \\
M_{S} & =M_{D L}+M_{L L} \\
& =(1 / 5+1) M_{L L} \\
& =1.2(41.58)=49.90 \mathrm{kips}-\mathrm{in} .
\end{aligned}
$$

Computation of $I_{\text {eff }}$ for the first approximation:

* Assume a stress of $f=27 \mathrm{ksi}$ in the top and bottom fibers of the section.
* Since the web was fully effective at a higher stress gradient, it will be fully effective at this stress level.

Element 1:

$$
\begin{array}{ll}
w / t & =16.67 \\
\mathrm{k} & =0.50 \\
\lambda & =(1.052 / \sqrt{\mathrm{k}})(\omega / \mathrm{t}) \sqrt{\mathrm{f} / \mathrm{E}_{\mathrm{r}}}
\end{array}
$$

For a compression and tension stresses of $f=27 \mathrm{ksi}$, the values of E_{sc} and $E_{\text {st }}$ are equal to 24550 ksi and 27000 ksi , respectively.

$$
\begin{align*}
\mathrm{E}_{\mathrm{r}} & =(24550+27000) / 2 \\
& =25775 \mathrm{ksi} \\
\lambda & =(1.052 / \sqrt{0.50})(16.67) \sqrt{27 / 25775}=0.803>0.673 \\
\rho & =(1-0.22 / \lambda) / \lambda \tag{Eq.2.2.1-3}\\
& =(1-0.22 / 0.803) / 0.803=0.904 \\
\mathrm{~b} & =\rho w \tag{Eq.2.2.1-2}\\
& =0.904 \times 1.000
\end{align*}
$$

Element 5:

$$
\begin{aligned}
w / t & =33.33 \\
\mathbf{k} & =4 \\
\lambda & =(1.052 / \sqrt{\mathbf{k}})(\omega / t) \sqrt{f / \mathrm{E}_{\mathbf{r}}} \\
& =(1.052 / \sqrt{4})(33.33) \sqrt{27 / 25775}=0.567<0.673 \\
\mathrm{~b}_{\mathrm{d}} & =\omega \\
& =2.000 \text { (Fu1ly effective) }
\end{aligned}
$$

Element 8:

(Eq. 2.2.1-5)

```
\[
w / t=33.33
\]
\(=1.2827000 / 27=40.48\)
    \(w / t=33.33\)
\[
\begin{equation*}
\mathrm{S} \quad=1.28 \mathrm{E}_{0} / £ \tag{Eq.2.4-1}
\end{equation*}
\]
    \(S \quad=1.28 \mathrm{E}_{\mathrm{o}} / \mathrm{f}\)
    \(=1.2827000 / 27=40.48\)
For \(\mathrm{S} / 3<\mathrm{w} / \mathrm{t}<\mathrm{S}\),
    \(I_{a}=t^{4} 399\{[(w / t) / S]-0.33\}^{3}\)
                                    (Eq. 2.4.2-6)
            \(=(0.060)^{4}(399)[(33.33 / 40.48)-0.33]^{3}\)
            \(=0.000621\) in. \({ }^{4}\)
    \(I_{s}=0.00471\) in. \({ }^{4}\) (calculated previously)
\(I_{s} / I_{a}=0.00471 / 0.000621=7.58>1\)
D \(\quad=1.144\) in. (calculated previously)
\(D / w=0.572\) (calculated previously)
```

For $0.25<D / w<0.80$
$\mathrm{k}=[4.82-5(\mathrm{D} / \mathrm{w})]\left(\mathrm{I}_{\mathrm{s}} / \mathrm{I}_{\mathrm{a}}\right)^{1 / 2}+0.43 \leq 5.25-5(\mathrm{D} / \mathrm{w})$
(Eq. 2.4.2-9)
Since $\mathrm{I}_{\mathbf{s}} / \mathrm{I}_{\mathrm{a}}>1$
$\mathrm{k} \quad=5.25-5(\mathrm{D} / \mathrm{w})=5.25-5(0.572)=2.390$
$\lambda \quad=(1.052 / \sqrt{\mathrm{k}})(\omega / t) \sqrt{f / \mathrm{E}_{r}}$

$$
\begin{aligned}
\mathrm{E}_{\mathbf{r}} & =25775 \mathrm{ksi} \text { for a stress of } \mathrm{f}=27 \mathrm{ksi} . \\
\lambda & =(1.052 / \sqrt{2.390})(33.33) \sqrt{27 / 25775}=0.734>0.673 \\
\rho & =(1-0.22 / \lambda) / \lambda \\
& =(1-0.22 / 0.734) / 0.734=0.954 \\
\mathrm{~b} & =\rho w \\
& =0.954(2.000)=1.908 \mathrm{in} .
\end{aligned}
$$

(Eq. 2.2.1-3)

$$
(E q \cdot 2.2 .1-2)
$$

Element 7:
$I_{s} / I_{a}>1$

$$
\mathrm{d} \quad=1.000 \mathrm{in} .
$$

Assume the maximum stress in element, $f=27 \mathrm{ksi}$, although it will be actually less.

$$
\begin{aligned}
\mathbf{k} & =0.50 \\
w / t \quad & =16.67 \\
\lambda & =(1.052 / \sqrt{\mathrm{k}})(\mathrm{w} / \mathrm{t}) \sqrt{\mathrm{f} / \mathrm{E}_{\mathbf{r}}} \\
& =(1.052 / \sqrt{0.50})(16.67) \sqrt{27 / 25775}=0.803>0.673
\end{aligned}
$$

$$
\rho \quad=(1-0.22 / \lambda) / \lambda
$$

(Eq. 2.2.1-3)

$$
=(1-0.22 / 0.803) / 0.803=0.904
$$

$$
b \quad=\rho w
$$

$$
=0.904(1.000)=0.904 \mathrm{in} .
$$

$$
\mathrm{d}_{\mathrm{s}}^{\prime}=0.904 \mathrm{in} .
$$

$$
\begin{equation*}
d_{s} \quad=d_{s}^{\prime}\left(I_{s} / I_{a}\right) \leq d_{s}^{\prime} \tag{Eq.2.4.2-11}
\end{equation*}
$$

Since $I_{s} / I_{a}>1$
$d_{s} \quad=d_{s}=0.904 \mathrm{in}$.
$I_{1}^{\prime}=\left(d_{S}\right)^{3} \sin ^{2} \theta / 12=(0.904)^{3}\left(\sin 75.96^{\circ}\right)^{2} / 12=0.058$ in 3
The distance from top fiber to the centroid of the reduced section is $y=4-0.147-(0.904 / 2) \cos 14.04^{\circ}=3.415 \mathrm{in}$.

Effective section properties about x-axis:

Element	```L Effective Length (in.)```		$\begin{gathered} \mathrm{Ly} \\ \left(\mathrm{in} .^{2}\right) \end{gathered}$	$\begin{gathered} L y^{2} \\ \left(\operatorname{in} .^{3}\right) \end{gathered}$	$\begin{aligned} & I^{\prime} 1 \\ & \text { About } \\ & \text { Own } \\ & \text { Axis } \\ & \left(\text { in. }{ }^{3}\right) \end{aligned}$
1	0.904	3.970	3.589	14.248	--
2	$5 \times 0.206=1.030$	3.928	4.046	15.892	--
3	$4 \times 3.819=15.276$	2.000	30.552	61.104	17.472
4	$2 \times 2.000=4.000$	0.030	0.120	0.004	--
5	2.000	3.970	7.940	31.522	--
6	$4 \times 0.206=0.824$	0.072	0.059	0.004	--
7	0.904	3.415	3.087	10.542	0.058
8	1.908	3.970	7.575	30.072	--
Sum	26.846		56.968	163.388	17.530

The distance from top fiber to the neutral axis is

$$
\begin{aligned}
& y_{c g}=\mathrm{Ly} / \mathrm{L}=56.968 / 26.846=2.122 \mathrm{in} . \\
& I_{\text {eff }}^{\prime}=\mathrm{Ly}^{2}+\mathrm{I}_{1}^{\prime}-\mathrm{Ly}_{\mathrm{cg}} \\
&=163.388+17.530-26.846(2.122)^{2} \\
&=60.03 \mathrm{in.}^{3} \\
& \\
&=(0.060)(60.03)=3.60 \mathrm{in} .^{4} \\
&=I_{\text {eff }} /\left(\mathrm{d}-\mathrm{y}_{\mathrm{cg}}\right)=3.60 /(4-2.122)=1.92 \mathrm{in} .{ }^{3} \\
& S_{\text {eff }} \\
& M_{\text {eff }}=(1.92)(27)=51.84 \mathrm{ksi}>\mathrm{M}_{\mathrm{s}}=49.90 \mathrm{ksi} \mathrm{~N} . \mathrm{G} .
\end{aligned}
$$

Computation of $I_{\text {eff }}$ for the second approximation:

* Assume a stress of $f=25.85 \mathrm{ksi}$ in the top and bottom fibers of the section.

Element 1:

$$
\begin{aligned}
& w / t=16.67 \\
& k=0.50 \\
& \lambda=(1.052 / \sqrt{k})(w / t) \sqrt{f / E_{r}}
\end{aligned}
$$

For a compression and tension stresses of $f=25.85 \mathrm{ksi}$, the values of $E_{s c}$ and $E_{s t}$ are equal to 25180 ksi and 27000 ksi , respectively.

$$
\mathrm{E}_{\mathrm{r}} \quad=(25180+27000) / 2
$$

(Eq. 2.2.1-7)

$$
=26090 \mathrm{ksi}
$$

$$
\lambda=(1.052 / \sqrt{0.50})(16.67) \sqrt{25.85 / 26090}=0.781>0.673
$$

$$
\rho=(1-0.22 / \lambda) / \lambda
$$

(Eq. 2.2.1-3)

$$
=(1-0.22 / 0.781) / 0.781=0.920
$$

$\mathrm{b}=\rho \mathrm{w}$
(Eq. 2.2.1-2)
$=0.920 \times 1.000$
$=0.917 \mathrm{in}$.

Element 5:
Fully effective at $f=27 \mathrm{ksi}$
It will also be fully effective at $f=25.85 \mathrm{ksi}$
$b=2.000 \mathrm{in}$.

Element 8:

$$
\begin{aligned}
\mathrm{w} / \mathrm{t} & =33.33 \\
\mathrm{~S} & =1.28 \sqrt{E_{\mathrm{o}} / \mathrm{f}} \\
& =1.28 \sqrt{27000 / 25.85}=41.37
\end{aligned}
$$

(Eq. 2.4-1)

For $S / 3<w / t<S$,
$I_{s} / I_{a}>1$ by observation from the first approximation
$\mathrm{D} / \mathrm{w}=0.572$

```
Since \(I_{s} / I_{a}>1\)
    \(\mathrm{k}=2.390\)
    \(\lambda=(1.052 / \sqrt{\mathrm{k}})(\mathrm{w} / \mathrm{t}) \sqrt{\mathrm{f} / \mathrm{E}_{\mathrm{r}}}\)
        \(=(1.052 / \sqrt{2.390})(33.33) \sqrt{25.85 / 26090}=0.714>0.673\)
    \(\rho=(1-0.22 / \lambda) / \lambda\)
    \(=(1-0.22 / 0.714) / 0.714=0.969\)
    b \(=\rho \omega\)
    \(=0.969 \times 2.000\)
    \(=1.938 \mathrm{in}\).
```

 (Eq. 2.2.1-3)
 (Eq. 2.2.1-2)
 Element 7:
$\mathrm{I}_{\mathrm{s}} / \mathrm{I}_{a}>1$
$\mathrm{d}=1.000 \mathrm{in}$.
Assume a maximum stress in element, $f=25.85 \mathrm{ksi}$, although it will be actually less.
$k=0.50$
$w / t=16.67$
$\lambda=(1.052 / \sqrt{k})(\omega / t) \sqrt{f / E_{r}}$
$=(1.052 / \sqrt{0.50})(16.67) \sqrt{25.85 / 26090}=0.781>0.673$
$\rho=(1-0.22 / \lambda) / \lambda$
(Eq. 2.2.1-3)
$=(1-0.22 / 0.781) / 0.781=0.920$
$\mathrm{b} \quad=\rho \omega$
(Eq. 2.2.1-2)
$=0.920(1.000)=0.920 \mathrm{in}$.
$\mathrm{d}^{\prime}{ }_{\mathrm{s}}=0.920 \mathrm{in}$.
Since $\mathrm{I}_{\mathrm{s}} / \mathrm{I}_{a}>1$
$d_{s}=d_{s}^{\prime}=0.920 \mathrm{in}$.
$I_{1}^{\prime}=\left(d_{s}\right)^{3} \sin ^{2} \theta / 12=(0.920)^{3}\left(\sin 75.96^{\circ}\right)^{2} / 12=0.061$ in. ${ }^{3}$

The distance from top fiber to the centroid of the reduced section is $y=4-0.147-(0.920 / 2) \cos 14.04^{\circ}=3.407 \mathrm{in}$.

Effective section properties about x-axis:

Element	$\begin{gathered} \text { L } \\ \text { Effective Length } \\ \text { (in.) } \end{gathered}$	y Distance from Top Fiber (in.)	$\begin{gathered} \text { Ly } \\ \left(\text { in. }^{2}\right) \end{gathered}$	$\begin{gathered} L y^{2} \\ \left(\text { in. }{ }^{3}\right) \end{gathered}$	$\begin{gathered} I^{\prime} \\ \text { About } \\ \text { Own } \\ \text { Axis } \\ \text { (in. }{ }^{3} \text {) } \end{gathered}$
1	0.920	3.970	3.652	14.500	--
2	$5 \times 0.206=1.030$	3.928	4.046	15.892	--
3	$4 \times 3.819=15.276$	2.000	30.552	61.104	17.472
4	$2 \times 2.000=4.000$	0.030	0.120	0.004	--
5	2.000	3.970	7.940	31.522	--
6	$4 \times 0.206=0.824$	0.072	0.059	0.004	--
7	0.920	3.407	3.134	10.679	0.061
8	1.938	3.970	7.694	30.545	--
Sum	26.908		57.197	164.250	17.533

The distance from top fiber to the neutral axis is

$$
\begin{aligned}
& y_{c g} \quad=\mathrm{Ly} / \mathrm{L}=57.197 / 26.908=2.126 \mathrm{in} . \\
& I^{\prime}{ }_{\text {eff }} \quad=L y^{2}+I^{\prime}{ }_{1}-L y^{2}{ }_{c g} \\
& =164.250+17.533-26.908(2.126)^{2} \\
& =60.16 \text { in. }^{3} \\
& \text { Actual } I_{e f f}=t I^{\prime} \text { eff } \\
& =(0.060)(60.16)=3.61 \mathrm{in} .{ }^{4} \\
& S_{\text {eff }} \quad=I_{e f f} /\left(\mathrm{d}^{-y_{c g}}\right)=3.61 /(4-2.126)=1.93 \mathrm{in} .{ }^{3} \\
& M \quad=(1.93)(25.85)=49.90 \mathrm{kips}-\text { in. }=M_{s} \text { OK }
\end{aligned}
$$

$$
\begin{aligned}
\text { Positive Bending : } \phi_{b} M_{n} & =74.7 \mathrm{kips}-\mathrm{in} . \\
\mathrm{I}_{\text {eff }} & =3.64 \mathrm{in} .{ }^{4} \\
\text { Negative Bending : } \phi_{b} M_{n} & =76.5 \mathrm{kips}-\mathrm{in} . \\
\mathrm{I}_{\text {eff }} & =3.62 \mathrm{in}^{4}
\end{aligned}
$$

7. Compute Factored Uniform Load

For a continuous deck over three equal spans, the maximum bending moment is negative and occurs over the interior supports. It is given by:

$$
M_{u}=0.100 w_{u} L^{2}
$$

Therefore, the maximum factored uniform load is

$$
\begin{aligned}
& w_{u}=M_{u} / 0.100 \mathrm{~L}^{2}=76.5 / 0.100\left(10^{\prime} \times 12^{\prime \prime} / 1\right)^{2}=0.0531 \mathrm{kips} / \mathrm{in} . \\
& w_{u}=0.638 \mathrm{kips} / \mathrm{ft}
\end{aligned}
$$

The maximum deflection occurs at a distance of 0.446 L from the exterior supports. It is given by:

$$
\Delta=0.0069 w L^{4} / E_{0} I
$$

This deflection is limited to $\Delta=\mathrm{L} / 240$ for live load. Therefore, the maximum live load which will satisfy the deflection requirement is

$$
\begin{aligned}
w_{L L} & =E_{o} I /\left[240(0.0069) L^{3}\right]=27000(3.64) /\left[240(0.0069)(10 \times 12)^{3}\right] \\
& =0.0343 \mathrm{kips} / \mathrm{in} . \\
w_{\mathrm{LL}} & =0.412 \mathrm{kips} / \mathrm{ft} \\
w_{\mathrm{u}} & =1.2 w_{\mathrm{DL}}+1.6 \mathrm{w}_{\mathrm{LL}} \\
& =\left[1.2\left(\mathrm{w}_{\mathrm{DL}} / \mathrm{w}_{\mathrm{LL}}\right)+1.6\right] \mathrm{w}_{\mathrm{LL}} \\
& =[1.2(1 / 5)+1.6] \mathrm{w}_{\mathrm{LL}} \\
& =1.84 \mathrm{w}_{\mathrm{LL}}=1.84(0.412)=0.742 \mathrm{kips} / \mathrm{ft}>0.638 \mathrm{kips} / \mathrm{ft}
\end{aligned}
$$

Therefore, design flexural strength governs.

Factored Uniform Load $=0.638$ kips/ft.
8. Check Shear Strength (Section 3.3.2)

The required shear strength at any section shall not exceed the design shear strength $\phi_{\mathbf{v}} V_{n}$:

$$
\begin{align*}
\Phi_{v} & =0.85 \\
V_{\mathrm{n}} & =4.84 \mathrm{E}_{\mathrm{o}} \mathrm{t}^{3}\left(\mathrm{G}_{\mathrm{s}} / \mathrm{G}_{\mathrm{o}}\right) / \mathrm{h} \tag{Eq.3.3.2-1}\\
\mathrm{v}_{\mathrm{n}} & =\mathrm{V}_{\mathrm{n}} /(\mathrm{ht}) \\
& =4.84 \mathrm{E}_{\mathrm{o}}\left(\mathrm{G}_{\mathrm{s}} / \mathrm{G}_{\mathrm{o}}\right) /(\mathrm{h} / \mathrm{t})^{2}
\end{align*}
$$

(Eq, 3.3.2-1)

In the determination of the shear strength, it is necessary to select a proper value of G_{S} / G_{o} for the assumed stress from Table A12 or Figure A9 of the Standard. For the first approximation, assume a shear stress of $v=27 \mathrm{ksi}$ and the corresponding value of G_{s} / G_{0} is equal to 0.863 . Thus,

```
h/t = 3.819/0.060 = 63.65< 200 (Section 2.1.2 (1))
```

 \(v_{n}=4.84(27000)(0.863) /(63.65)^{2}\)
 \(=27.82 \mathrm{ksi}>\) assumed stress \(\mathrm{f}=27 \mathrm{ksi}\) NG
 For a second approximation, assume a stress of $f=27.59 \mathrm{ksi}$ and its corresponding value of G_{s} / G_{0} is 0.855 .

$$
\begin{aligned}
\mathrm{v}_{\mathrm{n}} & =4.84(27000)(0.855) /(63.65)^{2} \\
& =27.58 \mathrm{ksi}=\text { assumed stress } 0 \mathrm{~K}
\end{aligned}
$$

Therefore, the total shear strength, V_{n}, for hat section is

$$
\begin{aligned}
V_{n} & =4\left(v_{n}\right)(h t) \quad(a \text { total of } 4 \text { webs }) \\
& =4(27.58)(3.819 \times 0.060) \\
& =25.28 \mathrm{kips}
\end{aligned}
$$

The design shear strength is determined as follows:

$$
\begin{aligned}
& \phi_{\mathrm{V}} \mathrm{~V}_{\mathrm{n}}=0.85(25.28)=21.49 \text { kips } \\
& \phi_{\mathrm{V}} \mathrm{~V}_{\mathrm{n}}<4\left(0.95 \mathrm{~F}_{\mathrm{yv}} \mathrm{ht}\right)=4(0.95 \times 42 \times 3.819 \mathrm{x} 0.06)=36.57 \mathrm{kips} \text { OK } \\
& \text { (The shear yield strength, } F_{\mathrm{yv}} \text {, is obtained from Table A1 } \\
& \text { of the Standard.) }
\end{aligned}
$$

The maximum required shear strength is given by

$$
\begin{aligned}
\mathrm{V}_{\mathrm{u}} & =0.600 \mathrm{w}_{\mathrm{u}} \mathrm{~L} \\
& =(0.600)(0.638)(10)=3.83 \mathrm{kips}<\left(\Phi_{\mathrm{v}} \mathrm{~V}_{\mathrm{n}}\right)_{\mathrm{v}}=21.49 \mathrm{kips} O K
\end{aligned}
$$

9. Check Strength for Combined Bending and Shear (Section 3.3.3)

At the interior supports, there is a combination of web bending and web shear:

$$
\begin{aligned}
& \Phi_{b} M_{n}=76.5 \mathrm{kips}-\mathrm{in} . \quad M_{u}=0.100 w_{u} L^{2} \\
& \Phi_{v_{n}} V_{n}=21.49 \mathrm{kips} \quad V_{u}=0.600 w_{u} L
\end{aligned}
$$

For unreinforced webs

$$
\begin{equation*}
\left(M_{u} / \Phi_{b} M_{n}\right)^{2}+\left(V_{u} / \Phi_{V} V_{n}\right)^{2} \leq 1.0 \tag{Eq.3.3.3-1}
\end{equation*}
$$

Solve for w_{u} :

$$
\begin{aligned}
\left\{\left[0.100 w_{u}(10 \times 12)^{2}\right] / 76.5\right\}^{2}+\left\{\left[0.600 w_{u}(10 \times 12)\right] / 21.49\right\}^{2} & =1.0 \\
354.33 w_{u}^{2}+16.16 w_{u}^{2} & =1.0 \\
370.49 w_{u}^{2} & =1.0 \\
w_{u} & =0.0520 \mathrm{kips} / \mathrm{in} \\
& =0.624 \mathrm{kips} / \mathrm{ft}
\end{aligned}
$$

Factored Uniform Load $=0.627 \mathrm{kip} / \mathrm{ft}$ is determined for the case of combined bending and shear.
10. Check Web Crippling Strength (Section 3.3.4)

```
h = 3.819 in.
t = 0.060 in.
h/t = 3.819/0.06 = 63.65< 200 OK
R = 1/8 in.
R/t = 0.125/0.06 = 2.083<7 OK
```

Let $\mathrm{N}=6 \mathrm{in}$.
$\mathrm{N} / \mathrm{t}=6 / 0.06=100<210 \mathrm{OK}$
$\mathrm{N} / \mathrm{h}=6 / 3.819=1.57<3.50 \mathrm{~K}$

Table 2 of the Standard is used to check the web crippling requirements. For end reactions, use Eq. (3.3.4-2). For interior reaction, use Eq. (3.3.4-4).

$$
C_{4}=0.838
$$

$$
\theta=75.96^{\circ}
$$

$$
C_{\theta}=0.7+0.3(\theta / 90)^{2}
$$

$$
=0.7+0.3(75.96 / 90)^{2}=0.914
$$

a) For end reaction:

$$
\begin{equation*}
P_{n}=t^{2} C_{3} C_{4} C_{\theta}[217-0.28(\mathrm{~h} / \mathrm{t})][1+0.01(\mathrm{~N} / \mathrm{t})] \tag{Eq.3.3.4-2}
\end{equation*}
$$

$$
\begin{aligned}
& \mathrm{k} \quad=\mathrm{F}_{\mathrm{y}} / 33=50 / 33=1.515 \\
& \text { (Eq. 3.3.4-21) } \\
& C_{1}=(1.22-0.22 \mathrm{k}) \mathrm{k} \\
& =[1.22-0.22(1.515)](1.515)=1.343 \\
& C_{2}=(1.06-0.06 R / t) \\
& =[1.06-0.06(2.083)]=0.935<1.00 \mathrm{~K} \\
& C_{3}=(1.33-0.33 \mathrm{k}) \mathrm{k} \\
& =[1.33-0.33(1.515)](1.515)=1.258 \\
& \text { (Eq. 3.3.4-10) } \\
& \text { (Eq. 3.3.4-11) } \\
& C_{4}=(1.15-0.15 R / t) \leq 1.0 \text { but not less than } 0.50 \text { (Eq. 3.3.4-13) } \\
& (1.15-0.15 R / t)=\{1.15-0.15(2.083)]=0.838 \leq 1.0 \mathrm{OK}
\end{aligned}
$$

$$
\begin{aligned}
= & (0.06)^{2}(1.258)(0.838)(0.914)[217-0.28(63.65)] \\
& x[1+0.01(100)]=1.38 \mathrm{kips} / \mathrm{web}
\end{aligned}
$$

Total P_{n} for section:

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{n}}=(4 \text { webs })(1.38 \mathrm{k} / \text { web })=5.52 \mathrm{kips} \\
& \phi_{\mathrm{w}}=0.70 \\
& \phi_{\mathrm{w}} \mathrm{P}_{\mathrm{n}}=0.70(5.52)=3.86 \mathrm{kips}
\end{aligned}
$$

End reaction is given by

$$
\begin{aligned}
\mathrm{R} & =0.400 \mathrm{w}_{u^{L}}^{\mathrm{L}} \\
& =(0.400)(0.627)(10)=2.51 \mathrm{kips}<\Phi_{W} P_{\mathrm{n}}=3.86 \mathrm{kips} O K
\end{aligned}
$$

b) For interior reaction:

$$
\begin{aligned}
\mathrm{P}_{\mathrm{n}}= & \mathrm{t}^{2} \mathrm{C}_{1} \mathrm{C}_{2} \mathrm{C}_{\theta}[538-0.74(\mathrm{~h} / \mathrm{t})][1+0.007(\mathrm{~N} / \mathrm{t})] \\
= & (0.06)^{2}(1.343)(0.935)(0.914)[538-0.74(63.65)] \\
& x[1+0.007(100)]=3.45 \mathrm{kips} / \text { web }
\end{aligned}
$$

Total P_{n} for section:

$$
\begin{aligned}
\mathrm{P}_{\mathrm{n}} & =(4 \text { webs })(3.45 \mathrm{k} / \mathrm{web})=13.80 \mathrm{kips} \\
\Phi_{\mathrm{w}} & =0.70
\end{aligned}
$$

$$
\phi_{w} P_{n}=0.70(13.80)=9.66 \mathrm{kips}
$$

Interior reaction is given by

$$
\begin{aligned}
\mathrm{R} & =1.10 \mathrm{w}_{\mathbf{u}} \mathrm{L} \\
& =(1.10)(0.627)(10)=6.90 \mathrm{kips}<\Phi_{W} P_{\mathrm{n}}=9.66 \mathrm{kips} \text { OK }
\end{aligned}
$$

Rework Example 11.1 by using the Allowable Stress Design (ASD) method to determine the allowable bending moment based on initiation of yielding. Also determine the effective moment of inertia for deflection determination at the allowable momnet. Compute the allowable uniform load as controlled either by bending or deflection.

Solution:

1. Element Properties:

See section properties calculated in Example 11.1.
2. Section Modulus for Load Determination - Positive Bending
(Based on Initiation of Yielding)
The effective section properties calculated by the ASD method are the same as those determined in Example 11.1 for the LRFD method. Therefore, the allowable moment can be determined in accordance with Appendix E of the Standard as follows:
$M_{a}=M_{n} / \Omega$
$M_{n}=83.0 \mathrm{kips}-\mathrm{in}$.
$\Omega=1.85$
$M_{a}=83.0 / 1.85=44.87 \mathrm{kips}-\mathrm{in}$.
3. Moment of Inertia for Deflection Determination - Positive Bending For deflection determination on the basis of the ASD method, the effective moment of inertia is determined by the same procedures given in Example 11.1 for the LRFD method, except that the computed moment $M\left(=\operatorname{fxS}_{e}\right)$ should be equal to M_{a}.

From the results of Example 11.1.(3), it was found that for a compression stress of $f=28.66 \mathrm{ksi}$, the section is fully effective.

Then, for an assumed stress of $f=26.39 \mathrm{ksi}$ (less than $f=28.66 \mathrm{ksi}$), the section will also be fully effective, i.e.,
$S_{e}=I_{x} / y_{c g}=3.64 / 2.138=1.70 \mathrm{in} .^{3}$
$M=f S_{e}=26.39 \times 1.70=44.87 \mathrm{kips}-\mathrm{in} .=M_{a} O K$
Therefore, use $I_{\text {eff }}=3.64$ in. ${ }^{4}$ for deflection calculation.
4. Section Modulus for Load Determination - Negative Bending (Based on Initiation of Yielding)

The effective section properties calculated by the ASD method are the same as those determined in Example 11.1 for the LRFD method. Therefore, the allowable moment can be determined in accordance with Appendix E of the Standard as follows:
$M_{a}=M_{n} / \Omega$
$M_{n}=90.0 \mathrm{kips}-\mathrm{in}$.
$\Omega=1.85$
$M_{a}=90.0 / 1.85=48.65 \mathrm{kips}-\mathrm{in}$.
5. Moment of Inertia for Deflection Determination - Negative Bending For deflection determination on the basis of the ASD method, the effective moment of inertia is determined by the same procedures given in Example 11.1 for the LRFD method, except that the computed moment $M\left(=\operatorname{fxS}_{e}\right)$ should be equal to M_{a}.

For an assumed stress of $f=25.20 \mathrm{ksi}$, it is found that the section modulus is likely to be the same as calculated in Example 11.1.(5), i.e.,
$S_{e}=I_{x} / y_{c g}=3.61 /(4.0-2.126)=1.93$ in. 3
$M=f S_{e}=25.20 \times 1.93=48.65 \mathrm{kips}-\mathrm{in} .=M_{a} O K$
Therefore, use $I_{e f f}=3.61$ in. 4 for deflection calculation.
6. Summary

$$
\begin{aligned}
& \text { Positive Bending : } M_{a}=44.87 \mathrm{kips}-\mathrm{in} . \\
& I_{e f f}=3.64 \mathrm{in}^{4} \\
& \text { Negative Bending : } M_{a}=48.65 \mathrm{kips}-\mathrm{in} . \\
& I_{e f f}=3.61 \mathrm{in}^{4}
\end{aligned}
$$

7. Compute Allowable Uniform Load

For a continuous deck over three equal spans, the maximum bending moment is negative and occurs over the interior supports. It is given by:

$$
M_{a}=0.100 w L^{2}
$$

Therefore, the maximum factored uniform load is

$$
w=M_{a} / 0.100 L^{2}=44.87 / 0.100\left(10^{\prime} \times 12^{\prime \prime} / 1\right)^{2}=0.0312 \mathrm{kip} / \mathrm{in} .
$$

$$
w=0.374 \mathrm{kip} / \mathrm{ft}
$$

The maximum deflection occurs at a distance of 0.446 L from the exterior supports. It is given by:
$\Delta=0.0069 w L^{4} / E_{o} I$
This deflection is limited to $\Delta=\mathrm{L} / 240$ for live load. Therefore, the maximum live load which will satisfy the deflection requirement is
$w_{L L}=E_{o} I /\left[240(0.0069) L^{3}\right]=27000(3.64) /\left[240(0.0069)(10 \times 12)^{3}\right]$ $=0.0343 \mathrm{kip} / \mathrm{in}$.
$\mathrm{w}_{\mathrm{LJ}}=0.412 \mathrm{kip} / \mathrm{ft}$
Therefore, allowable bending strength governs.
Allowable Uniform Load $=0.374 \mathrm{kip} / \mathrm{ft}$.

8. Check Shear Strength

The required shear strength at any section shall not exceed the allowable shear strength V_{a} :

```
\Omega = 1.85 (for single web)
v
    =27.58 ksi (from Example 11.1.(8))
```

Therefore, the total shear strength, V_{n}, for hat section is

$$
\begin{aligned}
\mathrm{V}_{\mathrm{n}} & =4\left(\mathrm{v}_{\mathrm{n}}\right)(\mathrm{ht}) \quad(\text { a total of } 4 \text { webs }) \\
& =4(27.58)(3.819 \times 0.060) \\
& =25.28 \mathrm{kips}
\end{aligned}
$$

The allowable shear strength is determined as follows:

$$
\begin{aligned}
\mathrm{V}_{\mathrm{a}}=\mathrm{V}_{\mathrm{n}} / \Omega & =25.28 / 1.85=13.66 \mathrm{kips} \\
< & 4\left(\mathrm{~F}_{\mathrm{yv}} \mathrm{ht}\right) / 1.64=4(42 \times 3.819 \times 0.06) / 1.64=23.47 \mathrm{kips}
\end{aligned}
$$

The maximum required shear strength is given by

```
V = 0.600wL
    =(0.600)(0.374)(10) = 2.24 kips < 13.66 kips OK
```

. Check Strength for Combined Bending and Shear At the interior supports, there is a combination of web bending and web shear:

$$
\begin{array}{ll}
M_{a}=48.65 \mathrm{kips}-\mathrm{in} . & M=0.100 \mathrm{wL}^{2} \\
\mathrm{~V}_{\mathrm{a}}=13.66 \mathrm{kips} & V=0.600 \mathrm{wL}
\end{array}
$$

For unreinforced webs

$$
\left(M / M_{a}\right)^{2}+\left(V / V_{a}\right)^{2} \leq 1.0
$$

Solve for w:

$$
\left[0.100 w(10 \times 12)^{2} / 48.65\right]^{2}+[0.600 w(10 \times 12) / 13.66]^{2}=1.0
$$

$$
\begin{aligned}
876.11 w^{2}+27.78 w^{2} & =1.0 \\
903.89 w^{2} & =1.0 \\
w & =0.0333 \mathrm{kip} / \mathrm{in} \\
& =0.399 \mathrm{kip} / \mathrm{ft}
\end{aligned}
$$

Allowable Uniform Load $=0.399 \mathrm{kip} / \mathrm{ft}$ is determined for the case of combined bending and shear.
10. Check Web Crippling Strength

The nominal web crippling strengths are calculated in
Example 11.1.(10) as follows:
a) For end reaction:

$$
\begin{align*}
\mathrm{p}_{\mathrm{n}}= & \mathrm{t}^{2} \mathrm{C}_{3} \mathrm{C}_{4} \mathrm{C}_{\theta}[217-0.28(\mathrm{~h} / \mathrm{t})][1+0.01(\mathrm{~N} / \mathrm{t})] \tag{Eq.3.3.4-2}\\
= & (0.06)^{2}(1.258)(0.838)(0.914)[217-0.28(63.65)] \\
& x[1+0.01(100)]=1.38 \mathrm{kips} / \text { web }
\end{align*}
$$

Total P_{n} for section:

$$
\begin{aligned}
& \mathbf{P}_{\mathrm{n}}=(4 \text { webs })(1.38 \mathrm{k} / \mathrm{web})=5.52 \mathrm{kips} \\
& \Omega=2.0 \text { (for single web) } \\
& \mathbf{P}_{\mathrm{a}}=\mathrm{P}_{\mathrm{n}} / \Omega=5.52 / 2.0=2.76 \mathrm{kips}
\end{aligned}
$$

End reaction is given by

$$
\begin{aligned}
\mathrm{R} & =0.400 \mathrm{LL} \\
& =(0.400)(0.374)(10)=1.50 \mathrm{kips}<\mathrm{P}_{\mathrm{a}}=2.76 \mathrm{kips} 0 \mathrm{~K}
\end{aligned}
$$

b) For interior reaction:

$$
\begin{aligned}
P_{n}= & t^{2} C_{1} C_{2} C_{\theta}[538-0.74(\mathrm{~h} / \mathrm{t})][1+0.007(\mathrm{~N} / \mathrm{t})] \\
= & (0.06)^{2}(1.343)(0.935)(0.914)[538-0.74(63.65)] \\
& x[1+0.007(100)]=3.45 \mathrm{kips} / \text { web }
\end{aligned}
$$

$$
\begin{aligned}
& \Omega \quad=2.0 \\
& \mathrm{P}_{\mathrm{a}} \quad=\mathrm{P}_{\mathrm{n}} / \Omega=13.8 / 2.0=6.90 \mathrm{kips} \\
& \text { Interior reaction is given by } \\
& \mathrm{R} \quad=1.10 \mathrm{WL} \\
& \\
& \quad=(1.10)(0.374)(10)=4.11 \mathrm{kips}<\mathrm{P}_{\mathrm{a}}=6.90 \mathrm{kips} 0 \mathrm{~K}
\end{aligned}
$$

EXAMPLE 12.1 CYLINDRICAL TUBULAR SECTION (LRFD)

By using the Load and Resistance Factor Design (LRFD) method, determine the design flexural strength, $\Phi_{b} M_{n}$, for the section shown in Figure 12.1. Use Type 301 , $1 / 4$-Hard stainless steel.

Figure 12.1 Section for Example 12.1

Solution:

Ratio of outside diameter to wall thickness,
$D / t=8.000 / 0.125=64.00$
$0.881 E_{o} / F_{y}=0.881(27000 / 50)=475.7$
Since $D / t<0.881 E_{o} / F_{y}$, the ASCE Specification can be used.
The design requirement for cylindrical tubular members is based on
Section 3.6.1 of the Standard.
Because $0.112 \mathrm{E}_{\mathrm{o}} / \mathrm{F}_{\mathrm{y}}=0.112(27000 / 50)=60.48$ and
$0.112 \mathrm{E}_{\mathrm{o}} / \mathrm{F}_{\mathrm{y}}<\mathrm{D} / \mathrm{t}<0.881 \mathrm{E}_{\mathrm{o}} / \mathrm{F}_{\mathrm{y}}$,
$M_{n}=K_{c} F_{y} S_{f}$
(Eq. 3.6.1-2)
where

$$
\begin{aligned}
S_{f} & =\pi\left[(0 . D .)^{4}-(\text { I.D. })^{4}\right] / 32(0 . D .) \\
& =\pi\left[(8)^{4}-(7.75)^{4}\right] / 32(8) \\
& =5.995 \text { in. }^{3}
\end{aligned}
$$

$K_{c}=(1-C)\left(E_{o} / F_{y}\right) /\left[\left(8.93-\lambda_{c}\right)(D / t)\right]+5.882 C /\left(8.93-\lambda_{c}\right) \quad(E q .3 .6 .1-3)$
$\mathrm{C}=\mathrm{F}_{\mathrm{pr}} / \mathrm{F}_{\mathrm{y}}$
$\lambda_{c}=3.048 \mathrm{C}$
From Table A17 of the Standard, the ratio of $\mathrm{F}_{\mathrm{pr}} / \mathrm{F}_{\mathrm{y}}$ is equal to 0.5
in longitudinal compression for Type 301, 1/4-Hard stainless steel.
Therefore,

```
\(K_{c}=(1-0.5)(27000 / 50) /[(8.93-3.048 \times 0.5)(64.0)]\)
        \(+(5.882 \times 0.5) /(8.93-3.048 \times 0.5)\)
        \(=0.967\)
\(M_{n}=0.967(50)(5.995)\)
        \(=289.86 \mathrm{kips}-\mathrm{in}\).
    \(\Phi_{b}=0.90\)
    \(\Phi_{b} M_{n}=0.90 \times 289.86=260.90 \mathrm{kips}-\mathrm{in}\).
```

Rework Example 12.1 by using the Allowable Stress Design (ASD) method.

Solution:

Calculation of the allowable moment, M_{a} :

The effective section properties calculated by the ASD method are the same as those determined in Example 12.1 for the LRFD method.

Therefore, the allowable moment can be determined in accordance with Appendix E of the Standard as follows:
$\Omega=1.85$ (Safety Factor stipulated in Table E of the Standard)
$M_{n}=289.86 \mathrm{kips}-i n$. (obtained from Example 12.1)
$M_{a}=M_{n} / \Omega$
(Eq. E-1)
$=289.86 / 1.85$
$=156.7$ kips-in.
$M_{\text {max }}=25.92$ kips-in. <27.57 kips-in. OK

EXAMPLE 13.1 FLANGE CURLING (LRFD)

By using the LRFD criteria, determine the amount of curling for the compression flange of the channel section used in Example 1.1.

Figure 13.1 Section for Example 13.1

Solution:

1. Determination of the design flexural strength, $\Phi_{b} M_{n}$:

The elastic section modulus of the effective section, S_{e}, calculated with the extreme compression or tension fiber at F_{y} is determined in Example 1.1.

$$
\begin{align*}
S_{e} & =0.711 \text { in. }^{3} \\
M_{\mathrm{n}} & =S_{e} F_{y} \tag{Eq.3.3.1.1-1}\\
& =0.711 \times 50=35.55 \text { kips-in. }
\end{align*}
$$

$$
\Phi_{b}=0.85
$$

$\Phi_{b} M_{n}=0.85 \times 35.55=30.22 \mathrm{kips}-\mathrm{in}$.
2. Determination of the average stress in compression $f l a n g e, f_{a v}$, at the service moment M_{s} :

$$
\begin{aligned}
\Phi_{b} M_{n} & =1.2 M_{D L}+1.6 M_{L L} \\
& =\left(1.2\left(M_{D L} / M_{L L}\right)+1.6\right] M_{L L} \\
& =[1.2(1 / 5)+1.6] M_{L L} \\
& =1.84 M_{L L} \\
M_{L L} & =\Phi_{b} M_{n} / 1.84=30.22 / 1.84=16.42 \mathrm{kips}-i n . \\
M_{s} & =M_{D L}+M_{L L} \\
& =(1 / 5+1) M_{L L} \\
& =1.2(16.42)=19.70 \mathrm{kips}-\mathrm{in} .
\end{aligned}
$$

where

$$
\begin{aligned}
& M_{D L}=\text { Moment determined on the basis of nominal dead load } \\
& M_{L L}=\text { Moment determined on the basis of nominal live load }
\end{aligned}
$$

The procedure is iterative: one assumes the actual compressive stress f under this service moment M_{s}. Knowing f, proceeds as usual to obtain S_{e} and checks to see if ($f \times S_{e}$) is equal to M_{s} as it should. If not, reiterate until one obtains the desired level of accuracy. For the first approximation, assume a compression stress of $f=25 \mathrm{ksi}$ in the top fiber of the section and that the web is fully effective.

Compression flange: $k=0.50$ (for unstiffened compression element, see Section 2.3.1)
$w / t=1.471 / 0.060=24.52<50$ OK (Section 2.1.1-(1)-(iii))
$\lambda=(1.052 / \sqrt{k})(\omega / t) \sqrt{f / E_{0}}$
(Eq. 2.2.1-4)
The initial modulus of elasticity, E_{o}, for Type 301 stainless
steel is obtained from Table A4 of the Standard, i.e., $E_{o}=27000$ ksi.

```
\(\lambda=(1.052 / \sqrt{0.50})(24.52) \sqrt{25 / 27000}=1.110>0.673\)
\(\rho=[1-(0.22 / \lambda)] / \lambda\)
(Eq. 2.2.1-3)
    \(=[1-(0.22 / 1.110)] / 1.110=0.722\)
\(b=\rho w\)
                                    (Eq. 2.2.1-2)
    \(=0.722 \times 1.471\)
    \(=1.062 \mathrm{in}\).
```

Effective section properties about x-axis:

Element (in. ${ }^{3}$)	```L Effective Length (in.)```	y Distance from Top Fiber (in.)	Ly	$\begin{array}{r} \mathrm{Ly}^{2} \\ \left(\mathrm{in} .^{2}\right) \end{array}$	I^{\prime} About Own Axis (in. ${ }^{3}$)
Web	5.692	3.000	17.076	51.228	15.368
Upper Corner	0.195	0.075	0.015	0.001	--
Lower Corner	0.195	5.925	1.155	6.846	--
Compression Flange	1.062	0.030	0.032	0.001	--
Tension Flange	1.471	5.970	8.782	52.428	--
Sum	8.615		27.060	110.504	15.368

Distance from top fiber to x-axis is

$$
y_{c g}=27.060 / 8.615=3.141 \mathrm{in} .
$$

axis is greater than one half the beam depth, a compression stress of 25 ksi will govern as assumed (i.e., initial yield is in compression).

To check if web is fully effective (Section 2.2.2):

$$
\begin{align*}
& f_{1}=[(3.141-0.154) / 3.141] \times 25=23.77 \mathrm{ksi}(\text { compression) } \\
& \mathbf{f}_{2}=-[(2.859-0.154) / 3.141] \times 25=-21.53 \mathrm{ksi}(\text { tension }) \\
& \Psi=f_{2} / f_{1}=-21.53 / 23.77=-0.906 \\
&=4+2(1-\Psi)^{3}+2(1-\Psi) \\
&=4+2[1-(-0.906)]^{3}+2[1-(-0.906)] \\
&=21.660 \\
&=w=5.692 \mathrm{in} ., \mathrm{h} / \mathrm{t}=\mathrm{w} / \mathrm{t}=5.692 / 0.060=94.87 \\
& \mathrm{~h} \\
& \mathrm{~h} / \mathrm{t}=94.87<2000 \mathrm{~K}(\text { Section } 2.1 .2-(1)) \\
& \lambda=(1.052 / \sqrt{21.66})(94.87) \sqrt{23.77 / 27000}=0.636>0.673 \\
& \mathrm{~b}_{2}=\mathrm{b}_{\mathrm{e}} / 2 \\
&=5.692 / 2=2.846 \mathrm{in} . \\
& \mathrm{b}_{1}=\mathrm{b}_{\mathrm{e}} /(3-\Psi) \tag{Eq.2.2.2-1}\\
&=5.692 /[3-(-0.906)]=1.457 \mathrm{in} .
\end{align*}
$$

The effective widths, b_{1} and b_{2}, of web are defined in Figure 2 of the Standard.

$$
b_{1}+b_{2}=1.457+2.846=4.303 \mathrm{in} .
$$

Compression portion of the web calculated on the basis of the effective section $=y_{c g}-0.154=3.141-0.154=2.987 \mathrm{in}$.

Since $b_{1}+b_{2}=4.303 \mathrm{in} .>2.987 \mathrm{in} ., b_{1}+b_{2}$ shall be taken as 2.987 in. This verifies the assumption that the web is fully effective.

$$
\begin{aligned}
& \mathrm{I}^{\prime}{ }_{\mathrm{x}} \quad=\mathrm{Ly}^{2}+\mathrm{I}^{\prime}{ }_{1}-\mathrm{Ly}^{2}{ }_{\mathrm{cg}} \\
& =110.504+15.368-8.615(3.141)^{2} \\
& =40.877 \text { in. }^{3} \\
& \text { Actual } I_{x}=I^{\prime}{ }_{x}{ }^{t} \\
& =40.877 \times 0.060 \\
& =2.453 \text { in. }{ }^{4} \\
& \mathrm{~S}_{\mathrm{e}} \quad=\mathrm{I}_{\mathrm{x}} / \mathrm{y}_{\mathrm{cg}} \\
& =2.453 / 3.141 \\
& =0.781 \text { in. }{ }^{3} \\
& M_{n} \quad=S_{e} F_{y} \\
& =0.781 \times 25 \\
& =19.53 \mathrm{kips}-\mathrm{in} .=\mathrm{M}_{\mathrm{s}}=19.70 \mathrm{kips}-\mathrm{in} . \text { (close enough) }
\end{aligned}
$$

Therefore,

$$
f_{a v} \quad=f(b / w)=25.0 \times(1.062 / 1.471)=18.05 \mathrm{ksi}
$$

3. Determination of the curling of the compression flange, c_{f}.

w_{f}	$=1.625-0.06=1.565 \mathrm{in}$.
w_{f}	$=\sqrt{0.061 t d E / f_{a v}} \sqrt[4]{\left(100 c_{f} / \mathrm{d}\right)}$
1.565	$=\sqrt{0.061(0.06)(6)(27000) / 18.05} \sqrt[4]{100 c_{f} / 6} \quad(E q \cdot 2.1 .1-1)$
	$=5.731 \sqrt[4]{16.67 c_{f}}$
$\sqrt[4]{16.67 c_{f}}$	$=1.565 / 5.731$
$16.67 c_{f}$	$=(1.565 / 5.731)^{4}$
c_{f}	$=(1.565 / 5.731)^{4} / 16.67=0.00033 \mathrm{in}$.

EXAMPLE 13.2 FLANGE CURLING (ASD)

Rework Example 13.1 by using the ASD method.

Solution:

1. Determination of the allowable bending moment, M_{a} :

The nominal bending strength, M_{n}, is obtained from Example 13.1
as follows:

$$
M_{n}=S_{e} F_{y}=0.711 \times 50=35.55 \text { kips-in. }
$$

Therefore, the allowalbe moment:
$\Omega=1.85$
$M_{a}=35.55 / 1.85=19.22$ kips-in.
2. Determination of the average stress in compression flange, $f_{a v}$, at the allowable moment M_{a} :

Assume that a compression stress of $f=25 \mathrm{ksi}$ in the top fiber of the section and that the web is fully effective. Therefore, from the calculation of Example 13.1.(2):

$$
\begin{aligned}
M & =S_{e} f=0.781 \times 25 \\
& =19.53 \mathrm{kips}-\mathrm{in} .=M_{a}=19.22 \mathrm{kips}-\mathrm{in} . \text { (close enough) }
\end{aligned}
$$

Therefore,

$$
\mathrm{f}_{\mathrm{av}} \quad=\mathrm{f}(\mathrm{~b} / \mathrm{w})=25.0 \mathrm{x}(1.062 / 1.471)=18.05 \mathrm{ksi}
$$

3. Determination of the curling of the compression flange, c_{f}.

$$
\begin{array}{ll}
\mathrm{w}_{\mathrm{f}} & =1.625-0.06=1.565 \mathrm{in.} \\
\mathrm{t} & =0.06 \\
\mathrm{~d} & =6 \\
1.565 & =\sqrt{0.061(0.06)(6)(27000) / 18.05} \sqrt[4]{100 \mathrm{c}_{\mathrm{f}} / 6} \\
& =5.731 \sqrt[4]{16.67 \mathrm{c}_{\mathrm{f}}}
\end{array}
$$

$$
\begin{array}{ll}
\sqrt[4]{16.67 c_{f}} & =1.565 / 5.731 \\
16.67 c_{f} & =(1.565 / 5.731)^{4} \\
c_{f} & =(1.565 / 5.731)^{4} / 16.67=0.00033 \mathrm{in} .
\end{array}
$$

EXAMPLE 14.1 SHEAR LAG (LRFD)

For the tubular section shown in Fig. 14.1, determine the design flexural strength, $\phi_{b} M_{n}$, if the member is to be used as a simply supported beam and to carry a concentrated load at midspan. Assume that the span length is 3 ft . and the section material is Type $316,1 / 4$-Hard, stainless steel.

Figure 14.1 Section for Example 14.1

Solution:

1. Determination of the nominal moment, M_{n}, based on initiation of yielding (Section 3.3.1.1).

Properties of 90° corners:
$r=R+t / 2=3 / 16+0.135 / 2=0.255 \mathrm{in}$.
Length of arc, $u=1.57 \mathrm{r}=1.57 \times 0.255=0.400 \mathrm{in}$.
Distance of c.g. from center of radius,
$c=0.637 \mathrm{r}=0.637 \times 0.255=0.162 \mathrm{in}$.

Computation of I_{x} :
For the first approximation, assume a compression stress of $f=F_{y}=50 \mathrm{ksi}$ in the compression flange, and that the webs are fully effective.

Compression flange: $k=4.00$ (stiffened compression element supported by a web on each longitudinal edge)
$w / t=7.354 / 0.135=54.47<400$ OK (Section 2.1.1-(1)-(ii))
$\lambda=(1.052 / \sqrt{k})(\omega / t) \sqrt{f / E_{O}}$ $=(1.052 / \sqrt{4.00})(54.47) \sqrt{50 / 27000}=1.233>0.673$
$\rho=(1-0.22 / \lambda) / \lambda$
(Eq. 2.2.1-3)
$=(1-0.22 / 1.233) / 1.233=0.666$
$\mathrm{b}=\rho \omega$
(Eq. 2.2.1-2)
$=0.666 \times 7.354$
$=4.898 \mathrm{in}$.

Effective section properties about x axis:

Element	L Effective Length (in.)	y Distance from Top Fiber (in.)	$\begin{gathered} \text { Ly } \\ \left(\text { in. }^{2}\right) \end{gathered}$	$\begin{gathered} L y^{2} \\ \left(\text { in. }{ }^{3}\right) \end{gathered}$	$\begin{aligned} & \text { I' } \\ & \text { About } \\ & \text { Own } \\ & \text { Axis } \\ & \left(\text { in. }{ }^{3}\right. \text {) } \end{aligned}$
Webs	14.708	4.000	58.832	235.328	66.286
Upper Corners	0.800	0.161	0.129	0.021	--
Lower Corners	0.800	7.839	6.271	49.160	--
Compression Flange	4.898	0.068	0.333	0.023	--
Tension Flange	7.354	7.933	58.339	462.806	--
Sum	28.560		123.904	747.338	66.286

Distance from top fiber to x-axis is
$y_{c g}=123.904 / 28.560=4.338 \mathrm{in}$.

Since the distance of top compression fiber from neutral axis is greater than one half the beam depth, a compression stress of 50 ksi will govern as assumed (i.e., initial yielding is in compression).

To check if webs are fully effective (Section 2.2.2):
$f_{1}=[(4.338-0.323) / 4.338] \times 50=46.28 \mathrm{ksi}($ compression)
$\mathbf{f}_{2}=-[(3.662-0.323) / 4.338] \times 50=-38.49 \mathrm{ksi}($ tension)
$\Psi \quad=\mathrm{f}_{2} / \mathrm{f}_{1}=-38.49 / 46.28=-0.832$
$\mathrm{k} \quad=4+2(1-\Psi)^{3}+2(1-\Psi)$
(Eq. 2.2.2-4)
$h \quad=w=7.354$ in., $h / t=w / t=7.354 / 0.135=54.47$
$h / t=54.47<200$ OR (Section 2.1.2-(1))

Compression portion of the web calculated on the basis of the effective section $=y_{c g}-0.323=4.338-0.323=4.015 \mathrm{in}$.

Since $b_{1}+b_{2}=5.591$ in. >4.015 in., $b_{1}+b_{2}$ shall be taken as 4.015 in.. This verifies the assumption that the webs are fully effective.

$$
\begin{aligned}
I_{x}^{\prime} & =L y^{2}+I_{1}^{\prime}-L^{2}{ }_{c g} \\
& =747.338+66.286 \\
& =276.175 \mathrm{in.}^{3} \\
\text { Actual } I_{x} & =I_{x}^{\prime} t^{\prime} \\
& =276.175 \times 0.135 \\
& =37.284 \mathrm{in} .^{4} \\
& =I_{x} / y_{c g} \\
& =37.284 / 4.338 \\
S_{e} & =8.595 \mathrm{in} .{ }^{3} \\
& =S_{e} F_{y}=8.595 \mathrm{x} 50 \\
& =429.75 \mathrm{kips}-\mathrm{in} .
\end{aligned}
$$

$$
=747.338+66.286-28.560(4.338)^{2}
$$

2. Determination of the nominal moment, M_{n}, based on shear lag consideration (Section 2.1.1(3)).

$$
\begin{aligned}
& \lambda=(1.052 / \sqrt{19.961})(54.47) \sqrt{46.28 / 27000}=0.531<0.673 \\
& b_{e}=w \\
& =7.354 \mathrm{in} . \\
& b_{2}=b_{e} / 2 \\
& =7.354 / 2=3.677 \mathrm{in} \text {. } \\
& b_{1}=b_{e^{\prime}} /(3-\Psi) \\
& \text { (Eq. 2.2.2-1) } \\
& =7.354 /[3-(-0.843)]=1.914 \mathrm{in} . \\
& \text { (Eq. 2.2.1-1) } \\
& \text { (Eq. 2.2.2-2) } \\
& \text { (Eq. 2.2.2-1) }
\end{aligned}
$$

w_{f}	$=(8-2 \times 0.135) / 2=3.865 \mathrm{in}$.
$\mathrm{L} / \mathrm{w}_{\mathrm{f}}$	$=3 \times 12 / 3.865=9.314<30$

Because the L / w_{f} ratio is less than 30 , and the member carries a concentrated load, consideration for shear lag is needed.

From Table 1 of the Standard:
$\mathrm{L} / \mathrm{w}_{\mathrm{f}}=10$, effective design width/actual width $=0.73$
$L / W_{f}=8$, effective design width/actual width $=0.67$
$L / w_{f}=9.314$, effective design width/actual width $=$?
$(10-9.314) /(9.314-8)=(0.73-x) /(x-0.67)$

$$
0.686(x-0.67)=1.314(0.73-x)
$$

$$
x=0.709
$$

Therefore, the effective design widths of compression and tension
flanges between webs are
$0.709(8-2 \times 0.135)=5.481 \mathrm{in}$.
$b=5.481-2 R=5.481-2(3 / 16)=5.106 \mathrm{in}$.

Because of symmetry and assume webs are fully effective,
$y_{c g}=4.000 \mathrm{in}$.

Effective section properties about x-axis:
$\mathrm{L}=28.560-4.898-7.354+5.106 \mathrm{x} 2=26.520 \mathrm{in}$.
$L y^{2}=747.338-0.023-462.806+5.106(0.068)^{2}+5.106(7.933)^{2}$
$=605.866$ in. 3
$I^{\prime}{ }_{1}=66.286$ in. ${ }^{3}$

To check if webs are fully effective:

$$
\begin{aligned}
& \mathrm{f}_{1}=[(4.000-0.323) / 4.000] \times 50=45.96 \mathrm{ksi} \\
& \mathrm{f}_{2}=-45.96 \mathrm{ksi} \\
& \Psi=-45.96 / 45.96=-1.000 \\
& \mathbf{k}=4+2[1-(-1.000)]^{3}+2[1-(-1.000)]=24.000 \\
& \lambda \\
& =(1.052 / \sqrt{24.0})(54.47) \sqrt{45.96 / 27000}=0.483<0.673 \\
& \mathrm{~b}_{\mathrm{e}}=7.354 \mathrm{in} . \\
& \mathrm{b}_{2}=7.354 / 2=3.677 \mathrm{in} . \\
& \mathrm{b}_{1}=7.354 /[3-(-1.000)]=1.839 \mathrm{in} .
\end{aligned}
$$

Compression portion of the web calculated on the basis of the effective section $=4.000-0.323=3.677$ in..

Since $b_{1}+b_{2}=5.516$ in. >3.677 in., $b_{1}+b_{2}$ shall be taken as 3.677 in.. This verifies the assumption that the webs are fully effective.

$$
\begin{aligned}
I_{\mathbf{x}}^{\prime} & =605.866+66.286-26.520(4.000)^{2} \\
& =247.832 \mathrm{in.}^{3} \\
\text { Actual } I_{\mathbf{x}} & =247.832 \times 0.135 \\
& =33.457 \mathrm{in.}^{4} \\
& =33.457 / 4.000=8.364 \mathrm{in}^{3} \\
\mathrm{~S}_{\mathrm{e}} & =8.364 \times 50 \\
M_{\mathrm{n}} & =418.20 \mathrm{kips}-\mathrm{in} .<429.75 \mathrm{kips}-\mathrm{in} . \text { (initial yielding) }
\end{aligned}
$$

3. Determination of the design flexural strength, $\Phi_{b} M_{n}$.
$M_{n} \quad=418.20 \mathrm{kips}-\mathrm{in}$.
$\Phi_{\mathrm{b}} \quad=0.90$
$\Phi_{b} M_{n} \quad=0.90 \times 418.20=376.38 \mathrm{kips}-\mathrm{in}$.

EXAMPLE 14.2 SHEAR LAG (ASD)

Rework Example 14.1 to determine the allowable bending moment for the tubular section.

Solution:

1. Determination of the nominal moment, M_{n}, based on initiation of yielding

$$
\begin{aligned}
M_{n} & =S_{e} F_{y}=8.595 \times 50 \\
& =429.75 \text { kips-in. (from Example } 14.1 \text {) }
\end{aligned}
$$

2. Determination of the nominal moment, M_{n}, based on shear lag consideration.

$$
\begin{array}{ll}
\mathrm{w}_{\mathrm{f}} & =(8-2 \times 0.135) / 2=3.865 \mathrm{in} . \\
\mathrm{L} / \mathrm{w}_{\mathrm{f}} & =3 \times 12 / 3.865=9.314<30
\end{array}
$$

Because the L / w_{f} ratio is less than 30 , and the member carries a concentrated load, consideration for shear lag is needed.

```
S e = 33.457/4.000 = 8.364 in. ' (from Example 14.1)
Mn
    = 418.20 kips-in. < 429.75 kips-in. (initial yielding)
```

3. Determination of the allowable bending strength, M_{a}.

M_{n}	$=418.20 \mathrm{kips}-\mathrm{in}$.
Ω	$=1.85$
M_{a}	$=418.20 / 1.85=226.05 \mathrm{kips}-\mathrm{in}$.

EXAMPLE 15.1 C-SECTION (LRFD)

By using the Load and Resistance Factor Design (LRFD) method, determine the design axial strength for C-section as shown in Figure 15.1. Use Type 304 stainless steel, 1/4-Hard.

Figure 15.1 Section for Example 15.1

Given:

1. Section: $3.5^{\prime \prime} \times 2.0^{\prime \prime} \times 0.105^{\prime \prime}$ channel with stiffened flanges.
2. $K_{x} L_{x}=K_{y} L_{y}=K_{t} L_{t}=6 \mathrm{ft}$.

Solution:

The following equations used for computing the sectional properties for channel with lips are based on the information in Part III of Cold-Formed Steel Design Manual (1986), American Iron and Steel Institute, Washington, D.C.

1. Basic parameters used for calculating the section properties:

$$
r \quad=R+t / 2=3 / 16+0.105 / 2=0.240 \text { in. }
$$

From the sketch $a=2.914$ in., $b=1.414 \mathrm{in} ., \mathrm{c}=0.607 \mathrm{in} .$,
$A^{\prime}=3.5$ in., $\quad B^{\prime}=2.0$ in., $\quad C^{\prime}=0.9$ in., $\alpha=1.00$ (Since the section has lips)

$$
\begin{array}{ll}
\bar{a} & =A^{\prime}-t=3.5-0.105=3.395 \mathrm{in} . \\
\overline{\mathrm{b}} & =B^{\prime}-(t / 2+a t / 2]=B^{\prime}-t=2-0.105=1.895 \mathrm{in} . \\
\overline{\mathrm{c}} & =a\left[C^{\prime}-t / 2\right]=C^{\prime}-t / 2=0.9-0.105 / 2=0.848 \mathrm{in} . \\
\mathrm{u} & =1.57 r=1.57 \mathrm{x} 0.240=0.377 \mathrm{in} .
\end{array}
$$

2. Area:

$$
\begin{aligned}
A & =t[a+2 b+2 u+a(2 c+2 u)]=t[a+2 b+2 c+4 u] \\
& =0.105[2.914+2 \times 1.414+2 \times 0.607+4 \times 0.377] \\
& =0.889 \mathrm{in.}^{2}
\end{aligned}
$$

3. Moment of inertia about x-axis:

$$
\begin{aligned}
I_{x}= & 2 t\left\{0.0417 a^{3}+b(a / 2+r)^{2}+u(a / 2+0.637 r)^{2}+0.149 r^{3}\right. \\
& \left.+a\left[0.0833 c^{3}+(c / 4)(a-c)^{2}+u(a / 2+0.637 r)^{2}+0.149 r^{3}\right]\right\} \\
= & 2 t\left[0.0417 a^{3}+b(a / 2+r)^{2}+2 u(a / 2+0.637 r)^{2}+0.298 r^{3}\right. \\
& \left.+0.0833 c^{3}+(c / 4)(a-c)^{2}\right] \\
= & 2 \times 0.105\left[0.0417(2.914)^{3}+1.414(2.914 / 2+0.240)^{2}\right. \\
& +2 \times 0.377(2.914 / 2+0.637 \times 0.240)^{2}+0.298(0.240)^{3} \\
& \left.+0.0833(0.607)^{3}+(0.607 / 4)(2.914-0.607)^{2}\right] \\
= & 1.657 \mathrm{in} .4
\end{aligned}
$$

4. Distance from centroid of section to centerline of web:
```
    \overline{x}}=(2t/A){b(b/2+r)+u(0.363r)+a[u(b+1.637r)+c(b+2r))
    = [(2x0.105)/0.889]{1.414(1.414/2+0.240)+0.377(0.363\times0.240)
        +0.377(1.414+1.637x0.240)+0.607(1.414+2x0.240)}
    =0.757 in.
```

5. Moment of inertia about y-axis:
```
I
        +u(b+1.637r)2+0.149r m}}}-A(\overline{x}\mp@subsup{)}{}{2
    = 2x0.105{1.414(1.414/2+0.240)}\mp@subsup{)}{}{2}+0.0833(1.414)\mp@subsup{)}{}{3
```



```
        +0.377(1.414+1.637x0.240) 2+0.149(0.240) 3 }-0.889(0.757)2
    =0.524 in.4
```

6. Distance from shear center to centerline of web:
```
\(\mathrm{m}=\left(\overline{\mathrm{b}} \mathrm{t} / 12 \mathrm{I}_{\mathrm{x}}\right)\left[6 \overline{\mathrm{c}}(\overline{\mathrm{a}})^{2}+3 \overline{\mathrm{~b}}(\overline{\mathrm{a}})^{2}-8(\overline{\mathrm{c}})^{3}\right]\)
    \(=[(1.895 \times 0.105) /(12 \times 1.657)]\left[6 \times 0.848(3.395)^{2}\right.\)
        \(\left.+3 \times 1.895(3.395)^{2}-8(0.848)^{3}\right]\)
    \(=1.194 \mathrm{in}\).
```

7. Distance from centroid to shear center:

$$
\begin{aligned}
x_{0} \quad & =-(\bar{x}+m)=-(0.757+1.194) \\
& =-1.951 \mathrm{in} .
\end{aligned}
$$

8. St. Venant torsion constant:

J
$=\left(t^{3} / 3\right)[a+2 b+2 u+a(2 c+2 u)]$
$=\left\{(0.105)^{3} / 3\right)[2.914+2 \times 1.414+4 \times 0.377+2 \times 0.607 〕$

```
=0.003266 in.4
```

9. Warping Constant:

$$
\begin{aligned}
C_{w}= & \left(t^{2} / A\right)\left\{\left[\bar{x} A(\bar{a})^{2}\right] / t\left[(\bar{b})^{2} / 3+m^{2}-m \bar{b}\right]+(A / 3 t)\left[(m)^{2}(\bar{a})^{3}\right.\right. \\
& \left.+(\bar{b})^{2}(\bar{c})^{2}(2 \bar{c}+3 \bar{a})\right]-\left(I_{x} m^{2} / t\right)(2 \bar{a}+4 \bar{c})+\left[m(\bar{c})^{2} / 3\right]\left[8(\bar{b})^{2}(\bar{c})\right. \\
& +2 m(2 \bar{c}(\bar{c}-\bar{a})+\bar{b}(2 \bar{c}-3 \bar{a}))]+\left[(\bar{b})^{2}(\bar{a})^{2} / 6\right]\left[(3 \bar{c}+\bar{b})(4 \bar{c}+\bar{a})-6(\bar{c})^{2}\right] \\
& \left.-\left[m^{2}(\bar{a})^{4}\right] / 4\right\} \\
= & {\left[(0.105)^{2} / 0.889\right]\left\{\left[0.757 \times 0.889 \times(3.395)^{2}\right] / 0.105\left[(1.895)^{2} / 3\right.\right.} \\
& \left.+(1.194)^{2}-1.194 \times 1.895\right]+0.889 /(3 \times 0.105)\left[(1.194)^{2}(3.395)^{3}\right. \\
& \left.+(1.895)^{2}(0.848)^{2}(2 \times 0.848+3 \times 3.395)\right] \\
& -\left[1.657 \times(1.194)^{2}\right] / 0.105(2 \times 3.395+4 \times 0.848) \\
& +\left[1.194(0.848)^{2}\right] / 38(1.895)^{2}(0.848) \\
& +2 \times 1.194(2 \times 0.848(0.848-3.395)+1.895(2 \times 0.848-3 \times 3.395))] \\
& \left.+(1.895)^{2}(3.395)^{2} / 6\right][(3 \times 0.848+1.895)(4 \times 0.848+3.395) \\
& \left.\left.-6(0.848)^{2}\right]-\left[(1.194)^{2}(3.395)^{4} / 4\right]\right\} \\
= & 2.050 \mathrm{in}^{6}
\end{aligned}
$$

10. Radii of gyration:

$$
\begin{aligned}
& r_{x} \quad=\sqrt{\left(I_{x} / A\right)}=\sqrt{(1.657 / 0.889)}=1.365 \mathrm{in} . \\
& r_{y} \quad=\sqrt{\left(I_{y} / A\right)}=\sqrt{(0.524 / 0.889)}=0.768 \mathrm{in} . \\
& \left(\mathrm{K}_{\mathrm{y}} \mathrm{~L}_{\mathrm{y}}\right) / r_{\mathrm{y}}=(6 \mathrm{x} 12) / 0.768=93.75<200 \\
& r_{0}^{2} \quad=r_{x}{ }^{2}+r_{y}{ }^{2}+x_{0}{ }^{2}=(1.365)^{2}+(0.768)^{2}+(-1.951)^{2} \\
& \\
& =6.259 \mathrm{in.}^{2}
\end{aligned}
$$

11. Torsiona1-flexural constant:
β
$=1-\left(x_{0} / r_{0}\right)^{2}$
(Eq. 3.4.3-4)
$=1-(-1.951)^{2} / 6.259$

$$
=0.392
$$

12. Determination of F_{n} : (Section 3.4 of the Standard)

For this singly symmetric section (x-axis is the axis of symmetry), F_{n} shall be taken as the smaller of either (Eq. 3.4.1-1) or (Eq. 3.4.3-1):
a. For Flexural Buckling:

$$
\begin{equation*}
\left(F_{n}\right)_{1}=\left(\pi^{2} E_{t}\right) /\left(K_{y} L_{y} / r_{y}\right)^{2} \tag{Eq.3.4.1-1}
\end{equation*}
$$

In the determination of the flexural buckling stress, it is necessary to select a proper value of E_{t} from Table A13 or Figure A11 in the Standard for the assumed stress. For the first approximation, assume a compressive stress of $f=20 \mathrm{ksi}$.

From Table A13, the corresponding value of E_{t} is found to be equal to 27000 ksi . Thus,

$$
\begin{aligned}
\left(F_{n}\right)_{1} & =\left(\pi^{2} \times 27000\right) /(93.75)^{2} \\
& =30.32 \mathrm{ksi}>\text { assumed stress } f=20 \mathrm{ksi}
\end{aligned}
$$

Because the computed stress is larger than the assumed value, the further successive approximation is needed.

Assume $\mathrm{f}=22.7 \mathrm{ksi}$, and

$$
\begin{aligned}
E_{t} & =20250 \mathrm{ksi} \\
\left(\mathrm{~F}_{\mathrm{n}}\right)_{1} & =\left(\pi^{2} \times 20250\right) /(93.75)^{2} \\
& =22.74 \mathrm{ksi}=\text { assumed stress } \mathrm{f}=22.7 \mathrm{ksi} \text { OK }
\end{aligned}
$$

Alternatively, the tangent modulus E_{t} can be determined by using the Modified Ramberg-Osgood equation as given in Appendix B of the Standard as follows:

$$
\begin{equation*}
E_{t} \quad=\left(E_{o} F_{y}\right) /\left[F_{y}+0.002 n E_{0}\left(f / F_{y}\right)^{n-1}\right] \tag{Eq.B-2}
\end{equation*}
$$

From Table B in the Standard, the coefficient n is equal to 4.58 for Type 304, 1/4-Hard stainless stee1. Thus, for an assumed compression stress of $f=23.1 \mathrm{ksi}$,

$$
\begin{aligned}
\mathrm{E}_{\mathrm{t}} & =(27000 \times 50) /\left[50+0.002 \times 4.58 \times 27000 \times(23.1 / 50)^{3.58}\right] \\
& =20584 \mathrm{ksi}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\left(F_{n}\right)_{1} & =\left(\pi^{2} \times 20584\right) /(93.75)^{2} \\
& =23.11 \mathrm{ksi}=\text { assumed stress } f=23.1 \mathrm{ksi} \quad 0 K
\end{aligned}
$$

It is found that for this example, the flexural buckling stress determined by using Eq. B-2 is apporximately 2 \% larger than that by using the tabulated value.
b. For Torsional-Flexural Buckling:

$$
\begin{equation*}
\left(F_{n}\right)_{2}=(1 / 2 \beta)\left[\left(\sigma_{e x}+\sigma_{t}\right)-\sqrt{\left(\sigma_{e x}+\sigma_{t}\right)^{2}-4 \beta \sigma_{e x} \sigma_{t}}\right] \tag{Eq.3.4.3-1}
\end{equation*}
$$

where

$$
\begin{align*}
& \sigma_{e x}=\left[\left(\pi^{2} E_{o}\right) /\left(K_{x} L_{x} / r_{x}\right)^{2}\right]\left(E_{t} / E_{o}\right) \tag{Eq.3.4.3-3}\\
& \sigma_{t}=\left[1 /\left(A r_{0}^{2}\right)\right]\left[G_{o}^{\left.J+\left(\pi^{2} E_{0} C_{w}\right) /\left(K_{t} L_{t}\right)^{2}\right]\left(E_{t} / E_{o}\right)}\right. \tag{Eq.3.4.2-1}\\
& G_{0}=10500 \mathrm{ksi} \text { (Table A4 of the Standard) } \\
& \text { Similar to the determination of flexural buckling stress, the }
\end{align*}
$$ plasticity reduction factor of E_{t} / E_{o} depends on the assumed stress value. For the first approximation, assume a buckling stress of $f=20 \mathrm{ksi}$. The value of E_{t} / E_{o} is found to be equal to 1.0 , which is obtained from Table A10 or Figure A7 of the Standard. Thus,

$$
\begin{aligned}
\sigma_{e x} & =\left[\left(\pi^{2} \times 27000\right) /(6 \times 12 / 1.365)^{2}\right] \times(1.0) \\
& =95.78 \mathrm{ksi} \\
\sigma_{t} & =[1 /(0.889 \times 6.259)]\left[10500 \times 0.003266+\pi^{2} \times 27000 \times 2.05 /(6 \times 12)^{2}\right] \times(1.0) \\
& =25.10 \mathrm{ksi} \quad 204
\end{aligned}
$$

Therefore,

$$
\begin{align*}
\left(F_{\mathrm{n} 2}\right)_{=} & (1 / 2 \beta)\left[\left(\sigma_{\mathrm{ex}}+\sigma_{\mathrm{t}}\right)-\sqrt{\left(\sigma_{\mathrm{ex}}+\sigma_{\mathrm{t}}\right)^{2}-4 \beta \sigma_{\mathrm{ex}} \sigma_{\mathrm{t}}}\right] \tag{Eq.3.4.3-1}\\
= & {[1 /(2 \times 0.392)][(95.78+25.10)} \\
& \left.-\sqrt{(95.78+25.10)^{2}-4 \times 0.392 \times 95.78 \times 25.10}\right] \\
= & 21.37 \mathrm{ksi}>\text { assumed value } \mathrm{f}=20 \mathrm{ksi}
\end{align*}
$$

For the second approximation, assume a stress of $f=20.46 \mathrm{ksi}$, and $E_{t} / E_{0}=0.957$.

```
\(\left(F_{\mathrm{n} 2}\right)^{20.46} \mathrm{ksi}=\) assumed value OK
```

The plasticity reduction factor E_{t} / E_{0} can be alternatively determined by using the Ramberg-Osgood equation given in the Appendix B of the Standard as follows:

$$
\begin{equation*}
E_{t} / E_{0}=F_{y} /\left[F_{y}+0.002 n E_{0}\left(f / F_{y}\right)^{n-1}\right] \tag{Eq.B-5}
\end{equation*}
$$

From Table B in the Standard, the coefficient n is equal to 4.58 for Type 304, 1/4-Hard stainless steel. Thus, for an assumed compression stress of $f=18.6 \mathrm{ksi}$,

$$
\begin{aligned}
E_{t} / E_{o} & =50 /\left[50+0.002 \times 4.58 \times 27000 \times(18.6 / 50)^{3.58}\right] \\
& =0.875
\end{aligned}
$$

Therefore,
$\left(F_{\mathrm{n} 2}\right)_{2} 21.37 \times(0.875)=18.7 \mathrm{ksi}=$ assumed value $O K$
(The lateral buckling stress determined by using Eq. B-5 is approximately 8.6 \% less than that computed by using Table A10.)

Then, F_{n} should be the smaller of $\left(F_{n}\right)_{1}$ and $\left(F_{n}\right)_{2}$. $F_{n} \quad=20.46 \mathrm{ksi}$ (based on tabulated E_{t} / E_{0} value)
13. Determination of A_{e} :

Flanges:

$$
\begin{array}{ll}
\mathrm{d} & =0.607 \mathrm{in} \\
\mathrm{I}_{\mathrm{s}} & =\mathrm{d}^{3} \mathrm{t} / 12=(0.607)^{3}(0.105) / 12 \\
& =0.001957 \mathrm{in.} \\
\mathrm{D} & =0.9 \mathrm{in} . \\
\mathrm{w} & =1.414 \mathrm{in} . \\
\mathrm{D} / \mathrm{w} & =0.9 / 1.414 \approx 0.636<0.80 \\
\mathrm{~S} & =1.28 \sqrt{E_{o} / E_{;}} \quad \mathrm{f}=\mathrm{F}_{\mathrm{n}} \tag{Eq.2.4-1}
\end{array}
$$

The initial modulus of elasticity, E_{o}, for Type 301 stainless
steel is obtained ℓ xom Table $A 4$ of the Standard, i.e., $E_{o}=27000 \mathrm{ksi}$.

$$
\begin{array}{ll}
\mathrm{S} & =1.28 \sqrt{27000 / 20.46}=46.50 \\
\mathrm{w} / \mathrm{t} & =1.414 / 0.105=13.47<\mathrm{S} / 3=15.50 \\
\mathrm{I}_{\mathrm{a}} & =0 \text { (no edpe stiffener needed) } \\
\mathrm{b} & =\mathrm{w} \\
& =1.414 \mathrm{in.} \text { (flanges fully effective) } \\
\mathrm{w} / \mathrm{t} & =13.47<g 0 \text { (Section } 2.1 .1-(1)-(i))
\end{array}
$$

(Eq. 2.4.2-1)
(Eq. 2.4.2-2)
(Eq. 2.4.2-3)

Web:
$w \quad=2.914 \mathrm{in}, k=4.00$
$\lambda \quad=(1.052 / \sqrt{\kappa})(\omega / t) \sqrt{f / E}, \quad f=F_{n}$
$=(1.052 / \sqrt{4})(2.914 / 0.105) \sqrt{20.46 / 27000}$
$=0.402<0.673$
b $=W$
(Eq. 2.2.1-4)
(Eq. 2.2.1-1)
$=2.914 \mathrm{in}$, (web fully effective)
$w / t=2.914 / 0.105=27.75<400($ Section 2.1.1-(1)-(ii))
Lips:
$\mathrm{d}=0.607 \mathrm{in}$.
$k \quad=0.50$ (umatiffened compression element)

$$
\begin{aligned}
\mathrm{d}_{\mathrm{s}} & =\mathrm{d}^{\prime}{ }_{\mathrm{s}} \\
\lambda & =(1.052 / \sqrt{0.50})(0.607 / 0.105) \sqrt{20.46 / 27000} \\
& =0.237<0.673 \\
\mathrm{~d}_{\mathrm{s}}^{\prime} & =\mathrm{d}^{\prime}=0.607 \mathrm{in} ., \mathrm{d}_{\mathrm{s}}=0.607 \mathrm{in} . \\
\mathrm{d} / \mathrm{t} & =5.78<50(\text { Section } 2.1 .1-(1)-(\text { iii }))
\end{aligned}
$$

(Eq. 2.4.2-4)

Since flanges, web, and lips are fully effective, the effective
area is the same as the full section area, i.e.,
$\mathrm{A}_{\mathrm{e}} \quad=\mathrm{A}=0.889$ in. 2
14. Determination of $\Phi_{C} P_{n}$: (Section 3.4 of the Standard)

$$
\begin{aligned}
P_{n} & =A_{e} F_{n} \\
& =0.889 \times 20.46 \\
& =18.19 \mathrm{kips} \\
\Phi_{\mathrm{C}} & =0.85 \\
\Phi_{c} P_{n} & =0.85 \times 18.19 \\
& =15.46 \mathrm{kips}
\end{aligned}
$$

EXAMPLE 15.2 C-SECTION (ASD)

Determine the allowable axial load for C-section used in Example 15.1.

Solution:

1. Basic parameters used for calculating the section properties:

See Example 15.1 for section properties of C-section.
2. Determination of F_{n}

The following is the result obtained from Example 15.1.
a. For Flexural Buckling:

$$
\begin{aligned}
\left(F_{n}\right)_{1} & =\left(\pi^{2} E_{t}\right) /\left(K_{y} L_{y} / r_{y}\right)^{2} \\
\left(F_{n}\right)_{1} & =\left(\pi^{2} \times 20250\right) /(93.75)^{2}\left(E_{t}\right. \text { is based on Table A13) } \\
& =22.74 \mathrm{ksi}
\end{aligned}
$$

b. For Torsional-Flexural Buckling:

$$
\begin{equation*}
\left(F_{n}\right)_{2}=(1 / 2 \beta)\left[\left(\sigma_{e x}+\sigma_{t}\right)-\sqrt{\left(\sigma_{e x}+\sigma_{t}\right)^{2}-4 \beta \sigma_{e x} \sigma_{t}}\right] \tag{Eq.3.4.3-1}
\end{equation*}
$$

where

$$
\begin{aligned}
\sigma_{e x}= & {\left[\left(\pi^{2} E_{o}\right) /\left(R_{x} L_{x} / r_{x}\right)^{2}\right]\left(E_{t} / E_{o}\right) } \\
\sigma_{t}= & {\left[1 /\left(A r_{0}^{2}\right)\right]\left[G_{o} J+\left(\pi^{2} E_{o} C_{w}\right) /\left(K_{t} L_{t}\right)^{2}\right]\left(E_{t} / E_{o}\right) } \\
G_{0}= & 10500 \mathrm{ksi}(\text { Table A4 of the Standard) } \\
\left(F_{n 2}=\right. & (1 / 2 \beta)\left[\left(\sigma_{e x}+\sigma_{t}\right)-\sqrt{\left(\sigma_{e x}+\sigma_{t}\right)^{2}-4 \beta \sigma_{e x} \sigma_{t}}\right] \\
= & {[1 /(2 x 0.392)][(95.78+25.10)} \\
& \left.-\sqrt{(95.78+25.10)^{2}-4 \times 0.392 x 95.78 \times 25.10}\right] \times(0.957) \\
= & 20.46 \mathrm{ksi} \text { (controls)} \quad\left(E_{t} / E_{o}\right. \text { is based on Table A10) }
\end{aligned}
$$

Then, F_{n} should be the smaller of $\left(F_{n}\right)_{1}$ and $\left(F_{n}\right)_{2}$.
$\mathrm{F}_{\mathrm{n}} \quad=20.46 \mathrm{ksi}$
3. Determination of A_{e} :

The effective area is the same as the full section area, i.e.,
$A_{e} \quad=A=0.889$ in. ${ }^{2}$
4. Determination of P_{a} :

$$
\begin{align*}
P_{n} & =A_{e} F_{n} \tag{Eq.3.4-1}\\
& =0.889 \times 20.46 \\
& =18.19 \mathrm{kips} \\
\Omega & =2.15 \\
P_{a} & =P_{n} / \Omega=18.19 / 2.15 \\
& =8.46 \mathrm{kips}
\end{align*}
$$

EXAMPLE 16.1 C-SECTION w/WIDE FLANGE (LRFD)

By using the Load and Resistance Factor Design (LRFD) method, determine th design axial strength for C-section as shown in Figure 16.1 Use Type 30 . stainless steel, 1/4-Hard.

Figure 16.1 Section for Example 16.1

Given:

1. Section: $3.5^{\prime \prime} \times 3.5^{\prime \prime} \times 0.105^{\prime \prime}$ channel with stiffened flanges.
2. $K_{x} L_{x}=K_{y} L_{y}=K_{t} L_{t}=6 \mathrm{ft}$.

Solution:
The following equations used for computing the sectional properties for channel with lips are based on the information in Part III of Cold-Formed Steel Design Manual (1986), American Iron and Steel Institute, Washington, D.C.

1. Basic parameters used for calculating the section properties:
$\mathrm{r}=\mathrm{R}+\mathrm{t} / 2=3 / 16+0.105 / 2=0.240 \mathrm{in}$.
From the sketch $a=2.914 \mathrm{in.} b=,2.914 \mathrm{in} ., \mathrm{c}=0.607 \mathrm{in} .$, $A^{\prime}=3.5$ in., $\quad B^{\prime}=3.5$ in., $\quad C^{\prime}=0.9$ in., $a=1.00$ (for section has lips)
$\vec{a} \quad=A^{\prime}-t=3.5-0.105=3.395 \mathrm{in}$.
$\overline{\mathrm{b}} \quad=\mathrm{B}^{\prime}-\mathrm{t}=3.5-0.105=3.395 \mathrm{in}$.
$\bar{c} \quad=C^{\prime}-t / 2=0.9-0.105 / 2=0.848 \mathrm{in}$.
$\mathrm{u} \quad=1.57 \mathrm{r}=1.57 \times 0.240=0.377 \mathrm{in}$.
2. Area:

$$
\begin{aligned}
A & =t(a+2 b+2 c+4 u] \\
& =0.105[2.914+2 \times 2.914+2 \times 0.607+4 \times 0.377] \\
& =1.204 \text { in. }^{2}
\end{aligned}
$$

3. Moment of inertia about x-axis:

$$
\begin{aligned}
I_{x}= & 2 t\left[0.0417 a^{3}+b(a / 2+r)^{2}+2 u(a / 2+0.637 r)^{2}+0.298 r^{3}\right. \\
& \left.+0.0833 c^{3}+(c / 4)(a-c)^{2}\right] \\
= & 2 x 0.105\left[0.0417(2.914)^{3}+2.914(2.914 / 2+0.240)^{2}\right. \\
& +2 x 0.377(2.914 / 2+0.637 \times 0.240)^{2}+0.298(0.240)^{3} \\
& \left.+0.0833(0.607)^{3}+(0.607 / 4)(2.914-0.607)^{2}\right] \\
= & 2.564 \mathrm{in}^{4}
\end{aligned}
$$

4. Distance from centroid of section to centerline of web:

$$
\bar{x} \quad=(2 t / A)[b(b / 2+r)+u(0.363 r)+u(b+1.637 r)+c(b+2 r)]
$$

$$
\begin{aligned}
= & {[(2 \times 0.105) / 1.204\rceil[2.914(2.914 / 2+0.240)+0.377(0.363 \times 0.240)} \\
& +0.377(2.914+1.637 \times 0.240)+0.607(2.914+2 \times 0.240) \rrbracket \\
= & 1.445 \mathrm{in} .
\end{aligned}
$$

5. Moment of inertia about y-axis:
```
I
    +u(b+1.637r)2]-A(\overline{x}\mp@subsup{)}{}{2}
    = 2x0.105[2.914(2.914/2+0.240) 2+0.0833(2.914)3
    +0.505(0.240)}\mp@subsup{)}{}{3}+0.607(2.914+2\times0.240)\mp@subsup{}{}{2
    +0.377(2.914+1.637x0.240)2]-1.204(1.445)2
    =2.017 in.4
```

6. Distance from shear center to centerline of web:
```
m
    = (\overline{b}t/12I 
    = [(3.395x0.105)/(12x2.564)][6x0.848(3.395)}\mp@subsup{}{}{2
        +3x3.395(3.395)2-8(0.848) 3]
    = 1.983 in.
```

7. Distance from centroid to shear center:

$$
\begin{aligned}
x_{0} \quad & =-(\bar{x}+m)=-(1.445+1.983) \\
& =-3.428 \mathrm{in} .
\end{aligned}
$$

8. St. Venant torsion constant:
$J \quad=\left(t^{3} / 3\right)[a+2 b+2 c+4 u]$
$=\left[(0.105)^{3} / 3\right][2.914+2 \times 2.914+2 \times 0.607+4 \times 0.377]$
$=0.004424$ in. ${ }^{4}$
9. Warping Constant:

$$
\begin{aligned}
\mathrm{C}_{w}= & \left(t^{2} / A\right)\left\{(\overline { x } A (\overline { a }) ^ { 2 } / t] \left\{(\bar{b})^{2} / 3+m^{2}-m \bar{b}+(A / 3 t)\left[(m)^{2}(\bar{a})^{3}\right.\right.\right. \\
& \left.+(\bar{b})^{2}(\bar{c})^{2}(2 \bar{c}+3 \bar{a})\right]-\left(I_{x} m^{2} / t\right)(2 \bar{a}+4 \bar{c})+\left[m(\bar{c})^{2} / 3\right]\left[8(\bar{b})^{2}(\bar{c})\right. \\
& +2 m(2 \bar{c}(\bar{c}-\bar{a})+\bar{b}(2 \bar{c}-3 \bar{a}))]+\left[(\bar{b})^{2}(\bar{a})^{2} / 6\right]\left[(3 \bar{c}+\bar{b})(4 \bar{c}+\bar{a})-6(\bar{c})^{2}\right. \\
& \left.-m^{2}(\bar{a})^{4} / 4\right\} \\
= & {\left[(0.105)^{2} / 1.204\right]\left\{[1 . 4 4 5 \times 1 . 2 0 4 \times (3 . 3 9 5) ^ { 2 } / 0 . 1 0 5] \left[(3.395)^{2} / 3\right.\right.} \\
& +(1.983)^{2}-1.983 \times 3.395+1.204 /(3 \times 0.105)\left[(1.983)^{2}(3.395)^{3}\right. \\
& \left.+(3.395)^{2}(0.848)^{2}(2 \times 0.848+3 \times 3.395)\right] \\
& -\left[2.564 \times(1.983)^{2} / 0.105(2 \times 3.395+4 \times 0.848)\right. \\
& \left.+1.983(0.848)^{2} / 3\right]\left[8(3.395)^{2}(0.848)\right. \\
& +2 \times 1.983(2 \times 0.848(0.848-3.395)+3.395(2 \times 0.848-3 \times 3.395))] \\
& +\left[(3.395)^{2}(3.395)^{2} / 6\right][(3 \times 0.848+3.395)(4 \times 0.848+3.395) \\
& \left.\left.-6(0.848)^{2}\right]-\left[(1.983)^{2}(3.395)^{4} / 4\right]\right\} \\
= & 7.572 \mathrm{in} .^{6}
\end{aligned}
$$

10. Radii of gyration:

$$
\begin{aligned}
& r_{x} \quad=\sqrt{\left(I_{x} / A\right)}=\sqrt{(2.564 / 1.204)}=1.459 \mathrm{in} . \\
& r_{y} \quad=\sqrt{\left(I_{y} / A\right)}=\sqrt{(2.017 / 1.204)}=1.294 \mathrm{in} . \\
& \begin{aligned}
\left(K_{y} L_{y}\right) / r_{y} & =(6 x 12) / 1.294=55.64<200 \\
r_{0}^{2} & =r_{x}^{2}+r_{y}^{2}+x_{0}^{2}=(1.459)^{2}+(1.294)^{2}+(-3.428)^{2} \\
& =15.554 \text { in. }^{2}
\end{aligned}
\end{aligned}
$$

11. Torsional-flexural constant:

$$
\begin{aligned}
\beta \quad & =1-\left(x_{0} / r_{0}\right)^{2} \\
& =1-(-3.428)^{2} / 15.554 \\
& =0.244
\end{aligned}
$$

12. Determination of F_{n} : (Section 3.4 of the Standard)

For this singly symmetric section (x-axis is the axis of symmetry), F_{n} shall be taken as the smaller of either
(Eq. 3.4.1-1) or (Eq. 3.4.3-1):
a. For Flexural Buckling:

$$
\begin{equation*}
\left(F_{n}\right)_{1}=\left(\pi^{2} E_{t}\right) /\left(K_{y} L_{y} / r_{y}\right)^{2} \tag{Eq.3.4.1-1}
\end{equation*}
$$

In the determination of the flexural buckling stress, it is necessary to select a proper value of E_{t} from Table A13 or Figure A11 in the Standard for the assumed stress. For the first approximation, assume a compressive stress of $f=32.0$ ksi.

From Table A13, the corresponding value of E_{t} is found to be equal to 11300 ksi . Thus,

$$
\begin{aligned}
\left(F_{n}\right)_{1} & =\left(\pi^{2} \times 11300\right) /(55.64)^{2} \\
& =36.02 \mathrm{ksi}>\text { assumed stress } f=32.0 \mathrm{ksi}
\end{aligned}
$$

Because the computed stress is larger than the assumed value, further successive approximations are needed. For the second approximation, assume $f=33.77 \mathrm{ksi}$, and

$$
\begin{aligned}
\mathrm{E}_{\mathrm{t}} & =10600 \mathrm{ksi} \\
\left(\mathrm{~F}_{\mathrm{n}}\right)_{1} & =\left(\pi^{2} \times 10600\right) /(55.64)^{2} \\
& =33.79 \mathrm{ksi}=\text { assumed stress } \mathrm{f}=33.77 \mathrm{ksi} \text { OK }
\end{aligned}
$$

b. For Torsional-Flexural Buckling:

$$
\begin{equation*}
\left(F_{n}\right)_{2}=(1 / 2 \beta)\left[\left(\sigma_{e x}+\sigma_{t}\right)-\sqrt{\left(\sigma_{e x}+\sigma_{t}\right)^{2}-4 \beta \sigma_{e x} \sigma_{t}}\right] \tag{Eq.3.4.3-1}
\end{equation*}
$$

where
$\sigma_{e x}=\left[\left(\pi^{2} E_{0}\right) /\left(K_{x} L_{x} / r_{x}\right)^{2}\right]\left(E_{t} / E_{0}\right)$
(Eq. 3.4.3-3)
$\sigma_{t}=\left[1 /\left(A r_{0}^{2}\right)\right]\left[G_{0} J+\left(\pi^{2} E_{0} C_{w}\right) /\left(K_{t} L_{t}\right)^{2}\right]\left(E_{t} / E_{0}\right)$
$G_{0} \quad=10500 \mathrm{ksi}$ (Table A4 of the Standard)

Similar to the determination of flexural buckling stress, the plasticity reduction factor of E_{t} / E_{o} used for determining the torsional-flexural buckling stress depends on the assumed stress value. For the first approximation, assume a buckling stress of $f=20 \mathrm{ksi}$. The value of E_{t} / E_{o} is found to be equal to 1.0 , which is obtained from Table A10 or Figure A7 of the Standard. Thus,

$$
\begin{aligned}
\sigma_{e x} & =\left[\left(\pi^{2} \times 27000\right) /(6 \times 12 / 1.459)^{2}\right] \times(1.0) \\
& =109.42 \mathrm{ksi} \\
\sigma_{t} & =[1 /(1.204 \times 15.554)]\left[10500 \times 0.004424+\pi^{2} \times 27000 \times 7.572 /(6 \times 12)^{2}\right] \times(1.0) \\
& =23.27 \mathrm{ksi}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\left(\mathrm{F}_{\mathrm{n} 2}\right)= & (1 / 2 \beta)\left[\left(\sigma_{\mathrm{ex}}+\sigma_{\mathrm{t}}\right)-\sqrt{\left(\sigma_{\mathrm{ex}}+\sigma_{\mathrm{t}}\right)^{2}-4 \beta \sigma_{\mathrm{ex}} \sigma_{\mathrm{t}}}\right] \\
= & {[1 /(2 \times 0.244)][(109.42+23.27)} \\
& \left.-\sqrt{(109.42+23.27)^{2}-4 \times 0.244 \times 109.42 \times 23.27}\right] \\
= & 19.92 \mathrm{ksi}
\end{aligned}
$$

Because the computed stress $\left(F_{n}\right)_{2}$ is less than the assumed value of $f=20 \mathrm{ksi}$, the second approximation will be assumed that
a stress of $f=19.92 \mathrm{ksi}$ and $E_{t} / E_{o}=1.0$. Thus,
$\left(F_{n 2}=19.92 \mathrm{ksi}\right.$ OK
F_{n} should be the smaller of $\left(F_{n}\right)_{1}$ and $\left(F_{n}\right)_{2}$.
$F_{n}=19.92 \mathrm{ksi}$
13. Determination of A_{e} :

Flanges:
$\mathrm{d} \quad=0.607 \mathrm{in}$.
$I_{s} \quad=d^{3} t / 12=(0.607)^{3}(0.105) / 12$

$$
\begin{array}{ll}
& =0.001957 \mathrm{in.}^{4} \\
\mathrm{D} & =0.9 \mathrm{in} . \\
\mathrm{W} & =2.914 \mathrm{in} . \quad \text { (for flange) } \\
\mathrm{D} / \mathrm{W} & =0.9 / 2.914=0.309<0.80 \\
\mathrm{~S} & =1.28 \sqrt{E_{\mathrm{o}} / \mathrm{f},} \mathrm{f}=\mathrm{F}_{\mathrm{n}} \tag{Eq.2.4-1}
\end{array}
$$

The initial modulus of elasticity, E_{o}, for Type 304 stainless steel is obtained from Table A4 of the Standard, i.e., $E_{o}=27000 \mathrm{ksi}$ $\mathrm{S}=1.28 \sqrt{27000 / 19.92}=47.12, \mathrm{~S} / 3=15.71$
$w / t=2.914 / 0.105=27.75$
$\mathrm{S} / 3<\mathrm{w} / \mathrm{t}<\mathrm{S}$
$I_{a}=399 t^{4}\{[(w / t) / S]-0.33\}^{3}$
(Eq. 2.4.2-6)
$=399(0.105)^{4}[(27.75 / 47.12)-0.33]^{3}$
$=0.000842$ in. ${ }^{4}<\mathrm{I}_{\mathbf{s}}=0.001957 \mathrm{in} .^{4}$
$C_{1} \quad=2-\left(I_{s} / I_{a}\right) \geq 1.0$
(Eq. 2.4.2-8)
$=2-(0.001957 / 0.000842)=-0.32<1.0$
$C_{1}=1.0$
$C_{2} \quad=I_{s} / I_{a} \leq 1.0$
(Eq. 2.4.2-7)
$I_{s} / I_{a}=(0.001957 / 0.000842)=2.32>1.0$
$C_{2}=1.0$
$0.25<\mathrm{D} / \mathrm{w}=0.309<0.8$
$k=[4.82-5(D / w)]\left(I_{s} / I_{a}\right)^{n}+0.43 \leq 5.25-5(D / w)$
(Eq. 2.4.2-9)
$\mathrm{n} \quad=1 / 2$
$[4.82-5(0.309)](0.001957 / 0.000842)^{1 / 2}+0.43=5.414$
$5.25-5(0.309)=3.705<5.414$
$k=3.705$
$\lambda \quad=(1.052 / \sqrt{k})(w / t) \sqrt{f / E_{0}}, \quad f=F_{\mathrm{n}}$
(Eq. 2.2.1-4)
$=(1.052 / \sqrt{3.705})(27.75) \sqrt{19.92 / 27000}=0.412<0.673$

```
b =w
    =2.914 in. (flanges fully effective)
w/t = 27.75 < 90 (Section 2.1.1-(1)-(i))
```

Web:

```
\(\omega \quad=2.914 \mathrm{in} ., \mathrm{k}=4.00\)
\(\lambda=(1.052 / \sqrt{4})(2.914 / 0.105) \sqrt{19.92 / 27000}\)
    \(=0.397<0.673\)
b \(\quad=w=2.914\) in. (web fully effective)
\(w / t=2.914 / 0.105=27.75<400\) (Section 2.1.1-(1)-(ii))
```


Lips:

$\mathrm{d} \quad=0.607 \mathrm{in}$.
$k \quad=0.50$ (unstiffened compression element)
$\lambda=(1.052 / \sqrt{0.50})(0.607 / 0.105) \sqrt{19.92 / 27000}$
$=0.234<0.673$
$\mathrm{d}^{\prime}{ }_{\mathrm{s}} \quad=\mathrm{d}=0.607 \mathrm{in}$.
$d_{s} \quad=d^{\prime}{ }_{s}\left(I_{s} / I_{a}\right) \leq d^{\prime}$
(Eq. 2.4.2-11)
$d_{s} \quad=0.607 \mathrm{in}$. (Lip fully effective in computing the overall effective area)
$\mathrm{d} / \mathrm{t}=5.78$
Since flanges, web, and lips are fully effective, the effective area is the same as the full section area, i.e.,

$$
A_{\mathrm{e}} \quad=\mathrm{A}=1.204 \text { in. }^{2}
$$

14. Determination of $\phi_{c} P_{n}$: (Section 3.4 of the Standard)

$$
\begin{equation*}
P_{n} \quad=A_{e} F_{n} \tag{Eq.3.4-1}
\end{equation*}
$$

$$
\begin{aligned}
& =1.204 \times 19.92 \\
& =23.98 \mathrm{kips} \\
\Phi_{\mathrm{C}} & =0.85 \\
\phi_{\mathrm{c}} \mathrm{P}_{\mathrm{n}} & =0.85 \times 23.98 \\
& =20.38 \mathrm{kips}
\end{aligned}
$$

EXAMPLE 16.2 C-SECTION w/WIDE FLANGE (ASD)

Determine the allowable axial load for C-section used in Example 16.1.

Solution:

1. Basic parameters used for calculating the section properties:

See Example 16.1 for section properties of C-section.
2. Determination of F_{n}

The following results are obtained from Example 16.1.
a. For Flexural Buckling:

$$
\begin{align*}
\left(F_{n}\right)_{1} & =\left(\pi^{2} E_{t}\right) /\left(K_{y} L_{y} / r_{y}\right)^{2} \tag{Eq.3.4.1-1}\\
\left(F_{n}\right)_{1} & =\left(\pi^{2} \times 10600\right) /(55.64)^{2} \\
& =33.79 \mathrm{ksi}
\end{align*}
$$

b. For Torsional-Flexural Buckling:

$$
\begin{equation*}
\left(F_{\mathrm{n}}\right)_{2}=(1 / 2 \beta)\left[\left(\sigma_{\mathrm{ex}}+\sigma_{\mathrm{t}}\right)-\sqrt{\left(\sigma_{\mathrm{ex}}+\sigma_{\mathrm{t}}\right)^{2}-4 \beta \sigma_{\mathrm{ex}} \sigma_{\mathrm{t}}}\right] \tag{Eq.3.4.3-1}
\end{equation*}
$$

where

$$
\begin{aligned}
\sigma_{e x}= & {\left[\left(\pi^{2} E_{o}\right) /\left(K_{x} L_{x} / r_{x}\right)^{2}\right]\left(E_{t} / E_{o}\right) } \\
\sigma_{t}= & 1 /\left(A r_{o}^{2}\right)\left[G_{o}{ }^{\left.J+\left(\pi^{2} E_{o} C_{w}\right) /\left(K_{t} L_{t}\right)^{2}\right]\left(E_{t} / E_{o}\right)}\right. \\
G_{o}= & 10500 \mathrm{ksi}(\text { Table A4 of the Standard) } \\
\left(F_{n 2}=\right. & (1 / 2 \beta)\left[\left(\sigma_{e x}+\sigma_{t}\right)-\sqrt{\left(\sigma_{e x}+\sigma_{t}\right)^{2}-4 \beta \sigma_{e x} \sigma_{t}}\right] \\
= & {[1 /(2 \times 0.244)][(109.42+23.27)} \\
& \left.-\sqrt{(109.42+23.27)^{2}-4 \times 0.244 \times 109.42 \times 23.27}\right] \\
= & 19.92 \mathrm{ksi} \text { (control) }
\end{aligned}
$$

Then, F_{n} should be the smaller of $\left(F_{n}\right)$ and $\left(F_{n}\right)_{2}$.
$\mathrm{F}_{\mathrm{n}}=19.92 \mathrm{ksi}$
3. Determination of A_{e} :

The effective area is the same as the full section area, i.e.,
$A_{e} \quad=A=1.204$ in. 2 (from Example 16.1)
4. Determination of P_{a} :

$$
\begin{aligned}
P_{\mathrm{n}} & =A_{e} F_{\mathrm{n}} \\
& =1.204 \times 19.92 \\
& =23.98 \mathrm{kips} \\
\Omega & =2.15 \\
\mathrm{P}_{\mathrm{a}} \quad & =\mathrm{P}_{\mathrm{n}} / \Omega=23.98 / 2.15 \\
& =11.15 \mathrm{kips}
\end{aligned}
$$

EXAMPLE 17.1 I-SECTION (LRFD)

By using the Load and Resistance Factor Design (LRFD) method, determine th design axial strength for the I-section as shown in Figure 17.1. Use Typ 409 stainless steel.

Figure 17.1 Section for Example 17.1

Given:

1. Section: $6.0^{\prime \prime} \times 3.0^{\prime \prime} \times 0.135^{\prime \prime}$ I-section with no lips.
2. $K_{x} L_{x}=14 \mathrm{ft} ., K_{y} L_{y}=7.0 \mathrm{ft}$.

Solution:

The following equations used for computing the sectional properties for I-section with no lips are based on the information in Part III of Cold-Formed Steel Design Manual (1986), American Iron and Steel Institute, Washington, D.C.

1. Basic parameters used for calculating the sectional properties:

$$
\mathrm{r} \quad=\mathrm{R}+\mathrm{t} / 2=3 / 16+0.135 / 2=0.255 \mathrm{in} .
$$

From the sketch, $A^{\prime}=6.0$ in., $B^{\prime}=C^{\prime}=1.5 \mathrm{in}$.
$a=1.00$ (For I-section)

$$
\begin{array}{ll}
\mathrm{a} & =A^{\prime}-[r+t / 2+(r+t / 2)] \\
& =6.0-(0.255+0.135 / 2+0.255+0.135 / 2)=5.355 \mathrm{in} \\
\overline{\mathrm{a}} & =A^{\prime}-(\mathrm{t} / 2+\mathrm{at} / 2)=6.0-0.135=5.865 \mathrm{in} \\
\mathrm{~b}=\mathrm{c} & =B^{\prime}-(\mathrm{r}+\mathrm{t} / 2)=1.5-(0.255+0.135 / 2)=1.178 \mathrm{in} . \\
\overline{\mathrm{b}}=\bar{c} & =B^{\prime}-\mathrm{t} / 2=1.5-0.135 / 2=1.433 \mathrm{in} . \\
\mathrm{u} & =1.57 \mathrm{r}=1.57 \times 0.255=0.40 \mathrm{in} .
\end{array}
$$

2. Area:

$$
\begin{aligned}
A & =t[2 a+2 b+2 u+\alpha(2 c+2 u)] \\
& =0.135(2 \times 5.355+2 \times 1.178+2 \times 0.40+2 \times 1.178+2 \times 0.4) \\
& =2.298 \text { in. }^{2}
\end{aligned}
$$

3. Moment of inertia about y-axis:

$$
\begin{aligned}
I_{y}= & 2 t\left\{b(b / 2+r+t / 2)^{2}+0.0833 b^{3}+u(0.363 r+t / 2)^{2}+0.149 r^{3}\right. \\
& \left.+a\left[c(c / 2+r+t / 2)^{2}+0.0833 b^{3}+u(0.363 r+t / 2)^{2}+0.149 r^{3}\right]\right\} \\
= & 2 t x 2\left[b(b / 2+r+t / 2)^{2}+0.0833 b^{3}+u(0.363 r+t / 2)^{2}+0.149 r^{3}\right] \\
= & 2 \times 0.135 \times 2\left(1.178(1.178 / 2+0.255+0.135 / 2)^{2}+0.0833(1.178)^{3}\right. \\
& \left.+0.4(0.363 \times 0.255+0.135 / 2)^{2}+0.149(0.255)^{3}\right] \\
= & 0.609 \text { in. }
\end{aligned}
$$

4. Distance between centroid and flange centerline:

$$
\overline{\mathrm{y}} \quad=\overline{\mathrm{a}} / 2=5.865 / 2=2.933 \mathrm{in} .
$$

5. Moment of inertia about x-axis:

$$
\begin{aligned}
\mathrm{I}_{\mathrm{x}}= & 2 t\left\{0.358 \mathrm{r}^{3}+\mathrm{a}(\mathrm{a} / 2+\mathrm{r})^{2}+0.0833 a^{3}+\mathrm{a}\left[\mathrm{u}(\mathrm{a}+1.637 \mathrm{r})^{2}\right.\right. \\
& \left.\left.+0.149 \mathrm{r}^{3}+\mathrm{c}(\mathrm{a}+2 \mathrm{r})^{2}\right]\right\}-\mathrm{A}(\mathrm{y})^{2} \\
= & 2 \mathrm{x} 0.135\left[0.358(0.255)^{3}+5.355(5.355 / 2+0.255)^{2}+0.0833(5.355)^{3}\right. \\
& \left.+0.4(5.355+1.637 \mathrm{x} 0.255)^{2}+0.149(0.255)^{3}+1.178(5.355+2 \mathrm{x} 0.255)^{2}\right] \\
& -2.298(2.933)^{2} \\
= & 10.66 \text { in. } 4
\end{aligned}
$$

6. Distance between shear center and flange centerline:

$$
\mathrm{m} \quad=\bar{a} / 2=2.933 \mathrm{in} .
$$

7. Distance between centroid and shear center:

$$
y_{0} \quad=-(\bar{y}-m)=0
$$

8. St. Venant torsion constant:

$$
\begin{aligned}
\mathrm{J} & =\left(2 \mathrm{t}^{3} / 3\right)[\mathrm{a}+\mathrm{b}+\mathrm{u}+\mathrm{a}(\mathrm{u}+\mathrm{c})] \\
& =\left[2 \mathrm{x}(0.135)^{3} / 3\right](5.355+1.178+0.4+0.4+1.178) \\
& =0.0140 \mathrm{in.}^{4}
\end{aligned}
$$

9. Warping Constant:

$$
\begin{aligned}
C_{w} & =\left(t \bar{a}^{2} / 12\right) \times 8(\bar{b})^{3}(\bar{c})^{3} /\left[(\bar{b})^{3}+(\bar{c})^{3}\right] \\
& =\left(t \bar{a}^{2} / 12\right) \times 4 \bar{b}^{3} \\
& =\left[0.135(5.865)^{2} / 12\right] \times 4(1.433)^{3} \\
& =4.55 \mathrm{in} .
\end{aligned}
$$

10. Radii of gyration:

$$
\begin{aligned}
& r_{x} \quad=\sqrt{\left(I_{x} / A\right)}=\sqrt{(10.66 / 2.298)}=2.154 \mathrm{in} . \\
& r_{y} \quad=\sqrt{\left(I_{y} / A\right)}=\sqrt{(0.609 / 2.298)}=0.515 \mathrm{in} . \\
& \left(K_{x} L_{x}\right) / r_{x}=(14 x 12) / 2.514=66.83<200 \\
& \left(K_{y} L_{y}\right) / r_{y}=(7 x 12) / 0.515=163.1<200 \quad \text { (control) } \\
& r_{o}^{2} \quad=r_{x}^{2}+r_{y}^{2}+y_{o}^{2}=(2.154)^{2}+(0.515)^{2}+0 \\
& \\
& =4.905 \mathrm{in}^{2}
\end{aligned}
$$

11. Determination of F_{n} : (Section 3.4 of the Standard)

For this doubly symmetric section (x -axis is the major axis),
F_{n} shall be taken as the smaller of either
(Eq. 3.4.1-1) or (Eq. 3.4.2-1):
a. For Flexural Buckling:

$$
\begin{equation*}
\left(F_{n}\right)_{1}=\left(\pi^{2} E_{t}\right) /\left(K_{y} L_{y} / r_{y}\right)^{2} \tag{Eq.3.4.1-1}
\end{equation*}
$$

In the determination of the flexural buckling stress, it is necessary to select a proper value of E_{t} from Table A14 or Figure A12 in the Standard for the assumed stress. For the first approximation, assume a compressive stress of $f=8 \mathrm{ksi}$. From Table A14, the corresponding value of E_{t} is found to be equal to 27000 ksi . Thus,

$$
\begin{aligned}
\left(F_{n}\right)_{1} & =\left(\pi^{2} \times 27000\right) /(163.1)^{2} \\
& =10.02 \mathrm{ksi}>\text { assumed stress } f=8 \mathrm{ksi}
\end{aligned}
$$

Because the computed stress is larger than the assumed value, the further successive approximation is needed. After several
trials, assume $f=10.0 \mathrm{ksi}$, and

$$
\begin{array}{ll}
E_{t} & =26900 \mathrm{ksi} \\
\left(F_{n}\right)_{1} & =\left(\pi^{2} \times 26900\right) /(163.1)^{2}
\end{array}
$$

```
=9.98 ksi \cong assumed stress f=10.0 ksi OK
```

Alternatively, the tangent modulus E_{t} can be determined by using the Modified Ramberg-Osgood equation as given in Appendix B of the Standard as follows:

$$
E_{t} \quad=\left(E_{o} F_{y}\right) /\left[F_{y}+0.002 n E_{o}\left(f / F_{y}\right)^{n-1}\right] \quad \text { (Eq. B-2) }
$$

From Table B in the Standard, the coefficient n is equal to 9.7 for Type 409 stainless steel in longitudinal compression. Thus, for an assumed compression stress of $f=10.0 \mathrm{ksi}$, $\left(F_{y}=30 \mathrm{ksi}, E_{0}=27000 \mathrm{ksi}\right)$

```
\(\mathrm{E}_{\mathrm{t}} \quad=(27000 \times 30) /\left[30+0.002 \times 9.7 \times 27000 \times(10.0 / 30)^{8.7}\right]\)
    \(=26966 \mathrm{ksi}\)
```

Therefore,

$$
\begin{aligned}
\left(F_{n}\right)_{1} & =\left(\pi^{2} \times 26966\right) /(163.1)^{2} \\
& =10.0 \mathrm{ksi}=\text { assumed stress } f=10.0 \mathrm{ksi} \quad O K
\end{aligned}
$$

It is found that for this example, the flexural buckling stress determined by using Eq. $\mathrm{B}-2$ is practically the same as that determoined by using the tabulated value.
b. For Torsional Buckling:

$$
\begin{aligned}
& \left(F_{n}\right)_{2}=\left[1 /\left(A r_{o}^{2}\right)\right]\left[G_{0} J+\left(\pi^{2} E_{o} C_{W}\right) /\left(K_{t} L_{t}\right)^{2}\right]\left(E_{t} / E_{o}\right) \\
& G_{0}=10500 \mathrm{ksi} \text { (Table A4 of the Standard) } \\
& \text { Similar to the determination of flexural buckling stress, the } \\
& \text { plasticity reduction factor of } E_{t} / E_{o} \text { depends on the assumed } \\
& \text { stress value. For the first approximation, assume a buckling } \\
& \text { stress of } f=8 \text { ksi. The value of } E_{t} / E_{o} \text { is found to be } \\
& \text { equal to } 1.0, \text { which is obtained from Table A11 or Figure A8 }
\end{aligned}
$$

of the Standard. Thus,

$$
\begin{aligned}
&\left(F_{n}\right)_{2}=[1 /(2.298 \times 4.905)]\left[10500 \times 0.014+\pi^{2} \times 27000 \times 4.555 /(7 \times 12)^{2}\right] \times(1.0) \\
&=28.3 \mathrm{ksi}>8 \mathrm{ksi} N G \\
& \text { After several trials, assume a stress of } \mathrm{f}=19.65 \mathrm{ksi}, \text { and } \\
& \mathrm{E}_{\mathrm{t}} / \mathrm{E}_{\mathrm{o}}=0.694 . \\
&\left(\mathrm{F}_{\mathrm{n}}\right)_{2}=[1 /(2.298 \times 4.905)]\left[10500 \times 0.014+\pi^{2} \times 27000 \times 4.555 /(7 \times 12)^{2}\right] \times(0.694) \\
&=19.64=\text { assumed value } \mathrm{OK}
\end{aligned}
$$

The plasticity reduction factor E_{t} / E_{o} can be alternatively determined by using the Ramberg-Osgood equation given in the Appendix B of the Standard as follows:

$$
\begin{equation*}
E_{t} / E_{o}=F_{y} /\left[F_{y}+0.002 n E_{o}\left(f / F_{y}\right)^{n-1}\right] \tag{Eq.B-5}
\end{equation*}
$$

From Table B in the Standard, the coefficient n is equal to 9.7
for Type 409 stainless steel. Thus, for an assumed compression stress of $f=19.65 \mathrm{ksi}$,

$$
\begin{aligned}
E_{t} / E_{o} & =30 / 30+0.002 \times 9.7 \times 27000 \times(19.65 / 30)^{8.7} \\
& =0.694
\end{aligned}
$$

Therefore,

$$
\left(F_{n}\right)_{2}=28.3 x(0.694)=19.65 \mathrm{ksi}=\text { assumed value } O K
$$

The lateral buckling stress determined by using Eq. B-5 is practically the same as that computed by using Table All.

Then, F_{n} should be the smaller of $\left(F_{n}\right)_{1}$ and $\left(F_{n}\right)_{2}$. $F_{n}=10.0 \mathrm{ksi}$
12. Determination of A_{e} :

Unstiffened Compression Flanges: ($k=0.5$)

$$
\begin{align*}
w / t \quad & =1.178 / 0.135=8.73<50 \\
\lambda & =(1.052 / \sqrt{k})(w / t) \sqrt{f / E_{o}}, f=F_{\mathrm{n}} \tag{Eq.2.2.1-4}\\
& =(1.052 / \sqrt{0.5})(8.73) \sqrt{10.0 / 27000} \\
& =0.25<0.673 \\
b & =w \\
& =1.178 \mathrm{in} . \text { (flanges fully effective) }
\end{align*}
$$

(Eq. 2.4.2-1)
(Eq. 2.4.2-3)

Web: (Sec. 2.2.2-(2))
$\mathrm{w} \quad=5.355 \mathrm{in} .$,
$w / t=5.355 / 0.135=39.67$
$\mathrm{k}=4.0$
$\lambda \quad=(1.052 / \sqrt{k})(w / t) \sqrt{f / E_{0}}, \quad f=F_{n}$
(Eq. 2.2.1-4)
$=(1.052 / \sqrt{4})(39.67) \sqrt{10.0 / 27000}$
$=0.40<0.673$
b $=\mathrm{w}$
(Eq. 2.2.1-1)
$=5.355$ in. (web fully effective)
Since flanges and webs are fully effective, the effective
area is the same as the full section area, i.e.,
$A_{e} \quad=A=2.298$ in. ${ }^{2}$
13. Determination of $\Phi_{c} P_{n}$: (Section 3.4 of the Standard)

$$
\begin{align*}
P_{\mathrm{n}} & =A_{e} F_{\mathrm{n}} \\
& =2.298 \times 10.0 \\
& =22.98 \mathrm{kips} \\
\Phi_{\mathrm{c}} & =0.85
\end{align*}
$$

The design axial strength is

$$
\begin{aligned}
\Phi_{c} P_{n} & =0.85 \times 22.98 \\
& =19.53 \mathrm{kips}
\end{aligned}
$$

EXAMPLE 17.2 I-SECTION (ASD)

Determine the allowable axial load for the I-section used in Example 17.1 .

Solution:

1. Basic parameters used for calculating the sectional properties:

See Example 17.1 for calculation of sectional properties of the I-section.
2. Determination of F_{n}

The following results are obtained from Example 17.1.
a. For Flexural Buckling:

$$
\begin{aligned}
\left(F_{n}\right)_{1} & =\left(n^{2} E_{t}\right) /\left(K_{y} L_{y} / r_{y}\right)^{2} \\
\left(F_{n}\right)_{1} & =\left(\pi^{2} \times 26900\right) /(163.1)^{2} \\
& =10.0 \mathrm{ksi} \quad\left(\text { see Example } 17.1 \text { for } E_{t}\right)
\end{aligned}
$$

(Eq. 3.4.1-1)
b. For Torsional Buckling:

$$
\begin{aligned}
\left(F_{n}\right)_{2} & =\left[1 /\left(A r_{o}^{2}\right)\right]\left[G_{o} J+\left(\pi^{2} E_{o} C_{w}\right) /\left(K_{t} L_{t}\right)^{2}\right]\left(E_{t} / E_{o}\right) \quad(\text { Eq. } 3.4 .2-1) \\
& =[1 /(2.298 \times 4.905)]\left[10500 \times 0.014+\pi^{2} \times 27000 \times 4.555 /(7 \times 12)^{2}\right](0.694) \\
& =19.65 \mathrm{ksi}
\end{aligned}
$$

Then, F_{n} should be the smaller of $\left(F_{n}\right)_{1}$ and $\left(F_{n}\right)_{2}$.
$\mathrm{F}_{\mathrm{n}}=10.0 \mathrm{ksi}$
3. Determination of A_{e} :

The effective area is the same as the full section area, i.e., $A_{e} \quad=A=2.298$ in. 2 (See Example 17.1)
4. Determination of P_{a} :

$$
\begin{align*}
P_{n} & =A_{e} F_{n} \tag{Eq.3.4-1}\\
& =2.298 \times 10.0
\end{align*}
$$

$$
\begin{aligned}
& =22.98 \mathrm{kips} \\
\Omega & =2.15
\end{aligned}
$$

The allowable axial load is

$$
\begin{aligned}
\mathrm{P}_{\mathrm{a}} & =\mathrm{P}_{\mathrm{n}} / \Omega=22.98 / 2.15 \\
& =10.69 \mathrm{kips}
\end{aligned}
$$

EXAMPLE 18.1 I-SECTION W/LIPS (LRFD)

By using the Load and Resistance Factor Design (LRFD) method, determine the design axial strength for the I-section as shown in Figure 18.1. Use Type 409 stainless steel.

Figure 18.1 Section for Example 18.1

Given:

1. Section: 6.0" x $5.0^{\prime \prime} \times 0.135^{\prime \prime}$ I-section with lips.
2. $K_{x}=K_{y}=1.0, L_{x}=12.0 \mathrm{ft}$. and $L_{y}=6.0 \mathrm{ft}$.

Solution:

The following equations used for computing the sectional properties for I-section with lips are based on the information in Part III of Cold-Formed Steel Design Manual (1986), American Iron and Steel Institute, Washington, D.C.

1. Basic parameters used for calculating the sectional properties: (For a channel with lips)

$$
\mathrm{r} \quad=\mathrm{R}+\mathrm{t} / 2=3 / 16+0.135 / 2=0.255 \mathrm{in} .
$$

From the sketch, $A^{\prime}=6.0$ in., $\quad B^{\prime}=2.5$ in., $\quad C^{\prime}=0.82$ in. $a=1.00$ (For sections with lips)
a $\quad=A^{\prime}-(2 r+t)$
$=6.0-(2 \times 0.255+0.135)=5.355 \mathrm{in}$.
$\overline{\mathrm{a}} \quad=A^{\prime}-t=6-0.135=5.865 \mathrm{in}$.
b $\quad=B^{\prime}-[r+t / 2+a(r+t / 2)]=2.5-(2 x 0.255+0.135)=1.855 \mathrm{in}$.
$\overline{\mathrm{b}} \quad=\mathrm{B}^{\prime}-(\mathrm{t} / 2+\mathrm{at} / 2)=2.5-0.135=2.365 \mathrm{in}$.
$c \quad=a\left[c^{\prime}-(r+t / 2)\right]=0.82-(0.255+0.135 / 2)=0.498 \mathrm{in}$.
$\overline{\mathrm{c}} \quad=a\left(C^{\prime}-t / 2\right)=0.82-0.135 / 2=0.753 \mathrm{in}$.
$\mathbf{u} \quad=1.57 \mathrm{r}=1.57 \times 0.255=0.40 \mathrm{in}$.
2. Area: (lipped I-section)

$$
\begin{aligned}
A & =2 x t[a+2 b+2 u+a(2 c+2 u)] \\
& =2 x 0.135[5.355+2 \times 1.855+2 \times 0.40+2 \times 0.498+2 \times 0.4] \\
& =3.148 \text { in. }^{2}
\end{aligned}
$$

3. Moment of inertia about x-axis: (lipped I-section)

$$
\begin{aligned}
I_{x}= & 2 x 2 t\left\{0.0417 a^{3}+b(a / 2+r)^{2}+u(a / 2+0.637 r)^{2}+0.149 r^{3}\right. \\
& \left.+a\left[0.0833 c^{3}+(c / 4)(a-c)^{2}+u(a / 2+0.637 r)^{2}+0.149 r^{3}\right]\right\} \\
= & 2 \times 2 \times 0.135\left[0.0417(5.355)^{3}+1.855(5.355 / 2+0.255)^{2}\right. \\
& +0.4(5.355 / 2+0.637 \times 0.255)^{2}+0.149(0.255)^{3}+0.0833(0.498)^{3} \\
& +(0.498 / 4)(5.355-0.498)^{2}+0.4(5.355 / 2+0.637 \times 0.255)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& \left.+0.149(0.255)^{3}\right] \\
= & 17.15 \text { in. } .^{4}
\end{aligned}
$$

4. Distance bwtween centroid and web centerline for a lipped channel:

$$
\begin{aligned}
\overline{\mathrm{x}}= & (2 t / A)\{b(b / 2+r)+u(0.363 r)+a[u(b+1.637 r)+c(b+2 r)]\} \\
= & (2 \times 0.135 / 1.574)[1.855(1.855 / 2+0.255)+0.4(0.363 \times 0.255) \\
& +0.4(1.855+1.637 \times 0.255)+0.498(1.855+2 \times 0.255)] \\
= & 0.741 \mathrm{in.}
\end{aligned}
$$

5. Moment of inertia about y-axis:

For a channel with lips

$$
\begin{aligned}
I_{y}^{\prime}= & 2 t\left\{b(b / 2+r)^{2}+0.0833 b^{3}+0.356 r^{3}+a\left[c(b+2 r)^{2}\right.\right. \\
& \left.\left.+u(b+1.637 r)^{2}+0.149 r^{3}\right]\right\}-A(x)^{2} \\
= & 2 x 0.135\left[1.855(1.855 / 2+0.255)^{2}+0.0833(1.855)^{3}+0.356(0.255)^{3}\right. \\
& +0.498(1.855+2 \times 0.255)^{2}+0.4(1.855+1.637 \times 0.255)^{2}+0.149(0.255 \\
& -1.574(0.741)^{2} \\
= & 1.292 \mathrm{in} .^{4}
\end{aligned}
$$

For lipped I-section

$$
\begin{aligned}
I_{y} & =2\left[I_{y}^{\prime}+A(\bar{x}+t / 2)^{2}\right] \\
& =2\left[1.292+1.574(0.741+0.135 / 2)^{2}\right]=4.642 \mathrm{in}^{4}
\end{aligned}
$$

6. Distance between shear center and y-axis: (lipped I-section)

$$
\mathbf{m} \quad=0
$$

7. Distance between centroid and shear center: (lipped I-section)

$$
x_{0} \quad=0
$$

8. St. Venant torsion constant: (lipped I-section)

$$
\begin{aligned}
\mathrm{J} & =\left(2 \mathrm{xt}^{3} / 3\right)[a+2 b+2 \mathrm{u}+\mathrm{a}(2 \mathrm{c}+2 \mathrm{u})] \\
& =\left[2 \mathrm{x}(0.135)^{3} / 3\right][5.355+2 \times 1.855+2 \times 0.4+2 \times 0.498+2 \times 0.4] \\
& =0.0191 \mathrm{in.}^{4}
\end{aligned}
$$

9. Warping Constant: (lipped I-section)

$$
\begin{aligned}
\mathrm{C}_{\mathrm{w}}= & \left(t \overline{\mathrm{~b}}^{2} / 3\right)\left[(\overline{\mathrm{a}})^{2} \overline{\mathrm{~b}}+3(\overline{\mathrm{a}})^{2} \overline{\mathrm{c}}+6 \overline{\mathrm{a}}(\overline{\mathrm{c}})^{2}+4(\overline{\mathrm{c}})^{3}\right] \\
= & {\left[0.135(2.365)^{2} / 3\right]\left[(5.865)^{2}(2.365)+3(5.865)^{2}(0.753)\right.} \\
& \left.+6(5.865)(0.753)^{2}+4(0.753)^{3}\right] \\
= & 45.49 \mathrm{in} .{ }^{6}
\end{aligned}
$$

10. Radii of gyration: (lipped I-section)

$$
\begin{aligned}
& r_{x} \quad=\sqrt{\left(I_{x} / A\right)}=\sqrt{(17.15 / 3.148)}=2.334 \mathrm{in} . \\
& r_{y} \quad=\sqrt{\left(I_{y} / A\right)}=\sqrt{(4.642 / 3.148)}=1.214 \mathrm{in} . \\
& \left(K_{x} L_{x}\right) / r_{x}=(12 x 12) / 2.334=61.70<200 \text { (control) } \\
& \left(K_{y} L_{y}\right) / r_{y}=(6 x 12) / 1.214=59.3<200 \\
& r_{0}^{2} \quad=r_{x}^{2}+r_{y}^{2}+x_{o}^{2}=(2.334)^{2}+(1.214)^{2}+0 \\
& \quad=6.921 \text { in. }^{2}
\end{aligned}
$$

11. Determination of F_{n} : (Section 3.4 of the Standard) For this doubly symmetric section (x-axis is the major axis), F_{n} shall be taken as the smaller of either (Eq. 3.4.1-1) or (Eq. 3.4.2-1):
a. For Flexural Buckling:

$$
\begin{equation*}
\left(F_{n}\right)_{1}=\left(\pi^{2} E_{t}\right) /\left(K_{x} L_{x} / r_{x}\right)^{2} \tag{Eq.3.4.1-1}
\end{equation*}
$$

or the above equation can be written as follows:

$$
\left(F_{n}\right)_{1}=\left[\left(\pi^{2} E_{0}\right) /\left(K_{x} L_{x} / r_{x}\right)^{2}\right]\left(E_{t} / E_{0}\right)
$$

In the determination of the flexural buckling stress, it is necessary to select a proper value of (E_{t} / E_{0}) from Table A11 or Figure A8 in the Standard for the assumed stress. For the first approximation, assume a compressive stress of $f=20 \mathrm{ksi}$. From Table A11, the corresponding value of (E_{t} / E_{o}) is found to be equal to 0.66 . Thus,

$$
\begin{aligned}
\left(F_{n}\right)_{1} & =\left[\left(\pi^{2} \times 27000\right) /(61.7)^{2}\right](0.66) \\
& =46.2 \mathrm{ksi}>\text { assumed stress } f=20 \mathrm{ksi}
\end{aligned}
$$

Because the computed stress is larger than the assumed value, the further successive approximation is needed. After several trials, assume $f=23.50 \mathrm{ksi}$, and $\left(E_{t} / E_{o}\right)=0.336$.

$$
\begin{aligned}
\left(F_{n}\right)_{1} & =\left[\left(\pi^{2} \times 27000\right) /(61.7)^{2}\right] \times 0.336 \\
& =23.52 \mathrm{ksi}=\text { assumed stress } f=23.50 \mathrm{ksi} \quad \text { OK }
\end{aligned}
$$

b. For Torsional Buckling:

$$
\left(F_{n}\right)_{2}=\left[1 /\left(A r_{0}^{2}\right)\right]\left[G_{0} J+\left(\pi^{2} E_{0} C_{w}\right) /\left(K_{t} L_{t}\right)^{2}\right]\left(E_{t} / E_{0}\right)
$$

(Eq. 3.4.2-1)
$G_{0}=10500 \mathrm{ksi}$ (Table A4 of the Standard)
Similar to the determination of flexural buckling stress, the plasticity reduction factor of E_{t} / E_{0} depends on the assumed stress value. For the first approximation, assume a buckling stress of $f=24 \mathrm{ksi}$. The value of E_{t} / E_{o} is found to be equal to 0.29 , which is obtained from Table A11 or Figure A8 of the Standard. Thus,

$$
\begin{aligned}
\left(F_{n}\right)_{2} & =[1 /(3.148 \times 6.921)]\left[10500 \times 0.0191+\pi^{2} \times 27000 \times 45.49 /(6 \times 12)^{2}\right] \times(0.29) \\
& =33.79 \mathrm{ksi}>24 \mathrm{ksi} N G
\end{aligned}
$$

After several trials, assume a stress of $f=25.43 \mathrm{ksi}$, and $E_{t} / E_{0}=0.219$.

$$
\begin{aligned}
\left(\mathrm{F}_{\mathrm{n}}\right)_{2} & =[1 /(3.148 \times 6.921)]\left[10500 \times 0.0191+\pi^{2} \times 27000 \times 45.49 /(6 \times 12)^{2}\right] \times(0.219) \\
& =25.46 \cong \text { assumed value }=\mathrm{f}=25.43 \mathrm{ksi} \text { OK }
\end{aligned}
$$

Then, F_{n} should be the smaller of $\left(F_{n}\right)_{1}$ and $\left(F_{n}\right)_{2}$.
$\mathrm{F}_{\mathrm{n}}=23.52 \mathrm{ksi}$ (based on flexural buckling)
12. Determination of A_{e} :

Flanges:

$$
\begin{array}{ll}
\mathrm{d} & =0.498 \mathrm{in} . \\
\mathrm{I}_{\mathrm{s}} & =\mathrm{d}^{3} \mathrm{t} / 12=(0.498)^{3}(0.135) / 12 \\
& =0.001389 \mathrm{in} .4 \\
D & =0.82 \mathrm{in} . \\
\mathrm{W} & =1.855 \mathrm{in} . \\
D / W \quad & =0.82 / 1.855=0.442<0.80 \\
\mathrm{~S} & =1.28 \sqrt{\mathrm{E}_{\mathrm{o}} / \mathrm{f}}, \quad \mathrm{f}=\mathrm{F}_{\mathrm{n}} \tag{Eq.2.4-1}
\end{array}
$$

The initial modulus of elasticity, E_{o}, for Type 409 stainless steel is obtained from Table A5 of the Standard, i.e., $\mathrm{E}_{\mathrm{o}}=27000 \mathrm{ksi}$.

$$
\begin{array}{ll}
\mathrm{S} & =1.28 \sqrt{27000 / 23.52}=43.37 \\
\mathrm{w} / \mathrm{t} & =1.855 / 0.135=13.74<\mathrm{S} / 3=14.46 \\
\mathrm{I}_{\mathrm{a}} & =0 \text { (no edge stiffener needed) }
\end{array}
$$

(Eq. 2.4.2-2)
(Eq. 2.4.2-3)

Web:
$\mathrm{w} \quad=5.355 \mathrm{in} ., \mathrm{k}=4.00$
$\lambda=(1.052 / \sqrt{k})(w / t) \sqrt{f / E_{0}}, \quad f=F_{n}$
(Eq. 2.2.1-4)
$=(1.052 / \sqrt{4})(5.355 / 0.135) \sqrt{23.52 / 27000}$

$$
\begin{aligned}
& =0.616<0.673 \\
b & =w \\
& =5.355 \text { in. (web fully effective) } \\
w / t \quad & =5.355 / 0.135=39.67<400 \text { (Section } 2.1 .1-(1)-(\mathrm{ii}))
\end{aligned}
$$

Lips:
$\mathrm{d} \quad=0.498 \mathrm{in}$.
$\mathrm{k} \quad=0.50$ (unstiffened compression element)
$d_{s}=d_{s}^{\prime}$
(Eq. 2.4.2-4)
$\lambda=(1.052 / \sqrt{0.50})(0.498 / 0.135) \sqrt{23.52 / 27000}$
$=0.162<0.673$
$\mathrm{d}^{\prime}{ }_{\mathrm{s}}=\mathrm{d}=0.498 \mathrm{in} ., \mathrm{d}_{\mathrm{s}}=0.498 \mathrm{in}$.
$d / t=3.69<50$ (Section 2.1.1-(1)-(iii))
Since flanges, web, and lips are fully effective, the effective
area is the same as the full section area, i.e.,

$$
A_{\mathbf{e}} \quad=A=3.148 \mathrm{in.}^{2}
$$

14. Determination of $\phi_{c} P_{n}$: (Section 3.4 of the Standard)

$$
\begin{align*}
P_{\mathrm{n}} & =A_{\mathrm{e}} \mathrm{~F}_{\mathrm{n}} \tag{Eq.3.4-1}\\
& =3.148 \times 23.52 \\
& =74.04 \mathrm{kips} \\
\Phi_{\mathrm{c}} & =0.85
\end{align*}
$$

The design axial strength is

$$
\begin{aligned}
\Phi_{c} P_{n} & =0.85 \times 74.04 \\
& =62.93 \mathrm{kips}
\end{aligned}
$$

EXAMPLE 18.2 I-SECTION W/LIPS (ASD)

Determine the allowable axial load for the I-section used in Example 18.1.

Solution:

1. Basic parameters used for calculating the sectional properties:

See Example 18.1 for calculation of sectional properties of the I-section.
2. Determination of F_{n}

The following results are obtained from Example 18.1.
a. For Flexural Buckling:

$$
\begin{aligned}
\left(F_{n}\right)_{1} & =\left(\pi^{2} E_{o}\right) /\left(K_{x} L_{x} / r_{x}\right)^{2}\left(E_{t} / E_{o}\right) \\
\left(F_{n}\right)_{1} & =\left[\left(\pi^{2} \times 27000\right) /(61.7)^{2}\right](0.336) \\
& =23.52 \mathrm{ksi}
\end{aligned}
$$

b. For Torsional Buckling:
$\left(F_{n}\right)_{2}=\left[1 /\left(A r_{0}^{2}\right)\right]\left[G_{0} J+\left(\pi^{2} E_{0} C_{W}\right) /\left(K_{t} L_{t}\right)^{2}\right]\left(E_{t} / E_{0}\right) \quad$ (Eq. 3.4.2-1)
After several trials, assume a stress of $f=25.43 \mathrm{ksi}$, and $E_{t} / E_{o}=$ 0.2185 .

$$
\begin{aligned}
\left(F_{n}\right)_{2} & =[1 /(3.148 \times 6.921)]\left[10500 \times 0.0191+\pi^{2} \times 27000 \times 45.49 /(6 \times 12)^{2}\right] \times(0.219) \\
& =25.46 \cong \text { assumed value OK }
\end{aligned}
$$

Then, F_{n} should be the smaller of $\left(F_{n}\right)_{1}$ and $\left(F_{n}\right)_{2}$.
$F_{n}=23.52 \mathrm{ksi}$
3. Determination of A_{e} :

The effective area is the same as the full section area, i.e.,

$$
A_{e} \quad=A=3.148 \mathrm{in.}^{2}
$$

4. Determination of P_{a} :

$$
\begin{equation*}
P_{n} \quad=A_{e} F_{n} \tag{Eq.3.4-1}
\end{equation*}
$$

$$
\begin{aligned}
& =3.148 \times 23.52 \\
& =74.04 \mathrm{kips} \\
\Omega & =2.15
\end{aligned}
$$

The allowable axial load is

$$
\begin{aligned}
\mathrm{P}_{\mathrm{a}} & =\mathrm{P}_{\mathrm{n}} / \Omega=74.04 / 2.15 \\
& =34.44 \mathrm{kips}
\end{aligned}
$$

EXAMPLE 19.1 T-SECTION (LRFD)

By using the Load and Resistance Factor Design (LRFD) method, determine the design axial strength for the T-section as shown in Figure 19.1. Use Type 304, 1/4-Hard stainless steel.

Figure 19.1 Section for Example 19.1

Given:

1. Section: as ahown.
2. $K_{x} L_{x}=K_{y} L_{y}=8.0 \mathrm{ft}$.

Solution:

The following equations used for computing the sectional properties for T-section are based on the information in Part III of Cold-Formed Steel Design Manual (1986), American Iron and Steel Institute, Washington, D.C.

1. Basic parameters used for calculating the sectional properties:

$$
r \quad=R+t / 2=3 / 16+0.135 / 2=0.255 \mathrm{in} .
$$

From the sketch, $A^{\prime}=3.0$ in., $B^{\prime}=2.0$ in.
$a=0.00$ (For T-section)
$a \quad=A^{\prime}-[r+t / 2+a(r+t / 2)]$
$=3.0-(0.255+0.135 / 2)=2.678 \mathrm{in}$.
$\overline{\mathrm{a}} \quad=\mathrm{A}^{\prime}-(\mathrm{t} / 2+\alpha \mathrm{t} / 2)=3 \cdot 0-0.135 / 2=2.933 \mathrm{in}$.
$b \quad=B^{\prime}-(r+t / 2)=2.0-(0.255+0.135 / 2)=1.678 \mathrm{in}$.
$\bar{b} \quad=B^{\prime}-t / 2=2 \cdot 0-0.135 / 2=1.933 \mathrm{in}$.
$\mathrm{u}=1.57 \mathrm{r}=1.57 \times 0.255=0.40 \mathrm{in}$.
2. Area:

$$
\begin{aligned}
A & =t(2 a+2 b+2 u) \\
& =0.135(2 \times 2.678+2 \times 1.678+2 \times 0.40)=1.284 \mathrm{in}^{2}
\end{aligned}
$$

3. Moment of inertia about x-axis:

$$
\begin{aligned}
I_{x}= & 2 t\left[b(b / 2+r+t / 2)^{2}+0.0833 b^{3}+u(0.363 r+t / 2)^{2}\right. \\
& \left.+0.149 r^{3}\right] \\
= & 2 x 0.135\left[1.678(1.678 / 2+0.255+0.135 / 2)^{2}+0.0833(1.678)^{3}\right. \\
& \left.+0.4(0.363 \times 0.255+0.135 / 2)^{2}+0.149(0.255)^{3}\right] \\
= & 0.721 \mathrm{in.}^{4}
\end{aligned}
$$

4. Distance between centroid and flange centerline:

$$
\begin{aligned}
\overline{\mathrm{x}} \quad & =(2 t / A)[u(0.363 r)+a(a / 2+r)] \\
& =(2 \times 0.135 / 1.284)[0.4(0.363 \times 0.255)+2.678(2.678 / 2+0.255)] \\
& =0.905 \mathrm{in} .
\end{aligned}
$$

5. Moment of inertia about y-axis:

$$
\begin{aligned}
I_{y}= & 2 t\left[0.358 r^{3}+a(a / 2+r)^{2}+0.0833 a^{3}\right]-A(\bar{x})^{2} \\
= & 2 x 0.1350 .358(0.255)^{3}+2.678(2.678 / 2+0.255)^{2}+0.0833(2.678)^{3} \\
& -1.284(0.905)^{2} \\
= & 1.219 \mathrm{in.}^{4}
\end{aligned}
$$

6. Distance between shear center and flange centerline:

$$
\begin{aligned}
\mathrm{m} & =\bar{a}\left\{1-(\bar{b})^{3} /\left[(\bar{b})^{3}+(\bar{c})^{3}\right]\right\} \\
& =2.933\left\{1-(1.678)^{3} /\left[(1.678)^{3}+0\right]\right\}=0
\end{aligned}
$$

7. Distance between centroid and shear center:

$$
x_{0} \quad=-(\bar{x}-m)=-0.905 \mathrm{in} .
$$

8. St. Venant torsion constant:

$$
\begin{aligned}
\mathrm{J} & =\left(2 x t^{3} / 3\right)[a+b+u] \\
& =\left[2 x(0.135)^{3} / 3\right][2.678+1.678+0.4] \\
& =0.0078 \mathrm{in.}^{4}
\end{aligned}
$$

9. Warping Constant:

$$
C_{W} \quad=0
$$

10. Radii of gyration:

$$
\begin{aligned}
& r_{x} \quad=\sqrt{\left(I_{x} / A\right)}=\sqrt{(0.721 / 1.284)}=0.749 \mathrm{in} . \\
& r_{y} \quad=\sqrt{\left(I_{y} / A\right)}=\sqrt{(1.219 / 1.284)}=0.974 \mathrm{in} . \\
& \left(K_{x} L_{x}\right) / r_{x}=(8 x 12) / 0.749=128.17<200 \text { (control) } \\
& \left(K_{y} L_{y}\right) / r_{y}=(8 x 12) / 0.974=98.56<200 \\
& r_{0}^{2} \quad=r_{x}^{2}+r_{y}^{2}+x_{0}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& =(0.749)^{2}+(0.974)^{2}+(0.905)^{2} \\
& =2.329 \mathrm{in.}
\end{aligned}
$$

11. Torsional-flexural constant:

$$
\begin{aligned}
\beta & =1-\left(x_{0} / r_{0}\right)^{2} \\
& =1-(0.905)^{2} / 2.329 \\
& =0.648
\end{aligned}
$$

12. Determination of F_{n} : (Section 3.4 of the Standard)

For this singly symmetric section (x-axis is the axis of symmetric), F_{n} shall be taken as the smaller of either
(Eq. 3.4.1-1) or (Eq. 3.4.3-1):
a. For Flexural Buckling:

$$
\left(F_{n}\right)_{1}=\left(\Pi^{2} E_{t}\right) /\left(K_{x} L_{x} / r_{x}\right)^{2}
$$

(Eq. 3.4.1-1)

In the determination of the flexural buckling stress, it is necessary to select a proper value of E_{t} from Table A13 or Figure A11 in the Standard for the assumed stress. For the first approximation, assume a compressive stress of $f=20 \mathrm{ksi}$. From Table Al3, the corresponding value of E_{t} is found to be equal to 27000 ksi . Thus,

$$
\begin{aligned}
\left(F_{n}\right)_{1} & =\left(\pi^{2} \times 27000\right) /(128.17)^{2} \\
& =16.2 \mathrm{ksi}<\text { assumed stress } \mathrm{f}=20 \mathrm{ksi}
\end{aligned}
$$

Because the computed stress is less than the assumed value, flexural buckling is in the elastic region and therefore, no further approximation is needed. Thus,

$$
\begin{aligned}
& E_{t}=27000 \mathrm{ksi} \\
& \left(F_{n}\right)_{1}=16.2 \mathrm{ksi}
\end{aligned}
$$

b. For Torsional-Flexural Buckling:

$$
\left(F_{n}\right)_{2}=(1 / 2 \beta)\left[\left(\sigma_{e x}+\sigma_{t}\right)-\sqrt{\left(\sigma_{e x}+\sigma_{t}\right)^{2}-4 \beta \sigma_{e x} \sigma_{t}}\right]
$$

where

$$
\begin{array}{ll}
\sigma_{e x} & =\left[\left(\pi^{2} E_{0}\right) /\left(K_{x} L_{x} / r_{x}\right)^{2}\right]\left(E_{t} / E_{0}\right) \\
\sigma_{t} & =\left[1 /\left(A r_{0}^{2}\right)\right]\left[G_{0} J+\left(\pi^{2} E_{0} C_{w}\right) /\left(K_{t} L_{t}\right)^{2}\right]\left(E_{t} / E_{0}\right) \tag{Eq.3.4.2-1}\\
G_{0} & =10500 \mathrm{ksi} \quad \text { (Table A4 of the Standard) }
\end{array}
$$

Similar to the determination of flexural buckling stress, the plasticity reduction factor of E_{t} / E_{o} used for determining the torsional-flexural buckling stress depends on the assumed stress value. For the first approximation, assume a buckling stress of $f=20 \mathrm{ksi}$. The value of E_{t} / E_{o} is found to be equal to 1.0 , which is obtained from Table A10 or Figure A7 of the Standard. Thus,

$$
\begin{aligned}
\sigma_{e x} & =\left[\left(\pi^{2} \times 27000\right) /(128.17)^{2}\right] \times(1.0) \\
& =16.2 \mathrm{ksi} \\
\sigma_{t} & =[1 /(1.284 \times 2.329)][10500 \times 0.0078+0] \times(1.0) \\
& =27.4 \mathrm{ksi}
\end{aligned}
$$

Therefore,

$$
\begin{aligned}
\left(F_{n}\right)_{2}= & (1 / 2 \beta)\left[\left(\sigma_{e x}+\sigma_{t}\right)-\sqrt{\left(\sigma_{e x}+\sigma_{t}\right)^{2}-4 \beta \sigma_{e x} \sigma_{t}}\right] \\
= & {[1 /(2 \times 0.648)][(16.2+27.4)} \\
& \left.-\sqrt{(16.2+27.4)^{2}-4 \times 0.648 \times 16.2 \times 27.4}\right] \\
= & 12.5 \mathrm{ksi}<\text { assumed stress }=20 \mathrm{ksi}
\end{aligned}
$$

(Eq. 3.4.3-1)

Because the computed stress $\left(F_{n}\right)_{2}$ is less than the assumed value of $f=20 \mathrm{ksi}$, the second approximation will be assumed that a stress of $f=12.5 \mathrm{ksi}$ and $E_{t} / E_{o}=1.0$. Thus,

$$
\left(F_{n}\right)_{2}=12.5 \mathrm{ksi} \quad 0 \mathrm{~K}
$$

F_{n} should be the smaller of $\left(F_{n}\right)_{1}$ and $\left(F_{n}\right)_{2}$. Thus, $\mathrm{F}_{\mathrm{n}}=12.5 \mathrm{ksi}$
13. Determination of A_{e} :

$$
\begin{aligned}
\text { Flanges: } & (k=0.5) \\
& =1.678 \mathrm{in} . \\
\mathrm{w} & =1.678 / 0.135=12.43 \\
\mathrm{w} / \mathrm{t} & =(1.052 / \sqrt{\mathrm{k}})(\mathrm{w} / \mathrm{t}) \sqrt{\mathrm{f} / \mathrm{E}_{\mathrm{O}}}, \quad \mathrm{f}=\mathrm{F}_{\mathrm{n}} \\
\lambda & =(1.052 / \sqrt{0.5})(12.43) \sqrt{12.5 / 27000} \\
& =0.398<0.673 \\
\mathrm{~b} & =\mathrm{w}
\end{aligned}
$$

Stem: (k $=0.5$)

$$
\begin{align*}
w & =2.678 \mathrm{in} . \\
w / t & =2.678 / 0.135=19.84 \\
\lambda & =(1.052 / \sqrt{k})(w / t) \sqrt{f / E_{o}}, \quad f=F_{\mathrm{n}} \tag{Eq.2.2.1-4}\\
& =(1.052 / \sqrt{0.5})(19.84) \sqrt{12.5 / 27000} \\
& =0.635<0.673 \\
b & =w \\
& =2.678 \mathrm{in} .
\end{align*}
$$

(Eq. 2.2.1-1)

Since flanges and stem are fully effective, the effective
area is the same as the full section area, i.e.,

$$
A_{e} \quad=A=1.284 \text { in. }^{2}
$$

14. Determination of $\phi_{c} P_{n}$: (Section 3.4 of the Standard)

$$
\begin{equation*}
P_{n} \quad=A_{e} F_{n} \tag{Eq.3.4-1}
\end{equation*}
$$

$$
\begin{aligned}
& =1.284 \times 12.5 \\
& =16.05 \mathrm{kips} \\
\phi_{C} & =0.85
\end{aligned}
$$

The design axial strength is

$$
\begin{aligned}
\phi_{\mathrm{c}} P_{\mathrm{n}} & =0.85 \times 16.05 \\
& =13.64 \mathrm{kips}
\end{aligned}
$$

EXAMPLE 19.2 T-SECTION (ASD)

Determine the allowable axial load for the T -section used in Example 19.1.

Solution:

1. Basic parameters used for calculating the sectional properties:

See Example 19.1 for calculation of sectional properties of the
T-section.
2. Determination of F_{n}

The following results are obtained from Example 19.1.
a) For Flexural Buckling:

$$
\begin{align*}
\left(F_{n}\right)_{1} & =\left(\pi^{2} E_{t}\right) /\left(K_{x} I_{x} / r_{x}\right)^{2} \tag{Eq.3.4.1-1}\\
\left(F_{n}\right)_{1} & =\left(\pi^{2} \times 26000\right) /(128.17)^{2} \\
& =16.2 \mathrm{ksi}
\end{align*}
$$

b) For Torsional-Flexural Buckling:

$$
\left(F_{n}\right)_{2}=(1 / 2 \beta)\left[\left(\sigma_{e x}+\sigma_{t}\right)-\sqrt{\left(\sigma_{e x}+\sigma_{t}\right)^{2}-4 \beta \sigma_{e x} \sigma_{t}}\right]
$$

(Eq. 3.4.3-1)
where

$$
\begin{aligned}
& \sigma_{e x}= {\left[\left(\pi^{2} E_{o}\right) /\left(K_{x} L_{x} / r_{x}\right)^{2}\right]\left(E_{t} / E_{o}\right) } \\
& \sigma_{t}= {\left[1 /\left(A_{o}^{2}\right)\right]\left[G_{o}^{\left.J+\left(\pi^{2} E_{o} C_{w}\right) /\left(K_{t} L_{t}\right)^{2}\right]\left(E_{t} / E_{o}\right)}\right.} \\
& G_{o}= 10500 \mathrm{ksi}(\text { Table A4 of the Standard) } \\
&\left(F_{n}\right)_{2}=(1 / 2 \beta)\left[\left(\sigma_{e x}+\sigma_{t}\right)-\sqrt{\left(\sigma_{e x}+\sigma_{t}\right)^{2}-4 \beta \sigma_{e x} \sigma_{t}}\right] \\
&= {[1 /(2 x 0.648)][(16.2+27.4)} \\
&\left.-\sqrt{(16.2+27.4)^{2}-4 \times 0.648 \times 16.2 \times 27.4}\right] \times(1.0) \\
&= 12.5 \mathrm{ksi} \text { (control)}
\end{aligned}
$$

Then, F_{n} should be the smaller of $\left(F_{n}\right)_{1}$ and $\left(F_{n}\right)_{2}$.
$\mathrm{F}_{\mathrm{n}}=12.5 \mathrm{ksi}$
3. Determination of A_{e} :

The effective area is the same as the full section area, i.e.,

$$
A_{e} \quad=A=1.284 \text { in. }{ }^{2} \text { (see Example } 19.1 \text {) }
$$

4. Determination of P_{a} :
$P_{n} \quad=A_{e} F_{n}$
(Eq. 3.4-1
$=1.284 \times 12.5$
$=16.05 \mathrm{kips}$
$\Omega \quad=2.15$
The allowable axial load is

$$
\begin{aligned}
\mathrm{P}_{\mathrm{a}} & =\mathrm{P}_{\mathrm{n}} / \Omega=16.05 / 2.15 \\
& =7.47 \mathrm{kips}
\end{aligned}
$$

EXAMPLE 20.1 TUBULAR SECTION - SQUARE (LRFD)

By using the Load and Resistance Factor Design (LRFD) method, determine the design axial strength for section shown in Figure 20.1. Use Type 301 stainless steel, 1/4-Hard.

Figure 20.1 Section for Example 20.1

Given:

1. Section: $4.0^{\prime \prime} \times 4.0^{\prime \prime} \times 0.065^{\prime \prime}$ Square Tube.
2. $K_{x} L_{x}=K_{y} L_{y}=10 \mathrm{ft}$.

Solution:

1. Properties of 90° Corners:
$r=R+t / 2=1 / 16+0.065 / 2=0.095 \mathrm{in}$.
Length of arc, $u=1.57 \mathbf{r}=1.57 \times 0.095=0.149 \mathrm{in}$.
Distance of c.g. from center of radius,
$c=0.637 \mathrm{r}=0.637 \times 0.095=0.061 \mathrm{in}$.

$$
I_{x}=I_{y}=I \text { (doubly symmetric section) }
$$

Element	$\begin{gathered} L \\ \text { (in.) } \end{gathered}$		$\begin{aligned} & L y^{2} \\ & \left(\text { in. }^{3}\right) \end{aligned}$	$\begin{gathered} I^{\prime} \\ \text { About } \\ \text { Own } \\ \text { Axis } \\ \left(\text { in. }{ }^{3}\right. \text {) } \end{gathered}$
Flanges	$2 \times 3.744=7.488$	$2-0.065 / 2=1.968$	29.001	--
Corners	$4 \times 0.149=0.596$	$3.744 / 2+0.061=1.933$	2.227	--
Web	$2 \times 3.744=7.488$	--	--	8.747
Sum	15.572		31.228	8.747

$$
\begin{aligned}
& \mathrm{w} / \mathrm{t}=3.744 / 0.065=57.60<400 \text { (Section } 2.1 .1-(1)-(\mathrm{ii})) \\
& \mathrm{A} \quad=\mathrm{Lt}=15.572 \times 0.065=1.012 \mathrm{in}^{2} \\
& \mathrm{I}^{\prime} \quad=\mathrm{Ly}^{2}+\mathrm{I}^{\prime}{ }_{1}=31.228+8.747=39.975 \mathrm{in} .3 \\
& \mathrm{I} \quad=\mathrm{I}^{\prime} \mathrm{t}=39.975 \times 0.065=2.598 \mathrm{in} .^{4} \\
& \mathrm{r} \quad=\sqrt{\mathrm{I} / \mathrm{A}}=\sqrt{2.598 / 1.012}=1.602 \mathrm{in} . \\
& \mathrm{KL} / \mathrm{r}=10 \times 12 / 1.602=74.91<200 \text { (Section } 3.4-(5))
\end{aligned}
$$

2. Since the square tube is a doubly symmetric closed section, provisions of Section 3.4.1 of the Standard apply, i.e., section is not subjected to torsional-flexural buckling.

$$
\begin{equation*}
F_{n}=\pi^{2} E_{t} /(K L / r)^{2} \tag{Eq.3.4.1-1}
\end{equation*}
$$

In the determination of the flexural buckling stress, it is necessary to select a proper value of E_{t} from Table A13 or Figure A11 in the Standard for the assumed stress. For the first approximation, assume a compressive stress of $f=24.0 \mathrm{ksi}$.

From Table A13, the corresponding value of E_{t} is found to be equal to 17000 ksi . Thus,

$$
\begin{aligned}
\mathrm{F}_{\mathrm{n}} & =\left(\pi^{2} \times 17000\right) /(74.91)^{2} \\
& =29.90 \mathrm{ksi}>\text { assumed stress } \mathrm{f}=24.0 \mathrm{ksi}
\end{aligned}
$$

Because the computed stress is larger than the assumed value, further successive approximations are needed. For the second approximation, assume $\mathrm{f}=26.33 \mathrm{ksi}$, and

```
E
F
    =26.31 ksi \cong assumed stress OK
```

3. Determination of the Effective Width:

$$
\begin{aligned}
& \mathrm{k}=4.0 \\
& \lambda=(1.052 / \sqrt{k})(w / t) \sqrt{f / E_{0}}, \quad f=F_{n} \\
& \text { (Eq. 2.2.1-4) } \\
& =(1.052 / \sqrt{4})(3.744 / 0.065) \sqrt{26.31 / 27000}=0.946>0.673 \\
& \text { (Section not fully effective) } \\
& \rho=(1-0.22 / \lambda) / \lambda \\
& =(1-0.22 / 0.946) / 0.946=0.811 \\
& b \quad=\rho w \\
& \text { (Eq. 2.2.1-2) } \\
& =0.811 \times 3.744=3.036 \mathrm{in} . \\
& A_{e}=A-4(w-b) t \\
& =1.012-4(3.744-3.036) \times 0.065 \\
& =0.828 \text { in. }{ }^{2}
\end{aligned}
$$

4. Determination of the Design Axial Strength:

$$
\begin{align*}
P_{\mathbf{n}} & =A_{e} F_{\mathbf{n}} \tag{Eq.3.4-1}\\
& =0.828 \times 26.31 \\
& =21.80 \mathrm{kips}
\end{align*}
$$

$$
\begin{aligned}
& \phi_{c}=0.85 \\
& \Phi_{c} P_{n}=0.85 \times 21.80=18.53 \mathrm{kips}
\end{aligned}
$$

Determine the allowable axial load for tubular section used in Example 20.1.

Solution:

1. Basic parameters used for calculating the section properties:

See Example 20.1 for section properties of tubular section.
2. Determination of F_{n}

The following results are obtained from Example 20.1.
For Flexural Buckling Only:

$$
\begin{aligned}
F_{\mathrm{n}} & =\left(\pi^{2} E_{t}\right) /\left(K_{y} L_{y} / r_{y}\right)^{2} \\
F_{\mathrm{n}} & =\left(\pi^{2} \times 14960\right) /(74.91)^{2} \\
& =26.31 \mathrm{ksi}
\end{aligned}
$$

3. Determination of A_{e} :

The effective area is obtained from Example 20.1 as follows:

$$
A_{e} \quad=A=0.828 \text { in. }^{2}
$$

4. Determination of P_{a} :

$$
\begin{aligned}
P_{\mathrm{n}} & =A_{e^{\prime}} F_{\mathrm{n}} \\
& =0.828 \times 26.31 \\
& =21.80 \mathrm{kips} \\
\Omega & =2.15 \\
P_{a} & =P_{\mathrm{n}} / \Omega=21.80 / 2.15 \\
& =10.14 \mathrm{kips}
\end{aligned}
$$

EXAMPLE 21.1 TUBULAR SECTION - ROUND (LRFD)

By using the Load and Resistance Factor Design (LRFD) method, determine the design axial strength for the tubular section shown in Figure 21.1. Use Type 316 stainless steel, 1/4-Hard.

Figure 21.1 Section for Example 21.1

Given:

1. Section: Shown in sketch above.
2. Height: $L=10^{\prime}-0^{\prime \prime}$, simply supported at each end.

Solution:

1. Full section properties:

$$
\begin{aligned}
\mathrm{I} & =(1 / 4) \pi\left[(0 . \text { R. })^{4}-(\text { I.R. })^{4}\right] \\
& =(1 / 4) \pi\left[(4)^{4}-(3.875)^{4}\right] \\
& =23.98 \mathrm{in} .^{4} \\
A & =(1 / 4) \pi\left[(0 . D .)^{2}-(\text { I.D. })^{2}\right] \\
& =(1 / 4) \pi\left[(8)^{2}-(7.75)^{2}\right] \\
& =3.093 \mathrm{in.}^{2} \\
\mathrm{I} & =\sqrt{I / A} \\
& =\sqrt{23.98 / 3.093}
\end{aligned}
$$

$$
=2.784 \text { in. }
$$

2. Determination of Design Axial Strength:

Ratio of outside diameter to wall thickness,
$D / t=8.000 / 0.125=64.00$
$\mathrm{D} / \mathrm{t}<0.881 \mathrm{E}_{\mathrm{o}} / \mathrm{F}_{\mathrm{y}}=0.881(27000 / 50)=475.7 \mathrm{OK}$

The design axial strength, $\phi_{c} P_{n}$, for cylindrical tubular member is determined in accordance with Section 3.6.2 of the Standard as follows:

$$
\begin{align*}
& \Phi_{c}=0.80 \\
& P_{n}=F_{n} A_{e} \tag{Eq.3.6.2-1}\\
& F_{n}=\pi^{2} E_{t} /(K L / r)^{2}
\end{align*}
$$

where F_{n} is the flexural buckling stress determined according to
Section 3.4.1 of the Standard.

$$
\begin{array}{ll}
A_{e}=\left[1-\left(1-\left(E_{t} / E_{o}\right)^{2}\right)\left(1-A_{o} / A\right)\right] A & (E q \cdot 3.6 .2-2) \\
A_{o}=K_{c} A & (E q \cdot 3.6 .2-3) \\
K_{c}=(1-C)\left(E_{o} / F_{y}\right) /\left[\left(8.93-\lambda_{c}\right)(D / t)\right]+5.882 C /\left(8.93-\lambda_{c}\right) & (E q \cdot 3.6 .1-3)
\end{array}
$$

$C \quad=F_{p r} / F_{y}$
$\lambda_{c}=3.048 \mathrm{C}$
From Table All of the Standard, the ratio of $F_{p r} / F_{y}$ is equal to 0.5
in longitudinal compression for Type $301,1 / 4$-Hard stainless steel.
Therefore,

$$
\begin{aligned}
\mathrm{K}_{\mathrm{c}}= & (1-0.5)(27000 / 50) /[(8.93-3.048 \times 0.5)(64.0)] \\
& +(5.882 \times 0.5) /(8.93-3.048 \times 0.5) \\
= & 0.967 \\
A_{0}= & 0.967 \mathrm{~A}_{\mathrm{e}}
\end{aligned}
$$

In the determination of the flexural buckling stress, it is necessary to select a proper value of E_{t} from Table A13 or Figure A11 in the Standard for the assumed stress. For the first approximation, assume a compressive stress of $f=40.0 \mathrm{ksi}$. From Table A13, the corresponding value of E_{t} is found to be equal to 8370 ksi . Thus,

$$
\begin{aligned}
\mathrm{F}_{\mathrm{n}} & =\left(\Pi^{2} \times 8370\right) /(10 \times 12 / 2.784)^{2} \\
& =\left(\Pi^{2} \times 8370\right) /(43.10)^{2} \\
& =44.46 \mathrm{ksi}>\text { assumed stress } \mathrm{f}=40.0 \mathrm{ksi}
\end{aligned}
$$

Because the computed stress is larger than the assumed value,
further successive approximations are needed.
Assume $f=41.83 \mathrm{ksi}$, and

$$
\begin{aligned}
\mathrm{E}_{\mathrm{t}} & =7876 \mathrm{ksi} \\
\mathrm{~F}_{\mathrm{n}} & =\left(\pi^{2} \times 7876\right) /(43.10)^{2} \\
& =41.84 \mathrm{ksi}=\text { assumed stress } \mathrm{f}=41.83 \mathrm{ksi} \quad \mathrm{OK}
\end{aligned}
$$

For the compressive stress of $\mathrm{F}_{\mathrm{n}}=41.83 \mathrm{ksi}$, the corresponding value of E_{t} / E_{o} is equal to 0.292 , which is obtianed from Table A10 of Figure A7 of the Standard. Therefore,

$$
\begin{aligned}
A_{e} & =\left[1-\left(1-\left(E_{t} / E_{o}\right)^{2}\right)\left(1-A_{0} / A\right)\right] A \\
& =\left[1-\left(1-(0.292)^{2}\right)(1-0.967)\right] \mathrm{A} \\
& =0.97 \times A=3.00 \mathrm{in.}^{2} \\
\mathrm{P}_{\mathrm{n}} & =F_{\mathrm{n}} A_{\mathrm{e}} \\
& =(41.83)(3.00) \\
& =125.50 \mathrm{kips} \\
\Phi_{c} & =0.80 \\
\Phi_{c} P_{n} & =0.80 \mathrm{x} 125.50 \\
& =100.40 \mathrm{kips}
\end{aligned}
$$

EXAMPLE 21.2 TUBULAR SECTION - ROUND (ASD)

Determine the allowable axial load for tubular section used in Example 21.1.

Solution:

1. Basic parameters used for calculating the section properties:

See Example 21.1 for section properties of tubular section.
2. Determination of F_{n}

The following results are obtained from Example 21.1.

$$
\begin{align*}
F_{n} & =\left(\pi^{2} E_{t}\right) /\left(K_{y} L_{y} / r_{y}\right)^{2} \tag{Eq.3.4.1-1}\\
F_{n} & =\left(\pi^{2} \times 7876\right) /(43.10)^{2} \\
& =41.84 \mathrm{ksi}
\end{align*}
$$

3. Determination of A_{e} :

The effective area is obtained from Example 21.1 as follows:

$$
\mathrm{A}_{\mathrm{e}} \quad=3.00 \mathrm{in}^{2}
$$

4. Determination of P_{a} :

$$
\begin{align*}
P_{\mathrm{n}} & =A_{e} F_{\mathrm{n}} \tag{Eq.3.4-1}\\
& =3.00 \times 41.83 \\
& =125.50 \mathrm{kips} \\
\Omega & =2.15 \\
\mathrm{P}_{\mathrm{a}} \quad & =\mathrm{P}_{\mathrm{n}} / \Omega=125.50 / 2.15 \\
& =58.37 \mathrm{kips}
\end{align*}
$$

EXAMPLE 22.1 C-SECTION (LRFD)

By using the Load and Resistance Factor Design (LRFD) criteria, check the adequacy of a channel section (Fig. 22.1) to be used as compression member which is subjected to eccentrically axial loads of $P_{D L}=0.35 \mathrm{kips}$ and P_{LL} $=1.75$ kips. Consider the following two loading cases: (A) axial loads are applied 2 in. to the left of the c.g. of the full section at both ends, (B) axial loads are applied 2 in . to the left and 4 in . above the c.g. of the full section at both ends. Assume that the effective length factors $K_{x}=$ $K_{y}=K_{t}=1.0$, and that the unbraced lengths $L_{x}=L_{y}=L_{t}=16 \mathrm{ft}$. Use Type 304, 1/4-Hard, stainless steel. Assume dead to live load ratio D/L = 1/5 and 1.2D+1.6L governs the design.

Figure 22.1 Section for Example 22.1
Solution: Part (A)

The following equations used for computing the sectional properties for channel with lips are based on the information in Part III of Cold-Formed Steel Design Manual (1986), American Iron and Steel Institute, Washington, D.C.

1. Full section properties:
```
\(\mathrm{r} \quad=\mathrm{R}+\mathrm{t} / 2=3 / 16+0.105 / 2=0.240 \mathrm{in}\).
\(a \quad=A^{\prime}-(2 r+t)=8.000-(2 x 0.240+0.105)=7.415 \mathrm{in}\).
\(\overrightarrow{\mathrm{a}} \quad=\mathrm{A}^{\prime}-\mathrm{t}=8.000-0.105=7.895 \mathrm{in}\).
\(\mathrm{b} \quad=\mathrm{B}^{\prime}-(2 \mathrm{r}+\mathrm{t})=3.000-(2 \mathrm{x} 0.240+0.105)=2.415 \mathrm{in}\).
\(\overline{\mathrm{b}} \quad=\mathrm{B}^{\prime}-\mathrm{t}=3.000-0.105=2.895 \mathrm{in}\).
\(\mathrm{c} \quad=\mathrm{C}^{\prime}-(\mathrm{r}+\mathrm{t} / 2)=0.800-(0.240+0.105 / 2)=0.508 \mathrm{in}\).
\(\bar{c} \quad=C^{\prime}-t / 2=0.800-(0.105 / 2)=0.748 \mathrm{in}\).
\(u \quad=1.57 \mathrm{r}=1.57 \times 0.240=0.377 \mathrm{in}\).
Distance of corner's c.g. from center of radius \(=0.637 r\)
\(=0.637(0.240)=0.153 \mathrm{in}\).
\(A \quad=t(a+2 b+2 c+4 u]=0.105[7.415+2 \times 2.415+2 \times 0.508+4 \times 0.377]\)
    \(=1.551 \mathrm{in} .^{2}\)
\(I_{x} \quad=2 t\left[0.0417 a^{3}+b(a / 2+r)^{2}+2 u(a / 2+0.637 r)^{2}+0.298 r^{3}\right.\)
        \(\left.+0.0833 c^{3}+(c / 4)(a-c)^{2}\right)\)
            \(=2 \times 0.105\left(0.0417(7.415)^{3}+2.415(7.415 / 2+0.240)^{2}\right.\)
        \(+2 x 0.377(7.415 / 2+0.637 x 0.240)^{2}+0.298(0.240)^{3}\)
        \(\left.+0.0833(0.508)^{3}+(0.508 / 4)(7.415-0.508)^{2}\right)\)
        \(=15.108 \mathrm{in} .{ }^{4}\)
\(\bar{x} \quad=(2 t / A)[b(b / 2+r)+u(0.363 r)+u(b+1.637 r)+c(b+2 r)\)
    \(=(2 \times 0.105 / 1.551) 2.415(2.415 / 2+0.240)+0.377(0.363 \times 0.240)\)
        \(+0.377(2.415+1.637 \times 0.240)+0.508(2.415+2 \times 0.240)]\)
```

```
    =0.820 in.
    I
        +u(b+1.637r )}\mp@subsup{)}{}{2}]-A(\overline{x}\mp@subsup{)}{}{2
        =2x0.105[2.415(2.415/2+0.240)2+0.0833(2.415)3
        +0.505(0.240)3+0.508(2.415+2x0.240) 2
        +0.377(2.415+1.637\times0.240)2]-1.551(0.820)2
            = 1.786 in.4
    =(\overline{b}t/12\mp@subsup{I}{x}{})[6\overline{c}(\overline{a}\mp@subsup{)}{}{2}+3\overline{b}(\overline{a}\mp@subsup{)}{}{2}-8(\overline{c}\mp@subsup{)}{}{3}]
    = [(2.895\times0.105)/(12\times15.108)][6\times0.748(7.895)}\mp@subsup{}{}{2
        +3\times2.895(7.895)}\mp@subsup{)}{}{2-8(0.748)}\mp@subsup{)}{}{3}
        = 1.371 in.
    =-(\overline{x}+m)=-(0.820+1.371)
        =-2.191 in.
    =(t'/3) a+2b+2c+4u
    =[(0.105)}\mp@subsup{)}{}{3}3][7.415+2\times2.415+2\times0.508+4\times0.377]
    =0.005699 in.4
    =(t'/A){[\overline{x}A(\overline{a}\mp@subsup{)}{}{2}/t][(\overline{b}\mp@subsup{)}{}{2}/3+\mp@subsup{m}{}{2}-m\overline{b}]+(A/3t)[(m\mp@subsup{)}{}{2}(\overline{a}\mp@subsup{)}{}{3}
        +(\overline{b}\mp@subsup{)}{}{2}(\overline{c}\mp@subsup{)}{}{2}(2\overline{c}+3\overline{a})]-(\mp@subsup{I}{x}{\primem}\mp@subsup{m}{}{2}/t)(2\overline{a}+4\overline{c})+[m(\overline{c}\mp@subsup{)}{}{2}/3][8(\overline{b}\mp@subsup{)}{}{2}(\overline{c})
        +2m(2\overline{c}(\overline{c}-\overline{a})+\overline{b}(2\overline{c}-3\overline{a}))]+[(\overline{b}\mp@subsup{)}{}{2}(\overline{a}\mp@subsup{)}{}{2}/6][(3\overline{c}+\overline{b})(4\overline{c}+\overline{a})-6(\overline{c}\mp@subsup{)}{}{2}]
        -m}\mp@subsup{m}{}{2}(\overline{a}\mp@subsup{)}{}{4}/4
            = [(0.105) 2}/1.551]{[0.820\times1.551\times(7.895)2/0.105][(2.895) 2/3
        +(1.371)2-1.371\times2.895]+1.551/(3x0.105)[(1.371)2(7.895)3
        +(2.895)}\mp@subsup{)}{}{2}(0.748\mp@subsup{)}{}{2}(2\times0.748+3\times7.895)
        -[15.108x(1.371)2/0.105](2x7.895+4x0.748)
        +[1.371(0.748)2/3][8(2.895)}\mp@subsup{)}{}{2}(0.748
        +2x1.371(2x0.748(0.748-7.895)+2.895(2x0.748-3\times7.895))]
        +[(2.895)2(7.895)2/6][(3x0.748+2.895)(4\times0.748+7.895)
```

$$
\begin{align*}
& \left.-6(0.748)^{2}\right]-\left[(1.371)^{2}(7.895)^{4} / 4\right] \\
& =23.468 \text { in. }{ }^{6} \\
& \beta_{w}=-\left\{0.0833\left[t \bar{x}(\bar{a})^{3}\right]+t(\bar{x})^{3} \bar{a}\right\} \\
& =-\left\{0.0833\left[0.105 \times 0.820(7.895)^{3}\right]+0.105(0.820)^{3} \mathrm{x} 7.895\right\} \\
& =-3.987 \\
& \beta_{f}=(t / 2)\left[(\bar{b}-\bar{x})^{4}-(\bar{x})^{4}\right]+\left[t(\bar{a})^{2} / 4\right]\left[(\bar{b}-\bar{x})^{2}-(\bar{x})^{2}\right] \\
& =(0.105 / 2)\left[(2.895-0.820)^{4}-(0.820)^{4}\right] \\
& +\left[0.105(7.895)^{2} / 4\right]\left[(2.895-0.820)^{2}-(0.820)^{2}\right] \\
& =6.894 \\
& \beta_{1}=2 \bar{c} t(\bar{b}-x)^{3}+(2 / 3) t(\bar{b}-x)\left[(\bar{a} / 2)^{3}-(\bar{a} / 2-\bar{c})^{3}\right] \\
& =2 \times 0.748 \times 0.105(2.895-0.820)^{3}+(2 / 3) \times 0.105(2.895 \\
& -0.820)\left\{(7.895 / 2)^{3}-[(7.895 / 2)-0.748]^{3}\right\} \\
& =5.581 \\
& j=\left(1 / 2 I_{y}\right)\left(\beta_{w}+\beta_{f}+\beta_{1}\right)-x_{0} \\
& =[1 /(2 \times 1.786)](-3.987+6.894+5.581)-(-2.191) \\
& =4.567 \\
& \mathbf{r}_{\mathbf{x}}=\sqrt{\mathrm{I}_{\mathbf{x}} / \mathrm{A}}=\sqrt{15.108 / 1.551}=3.121 \mathrm{in} \text {. } \\
& \mathrm{K}_{\mathrm{x}} \mathrm{~L}_{\mathrm{x}} / \mathrm{r}_{\mathrm{x}}=1(16 \mathrm{x} 12) / 3.121=61.52 \\
& r_{y}=\sqrt{I_{\mathbf{y}} / \mathrm{A}}=\sqrt{1.786 / 1.551}=1.073 \mathrm{in} . \\
& \mathrm{K}_{\mathrm{y}} \mathrm{~L}_{\mathrm{y}} / \mathrm{r}_{\mathrm{y}}=1(16 \times 12) / 1.073=178.94<200 \text { (Section 3.4-(5)) } \\
& r_{0}=\sqrt{r_{x}{ }^{2}+r_{y}^{2}+x_{0}{ }^{2}} \tag{Eq.3.3.1.2-9}\\
& =\sqrt{(3.121)^{2}+(1.073)^{2}+(-2.191)^{2}}=3.961 \mathrm{in} \text {. } \\
& \beta=1-\left(x_{0} / r_{0}\right)^{2} \\
& =1-(-2.191 / 3.961)^{2}=0.694 \\
& \text { (Eq. 3.4.3-4) }
\end{align*}
$$

2. Determination of $\Phi_{c} P_{n}$ (Section 3.4):

Since the channel is singly symmetric, F_{n} shall be taken as
the smaller of F_{n} calculated according to Section 3.4 .1 or F_{n} calculated according to Section 3.4.2.
a. For Flexural Buckling:

$$
\begin{equation*}
\left(F_{n}\right)_{1}=\left(\pi^{2} E_{t}\right) /\left(K_{y} L_{y} / r_{y}\right)^{2} \tag{Eq.3.4.1-1}
\end{equation*}
$$

In the determination of the flexural buckling stress, it is necessary to select a proper value of E_{t} from Table A13 or Figure A11 in the Standard for the assumed stress. For the first approximation, assume a compressive stress of $f=20 \mathrm{ksi}$. From Table A13, the corresponding value of E_{t} is found to be equal to 27000 ksi . Thus,

$$
\begin{aligned}
\left(F_{n}\right)_{1} & =\left(\pi^{2} \times 27000\right) /(178.94)^{2} \\
& =8.322 \mathrm{ksi}<\text { assumed stress } \mathrm{f}=20 \mathrm{ksi}
\end{aligned}
$$

Because the computed stress is less than the assumed value, no further approximation is needed. The section is subject to the elastic flexural buckling.

Therefore, $\left(F_{n}\right)_{1}=8.322 \mathrm{ksi}$
b. For Torsional-Flexural Buckling:

$$
\begin{equation*}
\left(F_{n}\right)_{2}=(1 / 2 \beta)\left[\left(\sigma_{e x}+\sigma_{t}\right)-\sqrt{\left(\sigma_{e x}+\sigma_{t}\right)^{2}-4 \beta \sigma_{e x} \sigma_{t}}\right] \tag{Eq.3.4.3-1}
\end{equation*}
$$

where

$$
\begin{align*}
& \sigma_{e x}=\left[\left(\pi^{2} E_{o}\right) /\left(K_{x} L_{x} / r_{x}\right)^{2}\right]\left(E_{t} / E_{o}\right) \tag{Eq.3.4.3-3}\\
& \sigma_{t}=\left[1 /\left(A_{0}{ }^{2}\right)\right]\left[G_{o} J+\left(\pi^{2} E_{0} C_{w}\right) /\left(K_{t} L_{t}\right)^{2}\right]\left(E_{t} / E_{o}\right) \tag{Eq.3.4.2-1}\\
& G_{0}=10500 \mathrm{ksi} \text { (Table A4 of the Standard) }
\end{align*}
$$

Similar to the determination of flexural buckling stress, the plasticity reduction factor of E_{t} / E_{o} depends on the assumed stress value. For the first approximation, assume a buckling stress of $f=20 \mathrm{ksi}$. The value of E_{t} / E_{o} is found to be equal to 1.0 , which is obtained from Table A10 or Figure A7
of the Standard. Thus,

$$
\begin{aligned}
\sigma_{e x} & =\left[\left(\pi^{2} \times 27000\right) /(16 \times 12 / 3.121)^{2}\right\rceil \times(1.0) \\
& =70.41 \mathrm{ksi} \\
\sigma_{t} & =[1 /(1.551 \times 15.69)]\left[10500 \times 0.005699+\pi^{2} \times 27000 \times 23.468 /(16 \times 12)^{2}\right\rceil \times(1.0) \\
& =9.43 \mathrm{ksi}
\end{aligned}
$$

Therefore,

$$
\begin{align*}
\mathrm{F}_{\mathrm{n} 2}= & (1 / 2 \beta)\left[\left(\sigma_{\mathrm{ex}}+\sigma_{\mathrm{t}}\right)-\sqrt{\left(\sigma_{\mathrm{ex}}+\sigma_{\mathrm{t}}\right)^{2}-4 \beta \sigma_{\mathrm{ex}} \sigma_{\mathrm{t}}}\right] \tag{Eq.3.4.3-1}\\
= & {[1 /(2 \mathrm{x} 0.694)][(70.41+9.43)} \\
& \left.-\sqrt{(70.41+9.43)^{2}-4 \mathrm{x} 0.694 \times 70.41 \mathrm{x} 9.43}\right] \\
= & 9.024 \mathrm{ksi}<\text { assumed value } \mathrm{f}=20 \mathrm{ksi} 0 \mathrm{~K}
\end{align*}
$$

This section is subject to elastic torsional-flexural buckling, and $\left(F_{n}\right)_{2}=9.024 \mathrm{ksi}$

Then, F_{n} should be the smaller of $\left(F_{n}\right)$ and $\left(F_{n}\right)_{2}$. $\mathrm{F}_{\mathrm{n}}=8.322 \mathrm{ksi}$

For element 1:
$\mathrm{w} \quad=7.415 \mathrm{in}$.
$\mathrm{w} / \mathrm{t}=7.415 / 0.105=70.62<400$ OK (Section 21.1-(1)-(ii))
$k \quad=4.0$ (Since connected to two stiffened elements)
$\lambda=(1.052 / \sqrt{k})(w / t) \sqrt{f / E_{0}}$
(Eq. 2.2.1-4)
$=(1.052 / \sqrt{4.00})(70.62) \sqrt{8.322 / 27000}$
$=0.652<0.673$
b = w
(Eq. 2.2.1-1)
$=7.415$ in. (Element 1 fully effective)

$$
\begin{align*}
\mathrm{w} & =2.415 \mathrm{in} . \\
\mathrm{w} / \mathrm{t} & =2.415 / 0.105=23.00 \\
\mathrm{~S} & =1.28 \sqrt{E_{\mathrm{o}} / \mathrm{f}}, \mathrm{f}=\mathrm{F}_{\mathrm{n}} \tag{Eq.2.4-1}\\
& =1.28 \sqrt{27000 / 8.322}=72.91 \\
\mathrm{~S} / 3 & =24.30 \\
\mathrm{w} / \mathrm{t} & =23.00<\mathrm{S} / 3=24.30 \\
\mathrm{~b} & =\mathrm{w} \\
& =2.415 \text { in. (Element } 2 \text { fully effective) }
\end{align*}
$$

For element 3:

$$
\begin{array}{ll}
\mathrm{d} & =0.508 \mathrm{in} . \\
\mathrm{d} / \mathrm{t} & =0.508 / 0.105=4.84 \\
\mathrm{k} & =0.50 \text { (unstiffened compression element) } \\
\lambda & =(1.052 / \sqrt{0.50})(4.84) \sqrt{8.322 / 27000} \\
& =0.126<0.673 \\
\mathrm{~d}_{\mathrm{s}}^{\prime} & =\mathrm{d}=0.508 \mathrm{in} . \\
\mathrm{d}_{\mathrm{s}} & =\mathrm{d}^{\prime} \mathrm{s} \tag{Eq.2.4.2-4}\\
& =0.508 \text { in. (Element } 3 \text { fully effective) }
\end{array}
$$

Thus the whole section is fully effective.

$$
\begin{align*}
A_{e} & =A=1.551 \mathrm{in.}^{2} \\
\mathrm{P}_{\mathrm{n}} & =A_{e} F_{\mathrm{n}} \tag{Eq.3.4-1}\\
& =1.551 \times 8.322 \\
& =12.91 \mathrm{kips} \\
\Phi_{\mathrm{C}} & =0.85 \\
\Phi_{\mathrm{C}} P_{\mathrm{n}} & =0.85 \times 12.91 \\
& =10.97 \mathrm{kips}
\end{align*}
$$

3. $\mathrm{P}_{\mathrm{u}}=1.2 \times 0.35+1.6 \times 1.75=3.22 \mathrm{kips}$
$\mathrm{P}_{\mathrm{u}} / \Phi_{\mathrm{C}} \mathrm{P}_{\mathrm{n}}=3.22 / 10.97=0.294>0.15$
Must check both interaction equations (Eq. 3.5-1) and (Eq. 3.5-2).
4. Determination of $\phi_{c} P_{\text {no }}$ (Section 3.4 for $F_{n}=F_{y}$):

For element 1:

$$
\begin{aligned}
\lambda & =(1.052 / \sqrt{4.00})(70.62) \sqrt{50 / 27000}=1.599>0.673 \\
\rho & =(1-0.22 / \lambda) / \lambda \\
& =(1-0.22 / 1.599) / 1.599=0.539 \\
\mathrm{~b} & =\rho w \\
& =0.539 \times 7.415=4.000 \mathrm{in} .
\end{aligned}
$$

For element 2:

$$
\begin{align*}
& \mathrm{S}=1.28 \sqrt{27000 / 50.0}=29.74 \\
& \mathrm{~S} / 3=9.91 \\
& S / 3=9.91<w / t=23.00<S=29.74 \\
& I_{a}=399 t^{4}\{[(w / t) / S]-0.33\}^{3} \tag{Eq.2.4.2-6}\\
& =399(0.105)^{4}[(23 / 29.74)-0.33]^{3} \\
& =0.004227 \text { in. }{ }^{4} \\
& I_{s} \quad=d^{3} t / 12=(0.508)^{3}(0.105) / 12 \\
& =0.001147 \mathrm{in} .^{4} \\
& I_{s} / I_{a}=0.001147 / 0.004227=0.271 \\
& \mathrm{D} / \mathrm{w}=0.8 / 2.415=0.331 \\
& \mathrm{n} \quad=1 / 2 \\
& k=[4.82-5(D / w)]\left(I_{s} / I_{a}\right)^{n}+0.43 \leq 5.25-5(D / w) \\
& \text { (Eq. 2.4.2-9) } \\
& {[4.82-5(0.331)](0.271)^{1 / 2}+0.43=2.078} \\
& 5.25-5(0.331)=3.595>2.078 \\
& \text { (Eq. 2.4.2-9) }
\end{align*}
$$

$$
\begin{aligned}
\mathrm{k} & =2.078 \\
\lambda & =(1.052 / \sqrt{2.078})(23.00) \sqrt{50 / 27000}=0.722>0.673 \\
\rho & =(1-0.22 / \lambda) / \lambda \\
& =(1-0.22 / 0.722) / 0.722=0.963 \\
\mathrm{~b} & =\rho w \\
& =0.963 \times 2.415=2.326 \mathrm{in} .
\end{aligned}
$$

For element 3:

$$
\begin{array}{ll}
\lambda^{\prime}= & (1.052 / \sqrt{0.50})(4.84) \sqrt{50 / 27000}=0.310<0.673 \\
d_{s}^{\prime}= & d^{\prime}=0.508 \mathrm{in} . \\
d_{s}= & d_{s}^{\prime}\left(I_{s} / I_{a}\right) \leq d_{s}^{\prime} \tag{Eq.2.4.2-11}\\
\text { Since } I_{s} / I_{a}=0.271<1.0 \\
= & 0.508(0.271)=0.138 \mathrm{in} . \\
d_{s}= & 1.551-0.105(7.415-4.000)-0.105(0.508-0.138) \times 2 \\
A_{e}= & -0.105(2.415-2.326) \times 2 \\
& 1.096 \mathrm{in} .^{2} \\
P_{n o}= & 1.096 \times 50=54.80 \mathrm{kips} \\
\Phi_{c}= & 0.85 \\
\Phi_{c} P_{n o}= & 0.85 \times 54.80 \\
= & 46.58 \mathrm{kips}
\end{array}
$$

5. Determination of $M_{u y}$ (required flexural strength about y-axis): ($M_{u x}$ $=0$ since $e_{y}=0$)
$M_{u y}$ will be with respect to the centroidal axes of the effective section determined for the required axial strength alone.
$A_{e} \quad=1.551$ in. ${ }^{2}$ under required axial strength alone
Since $A_{e}=A$, the centroidal axes for the effective section are
the same as those for the full section. Therefore, e_{x} did not change.

$$
M_{u y}=3.22(2.00)=6.44 \mathrm{kips}-i n . \text { (Required Flexural Strength) }
$$

The interaction equations (Eq. 3.5-1) and (Eq. 3.5-2) reduce
to the following:

$$
\begin{align*}
& P_{u} / \Phi_{c} P_{n}+C_{m y} M_{u y} / \Phi_{b} M_{n y} a_{n y} \leq 1.0 \tag{Eq.3.5-1}\\
& P_{u} / \Phi_{c} P_{n o}+M_{u y} / \Phi_{b} M_{n y} \leq 1.0 \tag{Eq.3.5-2}
\end{align*}
$$

6. Determination of $\phi_{b} M_{n y}$ (Section 3.3.1):
$\Phi_{b} M_{n y}$ shall be taken as the smaller of the design flexural strengths calculated according to sections 3.3.1.1 and 3.3.1.2:
a. Section 3.3.1.1: $M_{n y}$ will be calculated on the basis of initiation of yielding.

Here it is evident that the initial yielding will not be in the compression flange, rather it will be in the tension flange.

The procedure is iterative: one assumes the actual compressive stress f under $M_{n y}$. Knowing f one proceeds as usual to obtain
$\mathbf{x}_{c g}$ (measured from top fiber) to neutral axis. Then one obtains $f=F_{y} x_{c g} /\left(3-x_{c g}\right)$ and checks if it equals to the assumed value. If not, one reiterates by assuming another f until finally it checks. Then for this condition one obtains I_{y} and $M_{n y}=f\left(I_{y} / x_{c g}\right)$ $=F_{y} I_{y} /\left(3-x_{c g}\right)$.

For the first iteration assume a compressive stress f = 20 ksi in the top compression fibers and that the webs are fully effective.

Compression flange:

$$
\begin{aligned}
& \mathrm{k}=4.00 \\
& \mathrm{w} / \mathrm{t}=7.415 / 0.105=70.62 \\
& \lambda \quad=(1.052 / \sqrt{4.00})(70.62) \sqrt{20 / 27000}=1.011>0.673 \\
& \rho \quad=[1-(0.22 / 1.011)] / 1.011=0.774 \\
& \mathrm{~b}
\end{aligned}=0.774 \times 7.415=5.739 \mathrm{in} .
$$

To calculate effective section properties about y-axis:

Element	$\begin{gathered} \text { L } \\ \text { Effective Length } \\ \text { (in.) } \end{gathered}$	x Distance from Top Fiber (in.)	$\begin{gathered} L x \\ \left(\text { in. }{ }^{2}\right) \end{gathered}$	$\begin{gathered} \operatorname{Lx}^{2} \\ \left(\text { in. }{ }^{3}\right) \end{gathered}$	$\begin{aligned} & I^{\prime} \\ & \text { About } \\ & \text { Own } \\ & \text { Axis } \\ & \text { (in. }{ }^{3} \text {) } \end{aligned}$
Webs	$2 \times 2.415=4.830$	1.500	7.245	10.868	2.347
Upper Corners	$2 \times 0.377=0.754$	0.140	0.106	0.015	--
Lower Corners	$2 \times 0.377=0.754$	2.860	2.156	6.167	--
Compression Flange	5.739	0.053	0.304	0.016	--
Tension Flanges	$2 \times 0.508=1.016$	2.948	2.995	8.830	--
Sum	13.093		12.806	25.896	2.347

Distance from top fiber to y-axis is

$$
\begin{aligned}
\mathrm{x}_{\mathrm{cg}}= & 12.806 / 13.093=0.978 \mathrm{in} . \\
\mathrm{f} \quad & \mathrm{~F}_{\mathrm{y}}\left[\mathrm{x}_{\mathrm{cg}} /\left(3-\mathrm{x}_{\mathrm{cg}}\right)\right] \\
= & 50[0.978 /(3.00-0.978)]=24.18 \mathrm{ksi}>20 \mathrm{ksi} \\
& \text { need to do another iteration. }
\end{aligned}
$$

For the second iteration assume a compressive stress $f=25.50 \mathrm{ksi}$ in the top compression fibers, and that the webs are fully effective.

Compression flange:
$\lambda=(1.052 / \sqrt{4.0})(70.62) \sqrt{25.5 / 27000}=1.142>0.673$
$\rho=[1-(0.22 / 1.142)] / 1.142=0.707$
$b \quad=0.707 \times 7.415=5.242 \mathrm{in}$.

Effective section properties about y-axis:

Element		\mathbf{x} Distance from Top Fiber (in.)	$\begin{gathered} \text { Lx } \\ \left(\text { in. }^{2}\right) \end{gathered}$	$\begin{gathered} \mathrm{Lx}^{2} \\ \left(\text { in. }{ }^{3}\right) \end{gathered}$	$I^{\prime}{ }^{\prime}{ }^{\prime}$ Own Axis (in. ${ }^{3}$)
Webs	$2 \times 2.415=4.830$	1.500	7.245	10.868	2.347
Upper Corners	$2 \times 0.377=0.754$	0.140	0.106	0.015	--
Lower Corners	$2 \times 0.377=0.754$	2.860	2.156	6.167	--
Compression Flange	5.242	0.053	0.278	0.015	--
Tension Flanges	$2 \times 0.508=1.016$	2.948	2.995	8.830	--
Sum	12.596		12.780	25.895	2.347

Distance from top fiber to y-axis is

```
\(x_{c g}=12.780 / 12.596=1.015 \mathrm{in}\).
\(\mathrm{f} \quad=50[1.015 /(3.00-1.015)]=25.57 \mathrm{ksi}\) (close enough)
```

Thus actual compressive stress $f=25.50 \mathrm{ksi}$

To check if the webs are fully effective (Section 2.2.2):

$$
\begin{align*}
& f_{1}=[(1.015-0.293) / 1.985](50)=18.17 \mathrm{ksi}(\text { compression) } \\
& \mathbf{f}_{2}=-[(1.985-0.293) / 1.985](50)=-42.62 \mathrm{ksi}(\text { tension }) \\
& \Psi \quad=\mathrm{f}_{2} / \mathrm{f}_{1}=-42.62 / 18.19=-2.343 \\
& \mathrm{k} \quad=4+2(1-\Psi)^{3}+2(1-\Psi) \quad \text { (Eq. 2.2.2-4) } \\
& =4+2[1-(-2.343)]^{3}+2[1-(-2.343)] \\
& =85.406 \\
& h \quad=\omega=2.415 \text { in. } \\
& w / t=2.415 / 0.105=23.00<200 \text { OK (Section 2.1.2-(1)) } \\
& \lambda=(1.052 / \sqrt{85.406})(23.00) \sqrt{18.19 / 27000}=0.068<0.673 \\
& \mathrm{~b}_{\mathrm{e}} \quad=2.415 \mathrm{in} \text {. } \\
& b_{2}=b_{e} / 2 \tag{Eq.2.2.2-2}\\
& =2.415 / 2=1.208 \mathrm{in} \text {. } \\
& b_{1}=b_{e} /(3-\Psi) \\
& =2.415 /[3-(-2.343)]=0.452 \mathrm{in} \text {. } \\
& \text { (Eq. 2.2.2-1) }
\end{align*}
$$

Compression portion of each web calculated on the basis of the effective section $=x_{c g}-0.293=1.015-0.293=0.722 \mathrm{in}$.

Since $b_{1}+b_{2}=1.660 \mathrm{in} .>0.722 \mathrm{in} ., \mathrm{b}_{1}+\mathrm{b}_{2}$ shall be taken as 0.722 in.. This verifies the assumption that the web is fully effective.

$$
\begin{aligned}
I_{y}^{\prime} & =L x^{2}+I_{1}^{\prime}-L x_{c g}^{2} \\
& =25.895+2.347-12.596(1.015)^{2}
\end{aligned}
$$

$$
\begin{align*}
& =15.265 \mathrm{in} .^{3} \\
\text { Actual } I_{y} & =I^{\prime} y^{t} \\
& =15.265(0.105)=1.603 \mathrm{in} . .^{4} \\
& =I_{y} /\left(3.000-x_{c g}\right) \\
& =1.603 /(3.000-1.015) \\
& =0.808 \mathrm{in}^{3} \\
& =S_{e} F_{y} \tag{Eq.3.3.1.1-1}\\
& =0.808(50) \\
& =40.40 \mathrm{kips}-\mathrm{in} . \\
M_{\mathrm{ny}} & =0.90 \\
\Phi_{\mathrm{b}} & =0.90 \times 40.40=36.36 \mathrm{kips}-\mathrm{in} .
\end{align*}
$$

b. Section 3.3.1.2: M $M_{n y}$ will be calculated on the basis of the lateral buckling strength. (y-axis is the axis of bending).

$$
\begin{align*}
& M_{n}=S_{c}\left(M_{c} / S_{f}\right) \tag{Eq.3.3.1.2-1}\\
& M_{c}=C_{s} C_{b} A \sigma_{e x}\left[j+C_{s} \sqrt{j^{2}+r_{o}^{2}\left(\sigma_{t} / \sigma_{e x}\right)}\right)
\end{align*}
$$

(Eq. 3.3.1.2-5)
where

$$
\begin{align*}
\sigma_{e x} & =\left[\left(\pi^{2} E_{o}\right) /\left(K_{x} L_{x} / r_{x}\right)^{2}\right]\left(E_{t} / E_{o}\right) \tag{Eq.3.4.3-3}\\
& =70.41 x\left(E_{t} / E_{0}\right) \mathrm{ksi}(\text { from item 2.b of this example }) \\
\sigma_{t} & =1 /\left(A r_{o}^{2}\right)\left[G_{o} J+\left(\pi^{2} E_{o} C_{w}\right) /\left(K_{t} L_{t}\right)^{2}\right]\left(E_{t} / E_{o}\right) \tag{Eq.3.4.2-1}\\
& =9.43 x\left(E_{t} / E_{o}\right) \mathrm{ksi}(\text { from item 2.b of this example) } \\
C_{b} & =1.75+1.05\left(M_{1} / M_{2}\right)+0.3\left(M_{1} / M_{2}\right)^{2} \\
& =1.75+1.05(-1.0)+0.3(-1.0)^{2}=1.0
\end{align*}
$$

$$
C_{s}=1.0
$$

$$
r_{0}=3.961 \mathrm{in} .
$$

$$
j \quad=4.567
$$

$$
M_{c}=1.0 \times 1.0 \times(1.551)(70.41)[4.567
$$

$$
\begin{align*}
& \left.+1.00 \sqrt{(4.567)^{2}+(3.961)^{2}(9.43 / 70.41)}\right] \\
= & 1022.0\left(E_{t} / E_{o}\right) \mathrm{kips}-\mathrm{in} . \\
M_{n}= & S_{c}\left(M_{c} / S_{f}\right) \tag{3.3.1.2-1}\\
M_{n}= & S_{c} f \\
f \quad= & M_{c} / S_{f}=1022.0\left(E_{t} / E_{o}\right) / 2.046=499.5\left(E_{t} / E_{o}\right) \mathrm{ksi}
\end{align*}
$$

In the determination of the lateral buckling stress, it is necessary to select a proper ratio of E_{t} / E_{o} from Table A10 or Figure A7 in the Standard for the assumed stress. For the first approximation, assume a compressive stress of $f=F_{y}=50 \mathrm{ksi}$. From Table A10, the corresponding value of E_{t} / E_{o} is found to be equal to 0.19. Thus,

$$
\begin{aligned}
f_{1}= & 499.5 \times 0.19 \\
& =94.9 \mathrm{ksi}>\text { assumed stress } f=50 \mathrm{ksi}
\end{aligned}
$$

Because the computed stress is larger than the maximum yield strength, the lateral buckling stress shall be limited to 50 ksi . Therefore,

$$
\mathrm{f} \quad=\mathrm{M}_{\mathrm{c}} / \mathrm{S}_{\mathrm{f}}=50.0 \mathrm{ksi}
$$

To calculate effective section properties to obtain S_{c} at a stress of 50.0 ksi , we assume that the webs are fully effective.

Compression flange:

$$
\begin{array}{ll}
\lambda & =(1.052 / \sqrt{4.00})(70.62) \sqrt{50.0 / 27000}=1.599>0.673 \\
\rho & =[1-(0.22 / 1.599)] / 1.599=0.539 \\
\mathrm{~b} & =0.539 \times 7.415=3.997 \mathrm{in} .
\end{array}
$$

Effective section properties about y-axis:

Element	```L (in.)```	```x Distance from Top Fiber (in.)```	$\stackrel{\operatorname{Lx}}{\left(\text { in. }^{2}\right)}$	$\begin{gathered} \operatorname{Lx}^{2} \\ \left(\text { in. }{ }^{3}\right) \end{gathered}$	I'1 About Own Axis (in. ${ }^{3}$)
Webs	$2 \times 2.415=4.830$	1.500	7.245	10.868	2.347
Upper Corners	$2 \times 0.377=0.754$	0.140	0.106	0.015	--
Lower Corners	$2 \times 0.377=0.754$	2.860	2.156	6.167	--
Compression Flange	3.997	0.053	0.212	0.011	--
Tension Flanges	$2 \times 0.508=1.016$	2.948	2.995	8.830	--
Sum	11.351		12.714	25.891	2.347

Distance from top fiber to y-axis is

$$
x_{c g}=12.714 / 11.351=1.120 \mathrm{in}
$$

To check if the webs are fully effective (Section 2.2.2):

$$
\begin{aligned}
\mathbf{f}_{1} & =〔(1.120-0.293) / 1.120](50.0)=36.92 \mathrm{ksi}(\text { compression }) \\
\mathbf{f}_{2} & =-[(1.880-0.293) / 1.120](50.0)=-70.85 \mathrm{ksi}(\text { tension }) \\
\Psi & =-70.85 / 36.92=-1.919 \\
& =4+2[1-(-1.919)]^{3}+2[1-(-1.919)] \\
& =59.581 \\
& =(1.052 / \sqrt{59.581})(23.00) \sqrt{36.92 / 27000}=0.116<0.673 \\
\mathbf{k}_{\mathrm{e}} & =2.415 \mathrm{in} . \\
\mathrm{b}_{2} & =2.415 / 2=1.208 \mathrm{in} . \\
\mathbf{b}_{1} & =2.415 /[3-(-1.919)]=0.491 \mathrm{in} .
\end{aligned}
$$

Compression portion of each web calculated on the basis of the effective section $=1.120-0.293=0.827 \mathrm{in}$.

Since $\mathrm{b}_{1}+\mathrm{b}_{2}=1.699$ in. $>0.827 \mathrm{in} ., \mathrm{b}_{1}+\mathrm{b}_{2}$ shall be taken as 0.827 in.. This verifies the assumption that the web is fully effective.

$$
\begin{array}{ll}
I_{y}^{\prime} & =25.891+2.347-11.351(1.120)^{2} \\
& =13.999 \mathrm{in.}^{3} \\
\text { Actual } I_{y} & =13.999(0.105)=1.470 \mathrm{in}^{4} \\
& =I_{y} / x_{c g}=1.470 / 1.120=1.313 \mathrm{in.}^{3} \\
\mathrm{~S}_{\mathrm{c}} & =M_{c} S_{c} / S_{f} \\
M_{\mathrm{ny}} & =102.30(1.313) / 2.046 \\
& =65.65 \mathrm{kips}-\mathrm{in} . \\
& =0.85 \\
\Phi_{b} & =0.85 \times 65.65=55.80 \mathrm{kips}-\mathrm{in} . \\
\Phi_{b} M_{n y} &
\end{array}
$$

$\Phi_{b} M_{n y}$ shall be the smaller of $36.36 \mathrm{kips}-\mathrm{in}$. and $55.80 \mathrm{kips}-\mathrm{in}$. Thus

$$
\Phi_{b} M_{n y} \quad=36.36 \mathrm{kips}-\mathrm{in}
$$

7. $C_{\text {my }}=0.6-0.4\left(M_{1} / M_{2}\right) \geq 0.4$

$$
M_{1} / M_{2}=-1.00 \text { (single curvature) }
$$

$$
0.6-0.4(-1.00)=1.00>0.4
$$

$$
C_{m y}=1.00
$$

8. Determination of $1 / a_{n y}$:

$$
\begin{align*}
\Phi_{C} & =0.85 \\
P_{E} & =\pi^{2} E_{0} I_{y} /\left(K_{y} I_{y}\right)^{2} \tag{Eq.3.5-5}\\
I_{y} & =1.786 \mathrm{in} . \\
K_{y} L_{y} & =1.0(16 \times 12)=192 \mathrm{in} . \\
P_{E} & =\left[\pi^{2}(27000)(1.786)\right] /(192)^{2}=12.91 \mathrm{kips}
\end{align*}
$$

$$
\begin{align*}
1 / a_{\text {ny }} & =1 /\left[1-P_{u} /\left(\phi_{c} P_{E}\right)\right] \tag{Eq.3.5-4}\\
& =1 /[1-3.22 /(0.85 \times 12.91)]=1.415 \\
a_{\text {ny }} & =0.707
\end{align*}
$$

9. Check interaction equations:

$$
\begin{align*}
& P_{u} / \Phi_{c} P_{n}+C_{m y} M_{u y} / \Phi_{b} M_{n y}{ }_{n}{ }_{n y} \leq 1.0 \tag{Eq.3.5-1}\\
& 3.22 / 10.970+1.00 \times 6.44 /(36.36 \times 0.707)=0.294+0.251 \\
& =0.545<1.00 \mathrm{~K} \\
& P_{u} / \Phi_{c} P_{n o}+M_{u y} / \Phi_{b} M_{n y} \leq 1.0 \tag{Eq.3.5-2}\\
& 3.22 / 46.58+6.44 / 36.36=0.069+0.177=0.246<1.00 K
\end{align*}
$$

Therefore the section is adequate for the applied loads.

Solution: Part (B)

1. Full section properties are the same as previously calculated in part (A.1).
2. $\Phi_{C} P_{n}=10.970 \mathrm{kips}$ (calculated in part (A)).
3. $\mathrm{P}_{\mathrm{u}} / \Phi_{\mathrm{c}} \mathrm{P}_{\mathrm{n}}=3.22 / 10.970=0.294>0.15$

Therefore the following interaction equations must be satisfied.

$$
\begin{align*}
& P_{u} / \Phi_{c} P_{n}+C_{m x} M_{u x} / \Phi_{b} M_{n x} a_{n x}+C_{m y} M_{u y} / \Phi_{b} M_{n y} a_{n y} \leq 1.0 \tag{Eq.3.5-1}\\
& P_{u} / \Phi_{c} P_{n o}+M_{u x} / \phi_{b} M_{n x}+M_{u y} / \Phi_{b} M_{n y} \leq 1.0
\end{align*}
$$

4. $\Phi_{C} P_{\text {no }}=46.58 \mathrm{kips}$ (calculated in part (A.4)).
5. Determination of $M_{u x}$ (Section 3.5):

The centroidal x-axis is the same for both the full and effective
sections.

$$
\begin{aligned}
& e_{y}=4.000 \mathrm{in} . \\
& M_{u x}=P_{u} e_{y}=3.22(4.000)=12.88 \mathrm{kips}-\mathrm{in} .
\end{aligned}
$$

6. Determination of $\phi_{b} M_{n x}$ (Section 3.3.1):
$\Phi_{b} M_{n x}$ shall be taken as the smaller of the design flexural strengths calculated according to Sections 3.3.1.1 and 3.3.1.2.
a. Section 3.3.1.1: $M_{n x}$ will be calculated based on the initiation of yielding.

First approximation:

* Assume a compressive stress of $f=F_{y}=50 \mathrm{ksi}$ in the top fiber of the section.
* Assume that the web is fully effective.

Compression flange:
$\mathrm{w} \quad=2.415 \mathrm{in}$.
$\omega / \mathrm{t}=2.415 / 0.105=23.00$
$\mathrm{S} \quad=1.28 \sqrt{\mathrm{E}_{\mathrm{O}} / \mathrm{f}}$
(Eq. 2.4-1)
$=1.28 \sqrt{27000 / 50.0}=29.74$
For $S / 3=9.91<w / t=23.00<S=29.74$

$$
\begin{align*}
I_{a} & =t^{4} 399\{[(w / t) / S]-0.33\}^{3} \tag{Eq.2.4.2-6}\\
& =(0.105)^{4}(399)[(23.00 / 29.74)-0.33]^{3} \\
& =0.004227 \mathrm{in} .^{4} \\
I_{s} & =d^{3} t / 12 \tag{Eq.2.4-2}\\
& =(0.508)^{3}(0.105) / 12=0.001147 \mathrm{in} . .^{4} \\
I_{s} / I_{a} & =0.001147 / 0.004227=0.271
\end{align*}
$$

```
\(D \quad=0.800 \mathrm{in}\).
\(D / w=0.800 / 2.415=0.331\)
\(w / t=23.00<500 \mathrm{~K}\) (Section 2.1.1-(1)-(iii))
For \(0.25<D / w=0.331<0.8\)
\(\mathbf{k} \quad=[4.82-5(\mathrm{D} / \mathrm{w})]\left(\mathrm{I}_{\mathbf{s}} / \mathrm{I}_{\mathrm{a}}\right)^{1 / 2}+0.43 \leq 5.25-5(\mathrm{D} / \mathrm{w}) \quad\) (Eq. 2.4.2-9)
\([4.82-5(0.331)](0.344)^{1 / 2}+0.43=2.078\)
\(5.25-5(0.331)=3.595\)
\(\mathrm{k}=2.078\)
\(\lambda=(1.052 / \sqrt{2.078})(23.00) \sqrt{50.0 / 27000}=0.722>0.673\)
\(\rho=[1-(0.22 / 0.722)] / 0.722=0.963\)
\(b \quad=0.963 \times 2.415=2.326 \mathrm{in}\).
```

Compression stiffener:
$\mathrm{d} \quad=0.508 \mathrm{in}$.
$d / t=0.508 / 0.105=4.84$
$\mathrm{k} \quad=0.50$

Assume the maximum stress in element, $f=F_{y}=50 \mathrm{ksi}$ although it will be actually less.

$$
\begin{aligned}
\lambda \quad & =(1.052 / \sqrt{\mathrm{k}})(w / \mathrm{t}) \sqrt{\mathrm{f} / \mathrm{E}_{\mathrm{O}}} \quad \text { (Eq. 2.2.1-4) } \\
& =(1.052 / \sqrt{0.50})(4.84) \sqrt{50.0 / 27000}=0.310<0.673
\end{aligned}
$$

For $\lambda<0.673$

$$
\begin{aligned}
b & =w \\
d_{s}^{\prime} & =0.508 \mathrm{in} \\
d_{s} & =d_{s}^{\prime}\left(I_{s} / I_{a}\right) \leq d_{s}^{\prime} \\
& =0.508(0.271) \\
& =0.138 \mathrm{in} .
\end{aligned}
$$

(Eq. 2.2.1-1)

Effective section properties about x-axis:

Element		```y Distance from Top Fiber (in.)```	$\begin{gathered} \text { Ly } \\ \left(\text { in. }^{2}\right) \end{gathered}$	$\begin{gathered} L y^{2} \\ \left(\text { in. }{ }^{3}\right) \end{gathered}$	I^{\prime} About Own Axis (in. ${ }^{3}$)
Compression Flange	2.326	0.053	0.123	0.007	--
Compression Stiffener	0.138	0.362	0.050	0.018	--
Compression Corners	$2 \mathrm{x} 0.377=0.754$	0.140	0.106	0.015	--
Web	7.415	4.000	29.660	118.640	33.974
Tension Flange	2.415	7.948	19.194	152.557	--
Tension Stiffener	0.508	7.453	3.786	28.218	0.011
Tension Corners	$2 \mathrm{x} 0.377=0.754$	7.860	5.926	46.582	--
Sum	14.310		58.845	346.037	33.985

Distance from neutral axis to top fiber,

$$
y_{c g}=\mathrm{Ly} / \mathrm{L}=58.845 / 14.310=4.112 \mathrm{in} .
$$

Since the distance from the neutral axis to the top compression
fiber is greater than half the depth of the section, a
compressive stress of $\mathrm{F}_{\mathrm{y}}=50 \mathrm{ksi}$ governs as assumed.

$$
\begin{aligned}
I_{x}^{\prime} \quad & =L y^{2}+I_{1}^{\prime}-L y_{c g}^{2} \\
& =346.037+33.985-14.310(4.112)^{2} \\
& =138.06 \mathrm{in} .{ }^{3}
\end{aligned}
$$

Actual $I_{x}=t I^{\prime}$

$$
=(0.105)(138.06)=14.50 \mathrm{in} .^{4}
$$

Check Web

$$
\begin{aligned}
& w / t=7.415 / 0.105=70.62<200 \text { OK (Section 2.1.2-(1)) } \\
& \mathbf{f}_{1}=[(4.112-0.293) / 4.112](50)=46.44 \mathrm{ksi}(\text { compression })
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{f}_{2} & =-(3.888-0.293) / 4.112(50)=-43.71 \mathrm{ksi}(\text { tension }) \\
\Psi & =f_{2} / \mathrm{f}_{1}=-43.71 / 46.46=-0.941 \\
\mathbf{k} & =4+2[1-(-0.941)]^{3}+2[1-(-0.941)] \\
& =22.51
\end{aligned}
$$

$$
\lambda \quad=(1.052 / \sqrt{k})(w / t) \sqrt{f / E_{O}}
$$

$$
=(1.052 / \sqrt{22.51})(70.62) \sqrt{46.44 / 27000}=0.649<0.673
$$

For $\lambda<0.673$
b $=$ w
(Eq. 2.2.1-1)
$\mathrm{b}_{\mathrm{e}} \quad=7.415 \mathrm{in}$.
$b_{2}=7.415 / 2=3.708 \mathrm{in}$.
$b_{1}=7.415 /[3-(-0.941)]=1.882$ in.
$b_{1}+b_{2}=1.882+3.708=5.590 \mathrm{in}$. $>3.785 \mathrm{in}$. (compression portion of web)

Therefore web is fully effective as assumed.

Check Compression Stiffener

Actual maximum stress in stiffener $=46.44 \mathrm{ksi}$

$$
\begin{align*}
& \lambda=(1.052 / \sqrt{0.50})(4.84) \sqrt{46.44 / 27000}=0.299<0.673 \\
& \text { For } \lambda<0.673 \\
& d^{\prime}{ }_{s}=0.508 \mathrm{in} . \\
& \text { Since } I_{s} / I_{a} \text { is unchanged } \\
& \mathrm{d}_{\mathrm{s}}=0.138 \mathrm{in} . \\
& \text { Conservative assumption OK } \\
& \mathrm{S}_{\mathrm{e}}=\mathrm{I}_{\mathrm{x}} / \mathrm{y}_{\mathrm{cg}}=14.50 / 4.112=3.526 \mathrm{in}^{3}{ }^{3} \\
& M_{n x}=S_{e}{ }^{F} y_{y} \tag{Eq.3.3.1.1-1}\\
& =(3.526)(50)=176.30 \mathrm{kips}-\mathrm{in} . \\
& \Phi_{b}=0.90
\end{align*}
$$

$$
\Phi_{b} M_{n x}=0.90 \times 176.30=158.67 \text { kips-in. }
$$

b. Section 3.3.1.2: $M_{n x}$ will be calculated based on the lateral buckling strength.

For the full section:

$$
\begin{align*}
& I_{x}=15.108 \text { in. }{ }^{4} \\
& y_{c g}=4.000 \mathrm{in} . \\
& S_{f}=I_{x} / y_{c g}=15.108 / 4.000=3.777 \text { in. }^{3} \\
& M_{y} \quad=S_{f} F_{y} \\
& =3.777(50)=188.85 \mathrm{kips}-i n . \\
& C_{b}=1.00 \text { (for members subject to combined axial } \\
& \text { load and bending moment) } \\
& r_{0}=3.961 \mathrm{in} . \\
& \mathrm{A}=1.551 \text { in. }^{2} \\
& \sigma_{e y}=\left[\pi^{2} E_{0} /\left(K_{y} L_{y} / r_{y}\right)^{2}\right]\left(E_{t} / E_{o}\right) \\
& =\left[\pi^{2}(27000) /(178.94)^{2}\right]\left(E_{t} / E_{0}\right) \\
& =8.322\left(E_{t} / E_{o}\right) \mathbf{k s i} \\
& \sigma_{t}=9.43\left(E_{t} / E_{0}\right) \mathrm{ksi} \text { (from part (A)) } \\
& M_{c}=C_{b} r_{o} A \sigma_{e y} \sigma_{t} \tag{Eq.3.3.1.2-5}\\
& =(1.000)(3.961)(1.551) \sqrt{(8.322)(9.430)}\left(E_{t} / E_{0}\right) \\
& =54.42\left(E_{t} / E_{o}\right) \text { kips-in. } \\
& \text { Let } f=M_{c} / S_{f} \\
& =54.42\left(E_{t} / E_{0}\right) / 3.777=14.41\left(E_{t} / E_{0}\right) \mathrm{ksi}
\end{align*}
$$

For the stress f less than 20 ksi , the plasticity reduction factor of E_{t} / E_{o} is equal to 1.0 . The section is subject to elastic lateral buckling. Therefore, $M_{c}=54.42 \mathrm{kips}-\mathrm{in}$.
$\mathrm{f} \quad=14.41 \mathrm{ksi}$

Determine S_{c}, the elastic section modulus of the effective section calculated at a stress of M_{c} / S_{f} in the extreme compression fiber.

For compression flange:
$\mathrm{w} \quad=2.415 \mathrm{in}$.
$\omega / t=2.415 / 0.105=23.00$
$\mathrm{S} \quad=1.28 \sqrt{\mathrm{E}_{\mathrm{o}} / \mathrm{f}}, \mathrm{f}=\mathrm{F}_{\mathrm{n}}$
$\mathrm{S}=1.28 \sqrt{27000 / 14.41}=55.41$
$S / 3=18.47<w / t=23.00<S=55.41$
$I_{a}=399(0.105)^{4}[(23.00 / 55.41)-0.33]^{3}$
$=0.000030$ in. ${ }^{4}$
$\mathrm{I}_{\mathrm{s}}=0.001147 \mathrm{in} .^{4}$
$I_{s} / I_{a}=0.001147 / 0.000030=38.23$
$[4.82-5(0.331)](38.23)^{1 / 2}+0.43=20.00>3.595$
$\mathrm{k}=3.595$
$\lambda=(1.052 / \sqrt{3.595})(23.00) \sqrt{14.41 / 27000}=0.295<0.673$
$b \quad=w=2.415 \mathrm{in}$. (compression flange fully effective)

For compression stiffener:
f is taken conservatively as 14.41 ksi as used in the top compression fiber.
$\mathrm{d} / \mathrm{t}=4.84$
$\lambda=(1.052 / \sqrt{0.50})(4.84) \sqrt{14.41 / 27000}=0.166<0.673$
$d_{s}^{\prime}=d=0.508 \mathrm{in}$.

And since $\mathrm{I}_{\mathrm{s}} / \mathrm{I}_{\mathrm{a}}=38.23>1.0$

$$
\begin{aligned}
\mathrm{d}_{\mathrm{s}} \quad= & \mathrm{d}_{\mathrm{s}}^{\prime}=0.508 \text { in. (compression stiffener fully } \\
& \text { effective) }
\end{aligned}
$$

And since the web was fully effective at the stress $f=F_{y}$
$=50 \mathrm{ksi}$, it will be fully effective for $f=14.41 \mathrm{ksi}$.
Thus the whole section is fully effective at $M_{c} / S_{f}=15.71 \mathrm{ksi}$

Therefore

$$
\begin{aligned}
& \begin{aligned}
& S_{c}=S_{f}=3.777 \mathrm{in}^{3} \\
& M_{\mathrm{nx}}=M_{c} S_{c} / S_{f} \\
&=54.42(3.777) / 3.777 \\
&=54.42 \mathrm{kips}-\mathrm{in} . \\
&=0.85 \\
& \Phi_{b} \\
& \Phi_{b} M_{n x}=0.85 \times 54.42=46.26 \mathrm{kips}-\mathrm{in} . \\
& \Phi_{b} M_{n x} \text { shall be the smaller of } 158.67 \mathrm{kips}-\mathrm{in} . \text { and } 46.26 \mathrm{kips}-\mathrm{in} .
\end{aligned} \\
& \text { Therefore }
\end{aligned}
$$

$$
\Phi_{b} M_{n x}=46.26 \mathrm{kips}-\mathrm{in}
$$

7. Determination of C_{mx} (Section 3.5):

$$
\begin{aligned}
& \mathrm{M}_{1} / \mathrm{M}_{2}=-1.00 \text { (single curvature) } \\
& \mathrm{C}_{\mathrm{mx}}=0.6-0.4(-1.0)=1.00>0.40 \mathrm{~K}
\end{aligned}
$$

8. Determination of $a_{n x}$ (Section 3.5):

$$
\begin{align*}
P_{u} & =3.22 \mathrm{kips} \\
P_{E} & =\pi^{2} E_{o} I_{x} /\left(K_{x} L_{x}\right)^{2} \tag{Eq.3.5-5}\\
& =\left[\pi^{2}(27000)(15.108)\right] /[1(16) \times 12]^{2}=109.21 \mathrm{kips} \\
\Phi_{\mathrm{C}} & =0.85
\end{align*}
$$

$$
\begin{align*}
1 / a_{n x} & =1 /\left[1-P_{u} /\left(\phi_{c} P_{E}\right)\right] \tag{Eq.3.5-4}\\
& =1 /[1-3.22 /(0.85 \times 109.21)]=1.036 \\
a_{n x} & =0.965
\end{align*}
$$

9. $M_{u y}=6.44 \mathrm{kips}-\mathrm{in}$. (calculated in part (A.5))
10. $\phi_{b} M_{n y}=36.36 \mathrm{kips}-\mathrm{in}$. (calculated in part (A.6))
11. $\mathrm{C}_{\mathrm{my}}=1.0 \quad$ (calculated in part (A.7))
12. $a_{\text {ny }}=0.707$ (calculated in part (A.8))
13. Interaction equations (Section 3.5):

$$
\begin{aligned}
& P_{u} / \phi_{c} P_{n}+C_{m x} M_{u x} / \Phi_{b} M_{n x} a_{n x}+C_{m y} M_{u y} / \phi_{b} M_{n y} a_{n y} \leq 1.0 \\
& 3.22 / 10.970+1.0 \times 12.88 /(46.26 \times 0.965)+1.0 \times 6.44 /(36.36 \times 0.707) \\
& 0.294+0.289+0.251=0.834<1.00 K \\
& P_{u} / \phi_{c} P_{n o}+M_{u x} / \phi_{b} M_{n x}+M_{u y} / \phi_{b} M_{n y} \leq 1.0 \\
& 3.22 / 46.58+12.88 / 46.26+6.44 / 36.36 \\
& 0.069+0.278+0.177=0.524<1.00 K
\end{aligned}
$$

Therefore the section is adequate for the applied loads.

EXAMPLE 22.2 C-SECTION (ASD)

Rework Example 22.1 by using the Allowable Stress Design (ASD) method to check the adequacy of a channel section (Fig. 22.1) to be used as compression member.

Solution: Part (A)

1. Full section properties:

The section properties (A, I_{x}, etc.) are the same as those calculated in Example 22.1.(1).
2. Determination of P_{a} :

The following results are obtained from Example 22.1.(2).
a) For Flexural Buckling:

$$
\begin{align*}
\left(F_{n}\right)_{1} & =\left(\pi^{2} E_{t}\right) /\left(K_{y} L_{y} / r_{y}\right)^{2} \tag{Eq.3.4.1-1}\\
\left(F_{n}\right)_{1} & =\left(\pi^{2} \times 27000\right) /(178.94)^{2} \\
& =8.322 \mathrm{ksi}
\end{align*}
$$

The section is subject to the elastic flexural buckling.
b) For Torsional-Flexural Buckling:

$$
\begin{equation*}
\left(F_{n}\right)_{2}=(1 / 2 \beta)\left[\left(\sigma_{e x}+\sigma_{t}\right)-\sqrt{\left(\sigma_{e x}+\sigma_{t}\right)^{2}-4 \beta \sigma_{e x} \sigma_{t}}\right] \tag{Eq.3.4.3-1}
\end{equation*}
$$

where

$$
\begin{aligned}
\sigma_{e x}= & {\left[\left(\pi^{2} E_{0}\right) /\left(K_{x} L_{x} / r_{x}\right)^{2}\right]\left(E_{t} / E_{o}\right) } \\
\sigma_{t}= & 1 /\left(A r_{o}^{2}\right)\left[G_{o} J+\left(\pi^{2} E_{o} C_{w}\right) /\left(K_{t} L_{t}\right)^{2}\right]\left(E_{t} / E_{o}\right) \\
G_{0}= & 10500 \mathrm{ksi}(\text { Table A4 of the Standard }) \\
F_{n 2}= & (1 / 2 \beta)\left[\left(\sigma_{e x}+\sigma_{t}\right)-\sqrt{\left(\sigma_{e x}+\sigma_{t}\right)^{2}-4 \beta \sigma_{e x} \sigma_{t}}\right] \\
= & {[1 /(2 \times 0.694)][(70.41+9.43)} \\
& \left.-\sqrt{(70.41+9.43)^{2}-4 \times 0.694 \times 70.41 \times 9.43}\right] \\
= & 9.024 \mathrm{ksi}
\end{aligned}
$$

(Eq. 3.4.3-3)
(Eq. 3.4.2-1)

This section is subject to elastic torsional-flexural buckling.

Then, F_{n} should be the smaller of $\left(F_{n}\right)_{1}$ and $\left(F_{n}\right)_{2}$.
$\mathrm{F}_{\mathrm{n}} \quad=8.322 \mathrm{ksi}$
Therefore,

$$
\begin{aligned}
P_{\mathrm{n}} & =A_{\mathrm{e}} F_{\mathrm{n}}=1.551 \times 8.322 \\
& =12.91 \mathrm{kips} \\
\Omega & =2.15 \\
\mathrm{P}_{\mathrm{a}} & =\mathrm{P}_{\mathrm{n}} / \Omega=12.91 / 2.15=6.0 \mathrm{kips}
\end{aligned}
$$

3. $P=0.35+1.75=2.10 \mathrm{kips}$
$P / P_{a}=2.10 / 6.0=0.350>0.15$
Must check both interaction equations as follows:

$$
\begin{aligned}
& P / P_{a}+C_{m x} M_{x} /\left(M_{a x} a_{x}\right)+C_{m y} M_{y} /\left(M_{a y} a_{y}\right) \leq 1.0 \\
& P / P_{a o}+M_{x} / M_{a x}+M_{y} / M_{a y} \leq 1.0
\end{aligned}
$$

4. Determination of $P_{a o}$ (for $F_{n}=F_{y}$):
$A_{e} \quad=1.096$ in. $^{2}($ from Example 19.1.(4))
$P_{\text {no }}=1.096 \times 50=54.80 \mathrm{kips}$
$\Omega \quad=2.15$
$\mathrm{P}_{\mathrm{ao}}=\mathrm{P}_{\mathrm{no}} / \Omega=54.8 / 2.15$
$=25.49 \mathrm{kips}$
5. Determination of M_{y} (required flexural strength about y-axis):
$\left(M_{x}=0\right.$ since $\left.e_{y}=0\right)$
M_{y} will be with respect to the centroidal axes of the effective section determined for the required axial strength alone.
$A_{e} \quad=1.551$ in. ${ }^{2}$ under required axial strength alone
Since $A_{e}=A$, the centroidal axes for the effective section are
the same as those for the full section. Therefore, e_{x} did not change.
$M_{y}=2.10(2.00)=4.20 \mathrm{kips}-i n$. (Required Flexural Strength)
The interaction equations reduce to the following:
$P / P_{a}+C_{m y} M_{y} / M_{a y}{ }^{a_{y}} \leq 1.0$
$P / P_{a o}+M_{y} / M_{\text {ayo }} \leq 1.0$
6. Determination of $M_{a y}$
$M_{a y}$ shall be taken as the smaller of the allowable flexural strengths calculated according to Sections 3.3.1.1 and 3.3.1.2:
a. Section 3.3.1.1: $M_{\text {ay }}$ will be calculated on the basis of initiation of yielding.

$$
\begin{align*}
\mathrm{S}_{\mathrm{e}} & =1.603 /(3.000-1.015) \\
& \left.=0.808 \mathrm{in}^{3} \quad \text { (from Example } 22.1\right) \\
\mathrm{M}_{\mathrm{ny}} & =\mathrm{S}_{\mathrm{e}_{\mathrm{y}}} \tag{Eq.3.3.1.1-1}\\
& =0.808(50) \\
& =40.40 \mathrm{kips}-\mathrm{in} . \\
& =1.85 \\
\mathrm{M}_{\mathrm{ay}} \quad & =M_{\mathrm{ny}} / \Omega=40.40 / 1.85=21.84 \mathrm{kips}-\mathrm{in} .
\end{align*}
$$

b. Section 3.3.1.2: May will be calculated on the basis of the lateral buckling strength. (y-axis is the axis of bending).

$$
\begin{align*}
M_{n} & =S_{c}\left(M_{c} / S_{f}\right) \tag{Eq.3.3.1.2-1}\\
M_{n} & =S_{c} f \\
f & =M_{c} / S_{f}=50.0 \mathrm{ksi} \\
& =I_{\mathbf{y}} / x_{c g}=1.470 / 1.120=1.313 \mathrm{in}^{3} \\
S_{\mathbf{c}} & =M_{c} S_{c} / S_{f}
\end{align*}
$$

(Eq. 3.3.1.2-1)

$$
\begin{aligned}
&=50.0(1.313) \\
&=65.65 \mathrm{kips}-\mathrm{in} \\
&=1.85 \\
& \Omega=M_{\mathrm{ny}} / \Omega=65.65 / 1.85=35.49 \mathrm{kips}-\mathrm{in} . \\
& M_{a y} \\
& M_{a y} \text { shall be the smaller of } 21.84 \mathrm{kips}-\mathrm{in} . \text { and } 35.49 \mathrm{kips}-\mathrm{in} .
\end{aligned}
$$

Thus

$$
M_{\text {ay }} \quad=21.84 \text { kips-in }
$$

7. $\mathrm{C}_{\mathrm{my}}=0.6-0.4\left(\mathrm{M}_{1} / \mathrm{M}_{2}\right) \geq 0.4$
$M_{1} / M_{2}=-1.00$ (single curvature)
$0.6-0.4(-1.00)=1.00>0.4$
$C_{m y}=1.00$
8. Determination of $1 / a_{n y}$:
$\Omega \quad=2.15$
$P_{c r}=\pi^{2} E_{0} I_{y} /\left(K_{y} L_{y}\right)^{2}$
$I_{y} \quad=1.786$ in. ${ }^{4}$
$K_{y} L_{y}=1.0(16 \times 12)=192$ in.
$\mathrm{P}_{\text {cr }}=\Pi^{2}(27000)(1.786) /(192)^{2}=12.91 \mathrm{kips}$
$1 / a_{n y}=1 /\left[1-\left(\Omega_{c} P / P_{c r}\right)\right]$
$=1 /[1-(2.15 \times 2.1 / 12.91)]=1 / 0.650$
$a_{n y}=0.650$
9. Check interaction equations:
$P / P_{a}+C_{m y} M_{y} / M_{a y} a_{n y} \leq 1.0$
$2.1 / 6.0+1.00 \times 4.2 /(21.84 \times 0.650)=0.350+0.296$
$=0.646<1.0$ OR
$P / P_{a o}+M_{y} / M_{a y} \leq 1.0$
$2.1 / 25.49+4.2 / 21.84=0.082+0.192=0.274<1.0 \mathrm{OK}$
Therefore the section is adequate for the applied loads.

Solution: Part (B)

1. Full section properties are the same as previously calculated in Part (A.1).
2. $P_{a}=6.0$ kips (calculated in Part (A))
3. $P=0.35+1.75=2.10 \mathrm{kips}$
$P / P_{a}=2.10 / 6.0=0.350>0.15$
Must check both interaction equations as follows:
$P / P_{a}+C_{m x} M_{x} /\left(M_{a x} a_{x}\right)+C_{m y} M_{y} /\left(M_{a y} a_{y}\right) \leq 1.0$
$P / P_{a o}+M_{x} / M_{a x}+M_{y} / M_{a y} \leq 1.0$
4. Determination of $P_{a o}=25.49$ kips (calculated in Part (A))
5. Determination of M_{x}

The centroidal x-axis is the same for both the full and effective sections.

$$
\begin{aligned}
& e_{y}=4.00 \mathrm{in} . \\
& M_{x}=2.10(4.00)=8.40 \mathrm{kips}-\mathrm{in} . \text { (Required Flexural Strength) }
\end{aligned}
$$

6. Determination of $M_{a x}$
$M_{a x}$ shall be taken as the smaller of the allowable flexural strengths
calculated according to sections 3.3.1.1 and 3.3.1.2:
a. Section 3.3.1.1: $M_{a x}$ will be calculated on the basis of initiation of yielding.

$$
\begin{aligned}
& \mathrm{S}_{\mathrm{e}} \quad=14.50 / 4.112 \\
& =3.526 \text { in. }{ }^{3} \text { (from Example 22.1 Part (A)) } \\
& M_{n x} \quad=S_{e} F_{y} \\
& =3.526(50) \\
& =176.30 \mathrm{kips}-\mathrm{in} . \\
& \Omega=1.85 \\
& M_{a x}=M_{n x} / \Omega=176.30 / 1.85=95.30 \text { kips-in. }
\end{aligned}
$$

b. Section 3.3.1.2: $M_{a x}$ will be calculated on the basis of the lateral buckling strength.

$$
\begin{align*}
& M_{n}=S_{c}\left(M_{c} / S_{f}\right) \tag{Eq.3.3.1.2-1}\\
& M_{n}=S_{c} f \\
& \mathrm{f}=\mathrm{M}_{\mathrm{c}} / \mathrm{S}_{\mathrm{f}}=54.42 / 3.777=14.41 \mathrm{ksi} \\
& S_{c}=S_{e}=3.777 \text { in. }^{3} \\
& M_{n x} \quad=M_{c} S_{c} / S_{f} \\
& =14.41 \times 3.777 \\
& =54.42 \mathrm{kips}-\mathrm{in} . \\
& \Omega=1.85 \\
& M_{a x} \quad=M_{n x} / \Omega=54.42 / 1.85=29.42 \text { kips-in. }
\end{align*}
$$

(Eq. 3.3.1.2-1)
$M_{a x}$ shall be the smaller of 95.30 kips-in. and $29.42 \mathrm{kips-in}$.
Thus

$$
M_{a x} \quad=29.42 \mathrm{kips}-i n
$$

7. $C_{m x}=0.6-0.4\left(M_{1} / M_{2}\right) \geq 0.4$

$$
\begin{aligned}
& M_{1} / M_{2}=-1.00 \text { (single curvature) } \\
& 0.6-0.4(-1.00)=1.00>0.4 \\
& C_{m x}=1.00
\end{aligned}
$$

8. Determination of $1 / a_{n x}$:

$$
\begin{aligned}
\Omega & =2.15 \\
P_{c r} & =\Pi^{2} E_{o} I_{x} /\left(K_{x} L_{x}\right)^{2} \\
& =\pi^{2}(27000)(15.108) /(192)^{2}=109.21 \mathrm{kips} \\
1 / a_{n y} & =1 /\left[1-\left(\Omega_{c} P / P_{c r}\right)\right] \\
& =1 /[1-(2.15 \times 2.1 / 109.21)]=1 / 0.959 \\
a_{n y} & =0.650
\end{aligned}
$$

9. $M_{u y}=4.2 \mathrm{kips}-\mathrm{in}$.
10. $M_{a y}=21.84$ kips-in.
11. $\mathrm{C}_{\mathrm{my}}=1.0$
12. $a_{n y}=0.650$
13. Check interaction equations:
$P / P_{a}+C_{m x} M_{x} /\left(M_{a x} a_{n x}\right)+C_{m y} M_{y} /\left(M_{a y} a_{n y}\right) \leq 1.0$
$2.1 / 6.0+1.00 \times 8.4 /(29.42 \times 0.959)+1.00 \times 4.2 /(21.84 \times 0.650)$
$=0.350+0.298+0.296=0.944<1.0 \quad 0 K$
$P / P_{a o}+M_{x} / M_{a x}+M_{y} / M_{a y} \leq 1.0$
$2.1 / 25.49+8.4 / 29.42+4.2 / 21.84=0.082+0.286+0.192=0.560<1.0 \mathrm{OK}$
Therefore the section is adequate for the applied loads.

EXAMPLE 23.1 TUBULAR SECTION (LRFD)

By using the Load and Resistance Factor Design (LRFD) criteria, check the adequacy of a tubular section (Fig. 23.1) to be used as compression member which is subjected to an eccentrically axial load. The service axial load is $P=15$ kips. Consider the following loading case: the eccentricity of axial load at each end of member, e_{y}, is 4 in. and member is bent in single curvature about x-axis, and $e_{x}=0$. Assume that the effective length factors $K_{x}=K_{y}=1.0$, and that the unbraced lengths $L_{x}=L_{y}=10 \mathrm{ft}$. Use Type 304, 1/4-Hard, stainless steel. Assume dead to live load ration $D / L=1 / 5$ and 1.2D+1.6L gonerns the design.

Figure 23.1 Section for Example 23.1

Solution:

1. Full section properties:

$$
r=R+t / 2=3 / 16+0.105 / 2=0.240 \mathrm{in} .
$$

Length of arc, $u=1.57 \mathrm{r}=1.57 \times 0.240=0.377 \mathrm{in}$.
Distance of c.g. from center of radius,
$c=0.637 \mathrm{r}=0.637 \times 0.240=0.153 \mathrm{in}$.
$I_{x}=I_{y}$ (doubly symmetric section)

Element	$\begin{gathered} \mathrm{L} \\ \text { (in.) } \end{gathered}$	```Distance to Center of Section (in.)```	$\begin{gathered} \mathrm{Ly}^{2} \\ \left(\text { in. }{ }^{3}\right) \end{gathered}$	$\begin{gathered} I^{\prime} \\ \text { About } \\ \text { Own } \\ \text { Axis } \\ \left(\text { in. }{ }^{3}\right. \text {) } \end{gathered}$
Flanges	$2 \times 7.414=14.828$	3.948	231.120	--
Corners	$4 \times 0.377=1.508$	3.860	22.469	--
Webs	$2 \times 7.414=14.828$	--	--	67.921
Sum	31.164		253.589	67.921

$\mathrm{A} \quad=\mathrm{Lt}=31.164 \times 0.105=3.272 \mathrm{in} .^{2}$
$I^{\prime} \quad=L y^{2}+I^{\prime}{ }_{1}=253.589+67.921=321.510 \mathrm{in} .^{3}$
$I_{x} \quad=I_{y}=I^{\prime} t=321.510 x 0.105=33.759 \mathrm{in} .^{4}$
$r_{x} \quad=r_{y}=33.759 / 3.272=3.212 \mathrm{in}$.
$S_{x} \quad=I_{x} / 4.000=33.759 / 4.000=8.440$ in. ${ }^{3}$
$K_{x} L_{x} / r_{x}=1.0(10 \times 12) / 3.212=37.36<2000 K$ (Section 3.4-(5))
2. Determination of $\Phi_{C} P_{n}$ (Section 3.4):

Since the square tube is a doubly symmetric closed section, provisions of Section 3.4.1 apply, i.e., section is not subjected to torsional flexural buckling.

For Flexural Buckling:

$$
\begin{equation*}
F_{n}=\left(\pi^{2} E_{t}\right) /\left(K_{y} L_{y} / r_{y}\right)^{2} \tag{Eq.3.4.1-1}
\end{equation*}
$$

In the determination of the flexural buckling stress, it is necessary to select a proper value of E_{t} from Table A13 or Figure A11 in the Standard for the assumed stress. For the first approximation, assume a compressive stress of $f=44 \mathrm{ksi}$. From Table A13, the corresponding value of E_{t} is found to be equal to 7200 ksi . Thus,

$$
\begin{aligned}
\mathrm{F}_{\mathrm{n}} & =\left(\pi^{2} \times 7200\right) /(37.36)^{2} \\
& =50.91 \mathrm{ksi}>\text { assumed stress } \mathrm{f}=44 \mathrm{ksi} \quad \mathrm{NG}
\end{aligned}
$$

Because the computed stress is larger than the assumed value, further successive approximations are needed.

Assume $\mathrm{f}=46.66 \mathrm{ksi}$, and

$$
\begin{aligned}
\mathrm{E}_{\mathrm{t}} & =6600 \mathrm{ksi} \\
\mathrm{~F}_{\mathrm{n}} & =\left(\pi^{2} \times 6600\right) /(37.36)^{2} \\
& =46.67 \mathrm{ksi}=\text { assumed stress } \mathrm{OK}
\end{aligned}
$$

$$
w \quad=7.414 \mathrm{in} .
$$

$$
w / t=7.414 / 0.105=70.61<400 \text { OK (Section 2.1.1-(1)-(ii)) }
$$

$$
\mathrm{k} \quad=4.00 \text { (Section 2.2.1-(1)) }
$$

$$
\lambda \quad=(1.052 / \sqrt{k})(w / t) \sqrt{f / E_{O}}, f=F_{n} \quad \text { (Eq. 2.2.1-4) }
$$

$$
=(1.052 / \sqrt{4.00})(70.61) \sqrt{46.44 / 27000}=1.544>0.673
$$

$$
\rho \quad=(1-0.22 / \lambda) / \lambda
$$

(Eq. 2.2.1-3)

$$
=(1-0.22 / 1.544) / 1.544=0.555
$$

$$
\begin{equation*}
\text { b } \quad=\rho w \tag{Eq.2.2.1-2}
\end{equation*}
$$

$$
=0.555 \times 7.414=4.115 \mathrm{in} .
$$

$$
A_{e} \quad=A-4(w-b) t
$$

$$
=3.272-4(7.414-4.115)(0.105)=1.886 \text { in }^{2}
$$

$$
\begin{equation*}
P_{n} \quad=A_{e} F_{n} \tag{Eq.3.4-1}
\end{equation*}
$$

$$
\begin{aligned}
& =1.886 \times 46.66=88.00 \mathrm{kips} \\
\Phi_{C} & =0.85 \\
\phi_{C} P_{n} & =0.85 \times 88.00=74.80 \mathrm{kips}
\end{aligned}
$$

3. $\mathrm{P}_{\mathrm{DL}}+\mathrm{P}_{\mathrm{LL}}=\left(\mathrm{P}_{\mathrm{DL}} / \mathrm{P}_{\mathrm{LL}}+1\right) \mathrm{P}_{\mathrm{LL}}$

$$
=(1 / 5+1) \mathrm{P}_{\mathrm{LL}}=1.2 \mathrm{P}_{\mathrm{LL}}=\mathrm{P}
$$

$$
\mathrm{P}_{\mathrm{LL}} \quad=\mathrm{P} / 1.2=15 / 1.2=12.5 \mathrm{kips}
$$

$$
\mathrm{P}_{\mathrm{u}} \quad=1.2 \mathrm{P}_{\mathrm{DL}}+1.6 \mathrm{P}_{\mathrm{LL}}
$$

$$
=\left(1.2 \mathrm{P}_{\mathrm{DL}} / \mathrm{P}_{\mathrm{LL}}+1.6\right) \mathrm{P}_{\mathrm{LL}}
$$

$$
=[1.2(1 / 5)+1.6](12.5)=23 \mathrm{kips}
$$

where
$\mathrm{P}_{\mathrm{DL}} \quad=$ Axial load determined on the basis of nominal dead load
$P_{\text {LL }} \quad=$ Axial load determined on the basis of nominal live load
$P_{u} / \Phi_{c} P_{n}=23 / 74.80=0.307>0.15$
Must check both interaction equations (Eq. 3.5-1), (Eq. 3.5-2).
4. Determination of $\Phi_{c} P_{\text {no }}$ (Section 3.4 for $F_{n}=F_{y}$)

$$
\begin{array}{ll}
\lambda & =(1.052 / \sqrt{4.00})(70.61) \sqrt{50.0 / 27000}=1.544>0.673 \\
\rho & =(1-0.22 / 1.598) / 1.598=0.540 \\
b & =0.540 \times 7.414=4.004 \mathrm{in} . \\
A_{e} & =3.272-4(7.414-4.004)(0.105)=1.840 \mathrm{in.}^{2} \\
P_{\text {no }} & =1.840 \times 50.00=92.00 \mathrm{kips} \\
\Phi_{c} P_{\text {no }} & =0.85 \times 92.00=78.20 \mathrm{kips}
\end{array}
$$

5. Determination of $M_{u x}, M_{u y}$ (Section 3.5):

Since the section is doubly symmetric, the centroidal axes of the
effective section at $\phi_{c} P_{n}$ are the same as those of the full section.
$M_{u x} \quad=P_{u} e_{y}=23 \times 4=92 \mathrm{kips}-\mathrm{in}$.
$M_{u y} \quad=P_{u} e_{x}=0$
Since $M_{u y}=0$, the interaction equations (Eq. 3.5-1) and (Eq.3.5-2)
reduce to the following :

$$
\begin{align*}
& P_{u} / \Phi_{c} P_{n}+C_{m x} M_{u x} / \Phi_{b} M_{n x} a_{n x} \leq 1.0 \tag{Eq.3.5-1}\\
& P_{u} / \Phi_{c} P_{n o}+M_{u x} / \Phi_{b} M_{n x} \leq 1.0 \tag{Eq.3.5-2}
\end{align*}
$$

6. Determination of $\Phi_{b} M_{n x}$ (Section 3.3.1):
$\Phi_{b} M_{n x}$ shall be taken as the smaller of the design flexural strengths calculated according to Sections 3.3.1.1 and 3.3.1.2:
a. Section 3.3.1.1: $M_{n x}$ will be calculated on the basis of initiation of yielding.

Computation of I_{x} :
For the first approximation, assume a compression stress of $f=F_{y}=50 \mathrm{ksi}$ in the compression $f l a n g e$, and that the web is fully effective.

Compression flange: $k=4.00$ (stiffened compression element supported by a web on each longitudinal edge)

$$
\begin{aligned}
& w / t=7.414 / 0.105=70.61<400 \text { OK (Section 2.1.1-(1)-(ii)) } \\
& \lambda=(1.052 / \sqrt{4.00})(70.61) \sqrt{50.0 / 27000}=1.598>0.673 \\
& \rho=(1-0.22 / 1.598) / 1.598=0.540 \\
& b=0.540 \times 7.414=4.004 \mathrm{in} .
\end{aligned}
$$

Effective section properties about x-axis:

E1ement	L Effective Length (in.)	y Distance from Top Fiber (in.)	$\begin{gathered} \text { Ly } \\ \left(\text { in. }^{2}\right) \end{gathered}$	$\begin{gathered} L y^{2} \\ \left(\text { in. }{ }^{3}\right) \end{gathered}$	I' About Own Axis (in. ${ }^{3}$)
Webs	14.828	4.000	59.312	237.248	67.921
Upper Corners	0.754	0.140	0.106	0.015	--
Lower Corners	0.754	7.860	5.926	46.582	--
Compression Flange	4.004	0.053	0.212	0.011	--
Tension Flange	7.414	7.948	58.926	468.348	--
Sum	27.754		124.482	752.204	67.921

Distance from top fiber to x-axis is

$$
y_{c g}=\mathrm{Ly} / \mathrm{L}=124.482 / 27.754=4.485 \mathrm{in} .
$$

Since the distance of top compression fiber from neutral axis is greater than one half the section depth (i.e., $4.485>$ 4.000), a compression stress of 50 ksi will govern as assumed (i.e., initial yielding is in compression).

To check if the web is fully effective (Section 2.2.2)

$$
\begin{aligned}
\mathrm{f}_{1} & =[(4.485-0.293) / 4.485](50)=46.73 \mathrm{ksi}(\text { compression) } \\
\mathrm{f}_{2} & =-[(3.515-0.293) / 4.485](50)=-35.92 \mathrm{ksi}(\text { tension }) \\
\Psi & =\mathrm{f}_{2} / \mathrm{f}_{1}=-35.92 / 46.73=-0.769 \\
\mathbf{k} & =4+2[1-(-0.769)]^{3}+2[1-(-0.769)] \\
& =18.610 \\
\mathbf{h} & =w=7.414 \mathrm{in} ., \mathrm{h} / \mathrm{t}=\mathrm{w} / \mathrm{t}=7.414 / 0.105=70.61 \\
\mathrm{~h} / \mathrm{t} & =70.61<200 \text { OK (Section } 2.1 .2-(1))
\end{aligned}
$$

$$
\begin{align*}
\lambda & =(1.052 / \sqrt{18.610})(70.61) \sqrt{46.73 / 27000}=0.716>0.673 \\
\rho & =(1-0.22 / 0.716) / 0.716=0.968 \\
b_{e} & =0.968 \times 7.414=7.177 \mathrm{in} . \\
b_{2} & =b_{e} / 2 \tag{Eq.2.2.2-2}\\
& =7.177 / 2=3.589 \mathrm{in} . \\
b_{1} & =b_{e} /(3-\Psi) \tag{Eq.2.2.2-1}\\
& =7.177 /[3-(-0.769)\rceil=1.904 \mathrm{in.}
\end{align*}
$$

Compression portion of the web calculated on the basis of the effective section $=y_{c g}-0.293=4.485-0.293=4.192 \mathrm{in}$.

Since $b_{1}+b_{2}=5.493$ in. >4.192 in., $b_{1}+b_{2}$ shall be taken as 4.192 in.

This verifies the assumption that the web is fully effective.

$$
\begin{align*}
\mathrm{I}_{\mathrm{x}}^{\prime} & =\mathrm{Ly}^{2}+\mathrm{I}_{1}^{\prime}-\mathrm{Ly}_{\mathrm{cg}} \\
& =752.204+67.921-27.754(4.485)^{2} \\
& =261.847 \mathrm{in} .{ }^{3} \\
\text { Actual } \mathrm{I}_{\mathrm{x}} & =\mathrm{tI}{ }_{\mathrm{x}}^{\prime} \\
& =(0.105)(261.847)=27.494 \mathrm{in} . .^{4} \\
& =\mathrm{I}_{\mathrm{x}} / \mathrm{y}_{\mathrm{cg}}=27.494 / 4.485=6.130 \mathrm{in} .{ }^{3} \\
\mathrm{~S}_{\mathrm{e}} & =\mathrm{S}_{\mathrm{e}} \mathrm{~F}_{\mathrm{y}} \\
\mathrm{M}_{\mathrm{nx}} & =(6.130)(50)=306.50 \mathrm{kips}-\mathrm{in} . \\
& =0.90 \\
\Phi_{\mathrm{b}} & \Phi_{\mathrm{b}} \mathrm{M}_{\mathrm{nx}} \\
& =0.90 \times 306.50=275.85 \mathrm{kips}-\mathrm{in} .
\end{align*}
$$

b. Section 3.3.1.2: $M_{n x}$ will be calculated on the basis of lateral buckling strength. However for this square tube (closed box-type member) the provisions of Section 3.3.1.2 do not apply.

Therefore

$$
\Phi_{\mathrm{b}} \mathrm{M}_{\mathrm{nx}} \quad=275.85 \mathrm{kips}-\mathrm{in}
$$

7. $C_{m x}=0.6-0.4\left(M_{1} / M_{2}\right)$
$M_{1} / M_{2}=-(92 / 92)=-1.0$ (single curvature)
$0.6-0.4\left(M_{1} / M_{2}\right)=0.6-0.4(-1.0)=1.0$
8. Determination of $1 / a_{n x}$:

$$
\begin{align*}
\Phi_{\mathrm{c}} & =0.85 \\
\mathrm{P}_{\mathrm{E}} & =\pi^{2} \mathrm{E}_{0} \mathrm{I}_{\mathrm{x}} /\left(\mathrm{K}_{\mathrm{x}} \mathrm{~L}_{\mathrm{x}}\right)^{2} \tag{Eq.3.5-5}\\
\mathrm{I}_{\mathrm{x}} & =33.759 \mathrm{in} .4 \\
\mathrm{~K}_{\mathrm{x}} \mathrm{~L}_{\mathrm{x}} & =1.0(10 \mathrm{x} 12)=120 \mathrm{in} . \\
\mathrm{P}_{\mathrm{E}} & =\left[\pi^{2}(27000)(33.759)\right] /(120)^{2}=624.73 \mathrm{kips} \\
1 / a_{\mathrm{nx}} & =1 /\left(1-\mathrm{P}_{\mathrm{u}} / \Phi_{\mathrm{c}} \mathrm{P}_{\mathrm{E}}\right) \\
& =1 /[1-23 /(0.85 \times 624.73)]=1.045 \\
a_{\mathrm{nx}} & =0.957
\end{align*}
$$

(Eq. 3.5-4)
9. Check interaction equations:

$$
\begin{aligned}
& P_{u} / \Phi_{c} P_{n}+C_{m x} M_{u x} / \Phi_{b} M_{n x} a_{n x} \leq 1.0 \\
& 23 / 74.80+1 \times 92 /(275.85 \times 0.957)=0.307+0.349=0.656<1.0 \text { OK } \\
& { }_{P_{u}} / \Phi_{c} P_{n o}+M_{u x} / \Phi_{b} M_{n x} \leq 1.0 \\
& 23 / 78.20+92 / 275.85=0.294+0.334=0.628<1.0 \mathrm{OK} \\
& \text { (Eq. 3.5-2) } \\
& \text { Therefore the section is adequate for the app1ied loads. }
\end{aligned}
$$

EXAMPLE 23.2

Rework Example 23.1 by using the Allowable Stress Design (ASD) method to check the adequacy of a tubular section (Fig. 23.1) to be used as a compression member.

Solution

1. Full section properties are the same as those calculated in Example 23.1.
2. Determination of P_{a}

The following results are obtained from Example 23.1.(2).

$$
\begin{aligned}
\mathrm{F}_{\mathrm{n}} & =\left(\pi^{2} \times 6600\right) /(37.36)^{2} \\
& =46.67 \mathrm{ksi} \\
A_{e} & =1.886 \mathrm{in.}^{2} \\
\mathrm{P}_{\mathrm{n}} & =F_{\mathrm{n}} A_{e}=46.67 \times 1.886 \\
& =88.0 \mathrm{kips} \\
\Omega & =2.15 \\
P_{a} & =P_{\mathrm{n}} / \Omega=88.0 / 2.15=40.93 \mathrm{kips}
\end{aligned}
$$

3. $P=15 \mathrm{kips}$
$P / P_{a}=15.0 / 40.93=0.366>0.15$
Must check both interaction equations as follows:

$$
\begin{aligned}
& P / P_{a}+C_{m x} M_{x} /\left(M_{a x} a_{x}\right)+C_{m y} M_{y} /\left(M_{a y} a_{y}\right) \leq 1.0 \\
& P / P_{a o}+M_{x} / M_{a x}+M_{y} / M_{a y} \leq 1.0
\end{aligned}
$$

4. Determination of $P_{a o}$

$$
P_{\text {no }}=A_{e} F
$$

$$
\begin{aligned}
& =1.84 \times 50=92.0 \mathrm{kips} \\
\Omega & =2.15 \\
P_{a 0} & =P_{n o} / \Omega=92.0 / 2.15=42.79 \mathrm{kips}
\end{aligned}
$$

5. Determination of M_{x} and M_{y}

$$
\begin{aligned}
& e_{y}=4.00 \text { in. }, \quad e_{x}=0 \\
& M_{x}=15.0(4.00)=60.0 \text { kips-in. (Required Flexural Strength) } \\
& M_{y}=0
\end{aligned}
$$

6. Determination of $M_{a x}$
$M_{a x}$ shall be taken as the smaller of the allowable flexural strengths calculated according to sections 3.3.1.1 and 3.3.1.2:
a. Section 3.3.1.1: $M_{a x}$ will be calculated on the basis of initiation of yielding.
$S_{e}=27.494 / 4.485$
$=6.130$ in. ${ }^{3}$ (from Example 23.1)
$M_{n x} \quad=S_{e} F_{y}$
$=6.130(50)$
$=306.50 \mathrm{kips}-\mathrm{in}$.
$\Omega \quad=1.85$
$M_{\text {ax }}=M_{n x} / \Omega=306.50 / 1.85=165.68$ kips-in.
b. Section 3.3.1.2: $M_{a x}$ will be calculated on the basis of the lateral buckling strength. However for this square tube (close box-type member) the provision of Section 3.3.1.2 do not apply. Therefore,

$$
\mathrm{M}_{\mathrm{ax}} \quad=165.68 \mathrm{kips}-\mathrm{in}
$$

7. $\mathrm{C}_{\mathrm{mx}}=0.6-0.4\left(\mathrm{M}_{1} / \mathrm{M}_{2}\right) \geq 0.4$
$M_{1} / M_{2}=-1.00$ (single curvature)
$0.6-0.4(-1.00)=1.00>0.4$
$C_{\text {mx }}=1.00$
8. Determination of $1 / \alpha_{n x}$:

$$
\begin{aligned}
\Omega & =2.15 \\
P_{c r} & =\Pi^{2} E_{o} I_{x} /\left(K_{x} L_{x}\right)^{2} \\
& =\left[\pi^{2}(27000)(33.759)\right] /(120)^{2}=624.73 \mathrm{kips} \\
1 / a_{n x} & =1 /\left[1-\left(\Omega_{c} P^{P} / P_{c r}\right)\right] \\
& =1 /[1-(2.15 \times 2.1 / 624.73)]=1 / 0.948 \\
a_{n x} & =0.948
\end{aligned}
$$

13. Check interaction equations:
$15.0 / 40.93+1.00 \times 60.0 /(165.68 \times 0.948)$
$=0.366+0.382=0.748<1.0 \quad 0 \mathrm{~K}$
$P / P_{a o}+M_{x} / M_{a x} \leq 1.0$
$15.0 / 42.79+60.0 / 165.68=0.351+0.362=0.713<1.0 \mathrm{OK}$
Therefore the section is adequate for the applied loads.

EXAMPLE 24.1 FLAT SECTION w/BOLTED CONNECTION (LRFD)

Determine the maximum design strength, ϕP_{n}, for the bolted connection shown in Fig. 24.1. Use two $1 / 2$ in. diameter hot-finished, Type 316 bolts with washers under both bolt head and nut. The plates are Type $304,1 / 16$-Hard, stainless steel.

Bolt Diameter $=1 / 2^{\circ}$

Figure 24.1 Bolted Connection for Example 24.1

Solution:

1. Design strength based on spacing and edge distance (Section 5.3.1)

$$
P_{\mathbf{n}}=t e F_{\mathbf{u}}
$$

(Eq. 5.3.1-1)
$\mathrm{e}=1.0 \mathrm{in}$.
$F_{u}=80 \mathrm{ksi}$ (from Table A16 of the Standard)
$P_{n}=0.105(1)(80)=8.40 \mathrm{kips} / \mathrm{bolt}$
$\phi P_{n}=0.7(2$ bolts $)(8.40 \mathrm{kips} /$ bolt $)=11.76 \mathrm{kips}$

Distance between bolt hole centers must be greater than 3d.
$3 \mathrm{~d}=3(0.5)=1.5 \mathrm{in} .<2$ in. OK

Distance between bolt hole center and edge of connecting member must be greater than 1.5 d .
$1.5 \mathrm{~d}=1.5(0.5)=0.75 \mathrm{in} .<1 \mathrm{in} . \mathrm{OK}$
2. Design strength based on tension on net section.

Required tension strength on net section of bolted connection
shall not exceed $\phi_{t} \mathrm{~T}_{\mathrm{n}}$ from Section 3.2:
A_{n} - based on Table 5
$A_{n}=0.1054-2(1 / 2+1 / 16)=0.302$ in..2
$F_{y}=45$ (from Table A1 of the Standard)
$T_{n}=A_{n} F$
(Eq. 3.2-1)
$=(0.302)(45)=13.59 \mathrm{kips}$
$\phi_{t}=0.85$
$\phi_{t} T_{n}=0.85(13.59)=11.55 \mathrm{kips}$
or ϕP_{n} from Section 5.3.2:
$P_{n}=(1.0-r+2.5 r d / s) F_{u} A_{n} \leq F_{u} A_{n}$
(Eq. 5.3.2-2)
where in this case:
$\mathbf{r}=2\left(\phi P_{n} / 2\right) / \phi P_{n}=1$
$\mathrm{d}=0.5 \mathrm{in}$.

$$
\begin{aligned}
\mathrm{s} & =2 \mathrm{in} . \\
\mathrm{P}_{\mathbf{n}} & =[1.0-(1)+2.5(1)(0.5) / 2](80)(0.302) \\
& =15.10 \mathrm{kips}<80(0.302)=24.16 \mathrm{kips} 0 \mathrm{~K} \\
\Phi & =0.70 \text { for single shear connection } \\
\phi P_{\mathrm{n}} & =0.70(15.10)=10.57 \mathrm{kips}
\end{aligned}
$$

Therefore, design strength based on tension on net section is 10.57 kips.
3. Design strength based on bearing (Section 5.3.3)

For single shear with washers under bolt head and nut, the design bearing strength $\phi \mathrm{P}_{\mathrm{n}}$ is:

$$
\begin{aligned}
& \phi \quad=0.65 \\
& \mathrm{P}_{\mathrm{n}}=2.00 \mathrm{~F}_{\mathrm{u}} \mathrm{dt}=2.00(80)(0.5)(0.105)=8.4 \mathrm{kips} / \mathrm{bolt} \\
& \phi \mathrm{P}_{\mathrm{n}}=0.65(2 \mathrm{bolts})(8.4 \mathrm{kips} / \mathrm{bolt})=10.92 \mathrm{kips}
\end{aligned}
$$

4. Design strength based on bolt shear (Section 5.3.4)

$$
\begin{align*}
& P_{n}=A_{b} F_{n} \tag{Eq.5.3.4-1}\\
& A_{b}=(\pi / 4)(0.5)^{2}=0.196 \mathrm{in}^{2} \\
& F_{n}=F_{n v}=45 \mathrm{ksi}(\text { Table } 6, \text { for no threads in shear plane) } \\
& P_{n}=(45)(0.196)=8.82 \mathrm{kips} / \text { bolt } \\
& \phi \\
& \\
& \phi P_{n} \\
& =0.65 \\
&
\end{align*}
$$

5. Comparing the values from $1,2,3$, and 4 above, the design tensile strength on the net section of the connected part controls and thus,

$$
\phi P_{n}=10.57 \mathrm{kips}
$$

EXAMPLE 24.2 FLAT SECTION w/BOLTED CONNECTION (ASD)

Rework Example 24.1 to determine the maximum allowable load, P_{a}

Solution:

1. Allowable load based on spacing and edge distance

$$
\begin{aligned}
& \left.\mathrm{P}_{\mathrm{n}}=0.105(1)(80)=8.40 \mathrm{kips} / \mathrm{bolt} \text { (from Example } 24.1 .(1)\right) \\
& \Omega=2.40 \text { (Table E of the Standard) } \\
& \mathrm{P}_{\mathrm{a}}=(2 \text { bolts })(8.40 \mathrm{kips} / \text { bolt }) /(2.40)=7.0 \mathrm{kips}
\end{aligned}
$$

Distance between bolt hole centers must be greater than 3d.

$$
3 \mathrm{~d}=3(0.5)=1.5 \text { in. }<2 \text { in. OK }
$$

Distance between bolt hole center and edge of connecting member must be greater than 1.5 d .

$$
1.5 \mathrm{~d}=1.5(0.5)=0.75 \mathrm{in} .<1 \text { in. OK }
$$

2. Allowable load based on tension on net section.

Required tension strength on net section of bolted connection
shall not exceed $\phi_{t} T_{n}$ from Section 3.2:

```
    T
    \Omega = 1.85
    T
or P}\mp@subsup{P}{n}{}\mathrm{ from Section 5.3.2:
    P
        =[1.0-(1)+2.5(1)(0.5)/2](80)(0.302)
        = 15.10 kips < 80(0.302) = 24.16 kips (Example 24.1)
    \Omega=2.40
    Pa}=(15.10)/2.40=6.29 kip
```

Therefore, allowable load based on tension on net section is 6.29 kips.
3. Allowable load based on bearing

For single shear with washers under bolt head and nut, the design
bearing strength $\phi \mathrm{P}_{\mathrm{n}}$ is: (Example 24.1)

$$
\begin{aligned}
\mathrm{P}_{\mathrm{n}} & =2.00 \mathrm{~F}_{\mathrm{u}} \mathrm{dt}=2.00(80)(0.5)(0.105)=8.4 \mathrm{kips} / \mathrm{bolt} \\
\Omega & =2.40 \\
\mathrm{P}_{\mathrm{a}} & =(2 \text { bolts })(8.4 \mathrm{kips} / \mathrm{bolt}) / 2.40=7.0 \mathrm{kips}
\end{aligned}
$$

4. Allowable load based on bolt shear

$$
\begin{aligned}
P_{n} & =A_{b} F_{\mathrm{n}} \\
& =(45)(0.196)=8.82 \mathrm{kips} / \mathrm{bolt} \text { (Example } 24.1) \\
\Omega & =3.0 \\
P_{a} & =(2 \text { bolts })(8.82 \mathrm{kips} / \text { bolt }) / 3.0=5.88 \mathrm{kips}
\end{aligned}
$$

5. Comparing the values from 1, 2, 3, and 4 above, the allowable load based on bolt shear strength controls and thus,

$$
P_{a}=5.88 \mathrm{kips}
$$

EXAMPLE 25.1 FLAT SECTION w/LAP FILLET WELDED CONNECTION (LRFD)

Using the Load and Resistance Factor Design (LRFD) criteria, check to see if longitudinal fillet welded connection shown in Fig. 25.1 is adequate to transmit a factored load $F=4.5 \mathrm{kips}$. Assume that Type 301 , $1 / 4$-Hard, stainless stee1 sheet and E308 electrode are to be used.

Figure 25.1 Welded Connection for Example 25.1

Solution:

1. Design Strength for Weld Sheet.

$$
L / t=2 / 0.06=33.33>30
$$

For $\mathrm{L} / \mathrm{t} \geq 30$,
$\phi=0.55$

$$
\begin{align*}
P_{\mathrm{n}} & =0.43 \mathrm{tLF} \mathrm{ua} \tag{Eq.5.2.2-2}\\
& =0.43(0.06)(2)(90)=4.64 \mathrm{kips}
\end{align*}
$$

(See Table A16 of the Standard for $\mathrm{F}_{\text {ua }}$ value.)
$\phi \mathrm{P}_{\mathrm{n}}=0.55(4.64)=2.55 \mathrm{kips} /$ weld
($2.55 \mathrm{kips} /$ weld) (2 welds) $=5.1 \mathrm{kips}>4.5 \mathrm{kips} \mathrm{OK}$
2. Design Strength for Weld Metal.

$$
\begin{align*}
& \Phi=0.55 \\
& P_{n}=0.75 t_{W} \mathrm{LF} \mathrm{xx} \tag{5.2.2-3}\\
& \mathrm{t}_{\mathrm{w}}=0.707(0.0625)=0.044 \mathrm{in} . \\
& \mathrm{F}_{\mathrm{xx}}=80 \mathrm{ksi}(\text { from Table A15 of the Standard) } \\
& P_{\mathrm{n}}=0.75(0.044)(2)(80)=5.28 \mathrm{kips} \\
& \phi P_{\mathrm{n}}=0.55(5.28)=2.90 \mathrm{kips} / \mathrm{we} 1 \mathrm{~d} \\
& (2.90 \mathrm{kips} / \text { weld })(2 \mathrm{we} 1 \mathrm{ds})=5.80 \mathrm{kips}>4.5 \mathrm{kips} 0 \mathrm{~K}
\end{align*}
$$

EXAMPLE 25.2 FLAT SECTION w/LAP FILLET WELDED CONNECTION (ASD)

Using the Allowable Stress Design (ASD) method, check to see if longitudinal fillet welded connection shown in Fig. 25.1 is adequate to transmit a total load $F=3.5$ kips. Assume that Type $301,1 / 4$-Hard, stainless steel sheet and E308 electrode are to be used.

Solution:

1. Allowable load for Weld Sheet.

$$
\begin{aligned}
\mathrm{P}_{\mathrm{n}} & =0.43 \text { tLF } \mathrm{ua} \text { (Example } 25.1) \\
& =0.43(0.06)(2)(90)=4.64 \mathrm{kips} / \text { weld } \\
\Omega & =2.50(\text { Table E of the Standard) } \\
\mathrm{P}_{\mathrm{a}} & =4.64 \times 2 / 2.50=3.71 \mathrm{kips}>3.5 \mathrm{kips} \text { OK }
\end{aligned}
$$

2. Allowable load for Weld Metal.

$$
\begin{aligned}
& \Omega=2.50 \\
& P_{\mathrm{n}}=0.75(0.044)(2)(80)=5.28 \mathrm{kips} / \text { weld (Example 25.1) } \\
& \mathrm{P}_{\mathrm{a}}=5.28 \times 2 / 2.50=4.22 \mathrm{kips}>3.5 \mathrm{kips} \text { OK }
\end{aligned}
$$ Determine the design tensile strength, ϕP_{n}, normal to the effective area of the groove welded connection as shown in Fig. 26.1. Use Type 304, annealed, stainless steel and E308 electrode.

Figure 26.1 Welded Connection for Example 26.1

Solution:

Determination of the design tensile strength, $\phi \mathrm{P}_{\mathrm{n}}$, normal to the effective area provided that the effective throat equal to the thickness of the welded sheet. (Section 5.2.1).

$$
\begin{aligned}
& P_{\mathrm{n}}=\mathrm{LtF} \mathrm{ua} \\
& \mathrm{~F}_{\mathrm{ua}}=75 \mathrm{ksi} \text { (Table A16 of the Standard) } \\
& \mathrm{F}_{\mathrm{xx}}=80 \mathrm{ksi} \text { (Table A15 of the Standard) }
\end{aligned}
$$

The minimum tensile strength for weld metal is larger than that the base metal. OK

$$
\begin{aligned}
& \mathrm{P}_{\mathrm{n}}=(8.000)(0.135)(75) \\
&=81.00 \mathrm{kips} \\
& \Phi=0.60 \\
& \Phi\left(\mathrm{P}_{\mathrm{n}}\right)_{1}=0.60 \times 81.00 \\
&=48.60 \mathrm{kips}
\end{aligned}
$$

EXAMPLE 26.2 FLAT SECTION w/GROOVE WELDED CONNECTION IN BUTT JOINT (ASD)

Rework Example 26.1 to determine the allowable tensile load, P_{a}, normal to the effective area of the groove welded connection.

Solution:

Determination of the allowable tensile load, P_{a}, normal to the effective area.

$$
\begin{aligned}
\mathrm{P}_{\mathrm{n}} & =(8.000)(0.135)(75) \\
& =81.00 \mathrm{kips}(\text { Example } 26.1) \\
\mathrm{F}_{\mathrm{xx}} & =80 \mathrm{ksi}>\mathrm{F}_{\mathrm{ua}}=75 \mathrm{ksi} \text { OK } \\
\Omega & =2.50(\text { Table E of the Standard) } \\
\left(\mathrm{P}_{\mathrm{a}}\right)_{1} & =81.00 / 2.50=32.4 \mathrm{kips}
\end{aligned}
$$

EXAMPLE 27.1 BUILT-UP SECTION - CONNECTING TWO CHANNELS (LRFD)

By using the LRFD criteria, determine the maximum permissible longitudinal spacing of connectors joining two channels to form an I-section (Fig. 27.1) to be used as a compression member with unbraced length of 12 ft . Also design resistance welds connecting the two channels to form an I-section used as a beam with the following load, span, and support conditions: (a) Span: $10^{\prime}-0^{\prime \prime}$, (b) Total uniformly distributed factored load including factored dead load: 0.520 kips per lin. ft., and (c) Length of bearing at end support: 3 in. Use Type 304, 1/4-Hard, stainless steel.

Figure 27.1 Section for Example 27.1

Solution:

1. Maximum longitudinal spacing of connectors for compression member Section 4.1.1(1).

For compression members, the maximum permissible longitudinal
spacing of connectors is

$$
s_{\max }=L r_{c y} /\left(2 r_{I}\right)
$$

(Eq. 4.1.1-1)
where

$$
\begin{aligned}
r_{c y}= & \text { radius of gyration of one channel about its centroidal axis } \\
& \text { parallel to web. } \\
r_{I}= & \text { radius of gyration of I-section about axis perpendicular } \\
& \text { to direction in which buckling would occur for given } \\
& \text { conditions of end support and intermediate bracing. }
\end{aligned}
$$

The following equations used for computing the sectional properties for channel with lips are based on the information in Part III of Cold-Formed Steel Design Manual (1986), American Iron and Steel Institute, Washington, D.C.

Basic parameters used for calculating the section properties of a channel section with lips: (For parameter designations, see Fig. 22.1

$$
\mathrm{r} \quad=\mathrm{R}+\mathrm{t} / 2=3 / 32+0.060 / 2=0.124 \mathrm{in} .
$$

From the sketch $a=5.692$ in., $b=1.317$ in., $c=0.296$ in.,
$A^{\prime}=6.0$ in.,$\quad B^{\prime}=1.625$ in., $\quad C^{\prime}=0.45$ in.,
$a=1.00$ (Since the section has lips)
$\bar{a} \quad=A^{\prime}-t=6.0-0.060=5.94 \mathrm{in}$.
$\overline{\mathrm{b}} \quad=\mathrm{B}^{\prime}-[\mathrm{t} / 2+a t / 2]=\mathrm{B}^{\prime}-\mathrm{t}=1.625-0.06=1.565 \mathrm{in}$.
$\bar{c} \quad=a\left[c^{\prime}-t / 2\right]=c^{\prime}-t / 2=0.45-0.06 / 2=0.42 \mathrm{in}$.
$\mathrm{u} \quad=1.57 \mathrm{r}=1.57 \times 0.124=0.195 \mathrm{in}$.
a. Area:
$A \quad=t[a+2 b+2 u+a(2 c+2 u)]=t[a+2 b+2 c+4 u]$
$=0.06[5.692+2 \times 1.317+2 \times 0.296+4 \times 0.195]$
$=0.582$ in. ${ }^{2}$
b. Moment of inertia about x-axis:

$$
\begin{aligned}
I_{\mathbf{x}}= & 2 t\left\{0.0417 a^{3}+b(a / 2+r)^{2}+u(a / 2+0.637 r)^{2}+0.149 r^{3}\right. \\
& \left.+a\left[0.0833 c^{3}+(c / 4)(a-c)^{2}+u(a / 2+0.637 r)^{2}+0.149 r^{3}\right\}\right\} \\
= & 2 t\left[0.0417 a^{3}+b(a / 2+r)^{2}+2 u(a / 2+0.637 r)^{2}+0.298 r^{3}\right. \\
& \left.+0.0833 c^{3}+(c / 4)(a-c)^{2}\right\} \\
= & 2 \times 0.06\left[0.0417(5.692)^{3}+1.317(5.692 / 2+0.124)^{2}\right. \\
& +2 x 0.195(5.692 / 2+0.637 \times 0.124)^{2}+0.298(0.124)^{3} \\
& \left.+0.0833(0.296)^{3}+(0.296 / 4)(5.692-0.296)^{2}\right] \\
= & 2.976 \mathrm{in} .^{4}
\end{aligned}
$$

c. Distance from centroid of section to centerline of web:

$$
\begin{aligned}
\overline{\mathrm{x}}= & (2 t / \mathrm{A})\{\mathrm{b}(\mathrm{~b} / 2+\mathrm{r})+\mathrm{u}(0.363 \mathrm{r})+\mathrm{a}\{\mathrm{u}(\mathrm{~b}+1.637 \mathrm{r})+\mathrm{c}(\mathrm{~b}+2 r)\}\} \\
= & {[(2 \times 0.06) / 0.582][1.317(1.317 / 2+0.124)+0.195(0.363 \times 0.124)} \\
& +0.195(1.317+1.637 \times 0.124)+0.296(1.317+2 \times 0.124)] \\
= & 0.371 \mathrm{in} .
\end{aligned}
$$

d. Moment of inertia about y-axis:

```
I
\[
\begin{aligned}
= & 2 t\left\{b(b / 2+r)^{2}+0.0833 b^{3}+0.356 r^{3}+a\left[c(b+2 r)^{2}\right.\right. \\
& \left.\left.+u(b+1.637 r)^{2}+0.149 r^{3}\right]\right\}-A(\bar{x})^{2} \\
= & 2 x 0.06\left[1.317(1.317 / 2+0.124)^{2}+0.0833(1.317)^{3}\right. \\
& +0.356(0.124)^{3}+0.296(1.317+2 x 0.124)^{2} \\
& \left.+0.195(1.317+1.637 \times 0.124)^{2}+0.149(0.124)^{3}\right]-0.582(0.371)^{2} \\
= & 0.181 \text { in. }
\end{aligned}
\]
```

e. Distance from shear center to centerline of web:

m	$=\left(\bar{b} t / 12 I_{x}\right) 6 \bar{c}(\bar{a})^{2}+3 \bar{b}(\bar{a})^{2}-8(\bar{c})^{3}$
	$=[(1.565 \times 0.06) /(12 \times 2.976)]\left[6 \times 0.42(5.94)^{2}\right.$

$$
\begin{aligned}
& +3 \times 1.565(5.94)^{2}-8(0.42)^{3} \lambda \\
= & 0.668 \mathrm{in} .
\end{aligned}
$$

f. $r_{c y}$:
$r_{c y}=\sqrt{I_{y} / \mathrm{A}}=\sqrt{0.181 / 0.582}$
$=0.558 \mathrm{in}$.

Based on the above information, the section properties of I-section composed of two channels can be determined as follows:
$I_{x}=2 \times 2.976=5.952 \mathrm{in}^{4}$
$\mathrm{A}=2 \mathrm{x} 0.582=1.164 \mathrm{in}^{2}$
$r_{x}=\sqrt{I_{x} / A}=\sqrt{5.952 / 1.164}=2.26$ in
$I_{y}=2 \times 0.81+0.582 x(0.371+0.06 / 2)^{2}=0.549 \mathrm{in}^{2}$
$r_{y}=\sqrt{\mathrm{I}_{\mathrm{y}} / \mathrm{A}}=\sqrt{0.549 / 1.164}=0.687$ in $<\mathrm{r}_{\mathrm{x}}$
Therefore, $r_{I}=r_{y}=0.687$ in
$s_{\text {max }}=(12 \times 12) \times 0.558 /(2 \times 0.687)=58.48 \mathrm{in}$.
Therefore, the maximum spacing of connectors used for connecting these two channels as a compression member is 58 in .
2. Design resistance welds connecting the two channels to form an I-section used as a beam Section 4.1.1(2) .
a. Spacing of welds between end supports:

The maximum permissible longitudinal spacing of welds for a flexural member is

$$
\begin{aligned}
s_{\max } & =\mathrm{L} / 6 \\
& =12 \times 10 / 6=20 \mathrm{in} .
\end{aligned}
$$

(Eq. 4.1.1-2)

Maximum spacing is also limited by

$$
s_{\max }=2 \mathrm{gT}_{\mathrm{s}} /(\mathrm{mq})
$$

in which

```
    g = 5.0 in. (assumed for 6 in. deep section)
```

 \(\mathrm{T}_{\mathrm{s}}=0.60 \times 2.27 \times 0.25=0.341 \mathrm{kips}\) (Section 5.2 .3)
 \(m \quad=0.668 \mathrm{in}\). (from avobe-calculated value)
 \(q=3 \times 0.520 / 12=0.130 \mathrm{kips}\) per lin. in.
 Therefore
$s_{\text {max }}=2 \times 5.0 \times 0.341 /(0.668 \times 0.130)=39.27 \mathrm{in}$.
$s_{\text {max }}=L / 6$ controls. Use a spacing of 20 in . throughout the span.
b. Strength of welds at end supports:

Since the weld spacing is larger than the bearing length
of $3.0 \mathrm{in} .$, the required design strength of the welds
directly at the reaction is

$$
\begin{aligned}
\mathrm{T}_{\mathrm{s}} & =\mathrm{Pm} /(2 \mathrm{~g}) \\
& =0.520 \times 5 \times 0.668 /(2 \times 5)=0.174 \mathrm{kips}
\end{aligned}
$$

which is less than 0.341 kips as provided. OK

EXAMPLE 27.2 BUILT-UP SECTION - CONNECTING TWO CHANNELS (ASD)

Rework Example 27.1 for the same given data by using the ASD method. Assume that the applied uniform load is $0.4 \mathrm{kips} / \mathrm{ft}$ for the I-section used as a beam.

Solution:

1. Maximum longitudinal spacing of connectors for compression member Section 4.1.1(1).

For compression members, the maximum permissible longitudinal spacing of connectors is

$$
\begin{aligned}
s_{\max } & =L r_{c y} /\left(2 r_{I}\right) \\
& =(12 \times 12) \times 0.558 /(2 \times 0.687)=58.48 \mathrm{in} .
\end{aligned}
$$

Refer to Example 27.1 for the section properties used to calculate $s_{\max }$ The maximum spacing of connectors used for connecting these two channels as a compression member is 58 in.
2. Design resistance welds connecting the two channels to form an I-section used as a beam Section 4.1.1(2).
a. Spacing of welds between end supports:

The maximum permissible longitudinal spacing of welds for
a flexural member is
$s_{\max }=\mathrm{L} / 6=12 \times 10 / 6=20 \mathrm{in}$.
Maximum spacing is also limited by

$$
s_{\max }=2 g T_{s} /(m q)
$$

in which

$$
\begin{aligned}
& \mathbf{g} \quad=5.0 \mathrm{in} . \text { (assumed for } 6 \mathrm{in} . \text { deep section) } \\
& \mathrm{T}_{\mathbf{s}} \quad=(0.25 \times 2.27) / 2.50=0.227 \mathrm{kips} \\
& \mathrm{~m}
\end{aligned}
$$

$$
\mathrm{q}=3 \times 0.40 / 12=0.10 \text { kips per lin. in. }
$$

Therefore

$$
s_{\max }=2 \times 5.0 \times 0.227 /(0.668 \times 0.10)=33.98 \mathrm{in} .
$$

$s_{\max }=\mathrm{L} / 6$ controls. Use a spacing of 20 in . throughout the span.
b. Strength of welds at end supports:

Since the weld spacing is larger than the bearing length of 3.0 in., the required design strength of the welds directly at the reaction is

$$
\begin{aligned}
T_{S} & =\operatorname{Pm} /(2 g) \\
& =0.40 \times 5 \times 0.668 /(2 \times 5)=0.134 \mathrm{kips}
\end{aligned}
$$

which is less than 0.227 kips as provided. OK

[^0]: This Technical Report is brought to you for free and open access by Scholars' Mine. It has been accepted for inclusion in Center for Cold-Formed Steel Structures Library by an authorized administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

[^1]: * Cold-Formed Steel Design Manual (1986). American Iron and Steel Institute, Washington, D.C.

[^2]: * Two design examples are included for each problem. The first example uses the LRFD method and the second example uses the ASD method.

