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DESIGN OF I-SHAPED BEAMS AND COLUMNS WITH DIAPHRAGM BRACING

Key Words: Beams (structural); Buildings; Bracing; Cold formed

panels; Columns (structural); Design; Diaphragm;

Shear strength.

Abstract

Cold~formed steel panels often are used as wall sheathing,
roof decking or floor decking in steel framed buildings or pre-
engineered metal buildings. Diaphragms formed by interconnecting
these panels have considerable in-plane shear resistance, and can be
utilized as bracing against buckling for individual members of a steel
frame. For wall columns the diaphragm may be either directly attached
or connected to girts which in turn are connected to the columns. A
procedure is presented for the design of |-section beams and columns
with diaphragm or diaphragm-girt bracing. The procedure is based on
the ultimate load capacity of fully braced members, utilizing a
conservative estimate of the shear strength and shear rigidity of
the diaphragm. Design examples are included. The utilization of
existing wall, floor or roof diaphragms as bracing for individual
beams and columns can eliminate the need for other types of bracing,
and/or reduce required member sizes. Thus it contributes to economical

design.

Summary

A procedure is presented for the design of I-section beams
and columns with diaphragm or diaphragm-girt bracing, utilizing the
shear strength and rigidity of diaphragms formed by interconnecting

cold formed steel panels. Design examples are included.



INTRODUCT ION

Cold formed steel panels often are used as wall sheathing,
roof decking or floor decking in steel framed buildings or pre-
engineered metal buildings such as shown in Fig. 1. These panels
carry loads normal to their plane by virtue of their bending strength.
In addition, diaphragms formed by interconnecting these panels can
resist in-plane shear deformations. Because of this shear resistance,
such diaphragms are used as wind bracing for low rise buildings, as
shear elements in folded plate and hyperbolic paraboloid constructEOn,
and as load distributing elements in portal frame buildings.(5’7’9’]7’]9)
Another use of this diaphragm action is as bracing against buckling
for individual members of a steel frame. This report deals only with
the latter; that is, diaphragm bracing of individual columns and beams.
For wall columns the diaphragm may be either directly attached or con-
nected to girts which, in turn, are connected to the columns. These
diaphragms are present in any event as wall, roof or floor, and there-
fore are available at no extra cost. |f properly utilized, they can

eliminate the need for other types of bracing and thus contribute to

economical design.

Extensive research has been conducted at Cornell University
and elsewhere to determine the increased load carrying capacity of beams
and columns due to diaphragm or diaphragm-girt bracing.(l’3’8’lo’l1’15’2])
Recommendations are made herein for the design of I-shaped members with

such bracing. The bracing requirements are not a linear function of

applied load; therefore, the design procedure is based on the ultimate
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load capacity of the beams or columns, utilizing a conservative estimate
of the strength and rigidity of the diaphragm. This is in contrast to
most design procedures for other uses of diaphragms, which are usually

formulated in terms of allowable load.

Effectiveness of diaphragm bracing or diaphragm-girt bracing
in preventing lateral buckling depends on its two fundamental character-
istics: (1) rigidity and (2) strength. Usually, it is not economical
to provide anything less than '"full'' bracing, where full bracing is
defined as bracing such that any increase in rigidity or strength of
the diaphragm will not cause any significant increase in the load-

(18)

carrying capacity of the braced members. For this reason, and for
greater simplicity, this design procedure is limited to '"fully' braced
beams and columns. The procedure is based on analyses of l-section
beams under uniform moment, and l-section columns under axial load.

These analyses have been substantiated by tests of 35 diaphragm-braced

assemblies as reported in References 1, 3 and 10.

Information regarding the load-carrying capacity of |-beams
and columns with less than '"full" bracing can be obtained from Refér-
ences |1 and 15. The capacity of channel and Z-section beams subjected
to uniform moment is discussed in Reference 1. Cantilever beams and
channel and Z-section beams subjected to loads in the plane of the
web are discussed in Reference 8; and wall studs of these cross sections

are covered in Reference 15.
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CRITERIA FOR DES IGN

Design criteria are established herein for the following
problems:

1. l-section beams continuously braced by a shear diaphragm on
the compression flanges, where '"continuous bracing' indicates that the
diaphragm is connected directly to the member at short intervals;"

2, I-section beams continuously braced by a shear diaphragm on
the tens{on flanges;

3. Axially loaded I-section columns continuously braced By shear
diaphragms on both flanges;

L, Axially loaded l-section columns continuously braced by a
shear diaphragm on one flange only; and

5. Axially loaded l-section columns braced by girts which, in

turn, are braced by a shear diaphragm.

The longitudinal ribs of the panels must be perpendicular to the member

they are bracing, which is the usual case.

Behavior of Diaphragm-Braced Beams and Columns

Columns with equal bracing connected directly to both flanges
(that is, symmetric bracing) tend to deflect laterally under load
without twisting. Beams or coiumns with continuous bracing on one
flange only tend to twist as well as deflect;laﬂeral]y. The diaphragm
in these cases provides continuous restraint against (1) lateral move-
ment in the plane of the diaphragm, and (2) twist of the member. In

contrast, diaphragm-girt bracing provides these two restraints to a
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column only at the points of attachment of the girts. In any case,
due to these restraints the torsional flexural buckling moment of a
beam or the buckling load of a column can be considerably increased.
To evaluate the behavior of diaphragm-braced beams and columns, it is
necessary to know the nature and the magnitude of the restraints avail-

able.

Shear Characteristics of a Diaphragm

The two important parameters which characterize a diaphragm
are its shear stiffness (or, conversely, its flexibility) and shear
strength. Considerable progress has been made recently in developing

(5,6,12,14,20)

theory to predict these parameters. As an alternative,

the stiffness and strength of a diaphragm can be determined from the
load-deflection curve obtained from a simple beam or cantilever shear test
(Fig. 2) as described in Reference 9. This load-deflection'relationship
is generally not linear. Furthermore, in such tests, two nominally
identical diaphragms may give considerably different load-deflection
relationships at the higher loads--say, beyond 80% of ultimate load.
Therefore, in this discussion, the shear stiffness Gj and average

shear strain Yd at 80% of ultimate shear load are taken as the basic

characteristics of the diaphragm. Shear stiffness G'! is defined

d
herein as
. (0.8 P, ./b) o
d (Ad/aT
where Pult is the ultimate shear load in the diaphragm test, kips

Ad is thé deflection at 0.8 Pult’ in.
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a is the dimension of the shear diaphragm perpendicular
to the test load direction, in.

b is the dimension of the shear diaphragm parallel to the
test load direction, in.

Eq. 1 indicates that the shear stiffness G' is in units of force per

d

unit length. The use of 0.8 P,j¢ reflects the ultimate strength

t

approach.

If the shear stiffness of a diaphragm is known, then the
maximum shear strain that can be sustained by the diaphragm is a
measure of its shear strength; that is, the characteristic shear
strength is the product of the shear stiffness and shear strain. The
shear strain Yd at 0.8 Pu is taken here as the measure of available

It

shear strength and is given by

A

Yd=—ag (2)

To insure that diaphragm failure will not precede member failure, it

is proposed for design purposes to assume that reliable values of

shear strain Ydr and shear stiffness Gér are equal to Yd and 2/3 G!',
respectively. Thus, from Eqs. | and 2,
0.53 P /b
T (- 77 ult’
dr 2/3 Gd Ad/a (3)
and
A
vy, =v, == (4)

dr d  a
A graphical representation of actual test values and proposed design

values of shear stiffness and shear deflection are shown in Fig. 2.

The type and spacing of fasteners used in a diaphragm test should be
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the same as those used in connecting the diaphragms to the beams or
columns in the actual structure. The panel lengths and purlin spacing
to be used in a cantilever test (or in any analytical procedure) to
simulate the actual structure are given below. As a conservative
simplification, the bending rigfdity of the diaphragm, which tends to
prevent rotation of the member to which it is attached, is neglected

in this design procedure.

1. Diaphragms continuously bracing beams or columns

The deflected position of the structure in this case is shown
in Fig. 3a. It can be observed from Fig. 3a that the full length of
each panel is under uniform shear. The length of panel to be used in
a cantilever diaphragm test is the same as the length of the panel used
in the structure, as shown in Fig. 3b. Purlin spacing in the test

should be the same as the spacing of the beams or columns to be braced.

2. Diaphragms in a column-girt-diaphragm assembly

A typical deflected position of the diaphragm in a column-
girt-diaphragm assembly is shown in Fig. 4b. It is seen from Fig. Lb
that only a part of the length of the panel equal to the spacing of
girts is under uniform shear. Therefore, the length of the panels to
be used in a shear diaphragm cantilever test should be the same as the
spacing of girts in the column-girt-diaphragm assembly, as shown in
Fig. Bhc. No intermediate purlins should be used in the test. Perimeter
framing and fasteners should simulate the corresponding portion of the

actual structure.

A simple beam shear test may be conducted instead of a
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cantilever test, making proper choice of the panel length and spacing

(9)

of the framing members.

When a diaphragm-braced beam or column in a structure is to
be analyzed, it is more convenient in the computations to use a
reliable shear rigidity er of the entire portion of diaphragm con-
tributing to the support of the member, rather than the unit shear

stiffness Gér' The reliable shear rigidity er is defined as

Q. = 6. w=2/3G)w (5a)

or, using Eq. 3,

_ 0.53 Pult w/b

er - Ad/a (5b)

where w is the dimension of the diaphragm, perpendicular to the longi~-
tudinal axis of the member, which contributes to the support of the
member being analyzed. For example, in the case of floor beams braced
by a diaphragm (Fig. 5), the end beams can be assumed to be supported
by the diaphragm of dimension w equal to half the spacing of beams,

and the intermediate beams are supported by the dimension of the dia-
phragm w equal to the full spacing of the beams. It can be observed
from Eq. 5b that er is in units of force per unit shear strain (force/

radian).

Bending Stiffness and Strengqth of a Girt

The performance of a girt also can be characterized by its

bending stiffness and strength, with due consideration of the rigidity
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of the girt-to-column connection. |f the connection between girts and
columns is fully rigid, the bending rigidity of the girt offers calcu-
lable restraint against twist of the column, at the point of attachment
to the column. To compute the twist restraint, refer to the deflected
position of the column-girt-diaphragm assembly shown in Fig. 6. For
a rigid connection, the elastic restraining moment on the column per

unit twist of the column, m, can be computed as

2 (6EI )
m=——->% (6)

where 'g is the strong axis moment of inertia of the girt and E is
Young's modulus. |If the girt-to-column connection is effectively

""pinned'', then m = 0.

The strength of a girt can be designated by the bending slope
at the column, Qd, when the ends of a girt between two successive
columns are subjected to equal and opposite moments, Myg (Fig. 6b),
where Myg is the yield moment of the girt. The slope can be computed

as

0, = Ai— (7)

Initial Imperfections

The required strength of any type of bracing is a function
of the initial imperfections of the load-carrying member. The pattern
of initial deflections along the length of an imperfect beam or column
is here assumed affine to the buckling pattern of the beam or column

to obtain a conservative estimate of deflections under load. For
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example, in the case of a continuously braced beam or column, with
ends simply supported laterally or hinged, the buckling pattern is a
half sine wave, and the initial deflection pattern is therefore also
assumed as a half sine wave. The amplitude of the initial lateral
deflection of the centroidal axis of a Beam or column, Eo’ is taken
as the tolerance limit in sweep specified in the AISC Manual (Ref. 13,

p 1-127). Hence, E, is usually of the form

length of member in feet (8)
specified integer

'Ill
EO =g X
In addition, in the case of columns, an accidental eccentricity is
considered by multiplying the initial lateral deflection by two in
the design equations. Based on limited available information, the

amplitude of the initial twist, FO, is arbitrarily taken equal to

0.000667 radian per foot of length; that is,
Fo = 0.000667 rad./ft. x length of member in feet (9)

Additional Deflections

Because of the initial lateral deflection or twist of a beam
or column, additional lateral deflections and twist occur under applied
load. The pattern of additional deflections along the length of a
member is the same as the buckling pattern. These additional deflec-
tions cause shear forces in the diaphragm bracing. Also, because of
these additional deflections, girts bend in the case of a column-girt-
diaphragm assembly if the twist restraint m # 0 and if the column

buckles in a torsional flexural mode.
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Magnitudes of the additional deflections, maximum shear
strain in the diaphragm, and maximum bending slope of the girts can

be calculated using the design formulae given subsequently.

Factors of Safety

For rolled steel beams and columns the factors of safety as

(13)

given in the AISC Specification are used. The slenderness ratio

for computing the column safety factor depends on the buckling mode.
For cold formed steel members the factors of safety as given in the

(16)

AIS| Specification are used.

Definition of "Full Bracing'

As stated earlier, '"full bracing' is defined as bracing such
that any increase in rigidity or strength of the diaphragm will not
cause any significant increase in the load carrying capacity of the
braced members. The implications of this definition will be discussed

later for specific cases.
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GENERAL DESIGN PROCEDURE

Briefly stated, the design procedure' is as follows: First,

assume the member to be fully braced, and select a section of required

load capacity. Then, select a diaphragm of specific panel dimensions,

fastener type and fastener spacing, and check to see that its rigidity

and strength are adequate to provide full bracing for the member.

Alternatively, one could start with a given member and

diaphragm bracing system, and use an analysis procedure based on the

equations herein to calculate the ultimate load capacity and allowable

load.

The detailed design procedure is outlined below:
Choose a trial member for the design.

Assume that the member is fully braced, and compute its

load capacity, be.

Compute the safe load, PS:

P = load capacity of fully braced member - be (10)
S factor of safety or load factor F.S.

I f PS is greater than and close to the required design load,
proceed to check whether the bracing is adequate; otherwise,

repeat the procedure from Step 1.

Compute Qid’ the shear rigidity required to fully brace an

ideal member. The actual rigidity required to brace a real

(18)

member will be greater than this.
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5. Select a trial diaphragm. I1f Q > Qi the diaphragm rigidity

d’
may be adequate for full bracing; proceed with Step 6. |If

Q< Qid’ full bracing cannot be achieved with this diaphragm;
a more rigid diaphragm must be chosen, and this step repeated.

(Alternatively, sece Refs. 1 and 15 for beams and columns with

less than full bracing.)

6. Compute the maximum shear strain, Ymax’ in the diaphragm.

If the reliable shear strain Ydr >y

max’ the diaphragm strength

is adequate for full bracing; proceed with Step 7 if appli-

cable., |If Ydr < Ym , a stronger diaphragm is necessary for

ax

full bracing; repeat the procedure from Step 5.

7. This step applies only for diaphragm-girt bracing. In most
cases of full bracing there is no bending of the girts.
However, if the flexural restraint m # 0 and failure is in
the torsional flexural mode, the strength of the girts has
to be checked. Compute Qd and emax' If the computed bending
slope of the girts gmax is less than Qd, the bracing provided
by the girts in combination with the diaphragm is adequate
to fully brace the column. |If the girts are not strong
enough, choose a stronger section for the girts and repeat

the procedure from Step 5.

be, Ymax gmax’ Qid and Od are computed from equations given
herein; whereas er and Ydr can be obtained from the load-deflection

relationship of a shear diaphragm test or analysis.
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Conventional Design Formulae

The yield moment of a beam, and the strong and weak axis
buckling loads of a column, can be obtained in any rational manner,

including multiplying the allowable load by the known safety factor.
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|-SECTION BEAMS BRACED BY A SHEAR DIAPHRAGM
ON THE COMPRESSION FLaNges®'»19)

Figs. 7a and 7b show the possible modes of failure of beams
with diaphragm bracing on the compression flanges. |In Fig. 7a the
diaphragm rigidity and strengthvare not adequate to prevent lateral
buckling of the beams. In Fig. 7b the diaphragm is adequate, and the
beams fail by yielding. Full bracing in this case is defined as that
which has adequate rigidity and strength to prevent lateral buckling
until the beam yields. Thus, My, the yield moment, is taken as the

moment capacity of a fully braced beam, be:

be = My (11)

The torsional flexural buckling moment, Mcr’ of an ideal

beam with diaphragm bracing on the compression flange is(lo)
/ n™ 2 nt, 2 2\
M., = \ [E|y (TT) + Q][ECw (TT) + GJ +Qe”] + Qe . (12)
where EIy is the weak axis bending rigidity
EC,, is the warping rigidity

GJ is the torsional rigidity

e is the distance between the center of gravity of the beam
and the plane of the diaphragm

and n=1or 2 for ends simply supported or fixed, respectively,
against lateral bending

The cross bending rigidity of the diaphragm is neglected in Eq. 12

and in all subsequent expressions.

The shear rigidity, Qid’ required for an ideal beam to attain
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the '"fully'" braced moment be = My can be obtained by substituting My
i

for MCr in Eq. 12 and solving for Q, resulting in Eq. 13 shown in

Table 1. A simplified and conservative expression for Mcr is given

by

MCr =2 Qe (14)

Then, with Mc = My’ a simple and conservative estimate for Qid is

r

obtained from Eq. 14 as
Qid = My/Ze (15)

Conservative estimates of the amplitudes of additional lateral deflec-
tion of the centroidal axis (C) and twist (D) at moment My are given
by Eqs. 16 and 17 in Table 1. The amplitude of the additional lateral

deflection in the plane of the diaphragm is

C,=C+eD (18)
and the maximum shear strain in the diaphragm is

Yo =€ T (19)

These expressions are used in Steps 1 through 6 of the design procedure

to design a diaphragm-braced |-beam in Example No. 1.
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|-SECTION BEAMS BRACED BY A SHEAR D IAPHRAGM
ON THE TENS 10N FLaNGEs®!s10)

The possible failure modes for beams braced by diaphragms
on the tension flanges are indicated in Fig. 8. The figure shows
(a) vertical deflection, lateral deflection and twist of the cross
section; (b) vertical deflection and twist; and (c) vertical deflec-
tion only. The buckling moment of the beam reaches Mﬁe (buckling
moment of the beam with the centroidal axis of the tension flange as
the fixed axis of rotation) asymptotically as the shear rigidity
approaches infinity. In general, even for a very small increase in
the moment capacity beyond 0.9 M%e’ a very large increase in shear
rigidity is needed. Therefore, if a beam with diaphragm bracing on
the tension flange buckles in a torsional-flexural mode (Figs. 8a and
8b) the buckling moment of the '""fully'' braced beam is arbitrarily
taken as 0.9 Mge. (Any other percentage could be used in similar
fashion.) A fully braced beam may also fail by yielding (Fig. 8c).
Hence, the moment capacity of a beam '"'fully'' braced on its tension

flanges is the smaller of these two values; that is,

be = Min. (0.9 MQe’ My) (20)

The buckling moment Mﬁe is given by Eq. 21 in Table 2, and
Eq. 22 gives the shear rigidity (Qid) required for an ideal beam to

be fully braced.

Amplitudes of additional lateral deflection of the centroidal

axis (C) and twist (D) at moment M., of a fully braced beam are obtained

fb
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from Eqs. 23 and 24. The amplitude of the additional lateral deflec-

tion in the plane of the diaphragm (C]) is

C.=C - eD (25)

]

and Ymax is obtained from Eq. 19. The design procedure is the same

as described for beams with diaphragm bracing on the compression flange.

Bracing on the tension flange is, of course, less efficient
than compression flange bracing, as can be demonstrated by the mathe-

matical expressions cited above.
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AXIALLY LOADED I-SECTION COLUMNS CONTINUOUSLY BRACED BY
SHEAR D IAPHRAGMS ON BOTH FLanges''>'®)

Diaphragm-braced columns in this case may buckle in one of
the two modes shown in Fig. 9. The bracing is defined as '"'full' if
its rigidity and strength are adequate to prevent weak-axis buckling
of the columns (Fig. 9a) so that they buckle about their strong axis
(Fig. 9b). Torsional-flexural buckling is not a failure mode for
I-section columns with symmetrical diaphragm bracing. The buckling
load of a '"fully' braced column, be, is therefore Pcrx,L’ the strong

axis buckling load of the column of length, L.

be = Pcrx,L (26)

The shear rigidity (Qid) required for an ideal column to
attain full bracing is given by Eq. 27 in Table 3, where E is the

modulus corresponding to the average stress level (o) of the column

3 (L)

at be. If o < cp’ E =E. But, ifo> cp,
- (o, - o) o (28)
= E 2
(o = op) oy

Amplitude of the additional lateral deflection, C, of the centroidal

axis of the column at load PC is obtained from Eq. 29. For sym-

rx,L
metrically braced columns no rotation is assumed, and the lateral

deflection in the plane of the diaphragm is equal to the deflection
at the centroidal axis, C] = C. The design follows the general pro-

cedure; the final step is to check the strength of the diaphragm

(Ymax < Ydr) using Eq. 19.
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AXIALLY LOADED i-SECTION COLUMNS CONTINUOUSLY BRACED BY
A SHEAR DIAPHRAGM ON ONE FLANGE oNLy''»10)

Diaphragm-braced columns in:.this case may buckle in one of
the modes shown in Fig. 10; that is, torsional-flexural buckling or
flexural buckling about the strong axis. The buckling load of the
column approaches Pge (the buckling load of the column with the
centroidal axis of one of the flanges as the fixed axis of rotation)
asymptotically as the shear rigidity Q approaches infinity. In
general, even for a very small increase in load beyond about 0.9 PQe’
a very large increase in shear rigidity is needed. Therefore, if a
column buckles in the torsional-flexural mode, as in Fig. 10a, the
buckling load of the "fully'" braced column is arbitrarily taken as
0.9 Pﬁe' The buckling load of a fully braced column is the smaller of

the two values; that is,

Pcy = Min. (0.9 P e Pcrx,L) (31)

The buckling load Pﬁe is given by Eqs. 32a and 32b in Table 4 for the
elastic and inelastic range, respectively. For an l-section, the

polar moment of inertia Ip in Eqs. 32a and 32b is

o= + | (33)
The shear rigidity Qid required for an ideal column to be fully braced
is given by Eq. 34 in Table 4, where E* is obtained from Eq. 28 and

& v
=6 & (35)
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Amplitudes of additional laterél deflection of the centroidal axis (C)
and twist (D) at the buckling load are given by Eqs. 36 and 37, re-
spectively, in Table 4, The amplitude of the additional lateral
deflection Cl in the plane of the diaphragm is given by Eq. 25, and

the maximum shear strain is obtained from Eq. 19.
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AXIALLY LOADED |-SECTION COLUMNS WITH
D IAPHRAGM-G IRT BRACING ' '?3)

A typical column-girt-diaphragm assembly is shown in Fig. jla.
If "full" bracing is provided, the column may buckle in one of three
modes: (1) flexural buckling about its strong axis, Fig. 11b, (2) tor-
sional-flexural buckling, Fig. llc, or (3) flexural buckling about its
weak axis between successive girts, Fig. lld? Therefore, the buckling
load of such a fully-braced column is the smallest of these three

values; that is,

P, = Min. (P

b -9 Py.) (38)

crx,l’? Pcry,ﬂ’ 0

where P 0 is the weak axis buckling load of a column of Iength,é .
?

The design formulae given in this report are for columns
with "hinged" ends; that is, the ends are flexurally hinged, and
warping is unrestrained. Design equations for the various cases are
given in Table 5; values of the required coefficients KI through K“
appear in Table 6 for modes i = 1 ..... j, where j is the number of

intermediate girts.

If the girt-column connection is fully flexible (m = 0), a
fully braced column usually buckles in the torsional-flexural mode,
but there is no bending of the girts. On the other hand, if the girt-
column connection is rigid, the column usually buckles flexurally
rather than by twisting, and again the girts do not bend. Therefore,
the strength of the girts need not be checked in most cases of full

bracing. Strength of the girts has to be checked only where m # 0
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and the column buckles in a torsional-flexural mode.

If the column buckles in a torsional-flexural mode and m # O,

the maximum bending slope of the girts, 8 » 1S given by the twist

max

of the column at the girt which is at or nearest the midheight of the

column. Therefore,
) =D, 0.866 D, or D (44)
max

for columns with 1, 2 or 3 intermediate girts, respectively.
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DESIGN EXAMPLES

Example No. 1 - Beams Braced by a Diaphragm on Their Compression Flanges

Design an intermediate floor beam to span 20 ft and to carry
a uniform live load and superimbosed dead load of 550 Ib/ft. The beams
are 6 ft apart and are braced by a deck whose shear characteristics
determined from tests are: Gé = 4,235 kips/in. and Yq = 0.0045 rad.
Ends of the beams are considered simply supported laterally. Use ASTM

A36 steel.

Soluticn: Assume that the beam is fully braced and that its dead load

will be about 20 1b/ft.

.2 2
M = Wéh - {550 + 200(20) (12) _ 315 ijp-in.

For a factor of safety of 1.67,

M = 1.67 x 342 = 571 kip-in.

req'd

3
! =
Req'd Sx M

reqid ¥ Fy = 571 + 36 = 15.9 in.3

Choose W10 x 17, S, = 16.2 in.>, d = 10.12 in.

Fully braced moment Mep = M, =S, cy = 16.2 x 36.0 = 583 kip-in.

Y
" Mreqras K
Proceed to check whether the bracing is adequate.
Diaphragm Rigidity:
M
, oY 583 ) .
Ba. 15 Q44 = 3¢ = Z(10.12 w 2) - °7-6 Kkips

Eq. 5a: er G' w=2/3 Gé w

dr
2/3 (4.235)(72) = 203.3 kips > 57.6 kips

.+ diaphragm rigidity may be adequate for full bracing.
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Diaphragm Strength:

Eq. 8: Assumed initial deflection, Eo = 1/8 x 20/5 = 0.5"

0.000667 x 20
0.01334 rad.

Eq. 9: Assumed initial twist, Fo

d/2 = 5.06"

e
Eq. 16: Additional deflection, C = -0.1038"

Eq. 17: Additional twist, D = 0.0648 rad.

Eq. 18: Deflection of braced flange, Cl = 0.2242"
Eq. 19: Maximum shear strain, Yoax = 0.00294 rad.

<y, = Vd = 0.0045 rad.

dr

diaphragm strength is adequate for ''full'' bracing. The

-

W10 x 17 beam is fully braced and can safely carry a uniform load of

550 1b/ft.

Example No. 2 - Columns Braced by a Diaphragm on One Flange Only

Determine the size of an intermediate column of a side wall
to support an axial load of 106 kips. Columns are 12 ft high, spaced
at 6 ft intervals, and are continuously braced on one flange by a light
gage steel diaphragm whose shear characteristics are Gé = 12.5 kips/in.
and Yd = 0.0045. The ends of the column are assumed to be flexurally

hinged, with warping unrestrained. Use ASTM A36 steel, o, = 36 ksi,

9p = 18 ksi, E = 29,000 ksi, G = 11,500 ksi.

Solution: From Table &, Pep = Min. (Pcrx,L’ 0.9 Pﬁe)' Using tables

in the AISC Manual or other design aid as a guide, try

W6 x 25,



Buckling Loads: L
r-X

Factor of

Diaphragm

Diaphragm

Ref. 13:

Eq. 32b:

-

Safety:
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LT . -
=55 = 53.5<¢C_= 126.1
2
erx,L = 7-35x 36 11 -5 (‘26 ,) 1 = 237.5 kips
n=1, Pge = 229.3 kips
0.9 Pge = 0.9 x 229.3 = 206.4 kips

P.. = Min. (237.5, 206.4)

fb

P., = 0.9 Pge = 206.4 kips

fb

L/ry = 144 + 1.53 = 94 1 < 126.

Ref. 13:

Safe axial load on column if fully braced =
= 109.2 kips > 106 kips, .. OK

Check to see whether the bracing is ''full',
Rigidity:

Eq. 28:
Eq. 35:
Eq. 34:

Eq. b5a:

F.S.=2+% 2 @2 -

126.1

206.4 _
7735— 28.08 ksi
= ? * =
O‘p 1 / o'y ’ E
*
G =
n=1, Qg =

Qe = 2/3 Gy w = 2/3

1

It
o

oo} —

19,900 ksi
7,890 ksi
52.0 kips

(12.5) (72)

206.4

1.89

= 600 kips > 52.0 kips

diaphragm rigidity may be adequate for full bracing.

Strength:

Eq. 8:
Eq. 9:

Eq. 36:

Assumed initial sweep,

Assumed initial twist, Fo

12

E X700 = 0.15"

Additional deflection, C = 0.4]"

.000667 x 12 = 0.008 rad.
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Eq. 37: Additional twist, D = 0.088 rad.
Eq. 25: Deflection of braced flange, C] = 0.13"
Eq. 19: Maximum shear strain in diaphragm,

Ymax = 0.0029 rad. < Yd = Ydr =
. diaphragm strength 'is adequate.

and can safely carry a design axial load of 106 kips.

Example No. 3 - Columns with Diaphragm-Girt Bracing

0.0045 rad.

The column is fully braced

Determine the size of intermediate lI-section columns spaced

at 19'-4" intervals, and braced by girts, as in Fig.
are braced by a standard corrugated diaphragm.

columns are hinged, with warping unrestrained.
Length of column, L = 12'-4"
Spacing of girts = 6'-2"
= 6.47 kips/in.
0.0069 rad.

Diaphragm stiffness, G'
Diaphragm shear strain, Yd
Twist restraint, m = 4650 k-in./rad.
Axial load on column = 220 kips

Use ASTM A572 Grade 50 steel, Fy = 50 ksi,

G = 11,500 ksi, cp =

Solution: Try W12 x 31
Buckling Loads: gi = é%%i = 28.9 < Cc = 107.0
Ref. 13: crx,L = 9-13 x 50 [1 - (IO7 ) ]
£
?; = .56 ~ 48.0 < Cc = 107.0
Ref. ]31 Cl'y 2 9. 13 x 50 [] = (107) ]

12.

The girts

Assume the ends of the

E = 29,000 ksi,
25 ksi

= 440 kips

= 410 kips
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Eq. 40b: PQe = Py = A Fy = 456.5 kips
0.9 P@e = L11 kips

Eq. 38: Pep = Min. (440; L410; 411)
be = Pcry,Q = 410 kips

Factor of Safety:

3
48 \ 1 A48 _
107) ) (107)

Required ultimate strength = 220 x 1.82 = LOO kips

: 243 -
Ref. 13:  F.5. =3+ g ( 1.82

< L10 kips = be s 0K

Diaphragm Rigidity:

Eq. 28: E = 10,625 ksi

Eq. 35: G = 4,210 ksi

Eq. 41:  With i =1, K = .250, K, = .810, Ky = .405
Qid = 413 kips
Eq. b5a: er = 2/3 Gé w = 2/3 (6.47)(232) = 1000 kips

> 413 kips. . diaphragm rigidity may be adequate

for full bracing.

Diaphragm Strength:
Eq. 8: E_ =4 x 1233 = o 540

o~ 8*0
Eq. L5: C] = 0,251
Eq. L6: With K4 = 1.0, Ymax = 0.0034 < Ydr = 0,0069

.. diaphragm strength is adequate for full bracing.

Girts: Because the column buckles flexurally (be = Pcry,Q)’ there
is no bending of the girts.
Therefore, the diaphragm-girt bracing is ''full" bracing, and

the WI2 x 31 column can safely carry a load of 220 kips.
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SUMMARY AND CONCLUS IONS

A procedure is presented for the design of I-section beams

and columns with diaphragm or diaphragm-girt bracing. The procedure

is based on the ultimate load capacity of fully braced members, utili-
zing a conservative estimate of the shear strength and shear rigidity
of the diaphragm. Design examples are included. The utilization of
existing wall, floor or roof diaphragms as bracing for individual beams
and columns can eliminate the need for other types of bracing and/or
reduce required member sizes. Thus it contributes to economical

design.
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TABLE 1 - EQUATIONS FOR BEAMS WITH DiAPHRAGM
BRACING ON THE COMPRESS ION FLANGEs''*1?)

(11)

MY
2 2
2 n’ n1v
!y - Ely(—L— [ECW(—L) + GJ]
Qg = 2 2 (13)
2 nn nt
e EIy(L) +2Mye+ECw(L) + GJ

or, conservatively,

Qid = My/Ze (15)
2

C = Fole” * Eo1, - o) (16)
(2qe - M)

. EOQ + FO(MY - Qe)

(2Qe - My) (17)

where E0 and Fo are obtained from Eqs. 8 and 9, respectively.

C] and Ymax are computed from Eqs. 18 and 19, respectively.
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TABLE 2 - EQUATIONS FOR BEAMS WITH DIAPHRAGM

BRAC ING ON THE TENsloN Fianges''!®)
Mgy, = Min. (My, 0.9 Mﬁe)
2 2
nt 2 nTt
" =ECW(L) + GJ + e Ely(L)
Pe 2e
2 nm 2
be - El_(5 [EC ( ) + GJ]
Q. = y
id 2 ; 2
EC, (&= ) +GJ + e Ely(TT) - 2e Mg,
M_ F [EC(EE2+GJ+Q2]+ME (M + )
C = fb o w' L e fb o Qe
N 2
uu 2
[Ely(L + QJ[EC (8= ) + GJ + Q] - My + Qe)
n1T 2 )
o - beEo [Elj(—l_—) + Q]+ Mo F o (Mo, + Qe)

2
[Ely(“—['- + Ql[EC, (0T) + 6d + Q] - (Mg, + Qo)

where Eo and Fo are obtained from Eqs. 8 and 9, respectively.

=C - eD

(20)

(21)

(22)

(23)

(24)

(25)

(19)



TABLE 3 - EQUATIONS FOR AXIALLY LOADED
BRACED BY SHEAR DIAPHRAGMS ON BOTH FLANGES(]’
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|-SECTION COLUMNS
10)

Peb = Perx, L
X, n‘ﬂ'2
Qg = Porx,L - BT
where *
2 Pcrx,L Eo
C = 2

where EO is obtained from eq. 8.

ofs

4\|
E Y

(%? +Q-P

crx,L

E" = E or is obtained from Eq. 28 if ¢ > oy

(26)

(27)

(29)

(30)

(19)
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TABLE 4 - EQUATIONS FOR AXIALLY LOADED [|-SECTION COLUMNS
BRACED BY SHEAR DIAPHRAGMS ON ONE FLANGE onty'!'»19)
be-= Min. (Pcrx,L’ Pge)
2
nTT 2 nm
Elastic _ Ecw( L +GJ+e Ely( L
Range PQe B 0 )
(7? + e”)
2 ‘o 2
inelastic A(Op) (A + e”)
Py =A [0, - ]
Range pe 4 ntl 2 2 nm 2
ECW(T) + GJ + e EIY(T
where I =1 + |
P x Y
% ! '
- [E” *J - P -
. [e"C,, (G~ ™2 4+ 6% fb Aj[ ( P
Q., =
ld 2 2 . - 2
[E°c (D) + 6%y - P A]+e[Ely(-—L— -]

e N
where E and G

are obtained from Eqs. 28 and 35, respectively.

2
w nm v 2_ __E ]
.- be { [250][5 cw( o)+ GlJ + Qe fb A] + Qe F
Det.
Nt lg
oo p [£* ( ) +Q - be] F, —x + 2E Qe
fb Det.
where
ata nﬂ'z Lo
et. = [E71 () +0Q-P |[EC()+GJ-be A]+Qe[EI(

and Eo and Fo

C] and Ymax

are obtained from Egs.

are obtained from Eqs.

8 and 9, respectively.

25 and 19, respectively.

(31)

(32a)

(32b)

(33)

(34)

(36)

(37)

fb]



Ifm=20

Elastic
Range

inelastic
Range

[f m# O

PQe = Min.
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TABLE 5 - EQUATIONS FOR AXIALLY LOADED I-SECTION
COLUMNS WITH DIAPHRAGM-GIRT BRACING(]’3)

P, = Min., (P

fb crx,L’ 0.9 PQe’ Pcry,ﬁ)

0
i

Je

[
Ao 2 (-2 + 62)
D A
PQe =A lo, - 2 2 ]
EC (20) 4+ gJ + &2 EI (AT
w' L y L

with n =1 in Egqs. 39a and 39b

2 2
o M v 2 ¥ AN
E Cw(t) +GJ+ e E |y(L) + 53m£

, P
y)

[ , ;
ij + e7)

KSmJZ
or Pge = Mi"'[’ ’ Py-l (conservatively)

If P, =P

fb

CKLP - % o B
(KIP be)(a P )

fb A

Qg =

2 % * _p
Ky [e2(KP¥ = P ) + (a5 - P B) ]

TT2 En‘ I

22
%

2
= *e (O *
a KIE cw(jf) + G J+K3m£

'

where P

and Kl’ K2 and K3 correspond to one of the modes,

(continued)

(38)

(39a)

(39b)

(40a)

(40b)

(1)
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TABLE 5 (cont'd)

i=1, ..... j, where j is the number of intermediate
girts, and i is the mode number which gives the

maximum value of Qid in Eq. 41

L
O P 2 % . *_ _p
_ Pry (285 { (@7-Pym+e  (KyP Pep)) ek P-pp) {28 R P

cl I i (“2)
w *_ _P 2 o % _p }
(K PP, ) (0P B 4,0 { (K PP )+ (2P B)
| -
be[ {ZEoe-l——-E Fo} { K]P -be+K2Q} -e{KIP -be} 2Eo]
D = : : (43)
* * o _p 2 < * o P }
(€ P =P ) (@ =P B4k, Q [ (K PP )+ (a-P )
where K], K2 and K3 in Eqs. 42 and 43 correspond to
the first mode, 1 = 1,
I f be = 0.9 PQe
Qid: Use Eq. 41 above, but constants K], K2 and K3
correspond to the f[rst mode .,
C]: Eq. 42 above
D: Eq. 43 above
Ifm#0, @ __ =D, 0.866 D, or D (L)
max
for columns with 1, 2 or 3 intermediate girts,
respectively.
If be - Pcni,é
Qid: Eq. 41, same as for be = Pcrx,L
2P_. E
fb "o
U7 RPF - P+ KQ

where K], K2 and K3 correspond to the first mode.
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TABLE 5 (cont'd)

For all failure modes

c

Y=K'

max 4 _Z (46)

where Kl+ is from Table 6.
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1 Intermediate Girt

Mode:

1

2 Intermediate Girts

Mode:

3 Intermediate Girts

Mode:

(1,2)
TABLE 6 - CONSTANTS K., K, Kj, K,
K, K, Ky
0.250 0.810 0.405
0.111 0.912 0.912
0.444 0.684 0.228
0.0625 0.950 1.621
0.250 0.810 0.405
0.562 5.53 0.180

1.000

0.866
0.866

0.707
0.707

0.707



10.

11,

12.

13.

14.

-38-

APPENDIX | - REFERENCES

Apparao, T. V, S. R., '""Problems in Structural Diaphragm Bracing,"
PhD Dissertation, Cornell University, lthaca, New York, 1968.
(Department of Structural Engineering Report No. 331),

Apparao, T. V. S. R. and Errera, S. J., ''Design Recommendations
for Diaphragm-Braced Beams, Columns and Wall Studs,'' Cornell
University Department of Structural Engineering Report No. 332,
Ithaca, New York, October 1968.

Apparao, T. V. S. R., Errera, S. J., and Fisher, G. P., '""Columns
Braced by Girts and a Diaphragm,' Journal of the Structural
Division, Proc. ASCE, Wol. 95, No. ST5, May 1969.

Bleich, F., Buckling Strength of Metal Structures, McGraw-Hill
Book Company, New York, 1952, p 54,

Bryan, E. R., The Stressed Skin Design of Steel Buildings,
John Wiley and Sons, Inc., New York, 1973.

Bryan, E. R. and E1 Dakhakhni, W, M., "Shear Flexibility and
Strength of Corrugated Decks,' Journal of the Structural
Division, ASCE Vol. 94, No. STI1, November 1968.

Canadian Sheet Steel Building Institute, '""Diaphragm Action of
Cellular Floor and Roof Deck Construction,' Mississauga,
Ontario, 1972.

Celebi, N., '""Diaphragm~Braced Channel and Z-Section Beams,''
PhD Dissertation, Cornell University, Ithaca, New York, 1971.
(Department of Structural Engineering Report No. 34k4),

"Design of Light Gage Steel Diaphragms,' American Iron and
Steel Institute, New York, 1967.

Errera, S. J., Pincus, G., and Fisher, G. P., '"Columns and Beams
Braced by Diaphragms'', Journal of the Structural Division,
Proc. ASCE, Vol. 93, No. STI, February 1967.

Larson, M. A,, discussion of ''Lateral Bracing of Columns and
Beams'', by George Winter, Transactions, ASCE, Vol. 125, 1960.

Luttrell, L. D., '"'Strength and Behavior of Light Gage Steel
Shear Diaphragms,' Cornell University Engineering Research
Bulletin 67-1, Ithaca, New York, July 1967.

Manual of Steel Construction, Seventh Edition, American Institute
of Steel Construction, 1970.

Nilson, A. H. and Ammar, A. R,, "Finite Element Apalysis of
Metal Deck Shear Diaphragms,' Journal of the Structural Division,
Proc. ASCE, Vol. 100, No. ST4, April, 1974,



5.

16.

18.

19.

20.

21.

_39-

Simaan, A., ''Buckling of Diaphragm-Braced Columns of Unsym-
metrical Section and Application to Wall Studs Design,'' PhD
Dissertation, Cornell University, lthaca, New York, 1973.
(Department of Structural Engineering Report No. 353).

"Specification for the Design of Cold-Formed Steel Structural
Members,' 1968 Edition, American Iron and Steel Institute,
New York.

""Tentative Recommendations for the Design of Steel Deck Dia-
phragms,'' Steel Deck Institute, Chicago, October 1972.

Winter, G., '"Lateral Bracing of Columns and Beams,'' Journal of
the Structural Division, Proc. ASCE, Vol. 84, No. ST2, March

1958.

Yu, W. W., Cold-Formed Steel Structures, McGraw-Hill Book
Company, New York, 1973.

Yu, W. W., Editor, Proceedings of the Second Specialty Conference
on Cold-Formed Steel Structures, University of Missouri-Rolla,
October 1973.

Zahn, J. J., 'Lateral Stability of Wood Beam-and-Deck Systems,"
Journal of the Structural Division, Proc. ASCE, Vol. 99, No.
ST7, July 1973.



-L0-

APPENDIX 11 - NOMENCLATURE
A ——mmmmmeee - cross sectional area, in.
Q ==mmmemmme——- dimension of shear diaphragm perpendicular to test
load direction, in.
2

5 _ N % L. 2

g e = KE CW((’_) + G5+ KBmZ, kip-in.

b =--meeeenme- dimension of shear diaphragm parallel to test load

direction, in..

C ~--mrecmwe=- amplitude of additional lateral deflection of
centroidal axis, in.

C] ------------ amplitude of additional lateral deflection in the
plane of the diaphragm, in.

C --~==--===-=- warping constant of a section, in.,

D ~---mmmemmmmm amplitude of additional twist of a member, radians

E --rmmemmece- modulus of elasticity, ksi

Eo . amplitude of initial lateral deflection of the

centroidal axis of a member, in.
E" =mmmmcmemme- inelastic modulus, ksi

€ =mmmeemm—c—m—— distance between center of gravity of a member and
the plane of the diaphragm, in.

Fg ~m========- amplitude of initial twist of a member, radians

G =----mmmmee- shear modulus, ksi

GF —mmmmmmmeees inelastic shear modulus, ksi

Gé ------------ shear stiffness at 0.8 of ultimate load of diaphragm,
kips/in.

Gér ----------- design value of shear stiffness, kips/in.

IP ------------ polar moment of inertia, in.

Iys Iy -------- moments.of ineftiﬁ of a section about X- and Y-axes,
respectively, in.

lg ------------ Tgment of inertia of a girt about the bending axis,

| wmmmmem—c———— mode number
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j mmemmemmm————- number of intermediate girts

J =—mmmmm e m e torsional constant of a section, in.L+

KI’KZ’K3’K4 -=-- constants

K wemmemmmamea— effective length factor

L ==m—omemmee = length of member, in.

/Q ------------- spacing of girts, in.

be ----------- moment capacity of a '"fully' braced beam, kip=-in.

ep TTTTmTmmmeS lateral torsional-flexurél ?uckling moment of a
diaphragm-braced beam, kip-in.

Mp ------------ plastic moment of a beam, kip~in.

My ------------ yield moment of a beam, kip-in.

Myg ----------- yield moment of a girt, kip-in.

MQe ----------- buckling moment of a beam wigh the §entroidal gxis
of the tension flange as a fixed axis of rotation,
kip=in.

M ==—=m——e————— elastic restraining moment on the column at a gqirt,
kip-in. per radian

be ----------- load capacity of a "fully' braced column, kips

Pult ---------- ultimate shear load of a diaphragm from a test, kips

- strong axis and weak axis buckling loads, respectively,
of a column of length L, kips

z -------- weak axis buckling load of a column of Iength.ﬁ, kips
cry,
pge ----------- buckling load of a column with the centroidal axis
of one of its flanges as the fixed axis of
rotation, kips
PS ------------ safe load on a member, kips
Py ------------ G¥Ai kips
P7'€ ____________ m El‘ ' k'ps
£
er ----------- design value of shear rigidity, kips per radian
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Q., ==~-==---==- shear rigidity required for the "full' bracing of an
id . . .
ideal member, kips/radian
rx’ry --------- radii of gyration of the section about X- and Y-axes,

respectively, in.

UpUp =========- additional deflections in the directions of X and X]
axes, respectively, in.

V mmmssmsmmsees additional deflection in the direction of Y-axis, in.

W ===-mosmem=——- width of diaphragm contributing to the support of one

member, in.

X,X],Y -------- coordinate axes

B ememmrccemae- twist of the member, radians

Ygp TTTTTTmTT design value of diaphragm shear strain, radians

Ymax ---------- maximum shear strain in the diaphragm, radians

Dy =m==mmm=m==- shﬁar :eflection of a diaphragm at 0.8 Pult’ radians

Qd ------------ = g%%—— = bending slope of a girt at yield moment, radians
Qmax ---------- computed maximum bending slope of a girt, radians

g ===mmmm—————— average axial stress in a column, ksi

oy ------------ yield stress, ksi

g, ~==-==--=--- proportional limit stress, ksi
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DESIGN OF I-SHAPED BEAMS AND COLUMNS WITH DIAPHRAGM BRACING
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Abstract

Cold-formed steel panels often are used as wall sheathing,
roof decking or floor decking in steel framed buildings or pre-
engineered metal buildings. Diaphragms formed by interconnecting
these panels have considerable in-plane shear resistance, and can be
utilized as bracing against buckling for individual members of a steel
frame. For wall columns the diaphragm may be either directly attached
or connected to girts which in turn are connected to the columns. A
procedure is presented for the design of lI-section beams and columns
with diaphragm or diaphragm-girt bracing. The procedure is based on
the ultimate load capacity of fully braced members, utilizing a
conservative estimate of the shear strength and shear rigidity of
the diaphragm. Design examples are included. The utilization of
existing wall, floor or roof diaphragms as bracing for individual
beams and columns can eliminate the need for other types of bracing,
and/or reduce required member sizes. Thus it contributes to economical

design.

Summary

A procedure is presented for the design of l-section beams
and columns with diaphragm or diaphragm-girt bracing, utilizing the
shear strength and rigidity of diaphragms formed by interconnecting

cold formed steel panels. Design examples are included.



INTRODUCT ION

Cold formed steel panels often are used as wall sheathing,
roof decking or floor decking in steel framed buildings or pre-
engineered metal buildings such as shown in Fig. 1. These panels
carry loads normal to their plane by virtue of their bending strength.
In addition, diaphragms formed by adequately interconnecting these
panels can resist in-plane shear deformations, and thus act as
bracing against buckling for individual columns and beams. For
wall columns the diaphragm may be either directly attached or

connected to girts which, in turn, are connected to the columns.

Extensive research has been conducted at Cornell University
and elsewhere to determine the increased load carrying capacity of
I~, channel- and Z-section beams and columns due to diaphragm or

(1,3,8,10,11,15,16,21) Recommendat ions are

diaphragm-girt bracing.
made herein for the design of I-shaped members with such bracing.

The bracing requirements are not a linear function of applied load;
therefore, the design procedure is based on the ultimate load capacity

of the beams or columns, utilizing a conservative estimate of the

strength and rigidity of the diaphragm.

Effectiveness of diaphragm bracing or diaphragm~girt bracing
in preventing lateral buckling depends on its two fundamental char-
acteristics: (1) rigidity and (2) strength. Usually, it is not

economical to provide anything less than ''"full' bracing, where full



-2-
bracing is defined as bracing such that any increase in rigidity or
strength of the diaphragm will not cause any significant increase

(19)

in the load-carrying capacity of the braced members. For this
reason, and for greater simplicity, this design procedure is limited
to "fully'" braced beams and columns. The procedure is based on
analyses of |-section beams under uniform moment, and l-section
columns under axial load. These analyses have been substantiated

by tests of 35 diaphragm-braced assemblies as reported in References

1, 3, 10 and 15.
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CRITERIA FOR DES IGN

Design criteria are established herein for the following
problems:

1. I-section beams continuously braced by a shear diaphragm
on the compression or tension flanges, where '"continuous bracing'
indicates that the diaphragm is connected directly to the member
at short intervals;

2. Axially loaded l-section columns continuously braced by
shear diaphragms on one or both flanges; and

3. Axfally loaded I-section columns braced by girts which,

in turn, are braced by a shear diaphragm.

If panels with longitudinal ribs are used, the ribs must be perpen-

dicular to the member they are bracing, which is the usual case.

Columns with equal bracing connected directly to both
flanges (that is, symmetric bracing) tend to deflect laterally under
load without twisting. Beams or columns with continuous bracing on
only one flange tend to twist as well as deflect laterally. The
diaphragm in these cases can provide continuous restraint against
(1) lateral movement in the plane of the diaphragm, and (2) twist
of the member. In contrast, diaphragm-girt bracing provides these
two restraints to a column only at the points of attachment of the
girts. To evaluate the behavior of diaphragm-braced beams and
columns, it is necessary to know the nature and the magnitude of

the restraints available.



-l

Shear Characteristics of a Diaphragm

Considerable progress has been made recently in developing
theory to predict the shear stiffness (or, conversely, flexibility)

(5,6,7,12,14,18,20)

and shear strength of a diaphragm assembly.
an alternative, these characteristics can be determined from the
load-deflection curve obtained from a simple beam or cantilever shear
test (Fig. 2) as described in Reference 9. This load-deflection
relationship is generally not linear. Furthermore, in such tests

two nominally identical diaphragms may give considerably different
load-deflection relationships at the higher loads--say, beyond 80%
of ultimate load. Therefore, in this discussion, the shear stiffness
Gé and average shear strain Yq at 80% of ultimate shear load are

taken as the basic characteristics of the diaphragm. Shear stiffness

G' is defined herein as

d
o - (0.8 Pult/b) M
d (Ad/a)
where Pult is the ultimate shear load in the diaphragm test, kips
A4 is the deflection at 0.8 Pult’ in.
a is the dimension of the shear diaphragm perpendicular
to the test load direction, in.
and b is the dimension of the shear diaphragm parallel to the

test load direction, in.

If the shear stiffness of a diaphragm is known, then the
maximum shear strain that can be sustained by the diaphragm is a
is

measure of its shear strength. The shear strain y, at 0.8 Pule
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taken here as the measure of available shear strength, and is given

by
A
- d
Yd = a (2)

To insure that diaphragm failure will not precede member failure,
it is proposed for design purposes to assume that reliable values
of shear strain Yqr and shear stiffness Gér are equal to Yq and
2/3 Gé, respectively. Thus, from Eqs. 1 and 2,

0.53 Pult/b

Gér = 2/3 Gé = -——jzpa;———- (3)
and
A
- - _d
Ydr N Yd a (4)

A graphical representation of actual test values and proposed design
values of shear stiffness and shear deflection are shown in Fig. 2.
The type and spacing of fasteners is very important, and those used
in a diaphragm test should be the same as those used in connecting
the diaphragms to the beams or columns in the actual structure. The
panel lengths and purlin spacing to be used in a cantilever test

(or in any analytical procedure) to simulate the actual structure
are given below. As a conservative simplification, the bending
rigidity of the diaphragm, which tends to prevent rotation of the

member to which it is attached, is neglected in this design procedure.

1. Diaphragms continuously bracing beams or columns

The deflected position of the structure in this case is

shown in Fig. 3a, where the full length of each panel is under uniform



-6~
shear. The length of panel to be used in a cantilever diaphragm
test is the same as that used in the structure, as shown in Fig. 3b.
Purlin spacing in the test should be the same as the spacing of the

beams or columns to be braced.

2. Diaphragms_in a column-girt-diaphragm assembly

A typical deflected position of the diaphragm in a column-
girt-diaphragm assembly is shown in Fig. 4b, where it is seen that
only a part of the length of the panel equal to the spacing of girts
is under uniform shear. Therefore, the length of the panels to be
used in a shear diaphragm cantilever test should be the same as the
spacing of girts in the column-girt-diaphragm assemBly, as shown in
Fig. bc. No intermediate purlins should be used in the test.
Perimeter framing and fasteners should simulate the corresponding

portion of the actual structure.

A simple beam shear test may be conducted instead of a
cantilever test, making proper choice of the panel length and spacing

(9)

of the framing members.

When a diaphragm-braced beam or column in a structure is
to be analyzed, it is more convenient in the computations to use a
reliable shear rigidity er of the entire portion of diaphragm con-
tributing to the support of the member, rather than the unit shear

stiffness G’

dr* Using Eq. 3, the reliable shear rigidity er is

expressed as

' 0.53 Py, W/b
Ur = Car W = 2364w =T 7, (5)
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where w is the dimension of the diaphragm, perpendicular to the
longitudinal axis of the member, which contributes to the support
of the member being analyzed. For example, in the case of floor
beams braced by a diaphragm (Fig. 5), the end beams can be assumed
to be supported by the diaphragm of dimension w equal to half the
spacing of beams, and the intermediate beams are supported by the

dimension of the diaphragm w equal to the full spacing of the beams.

Bending Stiffness and Strenqth of a Girt

The performance of a girt also can be characterized by
its bending stiffness and strength, with due consideration of the
rigidity of the girt-to-column connection. If the connection between
girts and columns is fully rigid, the bending rigidity of the girt
offers calculable restraint against twist of the column, at the
point of attachment to the column (see Fig. 6). For a rigid con-
nection, the elastic restraining moment per unit twist of the column,
m, can be computed as

2 (6Elg)

w

(6)

m

where Ig is the strong axis moment of inertia of the girt and E is
Young's modulus. If the girt~to~column connection is effectively

"pinned', then m = 0.

The strength of a girt can be designated by the bending
slope at the column, Od, when the ends of a girt between two suc-

cessive columns are subjected to equal and opposite moments, Myg
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(Fig. 6b), where Myg is the yield moment of the girt. The slope

can be computed as

(7)

Initial Imperfections and Additional Deflections -

The required strength of any type of bracing is a function
of the initial imperfections of the load-carrying member. The
pattern of initial deflections along the length of an imperfect
beam or column is here assumed affine to the buckling pattern to
obtain a conservative estimate of deflections under load. The
amplitude of the initial lateral deflection of the centroidal axis

of a beam or column, E is taken as the tolerance limit in sweep

o’

specified in the AISC Manual (Ref. 13, p 1-127). Hence, E, is usually

of the form

lenqth of member in feet (8)
specified integer

"ll
Eo = § X

In addition, in the case of columns, an accidental eccentricity is
considered by multiplying the initial lateral deflection by two in
the design equations. Based on limited available information, the

amplitude of the initial twist, F is arbitrarily taken equal to

o,

0.000667 radian per foot of length; that is,
F, = 0.000667 rad./ft x length of member in feet (9)

Because of the initial lateral deflection or twist of a

beam or column, additional lateral deflections and twist occur under
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applied load. These addftional deflections cause shear forces in
the diaphragm bracing, and may also cause bending of the girts in
a column-girt~diaphragm assembly. Magnitudes of the additional
deflections, maximum shear strain in the diaphragm, ahd max imum
bending slope of the girts can be calculated using the design

formulae given subsequently.

Factors of Safety

For rolled steel beams and columns the factors of safety

(13)

as given in the AISC Specification are used. The slenderness

ratio for computing the column safety factor depends on the buckling

mode. For cold formed steel members the factors of safety as given

(17)

in the AIS] Specification are used.
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GENERAL DESIGN PROCEDURE

Briefly stated, the design procedure is as follows: First,
assume the member to be fully braced, and select a section of required
load capacity. Then, select a diaphragm of specific panel dimensions,
fastener type and fastener spacing, and check td see that its rigidity

and strength are adequate to provide full bracing for the member.
The detailed design procedure is outlined below:
1. Choose a trial member for the design.

2, Assume that the member is fully braced, and compute its

load capacity, Pgp.

3. Compute the safe load, Pg:

_ Jload capacity of fully braced member _ be (10)
s ~ factor of safety or load factor F.S.

P

I f PS is greater than and close to the required design
load, proceed to check whether the bracing is adequate;

otherwise, repeat the procedure from Step 1.

4, Compute Qid’ the shear rigidity required to fully brace
an ideal member. The actual rigidity required to brace a

(19)

real member will be greater than this.

5. Select a trial diaphragm. If Q > Qid’ the diaphragm rigidity
may be adequate for full bracing; proceed with Step 6. |If
Q S'Qid’ full bracing cannot be achieved with this diaphragm;

a more rigid diaphragm must be'chosen,'and this step repeated.
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(Alternatively, see Refs. 1 and 16 for beams and columns

with less than full bracing.)

Compute the maximum shear strain, Ymax? in the diaphragm.

If the reliable shear strain Yar Y » the diaphragm

max
strength is adequate for full bracing; proceed with Step 7
if applicable. |If Ydr < Ynax® @ stronger diaphragm is

necessary for full bracing; repeat the procedure from

Step 5.

This step applies only for diaphragm-girt bracing. In

most cases of full bracing there is no bending of the girts.
However, if the flexural restraint m # 0 and failure is in
the torsional-flexural mode, the strength of the girts has
to be checked. Compute Gd and emax' If the computed bend-
ing slope of the girts emax is less than Od, the bracing
provided by the girts in combination with the diaphragm is
adequate to fully brace the column. If the girts are not
strong enough, choose a stronger section for the girts and

repeat the procedure from Step 5.

Pebs Vimax? 8 ax’® Qjg and 8, are computed from equations

given herein; whereas er and Ydr can be obtained from the load-
deflection relationship of a shear diaphragm test or analysis. The
yield moment of a beam, and the strong and weak axis buckling loads
of a column, can be obtained in any rational manner, including multi-

plying the allowable load by the known safety factor.
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I-SECTION BEAMS BRACED BY A SHEAR D IAPHRAGM
ON THE COMPRESSION FLanGEs('#!?)

Figs. 7a and 7b show the possible modes of failure of
beams with diaphragm bracing on the compression flanges. Full bracing
in this case is defined as that which has adequate rigidity and
strength to prevent lateral buckling until the beam yields. Thus,

My, the yield moment, is taken as the moment capacity of a fully

braced beam, Mg (Eq. 11, Table 1).

The torsional-flexural buckling moment, Mcr’ of an ideal

(10)

beam with diaphragm bracing on the compression flange is
1

2 2
_ om ol 2
MCr = V4Ely (I.) + Q] [ECw ( L) + GJ + Q"] + Qe (12)
where EIy is the weak axis bending rigidity
EC,, is the'warping rigidity

GJ is the torsional rigidity

e is the distance between the center of gravity of the
beam and the plane of the diaphragm

and n=1or 2 for ends simply supported or fixed, respectively,
against lateral bending

The cross bending rigidity of the diaphragm is neglected in Eq. 12

and in all subsequent expressions.

The shear rigidity, Qid’ required for an ideal beam to
attain the '""fully' braced moment be = My can be obtained by substi-
tuting My for Mcr in Eq. 12 and solving for Q, resulting in Eq. 13
shown in Table 1. A simplified and conservative expression for Mcr

is given by
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M =20Qe (14)

cr

Then, with Mc = My, a simple and conservative estimate for Qid is

r
obtained, see Eq. 15, Table 1. Conservative estimates of the
amplitudes of additional lateral deflection of the centroidal axis
(C) and twist (D) at moment My are given by Eqs. 16 and 17. The

amplitude of the additional lateral deflection in the plane of the

diaphragm is

c

‘=C+eD (]8)

and the maximum shear strain in the diaphragm is
= ik
v ¢t (19)

These expressions are used in Steps | through 6 of the design pro-

cedure to design a diaphragm-braced f-beam in Exampie No. 1



-4~

I-SECTION BEAMS BRACED BY A SHEAR DIAPHRAGM
oN THE TENsoN Flanges‘!»19)

The possible failure modes for beams braced by diaphragms
on the tension flanges are indicated in Fig. 8. The buckling moment
of the beam reaches Mﬁe (buckling moment of the beam with the cen-
troidal axis of the tension flange as the fixed axis of rotation)
asymptotically as the shear rigidity approaches infinity. In general,
even for a very small increase in the moment capacity beyond 0.9 M e’
a very large increase in shear rigidity is needed. Therefore, if a
beam with diaphragm bracing on the tension flange buckles in a
torsional-flexural mode (Figs. 8a and 8b) the buckling moment of
the "fully' braced beam is arbitrarily taken as 0.9 Mﬁe' (Any other
percentage could be used in similar fashion.) A fully braced beam
may also fail by yielding (Fig. 8c). Hence, the moment capacity of
a beam ""fully' braced on its tension flanges is the smaller of these
two values, as indicated by Eq. 20, Table 2. Other expressions
required in the design procedure also are given in Table 2. Bracing
on the tension flange is, of course, less efficient than compression
flange bracing. This situation may occur, for example, under wind

uplift loadings.
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AXIALLY LOADED |-SECTION COLUMNS CONTINUOUSLY BRACED BY
SHEAR D [APHRAGMS ON_BOTH FLages‘'+'®)

Diaphragm-braced columns in this case may buckle in one
of the two modes shown in Fig. 9. The bracing is defined as ''"full"
if its rigidity and strength are adequate to prevent weak-axis
buckling of the columns (Fig. 9a) so that they buckle about their

strong axis (Fig. 9b), and Pe, is therefore equal to P , the

crx,L
strong axis buckling load of the column of length, L (Eq. 26,

Table 3).

The shear rigidity (Qid) required for an ideal column to
attain full bracing is given by Eq. 27 in Table 3, where EX is the
modulus corresponding to the average stress level (o) of the column
at be. If ¢ < % (the proportional limit stress), £ = E. But,
if o> cp,(u)

L (G _G)G
£ = E X

oy = ap) o, 8

Other equations required in the design procedure are given in Table 3.
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AXIALLY LOADED I-SECTION COLUMNS CONTINUOUSLY BRACED BY
A SHEAR DIAPHRAGM ON ONE FLANGE onty(!+19)

Diaphragm-braced columns in this case may buckle in one
of the modes shown in Fig. 10, The buckling load of the column
approaches P¢e (the buckling load of the column with the centroidal
axis of one of the flanges as the fixed axis of rotation) asymptoti-
cally as the shear rigidity Q approaches infinity. In general, even
for a very small increase in load beyond about 0.9 PQe’ a very large
increase in shear rigidity is needed. Therefore, if a column buckles
in the torsional-flexural mode, as in Fig. 10a, the buckling load
of the "fully' braced column is arbitrarily taken as 0.9 PQe‘ The
buckling load of a fully braced column is the smaller of the two
values, Eq. 31, Table 4. The buckling load Pge is given by Eqs. 32a
and 32b in Table 4 for the elastic and inelastic range, respectively.
For an l-section, the polar moment of inertia, Ip, in Eqs. 32a and

32b is

|P =0+ Iy (33)

The shear rigidity, Qid’ required for an ideal column to be fully
braced is given by Eq. 34 in Table 4, where E“ is obtained from

Eq. 28 and

G =6 F (35)

Other equations used in the design procedure also are given in

Table 4.
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AXIALLY LOADED [-SECTION COLUMNS WITH
D IAPHRAGM-G IRT BRACING(]’3)

A typical column~girt-diaphragm assembly is shown in Fig.
lla. If "full" bracing is provided, the column may buckle in one
of three modes shown in Fig. 11, and the buckling load of such a
fully-bracéd column is the smallest of the three values, as in Eq. 38,
Table 5, where Pcry,,eis the weak axis buckling load of a column of

length L.

The design formulae given in this report are for columns
with "hinged" ends; that is, the ends are flexurally hinged, and
warping is unrestrained. Design equations for the various cases are
given in Table 5; values of the required coefficients Kl through Kh
appear in Table 6 for modes i = 1 ..... j, where j is the number
of intermediate girts. Strength of the girts has to be checked
only when m # @ and the column buckles in a torsional-flexural

mode.
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DES IGN _EXAMPLES

Example No. 1 - Beams Braced by a Diaphragm on Their Compression Flanges

Design an intermediate floor beam to span 20 ft and to carry
a uniform live load and superimposed dead load of 550 Ib/ft. The beams
are 6 ft apart and are braced by a deck whose shear characteristics
determined from tests are: Gé = 4,235 kips/in. and Yq = 0.0045 rad.
Ends of the beams are considered simply supported laterally. Use ASTM

A36 steel.

Solution: Assume that the beam is fully braced and that its dead load

will be about 20 1b/ft.

2 2
M = ﬂ%h - (550 + 200(20) (12) _ 34 jp-in.

For a factor of safety of 1.67,

M = 1.67 x 342 = 571 kip-in.

req'd

= 3
Req'd Sx =M

req'd + Gy = 571 + 36 = 15.9 in.

Choose W10 x 17, S, = 16.2 in.3, d = 10.12 in.

Fully braced moment Mo, = My =S, oy = 16.2 x 36.0 = 583 kip-in.

Mreq'd; l“ OK

Proceed to check whether the bracing is adequate.

Diaphragm Rigidity:
M
. =X = 583 - .
Bq. 15 Qy = 3¢ = 3(10.12 = 2) - 276 kips
P =Gy w=2/36,w
2/3 (4.235)(72) = 203.3 kips > 57.6 kips

Eq. 5: Qd

Cd

. diaphragm rigidity may be adequate for full bracing.



Diaphragm Strength:

Eq. 8:

Eq. 9:

Eq. 16:
Eq. 17:
Eq. 18:

Eq. 19:

-
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Assumed initial deflection, E0 = 1/8 x 20/5 = 0.5"

0.000667 x 20
0.01334 rad.

Assumed initial twist, Fo

e = d/2 = 5.06"

Additional deflection, C = -0.1038"
Additional twist, D = 0.0648 rad.
Deflection of braced flange, C, = 0.2242"

Maximum shear strain, Yiax = 0.00294 rad.

< Ydr = Yd = 0.0045 rad.

J. diaphragm strength is adequate for '"full'' bracing.

The

W10 x 17 beam is fully braced and can safely carry a uniform load of

550 1b/ft.
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Example No. 2 - Columns with Diaphragm-Girt Bracing

Determine the required size of intermediate l-section
columns 12'-4" long, spaced at 19'-4" intervals, carrying an axial
load of 220 kips each, and braced by one line of girts at midheight.
The girts are braced by aAstandard corrugated diaphragm. Assume

the ends of the columns are hinged, with warping unrestrained.

Spacing of girts = 6'-2"

Diaphragm stiffness, 6} = 6.47 kips/in.

Diaphragm shear strain, Vg = 0.0069 rad.

Twist restraint, m = 4650 k-in./rad.

Use ASTM A572 Grade 50 steel, Gy = §50 kst, E = 29,000 ksi,
G = 11,500 ksi, Sp = 25 ksi

Solution: Try WI12 x 31

: oL _ 148 -
Buckling Loads: "5z " 28.9 < Cc = 107.0
Ref. 13: Pcrx,L =9,13 x 50 [1 - (]07 ) ] = 4h0 kips
£ _ -
‘ = T5g = 48.0 < C_=107.0

L10 kips

x

Ref. 13: P 2= 9.13

Ccry,

Eq. 40b: Pﬁe = Py = A Fy = 456.5 kips

0.9 Py, = 411 kips

Eq. 38: be = Min. (440; 410; L411)

Factor of Safety:

Ref. 13: F.S. =§+§ (o7 -



D iaphragm

D iaphragm

Girts:
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Required ultimate strength = 220 x 1.82 = 400 kips
< 410 kips = P *. OK
Rigidity:
P

_ fb _ Mo _ .
o= = 9.13 L .9 ksi
Eq. 28: E = 10,625 ksi
Eq. 35: G = 4,210 ksi
Eq. 41: With i =1, K{=.250, K, = .810, Ky = .405

Qid = 413 kips

Eq. 5: Q. = 2/3 Gé w = 2/3 (6.47)(232) = 1000 kips

Strength:

Eq. 8:
Eq. 45:
Eq. L46:

Because t

> 413 kips. o

adequate for full bracing.

diaphragm rigidity may be

_ 11233 _
Eo =8 * 70 0.154"
C] = 0.251"
With Kh = 1.0, Ymax = 0.0034 < Yar = 0.0069

.. diaphragm strength is adequate for full

bracing.

he column buckles flexurally (be = Pcry,[)’ there

is no bending of the girts.

Therefore, the diaphragm-girt bracing is ''full' bracing,

and the W12 x 31 column can safely carry a load of 220 kips.
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SUMMARY AND CONCLUS IGONS

A procedure is presented for the design of l-section beams
and columns with diaphragm or diaphragm-girt bracing. The procedure
is based on the ultimate load capacity of fully braced members, utili-
zing a conservative estimate of the shear strength and shear rigidity
of the diaphragm. Design examples are included. The utilization of
existing wall, floor or roof diaphragms as bracing for individual beams
and columns can eliminate the need for other types of bracing and/or
reduce required member sizes. Thus it contributes to economical

design.
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TABLE 1 - EQUATIONS FOR BEAMS WITH DIAPHRAGM
BRACING ON THE COMPRESS ton FLANGEs ' '*'®)

Moy = M, = Sy 9y , (11)
M2 e (3 [ec @) o+ 6J]
Q= L—t— wot (13)
id -, 2 o, 2
e Ely(if) + 2Mye + ECW(TT) + GJ
or, conservatively,
Qy = My/2e (15)
2
F Qe + E (M - Qe)
cC = 0 o Y (16)
(2Qe - My)
EQ+ F (M, - Qe)
D = 22 (17)
(2Qe - My)

where Eo and F0 are obtained from Eqs. 8 and 9, respectively.

CI and ymax are computed from Eqs. 18 and 19, respectively.
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TABLE 2 - EQUATIONS FOR BEAMS WITH DIAPHRAGM
BRACING ON THE TENS IoN FLANGEs''»!0)

M_, = Min. (M, 0.9M )

£b
c,, (= ) + GJ + e El (Dl_E
M, = Y
Je 2e
2
bez - Ely(ﬂ [EC,, ( ) + GJ]
Qg =

2 n“
EC ( ) + GJ + e El (——) - 2e be

2
MepFo [EC( ) +GJ+Qe]+beE (be+Qe)

|, T ) + Ql[Ec (57 ) 4 6y v ae?] - Mgy + Qe)’

M Eo [ (L) + QMg F o (Mo + Qe)

2
Le1, (T m* 4 al e, (2 +6J + Q%] - (M, + Qo)

where E0 and Fo are obtained from Eqs. 8 and 9, respectively.

=( - eD

(20)

(21)

(22)

(23)

(24)

(25)

(19)
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TABLE 3 - EQUATIONS FOR AXIALLY LOADED 1-SECTION COLUMNS
BRACED BY SHEAR DIAPHRAGMS ON BOTH FLaNgEs‘'!?)

be = Pcrx,L (26)

2
I L
Qid Pcrx,L E 'y( L (27)

where EX = E or is obtained from Eq. 28 if o > oy

2 Pcrx L Eo
¢ = : (29)

2
%, (nTT -
E !y( L) +Q-~-P

crx,L

where E_ is obtained from Eq. 8.
¢, =¢ | (30)

Ymax = €1 T (19)
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TABLE 4 - EQUATIONS FOR AXIALLY LOADED I-SECTION COLUMNS

BRACED BY SHEAR DIAPHRAGMS ON ONE FLANGE ONLY(]’IO)
Pep = Min- (Pcrx,L’ 0.9 Pge) (31)
2 2
2 nT
Elastic . EC,, (T )y +6d+e Bl (T 20
Range Pe

(—AE + &%)

2 | 2
A(op) (78 + e°)

Inelastic p

Range Je . 2 -
Ecw(-—L—) +GJ + e E'y(T

where Ip =1 + Iy (33)
- [E"c ( M2 4 g%y - P ][E*l ( -pP_]

_ fb A fb

[¥ ¢, (oF ) + 6%y - ] + &2 [E¥] ("”) - P

fb A fb]

where E* and 6" are obtained from Eqs. 28 and 35, respectively.

2
J _r_\_TI * 2 _ _2
3 be { [ZEO][E Cw( L) + G"J + Qe fb A] + Qe F ] 56)
Det. 3
[e* ( ) b 12
+Q-P,]F + 2E_ Qe
D= Php b e Ao (37)
et.
where
* 2
Det. = [E"I ( ) +Q - P 1[EC (T ) + 6 - P A] + Qe [E¥ ( ) - Pl

and E0 and Fo are obtained from Eqs. 8 and 9, respectively.

C, and Yoax 2Fe obtained from Eqs. 25 and 19, respectively.
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TABLE 5 - EQUATIONS FOR AXIALLY LOADED [-SECTION

COLUMNS WITH DIAPHRAGM-GIRT BRACING(I’3)

Pep = Mine (P s 0.9Ps, Py y)
Ifm=20
EC (-’ﬂ)2 +GJ + e2 E1 (AT
Elastic P =W L v'L
Range Pe

|
P 2
ate

i
A sz (-2 + ez)

Inelastic - _ A
Range Pﬁe =A [Oy . 2 ) o 2 ]
ECW(T) +GJ +e Ely(—[-
with n =1 in Eqs. 39a and 39b
Ifm#0
. 2 . 2
e (D + 6+ B D + Kl
M W y'L 3
P, =Min. [ , P 1]
Je Y

I
(-2 + &%)

K,ml
or Pge = Min_[;Tal____~, Pyil (conservatively)

P 2
(5 +e%)
If Pep = Pcrx,L
I
- * * _P
w. - (K\P” - Peplla - Prp =)
id
2 % * _P
K, [e“(K)P* = Pe) + (@ - P, —B) ]
L TE
where P¥ = ——X
: 22

2
% _ o E ¥
a’ =KE cw(l) + G J+ K3mﬁ

and K], K2 3

(cont inued)

and K, correspond to one of the modes,

(38)

(39a)

(39b)

(40a)

(40b)

(L1)
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TABLE 5 (cont'd)

i=1, ..... j, where j is the number of intermediate

girts, and i is the mode number which gives the

maximum value of Qid in Eq. 41

|
- -e(K.P*- D
Pe, [26 [ (a"-P A)+e (K PH-Pe,)) -e(K P*-P.) {266 + R F_} 1]

CI ) % Y _'2 2 x * _IB
(K P-Pey) (2P Brwk 0 [ 2 (K PP ) (3™p B |
Peyl { 26, e-l—-E F-} { KPP #kQ) —e (KPP ] 26 ]
D =
l
2 % }
(KPP, ) (a"-P A)+|< Q { (KPP, )+ (a" P D)
where Kl’ K2 and K3 in Eqs. 42 and 43 correspond to
the first mode, i = 1,
If Py = 0.9 Py
Qid: Use Eq. 41 above, but constants K], K2 and K3
correspond to the first mode.
CI: Eq. 42 above
D: Eq. 43 above
Ifm# 0, gmax =D, 0.866 D, or D
for columns with 1, 2 or 3 intermediate girts,
respectively,
W Pey = Py, d
Qid: Eq. 41, same as for be = Pcrx,L
2be Eo

= o _
1 KIP be + K2Q

where KI’ K2 and K3 correspond to the first mode.

(42)

(43)

(L44)

(45)
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TABLE 5 (cont'd)

For all failure modes

Ymax = Kh jz (46)

where Kh is from Table 6.
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1 Intermediate Girt

Mode:

1

2 Intermediate Girts

Mode:

3 Intermediate Girts

Mode:

- (1,2)
TABLE 6 - CONSTANTS K., Ky, K;, K,
K, K, Ky
0.250 0.810 0.405
0.111 0.912 0.912
0.444 0.684 0.228
0.0625 0.950 1.621
0.250 0.810 0.405
0.562 5.53 0.180

1.000

0.866
0.866

0.707
0.707

0.707
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APPEND IX 11 -~ NOMENCLATURE

A =—=-emmmmeaea cross sectional area, in.
Q m=mmmmm—m———— dimension of shear diaphragm perpendicular to test
load direction, in.
2
S — = v Ir- ¥ [ 2
a" mmmm==——a- = K,E cw§£) + GJ + KBnLZ, Kip-in.
b ~-cccecmnma dimension of shear diaphragm parallel to test load

direction, in.

C ~~cwmemmmcama amplitude of additional lateral deflection of
centroidal axis, in.

C, =~===cmmmccn= amplitude of additional lateral deflection in the
plane of the diaphragm, in.

Cy —-~m=mmmme-- warping constant of a section, in.

D —=--mmmmnae amplitude of additional twist of a member, radians

E --==---oseoee modulus of elasticity, ksi

Eo ------------ amplitude of Enitial lateral qeflection of the
centroidal axis of a member, in.

B evamecmeana- inelastic modulus, ksi

€ ~--~=--sss-ma- distance between center of gravity of a member and

the plane of the diaphragm, in.

F, ===m=====-=- amplitude of initial twist of a member, radians

G ~m=—memm———— shear modulus, ksi

GF —mmmmmmeaeas inelastic shear modulus, ksi

Gé ------------ shear.stiffness at 0.8 of ultimate load of diaphragm,
kips/in.

Gér ----------- design value of shear stiffness, kips/in.

lp =====m=-mmn- polar moment of inertia, int

Ixs Iy -------- moments.of ineftiﬁ of a section about X~ and Y-axes,
respectively, in.

|g ............ ?:Tent of inertia of a girt about the bending axis,

j m~mmmemccenn- mode number
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number of intermediate girts
torsional constant of a section, in.h
constants
effective length factor
length of member, in.
spacing of girts, in.
moment capacity of a "fully' braced beam, kip-in.

lateral torsional~flexural buckling moment of a
diaphragm-braced beam, kip-in.

plastic moment of a beam, kip-in.

yield moment of a beam, kip-in.

yield moment of a girt, kip-in.

buckling moment of a beam with the centroidal axis
ifpf?ﬁ.tension flange as a fixed axis of rotation,

elastic restraining moment on the column at a girt,
kip-in. per radian '

load capacity of a "fully' braced column, kips

ultimate shear load of a diaphragm from a test, kips

- strong axis and weak axis buckling loads, respectively,

of a column of length L, kips

weak axis buckling load of a column of length £, kips
buckling load of a column with the centroidal axis

of one of its flanges as the fixed axis of

rotation, kips

safe load on a member, kips
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Qid ----------- shear rigidity required for the '"full' bracing of an
ideal member, kips/radian
r_.r, =====-—-- radii of gyration of the section about X- and Y-axes,
X2y
respectively, in.
Uyuy mmmm--mse- additional deflections in the directions of X and X,

axes, respectively, in.
V m=—me—cemem—a additional deflection in the direction of Y-axis, in.

W ~—==me—e————- width of diaphragm contributing to the support of one
member, in.

X,XI,Y -------- coordinate axes

- PR twist of the member, radians

Ygp ~mmmmmmmm- design value of diaphragm shear strain, radians

ymax ---------- maximum shear strain in the diaphragm, radians

By ====m==m===- sh:ar Seflection of a diaphragm at 0.8 Puite radians

gd ------------ = g%%—— = bending slope of a girt at yield moment, radians
emax ---------- compu:gd maximum bending slope of a girt, radians

G =mmmmmmm———— average axial stress in a column, ksi

qy ------------ yield stress, ksi

P T L —— proportional limit stress, ksi
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INTRODUCT | ON

Cold formed steel panels often are used as wall sheathing, roof
decking or floor decking in steel framed buildings. These panels carry
loads normal to their plane by virtue of their bending strength. in
addition, diaphragms formed by adequately interconnecting these panels
can resist in-plane shear deformations. Because of this shear resistance,
such diaphragms are used as wind bracing for low rise buildings, as shear
elements in folded plate and hyperbolic paraboloid construction, and as

(4,6,8,17,19) , ..

load distributing elements in portal frame buildings.
use of this diaphragm action is as bracing against buckling for individual
members of a steel frame, which is the subject of this report. Design
recommendations are presented herein for diaphragm bracing of I—shaped
beams to prevent buckling. The diaphragms are present in any event as
part of the roof or floor, and therefore are available at no extra cost.

If properly utilized, they can eliminate the need for other types of

bracing and thus contribute to economical design.

Extensive research has been conducted at Cornell University
and elsewhere to determine the increased load-carrying capacity of beams

(1,3,7,9,10,14,15,21)

and columns due to diaphragm bracing. This report
gives the basis for the proposed design procedure, describes the specific

steps and presents a design example.

Usually, it is not economical to provide anything less than
""full” bracing for a member, where this is defined as bracing such that
any increase in rigidity or strength of the diaphragm will cause no

significant increase in the load-carrying capacity of the braced
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(18)

members . For this reason, and for greater simplicity, this design

procedure is limited to '""fully braced' beams. The procedure is based on

analyses of l-section beams under uniform moment, and has been substan-

tiated by tests of diaphragm-braced assemblies as reported in References

1 and 9.

Information regarding the load-carrying capacity of |-beams
with less than '""full' bracing can be obtained from Reference 1, which

also discusses the capacity of channel and Z-section beams subjected to

uniform moment. Cantilever beams and channel and Z-section beams subjected

to loads in the plane of the web are discussed in Reference 7.
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CRITERIA FOR DESIGN

)

Design criteria are established herein for I-section beams
continuously braced by a shear diaphragm on the compression or tension
flanges, where '"continuous bracing'' indicates that the diaphragm is
connected directly to the member at short intervals. |If panels with
longitudinal ribs are used, the ribs must be perpendicular to the member
they are bracing. The bracing requirements are not a linear function of
the applied load; therefore, the design procedure is based on the ultimate
load capacity of the beams, utilizing a conservative estimate of the
strength and rigidity of the diaphragm. This is in contrast to most
design précedures for other uses of diaphragms, which are usually formu-

lated in terms of allowable load.

Beams with continuous bracing tend to twist as well as deflect
laterally under load. The diaphragm can provide restraint against both
of these motions, and due to these restraints the torsional flexural
buckling moment of a beam can be considerably increased. As a conservative
simplification, the bending rigidity of the diaphragm, which tends to
prevent rotation of the member to which it is attached, is neglected in
this design procedure. Thus, only the shear characteristics of the

diaphragm are considered.

Shear Characteristics of a Diaphragm

Considerable progress has been made recently in developing
methods to predict the two important parameters which characterize a

diaphragm assembly: the shear stiffness (or conversely, flexibility)



L=
L (4,5,6,8,11,13,20)

and shear strengt Tabulated values for specific
assemblies are given in some of these references, and in proprietary
literature of panel and fastener manufacturers. As an alternative, these
characteristics can be determined from the load-deflection curve obtained
from a simple beam or cantilever shear test (Fig. 1) as described in
Reference 8. The resulting load-deflection relationship is generally

not linear; a typical test curve is shown in the figure. Furthermore,

in such tests, two nominally identical diaphragms may give considerably
different load-deflection relationships at higher loads, say beyond 80%
of ultimate load. The shear stiffness at 80% of ultimate shear load is

denoted as Gé. To insure that diaphragm failure will not precede beam

failure, it is proposed to use only 2/3 of G! as a reliable design value

d
of shear stiffness, Gér' Thus’
o8P ../b 0.53P . /b
' ' = ult” = _ ult
Gar = ¥/3 84 = 2/3 x — 7 By/a ()
where Pult is the ultimate shear load in the diaphragm test, kips

Ay is the deflectijon at 0.8 P in.

ult?’

a is the dimension of the shear diaphragm perpendicular to the
test load direction, in., and

b is the dimension of the shear diaphragm parallel to the test
load direction, in.

Eq. | indicates that Gér is in units of force per unit length.

If the shear stiffness of a diaphragm is known, then the maximum
shear strain that can be sustained by a diaphragm is a measure of its
shear strength; that is, the shear strength is the product of the shear
stiffness and shear strain. The reliable design value of shear strain,

, to be used as a measure of shear strength is taken here equal to the

Ydr



shear strain at 0.8 Pult’ Vgt

A

ev =94
=Yy = (2)

A graphical representation of proposed design values of shear stiffness

and shear deflection are shown in Fig. 1.

The type and spacing of fasteners is very important, and those
used in a diaphragm test should be fhe same as those used in connecting
the diaphragms to the beams in the actual structure. The deflected
position of a beam continuously braced by a diaphragm is shown in Fig.
2a, where the full length of each panel is under uniform shear. The
length of panel to be used in a cantilever diaphragm test (or in any
analytical procedure) is the same as that used in the structure, as shown
in Fig. 2b. Purlin spacing in the test should be the same as the spacing
of the beams to be braced. A simple beam shear test may be conducted
instead of a cantilever test, making proper choice of the panel length

(8)

and spacing of the framing members.

When a diaphragm-braced beam in a structure is to be analyzed,
it is more convenient in the computations to use a reliable shear rigidity
er of the entire portion of diaphragm contributing to the support of the
member, rather than the unit shear stiffness Gér' Using Eq. 1, the
reliable shear rigidity er is expressed as

0.53 Pult w/b

Ad/a

Qd =G' w=2/3 Gé w = (3)

r dr

where w is the dimension of the diaphragm, perpendicular to the longitudi-

nal axis of the member, which contributes to the support of the member
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being analyzed. For example, in the case of floor beams braced by a
diaphragm (Fig. 3), the end beams can be assumed to be supported by the
diaphragm of dimension w equal to half the spacing of beams, and the
intermediate beams are supported by the dimension of the diaphragm W
equal to the full spacing of the beams. It can be observed from Eq. 3

that er is in units of force per unit shear strain (force/radian).

Initial Imperfections and Additional Deflections

The required strength of any type of bracing is a function of
the initial imperfections of the load-carrying member. The pattern of
initial deflection along the length of an imperfect beam is here assumed
similar to the buckling pattern to obtain a conservative estimate of
deflections under load. For example, in the case of a continuously
braced beam, with ends simply supported laterally or hinged, the buckling
pattern is a half sine wave, and the initial deflection pattern is there-
fore also assumed as a half sine wave. The amplitude of the initial
lateral deflection of the centroidal axis of a beam, Eo’ is taken as the
tolerance limit in sweep specified in the AISC Manual (Ref. 12, p 1-127).

Hence,

length of member in feet (4)

Ill
Eo =8 X Gither 5 or 10, as specified

Based on limited available information, the amplitude of the initial twist,

F is arbitrarily taken equal to 0.000667 radian per foot of length;

o’

that is,

F, = 0.000667 rad./ft x length of member in feet (5)
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Because of the initial lateral deflection or twist of a beam,
additional lateral deflections and twist occur under appligd load. The
pattern of additional deflections along the length of a member is the same
as the buckling pattern. These additional deflections cause shear forces
in the diaphragm bracing. Magnitudes of the additional deflections and
maximum shear strain in the diaphragm can be calculated using the design

formulae given subsequently.

Factors of Safety

The factors of safety used for rolled steel beams and cold
formed steel beams in this design procedure are the same as those used

in the AISC Specificationt'2) and AIsI Specification, ('8 respectively.
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ENERAL DES IGN PROCEDURE

Briefly stated, the design procedure is as follows: First,
assume the member to be fully braced, and select a section of required
load capacity. Then, select a diaphragm of specific panel dimensions,
fastener type and fastener spacing, and check to see that its rigidity
and strength are adequate to provide full bracing for the member. (Alter-
natively, one could start with a giveﬁ member and diaphragm bracing system,
and use an analysis procedure based on the equations herein to calculate

the ultimate load capacity and allowable load.)
The detailed design procedure is outlined below:
1. Choose a trial member for the design.

2. Assume that the member is fully braced, and compute its moment

capacity, be.

3. Compute the safe moment, Ms:

M = moment capacity of fully braced member _ be (6)
s factor of safety or load factor T F.S.

I f MS is greater than and close to the required design load,
proceed to check whether the bracing is adequate; otherwise,

repeat the procedure from Step 1.

L. Compute Qid’ the shear rigidity required to fully brace an
ideal member. The rigidity required to brace a real member

(18)

always will be greater than this.

5. Select a trial diaphragm. If Q > Qid’ the diaphragm rigidity

may be adequate for full bracing; proceed with Step 6. |If
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Q<L Qid’ full bracing cannot be achieved with this diaphragm;

a more rigid diaphragm must be chosen, and this step repeated.

6. Compute the maximum shear strain, Ymax’ in the dfaphragm. I f

the reliable value of shear strain Ydr >y » the diaphragm

max

strength is adequate for full bracing. |If Ydr < Ymax’ a stronger

diaphragm is necessary for full bracing; repeat the procedure

from Step 5.

M Y s, and Qid are computed from equations given herein;

fb’ "max

whereas er and Y, can be obtained from the load-deflection relationship

dr

of a shear diaphragm test or analysis. The yield moment of a beam is

My =S_ Fy (7)
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|-SECTION BEAMS BRACED BY A SHEAR D IAPHRAGM
ON THE COMPRESS ION FLANGES‘!*9)

Figs. ba and 4b show the possible modes of failure of beams
with diaphragm bracing on the compression flanges. In Fig. h4a the diaphragm
rigidity and strength are not adequate to prevent lateral buckling of the
beams. In Fig. 4b the diaphragm is adequate, and the beams fail by yield-
ing., Full bracing in this case is defined as that which has adequate
rigidity and strength to prevent lateral buckling until the beam yields.
Thus, My, the yield moment, is taken as the moment capacity of a fully

braced beam, be:

Mep = My (8)

The torsional flexural buckling moment, Mcr’ of an ideal beam

with diaphragm bracing on the compression flange is(g)

= [ n")2 11E N1 2 2\
Mo = JLEL, (7)) + QllEC, () +GJ +Qe”] +Qe (9)
where Ely is the weak axis bending rigidity
ECw is the warping rigidity

GJ is the torsional rigidity

e is the distance between the center of gravity of the beam and
the plane of the diaphragm

and n=1or 2 for ends simply supported or fixed, respectively,
against lateral bending

The cross bending rigidity of the diaphragm is neglected in Eq. 9 and in

all subsequent expressions.

The shear rigidity, Qid’ required for an ideal beam to attain
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the ""fully'" braced moment be = My can be obtained by substituting My for
Mcr in Eq. 9 and solving for Q, resulting in Eq, 10 shown in Table 1. A

simplified and conservative expression for Mcr is given by

Mcr = 2 Qe (11)

Then, with Mcr = My, a simple and conseryative estimate for Qid is
obtained, see Eq. 12, Table 1. Conservative estimates of the amplitudes
of additional lateral deflection of the centroidal axis (C) and twist (D)
at moment My are given by Eqs. 13 and 14 in Table 1. The amplitude of the
additional lateral deflection in the plane of the diaphragm (C]) and the
max imum shear strain in the diaphragm (Ymax) also are given in Table 1

as Equations 15 and 16, respectively. These expressions are used in

Steps | through 6 of the design procedure to design a diaphragm-braced

I-beam in the example given later.
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|-SECTION BEAMS BRACED BY A SHEAR DIAPHRAGM
ON THE TENS 10N FLANGES ‘!9

The possible failure modes for beams braced by diaphragms on
the tension flanges are indicated in Fig. 5. The figure shows (a) vertical
deflection, lateral deflection and twist of the cross section; (b) vertical
deflection and twist; and (c) vertical deflection only. The buckling
moment of the beam réaches MQe (buckling moment of the beam with the cen~
troidal axis of the tension flange as the fixed axis of rotation) asymp-
totically as the shear rigidity approaches infinity, as shown in Fig. 6.
In general, even for a very small increase in the moment capécity beyond
0.9 Mﬂe’ a very large increase in shear rigidity is needed. Therefore,
if a beam with diaphragm bracing on the tension flange buckles in a
torsional-flexural mode (Figs. 5a and 5b) the buckling moment of the
"fully" braced beam is arbitrarily taken as 0.9 Mﬂe’ (Any other percentage
could be used in similar fashion.) A fully braced beam may also fail by
yielding (Fig. 5¢c). Hence, the moment capacity of a beam '‘fully'’ braced
on its tension flanges is the smaller of these two values as indicated
by Eq. 17, Table 2. Other expressions required in the design procedure
also are given in Table 2. Bracing on the tension flange is, of course,
less efficient than compression flange bracing. However, this situation

may occur under wind uplift loadings or other design conditions.
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DES IGN EXAMPLE

Beams Braced by a Diaphragm on Their Compression Flanges

Design an intermediate floor beam to span 20 ft and to carry
a uniform live load and superimposed dead load of 550 1b/ft. The beams
are 6 ft apart and are braced on their compression flanges by a deck whose
shear characteristics determined from tests are: Gé = 4,235 kips/in. and

Yd = 0.0045 rad. Ends of the beams are considered simply supported later-

ally. Use ASTM A36 steel.

Solution: Assume that the beam is fully braced and that its dead load

will be about 20 1b/ft.

2 2
wh® _ (550 + 20) (20)"(12) _
M = wé - (550 + 20020)°012) _ 34 i,

For a factor of safety of 1.67,

M = 1.67 x 342 = 571 kip-in.

req'd

Req'd S, = M 3

req'd * Fy = 571 + 36 = 15.9 in.

Choose W10 x 17, S = 16.2 in.2, d=10.12 in.

Fully braced moment Mcy =M =S5, Fy = 16.2 x 36.0 = 583 kip-in.

Y
> Mreq'd; *. 0K
Proceed to check whether the bracing is adequate.
Diaphragm Rigidity:
M _
. =X = 583 _ .
Ba. 12: Q4 = 76 = Z(10.12 = 2) - °7-6 kips

Eq. 3: Q. = G) w=2/36)w

r dr
2/3 (4.235)(72) = 203.3 kips > 57.6 kips

.. diaphragm rigidity may be adequate for full bracing.
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Diaphragm Strength:

Eq. 4: Assumed initial deflection, Eo = 1/8 x 20/5 = 0,5"

Eq. 5: Assumed initial twist, F 0.000667 x 20

o)
0.01334 rad.

e = d/2 = 5.06"
Eq. 13: Additional deflection, C = -0.1038"
Eq. 14: Additional twist, D = 0.0648 rad.
Eq. 15: Deflection of braced flange, ¢, = 0.2242"
Eq. 16: Maximum shear strain, Yoox = 0.00294 fad.

< Yy = Y, = 0.0045 rad.

d
.. diaphragm strength is adequate for '"full" bracing. The
W10 x 17 beam is fully braced and can safely carry a uniform load of

550 Ib/ft.
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SUMMARY AND CONCLUS IONS

Cold formed steel panels often are used as wall sheathing, roof
decking or floor decking in steel-framed buildings. Diaphragms formed
by adequately interconnecting these panels can have considerable in-plane
shear resistance. This shear resistance has a number of structural uses;
for one, it can act as bracing against buckling for the individual members
of a steel frame to which the diaphragm is attached. A procedure is
presented for the design of l-section beams with diaphragm bracing on
either the compression or tension flanges. The procedure is based on
the ultimate load capacity of a fully braced beam, utilizing a conservative
estimate of the shear strength and shear rigidity of the diaphragm. The
basis for the proposed procedure, the specific design steps, and a design
example are presented. The utilization of existing floor or roof dia-
phragms as bracing for individual beams can eliminate the need for other
types of bracing and/or reduce required member sizes. Thus it contributes

to economical design.
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TABLE 1 - EQUATIONS FOR BEAMS WITH D IAPHRAGM
BRAC ING_ON_THE COMPRESS ION FLANG§§(I’9)

Mep = M, (8)

2 2
2 nTt nT
My - Ely( T [ECw( L) + GJ]

Q., = 2 2 (]0)

2 n'l n™T
e Ely( L) + 2Mye + ECw(L ) + GJ

or, conservatively,

Qid = My/2e (]2)
2
E -
.. FQe” + E (M - Qe) (13)
(2Qe - M)
Y
M -
. EQ + F (M Qe) (1)
(20e - M)
Y
where Eo and F, are obtained from Eqs. 4 and 5, respectively.
C,=C+eb (15)
m
Ymax = C] L (16)
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TABLE 2 ~ EQUATIONS FOR BEAMS WITH DIAPHRAGM
BRACING ON THE TENS ION FLANGES(I’g)

= .
]

fp = Min. (M, 0.9 M)
2 2
ntt 2 n’7
w - ECw( L) +GJ +e Ely( T
Je 2e
2 2
2 n1T nt
) My -Ely(L MQJL) + GJ]
Qg =

2 ) o2
EC,, ( ) + GJ + e° El ( - 2e M.,

2
f [EC (= ) + GJ + Qe ] + M E (be + Qe)

[e1, (F Ly fe, (5 + 69 + ae?] - Mg, + o)

2
nm
fb o [EVCD) +0Ql +MgF, (Mg + Qe)

2
ul() +M[m( T+ 64+ Qe?] - M +%ﬁ

where Eo and F_ are obtained from Eqs. 4 and 5, respectively.

(17)

(18)

(19)

(20)

(21)

(22)

(16)
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APPENDIX 11 - NOMENCLATURE

dimension of shear diaphragm perpendicular to test load direction,
in.

dimension of shear diaphragm parallel to test load direction, in.
amplitude of additional lateral deflection of centroidal axis, in.

amplitude of additional lateral deflection in the plane of the
diaphragm, in.

warping constant of a section, in.6
amplitude of additional twist of a member, radians

modulus of elasticity, ksi

amplitude of initial lateral deflection of the centroidal axis of
a member, in.

distance between center of gravity of a member and the plane of
the diaphragm, in.

amplitude of initial twist of a member, radians

yield stress, ksi

shear modulus, ksi

shear stiffness at 0.8 of ultimate load of diaphragm, kips/in.
design value of shear stiffness, kips/in.

torsional constant of a section, in.“

length of member, in.

lateral torsional-flexural buckling moment of a diaphragm-braced
beam, kip~-in.

moment capacity of a '"fully' braced beam, kip-in.
buckling moment of an unbraced beam, kip-in.

safe moment of a beam, kip-in.

yield moment of a beam, kip-in.

buckling moment of a beam with the centroidal axis of the tension
flange as a fixed axis of rotation, kip-in.
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ultimate shear load of a diaphragm from a test, kips
design value of shear rigidity, kips per radian
shear rigidity of diaphragm, kips/radian, or kips

shear rigidity required for the '"'full' bracing of an ideal member,
kips/radian

width of diaphragm contributing to the support of one member, in.
coordinate axes

design value of diaphragm shear strain, radians

maximum shear strain in the diaphragm, rédians

shear deflection of a diaphragm at 0.8 Pult’ radians
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DESIGN OF |-SHAPED BEAMS WITH DIAPHRAGM BRAC ING

Key Words: Beams (structural); Buildings; Bracing; Cold formed

panels; Design; Diaphragm; Shear strength.

Abstract

Cold-formed steel panels often are used as wall sheathing, roof
deckipg or floor decking in steel framed buildings. Diaphragm$ formed by
interconnecting these panels have considerable in-plane shear fesistance,
and can be utilized as bracing against buckling for individual members of
~a steel frame. The utilization of existing floor or roof diaphragms as
bracing for individual beams can eliminate the need for other types of
bracing, and/or reduce required member sizes, thus contributing to economical
design. A procedure is presented for the design of lI-section beams with
diaphragm bracing on either the tension or compression flanges. The
procedure is based on the ultimate load capacity of fully braced members,
utilizing a conservative estimate of the shear strength and shear rigidity

of the diaphragm. A design example is included.

Summary

A procedure is presented for the design of Il-section beams with
diaphragm bracing on the compression or tension flanges, utilizing the
shear strength and rigidity of diaphragms formed by interconnecting cold

formed steel panels. A design example is included.
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INTRODUCTION

A design procedure for l-shaped beams braced by diaphragms was

8)

presented in an earlier publication. This report extends the method

to l-shaped columns braced by diaphragms. These diaphragms can be formed,
for example, by adequately interconnecting cold-formed steel panels which
are often used as wall sheathing, roof decking or floor decking in steel
framed buildings. The panels carry loads normal to their pl#nes by virtue
of their bending strength and, where suitably interconnected to form a
diaphragm, also can develop considerable in-plane shear resistance.

Several of the structural uses of the shear resistance of these diaphragms,
such as wind bracing for low rise buildings, shear elements in folded plate
and hyperbolic paraboloid construction, and load distributing elements in

(5,6,18) ..

portal frame buildings, have been described elsewhere.
report discusses another use of diaphragm action; that is, as bracing to

prevent buckling of individual columns of a steel frame.

Extensive research has been conducted at Cornell University and
elsewhere to determine the increased load-carrying capacity of columns due

(1,3,7,10,11) This report gives the basis for the

to diaphragm bracing.
proposed design procedure, describes the specific steps, and presents
design examples. While some of the algebraic expressions are lengthy,

the procedure is straightforward and provides a rational analytic basis

for design where no other is currently known.

Usually, it is not economical to provide anything less than

"full'' bracing for a member, where this is defined as bracing such that
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any increase in rigidity or strength of the diaphragm will cause no sig-
nificant increase in the load-carrying capacity of the braced members.(IB)
For this reason, and in an effort toward simplicity, this design procedure
is limited to '""fully braced' columns. The procedure is based on analyses
of I-section columns under axial load, and has been substantiated by tests
of diaphragm-braced assemblies as reported in References 1, 3, 7, and 10.

The behavior of diaphragm-braced columns of unsymmetrical section is

discussed in Reference 11.
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CRITERIA FOR DESIGN

This design procedure covers the following:

1. Axially loaded l=-section columns continuously braced by
shear diaphragms on both flanges, where ''continuous bracing'
indicates that the diaphragm is connected directly to the

column at short intervals;

2, Axially loaded |-section columns continuously braced on

one flange only; and

3. Axially loaded l-section columns braced by girts which, in
turn, are braced by a shear diaphragm, as in most pre-

engineered metal buildings such as shown in Fig. 1.

If panels with longitudinal ribs are used, the ribs must be per-

pendicular to the member they are bracing, which is the usual case.

Bracing requirements are not a linear function of the applied
load; therefore, the design procedure is based on the ultimate load capacity
of the columns, utilizing a conservative estimate of the strength and
rigidity of the diaphragm. This is in contrast to most design procedures
for other uses of diaphragms, which are usually formulated in terms of

allowable load.

Columns with equal bracing connected directly to both flanges
(that is, symmetric bracing) tend to deflect laterally under load without

twisting, while columns with continuous bracing on only one flange tend
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to twist as well as deflect laterally. The diaphragm in these cases pro-
vides continuous restraint against (1) lateral movement in the plane of
the diaphragm, and (2) twist of the member. In contrast, diaphragm-girt
bracing provides these two restraints to a column only at the points of
attachment of the girts. |In either case, due to these restraints the

buckling load of a column can be considerably increased.

Shear Characteristics of a Diaphragm

Considerable progress has been made recently in developing
methods to predict the two important parameters which characterize a dia-
phragm assembly: the shear stiffness (or conversely, flexibility) and

shear strength.(5’6’8’14’]5)

Tabulated values for specific assemblies are
given in some of these references, and in proprietary literature of panel
and fastener manufacturers. As an alternative, these characteristics can
be determined from the load-deflection curve obtained from a simple beam

or cantilever shear test (Fig. 2) as described in Reference 6. The result-
ing load-deflection relationship is generally not linear; a typical test
curve is shown in the figure. Furthermore, in such tests, two nominally
identical diaphragms may give considerably different load-deflection
relationships at higher loads--say, beyond 80% of ultimate load. The

shear stiffness at 80% of ultimate shear load is denoted as G'. To insure

d

that diaphragm failure will not precede beam failure, it is proposed to use

only 2/3 of Gé as a reliable design value of shear stiffness, Gér' Thus
0.8 P /b 0.53 P /b
T | = ult” =~ _ ult
G =(2/3)8g = 2/3 x — = =— = —— (1)

d d
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is the ultimate shear load in the diaphragm test, kips

where Pult
Ad is the deflection at 0.8 Pult’ in.
a is the dimension of the shear diaphragm perpendicular to the
test load direction, in., and
b is the dimension of the shear diaphragm parallel to the test

load direction, in.

Eq. 1 indicates that G'_ is in units of force per unit length.

dr

If the shear stiffness of a diaphragm is known, then the maximum
shear strain that can be sustained by a diaphragm is a measure of its shear
strength; that is, the shear strength is the product of the shear stiffness
and shear strain. The reliable design value of shear strain, Yyr? to be
used as a measure of shear strength is taken here equal to the shear strain
at 0.8 Pult’ Y4

A

= - _d
Ydr = Y4 T 3 (2)

Fig. 2 shows a graphical representation of proposed design values of shear

stiffness and shear deflection.

The type and spacing of fasteners is very important, and those
used in a diaphragm test should be the same as those used in the actual
structure. The panel lengths and purlin spacing to be used in a cantilever
test (or in any analytical procedure) to simulate the actual structure are
given below. As a conservative simplification, the bending rigidity of
the diaphragm, which tends to prevent rotation of the member to which it

is attached, is neglected in this design procedure.

1. Diaphragms continuously bracing columns

- The deflected position of the structure in this case is shown
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in Fig. 3a, where it can be observed that the full length of each panel
is under uniform shear. The length of panel to be used in a cantilever
diaphragm test is the same as the length of the panel used in the struc~
ture, as shown in Fig. 3b. Purlin spacing in the test should be the same

as the spacing of the columns to be braced.

2. Diaphragms in a column-qirt-diaphragm assembly

A typical deflected position of the diaphragm in a column-girt-
diaphragm assembly is shown in Fig. Lb, where it is seen that only a part
of the length of the panel equal to the spacing of girts is under uniform
shear. Therefore, the length of the panels to be used in a shear diaphragm
cantilever test should be the same as the spacing of girts in the column-
girt-diaphragm assembly, as shown in Fig. 4c. No intermediate purlins
should be used in the test. Perimeter framing and fasteners should simu-

late the corresponding portion of the actual structure.

A simple beam shear test may be conducted instead of a cantilever
test, making proper choice of the panel length and spacing of the framing

(6)

members .

When a diaﬁhragm-braced column in a structure is to be analyzed,
it is more convenient in the computations to use a reliable shear rigidity
er of the entire portion of diaphragm contributing to the support of the
member, rather than the unit shear stiffness Gér’ Using Eq. 1, the
reliable shear rigidity er is expressed as

0.53 P 1¢ w/b

) er - Gér W =(2/3)Gé W= Ad/a (3)
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where w is the dimension of the diaphragm, perpendicular to the longitu-
dinal axis of the member, which contributes to the support of the member
being braced. For example, in the case of columns braced directly by a
diaphragm (Fig. 3), the end columns can be assumed to be supported by the
diaphragm of dimension w equal to half the column spacing. The inter-
mediate columns are supported by the dimension of the diaphragm w equal
to the full column spacing. It can be observed from Eq. 3 that er is in

units of force per unit shear strain (force/radian).

Bending Stiffness and Strength of a Girt

The performance of a girt also can be characterized by its
bending stiffness and strength, with due consideration of the rigidity of
the girt-to-column connection. |f the connection between girts and columns
is fully rigid, the bending rigidity of the girt offers calculable restraint
against twist of the column, at the point of attachment to the column. To
compute the twist restraint, refer to the deflected position of the column-
girt-diaphragm assembly shown in Fig, 5. For a rigid connection, the elastic
restraining moment on the column per unit twist of the column, m, can be

computed as

2 (6El‘g)

S

m

(4)

where lg is the strong axis moment of inertia of the girt, E is Young's
modulus, and s is the column spacing. |If the girt-to-column connection

is effectively ''pinned', then m = 0,

The strength of a girt can be designated by the bending slope

at the column, Gd, when the ends of a girt between two successive columns
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are subjected to equal and opposite moments, Myg (Fig. 5b), where Myg is

the yield moment of the girt. The slope can be computed as

o Myg s
d =
6Elg

(5)

Initial Imperfections and Additional Deflections

The required strength of any type of bracing is a function of
the initial imperfections of the load-carrying member. The pattern of
initial deflections along the length of an imperfect column is here
assumed affine to the buckling pattern to obtain a conservative estimate
of deflections under load. For example, in tﬁe case of a continuously
braced column, with ends simply supported laterally or hinged, the buckling
pattern is a half sine wave, and the initial deflection pattern is there-
fore also assumed as a8 half sine wave. The amplitude of the initial lateral

deflection of the centroidal axis, E is taken as the tolerance limit in

o’

sweep specified in the AISC Manual (Ref. 9, p 1-127). Hence

E = 1 length of member in feet (6)
o 8 either 5 or 10, as specified

In addition, an accidental eccentricity is considered by multiplying the
initial lateral deflection by two in the design equations. Based on limited
available information, the amplitude of the initial twist, F_, is arbitrarily

o

taken equal to 0.000667 radian per foot of length; that is,
Fo = 0.000667 rad./ft. x length of member in feet (7)

Because of the initial lateral deflection or twist of a column,

additional lateral deflections and twist occur under applied load. The
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pattern of additional deflections along the length of a member is the same
as the buckling pattern. These additional deflections cause shear forces
in the diaphragm bracing. Also, because of these additional deflections,
girts bend in the case of a column~girt-diaphragm assembly if the twist
restraint m# 0 and if the column buckles in a torsional flexural mode.
Magnitudes of the additional deflections, maximum shear strain in the dia-
phragm, and maximum bending slope of the girts can be calculated using the

design formulae given subsequently,

Factors of Safety

The factors of safety used for rolled steel columns and cold-

formed steel columns in this design procedure are the same as those used

(9) (12)

in the AISC Specification and AIS| Specification, respectively.
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GENERAL DESIGN PROCEDURE

Briefly stated, the design procedure is as follows: First,
assume the member to be fully braced, and select a section of required
load capacity. Then, select a diaphragm of specific panel dimensions,
fastener type and fastener spacing, and check to see that its rigidity

and strength are adequate to provide full bracing for the member.
The detailed design procedure is outlined below:
1. Choose a trial member for the design.

2, Assume that the member is fully braced, and compute its load

capacity, Pgpy.

3. Compute the safe load, Ps:

P = load capacity of fully braced member _ be (8)
s factor of safety or load factor T F.S.
If Py is greater than and close to the required design load, proceed to

check whether the bracing is adequate; otherwise, repeat the procedure

from Step 1.

L, Compute Qid’ the shear rigidity required to fully brace an ideal
member. The actual rigidity required to brace a real member will be greater

(13)

than this.

5. Select a trial diaphragm. If Q > Qid’ the diaphragm rigidity
may be adequate for full bracing; proceed with Step 6. If Q < Q;q» full
bracing cannot be achieved with this diaphragm; a more rigid diaphragm must
be chosen, and this step repeated. (Alternatively, see Ref. 1 for columns

with less than full bracing.)
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6. Compute the maximum shear strain, Ynax’ in the diaphragm. |If
the reliable shear strain Ydr > Ymax’ the diaphragm strength is adequate

for full bracing; proceed with Step 7 if applicable. |If Ydr < Ymax’ a
stronger or stiffer diaphragm is necessary for full bracing; repeat the

procedure from Step 5.

7. This step applies only for diaphragm-girt bracing. In most
cases of full bracing there is no bending of the girts. However, if the
flexural restraint m # 0 and failure is in the torsional flexural mode,
the strength of the girts has to be checked. Compute 84 and 8 ., . |If
the computed bending slope of the girts Qmax is less than Gd, the bracing
provided by the girts in combination with the diaphragm is adequate to fully
brace the column. If the girts are not strong enough, choose a stronger

section for the girts, and repeat the procedure from Step 5.

Peps Yinax® gmax’ Q;q and Gd are computed from equations given
herein; whereas, er and Ydr can be obtained from the load-deflection
relationship of a shear diaphragm test or analysis. The strong and weak

axis buckling loads of a column can be obtained in any rational manner,

including multiplying the allowable load by the known safety factor.
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AXIALLY LOADED I|-SECTION COLUMNS CONTINUOUSLY BRACED BY
SHEAR DIAPHRAGMS ON BOTH FLANGES(]’7)

Diaphragm-braced columns in this case may buckle in one of the
two modes shown in Fig. 6. The bracing is defined as "full'" if its rigidity
and strgngth are adequate to prevent weak-axis buckling of the columns
(Fig. 6a) so that they buckle about their strong axis (Fig. 6b). Torsional-
flexural buckling is not a failure mode for I-section columns with sym-
metrical diaphragm bracing. The buckling load of a ''fully" braced column,
P

fb’
length, L.

~is therefore PCrx L’ the strong axis buckling load of the column of
?

be = Pcrx,L (9)

The shear rigidity (Qid) required for an ideal column to attain

full bracing is given by Eq. 10 in Table 1, where E* is the modulus cor-

responding to the average stress level (5) of the column at be. I f
*
c<o,E =E. But, ifo>o ,(4)
P p
(6, -a)
Es'f=E (J-c)o- (]])
% " “p’ Ip

Amplitude of the additional lateral deflection, C, of the centroidal axis
of the column at load Pcrx,L is obtained from Eq. 12 in Table 1. For
symmetrically braced columns no rotation is assumed, and the lateral
deflection in the plane of the diaphragm is equal to the deflection at the
centroidal axis, Cl = C. The design follows the general procedure; the

final step is to check the strength of the diaphragm (Ymax < Ydr) us ing

m
Ymax = €1 T (14)
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AXIALLY LOADED I-SECTION COLUMNS CONTINUOUSLY BRACED BY
A SHEAR DIAPHRAGM ON ONE FLANGE ONLY(I’7)

Diaphragm-braced columns in this case may buckle in one of the
modes shown in Fig. 7; that is, torsional-flexural buckling or flexural
buckling about the strong axis. The buckling load of the column approaches
PQe (the buckling load of the column with the centroidal axis of one of
the flanges as the fixed axis of rotation) asymptotically as the shear
rigidity Q approaches infinity. In general, even for a very small increase
in load beyond about 0.9 Pée’ a very large increase in shear rigidity is
needed. Therefore, if a column buckles in the torsional-flexural mode,
as in Fig. 7a, the buckling load of the ''fully' braced column is arbitrarily
taken as 0.9 PQe' (Any other percentage could be used in similar fashion.)

The buckling load of a fully braced column is the smaller of the two values;

that is,
Pop = Min. (0.9 Pge, Pcrx,L) (15)

The buckling load Pﬁe is given by Eqs. 16a and 16b in Table 2 for the
elastic and inelastic range, respectively. For an l-section, the polar

moment of inertia Ip in Eqs. 16a and 16b is
ly= Iy + | (17)

The shear rigidity Qid required for an ideal column to be fully braced is

*
given by Eq. 18 in Table 2, where E' is obtained from Eq. 11 and
6" =6 = (19)

Amplitudes of additional lateral deflection of the centroidal axis (C)
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and twist (D) at the buckling load are given by Eqs. 20 and 21, respectively,
in Table 2. The amplitude of the additional lateral deflection C; in the

plane of the diaphragm is
C;=C~-eD ‘ (22)

and the maximum shear strain is obtained from Eq. 1h. Example No. 1 illus~-

trates the design procedure.
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AXIALLY LOADED [-SECTION COLUMNS WITH
D IAPHRAGM-G IRT BRACING''*3)

A typical column-girt-diaphragm assembly is shown in Fig. 8a.
If "full" bracing is provided, the column may buckle in one of three modes:
(1) flexural buckling about its strong axis, Fig. 8b, (2) torsional-flexural
buckling, Fig. 8c, or (3) flexural buckling about its weak axis between
successive girts, Fig. 8d. Therefore, the buckling load of such a fully

braced column is the smallest of these three values; that is,

P, =Min. (P

b 0.9 Py,) (23)

crx,L’ Pcry,i’

where P 2 is the weak axis buckling load of a column of length K.
’

The design formulae given in this report are for columns with
'""hinged'' ends; that is, the ends are flexurally hinged, and warping is
unrestrained. Design equations for the various cases are given in Table 3;
values of the required coefficients K; through K, appear in Table 4 for

modes i = 1 ..... j, where j is the number of intermediate girts.

If the girt-column connection is fully flexible (m = 0), a fully
braced column usually buckles in the torsional-flexural mode, but there
is no bending of the girts. On the other hand, if the girt-column connection
is rigid, the column usually buckles flexurally rather than by twisting,
and again the girts do not bend. Therefore, strength of the girts has to
be checked only where m # 0 and the column buckles in a torsional~-flexural

mode. The maximum bending slope of the girts, @ is given by the twist

max?

of the column at the girt which is at or nearest the midheight of the

column as indicated in Eq. 29. Example No. 2 illustrates the design procedure.
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DES IGN EXAMPLES

Example No., 1 - Columns Braced by a Diaphragm on One Flange Only

Determine the size of an intermediate column of a side wall to
support an axial load of 106 kips. Columns are 12 ft high, spaced at 6 ft
intervals, and are continuously braced on one flange by a light gage steel
diaphragm whose shear characteristics are Gé = 12,5 kips/in. and Yq = 0.0045,
The ends of the column are assumed to be flexurally hinged, with warping

unrestrained. Use ASTM A36 steel, Gy = 36 ksi, op = 18 ksi, E = 29,000 ksi,

G = 11,500 ksi.
Solution: From Table 2, be = Min. (Pcrx,L’ 0.9 Pﬁe)' Using tables in the

AISC Manual or other design aid as a guide, try W6 x 25,

Buckling Loads: %i = %%%5 =53.5<C.= 126.1
2
1 (53.5 R
Ref. 9: Pcrx,L =7.35x361[1-5 (126.1) ] = 237.5 kips

Eq. 16b: n =1, P¢e = 229.3 kips
0.9 Pge = 0.9 x 229.3 = 206.4 kips
s be = Min. (237.5, 206.4)

be = 0.9 PQe = 206.4 kips

Factor of Safety:

L/r, = 144 + 1.53 = 94.1 < 126.1 = C,_

y
, 3
) =243 (G40 1 940 7
Ref. 9:  F.S.=5+g (3267 -5 ey) =1.89

Safe axial load on column if fully braced = ‘ 8§ ’
= 109.2 kips > 106 kips, .. OK

Check to see whether the bracing is ''full',
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Diaphragm Rigidity:

P
o=—£9=—27-%ﬁ= 28.08 Ksi
Eq. 11: o > V2o, £ = 19,900 ksi
Eq. 19: 6" = 7,890 ksi
Eq. 18: n=1, Qiq = 52.0 kips
Eq. 3: Q= 2/3 sé w = 2/3 (12.5)(72) = 600 kips > 52.0 kips

»~. diaphragm rigidity may be adequate for full bracing.

Diaphragm Strength:

Eq. 6: Assumed initial sweep, Ej = % X %g = 0,15"

Eq. 7: Assumed initial twist, F, = .000667 x 12 = 0,008 rad.
Eq. 20: Additional deflection, C = 041"

Eq. 21: Additional twist, D = 0.088 rad.

Eq. 22: Deflection of braced flange, ¢, = 0.13"

Eq. I4: Maximum shear strain in diaphragm,

Ymax = 0.0029 rad. < Yq = Ydr = 0,0045 rad.
»~. diaphragm strength is adequate. The column is fully braced

and can safely carry a design axial load of 106 kfps.
Example No, 2 - Columns with Diaphragm-Girt Bracing

Determine the size of intermediate l-section columns 12'-~4'" Jong,
spaced at 19'-4' intervals, carrying an axial load of 220 kips each, and
braced by one line of girts at midheight. The girts are braced by a stan-
dard corrugated diaphragm. Assume the ends of the columns are hinged, with

warping unrestrained.
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Spacing of girts = 6'-2"

Diaphragm stiffness, G& = 6.47 Kips/in.

Diaphragm shear strain, Yq = 0.0069 rad,

Twist restraint, m = 4650 k-in./rad.

Use ASTM A572 Grade 50 steel, F_ = 50 ksi, E = 29,000 ksi

y
G = 11,500 ksi, o =25 ksi.

Solution: Try W12 x 31

: S S -
Buckling Loads: > = 5,02 - 28.9<¢C. =107.0
2
: - -1 289y . ;
Ref. 9: Pcrx,L =9.13 x 50 [1 2 (]07 ) ] = 440 kips
. S -
ry =J%h " 4L8.0 < Cc = 107.0
Ref. 90 P . q = 9.13 x 50 [ - l ?370) ] = 410 kips
Eq. 265b: Pge = PY = A Fy = 456.5 kips

0.9 PQe = L11 kips

Eq. 23: Pep = Min. (440; 410; 411)

be = Pcry,x = 410 Kkips
Factor of Safety:
Ref. 9t F.5. =2+ (]07) 1 (,07) = 1.82
Required ultimate strength = 220 x 1.82 = 400 kips
< 410 kips = be s 0K
Diaphragm Rigidity:
o = th = g%%; = 44,9 ksi



Diaphragm

Girts:

Eq. 19:

Eq. 26:

Eq. 3:

Strength:

Eq. 6:
Eq. 30:

Eq. 31:
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%%

G = 4,210 ksi

With i =1, K

= .250, K, = .810, K, = .405

1 3

2
Qg = 413 kips

Q, = 2/3 G} w =2/3 (6.47)(232) = 1000 kips
> L13 kips. .. diaphragm rigidity may be adequate

for full bracing.

1 12.33 | '
E° =3 X770 0.154

¢, = 0.251"

1
With Kh = 1,0, Ymax = 0.0034 < Yar = 0.0069

~. diaphragm strength is adequate for full bracing.

Because the column buckles flexurally (be = Pcry,z)’ there is

no strong axis bending of the girts.

Therefore, the diaphragm-girt bracing is '""full' bracing, and

the W12 x 31 column can safely carry a load of 220 Kkips.
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SUMMARY AND CONCLUS IONS

A procedure is presented for the design of {-section columns
with diaphragm or diaphragm-girt bracing. The procedure is based on the
ultimate load capacity of fully braced members, utilizing a‘éonservative
estimate of the shear strength and shear rigidity of the diaphragm.

Design examples are included.

While the algebraic expressions are somewhat lengthy in certain
cases, the procedure is straightforward and provides a rational analytic
basis for design where no other is currently known to exist. Additional

research or experience may lead to design simplifications.
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TABLE 1 - EQUATIONS FOR AXIALLY LOADED |-SECTION COLUMNS
BRACED BY SHEAR DIAPHRAGMS ON BOTH FLANGES ¢ '+7)

be - Pcrx,L (9)
2
= _ g nm
Qg = Pcrx,L : Iy( L (10)
where EX = E or is obtained from Eq. 11 if ¢ > oy
2 Pcrx L Eo
¢= 2 | (12)
D)+ Q- P
where E_ is obtained from Eq. 6.
G =¢ (13)
m
Ymax = ©1 T | (14)
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TABLE 2 - EQUATIONS FOR AXIALLY LOADED |-SECTION COLUMNS
BRACED BY SHEAR DIAPHRAGMS ON ONE FLANGE ONLY("7)

P, = Min. (P

£b 0.9,P¢e) (15)

crx,L?

2
nm 2 nm
ECW(T + GJ + e Ely('—L—

Elastic p

Range Ze (162)

I
(7{2 + e

|
2 2
. Alc ) (£ + &)
Inelastic p - A [cy _ : g A > ] (16b)

Range Pe AT 2 -
EC,(T) +GJ+e EIy(-—L-
where I =1 + 1 (17)
P x Y
L _
_-[Ec (T ) +67 - P A][E I ( be] (18)
g = N 2 I8 W o2
[EC()+GJ-be Al te 2 [g* ( - P,

where E* and G* are obtained from Egqs. 11 and 19, respectively.

nm _ _2 ]

fb{[ZE][EC()+GJ+Qe Pey A]+Qe F

¢= Det. (20)
[E¥) (1‘32+Q-P 1F —'R+2F_

D_P YL fb o A er (21)

- fb Det.

where

X ntr 2 ¥ 2 ntT 2
Det. [ ( ) +Q - fb][E Cw(-fo +6G°J -P ] + Qe“[E¥) TT) - P

fb A fb]

and Eo and Fo are obtained from Eqs. 6 and 7, respectively.

Cl and Ynax 2F€ obtained from Eqs., 22 and 14, respectively.
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TABLE 3 - EQUATIONS FOR AXIALLY LOADED I-SECTION
COLUMNS WITH D IAPHRAGM-GIRT BRACING ' #+3)

Pep = Min (P | 0.9 Py, P )
Ifm=20
EC (ﬂ-T-')2 +GJ + &2 E1 (AT
Elastic po= W L y'L
Range Pe

|
_p 2
Ate

Ao 2 -2+ ez)
A[O'y" zp 2]
fal 2 nm
ECw( L) +GJ + e Ely( T

Inelastic P
Range Pe

with n =1 in Eqs. 24a and 24b

Ifm#0
2 , 2

Ec (D) + e+ e £ @ + Kkl
P. = Min. [—Y Y > p ]
Pe I 'y

& S
(x+e
Klnﬁ
or Pﬂe = Min'f;T—l—————’ Pyil (conservatively)
P 2
( s te )
I Pey = Porx,L
|
- ¢ - v - _B
. - (K\P™ - Pep) (@ - Pey =)
¢ K, [e2(K.P* =P, ) + (a - p, B
2 L& WP T ey a - P )]
\ N n2 E*I
where P =—23'l
% 03 ™ 2 Y
a" = KEC, () + G+ K3m,2

and K', K2 and K3 correspond to one of the modes,

(cont inued)

(23)

(24a)

(24b)

(25a)

(25b)

(26)
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TABLE 3 (cont'd)

i=1, ..... j, where j is the number of intermediate
girts, and i is the mode number which gives the
maximum value of Qid in Eq. 26

I

.. - |
Py, [2E [ 7Py A)+e (K,P¥-P. )] ~e(k P*-P_.) f2eE + 2 F Y1
€ = . (27)

(K]P*-be)(a’- £b A)+K Q {e (K, P be)+(a - fb—E)}

Pel {2Eoe+1§ Foy { x P"’-be+K2Q} —e{K P*-be] 2€ ]

D = , (28)
(KIP -be)(a Py A)+K Q [e (K P be)+(a ~Pep A)}
where KI’ K2 and K3 in Eqs. 27 and 28 correspond to
the first mode, i = 1.
If be = 0'9_Pg§
Qid: Use Eq. 26 above, but constants KI’ K2 and K3
correspond to the first mode.
CI: Eq. 27 above
D: Eq. 28 above
Ifm#0, gmax =D, 0.866 D, or D (29)
for columns with 1, 2 or 3 intermediate girts,
respectively.
1f Pep = Pery, Z
Qid: Eq. 26, same as for be = Pcrx,L
. 2be E0 (30)
DK - P+ KQ

where Kl’ K2 and K3 correspond to the first mode.
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TABLE 3 (cont'd)

For all failure modes

‘ (31)

where Kh is from Table L.
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| Intermediate Girt

Mode:

1

2 Intermediate Girts

Mode:

fi

3 Intermediate Girts

Mode:

i (1,2)
TABLE L4 - CONSTANTS Kl’ KZ’ K3, Ku
Kl K2 K3
0.250 0.810 0.405
0.111 0.912 0.912
0.444 0.684 0.228
0.0625 0.950 1.621
0.250 0.810 0.405
0.562 5.53 0.180

1.000

0.866
0.866

0.707
0.707
0.707
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APPENDIX |1 - NOMENCLATURE
A —mmemmmmmn— cross sectional area, in.
8 mm=mm—momo-—- dimension of shear diaphragm perpendicular to test load
direction, in.
% v TT) 2 G‘k K . . 2
a =em—m=------ = K,E Cw( + 6 J + 3™ kip-in.
b =~ecommmemem dimension of shear diaphragm parallel to test load

direction, in.

e it amplitude of additional lateral deflection of centroidal
axis, in.
C, ~===—mmm———- amplitude of additional lateral deflection in the plane

of the diaphragm, in.

C, ~~""--Teoe- warping constant of a section, in,

D ——mmmmmmm——- amplitude of additional twist of a member, radians

E =-=m=mommne- modulus of elasticity, ksi

E, ==-=====---- amplitude of initial lateral deflection of the centroidal
axis of a member, in.

E* ------------ elastic or inelastic modulus, ksi

@ mmmmmm———— - distance between center of gravity of a member and the

plane of the diaphragm, in.

Fo =m======---- amplitude of initial twist of a member, radians

G -—mmmmm——————— shear modulus, ksi

0 ccmmmmmmmmee inelastic shear modulus, ksi

Gé ............ sﬁear.stiffness at 0.8 of ultimate load of diaphragm,
kips/in.

Gér ----------- design value of shear stiffness, kips/in.

IP ------------ polar moment of inertia, in.

|, ==m=m——-- moments of inertia of a section about X- and Y-axes,

X"y respectively, in.

'g ------------ moment of inertia of a girt about the bending axis, in.

| mmemmmm—e———- mode number
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-30-
number of intermediate girts
torsional constant of a section, in.
constants

effective length factor

length of member, in.

spacing of girts, in.

elastic restraining moment on the column at a girt,
kip-in. per radian

load capacity of a ''fully' braced column, kips
ultimate shear load of a diaphragm from a test, kips

strong axis and weak axis buckling loads, respectively,
of a column of length L, kips

weak axis buckling load of a column of length X, kips

buckling load of a column with the centroidal axis of one
of its flanges as the fixed axis of rotation, kips

safe load on a member, kips

shear rigidity required for the '"full' bracing of an ideal
member, kips/radian

radii of gyration of the section about X- and Y-axes,
respectively, in.

spacing of columns, in.

additional deflections in the directions of X and X] axes,
respectively, in.

additional deflection in the direction of Y-axis, in.

width of diaphragm contributing to the support of one
member, in.



-31-

X,X],Y -------- coordinate axes

B =emmmmmecman- twist of the member, radians

Ydr ----------- design value of diaphragm shear strain, radians

max ~TTCTTTTeC maximum shear strain in the diaphragm, radians

Ad ------------ shsar Seflection of a diaphragm at 0.8 Pult’ radians

ed ------------ = g%%—— = bending slope of a girt at yield moment, radians
hhax ~TCTTTTTT computgd maximum bending slope of a girt, radians

g =~=memme————— average axial stress in a column, ksi

oy ------------ yield stress, ksi

G mmmm—mee—m—— proportional limit stfess, ks i
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DESIGN OF 1~SHAPED COLUMNS WITH DIAPHRAGM BRAC ING

Key Words: Bracing; Buckling; Buildings; Columns; Diaphragms;

Shear Strength; Structural Engineering.

Abstract

A procedure is presented for the design of l-shaped columns
braced by diaphragms. The diaphragms can be formed, for example, by
interconnected cold-formed steel panels which are often used as wall
sheathing for steel framed buildings. The diaphragms may be directly
attached to one or both flanges of the columns, or connected to girts
which in turn are connected to the columns. The procedure is based on
the ultimate load capacity of fully braced members, utilizing a conser-
vative estimate of the shear strength and shear rigidity of the diaphragm.
Design examples are included. In many instances the existing wall
sheathing provides adequate bracing against buckling. The method is

similar to one proposed earlier for diaphragm-braced |-section béams.

Summar

A procedure is presented for the design of I-section columns
braced directly by diaphragms, or by girts which in turn are braced by
diaphragms. The method utilizes the shear strength and rigidity of
diaphragms such as those formed by interconnecting cold-formed steel

panels. Design examples are included.
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