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INTRODUCTION 

Compression members with thin-walled open sections, 

because of their low torsional rigidities and because their 

cross-sectional configuration is such that the centroid and 

the shear center often do not coincide, can buckle at loads 

well below the Euler load by interaction of torsion and 

bending. Fast expanding applications of such sections in 

civil and architectural engineering call for an extensive 

investigation of torsional-flexural buckling. 

Basic theory of torsional-flexural buckling 1s treated 

by a number of authors, 1 ' 2 and simplifications of the basic 

theory in the elastic range for the design purposes together 

. h . 3 w1t some test results were reported prev1ously. Some in-

vestigation of inelastic torsional-flexural buckling of 

as-rolled, thick-walled !-beams by application of bi-axial 

moments has been reported.G,?,a However, there has not been 

sufficient investigation of axially loaded columns with thin-

walled open sections in the inelastic range. 

All inelastic buckling problems are inherently non-

linear and non-static. In view of the even more complex 

nature of torsional-flexural buckling, simplifications of 

the basic theory for practical purposes are necessary. While 

the simplification may reduce the design procedure to an 

easier form, the computed values must also be reasonably 

accurate when compared to the actual buckling loads. 

This investigation, primarily semi-empirical, was con-

ducted for the following objectives: 

1 
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1. To develop and verify an approximate inelastic 

torsional-flexural buckling theory based on certain simpli­

fying assumptions. 

2. To recommend a practical design procedure and a 

formulation of code provisions against torsional-flexural 

buckling covering both the elastic and inelastic ranges. 

A series of tests on specimens of vario~s cross­

sectional shapes and dimensions were made to verify the 

basic theory. The test results agree with the predicted 

values within reasonable limits. 

BASIC THEORY 

Axially compressed members with thin-walled open 

sections, because of their low torsional rigidities, can 

buckle by twisting at loads well below the Euler load. Also, 

because of their cross-sectional configuration, the centroid 

and the shear center frequently do not coincide and, there­

fore, torsion and flexure interact. 

Members having singly symmetrical cross-sections may 

buckle in pure flexure or in the torsional-flexural mode. 

Based on linear theory, 1 ' 2 ' 3 the critical torsional-flexural 

stress in the elastic range is given by the following quad­

ratic interaction equation: 

(crcr)E = 2~ [(ax+ a~) - \-;(ax + a ~)2- 4k ax a~ ] (la) 

in which 

(crcr>E = the elastic torsional-flexural buckling stress; 
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0 = _n.._.-E __ 

X (L/r )2 
X 

0 = 
4> 

1 
T 

p 
[GJ + 

3 

(lb) 

(lc) 

(ld) 

x 0 = the coordinate of the shear center with regard to 

the centroid; 

r = the polar radius of gyration about the shear center 
0 J I + I - X y 

- A + X 2 
0 

rx = the radius of gyration about the x-axis; 

A = the cross-sectional area; 

Ip = the polar moment of inertia about the shear center. 

Fer thin-walled open sections comprising plate elements 

which do not significantly restrain each other rotationally, 

Eq. (la) gives rather accurate account of the interaction 

of the two fundamental modes. 

For members of small or moderate slenderness with walls 

of greater thicknesses, the average compressive stress prior 

to buckling may exceed the proportional limit of the material. 

In this case failure occurs at an inelastic torsional-flex-

ural stress which is less than the computed elastic buckling 

stress, 

According to the tangent modulus theory, the flexural 

buckling stress in the inelastic range (buckling about the 
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x-axis) 1s g1ven by the well-known Engesser-Shanley equation: 

'Tr2E 
t 

= T'L"7'r ) 2 
X 

( 2) 

In the analysis and derivation of the equations governing 

torsional-flexural buckling in the elastic range, the so-called 

Euler method is used. 1 ' 3 Many practical column problems 

including torsional-flexural buckling in the elastic range 

can be treated as static buckling problems for perfect math-

ematical models. A static stability criterion may not be 

useful, however, for nonlinear problems. Shanley pointed 

out that the time factor and behavior of loading must be 

taken into account in the inelastic column buckling, which 

leads to the tangent modulus concept, in contrast to the 

double modulus theory of v, Karman which is the result of a 

mere extension of the Euler method. 

The critical average compression stress of the purely 

torsional mode in the inelastic range is then 

EtCw'~~" 
2 

(a4>)t 
1 ] = r [GtJ + 

12 p 

1n which Et is the tangent modulus defined 

Gt = the tangent modulus of shear defined 

do 
by - ' de: 

dT 
by do • 

( 3) 

and 

Eq. ( 3) 

comes directly from Eq. (ld) because during buchling in the 

inelastic range, infinitesimal shear stresses dT are super­

imposed on axial compressive stresses, the ratio t/"A bet\'leen 

excess shear stresses and excess shear strain being Gt. The 

second term in the bracket of Eq. {ld) represents the com­

ponent of internal resisting torque due to warping of column 
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as it twists, E refers to the axial stress thus caused; 

hence in the inelastic range, it becomes Et by applying the 

Shanley inelastic buckling concept. 

Thus the critical torsional-flexural buckling stress 

in the inelastic domain can be given by 

There are several theories and suggestions for computing 

the inelastic moduli in Eq. (4). However, most of the theories 

and methods lead to quite complicated and inconvenient pro­

cedures. For example, P. P, Bijlaard10 derived the fol-

lowing expression for Gt: 

G = E/(2 + 2v + 3e) 
t 

1.n which 

v = Poisson's ratio; 

e = (E/E ) - 1· 
s ' 

E = the secant modulus. s 

F. Bleich2 suggested the relationship 

Gt = GA 

(5) 

(6) 

If these expressions are substituted in Eqs. (3) and (4) and 

combined with an appropriate expression for the stress-strain 

relationship of the material, the resulting equation needs 

laborious and time-consuming solution. (See Appendix D.) 

We shall assume now that the ratio of tangent modulus 

of shear to elastic modulus is equal to that of tangent 
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modulus to Young's modulus, namely, Et/E, so that 

= 2 < 1 + V'> ( 7) 

This is equivalent to saying that the ratio of the two 

moduli remains constant. This assumption is in accordance 

with that made by K. Roik 9 and F. Bleich. 2 It cannot be 

proved rigorously but may be justified practically because 

for most cases of torsional buckling, the shearing stresses 

play only a minor role (although the case of the equal legged 

angle seems to deviate somewhat from this reasoning). Hence, 

even relatively c~ude approximations in the shear terms have 

comparatively little effect on computed critical loads. 

The relation (7) leads to somewhat smaller value of Gt 

than other expressions, and therefore, to a more conservative 

buckling stress. The computation is greatly simplified, 

however, by this a.pproximation. Eq. (3) can then be written 

as 

(a~)t 
1 

[GtJ + = 
IP 

= 1 
Ip 

Et 
[2(1+\1) 

2 
Et C n 

w J 
L2 

2 
Et C n 

J + w J 
L2 

(8) 

Thus, if one has an expression for Et as a function of 

stress, for given E, proportional limit and yield strength 

of the material, the inelastic torsional-flexural buckling 

can be easily calculated. 

In order to determine stress-strain curves of the 

columns, stub column tests were made. Typical effective 

over-all stress-strain relationship of the specimens are 

shown in Figs. 2, 3, 4 and 5. 
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All stress-strain curves reflected the well-known 

effects of cold forming. 5 They were practically linear up 

to at least half of the yield strength determined as the 

stress corresponding to 0.2% residual strain. Above the 

proportional limit, they gradually deviate from linearity 

and rapidly curve as the stress approaches yielding. In 

the present case, the non-linearity above the proportional 

limit ~s due to the effect of cold forming which produces 

zones of higher yield strength at corners. 

To obtain the stress-strain relationship, we assume 

that the Et/E ratio follows a parabolic law; thus, the 

expression for Et can be written as 

where 

C = f(o, op' cry) 

(9) 

Hence, C is a numerical parameter, dependent on the full 

section proportional limit which in turn is dependent on 

the properties of virgin material, amount of cold forming 

and on the cross-sectional dimensions. 

From the stress-strain curves of the stub column tests, 

Et was measured using a "tangentiometer." A tangentiometer 

is a semi-transparent mirror fixed perpendicularly to a 

straight base. Holding the mirror perpendicular to the 

paper on which the stress-strain curve is drawn, one can 

adjust the position of the mirror until the reflected image 

of the curve coincides with the image transmitted through 
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the m1rror; the surface of the mirror is then normal to the 

curve at that point. The slope of the curve at the point 

can be read at the base. The Et/E ratios are plotted against 

a as shown in Fig. 6 • If a curve is drawn through the 
cry 

center of the scatter band, c is seen to be 4.5. For 

comparison, a curve based on C = 4 is also plotted, and 

seen to represent the lower limit of the scatter band. This 

value, C = 4, is the one currently used for steel column de-

sign for flexural buckling, taking the proportional limit as 

one-half of the yield strength. 

For most practical cases, the majority of buckling 

stresses fall under 90% of the yielding strength. It is 

seen from Fig. 6 that the curve corresponding to C = 4 1s 

the lower bound of the group of the experimental data. 

For a more gradually yielding stress-strain curve, C tends 

to be lower, as is the cases of hat and lipped angle 

sections, Figs. (4) and (5). Conversely, C tends to be 

higher for angle section, Fig. (2), while for channel section 

it is about the intermediate, Fig. (4). This effect can be 

observed later from the buckling test results plotted in 

Fig. (14). The points for hat and lipped angle sections 

generally fell somewhat below the theoretical curved based 

on C = 4.5 and those for angle section are generally above 

the curve, with those for channel section being in best 

agreement with the theoretical curve. 

The tangent modulus can then be expressed as 

Et = 4.5 E [£_ (1 - £_)] 
cry cry 

(10) 
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To derive a stress-strain curve from this equation, one 

notes that 

E _dcr 
t -de: 

and substitutes this differential into Eq. (10) to get 

e: = 4.§Ej do + Cl 
~(1- L) 
cry oy 

carrying out the integration 

e: = 

The constant of integration, c1 , can be determined by the 

condition of the proportional limit, i.e., 

Et 
Elcrp = 1 

whence, Eq. {10) becomes 

Solving for 
on 
-L- , one obtains 
oy 

from which the proportional op above which Eq. (10) applies, 

is 

Noting that =Q 
3 E ' 

O'v 
c1 = o.513 E 

one finally obtains 
0' 

E = 4.~E [2.306 j (11) 
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Eq. (11) depicts the stress-strain curve above the propor­

tional limit up to the yield strength, corresponding to 

Eq. (10), Stress-strain curves based on this equation are 

plotted as dashed curves in Figs. (2) to (5), for ·com~ 

parison with measured curves. Agreement is seen to be 

reasonable. 

At incipient buckling, a becomes (crcr}t in Eq. (10), i.e., 

(12) 

Substituting Eq. (12) into Eqs. (2) and (8), 

(crx}t = 4.5 
(crcr)t 

[ 1 -
(crcr>t 

] (13) 
cry cry crx 

(cr~)t = 4.5 
(crcr)t 

[ 1 -
~crcr)t 

] cr~ (14) 
cry cry 

Eq. (4) together with Eqs. (13) and (14) becomes 

(crcr)t = 
(acr)t 

[ 1 -
(crcr>t 

(ocr) 4.5 a ] cry y E 

and finally the torsional-flexural buckling stress in the 

inelastic domain becomes 

a 

( 0 cr)t = cry [l - 4,5 y ] <ocr) 
E 

(15) 

where (acr)E is the elastic critical torsional-flexural 

buckling stress computed by Eq. (la). 

One obtains the same result by defining an effective 

slenderness ratio as follows. 

In flexural buckling, if one knows the slenderness ratio, 

L/r, one can compute the buckling stress 
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in which <crx)E is the computed elastic Euler stress, which 

is higher than the actual buckling stress in the inelastic 

range. 

If one equates ( 0 )t of torsional-flexural buckling to cr 
the above flexural buckling stress and solves the resulting 

equation for (A/r), one gets the effective slenderness ratio; 

or conversely, one can compute the torsional-flexural buckling 

stress if one knows the effective slenderness ratio, (~/r)eff" 

(16) 

Rewriting Eq. (16) analogously to the flexural case, one 

obtains (acr)t = 
Et 'IT2E 

(17) ,...- 2 
(>./r)eff 

'1 

'!'hen ;rc:.E 

(crcr)E 
( 18) . 

2 
(>../r)eff 

which is the computed elastic torsional-flexural buckling 

stress given by Eq. (la). Therefore (L/r)eff can be com­

puted by 

(19) 

In the elastic domain, i.e., below the proportional limit, 

Eq. (19) gives the actual elastic torsional-flexural buckling 

stress. 

Substituting Eq. (10) into Eq. (17), 

(crcr)t = 4.5 
(acr)t 

[ 
( 0 cr)t 

<<tr>E 1 - ] 
cry cry 

and finally 
a 

(ocr)t = a [ 1 -
y ] 

y 4.5 (acr)E 
(15) 

as before. 
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Both approaches are based on the assumption expressed 

in Eq. (5). However, the physical meaning is better vis­

ualized ~n the first derivation. 

It is now possible to extend the calculation pro­

cedures of the elastic case into the inelastic range and by 

applying Eq. (15) to obtain the critical torsional-flexural 

buckling stress in the inelastic range. The computed values 

in Table II are based on Eq. (15). 

EXPERIMENTAL INVESTIGATION 

The purpose of the experimental investigation was to 

verify the basic theory in the foregoing. Altogether, 30 

tests were conducted on specimens having various sectional 

shapes and dimensions. 

The main parameters which must be considered in choosing 

specimens are as follows: 

1. w/t ratio of the plate elements of specimens. 

As this ratio increases, there may be local buckling 

premature to the over-all column buckling under axial com­

pression. For the present investigation, the w/t ratios 

were chosen such that premature local buckling was avoided. 

Within such range of w/t ratios, a variety of cross-sectional 

dimensions were designed. 

2. Wall-thick~ess. 

If wall thickness is sufficiently snall, the torsional 

rigidity of the cross-section is correspondingly reduced and 

the buckling load is so low that the average compressive 

stress cannot reach the inelastic domain. Therefore, steel 
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sheet thicknesses of 10 to 13 ~a~es were selected. 
~~ -~ 

3. Yield strength of material. 

As discussed in the basic theory, the basic yield 

strength of the material is of great consequence to the 

column buckling stress and also to the local buckling. 

Hence, materials having relatively low yield strength were 

used. 

4. Shape of specimen. 

Tests were confined to shapes having singly symmetrical 

sections, to which most of the commonly used shapes belong. 

5. End conditions. 

Fully fixed end conditions were chosen. This was to 

eliminate the complex end fittings necessary for testing 

column with other end conditions. Moreover, the simpler 

the arrangement of the end restraints, the less error would 

be involved in aligning the specimen. 

Specimens and Test Procedure 

Specimens are grouped into four categories: plain equal 

legged angles, lipped angles, plain channels and hat sections. 

The cross-sectional configuration is shown in Fig. 1. A 

summary of spec~men shapes and their dimensions is given in 

Table 1. 

All tests were conducted on columns with length less 

than 70 in. The fixed end conditions were achieved by welding 

steel plates of 3/8 to 1/2 in. thickness to both ends of the 

specimen, which were then set in hydrostone placed on the 

base and head of the test machine. 
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The materials used for the specimens were 10 gage hot 

rolled sheets and 12 and 13 gage cold reduced sheets. 

Column specimens were made by press braking at a local shop 

(Champion Sheet Metal Co., Cortland, N.Y.) to specified 

dimensions. 

Stub column compression tests were made to evaluate the 

effective over-all stress-strain relationship of the spec­

imens. A stub column is a short piece cut from the specimen 

to be tested. While details of the stub column test pro­

cedure are fully described elsewhere, 5 a brief explanation 

will be given below. 

A schematical setup of a stub column test is depicted 

~n Fig. 7. The specimen was surrounded by hydrostone cast 

in a steel pipe to limit plate local buckling. SR-4 strain 

gages were attached to the plate elements of the stub col-

umn and were then coated with wax in order to secure water-

proof. Each strain gage was then covered with a half section 

of metal tube approximately 7 1/2 in. long split longitudinally. 

Water-proofing wax was again coated along the tubing. The 

specimens were then greased and wrapped in aluminum foil to 

minimize friction between the surface of the specimen and 

hydrostone. The entire assemblage was cast in hydrostone 

contained in a 4 in. steel pipe or 6 in. square tube of 

7 l/2 in. length, depending on the size of the specimen. 

Before the stub column was placed in hydrostone, the ends 

were cut so that the end surfaces were perpendicular to the 

longitudinal axis; both ends were milled to smooth surfaces 
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after the specimen was cast in hydrostone. After the 

hydrostone had hardened completely and heat generated was 

dissipated, the specimen was brought to test, 

In testing, the specimen was placed on a milled plate 

of 1-1 1/2 in. thickness which was fixed by hydrostone on 

the base of the testing machine. The plate was checked to 

be horizontal by means of a bubble tube. Under the head of 

the machine, the same arrangement was made. 

The stub column cross-sectional area was determined 

accurately by measuring the weight and length of the spec­

imen. The average stresses were computed and plotted 

against the average strain readings of the strain gages. 

Typical stress-strain curves are shown in Figs. 2, 3, 4 

and 5. (Others are included in Appendix A,) 

Basic instrumentation of the column ~ts consists of 

two needles attached to the column walls at mid-height and 

a circular ring with scale increments of 0.01 inch to 

measure the rotation of the column as indicated by the move­

ment of the needles; dial gages to measure the column de­

flection at mid-height; and electrical resistance strain 

gages at certain points on the column walls mainly to check 

the column alignment. The vertical alignment was first 

checked by a plumb-bob and also by a bubble tube. 

The column specimens were loaded in a hydraulic test 

machine with load increment of 500 to 2000 lbs., depending 

on the specimen and the predicted buckling load. As the 

buckling load was approached, the load increment was re­

duced. Typical test setup and testing are shown in Figs. 8 

and 9. 
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The applied average stresses, PIA, were plotted against 

the measured rotations at mid-height and against the deflec­

tions in the direction perpendicular to the axis of symmetry. 

Discussion of Results 

Typical stress-deformation curves are shown in Figs. 

10, 11, 12 and 13. (The curves for all other specimens are 

given in Appendix B.) It is seen that the behavior of the 

specimens is similar to that of an axially loaded column 

with imperfections. The stress-deformation curves show 

gradually increasing rotations and simultaneous lateral 

deflections in the intermediate range, with rapidly in­

creasing deformations as the buckling stress was approached. 

The stress-deformation curves show that failure occurred 

at the stresses in the inelastic domain. They also show that 

there was no apparent post-buckling strength. This confirms 
a 

again that post-buckling strength depends on -l ratio, i.e., 
~r 

the greater the ratio, the smaller will be the difference 

between the buckling load and the failure load, as reported 

before. Since the inelastic buckling stress is close to the 

yielding strength, post-buckling strength cannot be expected. 

An interesting discussion was presented by N. J. Hoff4 

concerning the definition of buckling load of an inelastic 

column. He observed that there is no definition of experi-

mental buckling load in a manner acceptable to all research 

men. The maximum load has the most clear-cut physical sig-

nificance and is also easily observed experimentally. So-

called critical load is based on the classical concept of 
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stability and is obtained as the Eigenvalue of the load 

at which neighboring, slightly deflected equilibrium con­

figuration exist simultaneously with the initial config­

uration of deflections. The extension of this concept 

leads to the double modulus load which g1ves a value higher 

than the maximum inelastic column load. The tangent modulus 

load has the merit that it can be easily calculated as soon 

as the stress-strain curve is known. It also agrees, on 

the average, with the maximum load observed with actual, 

somewhat imperfect columns. 

In view of this, the maximum observed stresses (i.e., 

the PIA at maximum load) are given in Table II for compar-

ison with the computed values. A quick over-all comparison 

is presented in Fig. 14. A non-dimensional curve is plotted 

taking A : +!+ (L/r~ffvs. ::r as shoNn. The scat-

tering of the experimental data is not large in general, and 

the agreement with the theoretical curve is close. 

It is seen that the only significant unconservative 

deviations from the C = 4.5 curve (up to 15%) occurred for 

three hat sections. Hat sections had the largest number of 

corners of all sections tested and therefore, probably the 

largest imperfections. This is confirmed by the over-all 

shape of the load-deformation curves at the hat section 

columns. 

For comparison, (ocr)t based on C = 4.5 are computed 

and are listed in Table II. Two additional curves based 

on C = 5 and C = 4 are also plotted in Fig. 14, the latter 

corresponding to CRC column curve except (L/r) is (L/r)eff 
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~n this case. The buckling stresses of angle sections are 

closer to the values computed by using C = 5, while those 

of lipped angle and hat sections are closer to the values 

by C = 4. This is to be expected since the stress-strain 

curve for angle section is more of the sharp yielding type, 

while for lipped angle and hat sections it is more of a 

gradually yielding pattern. 

It is seen from Fig. 14 that, if desired for oimplicity, 

one may get more conservative, yet reasonable, torsional-

flexural buckling stresses for all tested shapes by replacing 

4. 5 by 4. 0 in Eq. ( 15). 

SUdi1ARY AND CONCLUSIONS 

1. The most difficult factor in the analysis of in-

elastic torsional-flexural buckling is the determination 

of the appropriate tangent modulus of shear. In order to 

simplify the computations and yet obtain reasonably accurate 

value of computed buckling stress, an assumption was made 

in Eq. (7). This makes possible the simple extension of 

the computation procedure of the elastic case into the 

inelastic range. 

2. As the best fit to stub column test results, the 

tangent modulus, Et' was expressed in the parabolic form: 
'· 

a ( a ) Et = 4.5 E-- 1 - --ay ay 

to represent the over-all stress-strain relationship of 

the columns. 
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3. The torsional-flexural buckling stress in the 

inelastic range - 2 (i.e., for (a )t >a -~a ) can be 
cr - p " y 

computed by the following formula: 

(15) 

in which 

1 

4. Thirty tests on full size columns were made. The 

experimental results agreed with the computed values within 

a close range. 

5. More conservative values of buckling stress may be 

obtained by replacing the numerical factor 4.5 in Eq. (15) 

by 4. In this case, if (L/r)eff is used in place of (L/r), 

the CRC parabolic column curve for flexural buckling can also 

be employed for thin-walled members which buckle in a torsion­

al-flexural mode. 
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TABLE 1. SUMMARY OF SPECIMENS 

Dimensions (in) 

Section Specimen a b c t L o (ksi) y 

A-1 1.93 0.135 56.0 44.7 

Plain A-2 1.83 0.135 40.0 44.7 
A-3 2.35 0.135 55.0 41.4 

Angle A-4 2.39 0.135 55.0 41.4 
A-5 2.60 0.135 30.0 41.4 
A-6 1.438 0.103 39.98 30.0 

LA-1 2.135 0.568 0.1365 40.0 47,0 
LA-2 2.635 0.8175 0.135 50.0 45.6 

Lipped LA-3 2.135 0.568 0.1365 65.02 41.0 
LA-4 2.635 0.8175 0.135 65.04 45.6 

Angle LA-5 1.847 ,8086 0.1028 59.97 31.7 
LA-6 2.007 .9166 0.103 49.98 31.7 
LA-7 1. 584 0.780 0.0908 49.97 32.2 
LA-8 1.582 0.8125 0.103 50.4 34.25 
LA-9 1.675 0.825 0.090 49.97 3 2. 2 

CH-1 2.135 1.568 0.135 55.03 45.25 
CH-2 1.603 1.552 0.103 34.0 31.0 
CH-3 1.603 1.552 0.103 40.03 31.0 
CH-4 1.5468 1.5684 0.1032 60.05 31.0 

Channel CH-5 2.057 2.069 0.103 60.0 30.4 
CH-6 2.068 1.829 0.1023 54.97 30.4 
CH-7 1.546 1.568 0.1045 50.03 31.0 
CH-8 2.047 1.819 0,1028 55.0 30.4 
CH-9 1.584 1.534 0.0866 45.0 31.0 

.. ----- - ~- ·-- --- ·--- . ---~-

HA-l 2.135 2.135 1.068 0.135 45.0 46.9 
HA-2 2.635 2.135 1.318 0.135 49.94 46.9 

Hat HA-3 2.135 2.135 1.068 0.135 60.0 46.9 
HA-4 1. 587 1.857 0.8085 0.103 50.03 36.5 
HA-5 1.581 1.811 0.775 0.090 50.0 36.5 
HA-6 2.098 2.058 1.059 0.1019 60.0 30.7 

Note: Cross-sectional dimensions a, b and c denote inside 

middle-line dimensions. 



TABLE 2 TEST RESULTS 

Buckling Stress (ksi) 

Specimen Tested Computed 

C=4 % Diff. C=4.5 % Diff. 

A-1 38.31 35.6 - 7.07 36.65 - 4.53 
A-2 38.26 36.6 - 4.34 3 7. 50 - 2.02 

Angle A-3 33.20 28.5 -14.1 29.89 -11.10 
A-4 33.18 29.1 -12.3 30.43 - 9.04 
A-5 32.2 27.4 -14.9 28.90 -11.4 
A-6 22.49 23.8 + 5.82 24.57 + 8.25 

LA-1 36.6 36.0 - 1.64 37.22 + 2.31 
LA-2 34.6 37.9 + 9.53 38.76 +10.8 

Lipped LA-3 30.3 30.9 + 0.99 32.71 + 8.0 
LA-4 30.23 29.6 - 2.08 31.28 + 3.45 

Angle LA-5 26.46 24.3 - 8.16 25.10 - 5. 3 
LA-6 23.90 23.8 - 0.42 24.73 + 7. 0 
LA-7 24.96 25.7 + 2.96 26.40 + 5.45 
LA-8 27.17 28.0 + 3.05 28.70 + 5.23 
LA-9 27.05 25.5 - 5.74 26.21 - 0.34 

CH-1 38.79 39.8 + 0.05 40.82 + 4.95 
CH-2 29.46 2 8. 2 - 4.28 28.49 - 3.4 
CH-3 27.95 27.5 - 1. 61 27.93 - 0.71 

Channel CH-4 24.98 25.4 + 1.68 25.98 - 3.85 
CH-5 25.24 25.8 + 2.22 26.27 - 4.18 
CH-6 2 7. 2 8 26.4 - 3.22 26.90 - 1.41 
CH-7 27.05 26.4 - 2.40 26.94 - 0.41 
CH-8 26.40 26.5 - 0.38 26.96 + 2.1 
CH-9 26.73 26.6 - 0.487 27.13 + 1.48 

HA-l 38.19 38.7 + 1.33 39.58 + 3.52 
HA-2 38.94 38.9 - 0.10 39.72 + 1.96 

Hat HA-3 31.60 34.1 + 7.91 34.95 + 8.27 
HA-4 23.75 26.9 +13.7 28.00 +15.20 
HA-5 22.57 25.6 +13.4 26.83 +15.60 
HA-6 23.32 23.9 + 2.42 24.68 + 5.50 
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APPENDIX A 

Stub Column Stress-Strain Curves 
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SUGGESTED CODE FORdULATION 

It is suggested that the following may be substituted 

for the existing Sections 3.6 in the Manual to cover axially 

loaded compression members including torsional-flexural 

buckling. 

3,6 AXIALLY LOADED COMPRESSION MEMBERS 

3.6.1.1 The average axial stress, P/A,in compression 

members shall not exceed the values of Fa, as follows: 

L/r less than 24 , 200 
JfyQ 

L/r equal to or greater 

F = 149,000~000 
a (L/r) 

than 24,200 J fyQ 

For steel having minimum yielding point of 33,000 psi 

L/r less than 132/~ 

Fa = 17,000Q - 0.485Q 2 (L/r) 2 

L/r equal to or greater than 132/~ 
= 149,000,000 

Fa (L/r)2 

3.6.1,2 To prevent torsional-flexural buckling of 

axially compressed members with singly symmetrical cross­

section, the average axial stress, PIA, shall not exceed 

the values of F' given below: a 
2 

fTF greater than 3 fyQ: 
2 2 

F' = 0,515Qf - Q fy 
a y 8,8 fTF 



fTF equal 
f F' _ TF 

a - F.S. 

to or less 
fTF 

= 1.95 

2 than 3 fyQ: 

In the above formulas: 

P =total load, lb.; 

25 

A = f· 2 ull, unreduced cross-sectional area of the member, in, , 

Fa = maximum allowable average axial stress l.n compression, psi; 

F' = max1.mum allowable torsional-flexural buckling stress, psi; a 

in. 
'/¢ 

L = unbraced length of member, ; 

r =radius of gyration of full, unreduced cross-section, 1.n.; 

fy = yield point of steel, ps1.; 

Q : a factor determined as follows: 

(a) For members composed entirely of stiffened elements, 

"Q" is the ratio between the effective design area, as de-

termined from the effective design widths of such elements, 

and the full or gross area of the cross-section. The ef-

fective design area used in determining Q is to be based on 

the basic design stress fb as defined in Section 3.1. 

(b) For members composed entirely of unstiffened 

elements, "Q" is the ratio between the allowable compres-

sion stress f for the weaker element of the cross-section c 
(the element having the largest flat-width ratio) and the 

basic design stress fb; where fc is as defined in Section 

3.2 and fb is as defined in 3.1 

,., 
L = in frames which depend upon their own bending stiffness, 
the effective length L in the plane of the frame shall be 
determined by a rational method and shall not be less than 
the actual unbraced length. 
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(c) For members composed of both stiffened and unstif­

fened elements, the factor "Q" is the product of a stress 

factor Qs computed as outlined in paragraph (b) above and 

an area factor Qa computed as outlined in paragraph (a) 

above, except that the stress upon which Qa is to be based 

shall be that value of the unit stress fc which is used in 

computing Q5 ; and the effective area to be used in computing 

Qa shall include full area of all unstiffened elements. 

fTF = elastic torsional-flexutral buckling stress which shall 

be determined as follows: 

For members whose cross-sections have one axis of 

symmetry (x-axis), fTF is less than both fx and ft and its 

value shall be such that 

fTF = l [(f 
I!< X 

+ ft) -)<fx 
where 

f 
1T2E 

psi; = 
X ( L/r X) 2 

; 

f [GJ + 
; 2Ec 

ft :: 2w], psi; 
p L 

r =§, in.; 
X 

I = Ar 2 = polar moment of inertia about shear center 
p 0 

2 A 2 . 4 = IX + I + Ax :: y , ~n. ; y 0 0 
2 

k = 1 - (x 0 /r0 ) ; 

E =modulus of elasticity = 29,500,000 psi; 

G = shear modulus = 11,300,000 psi; 

L =length of compression member, in.; 

= moments of inertia of cross-section about 
centroidal principal axes, in.4; 



X ' 0 
= distance from shear center to centroid along 

the principal directions, in. (x and y 
0 0 

formulas for commonly used sections may be 
tabula ted); 
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r 
0 

= polar radius of gyration of cross-section 
about the shear center, in. (may be tabulated 
for common sections); 

J = St. Venant torsion constant of the cross­
section, in. 4 For sections compos3d of 
straight line elements,J = (l/3)lt ; 

t =thickness of the member wall, in.; 

1 =over-all length of cross-section middle line,in.; 

= warging constant of torsion of the cross-section 
in. • (C formulas for commonly used sections 
will be t~bulated.) 

3.6.1.3 Point symmetrical sections do not buckle in the 

torsional-flexural mode; they buckle either purely flex-

urally or purely torsionally. For the former mode, the 

average axial stress shall not exceed Fa defined in Section 

3.6.1.1. For the latter, the average axial stress shall 

not exceed F" given below: a 

2 ft greater than 3 fyQ 

F" = 0.515Qfy-
Q2fy_2 

a 
8.8ft 

ft equal to or less than 

F" 
ft ft 

= s.-r. = l.9'"S" a 

where 

2§yQ 

F" = maximum allowable torsional buckling stress, ps1 
a 

ft = elastic torsional buckling stress, defined 
in Sec. 3.6.1.2. 



3.6.1.4. For members whose cross-sections do not have 

any symmetry, either about an axis or about a point, fTF 

is less than the smallest of fx' fy and ft and its value 

is such that 

28 

fTF may be found from the above relation by trial and error, 

in which case the following gives a first approximation. 

in which 

psi 

psi 

1 ECW 
ft = y- [GJ + ~], psi 

p L 

h = 1 

j = 1 -

k = 1 -

C = (No simple expressions can be given in contrast to 
w 

the case of singly symmetrical sections. If specific un-

symmetrical sections were agreed upon, specific expressions 

could be calculated and tabulated.) 
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Alternatives: 

1. In Section 3.6.1.2, the equation for F~ is based on 

C = 4.5, which is the most accurate value developed in the 

body of this report. Alternatively, one may, for simplicity, 

employ the CRC column curve based on C = 4.0 which gives 

computed torsional-flexural buckling stress in the inelastic 

range which is slightly more conservative. In that case, 

Section 3.6.1.2 and Section 3.6.1.3 become as follows: 

With C = 4.0: 

Section 3.6.1.2 

fTF greater than 

F~ = 0.515Qfy -

fTF equal to or less than (l/2)Qfy: 

H"' = fTF 
·a 1. 95 

Section 3.6.1.3 

ft greater than 

F~ = 0.515Qfy -

(1/2) Qfy: 

f 2A2 
y 

7.8ft 

ft equal to or less than (l/2)Qfy: 
ft 

F" = --=-~= a 1.95 

2. Effective Slenderness Method 

The effective slenderness method may be used as an 

alternative approach to Section 3.6.1.2, and it is presented 

here for ready reference. 

For C = 4.5: 

(L/r)eff less than 
20,900 : 

---=:=:==-
./ryQ 



F' = 0.515Qf - [ Qfy(L/r)eff]2 
a y 50,500 

(L/r)eff equal to or greater than 

F~ = 149,000~000 
{L/r)eff 

where 

(L/r)eff = an effective slenderness ratio given by 

( L/ r ) = / 2 91 , 0 0 0 2 0 0 0 
eff ~ fTF 

For C = 4.0: 

(L/r)eff less than 

F~ = 0.515Qfy - [ 

24,200. 
If Q .• 

y 
Qf*(L/r)eff 2 

7,500 ] 

(L/r)eff equal to or greater than 

F~ = 149,000~000 
{L/r) eff 

24,200: 
lfyQ 

All notations are as defined in the foregoing. 

3. The explicit expression for the torsional-flexural 

buckling stress, fTP has been chosen in Section 3.6.1.2 

instead of the less explicit interaction formula 

f 
k( TF)2-

- f f - 1 
X t 

+ 

It is suggested that this interaction formula and its use 

be shown in the Commentary. 

5. Section 3.6.1.3 concerning point symmetrical sections 

is somewhat tentative because no shapes of this type have 

been tested. 

6. The provision against torsional-flexural buckling of 

30 
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unsymmetrical sections is shown on a separate page. It is 

up to the Sub=committee to decide whether and where it should 

be included. 

Derivations and Explanations: 

1. The proportional limit corresponding to a particular 

value of the parameter C is determined as follows: 

In the body of the report the following relation was used: 

Et a 2 - = C[- - ( ~) ] ( 9) 
E cry cry 

Since at the proportional limit, a , Et/E is unity, 
a a P 

1 = c[....E.- (....E.) 2 J a a 
a y y 

Therefore, solving for ~~ one gets 
cry 

a lc 2··- · 4C ....E. = c + a y 2C 

Uhen c = 4.5: 

a 2 ..J?. = 3 cry 

hence = 2 
(Jp 3 cry 

\\Then C = 4 • 0 : 

crp = (l/2)ay 

2. The equation for F~ when fTF is greater than (2/3)Qfy 

is derived from Equation (15),(see the Basic Theory) as 

follows: 

c = 4.5 
(a )t 

F' cr 
= r.s. a 

a 
1 a [1 - 4.5lcrcr)E 

] = 1795 y 



= O.SlSQf y 

F" expression in Section 3.6.1.3 is derived in the a 

similar way 

3. The criterion for the elastic-inelastic boundary by 
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the effective slenderness ratio method is derived as follows: 

When C = 4.5, we know that the proportional limit is 

2/3 of the yield strength, fy' so that when the torsional­

flexural buckling stress just coincides with the proportional 

limit, 

(L/r)eff 
2 = 

1T2E 

fTF 
= 

Whence -fl¥; (L/r)eff - 2 fyQ 

= 

The expression for F' is then a 

F' = l o (1 a 1.95 y 

= O.SlSQfy -

20,900 

/f Q y 

1T2E 

£. Qf 3 y 

_ /4 3GxlOs -,.; fyQ 

= 
Qfy(L/r)eff 2 

0.515Qfy - [ 50,500 ] 

The derivations of other formulas are similar to those 

ln the foregoing and therefore need no more explanations. 

4. A table of formulas for the distances between the shear 

center and the centroid, principal moments of inertia, and 

the warping constants is attached. 
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5. The computer programs in FORTRAN language are also at­

tached for computing warping constants. 

FORMULAS FOR WARPING CONSTANTS. 

Angle Section 

(1) Plain angle 

c = 0 w 

I a 3t 
X = 

X 3 

Channel Se~tion 

(1) Plain channel 
- t•';==t==:;, 

'i l1 Tc 
I ' 

--·~~~ ... U_-+----- )( 
1~,1 =-.;=.! 

(2) Lipped Channel 

I 
X 

(a + 6b) 

__ t 21f xAa2 b2+ 2 A 2 3 2 2 Cw ~ tl--r-- [ 3 m - mb] +~ [m a +b c (2c+3a)] 

I m2 2 f 2 1 -f-- [2a+4c)+ m~ t8b c+2m[2c(c-a)+b(2c-3a)]j 

2 2 2 m2a 4 11 + b ~ ((3c+6)(4c+a)-6c ]-~ j 

A = (a+ 2b + 2c)t 



Hat 

r--

a .. ~t 
_..._ 

-

-X : 

m = 

I = 
X 

·'I 

b 

bt(b+2c) 
A 

abt .. 2 
12 I [ab + 2c(a - l ~ )] 

X 

ta 3 2bta2 + 2tc 3 + a c 2 - 12 +---~- ~ 2ct(- - -) 
~ ~2 2 2 

I -, 
Hie 

- = bt(2c+b) 
X A 

3~ 

Ix = i2 Ca 3+6ba2+6ca2+12ac2+ac 3 ] 

~ I y = tb2 2 
3(a+2b+2c)[ 2ab+b + 

'} b I 
~ I 

~t 

"' 

Z-Section 
tb 3a 2 b+2a 

Cw = 12 2b+a 

~bc+Sca] 

Section (Computer Program for Evaluatirg Warping Constants) 

c Program for Hat Section Warping Constant 

c X : (Flange Width/~~eb width) 

c y = <Lip/Web vlidth > 

c A = Factor of Area 

c B = Component Factor of C 

c c = X bar factor 

c D = I(x) Factor 
\ F c E = Component Factor of 
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c F = I(Y) Factor 

c N = Component Factor of C(tJ) 

c p = Component Factor of C(w) 

c R = Component Factor of C(w) 

c s = C(W) Constant 

c T = Thickness of Wall 

c H = Heb Width 

c z = Warping Constant 

X = • 5 

DO 1 IX :: 1,9 

X = X + 0.1 

y = -0.1 

DO 1 IY = 1,11 

y = y + 0.1 

A = 1. + 2 ·'· X + 2 . ·'· y .. • 

B = ( 2. y + x) 

c = B/A 

D 1. + 6. ~·\ + 6. #'; y + 4. .•. y ·'· y (3.+2.~:y) = X 
... .. 

E = ( 2. ~·: X ~1 i'; 2 + 2 • ~'~ X + 4. ~·: X .. y + 6 ·'· . y) 

* X ~~*2 

F = EIA 

N = F + 3. ~·: (1-3. ~'c A/D) ~ A :'~ c ~·( !'e 2 

p = 4 ·'· ... ( 2. * y - 3. ) ,•: (x 1: y)** 2 

Q = X :': y af• •'• •• t• 3 

R = ( 4 8. ;'c B ~: Q - 64. :.'r Q :':* 2)/D 

s = N + p + R 

T = .015 



• I 

DO 1 IT = 1.4 

T = T + .03 

D¢ 1 IH = 2, 8 

H = IH 

Z = (T*S*H**5)/12. 

1 PRINT 2, X, Y, T, Z 

2 FORMAT (4E 15.8) 

36 
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APPENDIX D 

Torsional-Flexural Buckling Stress in the Inelastic Range on 

the Basis of "G /G = JE IE" Theory and Bijlaard's Effective t . t 

Inelastic Shear Modulus Theory 
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TORSIONAL-FLEXURAL BUCKLING STRESS IN THE INELASTIC RANGE ON 

THE BASES OF "Gu Gt = ~" THEORY AND BIJLAARD'S THEORY 

COMPUTED BY ITERATION METHOD 

In order to compare the results based on the assumption 

stated in Eq. (7) of the main body of this report, computa-

tions are also made based on the more complicated expressions 

of Gt, i.e., 

(D-1) 

Gt = E/[2 + 2v + 3(E/E8 - 1)] (D-2) 

where Es = the secant modulus, 

the latter expression, (D-2), being Bijlaard's theory. 

We shall start with Eq. (D-1). Assuming that the 

parabolic equation 

cr ( 1 - ~) 
cry cry 

(D-3) 

holds, the relationship is substituted into Eq. (D-1),, 

thus 

Gt = aJ E 

=l.06E_ . ~ (1- £.__) (D-4) 
(1 + vJ Voy cry 

Then Eqs. (2) and (3) of the main body of this report become, 

respectively, 

(a ) = 
X t 

(D-5) 

( a ) = 1 [ L.QQEJ f £____ ( 1 - ....£.:...) + E tC""1f·J~ ( D-6 ) 
$ t Ip T1+v) v ay cry L2 

one sees that, upon substituting Eqs. (D-5) and (D-6) into 



( 0 cr) 
1 [(a ) -· 2K t X t 

~+ (o~) }2 - 4K 
' 

t 

(ocr) is expressed implicitly as 
t 

(o r) 
c t 

= 

+ (o<P)t -

(a,) (ocp) 
X t t 

] , 

noting that at the incipient buckling, a = (ocr) in 
t 

Eqs. (D-5) and (D-6). 
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(D-7) 

(D-8) 

The explicit expression of (ocr) would be in the form 
t 

(D-9) 

where 

fi = fi (E, cry' dimensions of column) 

The solution of Eq. (D-9) is very laborious. FortunatelY, 

with the aid of an electronic computer, one can utilize an 

iteration technique to get a good approximate solution. 

The procedure can be written in a form of flow chart 

for an electronic computer program as in Fig. (D-1). The 

variable, x, in the flow chart corresponds to (ocr) of 
t 

the torsional-flexural buckling problem. 

As to Bijlaard's theory, (D-2), the secant modulus, 

Es, can be expressed by the use of Eq. (11) (see the Basic 

Theory) as follows: 

e: 

0 [2.306 + y (D-13) 
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This expression is then substituted into (D-2) for Gt. The 

resulting equation for (ocr) by substitution of these moduli 
t 

expressions into Eq. (4)(see the Basic Theory), is very com-

plicated. However, the iteration method can also be applied 

to this case. 

The computer results are listed in Table (D-1) together 

with the values computed by Eq. (15) for ready comparison. 

It can be seen that the values computed from Eq. (15) 

are slightly lower than those from the other, presumably 

somewhat more rational theories. The differences, however, 

are small and of no practical consequence. Since Eq. (15) 

provides much the simplest analytical tool, and since it 

leads to results satisfactorily confirmed by tests, its use 

rather than that of one of the two other, more involved 

expressions appears justified. 



l.s TAp, T I 
l 

Cf')tv'\PUTE. A It.. I'j 
J } ' 

.Jp, J., k, R.. Cv.r 

~ 
SET X f, X 2 

(!RIAl_ VALUES) 

KK ~ 0 
X X :::o x=xz 

~ 

-v-

I c DMPUiE. G, E. 
T 

COMPUTE. 

IE R til :::. F ( x ) - )( 

t 
r KK==- KK+ 1 

!. 
'f'1-::: TER.M l\,!0 I< K ~ 1 ?/ Yes Y 2 = TER 
X =- X f 

~ 

X :; X 1 

X=-
X2 11< Y I- X1 *'(2.. 

Y2- i 1 

'<es y XX= xJ No AB:S ()(X-)()~ o.oo 1. 
1 .r 

f STOp l 

Fig. D-1 Flow Chart for the Iteration Method. 



TABLE D - 1 

(crcr)t ksi 
Section Specimen 

Eq. 15 Based on Bijlaard 
Gt/G = jEt/E 

A-1 35.87 37.08 39.43 
A-2 37.06 38.74 41.40 

Plain A-3 30.80 31.07 33.18 
Angle A-4 30.47 30.59 32.58 

A-5 28.85 28.27 29.61 

LA-1 36.85 37-78 38.36 
LA-2 35.05 35.56 35.79 

Lipped LA-3 32.52 32.79 31.96 
Angle LA-4 31.59 31.76 31.32 

CH-1 37.48 38.33 38.53 
CH-2 27.91 28.31 28.68 
CH-3 27.06 27.53 27.93 

Channel CH-4 24.05 24.49 24.70 
CH-5 24.89 25.19 25.38 
CH-6 25.79 26.16 26.44 
CH-7 25.45 25.97 26.34 
CH-8 25.74 26.12 26.40 
CH-9 25.80 26.19 26.46 

HA-l 39.34 39-73 39.99 
Hat HA-2 39.86 40.20 40.46 
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