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NOMENCLATURE

(Nomenclature for the Design Procedure and the Computer Pro-

grams are included in Chapter 6 and Appendix 4, respectively.)

A = cross-sectional area
a = dimension of the web (centerline dimensions)
b = dimension of the falnge (centerline dimensions)
¢ = dimension of the lip (centerline dimensions)
C, = amplitude of deflection in the x-direction (first term)
C_. = amplitude of deflection in the x-direction
(general term)

C,, = warping constant

w
D = strailn energy of the diaphragm

D,n = matrix defined by Eq. (28a)

Ds = shear strain energy of the diaphragm

DF = rotational straln energy

Dl = amplitude of deflection in the y-direction (first term)

Dn = amplitude of deflection in the y-direction

(general term)

d = overall dimension of web (depth of section)

Q.
]

2 distance between the shear center and the top and bot-
tom of the section, respectively
E = modulus of elasticity
E® = inelastic modulus
E, = tangent modulus

E, = amplitude of rotation of the column (first term)
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E_ = amplitude of rotation of the column
(general term)

F = rotational restraint by diaphragm bracing
F' = rotational restrain at 0.8Pult

Fr = reliable rotational restraint = %F' (equivalent
to F used in the governing equations and the
theory)

factor of safety (= 1.92)

=
0]
]

G = shear modulus

G' = shear stiffness at 0.8Pult

reliable shear stiffness = %G'

=)
JoQ
] "

distances from point of constraint to the cen-

troid (Ref. 3)

H
"

polar moment of inertla about shear center

I. = moment of inertia with respect to x-axils

I = moment of inertia wlth respect to y-axils

= ﬁroduct of inertia with respect to x- and y-axes
= moment of inertia about the major axis

= moment of inertia about the minor axis

St. Venant torsion constant

[
[

- 2,2
K 1 - xo/rO

torsional modulus of elastic support (Ref. 3)

=
L]

K2,...K = constants accounting for different end condi-

1 12

tions (see Table 1)
£ = span of the cantllever in the testing procedure
of the rotational restraint F

L = length of the column

ix



ult

o d
)
" L (]

transverse moment applied to unit length of the dila-
phragm during testing

ultimate moment applied to the diaphragm in the testing
for the rotational restraint F |
num:er of half-sine waves into which the column may
buckle, or the nth term in the series

buckling load

Eulsr buckling load about the x-axls (strong axis buck-
1ling)

Euler buckling load about the y-axis

defined by Eq. (25c¢)

tovslonal buckling load

Euler buckling load about the major axls of inertia
Euler buckling load about the minor axis of inertia
ultimate load in cantilever test

defined by Eq. (141b) (see also 14b)

defined by Eq. (152)

allowable load on the stud

specified load on the stud (Section 6,3B)

inelastic buckling load

critical buckling load

buckling load between the fasteners

load capacity

shear rigidity of the diaphragm bracing

shape factor of the column

reliable shear rigidity of the diaphragm

defined in Section X.6.3 of Appendix 6



oM

e
(o]

£ £ £
< Z2 o o

(o)

defined by Eqs. (148) for channel section and (153) for
z-section

Ip/A

fastener spacing

strain energy of column

displacement of the shear center along the x-axis
initial imperfection in the x-direction

total displacement in the x-direction

displacement in the plane of the diaphragm

displacement of point N in the x-direction (Ref. 3)
displacement of the shear center along the y-axis
initial imperfection in the y-direction

total displacement in the y-direction

width of the diaphragm contributing to the bracing of
one column

potential energy of the applied loads

distance between the centroid and shear center along
the x- and y-axls, respectively

calculated value of rotation of the column

trial reduction factor less than 1.0

total potential energy in a system

rotation of the cross-section

rotation due to cross bending of the diaphragm
design rotational capacity of the diaphragm at O’8Pu1t
rotation caused by local deformation at the fastener
location

rotation due to deformation of the flange with respect
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¢total

a(z)

to the web

initial imperfection of the column

total rotation of the column

factor used in the charts

rate of change of deflection with respect to
z-coordinates

unit axial stress

proportional limit stress

yield stress

shear deflection at 0.8Pult (cantilever test)

design shear strain (at O'SPult)

calculated value of shear strain in the diaphragm
defined by Eq. (69)

elastic deflection of the dlaphragm due to bending in
a beam type action

deflection due to local deformation of the diaphragm
at the fastener location

deflection due to deformation of the flange with re-

spect to the web

x1i



ABSTRACT

Lateral bracling has a significant effect on lncreasing the
buckling load of compression wembers. In the case of wall stud
construction, such bracing 1s provided by wallboards directly
attached to the stud along its length and results in increasing
the load carrying capacity significantly. The obJectlive of
this investigation is to study the behavior of singly symmetric
sections braced by shear diaphragms and to apply the theoreti-
cal findings verified by experimental results to the design of
wall studs.

In the present investigation the shear rigidity as well as
the rotational restraint of the diaphragm are considered. Us-
ing an energy approach, general solutlions are obtained for the
cases of bracing on one or both sides. Solutions for channel,
Z and I—secpions are derived as speclal cases from the general
solution.

Depending on the relative magnitudes of the diaphragm and
column characteristices, higher buckling modes; associated with
buckling in more than one half-sine wave, may govern the behav-
ior of the stud. Results of numerical investigations indicate
that in some cases of sectlons braced on one side only, higher
buckling modes are as low as 50% of the critical buckling load
computed by considering one half-sine wave only. On the other
hand, higher buckling modes do not govern the behavior of sec-
tions braced on both slides with diaphragms whose characteris-

tics are within the range of wall stud applications.
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The shear rigldity as well as the rotational restraint of
the diaphragm required for prediction of the fallure load of
the braced stud are determined experimentally using a variety
of wallboard materlals and fastener spacings.

The proposed design procedure 1s based on the ultimate
load capacity of the column, utilizing a conservative estimate
of the shear rigidity and rotational restraint of the wall-
boards acting as bracing diaphragms. The design procedure is
applicable to buckling in the elastic and the inelastic domain.
Beyond the elastic limit load, the influence of diaphragm brac-
ing 1s less pronounced and high values of shear rigidity and
rotational restraint would be needed to maintain the stability
of the stud.

Based on the suggested design procedure, four computer
programs are prepared for design of wall studs. Design alds in
the form of charts and approximate formulas are provided to fa-
cllitate the use of the governing equations in predicting the
critical buckling load.

Tests conducted on a total of 11 double-column assemblies
of cold-formed steel sections with diaphragms on one or both
sides have shown satisfactory agreement with the theoretical
results. This indicates that the proposed design approach ap-

pears to be reliable.

xiv



Chapter 1
INTRODUCTION

l.1 Statement of the Problem

Lateral bracing can be used to elimlnate the buckling of a
compression member about 1ts weak axis and thus 1increase the
buckling load. Such bracing may be provided by diaphragms di-
rectly attached to the member along its length, typically wall
sheathings attached to steel studs.

Previous research on diaphragm braced columns developed at
Cornell had dealt only with doubly symmetric I-sectlons as they
are used in conventional construction. This investigation in-
tended to extend and generalize the theory on the stability of
diaphragm-braced columns of symmetrical cross-sections to in-
clude columns made of singly symmetric and point symmetric sec-
tions, such as channels and zee-sections.

The goal of this investigation 1s to apply the results of
the present 1lnvestigation to wall-studs 1n order to modlfy the
design approach of Section 5.1, Wall Studs, of the current
"Specification for the Design of Cold-Formed Steel Structural
Members,"(l) This specification was developed from some of the
earliest work carried out at Cornell for the American Iron and
Steel Institute some 25 years ago. While these provisions have
remalned essentially unchanged since the first or second edi-
tion of the specifications, they have two shortcomings:

a) The formulas of the present provision are based on the

assumption that the collateral wall material furnishes an elas-



tic extensional medium (spring supports) bracing the flexible
stud to rigid parts of the structure or lmmovable objects con-
sidered fixed in space, such as a braced bay or a shear wall.
In many cases the bracing of studs is provided in a manner dif-
ferent from that considered in the analysis and a different d4i-
aﬁhragm actlion ensues. When the wall stud undergoes detrimen-
tal types of deformations at critical loads, the diaphragm re-
sistance to distorﬁion is maintained by its in-plane shear rig-
idity, rather than a spring type support. Thils type of dia-
phragm behavior in braced systems has been thoroughly investi-
gated in the intervening years. With this development as the
background 1t seems necessary to develop a different set of
criteria for the stability of a braced stud against buckling.

b) The provision is limited to wall sheathing attached to
both faces of the stud and gives no guidance to the frequent
case of wall sheathing attached to one face only.
1.2 G@General

Cold-formed steel studs in walls or load-carrying parti-
tions constitute the load carrylng element in this type of
light construction. The main furction 6f the wall sheathing is
that of enclosure, but 1t can also serve as a bracing system
for the studs. Among the commonly used types of wall material
are gypsum board, vegetable flberboard and tempered board.
Such materials, when used with steel studs, provide a practi-
cal, quickly erected, economical framing system for interior
and exterior load bearing walls. Factory produced units of

these composite walls are expedient to the recent developments



of industrialized bulldings and modular housing because they
offer the use of one component system throughout the building.

The function of the bracing diaphragm in a system of two
l1dentically braced columns 1is to resist the forces which occur
when the members deflect laterally under the action of the
critical loads. The dliaphragm in such a deformed state may be
assumed to be in a state of pure shear, with elements of the
diaphragm in a direction transverse to the members remaining
mutually parallel during deformation. In wall stud construc-
tion, studs are essentially identical and such an assumption is
practically valid.

Collateral or sheathing wall materials, often referred to
as dlaphragms, resist in-plane translation and rotation of the
cross-section of the stud by virtue of thelr shear rigidity and
rotational restraint, respectively. These properties of the
diaphragm vary substantially for different types of materials,
and the types of fasteners and their spacing used to connect
the diaphragm to the stud. Fallure of diaphragms in this type
of construction 1is generally due to localized bearing followed
by piling up of dlaphragm materlal at the fastener location, as
in the case of gypsum boards. Another type of failure is the
tearing of the diaphragm materlal at the fastener location, as
%gngggtggge of Celotex boards. Such fallure 1s referred to as

failure and generally is the primary cause of buckling
of the braced stud. Therefore, properly fastened diaphragms
are vital to stability and safety of the structure. w1nter(2)

indicates in a publication about light-gage (thin-walled) steel



structures for buildings that tests show the insensitivity of
welded steel diaphragms to cyclic loading from wind or earth-
quakes, whereas screw-connected dlaphragms may be weakened by
reversed loading of substantial magnitude. This observation
lends itself to the case of wall studs braced with non-weldable
diaphragms and it might be worthwhile to suggest the use of
proper adhesives as substitutes for/or in addition to screw
fasteners. The 1dea became evident to the writer during the
executlon of the test program for the present investigation.
Testing its feasibllity, however, is beyond the scope of this
work. |

Channel sections are the only wall studs available in most
manufacturers' catalogues, and it seems that zee-sections are
not commonly used. There is no apparent reason why such a lim-
itation would be imposed by the manufacturers. The present in-
vestigation has shown that the zee-section, when braced, can
sustain larger loads than channel sections of the same geomet~
ric dimensions. Moreover zee-sections, when nested, are more
convenlent and economical to transport than channel sections.
Such reasons are sufficient to encourage the use of zee-sec-
tions in wall-stud construction.

1.3 Review of Related Literature

The stability of axlally loaded columns has been a favor-
ite subject for theoretical and experimental research since Eu-
ler derived his column formula in 1744. The major facts about
column behavior are well known to all engineers interested ip

fundamental concepts. Research work is still continuing on



many details, however, to refine the analysis of the buckling
loads for thé purpose of safety and economy.

It was not untlil the early part of the twentieth century,
however, that methods and design techniques aimed at 1increasing
the load carrying capacity of the column became widely applica-
ble. One of these methods is to restrain the column against
buckling in the weak direction. In such cases the column is
capable of carrying buckling loads as high as the bucklling load
of the next buckling mode, provided that the possibility of
ylelding and local buckling are eliminated. This will result
in considerable economy, especially when the restraining ele-
ments exist in the structure for other functional needs.

The concept of elastlc restraints, well know as elastic
foundations, was introdﬁced in 1867 by Winkler. Further devel-
opment of the theory was_made by Timoshenko(3) for the buckling
of a bar on an elastic foundation. In his analysis he argued
that if there are many equally spaced elastic supports of equal
rigidity, then thelr action on the buckled bar can be replaced
by the actlion of a continuous elastic medium. Assuming a gene-
ral expression for the displacement and using an energy method
approcach, he arrived at a simple formula similar to the Euler
formula, except that a reduced length substitutes for the actu-
al length of the bar.

In 1940, Vlasov(u) presented the governing differential
equations of combined torsional and flexural buckling of a
thin-walled beam embedded in an elastic medium. He also noted

that in general the integration of these equations 1s a very



difficult mathematical problem. Despite Vliasov's comment, Ti-
moshenko found that 1f the ends of the bar are simply support-
ed, the substitution of assumed functlions of displacements into
the differential equations lead to a cubic equation for the
critical load.

Using Vlasov's previously mentioned equations, Timoshenko
(3) investigated the buckling of a bar with a prescribed axis
of rotation. In such a case the elastlic foundation provides
infinite rigidity against translation of the bar cross-section,
while rotation 1s elastically restrained. Llkewlise he solved
the case of a bar with a prescribed plane of deflection.

Based on Wagner and Kappus theories, Goodier(s) in 1941
investigated the behavior of columns which are torsionally
weak. He also extended the analysismto the case of a bar of
arbitrary cross-section attached to a perfectly flexible but
inextensible sheet and he concluded that the attachment of a
bar to a sheet will usually increase the critical buckling load
of the bar, a typical conclusion to all of the previously men-
tioned cases. It 1s of interest to note that Pincus(6) found
that the load increase based on elastic supports is generally
small compared to the contribution of the bracing diaphragm
acting as a shear-restraint medium.

It appears that the lnvestigations previously mentioned
are in the interest of aircraft design and not meant to be 4i-
rectly applicable to buillding design. It was not until 1947
(7

when Green and Winter presented a method, based on extensi-

ble type supports, for the design of light gage steel columng



in wall-braced panels. Formulas are given which completely
specify the necessary characteristics of the wall material and
attachment to prevent failure of the stud in the plane of the
wall. Methods of testing the wall material to determine the
modulus of support are also included. The method 1ls extended
to different cases of bracing and some detalls are revised in
Ref. 8. In fact the provisions of Section 5.1, Wall Sutds(l),
are based on the results of the investigation in Refs. 7 and 8.

Winter(g) gave a method to determine the magnitude of the
expected lateral force at buckling and to establish a lower
limit on two characteristics of the lateral support, namely
strength and rigidity, in order to provide full bracing to the
column. Full bracing as defined 1s equlvalent to immovable
lateral supports. In a discussion to Ref. 9, Larsen(lo) ex-
tended Winter's analysis to shear-type lateral supporting media
with the diaphragm continuously connected to the column. It
follows that the restraining force at any point along the col-
umn 1s a function of the rate of change of the deflection at
that point and not the deflection 1tself.

(6,11) 4eveloped a theory predicting the failure

Pincus
load of elastic members continuously braced by dilaphragms. Two
types of diaphragm behavior are assumed: a) spring-bed sup-
‘ports and b) shear-resistant supports. It i1s concluded that
the first, occurring rather uncommonly, produces a relatively
small increase over the unsupported fallure load. On the other

hand, the shear-restrained support, found in many practical

cases, may produce an n-fold increasz over the buckling locad of
LY



the unbraced column. From the general energy expression for a
beam-column derived by F..Bleich;lZ),fPincusaobtained a theo—‘i
retical solution to the problem of a concentrically loaded I-'
section column braced by a shear dlaphragm elther on both sides
or on one side of the section. The theoretlcal results are
compared to elght tests of hot-rolled I-section columns braced
with corrugated steel sheets.

Errera(l3’lu) corrected and modifled some of the solutions
-presented by Pincus for the I-section column. Both Errera and
Pincus adopted the double beam shear test to determine the
shear rigidity of the diaphragm. In Ref. 13, it 1s noted that
columns with an enforced axls of rotation are capable of carry-
ing a higher load than columns not constrained in that manner.

Apparao(15’16)~1nvest1gated the behavior of hot-rolled I-
section columns braced with girts which in turn are braced with
corrugated.steel sheets and extended the analysis to the in-
elastic range. Jointly with Errera(l7) a désign recommendation
for diaph:agm-braced beams and symmetrical I-section columns
was suggested. References 6, 11, 13, 14, 15, 16 and 17 have
utilized the shear rigldity of the diaphragm but neglected its
rotational restrainé, with the Justification that the buckling
loads thus obtained are on the conservative side. Their soly-
tion 1s valid only for hinged and fixed end conditions, with
mixed end conditions not considered in the analysis.

(18);presented a solution for the problem:of an axi-

Dooley
ally -loaded symmetrical I-section. column attached ‘at finite in-

tervals to sheeting rails and shear-stiff cladding. The sup-



porting elements provide a total restraint against translation
in the plane of the sheeting rails and an elastic restraint
against rotation of the cross-section. He found that the col-
umn has adopted an instability trend towards torsional failure
about the attached flange and that this may be analyzed by rep-
resenting the restraint as continuous. In another paper, Doo-
ley(lg) extended the analysis to columns of nonsymmetrical I-
sections with a restrained axils of twist under doubly eccentric

(18) is similar to Apparao's(15)

load. Dooley's investigation
except that the solution of Ref. 18 does not permit translation
of the cross-section, and in addition the initial lmperfections
of the column are neglected.

(20) used a similar approach to that of Refs. 18 and

Horne
19 to obtain the more general solution for a column subjected
to axial load together with uniform moment about the major ax-
is. The buckling conditions are derived for an I-section col-
umn supported laterally by uniformly spaced side-rails, which
provide rigid lateral supports and elastic torsional re-
straints. It has been stated that if the column buckles be-
tween the consecutive supports the lateral supports are fully

effective and can be defined as 'complete lateral supports".

1.4 Scope of the Investigation

In contrast to Sections 1, 2 and 3 of this chapter which
serve to introduce the problem as well as the subject of dia-
phragm-braced columns in general, 1t 1is the aim of this section
to outline the structure of the investigation 1tself.

Chapter 2 represents the baslc theory of stability of dia-
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phragm-braced columns. Most of the relations and expresslons
used in the main body of the thesis are derived and explained
in this chapter.

Chapter 3 serves the purpose of checking the theoretical
result against known solutions of speclal cases of Timoshenko
(3). Two examples show that the general equations of stablility
derived in this investigation can be used to obtain solutions
of special cases.

Chapter 4 gives the results of several attempts to simpli-
fy the governing equations. Approximate formulas .and charts
for the cases of two-sided bracing are presented and their use:
is illustrated in Examples 1 and 2 of Appendix 1.

The experimental investigation of diaphragm-braced wall-
studs is presented 1n Chapter 5. Comparison between experimen-
tal and theoretical results are included in Table 3.

Chapter 6 presents the proposed design procedure for elas-
tic and inelastic analysis, as well as the collection of all
equations that are needed in the design. Three practical exam-
ples to 1llustrate the proposed design procedure are given in
Appendix 1.

A suggested computer program as well as its flow chart is
included in Appendix 4. The program has been prepared for the

cases of I, channel and zee-sections to serve as a design tool.



Chapter 2
THEORY OF DIAPHRAGM-BRACED COLUMNS

2.1 Basic Assumptions

Since we are dealing with a composite structure consisting
of a load carrying member and a supporting dlaphragm, the as-
sumptions concerning each part of the composite structure will
be reviewed independently. Regarding the column:

a) The member is prismatic and its cross-sections remain
undeformed during buckling. Thils assumption has been consid-
ered with the rise of the theory of thin-walled members(3’u),
and (up to now) no disagreement regarding its validity in prac-
tical situatlions has been noticed in the existing literature.
Recently the effect of deformation of the corss-sections in
thelr own planes has been considered by Wittrick(50>, Goldberg
et al(29), and Ghobarah(30). This trend in the analysls aimed
to investigate the overall and local buckling behavior and it
is apparent that the interactlon between the two exists. How-
ever, Pek62(3u) in a discussion of the same assumption noted
that for members of dimensions such that column behaviér is
predominant, the theory of torsional-flexural buckling provides
relatively simple and accurate solutions.

b) Longitudinal axial strains due to axial load and
shearing strains due to shear and warping of the cross-section
are neglected.

c) Deformations are small with respect to the dimensions

of the cross-sections (linearized problem).

11
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d) Loads are applied statlically at the centrold.

e) There are no initial imperfections (This will be con-
sidered later.).

f) The material 1s assumed to be linearly elastic. Modi-
fication of the results to account for the inelastic case is
considered in Chapter 5.

Concerning the diaphragm, the following 1s consildered:

a) The behavior of the dlaphragm remalns elastic until
failure.

b) Compatibility of displacements 1s maintained between
the column and the diaphragm.

c) Applied‘loads are sustained by the column alone; con-
tribution of the dlaphragm 1s neglected.

2.2 Method of Solution

The solution constitutes deriving the relationship between
the critical buckling load of the column (Pcr) and both the
shear rigidity (Q) and rotational restraint (F) of the dia-
phragm. Hence, Pcr can be determined if Q and F are known or
values of Q and F may be calculated so that a certain load Pcr
can be sustained by the column.

Considering a general cross-sectional shape of the column,
the solution 1is derived separately for the following two cases:

a) Columns braced on both sides (Fig. 1).

b) Columns braced on one side only (Fig. 2).

The buckled shape of the column when the critical load is
reached involves three generalized dlsplacements, u, v and ¢,

of the shear center (Fig. 3). Accounting for these displace-~
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ments 1n the analysis will add to the'complexity of the solu-
tion as well as to the resulting governing equations. Consid-
ering that our goal 1s to find a solution to one of the simple
structural problems, namely wall-studs, simple displacement
functions are therefore utilized whenever possible. The energy
approach offers the means of approximate solution 1in the cases
in which the exact solutlion becomes too difficult or is not
practicable. Another advantage of using this approach is noted

by Winter(28) (22)

and Galambos , and emphasizes that fortunately
the energy concepts are not very sensitive to varilations of the
deflected shape, and so we can expect reasonable results if we
use an approximation of the deflected shape of the member.

2.3 Formulation of the Problem by the Energy Method

An energy principle in conjJunction with the Rayleigh-Ritz
method is used to obtain an approximate solution to the prob-
lem. The method is based}on the principle that the total po-
tential of the system must be a minimum if the system is to be
in static equilibrium(al). The total potential II for the sys-
tem of the diaphragm-braced columns 1s composed of the strain

energy of the column U, the strain energy of the diaphragm D
and the potential of the applied loads W, that is

I =U+D+W (1)

In mathematical terms the condition of equilibrium is expressed

as

§N = O (2)
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This states that for equilibrium the first variation of
the total potential must vanish. Equation (1) can be used with
the methods of the calculus of variations to obtain the govern-
ing differential equations. However, no direct solution can be
found from these differential equations and on having a solu-
tion we face too unwieldy expreésions. As an alternative to a
direct solution of the governing differential equations, the
Rayleligh-Ritz method 1s applied to the expression of the total
potential energy to obtain a set of homogeneous simultaneous
algebraic equations. These equations are expressed in terms of
a set of indeterminate parameters of assumed displacements.

The nontrivial solution of these equations determines the crit-
ical buckling ldad of the column. References 21, 22 and 32 in-
dicate that the first variation of the total potential energy
is not too sensitve to varlations of the deflected shape and we
can expect reasonable results if we use an approximate deflect-
ed shape of the columns, taking into consideration that the as-
sumed deflected shape satisfied the end conditions of the col-
umn . |

2.3.1 General Energy Expressions

In order to obtain a solutlon in a general form, it is
necessary to express the total potential of the braced-columh
in terms of general parameters. Equation (1) states that

N=U+D+W
where U = strain energy of the column
D = strain energy of the dlaphragm
W = potential energy of the applied loads
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(The form of the expression of each of the above terms willl be
considered below.)

2.3.2 Strain Energy of the Column (U)

In seeking a general solution, 1t was necessary to express
the strain energy of the column in tcrms of parameters more

(12)

general than those considered in Bleich's energy expression

which has been used 1n previous 1nvestigations(6’l3’15).

Bleich selected as a system of coordinates X and Y, the
principal axes of inertia with the centroid of the cross-sec-
tion as the origin. Such a consideration tends to complicate
the formulation of the energy expression in the case of the di-
aphragm-braced zee-sections. This appeared to be the reason
that in Ref. 15, differential equations based on equllibrium
consideration have been_derived wherever Bleich's expression
was not applicable. Also the same reason has been mentioned in
conversation with N. Celeb1(2u).

In this investligation 1t has been found convenient to
abandon the principal axes and take the x and y coordinates
through the shear center, parallel and normal to the bracing
diaphragm. For thls purpose an energy expression developed by
Goodier(5) is employed. Goodier, in 1941, by extending the

(25’26), simplified Kappus'(27)

ideas of Wagner theory and pre-
- sented a simpler expression of the potential energy in which
the X and Y axes are 1in any arbltrary positilon passing through
the shear center of the cross-sectlon.

Consider the general case of a column of any cross-section

and an arbitrary set of axes X, Y, Z passing through the shear
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center as shown in Fig. 3.. The straln energy of the column 1in

terms of generalized displacements u, v of the shear center and

(5)

rotation ¢ of the column section 1s given by
L L L '
< 1 2 Nyt 1 nl
U ?EIyI u"“de + EIxyI u''v'di + §EIXI v"©4az
o] (o] o]
L 2
¢'“dz (3)

L
+ %Ecwjo¢"?dz + %GJ[

are moments of 1lnertia and Ix

o]

where Ix’ I is the product of

y y
inertia about the centroidal axes (X and Y) parallel and normal

to the .diaphragm.
2.3.3 Strailn Energy of the Diaphkragm

The strain energy of the diaphragm consists of two parts:

a) Shear strain energy, due to shear deformations in the

plane of the diaphragm as a result of the component of lateral
deflection of the column in the plane of the diaphragm.
The shear strain energy associated with one column as giv-
en in Ref. 13 1is:
L . ' :
1 2
D, = 3] atacz1?az (4)
where Q = shear rigidity of the dlaphragm contributing to the
support of the column
a(Z) = lateral slope in the plane of the sheet (rate of
change of deflectlion with respect to 2Z-coordinate)

b) Rotational straln energy, due to the transverse rota-

tion of the diaphragm at the location of the attachments during
rotation of the column.

Figure 4 shows the original and final position of a braced
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section after rotating an angle ¢. Such rotation imposes on
the diaphragm a transverse moment acting at the dilaphragm-col-
umn attachments. However, in the analysis it is assumed that
this transverse restraining moment 1s continuous along the col-
umn length rather than being concentrated at the location of
the attachments. In practical epplications, the distance be=-
tween the attachments compared to the column length and dia-
phragm dimensions Jjustifies such an assumption. The same
idealization 1is consldered by Dooley(ls’ 19) for columns re-
strained af finite intervals against rotation by shear-stiff
cladding. A similar idealization 1s considered by Winter et al
(7) for columns braced with wall panels and by Timoshenko(B)
for buckling of bars on elastic foundations, by replacing the
action of spaced lateral supports with the éctions of a contin-
uous elastic medium.

Most commonly us2d diaphragms exhibit a certain amount of
resistance to rotation, depending on the type of dlaphragm and
diaphragm-column attachment used. Such resistance provides ro-
tational bracing to the column. The rotation of the diaphragm
and the columh consists of three parts:

1) ¢p due to local deformation at the fastener.

2) ¢B due to cross bending of the diaphragm.

3) ¢S due to deformation of the flange with respect

to the web.

Hence, the total angle of rotation ¢ 1s equal to

¢tota1 = ¢D + ¢B + ¢s (see Fig. 19)



18

Depending on the location of the screw on the flange, a
force in opposite direction than shown on Fig. 19 may lead to
a larger ¢total‘

It will be shown later (in the discussion of test results,
Section 6.3.2) that the resistance of the diaphragm to local
deformation at the fastener location 1s the major contributor
to the dilaphragm rotational restraint, especially for wall ma-
terials used in wall-studs applications.

The rotational restraint coefficient, F, 1s obtained ex-
perimentally since the local deformations cannot be determined
analytically. The value of F should be based on the larger
value of ¢tota1 (giving a smaller value of F).

Denoting F as the rotational restraint coefficlent of the
diaphragm contributing to the bracing of one column, in units
of moment per unit length of diaphragm per radian, and ¢ the
angle of rofation of the column cross-section, then the trans-
verse moment, MF, applied to unit length of the diaphragm dur-
ing twisting of the column sectlion 1is equal'to:

M, = F+¢

F

The work done in rotating an element of unit length dZ is

Hence, integrating over the full length of the column, the

total rotational strain energy assoclated with. one column is
1 L

DF = EJOMF-¢dZ

or L 5
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Adding Eqs. (4) and (5), the total strain energy of the dia-

phragm 1is

D= DS + DF

L L
1 2 ifl 2
D -Q-IOQ[a(Z)] az + EIOF ¢2az (6)

2.3.4 Potential Energy of Applied Loads (W)

Potentlal energy of applied loads during bending an<

twisting of the member is given in Ref. 5 as

L L L
W= -o{%! u'edz + %I v'az + 31 f ¢'2dz
o ) Plo
L L
T 1
+ AXOJ v'¢'dz - Ayofou ¢ dZ}

o

L
- '%IOP(u'z +v'? 4 r2er? 4 2x vie' - 2y u'er)az )

2.3.5 Total Potentlial of A System (II)

By substitution of Egqs. (3), (6) and (7) into Eq. (1), the
general expression of the total potentlal energy for a column

of general‘shape is

L
= _]; ne Meptl ne ne 2
I = 2IO{EIyu + 2BI  u"v" + EI_v"° + EC_¢"" + GJ¢'

2 2

- P(u'2 + v + r§¢' + 2xov'¢' - 2y°u'¢')

+ Qla(z)]° + F-¢°}az (8)

2.3.6 Total Potential of A System Braced on Both Sides

The general model utilized 1n the analysis as well as some
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of the column sections comﬁoﬁly used:in structural application,
and dealt with in the present investigation, are shown in'Fig.
1. The model consists of a column of a general shaped section
braced with identical diaphragms on both sides. These dla-
phragms exhibit shear rigidity Q and rotational restraint F and
both properties are determlned experimentally.

Consider the general displaced position of the cross-sec-~
tion as shown in Fig. 6, that is, translations u and v as well
as rotation ¢. Then the shear strain energy DS as given by Eq.

(4) 1s:

L
Dg = %-JOQ[a(Z)]ZdZ

where Q and a(Z) are as previously defined. To account for two

diaphragms, the above equation takes the form

L L :
g = 3 Stay@2Paz + 3] §ray217%z (9)

where ul(Z), a2(Z) are the rates of change of the lateral dis-
placement with respect to Z in the plane of the bottom and top
diaphragms, respectively.
From Fig. 6 it can be shoﬁn that the lateral displacement
of the bottom diaphragm equals (u - ¢AZZ), hence
a,(2) = $(u - ¢a,) = u' - ¢'a
1 az 2 2 (10)
Similarly, for the top diaphragm,

Q) = et vy a

where d1 ahd d2 are the-distancgs from the shear center to the



top and bottom diaphragms, respectively.

Substitution of Egs. (10) and (1l1l) into Eq. (9) yilelds-
Do = 3 LQ[ 12 + 'z(ii—;—gé) + u'¢'(d, - d4,)1d (12)

Hence the total strain energy of the dlaphragm D is:

D=Dq +D

S F

(b 2 2 45 + a3 2
= 5[ {Qlu'® + ¢""(—=—=) + u'¢'(d; - d,)]1 + F-¢"}dz (13)
o
Using Eq. (13) to modify Eq. (8) to account for the case of two
sided bracing, and considering the sign convention of Fig. 6,

then the total potentlial energy of a system braced on both

sides 1s:
1=z L{EI u"? + 2EI_ u"v" + EI_v"2 + EC, ¢"° + GJ¢'2
2 o y Xy _ b 4 w
2 2 2.,2
- P(u! + v! + ro¢! - 2xovl¢! + 2y0u1¢')
2 2
dl + 4

+QLu'® + ¢'3(L5—2) + urgr (q; - a,)] + F-¢°laz (1)

2.3.7 Total Potential of A System Braced on One Side

Following the same procedure considered in the previous
section and noticing in Fig. 7 that

up =4 ~¢d;
then a(2) = up = u' - ¢'d, (15)

Substitution of Eq. (15) into Eq. (9) yilelds the total strain

energy of the diaphragm D, which 1s
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D= DS + DF

L ’ ‘ .
= %[ {Q(u'2 + ¢'2d§ - 2u'¢'d2) + Fo¢2}dz ' (16)
o)

Hence, from Egs. (8) and (16), the total potential energy of a

system braced on one side 1is:

n2

m=3 L{EI u"® + 2EI__u¥v" + EI_v"% + EC_¢"° + GJ¢'2
2 o y Xy X w

2

- P(u'a + v'< o+ r§¢'2 -2x v'e' + 2you'¢‘)

2

S - 2u'¢'d,) + Fe¢°}dz (17)

+ Q(u'2 + ¢'2d

2.4 General Solution

Assuming that a column wilth hinged ends may buckle in a
number of half-waves of sinusoidal functlon, and considering
similar shapes of the displacement functions (with different
amplitudes)'in the x and y-directions as well as the rotation
of the column sections, then the displacements u, v and ¢ (Fig.
3) can be represented by the following infinite series (Assumed

functions with different shapes are considered in Appendix 5.);:

o /

u = 2 C sinx_l.l_ 18
ney R L (18a)
T yA

v = X D Sinﬁ—
nel P L (18b)
b Z

¢ = E sin&L
nzl n L (18¢c)

where n 1s the number of terms considered in the solution (n =

1,2,3,...). cn, Dn’ En is a set of indeterminate parameters
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which represents the amplitude of deflectlons and rotation.
These assumed displacements satisfy the column end ccndi-

tions,

u v ¢ =0 for Z o,L (19a)

u" vt = ¢" = 0 for Z o,L (19b)

That is, the ends of the column are simply supported. For
fixed end conditions the following infinite series may be as-

sumed for the displacements u, v, ¢,

s 2nnz

u = C (1 - cos ) (20a)
nzl n L .

v= }DI(1 - cosgggé) (20b)
n=1

® o VE (1 - cos2hl% (20c)
nzl n _ L

(n=1,2,3,...)
These displacement functions satisfy the column end condi-

tions

for 2

e
]
<
L]
©
"
o

o,L (21a)

u' = v' = ¢' =0 for Z

o,L (21b)

The solutlion of the case of two sided bracing 1s obtained
by substitution of the assumed displacement function equations
(18) into the expression of the total potential energy equation
(14), and applying the Rayleigh-Ritz method, which requires

that 8l = 0, which in the present case becomes:
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(-4

aC Dn

n

Q

(n = 1,2,3...)
Equations (22) lead to a set of 3 x n simultaneous algebralce

equations in C , D, and E, (n =1,2,3...). In matrix form

these equations take the form

- 4N
Dyq 8,
Dys 0 A,
D33 431
- . = 0 (23)
0 -
D A
! o
3n x 3n 3n x 1
where
— d,~-d -
2 2 1l 2
(n Py-P+Q) nPyy Q—=5—)-Py
- 2 2
Din = n ny n"p -P Px, (24)
2 2
d.,-d +d 2
1 72 1 2\.F L
Q( 5 )-Py, Px, r, (P -P)+Q(——= )+;§ =5
- . w J
3 x3
(n = 132,3,"‘)
anIx
P. = 2
X L2 (25a)
2
" EI
Py = —* (25b)
L
2
v EI
X!
Py = ‘ (25¢)
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1 2 i
Py = ;—2— (n“EC,, F + GJ) (26)
o
O
n
b, = { D ¢ (27)
En
.
(n = 1,2,3...)
Expanding Eq. (23), then
[Dlll{Al} =0 (28a)
[Dnn]{An} = 0 (28n)

Hence, the 3 x n simultaneous equations (23) can be segregated
into n uncoupled sets of equations (28). Each of these sets
contains, in general, 3 coupled equations.

Physically, this means that each of these sets, obtalned
for a certain value of n, corresponds to a certain buckling
mode. Hence, n buckling loads can be obtalned, the smallest
value of which represents the critical buckling load of the
system. This observation implies that Eqs. (18) may be re-
placed by the following simpler dlsplacement functions without

any effect on the final result:

nwa
u = Cnsin—f- (29a)
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nnz

v = D _sin=p= (29b)
nnd

¢ = Ensin—f— (29¢)

(n = 1,2,3,...)

Therefore it 1s concluded that for a column with both ends
hinged, the critical loads obtained from Egs. (18) and (29) are
identical and that this conclusion is valid for the case 6f one
sided bracing as well. For fixed end conditions, upon substi-
tution of Eq. (20) into the expression of the total potential
energy equation (14) and following the same procedure of the
hinged ends case, 1t has been found that the set of 3 x n si-
multaneous algebraic equations represented by Egq. (23) are cou-
pled. Hence, this differs from the case of hinged ends; n
independent buckling modes will not occur. It follows that the
simplification introduced in the case of a hinged ends column,
replacing Eqs. (18) by Eqs. (29), cannot be achleved in this
case. This is so for one sided bracing as well. A similar
conclusion is valid for the cases of end conditions other than
hinged or fixed (see end conditions listed in Table 1) with
bracing on one or both sides of the column.

2.4.1 General Equation of Stability of A Two Sides Braced
Column with Hinged Ends

Using the matrix given by Eq. (24), then the general form
of the equation of stability of a system braced on both sides

with column ends hinged 1is:
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d.-d
Py P_-P Px (D_ »= 0 (35)
2.2
d,-d ac+a 2
17% | 2 179, . F L
Q=R By r(EPIAEY S 25 ) B
where n = 1,2,3..
2 2 2
P, = n“n°EI_/L (362)
_ 2.2 2
Py ny EIy/L (36b)
2.2 2
ny = n“n EIxy/L (36¢c)
P, = %o (n°EC n GJ) (364)
0732 T 2 3

o

2.4.2 General Equations of Stability of A One Side Braced
Column with Hinged Ends

Equation (17) gives the total potential of a column of a
general shaped section braced on one side. By substitution of
the assumed displacement function equations (18) or (29) into
Eq. (17) and following the procedure for determining Eq. (35),
outlined in Sections 2.4 and 2.4.1, the stability equation of a
column braced on one side with ends hinged is glven by the fol-

lowing:
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P,-P+Q Py -Py_-Qd, /’cn\
Pry P -P PX, ﬁ D, = 0
E-P -Qd Px L (p.-p)+aa’+E; L2 E
L y 2 o 2 ¢ 272 .2 ] \ “n / (38)
(o]

P P, are given by Egs. (36).

y? Txy?® "¢
2.4.3 gcr of Particular Column Sections with Hinged Ends

where n = 1, 2, 3....and Px’ P

Egs. (35) and (38) will be used to derive the governing
equatlions of the following cases:

a) Channel section braced on both sides.

b) Z-section braced on both sides.

¢) Channel section braced on one side.

d) Z-section braced on one side.

The solution 1s given 1in terms of n, wheren =1, 2, 3.,...
The critical buckling load Pcr is the smallest value of P ob-
tained from the governing equations for sufficient numbers of
n. References 12 and 22 indicate that considering small values
of n, that 1s, n =1, 2, 3...., 1s sufficient to determine the
smallest buckling load. However, this may not always be the
case, and hence enough values of n should be tried until the
smallest value of P 1s obtalned.

For a particular cross-section the critical buckling load
of the column will be derived from Eq. (35) or (38), by substi-
tuting for the geometric terms appearing in the general solu-

tion, those of the particular cross-section under consideration
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2.4.3.1 P for Channel Section Braced on Both Sides

—CI

(Hinged Ends)

For channel sectilons, Yo = 0

I = 0, hence P

= 0.

Xy

Sunstituting the above parameters into Eq. (35) yields

_ SR
P -P+Q 0 0 c,
0 P -P PX, < D,
42 2
2 F L
i 0 Pxo I‘O(P P+Q1‘—-+—2 ;—~ \En/

where n = 1,2,3,... and Px’ Py, xy?

Notlice that n 1s included 1in these parameters.

P P¢ are given by Eqgs.

(39)

(36).

For a nontrivial solution of Eq. (39), the determinant of

the coefficient matrix of Cn’ Dn’

IDnnI = 0

En must vanish, hence

2 2
: 2 d°.F L 2
then (Py-P+Q){(Px-P)[ro(P¢-P)+QE—+;§ “2]-(Pxo) } =0

Therefore two solutions are possible; these are

P -P + = 0
y Q

2 F 2

and (P, - P)r5(P, - P) +Q §— + =5 %53 - (px % = 0

n
Arranging terms of Egs. (42) and (43) yilelds
= P +
P y Q
2 . 2

p2(p?

2 o
ro-x§)~P(r§P+r P +Q%—+E§ L§)+PX(POP¢+QK—-+§§

ier
“~

(40)

(41)

(42)

(43)

(44)

(45)
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Equation (44) characterizes the behavior of the column in the
flexﬁral mode and 1t can be seen that n = 1 gives the lowest
buckling load. Equation (45) represents the torsional-flexural
mode, and n must be chosen so that the buckling load thus ob-
tained is minimum. bBoth modes are possible depending on the
values of Q and F (see Fig. 8).

For a particular column with specific end conditions the

P, represent the different possible buckling

terms Py’ Px’ ¢
modes of the unbraced column and can be calculated from Egs.
(36) for chosen values of n.

Also the geometric parameters r2 and xg are known from the

0
section's dimensions. Therefore for a column braced with a di-
aphragm of known Q and F, the values of the buckling loads P
can be calculated from Eqs. (44) and (45). The lowest value of
P determined from both equations will give the critical buck-
ling load of the column.

If Q=0and F = 0, that 1s, an unbraced column, and n = ]
then Eqs. (44) and (45) reduce to the same equations derived by
Winter and Chajes 31), Also the determinant in Eq. (39) will
be the same as that of Timoshenko on page 333(3) and Eq. 20 of
(32)

Pekoz

2.4.3.2 gcr for a Z-section Braced on Both Sides (Hinged Ends)

For a Z-section, Yo = 0

X, = 0

dl = d2 = d/2

Substituting these parameters into Eq. (17) yields:
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rPy—P+Q ny 0 Cn
Py P_-P 0 {nn b= 0 (46)
2 2
2 d“. F L
o 0 ro(P¢-P)+Qr+;§ B I

Solving for elgenvalues by setting the determinant of the coef-

E_ equal to zero and following the

ficient matrix of Cn’ Dn’ n

same procedure considered 1n the case of the channel section

(2.4.3.1), then two solutions are possible:

2 2
P=P +ix(Qf + 55 (47)
I’o n =
2 : 2 -
and P - P(P_ + Py + Q) + (PxPy + P Q - ny) =0 (48)

Equation (47) repreéents the increased torsional buckling
load of the column. Since for polnt-symmetrical shapes under
concentric loading, the torsional buckling rarely governs the
mode of fallure; Eq. (47) represents an upper bound to the ex-
pected buckling load obtained from Egs. (47) and (48). Equa-
tion (48) governs the behavior of the column in the flexural
mode. It is of interest to note that the rotational restraint
of the diaphragm has no influence on the buckling load. This
can be seen from Eq. (48), since F does not appear in the gov-
erning equation.

For a particular column with Q = 0 and end conditions
hinged or fixed, it can be shown from Eq. (48) that P,, =P

y1’
where Pyl i1s the Euler buckling load about the axis of least
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moment of inertia. For other end conditions it will be proved,
in Section 2.6A.3, that the Z-section column will not buckle
about the axis of least moment of inertia and subsequently, a
governing equation with various end conditions (listed in Table
1) will be given.

2.4.3.3 gcr for a Channel Section Braced on One Side
(Hinged Ends)

For a channel section, Vo = 0
d, = as2

Ixy = 0 hence ny = 0

Substituting these parameters into Eq. (38) yields

r— _ ] g ~— e N
Py P+Q 0 -Q2 Cn
0 P -P Px, < D, > = 0 (49)
2 2
o 1 d".F L
-Q= Px ==(P,-P)+Q —= E
"% o L2 7+ 2. 2) (Fn)

(n=1,2,3,...)
For nontrivial solutions of Eq. (49), the value of the determi-

n ant of the coefficlent matrix of Cn, D En must vanish,

n’
Evaluating this determinant, the following third order polyno-

mial is obtained:

N

2
3,.2 .2 2r.2 2 a",F L 2 .2
P (ro-xo)-P [ron+roP¢+QE—+;§ —§+(Py+Q)(ro-xo)]

=R

2

2, 4. F 25 . 20 ,d°.F L2
+P[P (r P ¢+QTF+;'2‘ )+(Py+Q) (roP, +rcP ¢+Qh_.+;,2. ;'Z)

5
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2 2
d,2 2 d“ F L d.2 _
-(Q3) ]-(Py+Q)[Px(POP¢+Qr+n2 F)]+PX(Q2) =0 (50)
The smallest root of Eq. (50), determined by considering suffi-
clent values of n, gives the critical buckllng load.

2.4.3.4 P for a Z-section Braced on One Side (Hinged Ends)

—cr
For zee-sections, Yo = 0
X, = 0]
d2 = d/2

Substituting these parameters into Egs. (38) yields

~ d - 4 ~N
Py-P+Q ny -Qg Cn
Pry P -P 0 (D, p= 0 (51
2 2
d 2 d”,F L
L % 0 ToBgBIRr—5 5 (Bn )

Solving for the eigenvalues by setting the determinant of

the coefficient matrix of Cn’ D E_equal to zero and by eval-

n*> n
uating the resulting determinant, the following third order

polynomial 1s obtained:

2

2
3 52 1 45 F L
P°-P [Px+Py+Q+P ¢+;g(Qr+n2 ?)]

+P{(P_+Q)P -p2 +(P_+Q+P_)[P +l—(Qd2 F Ei 1 ,~4,2
y X Txy 'y x'"TeT 2 E_+n2 2)]‘;§(Q5) }

© o

[(P_+Q)P_-P> J[P,+%x( a®, F_ L2 3 dy2

-L(Py+Q)P P I[P, ;g QE—+;§ ;E)]+;§PX(Q§) = 0 (52)
© o

For a particular column and known values of Q and F, Eq. (52)
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glves three values of buckling loads P for each value of n; the
lowest value of P determines the critical buckling load Pcr’

2.5 Discussion of Cases with End Conditlons Other Than Hinged

Based on assumed displacements in the form of an infinite
series, the solutlion of the hinged end column is given 1n Sec-
tion 2.4. Other end conditions (Table 1) are not considered
for reasons which will be apparent in this section. However,
by using the first term of the series it is possible to obtain
a simple solution for the cases of these end conditions, pro-
vided that higher buckling modes are not critical.

It has been shown in Section 2.4 that in the case of a
column with hinged ends, equations of the assumed displacements
(18) can be replaced by Eqs. (29) without any change in the fi-
nal result. This is because uncoupled modes of buckling, cor-
responding to each value of n, exist. The uncoupling of the
modes rest chiefly on the orthogonality relations which exist
between the terms of the assumed function. However,‘this is
not the case for column with end conditions other than hinged,
for example, fixed, or may be represented by the following geo-

metrical condition (see also Table 1):

u =v =¢ =0 atl =oQ,L

u" = v' = ¢' =0 atZ = 0,L

In such a case, upon using combinations of the assumed dis-
placement functions chosen from Eqs. (18) and (26) to satisfy
the above relations, it has been found that the set of algebra-

ic equations resulting form minimizing the energy are coupied.
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Therefore if n terms of the serles are considered in the solu-
tion then the size of the matrix in Eq. (23) will be 3n x 3n.
Hence, the requirement that the determinant of the coefficieﬁtt

matrix of C,> Dp» E, (n =1,2,3,...) must vanish for a nontriv-

th

n?
ial solution results 1n a polynomial of the 3n order. The
smallest root of this polynomial gives the critical buckling
load of the column. It 1is of importance to note that 1n our
case the elements of the determinant are not all numerals; it
contains eigenvalues added to and multiplied by numbers. These
elgenvalues are not all on the dliagonal of the matrix; some are
off the dlagonal. In other words it is impractical to evaluate
such a determinant in order to arrive at a polynomial. Also
the determinant 1s not in the known form of the eilgenvalue
problem which 1s written as

| A - AI| =0
Hence the problem may be classified as a polynomial equation of
the Bhth order.

Briefly, it can be stated that it 1is not a standard prob-
lem. The IBM Library Subroutines do not include direct aids to
handle such a problem. A reference to a method published in an
article by Jenkins and Traub(u7) has been suggested by Cor-
nell's Department of Computer Science.

Another approach to solve the problem 1s to assume a trial
eigenvalue and then, after substlituting the trial value in the
determinant, check whether or not the latter vanished. Hence,
the solution, though difficult, can be obtalned provided that

the entries of the stability matrix can be generated. To ob-
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tain these entries for n = 3 1s quite involved and impractical,
let alone the cases of n > 3 or 1f initial imperfections are
considered.

The intent is to derive a design procedure for the simple
case of wall-stud applications, for which the hinged end condi-
tions simulate with reasonable conservative approximation the
actual structure. Therefore the solution of cases with end
conditions other than hinged and n > 1 are not of substantial
importénce to the development of the design procedure. On the
other hand the close agreement between the test results of 11
double-column assemblies with end conditions u" = v' = ¢' = ¢
and u = v =¢ = 0 at Z = 0, L and the predicted fallure load
based on n = 1 shows that higher buckling modes are not likely
to govern. Hence the cases of end conditions listed in Table 1
will be glven 1in the next sectlon only for n = 1. The same
conclusion hés been considered by Pincus(6), Errera(13) and

(18) in similar investigatlions desplte the relatively

Dooley
simpler problems considered by them.

2.6 Solution by Considering Only the First Term of the Series

As an alternative deslgn tool, the following closed fornm
solutions will be derlved using only the first term of the ser-
ies, Eqs. (18) and (20). The solution is derived for a column
with the general end conditions listed in Table 1, 1i.e. hinged,
fixed and mixed. The following cases are considered for a col-
umn of a general shaped cross-section:

a) Column braced on both sides.

b) Columns braced on one side only.
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Then particular cases of columns of channel and zee-sections
wlll be derived as special cases of the general solution.

In order to obtain a general solution which accounts for
the influence of the column end conditions on the buckling

loads, coefficients K, (1 = 1,2,...,12) are introduced in the

i
resulting equations. Numerical values of Ki are listed in Ta-
ble 1. These coefficlents are calculated for each case of dif-
ferent end conditlons by using the proper combinations of the

following assumed displacement functions.

End Condition Displacement Function
u=u’"=0atdd=0,L u = ClsinE%» h
u=u'=0at?2=0,L u = (C/2)(1 - cosg%l)
v=v"=0at2 = 0,L v = D sin®2

><53)
v=v'=0atl2 = 0,5 v = (Dl/Z)(l - 008222)
= " o= . = = 1z
¢ ¢ 0 at 2 0,L ) E,sin I
¢ =¢'=0atl =0,L ¢ = (E;/2)(1 - cos2IL)
1 L 7

C D El are amplitudes of deflections of u, v and ,

1> ~1°2

. C D
respectively. It has been found convenlent to use ﬁl, El and
E
Ei for fixed end conditions rather than Cl’ Dl’ E1 as commonly

used. This has no influence on the final results.
2.6A Equation of Stability of Columns Braced on Both Sides

with Hinged, Fixed or Other End Condltions Listed in
Table 1 and n = 1

The equation of stability is derived by substitution of



38

the assumed displacement functions, chosen from Egs. (53), into
the expression of the total potential energy equation‘(lﬁ) and
then applying the Rayleigh-Ritz method. This will result in
three homogenebus simultaneous equations in Cl’ Dl’ El' These
three equations are arranged in matrix form to give the follow-
ing equation which describes the stability of the system in

general form.

—~ AN
P ~P+Q Pyy Koy P+KgQ(d,-d,) 7 Cy
Py P,-P K,PX, (0 >= 0
, 5 d§+d§ L2
. (54)
where P = K,m°EI_/L° A (55a)
X -l X
- 2 2
Py Kzn_EIy/L (55b)
_ 2 2
ny = K3n EIxy/L , (55¢)
_ 1 . ﬂ2
P = =3 (K EC, =5 + GJ) (554)
r L
o}
Kl, K2, K3, Ky «-. K8 are coefficients corresponding to

different end conditions of the column and theilr values are
gwlven in Table 1

2.6A.1 Critical Buckling Loads of Particular Sections

Equation (54) will be used to determine the critical buck-
ling load Pcr’ of a certain column, as a functlon of the shear

rigidity Q and the rotational restraint F. Two particular sece-
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tions will be considered, namely channel and z-sections. It
will be shown that the case of the I-section previously inves-
tigated(6’l3) can be derived as a specilal case of the general
solution.

For a particular cross-section the critical buckllng load
of the column will be determined by substituting for the geo-
metric terms appearing in the general solution, those of the
particular cross-section under consideration.
2.6A.2 P for Channel Section Columns Braced on Both Sides

—¢rith Hinged, Fixed or Other End Conditions Listed
in Table 1 and n = 1

Applying the same Procedure of Section 2.4.3.1 to Eq. (54)

the following governing equations are obtained:

P = Py + Q (56)
2, 2 2.2 2 2 a2 . _1° 2 a2 L2
P (PO—K7XO)—P(ron+I‘oP¢+QE—+K8F~2)+Px(I’OP¢+QE—|’K8F——2-) = 0 (57)
v ki

The smallesé value of P obtained from both Egs. (56) and (57)
give the critical buckling load P ... Equations (56) character-
ize the behavior of the column in the flexural mode. The oc-
currence of any of these modes 1s possible depending on the
values of Q and F (see Fig. 8).

2.6A.3 gcr for Z-section Columns Braced on Both Sides with
Hinged, Fixed or Other End Conditions Listed in
Table 1 and n = 1

Similarly, the followlng equations are obtained from Eq.
(54), and P, i1s given by the smallest value of P determined

from both equations:



P=p += (Qd2+KFL2) (58)
=% ;Z T 8 ;5
o)
2 2
P< - P(Px + Py + Q) + (PxPy +P.Q - ny) =0 (59)

For the same reasoning given in Section 2.4.3.2, regarding the
validity of Eq. (59) only, it is concluded that Eq. (58) does
not govern since the torsional buckling mode for point-symmet-
rical sectlons rarely governs the failure mode of the column.
Graphical representation of Egs. (58) and (59) is shown on Fig.
S.

If Q = 0, that is, an unbraced column, an important and
interesting result is obtalned which, so far as the writer
knows, hasn't been mentioned in the available literature: The

Z-sectlon column with mixed end condltions can only buckle

about an axls in between the least axls of inertia and the web,

and _that such axis need not be located to calculate P*r which

is obtainable as a special case of Eq. (59).

It 1s well known ﬁhat a Z-section column hinged at both
ends in the x and y-axes (i.e. concentrically point-supported)
willl buckle about the axis of least inertia ¥y» and the buck-
ling load 1s given by the Euler equation:

n2EIy1

PCI‘ = T{z—)—z- where k = 1.0
If both ends are fixed in the x and y-directions the same equa-
tion applies except that k = 0.5. Now the question to be asked
is what would be the buckling load 1f the end condition about

the x-axis differs from that along the y-axis.
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The answer to that question is given in a very approximate
manner by A. Pflﬁger(33). He investigated the buckling of a
zee-sectlion with hinged end conditions only and stated that
other end conditions can be taken into account by a suitable
reduction of the column length. No guidance to the proposed
reduction 1s given and it appears that such consideration is
left to the designer.

However, the answer to the problem can be obtained by con-

sidering Eq. (59) and letting Q = 0, hence

2 2

P- - P(Px + Py) + PxPy - ny = 0 (60)
_ 2 2
where Px = Kln EIX/L
_ 2 2
Py = K2ﬂ EIy/L
_ 2 2
ny K3n EIxy/L
From Table 1,
if uv" = v =0 then Kl = K2 = K3 = 1.0
u' = vt =0 then Kl = K2 = K3 = 4.0
- ] - = = { =
u' haed V' - 0 then Kl uoo, K2 1.0, I\3 O.8u9
ult = v'!' = 0 then Kl = 1.0, K2 = '4.0, K3 = 0.8149'

Depending on the end condition about the x and y-axes the buck-
ling load can be calculated from Eq. (60) and the appropriate

Fl, K2, K3 values. Physically this means that the column will
buckle about a new axls between the y and the y,-axes at which
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the section will have a new value of moment of inertla larger

than I and smaller than Iy. However, there 1s no need to lo-

yl
cate that new axls and calculate a new moment of inertia since
Eq. (60) suffices

2.6A.4 Verification of Pcr for I-sectlons Braced on Both Sides

with Hinged, Filxed or Other End Conditions‘Listed in
Table 1 and n = 1

The behavior of I-sectlon columns braced on both sides,
including twlst, has been investigated by Errera(l3). It will
be shown here that his equation 32 can be obtained from the

general solution (Eq. 54) derived in this investigation.

For I-sections Vo = X5 = 0

Ixy = 0 hence ny =0

Substitution of these parameters into Egq. (54) yields

- ’
(P,-P+q O 0 c,)
0 P -P 0 {Dyp = 0 (61)
2 2
_ 0 0 r, (P P)+QH—+K8F 5 (E1J

Omitting the possibillity of strong axis buckling (this is truye
for I-sections only) and replacing rgP by the equivalent form
in Ref. 13, then the determinant of the coefficient matrix of

C D,, E

1° 712 71
Note that K8 1s equal to 1.0 for a hinged end column; other

of Eq. (61) 1s identical to Eq. (32) of Ref. 13.

cases of mixed end condltions have not been considered in pre-
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vious investigations.

2.6B Equations of Stability of Columns Braced on One Side Only
with Hinged, Fixed or Other End Conditlons Listed in
Table 1 and n = 1

Following the same procedure given in Section 2.6A except

using Eq. (17) instead of (14), the following equation results:

P -P+Q Py ~K Pyo-KgQd, c,
\ =
Pry P, -P K Px { Dy 0 (62)
K.Py -K.Qd. K. Px_ r2(P,-P)+Qd+K pLe E
"5 Y0706 % P Eo To'te 278" 2 (F1J

where P_, Py, ny, P¢ are as defined by Eq. (55), and K,, K,,
cees K8 are coefficients corresponding to different boundary
conditlons of the ends of the column and their values are given
in Table 1.

2.6B.1 Critical Buckling Loads of Particular Sections

Equation (62) will be used to determine the critical buck-
ling loads Pcr of certain columns as a function of Q and F.
Two particular sections will be considered, namely channel sec-
tions and Z-sections, and 1t will be shown that the I-section

(13) can be derived as a speclal case of

previously investigated
the general solution.
For a column of a particular cross-section the critical
buckling load will be determined by substituting for the geo-
metric terms appearing in the general solution, those belonging

to the particular cross-section under consideration.
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2.6B.2 gc for Channel Sections Braced on One Side with
Hinged, Fixed or Other End Conditions Listed in
Table 1 and n = 1

Considering Eq. (62) and following the same procedure of
Section 2.4.3.3, the following equation characterizes the be-
havior of a column with any end conditions:

2 2.2 1.2

2
3 2r 2 2 d 2 2.2
P (ro-K7xO)-P [ron+roP¢fQE—+K8F;§+(Py+Q)(r )]

o'K7xo

+P[P_(r°P +Qd2 X FL2)+(P +Q)(r°P 41 P .+ a® X FL2
x\Tof gty ;? y Pofx Tof o Qr—+Kg ;ﬁ)

2 2
-(Kng)zl-(Py+Q)[Px(rg%mi‘-}—ﬂgﬂ;—z)]+PX(K6Q%)2 =0 (63)

Equation (63) characterizes the behavior of channel section
columns braced with diaphragms on one side only; For a partic-
ular column and specific end conditlons all parameters (except
Q and F) which form the coefficlents in Eq. (63) are known.
Hence for known values of Q and F, the smallest root of Eq.
(63) gives the critical buckling load Pcr‘ Graphical represen-
tation of Eq. (63) is shown on Fig. 10. ‘

2.6B.3 P

P.pof Z-sections Braced on One Side with Hinged, Fixed

or Other End Conditions Listed in Table 1 and n = 1

Considering Eq. (62) and the same procedure of Section

2.4.3.4, the following equation results:
p3-pe[P_+P_+P +Q+-l--(Qd2 K FEE)J
x Tyt TR 2

r
o

2 2
_p2 1 (o8 Loy 1 d,2
+P{(P +Q)P,~P5 +(P +Q+P,) [P g+ (Qp—+KgF5) 1-5(K605)°}
(o] Q
-[(P.+Q)P_-P>_1[P +5—(Qd2 K F&E)J+1 P dy2
y x T xy" o e 2 T tKg 72 ;5 x(K6Q§) =0 (64)
(o} (o}
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As has been previously explalned, all parameters of the equa-
tion are known except Q and F. For a particular column and
known values of Q and F, Eq. (64) gives three values of the
buckling load; the lowest value determines the critical buck-
ling load Pcr' Graphical representation of this equation is
shown on Fig. 11.

2.6B.4 Verification of P, for I-section Braced on One Side

with hinged, Fixed or Other End Conditions Listed in
Table 1 and n = 1

The solution of a symmetric I-section braced on one side
only is given in Ref. 13; it will be shown here that Equation
62 of Ref. 13 can be obtained as a special case from the gene-
ral solution equation (62) derived in this investigation.

For I-sections Yo = =0

X
o

= = g
d) = dy =3

Ixy

0 hence ny = 0

Substitution of these parameters into Eq. (62) yields

P,-P+Q 0 ~KsQ$ (cl
0 PP 0 ﬁ Dl‘ = 0 (65)

' 2 2| | |

d 2 d L !

| -KgQ5 | 0 rO(P¢—P)+Qn—+K8F;—2—d '\\El_)

For the hinged ends column considered in Ref. 13, K8 = K6 =
1.0, hence by rearranging rows and columns of the determinant
1> Dys B
tion i1dentical to Equation 62 of Ref. 13 results.

of the coefficient matrix of the parameters C ] an equa-
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2.7 Load-Deflections Relationships of an Imperfect Column

The governing equations given in the previous section,
2.6, are derived for a perfect column. In the absence of a
disturbing moment the column remains straight for any value of
P < Pcr' When Pcr is reached the column undergoes displace-’
ments of indeterminate magnitudes. That 1s, the slightest dis-
turbance will suffice to cause an indefinltely large deflec-
tion.

Real columns exhiblt unavoidable initial imperfections
which are the primary cause of deflectlions and/or rotation pri-
or to the state of instability of the column. These deflec-
tions and rotatlon Increase nonlinearly with increasing load
and rapidly become very large, and result in failure as Pcr is
approached. In a diaphragm-braced column, such deflection in
the plane of the diaphragm and rotation of the column are re-
sisted by.the in-plane shear rigidity and rotational restraint
of the dlaphragm, respectively. When the diaphragm fails to
resist cgrtain values of the increasing deflection and/or rota-
tion, fallure of the whole assembly occurs. As a result, the
capaclity load Pr of the column will be less than Pcr calculated
on the basis of an ideal column. Thls behavior has been real-
ized by w1nter(9) as he indicates that the minimum rigidities
calculated for full bracing of ldeal columns are not sufficient
to achieve full bracing of real, i.e. imperfect columns. 1In an

(17)

early design recommendation a value of Pr = 0.9Pcr has been
suggested, hence deflections and rotation at this load level

are calculated in order to check that the dlaphragm is adequate
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for the load Pr to be reached. Detalls of checking the dia-
phragm adequacy will be given in Chapter 5. However, in this
investigation 1t has been found that the use of Pr = O.9Pcr is
not mandatory, since in some cases economical design can be
achieved by values of Pr above or below 0’9Pcr' Hence, 1n gen-

eral the load capacity Pr 1s equal to

PI‘ = APCI‘

where A is a trial reduction factor less than 1.0. The value
of A 1s decided upon by starting with a trial value of A, then
calculating the corresponding deflections and rotation, and
hence checking the dlaphragm adequacy. If the diaphragm is not
adequate, than a new value of-A will be tried and the checking
repeated untlil the diaphragm.adequacy 1s ensured. The last
value of A multiplied by Pcr gives the load capacity of the
column, Pr'"

(17)

It has been suggested that for a conservative estimate
of the additional deflections, the pattern of initial deflec-
tions along the length of an imperfect column is assumed affine
to the buckling shape of the perfect column. Assumed values of
amplitudes of the initial imperfections may be obtalned from
recognized specifications or to be measured from the actual
structure, since the current Specification for the Design of

Cold-Formed Steel Structural Members(l)

has no guidance to how
much tolerance limit in sweep and initial twist should be con-
sidered.

Load-deflections relationships as well as amplitude of ad-
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ditional deflections are derived in ﬁhe next sections for the
followlng cases by considering the first buckling mode, 1.e. n
= 1 and general end conditions listed in Table 1 (1.e. fixed,
hinged or mixed end conditions):

a) Diaphragm bracing on both sides.

b) Diaphragm bracing on one side only.

2.TA Sections Braced on Both Sides with Hinged, Fixed or Other
End Conditions Listed in Table 1 and n = 1

Typical column sectlons considered are:
*Channel sections
*Z~sections

2.TA.1 Method of Solution

The total potentlal energy for a perfect column (Eq. 14)
is modified to account for the initial imperfections by consid-

ering the following modified displacements:

u + u

[
1]

t o]
Ve =V + v,
0, = 6 + 0
where u, = total displacement in the x-direction

u = additional displacement 1n the x-direction
u, = initlal imperfection in the x-direction
Similar subscripts are adopted for v, ¢. Hence, the total po-

tential energy of an imperfect column becomes:

m=3 L{EI u® + 2EI_ uv" + EI_v"® + EC. ¢"% 4 gJ¢'2
2 o y Xy X w Je

2

:D’TJH

2 2 2
- plug® -w?) ¢ (v - v+ B 02% - 0r?) (conta.)
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- 2x,(viey - v83) + AV (uiey = ugel)]

af + a3 )
———=) + u'¢'(d; - d,)] + Fe¢ }az (66)

+QLu'® + ¢r¥ (=

Assumed Forms of the Initial Imperfections (n = 1)

The load-deflectlons relationships are derived for columns
with general end conditions listed in Table 1 (i.e. hinged,
fixed or mixed), for example, u' = v'" = ¢' = 0 at 2 = 0,L.
Different forms corresponding to different end conditions are

represented by the following equations:

End Conditidn Displacement Function
u=u"=0at Z=0,L = ¢_sin™Z
o o ’ Y oS+
= L = - 2ni
u = ul 0 at 2z = 0,L ug (Co/2)(l - cos=—
v=v'=0at z= 0,L " v_ =D sinlr-—z
o} e} 2 o) o} L
. (67)
v=v!'=0at z= 0,L v_ = (D /2)(1 - cosgﬁg
o ? o} o L
¢ = ¢ = 0 at Z=0,L ¢ = E sin™Z
o ‘Yo ~ oY o T EoSiRTL
= = = = 2—“—
¢o— ¢é 0 at 2 o,L ¢O (EO/Z)(l - cos=f
CO, Do’ Eo are the amplitudes of additional deflections. Sub-

script "o indicates initial lmperfections.

General Form

In order to obtaln a general solution which will also ac-

count for the influence of the end condltions coefficients Kg,

K K K are introcduced. These coefficients are calculat-

10° 112 Tle2
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ed for each case of the different boundary conditions listed in
Table 1 by uslng the proper combilnation of the assumed dis-
placement functions given by Egs. (53) ana (67)..

Following a procedure similar to that of Section 2.64,
i.e. using the energy equation (66) together with the assumed
displacements of initial and additional deflections (Egs. 53,

67), the following equation is obtained.

o P_-F+ P -K.y P+ -a,) e (¢
y Q Xy KSyo KGQ( dy d2) : cl | ;Co+K12Eoyo
; l) ; i
ny P -P K,TPx i(‘\_Dl = P{Do-Kgono (68)
. { 1
1 |
2 arvas il 2
-K - - - —
"5yoP+K6Q(d1 d2) BaPx, ro(P¢ Bleal 2 )+K8F“f}‘gl r°E°-K10xoDo+
’ X o
\— - s llyo ol
or [DI{a} = P[AJ] (69)

where Co’ Do’ Eo = amplitudes of initial imperfeictions
Cl’ Dl’ El = amplitudes of additional defl:ctions
Kl, K2, cees K12 are coefflcients accounting for differ-

and conditions and

their values are listed in Table 1.

The load-displacement relationship can be found from Eq. (68)

by solving for Cl’ Dl’ El, hence

{8} = P[D171[a ]

(70)

If ¢, =D, = E, = 0, Eq. (68) becomes identical to Eq. (54).
Formulas of amplitudes of the additional deflections Cl’
Dy» Eq will be found for the cases of channel and Zee-sections.
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2.7TA.2 Amplitudes of Deflections of a Channel Sectlion Braced
on Both Sides with Hinged, Fixed or Other End Condi-
tions Listed in Table 1 and n = 1

For channel sections Yo < 0

Ixy =0

d, = d, =

d
1 2 = 2

hence ny = 0

Formulas of amplitudes of additional deflections are ob-
tained by substituting the above listed parameters into Eq.
(68) and replacing P by P, where P, as defined 1n Section 2.7,
is the reduced critical buckling locad. The critical buckling
load in the case of a channel section 1s the smallest load ob-
tained from Egs. (56) and (57). Solving the matrix equation
(70) for Cl’ Dl’ E1 the amplitudes of the additional deflec-

tions, the following formulas are obtained:

P,
C, = pepo {(P -P_ )[r (Py-P )+QE—+K8F 2] (K,PpXo) °} (71)

D = I (p.-p_+q) [r2(P,-P_)+Qltk FLa] (D, ~Kox E.)
1 Det.‘'y r rolPe=—Fp)Tr—thg 72 o™ *9%0%0

-K7P Xq (r E K, 0%X,Dg ) (72)

P
- - r
E, = BEET(Py—Pr+Q){(Px—Pr)(roEo-KloxoDo)—K7Prxo(Do-K9ono)}(73)

2 2
Det = (Py—Pr+Q){(Px-Pr)[ro(P¢—Pr)+Q%—+K8F%§]—(K7 X)W

2.7A.3 Amnlitudes of Deflections of a Z-section Braced on Both
Sid=5 with Hinged, Fix=2d or Other End Conditions Listed

i~ TaTle 1 and n o= l

For zee-sections xo =Y T

N ©

and dl = d2 =
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by substituting these parameters into Eq. (68) and following
the same procedure for the channel sections except that Pcr is
obtained from Eq. (59); then the formulas of the amplitudes of.

additional deflectlons are given by:

P, 42 12

C) = por{ro(Py-P P HEHKGFFII0, (PP )-DPy ] (75)
D, = —EE—[ 2(P.-P_)+ a® K FEEJED (P -P_+Q)=C_P 6
1~ Det.Fo'\ o™ r Qp—+Kg 1T2 o'y 'r Q)-C, xy] (76)

E, = TrtoT g[(P -P +Q)(P -P.) P J
1 ° TDet. (17

2 L. 2 g . _L°

where Det = [(Py-Pr+Q)(Px-Pr)-ny][ro(P¢-P)+QE—+K8F;5] (78)

2.7B Sections Braced on One Side with Hinged, Fixed or Other
End Condltions Listed 1n Table 1 and n = 1

Equations of additlonal deflections for cases of n > 1 agre
given 1in Chapter 5 for the case of hilnged end columns only.
Typical column sectlions considered hereln are channel and zee-
sections.

2.7B.1 Method of Solution

The total potential energy for perfect column equation
(34) is modified to account for the initlal imperfection by

considering the following displacements:

t 0
hd = +
Vi v Vo
4, = +

'{ $ ¢o

where Up, U, U, Vs ... are defined 1n Section 2.7A.1. Hence
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the total potential energy of the imperfect column becomes:

L

_ 1 2
I = ?IO{EIyu"

"2 "2

2
Mt t
+2EIxyu v +Eva +ECW¢ +GJ ¢

2

~P(u-ut?)+ (v} —v'2)+EE( 12.918)-2x_(viel-v'ie!)
t o t (o} A ¢t o o' t't "'o'o

+2y_(ulét-ulel)1+Q(ure+¢'2a5-2ur¢ra,)+F-¢°}az (79)

Following a procedure similar to that of Section 2.7A.1, i.e.
substituting assumed displacements, chosen from Egs. (53) and
(67) into Eq. (79), and minimizing the resulting energy expres-
sion according to the Raylelgh-Ritz method, then the following

stabllity equation of the imperfect column 1s obtained.

r~ P -P - - ! /T . ( =
v +Q ny KsyoP K6Qd Cl CO+K12EOyo
- = - 80
Py P,_-P K Px, %Iﬁ. PIp -Kgx E, (80)
-X_y P-K_Qd Px r2(P -P)+Qd2+K FLE- E E
5T 62 BT TolTemIMA%R T G By To"0 % 10%6%
+Kllyoco
or {(D1{a} = P[Ao] (81)
where CO, Do’ Eo = amplitudes of initial deflections
Cl’ Dl’ El = amplitudes of additional deflections
Px’ Py, ny, P¢ are defined by Egs. (55)
Kl’ K2, K3, oo Kl2 are coefficients accounting for dif-

ferent end conditions and thelr values are listed in Table 1.
The load-displacement relationship can be found from Eq. (81)

by solving for Cl’ Dl’ El, hence
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P(D]7! = (4] (82)

Ifrc, =D, =E =0, Eq. (81) becomes identical to Eq. (62).

Formulas of amplitudes of the additional deflectlons C D E

12 712 71

will be fdund for the cases of channel and Z-sections.
2.7B.2 Amplitudes of Deflections of Channel Section Braced on

One Side wilth Hinged, Fixed or Other End Conditions
Listed In Table 1 and n = 1

For channel sections yo =

Ixy =

d2 =

N © o

hence ny = 0

Formulas for amplitudes of additional deflections are obtained
by substituting the above parameters into Eq. (80) and replac-
ing P by Pr; where Pr’ as defined 1in Section 2.7, is the load
capacity of the column. Solving thg matrix equation (82) for
C,> Dy, E; the ampllitudes of addltional deflections, the fol-

lowing formulas are obtalned:

Q
|

P
r 2 , 2
1 = Dot 1Co(Aghg-AY)+A AL (D ~Kgx (E ) =A3A,(r(E ~K, 5x D ) }(83)

P
r [ 2 2
1 = Det. CoAMA2+(A1A5+A2)(Do'KQXOEo)'AlAu(roEo'KloxoDo)}(84)

\o)
|

P
r 2
1 = et 1-Cohoh=AyAy(Do-KgXoEq)+A Ag(r B =Ky ox D)} (85)

where Det = Al(A3A5 - Aﬁ) - A3A§ (86)

A, = Py - Pr + Q



2 2
- .2 d L
AS = I’O(P¢ - PI’) + Q T + KBF ?

2.7B.3 Amplitudes of Deflections of a Z-sectlion Braced on One
Side with Hinged, Fixed or Other End Conditions Listed
in Table 1 and n = 1

For Z-sections X =y_ =20

- d
and d2 =5

By substituting these parameters into Eq. (80) and following
the same procedure for the channel section, then the formulas

of the amplitudes of additional deflections are given by:

. _r 2
C1 = Bet {Coh1A5-DRA5-E T oAA, ) (87)
D, = =L {-C A A-+D (A, A -A2)+E r2A_A.} (88)
1 Det. 0275 To*175 73 o 0 273
E, = —EE—{-C A.Au+D _A-A+E r2(A,A,=~A) 8
1 = Dee 1 Coh3AytDAsALYE T (A1A)-A5)} (89)
where Det = A.A,A. - A%A_ - AZA ' (90)
18485 - BAxAg - A3Ay
A =P -P_+Q
Ay = Py
d
Ay =P, - P,
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a° L2

2
hs = TRy = Bp) + Q f- + KgF =5

2.8 Amplitudes of Deflections of Columns with Hinged Ends,
n=1,2,3,...

For columns with both ends hinged the displacements u, v

and ¢ are represented by Eqs. (29) of Section 2.4, These equa-

tions are:
u=C sinEEE (29a)
n L . :
v=0D sinaﬂé (29b)
n L
¢ = E singﬁg (29¢)
n L

It has been suggested(17) that for a conservative estimate
of the additional deflections, the pattern of initial deflec-
tions along the length of the column 1s assumed affine to the
buckling shape of the perfect column; therefore the initial im-

perfections u_, v

o o and ¢o may be represented by the following

functions:

u, = C sin=g— (90a)
Z

v, = D sinff~ (90Db)
Z

0o = EgsiniL- (90¢)

Following the method of solution of Section 2.7A.1, equa-
tions of the amplitudes of deflections are derived by consider-
ing the energy expressions glven by Eqd. (66) and (79), and the
displacement functions given by Eqs. (29) and (90). The cases

of channel and zee-sections braced on one side or on both sides
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are considered and the result is given in the following sec-
tions.

y? ny and P¢
following equations are given by Egs. (36). Note that n is in-

In general, the parameters Px’ P used in the
cluded in these equations.

2.8.1 Amplitudes of Deflections of a Channel Section Braced on
Both Sides (Hinged Ends)

P_
C; = 5o {(P ~P_)[r2(P,-P )+QE—+E§ £§] (Px_)°} (91)

P 2 2
= r 2 a" F L _
D, = ﬁEFT(Py—Pr+Q) [ro(P¢-Pr)+QH_+n2 Tr2](Do ono)

-P_x (roEo K;0%005 ) (92)

P
. _r 2
By = pap(Py~P+Q){(Py~P ) (riE,~x D )-P x (D -x E )} (93)

_ 2 . F L2 21 (qy
Det = (Py-Pr+Q){(PX-Pr)[rO(P¢—PI’)+QT‘_—+? ;—E]-(Prxo) } (9 )

2.8.2 Amplitudes of Deflections of a Z-sectlon Braced on Both
Sides (Hinged Ends)

P F L2
C) = paplra(Py-P )+Q1;—+—2- 25100, (P, =Py ) D Py ] (95)
P d2 F L2
D, = Det-[r (Py- r)+QE_+;§ ;§J[D0(Py-Pr+Q)'CoPXy] (96)
2
PE T
Ey = —5og2l(Py-P +Q) (P,~P )-PZ ] (97)
a°.F L°
where Det = [(P -P +Q)(P P ) P ][r (P r)+QH—+—§ —71 (98)
nc 7w
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2.8.3 Amplitudes of Deflections of Channel Sections Braced on
One Side (Hinged Ends)

P
r 2 2
¢, = EEET{CO(ABAS'AN)+A4A2(Do-ono)-A3A2(roEo'xoDo)} (99)
D, = —EE—{C AyA,+(A A +A2)(D -x E )-A A, (r°E -x D )} (100)
1 ~ Det.to™472 *7175 772 o %070’ 174 0T0 T070
P

Ey = et {-Cohohg-A1Ay (D =X E ) +A Ag(r E -x D)} (101)

where - Det = A;(AzA; - A - A3A§ (102)
A =P, - P+ Q
A, = -0
Ay =P, - P,
Ah = Prxo
2 2

2 d F L
A5=ro(P¢-Pr)+Qn—+n7;-2—

2.8.4 Amplitudes of Deflections of Z-section Braced on One .
Side (Hinged Ends)

P
r 2
c, = EEET{CoAuAS-DOAzAS-Eor°A3Au} (103)
= L [_ _al 2

Dy Det.{ C0A2A5+DO(A1A5 A3)+EoroA2A3} (104)

E, = -EE—{-C ALA,+D A_A+E 12 (A.A,-A2
1 ™ Dot 1 CoA3AytD AzATE r (A A, -A5) ) (105)

where Det = ALA,A. - ASA_ - A°A

184R5 = RoAg = A3hy (106)



A. =P -P_+ Q

Ay = PX - Pr

2 2
_ 2 a° . F L
AS B ro(P¢ - Pr) +Qg— 4 n2 72

2.9 Summary of the Governing Equations of a Perfect Column

The followlng summarizes the governing equations for the
four cases considered in the present investigation. These
equations are obtained as speclal cases from the general solu-
tion which 1is based on assumed displacements represented by

I) n=1,2,3,...

II) n

1
I) GOVERNING EQUATIONS (n = 1,2,3,...)

The following equations are valid for cblumns with hinged

ends only, where Px’ Py, ny,

1) Channel sections braced on both sides

P¢ are given by Egs. (36).

P =P, +Q (44)

> L2 2

2 2
2, 2 2 2 da . F 2 d“ F L _
P (ro-xo)-P(ron+roP¢+Q—H+n7 ';2‘)+Px(roP¢+er‘+n—2 “—2) =0 (145)

P.p is the smallest value of P obtained from Eq. (44) or

from Eq. (45) by choosing n which minimizes the resulting

. roots.
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2) Z-sections braced on both sides

Pcr 1s the smallest root obtalned from the following equa-

tion,

2

2
P° - P(Px + Py + Q) + (PxPy + PxQ - P% )

xy) = 0 (48)

3) Channel section braced on one side

Pcr i1s the smallest root of the following equarvion provid-

ed that n 1s chosen to minimize these roots:

2 2
3,.2 .2 2r. 2 2 d . F 2
P (ro-xo)-P [ron+r0P¢+QE—+;§ —§+ P +Q)(r xo)

2 2 2
2, ,4°F L 2 a°.F L )2
+P[Px(roP¢+QE—+;§ ;§)+(Py+Q)(ron+r P +Qn_+_§ _§ - 5) ]
2
d F L di2
~(Py+Q)[P, (r P, *apy PR (apT = 0 (50)

T

4) Z-sections braced on one side

Pcr is the smallest root of the foilowing equation provid-

ed that n 1s chosen to minimize these roots:

2

2
3_p2 1 d5,F L 52
p--Pp [(Px+Py+Q+r§(QE—+;§ ;§)J+P{(Py+Q)Px ny

2 2
1 d",F L d.2
+(Py+Q+Px)[P¢+;§(QE-+;§ ;5)]-(Q§) }-[Py+Q)Px

-p% I[P +is 2(ca,4—+ . L2)3+ 22 (@5)% = 0 (52)
O
II) GOVERNING EQUATIONS (n = 1)

The followlng equations are valid for columns with general
end conditions (Table 1) where P> Py, ny, P¢ are given by
Eqs- (55)'
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1) Channel sections braced on both sides

P.p 1s the smallest value of P obtailned from the following

two equations:
P=P_ +Q (56)

5 o 2 2 2

P (r2-K3x2)-P(rlp +r2p +QE—+K8F Lo)+p_(rZp +Q%—+K8F%§)= 0 (57)

2) Z-sections braced on both sides

Pcr is the smallest root of the quadratic equation,

2

2y =
P* - P(P, + P, + Q) + (PP +PQ-P, ) =0 (59)

y X Xy

3) Channel sections braced on one side

Pcr 1s the smallest root of the cubic equation,

2

2
2p +Q%—+K8F%§+(Py+Q)(ri-K%xg)

P (r 7xo) -p2 [r P +ry

2 2

+P[P_(r2P +QE—+K8F £5)+ (P 4Q) (r2P, 472 +QE—+K8F £y (ka2

2 2
2 d L d\2 _
'-Px(Py+Q)(roP¢+QE—+K8F;§)+PX(K6Q§) = 0 (63)

4) Z-sections braced on one side

P.p is the smallest root of the cubic equation,

3
P2-p [P +Py+P¢+Q+ (QE—+K8F——JJ
O

+P{(P +Q)P, -P g+ (P +Q+P [P +=5 2(QE‘+K8F )]-—g)KGQ—) %)
O

~[(Py+Q)P,-P 1P +—§(Qr+K8F~§)J+7P (K@D =0 (64)

0



Chapter 3
CHECKING THE THEORETICAL RESULTS

This chapter serves two purposes:

1) To check the validity of the stabllity equations for
speclal cases of known solutions by Timoshenko in which con-
straints are imposed on some components of the generalized dis-
p lacements. A

2) To clarify any possible misconception when uéing the
stabllity equations to derlve solutlons of special cases, so
that a correct and well-conditioned mathematical model of the
structure exists.

3.1 General

The previous chapter presents the theory and the general
equations of stability (35, 38, 54 and 62) from which governing
equations of specific cases are derived. At that stage, it was
not necessary to involve the reader 1ln detalls of the potential
energy concepts and how a special case must be conditioned so
that the solution can be derived from the general formulas.

Despite the limited size of published information about
these detalls it 1s scattered in many references and most of it
is not related to the subject matter. The method of solution
derived in this chapter 1s assembled from more than one source;
it 1s inevitably indebted to all other sources, the work by

(35) (36) (37)

Gallagher , Green and Rubenstein

having principal
aid.

62
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3.2 Constraints

In our case constraints are induced on the system by lim-
iting the freedom of sections between the column end to undergo
displacements or rotation. Typlcal examples would be the cases
of fixed axlis of rotation and prescribed plane of deflection.

Such constraints result from relationships among displacements

which can always be presented by constraint equations. If con-

straint exists, these equations will relate not only the dis-
placements involved but also the force components.

Equations (35) and (54), and (38) and (62), or (68) and
(80) with initial imperfections, have been derived for a column
of general cross-section braced on both sides or on one side,
respectlively. On deriving these equations generélized dis-
placements u, v, ¢ were considered. Therefore these general
solutions are directly applicable to cases in which the three
displacements are possible. Hence, the solutlion of a special
case 1s possible by direct substitution for the geometric terms
appearing in the general solution, those belonging to the par-

ticular column cross-section. However, if any of these dis-

placements u, v, ¢ are restrained then direct solution"from the

general formulas 1s not possible without pre-conditioning of

the case under conslideration.

3.3 Effect of Constraint on the Energy Solution

In general two main steps are involved in the energy solu-
tion. The first step is to derive the expression of the total
potentlal energy which 1s a quadratic form in the displace-

ments. The second step is to minimize the energy expression by
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differentiating. Hence we start with a quadratic form and end
with a linear one. It is now apparent that application of the |
constraints to the energy expression before differentlating
will enable the minimization of the actual energy of the system
and hence a correct answer can be obtained. However, 1f the
constraints are appllied after differentiating, a false answer
1s expected. Further explanation of this reasoning 1ls given by
Gallagher(35) in Fig. 12. The line AB represents a constraint
and the curve ABC represents the potential energy. Clearly the
constraint prevents the minimum from occurring at the point
predicted by first variation Hp.

It is 1mportant to note that the above concluslon does not
apply for systems in which u, v and ¢ may occur independently,
that is, uncoupled. For example, the three buckling modes,
about the y-axis, about the x-axis and twist, of an I-section
column braéed on both sides with shear diaphragms are uncoupled
and u, v and occur independently. If oné or more of these
displacements are limited to zero, then by definition, there is
no constraint, since relation between the displacements does
not exist. Thus the general solution can be used directly.

3.4 Methods of Solution

Two methods of solution are possible:

1) A direct solution 1s to introduce these constraints in
the energy expression before differentiating, so that the soly-
tion to a specific problem may be obtained.

2) A short cut to the solution of a special case may be

obtained from the general solution (no constraints) by trans-
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formation of coordinates and condensation of the original ma-
trix. The term condensation refers here to the contraction in
slze of a system of equations by elimination of certain degree;
of freedom.

The first method of solution has been used extensively in
Chapter 2, hence no reference to 1t will be included in this
chapter. The second method will be explained in detail and
more than one example will be solved for illustration.

3.5 Solution by Matrix Condensation

Consider the general solution with initial imperfection,

given by Egs. (68) or (80) in matrix notations. Then
[D1{a} = {PaA_} (107)

where {A} 1s the generallized displacement vector
{2} is the initial lmperfection, scalar

Now certain constraints are imposed on a group of the displace-
ments {A} and it 1s required to derive the condensed matrix [D]
after including the effect of these constraints. This requires
transformation of the degrees of freedom and in order to devel-
op such transformation, we divide the degrees of freedom into
two groups, {Al} and {A2}, where {Al} is the constrained part.

Hence by partitioning of Eq. (107), then

D, 1D A [P A
[__l_]:.:_-.l_z- -——].'..i\'z -_.._0}1 (108)
Doy Daa. by KP2A02

As has been defined in Section 3.2,_constraints result

from relationships among displacements; hence introducing the
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equations of constraints, then
A .
(G, G J[ 11>= {0} (109)

where [Gl] and £G2] are geometric terms relating {Al} to {AZ}’
Solving Eq. (109) for {Al}, then

-1
{a,}= -[c6,]1 "[G,1{s;}) (110)

Nothing that {A2} = [I]{Az}, then we can write the following

transformation equation,

| -1
‘a) [-o7tc
{-.1.} ) -_JL__E.}{A?_} (111)

A2 I
Ay |
or = [T1{a,} (112)
\, A2
. -Gile
where the transformation matrix [T] = |--=--% (113)
I

The intent is to remove these degrees of freedom {Al} from
the potential energy, from which Eq. (107) is derived, by the
use of a condensation scheme. The potential energy in parti-

tioning form 15(35):

Dy, | D A jP A
= 1 11! 712 1\ _ 1°%01
o =3l 2y |7 W Baig sy )

Doy 1 D2z j 2 2802

Substituting Eq. (112) into Eq. (114), and then minimizing I
P
by differentiating with respect to {4,}, and then equating the

result to zero,
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[D1{a,} = [T17(Pa_} (115)
with {51 = {?17(DILT] (116)
In Eq. (113), let  -[G,17'[a,] = [T] (117)

Then the equality takes the form

T T

D=TrT Dllr + T'D + D21P + D2 (118)

12 2

which 1is the condensed matrix after imposing the constraints.

It should be noted that if the initial imperfections AO in
Eq. (80) of Section 2.7B.1l, from which Eg. (115) is derived,
are equated to zero than the resulting equation 1s identical to
the general solution without imperfectlion, Eq. (62), Section
2.6B. In other words the [D] matrix 1is the same. Hence, if in
Eq. (115), 8, = 0, then

[D1{a,} = 0 (118a)

is a valid transformation of Eq. (62), with [D] as given by Eq.
(118). |

Application of this method to two examples of constraints
is presented 1in the next sectlion.

3.6 Verification of the Stabllity Equation

In this section specilal cases of known solutions(B) are
derived from the stabllity equations to examine their validity.
The solution of these cases given in Chapter 2 is not known in
the exlsting literature; however, Timoshenko(3) derived solu-

tions of different cases with constraints. His solutions are
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derived for each case based on.equilibrium considerations.

Only the general solution, Eq. (62), of columns braced on
one slde 1is considered since unsymmetrical sectlons braced on
both sides have no similarity with any existing information.
However, in Section 2.4A.6, it is shown that the solution(l3)
of a symmetrical I-section braced on both sides can be derived
from the general solution, Eq. (54). Also in Section 2.4B.1 it
is found that by substituting Q = F = 0 into Eq. (39), then the
resulting expression 1s valid for unbraced sections and the re-
sults are compared to some known solutions.

In the following section cases with constraints solved by

(3)

Timoshenko are compared with solutions from the general so-
lution (Egs. 35, 62) by the method of condensation explained in
Section 3.5.

3.6.1 Bar with a Prescribed Plane of Deflection(3)

In Ref. 3, top of p. 244, the following two equations are
given (notations are changed for the purpose of comparison).

These are:
(B, - B)D; - [Py (y, = b)) - P, JE; = 0 (119)

2 2,5.2 o2
(-ny(yo-hy)+Pxo)D1+[ro(P¢-P)+Py(yo-hy) +Pyo-Phy]E1- 0 (120)

The following 1s considered in deriving these equations:
k¢ =0 (121)

uN =u + (yo - hy)¢ = ( (122)
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Now it will be shown that Egqs. (119) and (120) can be derived
as a speclal case of the general solution equation (62). By

virtue of Egs. (121) and (122), Q = F = 0; also K, = K

l 2=K3..I
= K8 = 1.0, since the case considered is for a hinged end col-

umn. Therefore Eq. (62) takes the form

(P -PIP Py | (c;)
y I T Xy o 1
S S -
|
I p _ -
Pyy | PyP Px, { Dy ? 0 (123)
|
|
' p 2(p _P) E
L_Pyo | ¥ ¥4 Tolte™"/) \ "1

From Eq. (122), the constraint equation is:

Cy

0 (y,-hy) XD} = {0}
E

[1

-— -

| 1
Then [61] = 1] and [G2] = [0 (yo-hy)].

From Eq. (117),
[rl = -[6;17%(6,]
then [r] = (0 -(y,~h,)] (124)

From Eqs. (118) and (123),

—~ -

0 0
PTDllT = (125)
2

(By~P) (yo-hy)

- -~

o
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o} 0
T =
r D12 (126)
E-ny(yo-hy) Pyo(yo-hy{
0 -ny(yo-hy)
D,y T = (127)
f Pyo(yo—hy)J
' - -
rx-P PxO
Dy, = (128)
2 .
L Pxo ro(P¢-P)
By Eq. (118),
D=TYD..T +I'D.. + D..T + D

11 12 21 22

Then adding Eqs. (125) and (128), and substituting for D in Eq.
(118a) gives

P _-P Pxo—ny(yo-hy) | D

[}
o

P 2 2 2
Pxo—ny(yo-hy) ro(P¢-P)+Py(yo-hy) _+Py0-Phy Eq

which 1s identical to Equations 119 and 120 of Timoshenko.
3.6.2 Bar with Prescribed Axis of Rotation

Reference 3, p. 240, Equation (5-56):
The critical buckling load of a hinged end column is de-
rived, based on the following:

ky =k, =0 | (129)



X, =¥, = 0 (130)
u + (yo - hy)¢ =0 (131a)
v-(x,-h)¢e =0 (131b)

Adopting our notation, Eq. (5-56)(3) is written in the form

2
2 2 2 F L
Pyhy + thx + I'OP¢ + 7 —2—
P = 3 ) > L LI (132)
cr
hx + hy + ry

Using the general solution equation (38) and the method out-
lined in Section 3.5, it will be shown that solutions typical
of Eq. (132) can be obtained.

By the virtue of Eq. (129) all terms of Q in Eq. (38) van-
ish; also Egs. (131) imply that the constraints are applied to
the components u and v. Hence for a hinged end column, Eq.

(38) takes the form

Py-P ny : 0 C1
I
!
Pyy  Ex7P 0 Dy > = 0 (133)
B -
! 2
i 2 F L
L © 0 | 7By B) 5 23] (B
| n i

D, s = {0}
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Hence [Gl] = and [G2] = y

From Eq. (117)

*3
|

= -6, 176 = | Y (134)

Then, from Eqs. (133) and (134),

T
I'Dy4T [(P P)ny PoyPxy~PyyPyly*Py P)h ] (135)
T =
r'Dy, =0 (136)
Dyl = 0 . (137)
D = 2(P P) + F_ EE
22 T Tolby - 2.2 (138)

Then by Eq. (118)

= .7 T

Adding Egs. (135) and (138), and substituting for D in Egq.
(118a) gives:

2
+0 L
[(P P)h nyhxhy nyhxhy+(P P)h +r (P -P) -3-—5}{E1} = {0}
. (139)
For a bar with two pianes of symmetry(3), Ixy = 0, that is,
ny = 0. For nontrivial solutions, the coefficients of El in

Eq. (139) must vanish. Then

2
2 2 2 F L
(P, - P)hg + (P, - P)hy + ro(Py = P) + i 0

=
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2 2
+
P._h P hx

cr h

+ roP¢ + —

+h}2(+r2

L (140)

Hence P

<K

Equation (140), derived from the general solution, is identical

to Eq. (132) of Timoshenko.



Chapter U4
DESIGN SIMPLIFICATION OF THE GOVERNING EQUATIONS

4,1 General |

The governing equations of channel~and zee-section columns
braced with diaphragms, as presented in Chapter 2, are too in-
volved for design use, especlally in the case of wall studs,
with which the present investigation is concerned. Therefore
an attempt 1s made to develop practical means for checking the
critical buckling load of these cases. This chapter gives the
results of this effort tc simplify the use of these governing
equations as well as a 1ist of the methods used and comments on
their applicability and efficiency, so that a record of the
present state of knowledge will be available 1f future consid-
eration of the problem should arise.

Two approaches were considered to develop simple design
methods. These are: |

1) Reducing the gquadratic and cubilc governing equations
to linear approximate formulas within practical levels of ap-
proximation.

2) Preparing design charts to serve as design aids within
practical ranges of the varying parameters involved.

By using the first approach, 1t was possible to obtain ap-
proximate formulas that give buckling loads within practical
accuracy for sections braced on both sldes. For sections
braced on one slde, more than one method has been used to de-

rive several approximate formulas. However, none of these

T4
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formulas yleld acceptable approximate values of the buckling
load. The loads obtained did not have any regular pattern; be-
sides, unconservative values have been obtained 1n some cases.
Therefore the use of the exact governing equatlions 1s recom-
mended. In fact, once the various parameters (Px’ Py, ny, P¢)
are calculated for a particular case, then solving the result-
ing cublc equation for the smallest root only is not a diffi-
cult problem, even without electronic computational facility.
Numerical analysis methods offer several techniques to simplify
the solution(ul’sl).

4.2 Higher Buckling Modes

It has been shown in Ref. 3 that bars with enforced axes
of rotation or on an elastic foundation may buckle in a higher
buckling mode, that 1is, buckle into a number of n half-sine
waves, where n = 1,2,3... . Such a conclusion does not apply

to the case of I-sectlion columns with two-sided shear-type

bracing, as can be seen from Eq. (32)(13):
2.2
n“n~EI
P =_—Z+Q
cr L2

Obviously, the lowest value of Pcr 1s obtained for n = 1, re-
gardless of the relative stiffness of the column and the dia-
phragm. However, if twisting 1is 1lnvolved in the failure mode,
then the number of half-sinz waves depends on the relative mag-
nitude of the flexural (and torsional) rigidity of the column,
the shear rigidity and the rotational restraint of the dia-
phragm. These parameters are considered in a numerical inves-

tigation to examine the validity of higher buckling modes. The



76

variations of these parameters are chosen within the practical
range of wall studs construction. The followlng gives a summa-
ry as well as the results of considering such variations.

a) Studs braced on both sides

1) n=1,2,...10
2) For channel sections Q@ = 0, 10, 20, ... 100
F=0.0, 0,01, 0.02, ... 0.2
3) For zee-sections Q = 0, 10, 20, ... 200
(F does not influence the behavior cf the column)
4) L = 8, 12, 16 feet
Practical values of Q@ and F do not exceed 90 and 0.08, re-
spectively. Sections were chosen at random to cover the range
from 2% to 6" sections, with form factors equal to or less than

1.0.

b) Studs braced on one side

1) n was considered up to 10 and then reduced to.n = 1,2,
- fo save on the computational expenses, since higher buck-
ling modes result by examining the first five terms. Also,
values of Q considered herein differ from those considered in
the above case (a), since it has been found that higher buck-
ling modes are more likely to occur with comblnations of small
values of Q and large values of F.

2) Q =0, 20, ... 80 and

F=10.0, 0.05, ... 0.2
3) L =8, 12, 16 feet
From the numerical investigation the following has been

concluded:
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1) For zee-sections braced on both sides, n ~ 1 gives the
lowest buckling mode.

2) For channel sections braced on both sigef. higher
_ buckling modes occur only for combinations of verY low valuyes
of Q and high values of F; for example, for a 6" chgnnel 16-
gage without lips, the higher buckling mode of 1,007 times the
buckling mode corresponding to n = 1 for values of Q and F
equal to 10 and 0.08, respectively. Such combinaflons of Q and
F are not realistic for commonly used diaphragms. Sectiong
with form factor equal to 1.0 (sections with small depths) do
not show any tendency to buckle in a higher mode.

3) For sections braced on one side, the high®p buckling
mode governs in some cases. The ratio of the high®py buckling
mode to the buckling mode corresponding ton = 1 €an be as low
as 0.5 in some cases.

Hence 1t 1is concludea that within practical llpits of Q
and F higher buckling modes are not likely to occUd for styds
braced on both sides; therefore the governing equations a8 well
as the additional deflections equations, deriveq 1N Chapter 2
by considering n = 1, are valld and will be consjidQped in tnis
chapter.

However, in the cases of sections braced on 9Ne side, the
possibility of higher buckling modes should be inV@gtigated.
The choice of the values of n to be tested depend® on hoW ac-~
curate the result should be.

4.3 Approximate Formulas

It was possible to obtain approximate linear Tormulas for
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the exact governing equations.(57) and (59) of channel and zee-
sections, respectively. In addition, simple formulas for the
torsional-flexural buckling of unbraced singly symmetrical sec-
tions(38) and unbraced zee-sections (Eq. 60) are introduced.

The following lists the method used in the attempts to
simplify the exact solutions as well as the variables consid-
ered to check the numerical accuracy of the approximate formu-
las. Finally, the proposed formulas are listed together with
comparison of the approxlimate to exact loads.

4.3.1 Methods Used to Obtain Approximate Formulas

Appendix 2 includes a brief description and comments on
the effilciency of each method. Herein they are listed accord-
ing to their appiicability to the cases under conéideration:

1) Newton-Raphson method

2) Secant method for polynomial roots

3) Binomial expansion

4) Approximation by a piecewise linear function

5) Negligible terms of quadratics and cubics

6) Method of split rigidity

7) Comparing the behavior of sections braced on both

sldes with those braced on one side

4,3.2 List of Variables

\

The approximate formulas give the buckling load in terms

of the parameters Px, P ny, P¢, Q and F. 1In order to numer-

y,
ically check the accuracy of the formulas, these parameters
have been varied to cover a wide range of wall stud cdnstruc-

tions. These ranges are:
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1) Stud length L, varies from 8'-0" to 16'-0"

2) Diaphragm characterlistics Q and F

Q varies from 0.0 to 100.0 kips
F varies from 0.0 to 0.100 k.in/in.rad.
Practical values of Q are in the range of 8 to 90 kips
while for F the range is from 0.015 to 0.080 kips-in/in-rad.

3) Stud cross-section

Standard section, with and without 1lips, listed in the
AISI Manual(us) and manufacturers' catalogues are considered.
Depths of sections vary from 2" to 8". Material thicknesses
considered are 0.036", 0.048", 0.06", 0.075" and 0.105". The
following gives the number of different sections examined in
each of the fcllowing cases:

a) 52 channel sections braced on both sides

b) 32 zee-sections braced on both sides

¢) 4 channel sections braced on one side

d) 4 zee-sections braced on one side

e) 52 channel sections with NO BRACING .

4) Column end conditions

It has been suggested that the case of a column with both
ends hinged would be satisfactory, since it represents to a
great extent the actual end conditions of the stud in that type
of construction. Also, the calculated buckling load will be on
the conservatlve side.

4.3.3 L4Lpproximate Formulas

The result of simplifying the governing equations yields

approximate formulas expressing the buckllng load of the column
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in terms of known parameters. These formulas are not meant to
replace the original governing equations, but are made up only
to simplify the design approach within acceptable ranges of ap-
proximation. Whenever :accurate results are necessary the use
of the governing equations 1s recommended. The accuracy of the
formulas was checked by comparing the buckling load thus deter-
mined to the buckling load obtained from the exact governing
equation. All numerical computations were done on an IBM
360/65 system at the Cornell Computing Center.

4.3.4 Channel Sections Braced on Both Sides

The exact buckling load is the smallest value of P ob-
talned from Egs. (56) and (57). Equation (56) is already sim-
ple and by using Newton's method, an approximate value of the

smallest root of Eq. (57) 1s given by the following formula:

P'

P=P'+ FFpT (141)
P'k
where P! = PxPJ)/(Px + Pé) (141a)
2 2
_ 1,4 L® :
Py = Py + I-.—?-(Q — *+F 1T2) | (Z41b)
o
2
X5
k=1--— - (1h41c)
: r,

Equation (141) represents the torsional-flexural buckling mode,

The flexural mode alone is given by Eq. (56) as

P=P +Q (56)

Hence the approximate value of the critical buckling load is
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the smallest value of P calculated from Egs. (56) and (141).
The accuracy of the formula was checked numerically by calcu-
lating the buckling lcad of columns varying in length, cross-
section and diaphragm characteristics within the 1list of vari-
ables of Section 4.3.2. The numerical computations show that
the ratios of the approximate to exact values of P range be-
tween 1.0 and 0.939; meanwhile, all values of P are on the con-
servative side.

4.,3.5 Zee-sections Braced on Both Sides

The exact critical buckling load 1s given by the smallest
root of the quadratic equation (59). Using Newton's method to
find the smallest root of that equation, the followling approxi-

mate expression has been obtained:

1
P = P + P' 1 + (142)
cr vyl ‘ le-P l+Q s
Pl
Q(PX - Pyl)

where P' =
le - Pyl + Q

and le, Pyl are the Euler buckling lcads about the minimum ax-
es of inertla, respectively. The numerical computations of
sections listed in the AISI Manual(us) show that the ratios of
PAPRX/PEXACT range from 1.0 to 0.922. No zee-sections were
listed in any of the manufacturers' catalogues. It seems that
zee-sections are not commonly used as wall studs. However,
made up sections of the same dimensions as the channel sections
listed 1n the catalogues were used to check the accuracy of the
approximate formulas. The ratios of PAPRX/PEXACT range between
1.0 and 0.892, except for some studs 8'-0" long and with Q =
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80.0 kips, the range 1s between 1.0 and 0.84,

4,3.6 Torsional-Flexural Buckling of Singly Symmetrical
Sections Without Bracing

The torsional-flexural buckling load of unbraced channel
sections 1s given in Ref. 38 by the smallest root of a quadrat-
ic equation (see Eq. 143). It has been found that the critical
buckling load can be obtalned by simple formulas which proved

to yiéld good approximation.
Applying Newton's method to find the smallest root of the

»xact equation(38),
x2
p2(1 - —2) - P(P, + P.) + P.P. = 0 (143)
r2 ¢ X X" ¢ 3
Q

tl2 following formulas then give the approximate values of Pcr:

P - P |
Pcr = 5 for P, 2 P¢ (1443a)
(2% - 1.0) - 52
X
P¢K3 - P, ‘
and Pop = B for P¢ > P, (144p)
(2k° - 1.0) - =
¢

wher K = 1 - (xg/rg).

The accuracy bf the approximate solution has been checked
numer.cally for 50 different channel sections and colum lengths
varying from 8'-0" to 16'-0". The range of ratios of the ap-
proximate to the exact loads 1s between 1.0 and 0.962 while
most of the ratios are very close to 1.0.

4.4 Solution of the Governing Equations bi,Desigh Charts

The calculations of the buckling loads of a column braceq’

with diaphragms from the governing equations (57), (59), (63)
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and (64) require that the buckling loads of the unbraced column

(p Py, P P¢) should be known beforehand. Then Pcr is ob-

x? Xy?
tained by solving the resulting quadratic or cubic equation.
Such computatlions for unsymmetrical sections are tedious and
liable to errors arising from imporper transcribing of the num-
bers.used. Therefore a graphical solution of the algebraic
equations would be desirable.

Pek6z(3u) proposed charts to faclilitate the computation of
P., of unbraced channel sectlon columns. It is possible to ex-
tend the idea to prepare charts for the followlng two cases of
wall studs:

l) Channels braced with diaphragms on both sides

2) Zees braced with diaphragms on both sides

In regard to sections braced on one side only, the graphi-
cal solution seems to be impractical and would be impossible 1f
the same approach considered for two sided bracing is applied
because:

a) It 1s not possible to express P, explicitly as a

r

function of the varying parameters (P,, P, ...) since the gov-

y
erning equation 1s cublc and such a step 1s necessary, as will
be seen In the solution of the case of two sided bracing.

b) The presence of six parameters (Px’ P P P¢, Q and

y* Txy?
F) in addition to the possibllity of higher buckling modes (n =
1,2,3...) and the geometric parameters (rg and xg) would make
it impractical to prepare charts since several charts should be
avallable before the critical buckling load can be obtained.

Design tables would also face the same obstacle. Therefore the
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use of the governing equations 1s recommended.

4,4.1 Design Charts for Channel Sections Braced on Both Sides

The governing equation (57) for hinged end columns takes

the form:
x2
P2(1 -—3)-P[P_+P otz 2(QH—+F 2)J+P (P +QE—+F——) =0  (145)
ro '
2 2
_ 1 d L
Let Py =Py + ;g(Q — +F ;g) | (146)
o
2
%
and K=1--—% (147)
To
Then the smallest root of Eq. (145) is given by the quadratic
form:
(P, + P,) - [(P + P')2 quPéK]l/z
P = 5%
Introduce the dimensionless parameter
P'
R =32 ~ (148)
X
Then P=p (281 .- 1 - —2RE 4172,
X
: (1 + R)
1 + 1+R Y4RK ,1/2
Let = ()1 - {1 -« ————— 14
{ (1 + R)g} (149)

¢ 1s a functlon of the dimensionless parameters K and R. Hence

P = an (150)

The plots of X vs. b/a and ¢/a shown in Fig. 14 lead to the 4i-
rect determination of a from the values of R given by Eq.

(148), b/a and c/a. Therefore the smallest root of Eq. (57)
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can be determined from Eq. (150) and the known a. Hence the
critical buckling load Pcr 1s the smallest value of P obtained
from Eq. (150) and P = Py + Q. (56)

4.,4.2 Design Charts for Zee-sections Braced on Both Sides

The critical buckling load Pcr is given by the smallest

root of the governing equation (59), hence

2
P. +P_ + Q L(p.P_ + P Q - P2 ) 1/2
Por = > 2y [1-1{1- xéy ¥ Px T Q A} J (151)
x y
Let P§ = Py + Q {152)
P!
R = s% (153)
X
Px 2
and K = (F—l) (154)
X

K can be expressed in terms of the dimensionless parameters
¢/a, b/a since K = Ixy/Ix"
Substitution of Egs. (152), (153) and (154) into Eq. (151)

yields
P = p (LtByy o f1 - MR- K)y1/2,
cr X P (1 + R)§
Let a = (3B - {1 - HE=K)j1/2 (155)
(1 + R)
Then P.p = Pia (156)

The plot of K vs. b/a and ¢/a shown in Fig. 15 leads to
the direct determination of o from the values of R given by Eq.

(153), b/a and c/a. Thersfore P,, can be obtained by Eq. (156).
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4,5 Summary of Simplified Equations and Graphical Aid for
Design Use

-A summary of approximate formulas that, 1n the writer's
opinion, are practically accurate and simple to use are given
in this section.

These formulas have been numerically examined over a wide
range of various cross-sectlions, stud lengths and diaphragm
properties. Unfortunately, desplte the several attempts to
simplify the unwieldy cubic equations, no satisfactory approxi-
mation has been achileved.

It should be noted that the proposed charts are for the
boundary conditions u" = v = ¢" = 0 at both ends. However,
they can be easily extended to other different boundary condi-
tions by using the sultable Ki factors listed 1n Table 1 in the
basic equations (145) and (151).

The fol;owing lists the proposed approximate formulas:

1) Channel sections braced on both sides:

1
P=pP'[1+ P_¥P] ] (141)
PR~ °
2) Zee-sections braced on both sides
| 1
P = P + P'[1 + —5 ] 142
cr yl P 1-P 1% . (142)

P'

3) Torsional-flexural buckling of unbraced singly symmet-

ric sections

PXK3 - P,
Pcr = » Eg for Px > P (1443)
2K" - 1.0 - B
X




and P

¢ X
op " P, for P¢ > Py (144p)
2K™ - 1.0 - =

As an alternative to Egs. (145) and (151), design charts are
proposed for channel and zee-sectlons braced on both sides and
are plotted on Figs. 14 and 15, respectively.

For channel and zee-sectlons braced on one side, direct
solution of the cubic equations (63 and 64) seems to be the on-

ly possible method, ard is simple by computer subroutines.



Chapter 5
EXPERIMENTAL VERIFICATION OF THEORY

5.1 General

The purpose of this phase of the investigation 1s to verl-
fy experimentally the theoretically predicted failure loads de-
veloped in Chapter 2. Tests were conducted on a total of 11
double-~column assemblies with diaphragms on one or both sides.
The stud sections used in the tests and sketches of the test
assemblies are shown in Table 4 and Fig. 18, respectively. A
variety of wallboard materials were utilized in the testing
program. They were tested separately to determine experimentally
their shear and restraint characteristics. All spuds were 12'-0"
high, concentrically loaded and free to rotate about an axils
parallel to the web whiie rotation was restralilned about the
centroildal axls perpendicular to the web. Rotation of the end
sections about the column center line was restrained. Test
results as well as the predicted failure loads of all assemblies
are presented in Table 3, and Figs. 24 to 28. Predicted “ailure
loads are based onu =v = ¢ = u" = y' = @' = 0 at each ehd
consistent with the testing end conditions. Measured initial
imperfections were used in computing displacements.

5.2 Materials Used

Steel Studs: Section type A listed in Table 4 is a 16-gage
standard section commonly used in wall stud construction. A1l
other sections listed are cold-formed from l2-gage hot-rolled
sheets by a local fabricating company, according to pre-designed

cross-sectional dimensions.

88
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Types of Fasteners: Self-drilling, number 6, bugle head,

1" long, dry-wall screws were used in all tests. Spacing of
the screws was selected so that an expected diaphragm shear
stiffness could be obtained.

Wall Materials: The following lists the various types of

wallboards used in the testing program.
l) 5/8" GYP. Boards
2) 3/8" GYP. Boards
3) 1/2" Homosote
4y 1/2" Celotex
5) 1/2" Impregnated Celotex
6) 1/2" Heavy Impregnated Celotex

5.3 Material Properties

Tests performed to determine the diaphragm characteristics
as well as the mechanical properties of the steel stud are de-
scribed in the following sections.

5.3.1 Diaphragm Shear Stiffness G' and Shear Strength Y4

These quantities can be computed from the load-deflection
curve obtained from a cantilever shear diaphragm test as de-
scribed in the procedure of testing light gage steel diaphragms
in shear (Ref. U8). The test set-up is shown in Fig. 21. The
frame was made of l2-gage steel stud sectlons and was used for
| all tests. Centerline size of the frame was 24" x 24". The
pinned connections of the frame members offered no resistance
to frame deformations prior to attaching the wallboard. The

diaphragms were fastened to the frame members with 1" long
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self-drilling screws spaced at the same spacing used in the
stud assembly. Loads were applied in increments and deflec-
tions in the plane of the diaphragm were measured. The dia-

phragm shear deflection A is given by

= - a
& =D3 - [Dy +5 (D, + D]
where D, D,, D3, D, are the readings of dials 1, 2, 3, 4, re-

spectively, while a and b are the dimensions of the frame cen-
terlines as shown in Fig. 21. The shear stiffness G' is de-

fined as:
o - 0.8Pult/b (157)
Ad7a '
where A4 is the shear deflection at O‘BPult' If the shear
stiffness G' is known, then the shear strain Y4 gilves a measure

of the strength of the dlaphragm. Shear strain Y4 is given by:
Yd = 5—' (158)

Equations (157) and (158) are used to compute the shear stiff-
ness and shear strength of the different types of wallboard ma-
terials used 1n the testing program. The computed valﬁes are
listed in Table 2. Load-deflection curves of these wallboards
are shown in Fig. 22.

In general the shear characteristics of the diaphragm de-
pend to a great extent on the fastener spacing, type of fasten-
er mechanical properties as well as dimensions of the diaphragm

and whether the diaphragm 1s fastened along two or four sides,
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5.3.2 Rotational Restraint of the Diaphragm

Detalils of the test-set-up, as shown in Fig. 20, consist
of a diaphragm fastened at one edge to a clamped stud sectlon;
the other edge was acted upon my a slowly increasing load. The
span of the cantlilever was half the distance between the studs.
In our case the cantilever spanned 12". At the edge where the
load was applied; a light stiffening timber strip was used to
obtain a uniform deflection of the free end of the diaphragm.
The fasteners were aligned at the flange centerline to simulate
the position of the fasteners in the stud assembly. Such fas-
tener location was kept the same in the tests since the fasten-

er location influences the rotational restraint of the dia-

phragm.
The total deflection Etotal of the free end of the dia-~
phragm 1is equal to:
Brotal = 8p * Bp t g (see Fig. 19)
where Ap = deflectlon due to local deformation of the diaphragm

at the fastener locatilon
A, = elastic deflection of the diaphragm due to Sending
in a beam type action
A, = deflectlon due to deformation of the flange with re-
spect to the web
It has been found from the test results that the major

part of A is mainly due to AD caused by the local deforma-

total
tion of the diaphragn. In regard to AB and As, the following

had been consldered:
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1)‘ Deflection bg due to deformation of the flange with
respect to the web was so small that i1t can be neglected with-
out considerable error. For example, in the test of %" HOMO-
SOTE BOARDS, for which the highest moment was sustalned, such

deflection at 0.8M was 0.06" while the total deflection

ult
was equal to 1.9". Such results were expected, espe-

total
cilally for wall materials used in wall-studs applications.

2) Elastic deflection were calculated by knowing experi-
mentally the value of EI of a unit width of the diaphragm ma-
terial at each stage of loading. These values of EI were ob-
tained from a simple span flexural beam test made of the dia-
phragm material.

It 1s of interest to note that in up to about 20% of the
ultimate loads in the flexural beam test of different diaphragms

behavior was elastic and the values of the elastic moduli cal-

culated for the tested diaphragms were:

1/2" Celotex E = 0.05 x 10° 1b/1n?
1/2" Impregnated Celotex E = 0.076 x 106

1/2" Homosote E = 0.09 x 106

3/8" GYP. E = 0.275 x 10°

The elastic deflections at 0.8Mult were found to be 10%,
117 and 20% of the total deflection for 1/2" Celotex, 1/2" Ho-
mosote and 3/8" GYP. boards, respectively.

Therefore, since the elastic deflection AB contributes a
small part of the total deflection Atotal’ it has been conclud-
ed that no provision to calculate the elastic deflection separ-

ately would be necessary. Instead, the measured Atotal’ which
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includes AB and AS as well, would give an accurate means for
calculating the rotatlon of the diaphragm ¢d and consequently
the rotational restraint F.

Figure 20 shows the rotation of the diaphragm vs. the ap-

plied moment where the rotational restraint F' is given by:
F' = ———== 1b.in/in.rad. (159)

where Mult is in 1lb.in/in.

$q is the angle (in radians) of rotation of the diaphragm

at 0.8M and is equal to:
ul

t’
_ “total (160)

l(Atotal

(for large values of Atotal’ ¢d = sin -_f___))’ where

A = measured deflection at the free edge of the cantilever

total
(in.)

2 = span of the cantilever (in.), £ = 12" in the tests

Values of F' and ¢q for different dlaphragm materials are listed

in Table 2. These correspond to the direction of force giving

conservative values as discussed 1n Section 2.3.3.

5.3.3 Tension Coupon Tests

Standard tenslle coupons from the web of section type A
(see Fig. 23), taken from 3 different pieces showed average
yield stress of 58.0 + 0.2 ksl and elastic modulus E = 30.0 x
103 ksi.

Tensile coupon tests taken from the hot-rolled sheets from
which all other sections are cold-formed showed an average

yield stress 53.0 + 0.4 ksi and modulus of elasticity of 29.6 x
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103 Kksi.

In both cases the proportiopal limit oy was above 70% of
the yleld stress.
5.4 Description of Tests

All test assemblies consisted of two equally loaded studs
of channel or zee-sections with wallboards on one or on both
sides.

The wallboards, forming a continuous bracing diaphragm,
were attached to the studs with 1" long self-drilling screws at
a selected spacing identical to that used in the cantilever
shear test.

A 300 kip capacity universal hydraulic testing machine was
used in all tests. The ends of each stud were welded to 3/4v%
base plates and the studs were individually supported on knife
edges parallel to the web. Each stud rested on a 50 kip capac-
ity'hydraulic Jack connected to a common supply to insure that
the same load was appiied to each stud throughout the test un-
affected by minor variations in the indilvidual length of the
two columns.

A minimum of 16 dial gages reading 0.001 inch were used in
each test to measure the column deflections as shown in Fig.
18. To avoid premature failure, the centering of the studs was
repeated at increasingly higher loads up to about 2/3 of the
predicted fallure load.

The distribution of initlal imperfections along the stud
were measured, after attaching the diaphragm, by a transit.

The maximum value of 1lnitial bow measured at the middle of the
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stud was 0.10" (i.e. about L/1500).
5.5 Speclmens' Deslign and Test Results

Tested assemblles are classified into two groups:

a) Sections braced with diaphragms on both sides

b) Sections braced with diaphragms on one side only
For each of these groups and each type of section (channel or
zee), the governing equations characterizing the column behav-
lor are different. Consequently, sectlons with specific dimen-
sions were needed to verify each of these different cases.

At the early stage of the investigation, 4 assemblies made
of channel sectlons were tested (1A, 2A, 3A and 4A). These
sections (type A, Table 4) were stock items of wall studs prod-
ucts. The test reSults of assemblies of channel sections
braced on one side only are satisfactory and are 1in good agree-
ment with the theory. However, columns braced on both sides
falled due to sudden local buckling of the web and the results
therefore do not relate to the overall buckling characteriza-
tion (see Table 3). Thus 1t was found necessary to test sec-
tions propértioned so that local buckling and failure by yleld-
ing of the column material could not occur before overall buck-
ling of the stud. These sections are classified in types B, C,
D (see Table 4).

Diaphragm materials and fastener spacing were chosen so
that only the desired mode of buckling would occur. For exam-
ple, channel sections braced on both sides may buckle in the
torsional-flexural buckling mode or in the flexural mode (see

Fig. 8), depending on the value of Q of the bracing diaphragm.
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It can be shown from the graph that diaphragms with large val-

ues of Q and F may fqrcg_the stud to buckle in the torsilonal-

ey
——
an

flexural mode. The 2§ channel Sebtion type B with two silded
bracing was'designed:to fail in the torsional-flexural mode
while the 3"channel section type C braced on both sides was de-
signed to buckle in the flexural mode. Assemblies 5B, 6C, 7C,
listed in Table 3, corroborated such behavior of the channel
sections (see Figs. 24, 25).

For zee-sections braced with diaphragms on both sides, on-
ly felxural buckling governs. Assemblies 8D and 9D were tested
with two different dlaphragms to verify such behavior, and the
test results are shown in Fig. 26.

The behavior of channel and zee-sections braced on one
side 1is characterized by torsional;flgxural buckling only:
thefefore no specilal cénsiderations'were necessary in choosing
the stud sectlion and the diaphragm materials. Test results of
these two cases are shown on Figs. 27 and 28, respectively.

Test results are listed with the predicted failure loads
of all assemblies in Table 3. Figures 24 to 28 depilct these
results as well as the behavior of the stud as a function of Q
and F. In general, all fallure loads are in good agreement
with the predicted loads.

5.6 Interpretation of Test Results

Test results considerably substantiate the theoretical
findings. The failure loads rangs from 92% to 99% of the theo-
retical loads except for the 16 gage channel section type A

tested in the early stage of the investlgation, which failed at
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85% of the theoretical buckling load.

Such a low value 1s related to excessive initial imperfec-
tions which had been noticed in that 1light section.

The faillure loads are always less than the theoretical
load, except for assembly 1A which failed by local buckling of
the stud at 102%7 of the theoretical load. The theoretical

loads are hilgher than the falilure loads due to two main rea-

- sons:

1) The theory 1s based on an energy approach and the as-
sumed deflected shape yields approximate criticai loads higher
than the rigorous critical load. Assuming a deflected shape
that 1s not exactly as the actual one 1s equivalent to intro-
ducing restraints to the member which increase the calculated
buckling load. Nevertheless, the comparisdn between failure
and theoretical loads lead to reasonably satisfactory results.

2) The theoretical load is the load at which bifurcation
of equilibrium occurs in a perfect column. An actual member,
due to unavolidable imperfections of geometry and eccentricities
of loading, does not exhibit this ideallzed behavior.

In fact, the difference between the tested loads and the
theoretical loads 1is not significant in splte of the abovemen-
tioned reasons. Thls can be related to the following: 1in re-
gard to the first reason, the Paylelgh-Ritz method 1s used to
obtain an approximate solution by direct substitution of as-
sumed displacement functions into the total energy expression.
Fortunately, the first wvariatlon of the total potential energy

is not too sensitive to variations of the deflected shape and
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we can expect reasonable results if we use an approximate de-
flected shape of the column, making sure that such an assumed:z=
deflected shape satisfies the end conditions of the stud. As:
for the second reason concerning the imperfections of the col-
umn and 1its effect on the failure load, it has been found that
these initlal imperfections were qulte small. Thils was due to
the extreme case taken 1n fabricating these sections. For ex-
ample, the maximum initial deflection in the plane of the dia-

phragm was found equal to:

Such small initlal imperfections in addition to the centefing
procedure of the stud during testing tend to closely idealize
the condition of the stud. |

Failure of the diaphragm due to connection’ failure 1is the
primar§ mode of the overall column buckling. Two types of
failure were observed:

a) Sudden failure generally occurs when torsional-flexur-
al buckling 1s encountered. Local deformation appears at the
end fastener before complete fallure occurs; however, at failure
the fasteners at the middle portion pull off from the dia-
phragm. Thils behavior can be noticed from photographs 1 and 2.
These photographs belong to assembly 5B, which was designed to
fail in torsional-flexural buckling. Referring to photograph
1, local deformation of the diaphragm at the end fastener was
observed at a load equal to 20.5 k per stud. Upon further in-

crease of the applied loads, local deformation of the diaphragm
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started at the location of the fastener next to the end one, as
can be seen from the photograph. At that stage excessive rota-
tion of the stud section was observed and finally, sudden faill-
ure of the stud at a load of 23.4 was accompanied by pulling
off from the diaphragm at the middle portion (see photograph 2).
Photograph 1 belongs to the stud which did not fall. Local
deformation of the diaphragm at the end fasteners of each stud
were identical prior to failure. Twisting, as shown in Filg. 31,
before failure further indicates tendency for torsional flexural
buckling.

The 97% of the theoretical loads achieved by this test 1s
considered satisfactory. In addition, this indicates that the
experimental procedure of determining the diaphragm character-
istics (Q, F) which are used in calculating the theoretical load
is reliable.

b) Slow failure, compared to the first type, usually oc-
curred when flexural buckling governed. In this type of fail-
w e, only the end fastener wasjﬁbserved to be overstressed.

The fasteners at the middle section of the column did not seem
to be critical. Failure of the assembly was accompanied by
tearing of the dlapnhragm material at the end fastener only.
Figures 31, 32 depict the distinctive behavior of channel sec-
‘fions braced on both sides failing in the torsional-flexural
mode and the flexural mode, respectively. Figure 31 shows both
the experimental and theoretical displacements of the middle
section of the stud 1n the plane of the dlaphragm as well as
the rotation of the same sectlion. Thils figure represents test

5B in which both the diaphragm and the stud section were se-
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lected so that torsional-flexural buckling governs. The figure
shows that the rotation of the stud is more critical than the
deflection, especially when the buckling load is reached. The
rotation becomes indefinitely large while the deflectlon has

a finite value and this is why torsional-flexural buckling is
unavoldable. _

Contrary to the previous case, Fig. 32 shows that for
flexural buckling the displacement of the middle sectlon of the
stud in the plane of the dlaphragm is more critical than the
rotation of the same section, and at the critical load the dis-
placement becomes indefinitely large while the rotation has a
real value. Therefore flexural buckling in the plane of the
diaphragm is imminent. This type of fallure occurred when as-
semblies 6C and 7C, which were designed to fail in flexural
buckling, were tested.

Theoretical loads of the 12 gage studs were all within the
proportional limit of the stress-straln curve of the virgin ma-
terial, except for the zee-section bracéd on both sides. The
theoretical loads for the latter has been corrected by taking
into account the tangent modulus of elaspicity Et’ méasured
from the tension coupon test results, at the buckling stress
level. Substituting E_ for E and G(gi) for G in the governing
equations, the final load was obtalned by iteration. These
loads were slightly higher than those obtained by using formu-
las of Section 3.6.1 of the AISI Specification‘l)., For exam-
ple, the inelastic theoretical loads for assembly 9D computed

by iteration and by the AISI formula are 28.2 and 27.4 k, re-
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spectlvely. The difference, though expected, 1s not signifi-
cant because the AISI formulas are based on a proportional lim-
it equalhto one-half the yleld stress, and in the present in-
vestigation the proportional limit is 0.74 of the yileld stress
of the virgin material.

It 1s of interest to note that the zee-section braced on
both sides did not show tendency to rotate; only displacements
along the wall and perpendicular to the wall were observed.
Such behavior has been predicted by the theory. On the other
hand, displacement and rotation of considerable va ues were
measured during testing of channel and zee-sections braced on
one side only. The theory predicts in chese cases indefinitely
large values of displacement and rotation at the critical loads
(see Figs. 33 and 34). This 1s contrary tb what has been found
in the case of sections braced on both sides, for which either
one - displacement or rotation - becomes indefinitely large
while the other has a real value. Hence, in the cases of sec-
tions braced on one side only, the rotational restraint of the
diaphragm; F, 1s as important as the shear rigidity Q.

It should be noted that flexural buckling indicated for
channel sections is about the centroidal axis parallel to the
web. For channel sectlons, tereicnel flexural buckling load
1s always smaller than the flexural buckling load about the
centroidal axis perpendicular to the web.

The agreement between the test and theoretical results is
seen to be very satisfactory. This indicates that the design

approach presented in the next chapter is expected to give re-

liable results.
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WALL STUDS DESIGN CRITERIA

The detailed method of analysis 1s presented below in Sec-
tion 6.3 of this chapter. A collection of all the equations
which are needed for the design, and which have been derlved in
various parts of this investigation, are included here with a
new set of numbers in Section 6.4. Following these equations
Section 6.6 gives a list of the new and the original number for
each equation and its source when necessary. Section 6.7 con-
tains a complete nomenclature for the design proc¢:dure. Com-
plementary to this chapter are Appendices 1, 4 axd 6. Design
examples as well as complete design computer prwgrams are given
in Appendices 1 and 4, respectively. Appendix 5 provides a
record of the reasoning behind, and justificat.on for, the var-
ious parts of the design criteria.

6.1 Introduction

The design procedure suggested herein 11 based mainly on
the theoreticsal results of Chapter 2. The ‘rocedure is formu-
lated in a systematic step-by-step method « analysis, so that
direct application of the theoretical findngs would be facili-
tated. The reasoning behind, and Justifi.ations for, the vari-
ous steps of analysis 1s given in Append.x 6. Based on the
suggested procedure, Appendix 4 compris's four computer pro-
grams glven as a design ald. These hae been utilized in the
solution of the design examples of Aprendix 1.

It 1s not intended to formulate che findings of this chap-

102
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ter in design specification language. Rather, the suggested
design procedure outlines rational-and practical methods of de-
sign.

6.2 Limitation of the Procedure

The design procedure 1s limited t6>channel, zee and I-sec-
tion studs hinged at both ends, subjJected to axial concentric
load and attached to wallboards as specified herein, forming a
continuous diaphragm on one or both sldes of the section.

In general, two design situatlons may arise in wall stud
analysis. These will be handled separately under headings A
and B:

A) Determining the allowable load of the stud if the dia-
phragm shear rigidity Q and rotational restraint F are known.

B) PFinding Q and F so that the stud can sustain a speci-
fled allowable 1load. _

In both cases, buékling loads in the elastic and inelastic
domains are considered in the analysis.

6.3 Method of Analysis

(A) Allowable Load P is Required for Known Values of Q and F
(Sections braced on one sicde or on both sides)

(1) Calculate the critical buckling load Pcr and the cor-
responding n (when applicable) of the perfect column based on
the governing equations listed in Section 6.4.1; accordingly,
compute Oup = Pcr/A' It should be noted that the fastener
spacing 1s related to the value of n. The fasteners should be
arranged according to Section 6.4.14.

cr
then elastic buckling governs and hence follow steps

(2) IF o, < 0.5Q,0,,
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(2a) through (2f), otherwlse go to step 3.

(2a)

(2b)

(2¢)

(2d)

(2e)

(2r)
(3)

(3a)

(3b)

Consider a trial load P, = AP, , where A < 1.0 is a

trial reduction factor.

Consider a real column and introduce the initial im-
perfections Co’ Do and Eo according to Flormulas 11.
Then from equations of Section 6.4.2, calculate the

deflection C, and the rotation El at that particular

1
load Pr and the corresponding n (when applicable).

From this compute the maximum shear strain Ynax and

the maximum rotation ¢ of the assembly according

max
to Egs. (12) and (13) or (17) and (18).

Check that the calculated y and ¢ do not ex-

max
ceed Y4 and ¢d of the bracing diaphragm, respectively.

max

If such a condition is not met, then try a smaller )
and hence a smaller Pr’ and repeat the analysis in
steps (2b) and (2c) until the requirements are sat-.
isfied.

The load capaclty of the stud for known Q and F is
therefore glven by the last trial value of Pr'

The allowable design load Pall = Pr/F.S.

IF Oop > O.SQAgy

then inelastic buckling governs.

Calculate the inelastic buckling load Pa using Eq.
(24) (AISI formula); compute g = Pa/A and determine
the corresponding inelastic moduli E* and G* fronm
Egqs. (25) and (27), respectively.

Find the initial imperfections Co’ D Eo of the

o’
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real column according to Formula 11. From the equa-

tions of Section 6.4.2, with Pr = Pa and (when ap-

plicable) the value of n as obtalned in step 1, cal-

1 and El based on the computed E¥ and G¥.

Next, calculate Yma

culate C

and ¢ma from Egs. (12) and

X X

(13) or (17) and (18).
(3¢) Check that Ymax < Ya and Ppax < 9g- If such re-
qQuirements are not satisfied, then try a smaller
load (i.e. P, = AP, where X < 1.0).
(3d) Calculate the stress corresponding to the new trial
load,
o= P, /A
Check whether o > O.SQAcy and if so, calculate the
respective E¥ and G¥; otherwise use the elastic mod-
uli E and G instead.
(3e) With the new trial load and the corresponding modu-
and ¢

11, calculate y from the equations of

max max
Section 6.4.2 (as in step 3b).

(3f) Check that Ymax < Y4 and ¢max < ¢d' Repeat the pro-
cedure until these requirements are met.

(3g) The value of the last trlal load (Pr) represents the
locad capacity of the stud.

(3h) The allowable design load Pao11 = Pr/F.S.

(B) Required Q and F if Allowable Iload on the Stud P_,11 is Given

(I) Sections Braced on Both Sides

(1) Calculate the required loac capacity Po where

x F.S,

Po = Pall
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(2) Check that:
Po > Pcr,UB
Po < Pcr,x
and PO < Pyield
where Pcr,UB = critical buckling load of unbraced stud
er, X = strong axls buckling load (perpendicular to the
wall)
Pyield = yield load of the stud

If any of the above conditions are violated, change the stud

cross-section for economical design.

(3)

P
- _Q
IF o = i < _O-SQAoy:

then elastic behavior governs. Follow steps (3a)

through (3c), otherwise go to step 4.

(3a)

(3b)

(3¢)

Substitute P0 for P in the governing equations of
Section 6.4.1.1. Find the value of Q that satisfies
the respective equation; except in the case of chan-
nel sections, the governing value of Q 1s the larger
one obtained from Eq. (2) and Eq. (3) with F = 0.
This furnishes a starting value for Q.

As a first trial increase the value of Q or Q and F,
above that of step (3a). Then from the equations of
Section 6.4.2 and 6.4.2.1, with P, = P_, calculate

C, and E

and hence Yma and ¢

1 1 max’

Select from Dlaphragm Catalogues or from diaphragm

X

test results a sultable dlaphragm for which the pa-
rameters Q, F, Y4 and ¢d are equal to or larger than

~calculated in step (3b). If such a diaphragm is not
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(4)

(L4a)

(4p)

(bc)

10%

available then repeat step (3b) with larger Q or Q
and F until a suitable diaphragm is obtained. Such
a diaphragm will be adequate for bracing the stud

for the given load.

Po
IF o ke O.SQAoy,
then inelastic buckling governs.

The procedure is a trial and error method. Assume
practical values of Q or Q and F and use the govern-
ing equations of Section 6.4.1 to find the elastic
Pcr' Calculate the corresponding inelastic buckling
load P, from Eq. (24). If P, > P then proceed to
the next step; otherwise try larger values of the
diaphragm constants.

From Eqs. (25) and (27) calculate the inelastic mod-
uli E¥ and G¥ corresppnding to the stress o = PO/A.
Theri, from the equations of Sections 6.4.2 and
6.4.2.1 (with Q, F obtained from step (la), P, =P,
E¥ and G¥) calculate Cl’ El, then Ymax and ¢max'
Select a dlaphragm from Dliaphragm Catalogues or dia-
phragm test results, for which Q, F, Y4 and ¢d are
equal to or larger than thelr corresponding values
calculated in step (4b). If such a dlaphragm is not
available then repeat the analysis starting with
step (4a), until. a sultable diaphragm can be ob-

tailned.

Sections Braced on One Side Only

(1)

Calculate the load capacity Po from
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PO = Pall x F.S.
Check that
Po > Pcr,UB
Po < Pcr,x
and PO < Pyield

If any of these conditions are not satisfied then change the

stud cross-section for an economical design.

(3)

P
. 0
elastic buckling governs. Follow steps (3a) through

(3d); otherwise go to step 4.

(3a)

(3b)

Consider a sufficient number of n-values, where n is
the number of half-sine waves into which the column
may buckle. For conventional wall stud application,
n=1,2,3...6 commonly suffices. Assume a trial
value of F and use the governing equations of Sec-
tion 6.4.1 with P = PO to find the value of Q for
each considered value of n. With the largest value
of Q and the assumed F, use the governing equations

of Section 6.4.1.2 to find P, and the corresponding

r
n. The fastener spacing 1s related to the value of
n. The fasteners should be arranged according to
Section 6.4.4.

Check that P, < Po; otherwise increase Q and F, ang
hence find P,, and the corresponding n (as outlined
in step 3a). Repeat until a calculated value of Pcr

2 P, can be found. Now, the output of this step is

Q, F and n, that 1s, one knows the diaphragm proper-



(3c)

(34)

(4

(4a)

(4p)
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ties and the critical buckling mode. It 1is left to
check the daiphragm adequacy.

With Pr = Po and the values of Q, F and n found in
step (3b), use the equations of Sections 6.4.2 and
6.4.2.2 to calculate C, and E,, hence Ymax and ¢ .. -
Select a diaphragm from Diaphragm Catalogues or dia-
phragm test results, for which Q, F, Ya and ¢d are
equal to or larger than thelr corresponding values
calculated in step (3c). If such a diaphragm is not
avallable then try larger values of Q and F, and
follow the method of analysis outlined in steps (3b)
and (3¢) until a suiltable diaphragm can be obtained.

P

: = -2
IF 0 = n > O.SQAcy,

then inelastic behavior governs.

Consider a sufficient number of n-values, where n is

"the number of half-sine waves into which the column

may buckle. For conventional wall stud application,
considering n = 1,2,3...6 commonly suffices. The
procedure from now on 1s a trial and error approach.
Assume practical values of Q and F, then use the
governing equations of Section 6.4.1 to find the

elastic Pc and the corresponding n. Calculate the

r
inelastic buckling load Pa from Eq. (24). 1Ifr Pa >

P proceed to the next step; otherwlse try larger

O’
values of Q and F.
From Egs. (25) and (27) calculate the inelastic mod-

ull E¥ and G* corresponding to the stress = PO/A.
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Then, from the equations. of Sections 6.4.2 and
6.4.2.2 (with Q, F, n obtained from step (l4a), E¥,

#* =
G* and Pr Po) calculate Cl’ Elrthen Y and ¢

max max "’

(4c) Select from Diaphragm Catalogues or dlaphragm test
results a suitable diaphragm for which Q, F, Y4 and
¢d are at least equal to thelr respective values ob-
tained in steps (4a) and (4b). If such a diaphragm
is not avallable then lncrease the'values of Q and F
and follow the analysls outlined in steps (4a) and
(4b), until a sultable diaphragm can be obtained.

€.4 Design Formulas

This section contains all the equations needed for the de-
sign. They were originally derived in various parts of this
report. Here these equations are inc;uded under a new set of
numbers, and for cross-referencing between the original and the
new numberé, a list is given in Section 6.6 for this purpose.

6.4.1 The Governing Equations

In general the following parameters will be used in the

subsequent equations:

P, = nn°EI_/L° (1a)

Py,= nzﬂzEIy/L2 (1)

Pry = n2n2EIxy/£2 (le)

P, = %5 (anCw %5 + GJ) | (14)
O

where n = 1,2,3,..; for sections braced on one slde only

and n = 1 for sections braced on both sdies
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E = E¥ and G = G* 1f inelastic behavior governs

6.4.1.1 Sections Braced on Both Sides

For the design equations below, the parameters Px’ P

y’
P¢ and ny are computed from Eqs. (1) with n = 1. The critical
buckling load Pcr is the smallest value of P calculated from

the governing equation (or equatlions) for the section under in-
vestigation.
CHANNEL SECTION:

P=P_ +Q (2)

y

P2(rg—xg)-P(rng+r§P¢+Q%E+F%;)+PX(r§P¢+Q%E+F%§) =0 - (3)
Z-SECTION:

e - P(P, + Py, + Q) + P,P_ + P.Q - Piy =0 (4)
I-SECTION:

P = Py + Q ‘ (5)

P=P | (6)

6.4,1.2 Sections Braced on One Side Only

The parameters Px’ P P¢ and Px appearing in the follow-

y? y
ing equations are calculated from Egs. (1) with the value of n
=1,2,3,... .« Usually for wall stud applications n = 1,2,3,...
6 will suffice to detect the governing buckling mode. Note
that for I-sections P, must be computed for n = 1 only (see

reasoning in the conclusion of Appendix 5).

The smallest value of P obtalned from the governing equa-
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tion (or equations) for a particular section and for different
values of n determines the critical buckling load Pcr

CHANNEL SECTION:
2 2
1-—5)-P2[P +P +—g(QH—+—g —§)+(P +Q)(l--§)]

0

p3(

L2 L2 d,2
0 o]
142, F L2)]+l p a2 = o
’Px(Py+Q)[P¢+"§(QE—+;? = ;2 X QE) = (7)

I‘O o)

=}

Z-SECTION:

2
322 d F_L )3
PI-PS [P, 4P +Q+P + 74"* > 2

+P{(Py+Q)P, -PF +(P +Q+P, ) [P+ (QE-+E§ I:g)J-—-(Q )2}

xFxy
O r0
-[(P +Q)Px ny][P¢+ Z(QE—+_§ 2)]+-§P (Q ) (8)
O
I-SECTION:
P =P (9)
where P_ = m°EI/LZ (1.e. n = 1)
2

-P[P +P +Q+——( %—+E§ EE

O

+(P+Q) [P, +25 %-+E§ Eg)l-——(Q - (10)
m r
To )
(n=1,2,3,...)
6.4.2 Equations of Ymax and ¢max

In the equations below, the parameters Px’ Py, P¢ and Px
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are defined by Egs. (1). The value of n corresponding to Pcr
obtained in the previous section 1s used in the following equa-
tions wherever required. If 1lnelastic behavior governs, then E
and G employed 1in this section should be replaced by the E¥ and
G¥ from Egs. (25) and (27), below, for the stress level at
which the deflections and rotations are computed (i.e. corre-
sponding to o = Pr/A).

Initial imperfections accounting for initial sweep plus

accidental load eccentricities may be considered according to

the followlng tentatively suggested formulas:

C0 = 2(L/700) (11a)
D0 = L/700 (11b)
Eo = 0.0006 rad. per foot of. length (1l1c)

6.4.2.1 Sections Braced on Both Sides

The maximum shear strain and maximum rotation
max max

are computed according to the following formulas:

_ T d
Ymax = E(Cl + Ey 5) (12)

¢rox = Eq (13)

where C1 and El are absolute values calculated from the follow-
. ing equations for a particular section.
CHANNEL SECTION:

Prco

1P, -F, +Q

c (14a)

P
_ _r 2 -
E, = KI{(PX - P(rE, - %x,Dy) = Px (D - x E;)}  (1ip)
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where A, = (P_ - P )[rz(P -P)+Q a? + F L'-i] - (P x )2
1 Vx r’“o' ¢ r I “2 ro
Z-SECTION:
Cl ) Pr[CO(PX - Pr) - Dony i (152)
(Py - P+ Q)(Px - Pr) - ny
2
PETCr
E. = r'o o (15b)
1 2 d2 L2
I-SECTION:
P C
c, = re (16a)
1 Py - Pr + Q
El =0 (16b)

6.4.2.2 Sections Braced on One Side Only

max
formulas:

Y and ¢max are computed according to the following

. nmw d
Ymax = T (¢1 - E1 3 (17)

¢max = E1 (18)

where C, and E, are calculated from the following equations for

1
a particular section.

CHANNEL SECTION:

P C A A A A
_ P % 2y Buhy Ashy 2
¢, = Det.{ﬁ-(A3A5 A4 (Dy-x,Eq) n (roEo-xoDo)} (19a)

C A A A A
. _r o _1h o 173, 2
Ey = Det.{’H—A2A3 a0, XoEo)*t 4 (roEo—xoDo)} (19p)

- 2 2
where Det. = Al(A3A5 - AU) - A3A2



1 y
.
Ay = -Q3
A3 =Py - Py
Aq = Prxo
2 2
_ 2 ¢ | F_ L
AS-rO(P¢-Pr)+QT+ 5 5
n 7
Z-SECTION:
P C D E
= r (_o __© O 2
Cl " Det.l!n AMAS n a AA 5 n - Aq} (20a)
P C D E 5
E) = porr{-poAshytaAsh s (A Ay-a3) ] (20b)
where VDet = ALAA. ~ A°A. - A%a
) 17475 275 37y
Al,= Py - Pr + Q
A2 = ny
.
A3 = -Q5
Au = PX - Pr
2 2
= 2 d F L
n n
I-SECTION:
CO 2 EO 2
Cl = PP(AS i ro ~ A )/(Al 5 = A ) (21a)

= 0 _ .2 0
E, = P_(A r; A )/(A - AlAS) (21b)



where Al = Py - Pr + Q
d
Ay = Q3
2 2
_ .2 d F L

6.4.3 1Inelastic and Local Buckling Behavior

The buckling stress Oop = Pcr/A computed from the govern-
ing equations on_the basis of the elastic theory may fall under

one of the following conditions:

cr

or Ogp > 0.50y (inelastic buckling) (b)

o, < 0.50, (elastic buckling) : (a)

If the first condition governs, then buckling occurs elas-
tically and consequently the parameters Pér’ E and G involved
in the governing equations need not be modified.

If the second condition governs, then inelastic buckling
occurs, and hence the inelastic buckling load Pa may be deter-
mined by the AISI formula of Section 3.6.1.2, without a factor

of safety, as follows:

2
P, = A(oy - H;z_) (c)
cr
The elastlc modulus of elasticity of steel E and the shear
modulus G may be replaced, when necessary, by the 1inelastic
modull E¥* and G¥, where
o(oy - o)

- ]
op(ay op7

E*:E[

2
or E¥ = LIEO(Oy - U)/Oy (d)
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in which © is the average sftress level corresponding to Pa;

that 1s,
o = Pa/A : (e)

and it 1s assumed that op = 0.50y.

The shear modulus 1n the inelastic range may be given as
G¥ = G(E*/E) (f£)

The effects which local buckling of thin-walled compres-
sion members can have in reducing the column strength is pre-
sented in Section 3.6.1 of the current AISI Specification by a
form factor Q. To avoid confuslion with the diaphragm rigidity
Q, the former will here be designated as QA‘ If this form fac-

tor 1s less than 1.0 then replacing o_ by QAoy in Eqs. (a)

y
through (f) will furnish design formulas which provide adequate
safety against local buckling and account for cases in which
combinations of overall and local buckling occur. Therefore

these equatlons, respectively, take the forms:

Oup < O.SQAoy (elastic buckling) (22)
Oop O.SQAOy (inelastic buckling) (23)
2.2

QL0
_ A
P, = A(QAOy - Eg;%) (24)
bE (Q,0. - o)
E¥ = 3 (25)
QAoy
oy = O‘SQAOy ' (26)
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G* = G(E*/E) (27)

6.4.4 Diaphragm Characteristics and Fastener Arrangements

Obtainable from diaphragm test results (see Chapter 5) or

from catalogues of diaphragm characteristics, whichever avail-

able.

Rellable value of shear rigidity:

Reliable value of rotational restraint:

- £
Fp = 5F'

For the purpose of simplifying the notations used in the
deslign equations the subscript r used in the above expressions
is omitted without changing the intended meaning of the parame-

ters Qr and Fr’ hence

Q = %G'w (28)
= 2
and F = 3

Design value of shear straln capaclty of dlaphragnm:

Ya = B84/a (30)

Design value of rotational capacilty of diaphragm:

B4
%q * w7z (31)

Influence of the Fastener Spacing

Buckling of diaphragm braced studs may occur in one or

B - (29)



more half-sine waves (App. 6, Sec. X.6.3). In any case a mini-
mum of three fasteners, one at each end of the wave and one at
the middle are required so that diaphragm action 1s fully uti-
lized. In other words, the fastener spacing may not exceed %ﬁ'
In addition the spacling of fasteners between the end of a

wave and that at the middle of the same wave must not exceed

the fastener spacing used in the cantilever diaphragm test.

However, 1n no case should the load carrying capacity of the

stud exceed the buckling load computed on the basis of an un-

braced column with effective buckling length equal to the spac-

ing between the fasteners. Such an analysis may be made ac-

cording to provisions of Section 3.6 (Axially Loaded Compres-
sion Members) of the current AISI Specification.'

The procedure of checking the possibility of buckling be-
tween the fasteners 1s illustrated in the design examples of
Appendlix 1 as well as 1n the computer programs included in Ap-
pendix 4.

6.5 Design Aids

To simpllfy the use of the governing equations, two design
alds are introduced. These are design charts and design compu-
ter programs.

6.5.1 Design Charts

Figures 14 and 15 are graphical solutions of the governing
equations for channel and z-sections braced on both sides. The
procedure for usling these charts as well as detalls of the pa-
rameters involved are included in Sections 4.4.1 and 4.4.2.

The use of these charts 1s also illustrated in the solved exam-
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ples in Appendix 1.

6.5.2 Computer Programs

The design procedure given in Section 6.3 for channel, zee
and I-sections braced on one or both sides has been programmed
for the purpose of direct application to wall studs design.

The use of these computer programs 1s recommended in the cases
for which design charts are ncot provided and the governing
equations are complicated, in particular, when higher buckling
modes are 1nvolved. Detalled description of the features of
computer programs as well as their listings are given in Appen-
dix 4, and their use 1s illustrated in the design examples of

Appendix 1.
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6.6 List of Original and New Numbers of the Design Equations.

The following provides for cross-referencing of equations
of the design procedure listed in this chapter with their cor-
responding original equatlions included in the present report

and i1n other references.:

Corresponding Original Equation Number

Design Equation Number
(Chapters 2, 5 and other references)

(present chapter)

(1) | (36)
(2) (56) with K; =1
or (44) n=1
(3) (57) with K, = K = Kg = 1
or (45) n=1
(4) (59) with X, = K, = Ky =1
or (48) n=1
(5) (61)
) ' or (34) Ref. 13
(6) (61)
(7) (50)
(8) (52)
(9) and (10) (38) with Xg = V¥, =0
and ny =0
(11) Ref. 17, Section 2.2.4
(12) and (13) Ref. 17, Section 4.7
(14) (71), (73) and (74), K =K5...=K,5 =1
(15) (75), (77) and (78), K =K,...=K;5 = 1
(16) Ref. 17, Section 4.4

(17) and (18)
(19)

Ref. 17,

Section 4.7

(99), (101) and (102)
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Des@gp Equation Number Corresponding Original Equation Number

(20) | (103), (105) and (106)
(21) (99), (101) and (103) with x_ = 0
or from procedures of Section 2.8
(22), (23), (24), (26) AISI Specification, Ref. 1,
, Section 3.6
(25) and (27) ﬁefs. 3, 13, 15, 38
(28) and (29) Ref. 17
(30) (158)

(31) (160)
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6.7 Nomenclature of the Design Procedure

a

F.SO
F'

dimension of shear diaphragm perpendicular to load
direction in cantilever diaphragm test
cross-sectional area

amplitude of 1initial lateral deflection of the cen-
troidal axls of the stud in the x-directilon
amplitude of deflection in the x-direction

warping constant

overall dimension of the web (depth of section)
amplitude of initial lateral deflection of the cen-
troidal axis of the stud in the y-direction

modulus of elasticity

inelastic modulus defined by Eq. (25)

amplitude of twist of the svtud

rotational restraint supplied by the dlaphragm brac-

‘ing (used 1n the governing equations and is equival-

ent to Fr)

factor of safety (= 1.92)

rotational restraint at 0.8Pult (diaphragm test)
reliable rotational restraint of the diaphragm
shear modulus

inelastic shear modulus

shear stiffness at O.8Pult (diaphragm test)

moment of inertla of section about x- and y-axes
(passing through the centroid), respectively
product moment of inertia with respect to x- and y-

axes
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St. Venant torsion constant

length of stud

number of half-sine waves into which the column
buckles

buckling load (used in the governing equations)
allowable load x factor of safety |

inelastic buckling load

allowable load

critical buckling load

critical'buckling load of unbraced stud

critical buckling load (perpendicular to the wall)
trial lcad capacity

Euler buckling load about the x-aiis

Euler buckling load about the y-axis

yleld load of stud

defined by Eq. (1lc)

torsional buckling load

diaphragm shear rigidity (used in the governing equa-
tions and 1s equivalent to Qr)

reliable shear rigidity

Ip/A, where Ip is the polar moment of inertia about
the shear center

distance between the centroid and shear cehter along
the x-axis |

width of diaphragm contributing to the bracing of one
stud

unit axial stress
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proportional limit stress

Pcr/A

yield stress

deflection under load at O.8Pult in rotational capac-
ity diaphragm test

calculated shear strain in the diaphragm

calculated rotation of the stud

design shear strain at O.8Pult (diaphragm test)
design rotational restraint capacity at O'8Pult
(diaphragm test)

trial reduction factor < 1.0



Chapter 7
RESULTS AND CONCLUSIONS

The stabiiity of diaphragm braced columns of general
shaped sectlions under concentric load in the elastic and in-
elastic doﬁains has been investligated. Interest has been cen-
tered upon the derivation of the basic equations in general
form. Hence, the solutions of speclal cases such as I, channel
and zee-sectibns could be obtained from the general solution.
The theoretical results are applied to the case of wall studs
constructlon in order to modify the design approach of Section
5.1, Wall Studs, of the current Specification for the Design of
Cold-Formed Steel Structural Members(l). The investigation has
led to the following results and conclusions.

1) Considering the combined action of the shear rigidity
Q and the rotational restraint F of the diaphragm, an energy
approach 1s utilized to obtalin the solution. For each of the
two cases of diaphragm bracing, namely columns braced on both
sldes and on one slde only, the solution has been derived sep-
arately. The general equation of stabillity for each case is
given by Egs. (35) and (38), respectively, for columns with
hinged end conditions. These equatlons are based on an assumed
displacement function in the form of an infinite series, Eq.
(18). Hence equations of stability (39, 46, 49 and 51) for
particular cases of channel and z-sectlons are obtained. The
critical buckling load expressed as a function of Q and F for

each particular section under the previously specified bracing

126
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conditions 1s given by the governing equations (44, 45, 48, 50
and 52). It should be noted that in general, when these equa-
tions are used, the possibillity of higher buckling modes should
e iInvestigated by considering a sufficient value of n, n = 1,
2,3,00.

2) Equation (23) 1s the stability equatilon in general
terms for a column with hinged ends. This equation results
from utilizing assumed displacement functlions in an energy
method of solution. These displacement functlons are given in
the form of infinite series (Egs. 18). Since three displace-
ments are encountered, then i1f n terms are considered in the i
solution Eq. (23) contains 3xn algebraic equations. It has been
found that these equations yield n uncoupled modes of buckling
and censequently, n different buckling loads can be ealculated,
the smallestAload of which gives the critical buckling load of
the colwmn;  the corresponding value of n determines the number
of half-:;ine waves into which the column buckles. For example,
ifn=1,2,...5 1s considered, then 5 different modes are pos-
sible and 15 equations result. Each three of these equations
forms an lirdependent set of equations which characterizes one
of the five buckling modes. The buckling load corresponding to
each mode 1s determined by solving for the smallest root of the
three simultaneous equgtions of each set. Such a property, un-
coupled modes, introduéed considerable simplification to the
method of solution; that 1s, reductlon in the number of equa-
tions to be solved simultaneously. However, 1t has been found

that such a simplification does not apply to the cases of boun-
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daries other than hinged, for example, fixed, or boundaries
listed in Table 1. This 1s so because the equations forming
the stabllity equation of these cases are all coupled and only
one buckling mode occurs. Hence 1f 5 terms are considered,
then 15 algebraic equations have to be sclved simultaneously
for the smallest root which determines the critical buckling
load. Therefore it was possible with n = 1,2,3,... to derive
governing equations for the case of hinged end columns only,
since for cases other than hinged, deriving such equations
tends to be impractical. However, for the latter cases, the
method of solﬁtion outlined in Chapter 2 suffices if the need
- of considering such end conditions arises. On the other hand,
the intent is to derive a design procedure for the simple case
of wall stud application, for which the hinged end conditions
simulate the actual structure with reasonable conservative ap-
proximation. - Therefore interest has been focused on deriving
governing equations needed only for the design procedure.

3) By considering only the first term.of the series the
governing equations (56, 57, 59, 63 and 64) are valid for all
cases of columns with hinged, fixed and other end conditions

(see Table 1). Values of the ceefficilents K K

12 Ko e K
which appear in these equations can be obtalned from Table 1,
These coefflclents account for different types of end condi-
tions. The equatlions are valild provided that the higher buck-
ling modes are ruled out.

4) Higher buckling modes are conventionally associated

with buckling in more than ore half-wave, l.e. n > 1, 1In some
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cases, depending on the relative magnitude of the diaphragm
characteristics and the column stiffness, higher buckling modes
govern the behavior of the column. Since considering such a
possibility tehds to complicate the design approach, a numeri-
cal investigation has been conducted to examine the validity of
higher buckling modes. In the numerical investigation the var-
lation of the diaphragm shear rigidity and its rotational re-
straint as well as the columns' flexural and torsional rigidi-
tles are chosen to be within the practical range of wall stud
construction (see Section 4.2). The results indicate that
higher buckling modes do not govern the behavior of studs of
channel and zeé-sections braced on both sides. Therefore, for
these cases gdverning equations based on n = 1 are derived in
Section 2.6. However, for sections braced on one side only,
higher buckling modes are possible 1n some cases and such a
possibilify should always be considered. Hence, for these
cases governing equations based on n = 1;2,3,... are derived 1n
Section 2.4. The solution of these equations can be facilitat-
ed by the use of the computer program suggested in Section
6.5.2 and documented in Appendix 4 (see also conclusion 8).

5) The governing equations derived 1n Chapter 2 are based
on assumed displaéement functions of similar shapes, 1.e. the
number of half-sine waves, n, simultaneously takes the same
values 1in each of the displacement functlions. Accordingly,
higher buckling modes are 1investigated by considering suffi-
clent values of n 1n the solution. However, different shapes

of displacement functions ensue 1f n takes different values in
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each of the displacement functions, for example, 1, j, m (see
Eq. 5.18 of Appendix 5). Higher buckling modes based on dis-
placement functlions of different shapes have been investigated
in Appendix 5. It has been found that higher buckling modes
resulting from assuming functions of different shapes do not
govern the buckling behavior of all the cases considered except
the case of an I-section braced on one side only (see conlcu-
sion at the end of Appendix 5).

| 6) As one direct application of the governing equations
(59) for the zee-section braced on both sides, Eq. (60) is ob-
tained by setting Q = 0 in Eq. (59). Therefore Eq. (60) gov-‘
erns the behavior.of unbraced zee-sections with hinged, flxed
-and mixed end conditions. This equation, thouéh simple, has
not been known before in availlable publications known
to the writer. It should be noted that higher buckling modes
are not critical in this case.

7) The stabllity equations given in Sections 2.4 and 2.6
are checked in Chapter 3 against cases of known solutions de-
rived by Timoshenko(3).

The results indicate that the solution of these cases can
be obtained as specilal cases from the general solution given by
the stability equations. In addition, in Section 2.6A.4, it
has been shown that the solution of I-sectiaicolumns braced on

both sides, derived by Errera(l3)

» can be obiained as a special
case of the stability equation (54). Further verifications of
the theoretical results of this 1nvestigation has also been

considered in Section 2.4.3.1. It has been shywn that with Q =
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0 and F = 0, the equations of Section 2.4.3.1 render equations
derived for unbraced columns by Winter and ChaJes(Bl), Timo-

(3) and Pek6z(32).

shenko
8) The use of the governing equations of sections braced
on both sldes can be simplified by the use of the approximate
formulas and charts presented in Chapter 4. These formulas and
charts are valid, with minor modification, for the cases of in-
elastic buckling as well. Examples 1 and 2 in Appendix 1 11-
lustrate the use of these deslign alds 1in practical situations.
Unfortunately, simplification of the governing equations of
sections braced on one side only is not possible without con-
siderable loss of accuracy. Therefore, the direct solution of
the cubic equations given in Section 2.4 seems to be the only
possible method and 1s simple by computer subroutines. Four
programs (Al, A2, Bl, B2) based on the suggested design proce-
dure of Chapter 6 are prepared for the purpose of wall studs
design. Listings of the programs and their flow charts as well
as sample outputs of the design examples of Appendix 1 are in-
cluded in Appendix 4. 1In programs A2 and B2, higher buckling
modes can be examined by considering any desired number of pos-
sible buckling modes (n); hence, the smallest buckling load de-
termined gives the critical buckling load of the stud. It
should be noted that sufficient numbers of modes should be ccn-
sidered 1n the analysls; however, in most of the cases examined
in this investigation, critical buckling modes occur in the
second or third mode. Hence 1t 1s suggested that considering 6

modes as a first trial would suffice. The use of the computer
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program in practical situations 1s demonstrated throughout the
solutions of the design examples glven in Appendix 1.

9) It is not intended to formulate the findlngs of this
investigation 1n design specification language. Rather, the
design approach presented in Chapter 6 ocutlines a rational and
practlcal method of design. The proposed design criteria is
based on the ultimate load capaclty of the column, utilizing a
conservative estimate of the shear rigidity and rotational re-
straint of the wallboards acting as bracing diaphragms. In
this procedure the adequacy of the dlaphragm is checked by com-
paring the computer values of shear straln Ymax and rotation
¢
the diaphragm i1s adequate if the conditions that Y
¢

max °O those provided by the tested diaphragm (yd,¢d). Hence

max < Yd and

max < ¢d are satisfied. The design procedure is valid for both
elastlc and 1lnelastic ranges and examples to illustrate its use
in practical problems are included 1n Appendix 1.

10) In general, two design situations may arise in wall
stud analysis, namely determining the buckling load of thé stud
if the dilaphragm shear rigldity Q and its rotational restraint
F are known, while in the other situation the buckling load is
given and Q and F are to be obtained. The proposed design pro-
cedure allows the analysis 1in both cases. In the first situa-
tion the design method utllizes. the use of the dlaphragm capac-
ity that exists in the structure; in essence, no minimum re-
qulirement on Q and F 1s needed so that the diaphragm can be de-

clared adequate. This differs from the method of analysis of a

previous design criterion given in Ref. 17 which requires a
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minimum value of Q deflned as the shear rigidity required for
full bracing. Such a requirement might not always be on the
economical side. In thls respect the proposed design procedure
i1s favorable. Other differences between the proposed design
procedure and that of Ref. 17 are: 1ncluding the rotational
restraint of the diaphragm, F, including unsymmetrical and
point symmetrical sections in the analysls and in addition, the
design criteria of Ref. 17 do not allow for the design situa-
tion 1n which the buckling load of the braced stud 1s required
if a disphragm shear rigidity less than the shear rigidity re-
quired for full bracing should be used.

11) The results of the experimental investigation carried
out indicate that the agreement between the tests and the theo-
retical results 1s satisfactory. This also indicates that the
proposed deslgn approach 1s expected to glve reliable results.

.12) Two important observations can be made from the test
results:

a) The rotational restraint of the diaphragm is as impor-
tant as 1ts shear rigidity in prcviding for the stability of
flaphragm-braced studs, especially if torsional-flexural buck-
ling governs.

b) The use of adhesives as substitutes for/or in addition
to the fasteners 1s recommended for cases 1n which cyclic load-
ing from wind or earthquakes 1s rossible.

13) The use of zee-sectlons in wall stud construction
tends to be more economical than the use of channel sections of

the same dimensions. Thls has )¢en observed from the test re-
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sults (see Figs. 29, 30) and from the solved Example 1 of Ap-
pendix 1. The galn in the case  of sections braced on one side
1s more than that for the case of two-sided bracing. To the
writer's knowledge, none of the available manufacturers' cata-
logues 1nclude zee-section studs. Unless there are certailn

practical and constructionai reasons behind the uncommon use of

the zee-section, thelr use should be recommended.



Appendix 1
-DESIGN EXAMPLES

Three design examples to 1llustrate the use of the sug-
gested deslgn procedure, given in Chapter 6, are included heref
in. In the first example, Q and F are given and the unknown
quantity is the buckling load, while in the second example, the
buckling load is given and Q and F are to be obtained. These
two design situations, often met in practice, are also consid-
ered in the third example.
The use of the following design aids have been demonstrat-
ed in the solutions:
1) Computer programs based on the governing equations
listed in Seétion 6.4, Samples of the computer output
and the programs are'included in Appendix 4.

2) Design charts, presented in Chapter 4 and shows in
Figs. 14 and 15.

3) Approximate formulas given in Chapter U.

Throughout this Appendlx reference has been made to the
numbers of the design equations listed in Section 6.4 of Chap-
ter 6, unlessvotherwise indicated.

The design examples follow on the next pages.
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EXAMPLE 1 (bracing on both sides)

I) Calculate the ultimate and allowable loads of an 8{-0"
wall stud made of 3%"x 2" zee-section-16 gage, with both ends
Ahinged. The stud 1s attached on both sldes to %" GYPSUM WALL-
BOARDS which form a continuous dlaphragm. Fasteners are spaced
every 12" apart:. Tests of the diaphragm have shown reliable
shear rigidity and rotational restraint of 50 k and 0.06
k.in/in.rad., respectively, while Y4 = 0.011 in/in. and o =
0.15 radians. The stud is cold-formed from high}strength steel
sheets with a yleld stress of 50 ksi.

II) Replace the zee-section by a channel section of the

same cross-sectional dimensions and compare the allowable loads

in both cases.

SOLUTION CASE (I). Z-SECTION: 2"

Thls section 1s listed in the AISI 11/2"
Manual(u6) from which all geometrical 3 1/2"
properties can be obtained. The form
factor of the section Q, = 0.861 has been L“‘—‘#
considered in the analysis. t = 0.06"

The critical buckling load P based on elastic behavior,

cr?
1s obtained by the use of:
1) Computer program Al which 1s based on the orlginal
governing equations.
11) Approximate formulas.
111) Design charts.
Using Eqs. (1) on an elastic basls and n = 1, the follow-

ing parameters needed for the analysls are calculated:
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14.84 k

4
"

X 32.15 k Py = 15.93 k ny

Py

11.93 k Pyl = 7.13 k le = 40.95 k

1) Design by the Use of the Governing Equations

With Q 60.0 k

F 0.06 k.in/in.rad.

and the above calculated parameters, solve Eq. (4) for the

smallest value of P, hence

P.r = 26.56 k

See the computer output included in Appendix 4 for the value of
the elastic critical buckling load.

1i1) Design by the Use of Approximate Formulas (Chapter 4)

From Eq. (142a) of Chapter 4

P!

15.0 k

Then from Eq. (142)

P 26.38 k

cr

1i1) P,p_from the Design Charts (Chapter U4)

From Flg. 15 and the following parameters

0.565
0.137
R = (Py + Q)/Px = 2.05

b/a

c/a

Then, from the charts a = 0.82.
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Therefore P, = aP, = 26.5 k.
The ratios of approximate to exact loads for cases (11)
S, .
and (i11) are 0.99 and 1.0, respectively.

Check the possibility of buckling between the fasteners

Compute the critical buckling load of the unbraced stud
with the buckling length equal to the distance between the fas-

teners (s = 12.0"),

_ 2 2
Pcrf = q Ill/s

where 1 1s the moment of inertia about the minor axis. In

11
the present example

y

I 0.226 in

11
s

12.0 1in

buckling between the

then P, . = 456.52 k. Since P >> Pons

crf
fasteners does not govern,

The output shown in Appendix 4 does not contain such de-
tails. However, detaills of the analysis are available from
Program Al if the control variable PRINT = 1 is used in the
program instead of PRINT = 0.

Check 1nelastlc behavior

So far, the critical loads, assuming elastic behavior, are
calculated; now it 1s left to check whether or not our assump-
tion 1s valid and hence to check the dlaphragm adequacy.

Since the shape factor of .the section Qq < 1.0, then

dy = 0.861 x 50 = 43.05 kst

Oop = 25.56/0.496 = 53.59
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According to Eq. (23),
53.59 > 0.5 x 43.05
Thus inelastic behavior governs, and Pcr should be limited to
the inelastic buckling load Pa given by Eq. (24). Therefore
P, = 17.05 k.
Check the diaphragm adequacy

From Eq. (25) with o 17.0/0.496 = 34.0 ksi
E¥ = 19000 ksi
From Eq. (27)
G* = 7250 ksi

Then in the inelastlc range,

P = 7.66 k

X

20.64 k P,

P

10.23 k P

g gy = 9-53 k

From Eqs. (11)

C. = 0.274 in.
D = 0.137 in.
E = 0.002 rad.

Try P, = P, = 17.05 (1.e. A = 1.0). Then from Egs. (15a) and

a
(15b),

C, = 0.0853 in.

E1 = 0.0007 1in.

From Egs. (12) and (13)

y = 0.00283 < Y4 = 0.011 0.K.

max



140

and oy = 0-0007 < ¢4 = 0.15 0.X.

Thus the dlaphragm is adequate for bracing and the load capaci-
ty of the stud Pr = 17.05 k. By conslderling a facfor of safety

F.S. = 1.92, the allowable load ,

P = 17.05/1.92 = 8.88 k. -

=-all

See the computer output in Appendix 4 for the value of of Pall'
Other details may be obtalned from Program Al, with PRINT = 1.

By including the effect of the wallbéards, it was possible
to increase the critical buckliﬁg load of the unbraced stud’

from Pyl = 7,13 to Pr = 17.05 k (1.e. 2.4 times).

SOLUTION CASE (II). CHANNEL SECTION

2"
The section is listed in the AISI 1/2m
Manual(us). The form factor QA =
0.861. The diaphragm bracing is the : 3 172"
same as in (I). ‘ I

Using Eqs. (1) on an elastic ba-

t = 0.06"
sls and n = 1, the following parame-
ters are calculated.
P, = 32.15 k Py = 8.77 k
P¢ = 5.13 k

i) Design by the Use of the Governing Equations

From Eq. (2), P = 41.14 k.

and the smallest root of Eq. (3), =~ P 21.80 < b41.14
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Hence torsional-flexural buckling governs and the elastic crit-

ical buckling 1load

Pcr = 21.60 k

See the computer output included in Appendlx 4.

11) Design by the use of Approximate Formulas (Chapter 4)

From Eq. (141), P,, = 21.74b

1i11) Design by Charts (Chapter 4)

From Fig. 14 and b/a = 0.565
0.137

c/a

the factor a = 0.66. Hence Pcr = 0.66 x 32,48 = 21.70 k.
The ratios of approximate to exact loads in cases (i1) and
(111) are 0.996 and 0.99, respectively.

Check the possibility of buckling between the fasteners

Compute the. critical buckling load of the unbraced stud
with buckling length equal to the distance between the fasten-
ers (s = 12.0"). Such a load is given by the smallest value of

é) Flexural buckling about the y-axis.

Popp = nzmy/s2 = 561.2 k.

b) Torsional buckling.

Equation (5.35b) of Appendix 5 with Q = F = 0 indi-
cates that coupling of torsional and flexural buckling modes is
not possible. That 1s, Px and P¢ are not coupled to give tor-

sional-flexural buckling modes as expected in a usual situation
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of an unbraced column. Therefore,

2 2 2
P (G + ECw/s )/ro

crf

245.0 < 561.2 k

and torsional buckling governs the behavior of buckling between

fasteners. However, since for the braced stud

Pcr = 21.6 < 245.0 k

buckling between the fasteners 1s unlikely to occur.
Detalls of the above compdtations may be obtained from
Program Al.

Check 1nelastic behavior

o 0.86 x 50 = 43,05 ksi

y

21.6/0.496 = U43.75 ksi

. Ocr
From Eq. (23)
43.75 > 0.5 x 43.05

Then inelastic behavior governs, and therefore from Eq. (24)

Pa = 16.09 k.

Check diaphragm adequacy

1st Trial (A = 1.0)

Pr = APa = 16.09 k.

From Eq. (25) with o = 16.09/0.496 = 32.0 ksi,
E* = 21889.0 ksi

From Eq. (27)
G* = 8384.0 ksi
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Then in the 1lnelastic range
P, = 23.85 k P =6.5 k
P, = 3.82 k
¢ 3

From Egs., (11)

Co = 0.274 in.
Do = 0.137 in.
E = 0.002 rad.

From Eqs. (14a) and.(lbb)

Cl = 0.109 1in.

El = 0.198 rad.

From Egs. (12) and (13)

Y = 0.0149 > 0.011 N.G.

max

pay = 0-1984 > 0.15 N.G.

Thué the diaphragm is not adequate for bracing the stud so
that a load capacity P, = 16.08 k can be sustained. Therefore,
it 1s necessary to reduce Pr and consider a new trial value.
2nd Trial (A = 0.98)

Pr = 0.98 x 16.086 = 15.765 k

As before, the corresponding modull are
E* = 22766.0
g* = 8720.58

Then P, = 24.81k P, = 6.7Tk
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P¢ = 3,96 k
From Eqs. (ll4a) and (1lb)

Cl = 0.1055 in.

El = 0.1296 rad.

From Egs. (12) and (13)

Ymax = 00,0109 < 0.011 0.K.
¢max = 00,1296 < 0.15 0.K.
Since Ymax < Yd
and ' ¢max < ¢d

Then for a load capacilty
Pr = 15.765_k
the dlaphragm is adequate for bracing. The allowable load

P, = 15.765/1.92 = 8.211 k.

=all

See the computer output included in Appendix 4 for the
value of Pall‘ Other detalls of the analysils are obtainable
from Program Al by letting the control variable PRINT = ],
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EXAMPLE 2 (bracing on both sides)

A wall is about 6 in. think, 12 ft. high, to be construct-
ed of light gage cold-formed steel studs spaced at 24 in. and
covered on both sides by wallboards. The studs are made of 5"
channel sections-12 gage with both ends considered hinged and
are subjJected to equal critical concentric loads from a rigid
roof beam. The studs are cold-formed from high strength steel
sheets with a yleld stress of 50 ksi.

It 1s required to specify the type of wall materlal and
the type of fasteners to be used for each of the following
loading:

(I) Allowable load on stud Po11 8.0 k 2"

n
(ITI) Allowable load on stud Pall 16.0 k '0'7
5 |14

The form factor of the section Q

= 0,907. This example illustrates

the deslgn procedure outlined 1in Sec-

tion 6.3 (part B, sections braced on t = 0.105"

both sides).

SOLUTION CASE (I). P 1-= 8.0 k

al
With F.S. = 1.92, calculate the load capacity of the stud.

Therefore
Po = 8,0 x 1.92 = 15.36 k
Check that: Po > Pcr,UB
Po < Pcr,x
and Py < Pyie1q

where Pcr UB = critical buckling load of unbraced stud
2
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P., xy = strong axis buckling load (perpendicular to the
3

wall)
Pyield = yield load of stud

For the given £ 1d, using Egs. (1) (on an eiastic basis and n =

1) or using ' Computer Program Bl, the following parameters

are obtained @ sample of computer output in Appendix 4):
= 56.55 k Py = 8,14 k
P =12.02 k
0 1 2

Therefore, the following 1is computed:

Pcr B = 8.14 k¥ (Torsional-flexural buckling load = 10.1
? - k does not govern since flexural buckling
load Py is smaller.)
vPcr,x =56.55 k
Pyield = 1.048 x 0,907 x 50 = 47.0 k

‘Comparing these values with Pc = 15.26 k, it can be seen that

the above three requlrements regarding Pcr,UB’ P and Py

cr,Xx leld
are satisfiled. Therefore the stud cross-section is satisfacto-
ry. The next step 1s to specify a suitable dlaphragm and check
the possibility of buckling between the fasteners.

Check 1nelastic behavior

The stress level at Po = 15,36 1is equal to

15.36 _
7257 = 15.0 ksi < 0.5 X 0.907 x 50

Then according to Eg. (22), elastic behavior governs.
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i) Desilgn by the Use of the Governing Equations

From Eq. (2), @ = 15.36 - 8.14 = 7.22 kips.

From Eq. (3), torsional-flexural mode, setting F = 0, Q is
found equal to

Q = 4.35 k

This indicates that with Q = 4.35 k, the torsional-flexur-
al buckling load equal to 15.36 k would occur provided that no
lower buckling modes are preceded. However, as can be seen in
Fig. 17, if a shear rigidity (Q = 4.35 k) is chosen, a flexural
buckling mode will occur way before torsional-flexural buckling
can take place. Such a flexural load 1is less than 15.36 k.

Therefore, Q = 4.35 k will not serve the load requirement,
and hence providing Q = 7.22 k 1s necessary for a load of 15.36
k to be attalned. Then use

Q =7T7.22 k and F =0

These are not final design values of Q and F. Rather, they are
minimum required values. The next step in the analysis 1s to
specify a suitable diaphragm obtalnable from Diaphragm Cata-
logues or from previous cantllever shear diaphragm tests. Be-
fore such a step 1s considered, the use of approximate formulas

as well as design by the ald of charts will be demonstrated.

11) Design by the use of the Approximate Formulas (Chapter 4)

The shear rigidity Q = 7.22 k, as obtained in case (1), is
required for a flexural buckling load of 15.36 k to occur.
The possibillity of the torslional-flexural buckling mode

will be investigated hereln by using the approximate formula
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(141). The procedure is different than that considered in the
use of the governing equations case (i). Herein using Q = 7.22
k and F = 0 in Eq. (141) the buckling load will be computed.

If such a load is less than that load (15.36 k) governing the
flexural behavior, then torsional-flexural buckling governs;
otherwise flexural buckling controls.

From Eq. (141b), with Q = 7.22 k and F = 0,

P! 18.73 k.

¢

From Eq. (141) P =16.5 k 15.36
Then flexural buckling (Eq. 2) giverns, and as before, Q = 7.22

k and F = 0 are the minimum required values of Q and F.

ii11) Design by Use of Chart Pig. 14 (Chapter 4)

With Q = 7.22 and F = 0, then

18.73 k
0.325

From Eq. (146) P

6
From Eq. (147) R

From Fig. 14 with b/a = 0.4
0.14

0.325

c/a

and R
then = 0.29.
Therefore P, = aP = 16.8 k > 15.36. Hence flexural
buckling governs and as before, Q = 7.22 k and F = 0 are mini-

mum requlired values.

Choosing the diaphragm and checking its adequacy
The procedure is outlined in Section 6.3 (part B, sections
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braced on both sides, provisions 3b and 3c).

From Diaphragm Catalogues choose a diaphragm for which Q
and F are larger than their respective values obtained in the
previous step of analysis (i.e. @ = 7.22 and F = 0).

From diaphragm test results, the following has been ob-

tained:
G' = 0.66 k/in
Y4 = 0.0096 in/in
F' = 0.01 k.in/in.rad.
¢d = 0.23 rad.
Therefore Q, = % x 0.66 x 24 x 2 = 21.3 > 7.22 0.K.
- 2 -
Fr = § x 0.01 x 2 = 0.014 > 0 0.X.

However, this 1is not sufficient; it 1s still necessary to check
the dlaphragm adequacy, that 1s, to verify that at a load Pr =

15.36 k, the resulting Ypax 204 ¢, are smaller than Y4 and

b'e
¢d of the chosen diaphragm.

Check dlaphragm adequacy

From Egs. (11), the initial imperfections are

Co = 0.411 in.
DO = 0.206 in.
Eo = 0.004 rad.

From Eq. (l4a) with Pr = 15.36 k,

Co = 0.44 in.
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From Eq. (14b) with P, = 15.36 k,

. El = 0.05 rad.

From Eqs. (12) and (13)

- >
Ymax 0.014 0.0096

= <
¢max 0.05 0.23

N.G.
O.K'

Therefore thls dlaphragm is not adequate and hence choose an-

other trial diaphragm with larger values of Q and F.

Try 1/2" Homosote Boards with fasteners € 12".

G' = 0.845 k.in

F' = 0.012 k.in/in.rad.

Y4 = 0.012 in/in,

¢, = 0.175 rad.
Therefore Q, = %-x 0.845 % 24 x 2 = 27.0 k

F, = §~x 0.012 x 2 = 0.016 k.in/in.rad.

With the previous values of Co’

k, the following is computed:

From Eq. (1l4a) Cl 0.320

(1lp). E, = 0.04

Then from Egs. (12) and (13),

Y 0.010 < 0.012

max

max .0.04 < 0.175

Do and Eo as well as Pr = 15,36

0.K.
OQK.

Therefore 1/2" Homosote boards with fasteners @ 12" is adequate
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for bracing. The next and final step 1s to check the possibil-

1ty of buckling between the fasteners.

Check the possibility of buckling between the fasteners

Following the procedure of analysls outlined 1n Example 1
for the channel section, the following has been computed:
a) Flexural buckling about the y-axis

P = 1172.69 k.

crf
b) Torsional buckling

P = 812.2 < 1172.69 k controls

crf
Therefore from Eq. (24), the inelastic buckling load
Pcrf = 44,35 k > Pr = 15.36 k
Therefore, buckling between the fasteners does not govern and
12" fastener spacing 1s acceptable.

It follows that 1/2" Homosote boards with fasteners € 12"

satisfies all the design requirements.

Computer Output

- Program Bl has been used to solve the present example. The

output, shown in Appendix 4, includes a list of different values

¢ Cqy

of Q and F as well as their respective values of Yma max’

x,

and E.. Each value of Q and 1ts respective F represents a dia-

1
phragm adequate for bracing the stud so that Pr = 15.36 k can be
sustailned safety. The designer may use such a llst to specify a
sultable diaphragm material by the aid of Diaphragm Catalogues
or previous diaphragm test results.

For example, one may choose from the 1list

Q = 22.216 F = 0.015 Ypax = 0-012 Pmax = 0.047
Hence, find from Diaphragm Catalogues a certaln diaphragm for
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which Q and F are equal to or larger than those chosen from the
1ist. 1In addition, check from the Diaphragm Catalogues that Yq

and ¢d of the chosen diaphragm are larger than the listed Ymax

and ¢ In the present example, 1/2" Homosote boards with

max’®
fasteners every 12" satisfy these requirements. On the other
hand, one may notice from the list that 1/2" Impregnated Celo-
tex with fasteners every 7" do not satisfy Ymax and ¢max re-
qulirements; therefore, such a diaphragm 1s hot adequate for the
present design case.

SOLUTION CASE (II). Pall = 16.0 k

For a F.S. = 1.92 the load capacity Po is

PO = 1.92 x 16.0 = 30.72 k

As in case (I), for an unbraced stud,

Pcr,UB = 8.14 < 30.72 0.K.
Pér,x = 56.55 > 30.72 C.K.
Pyield = 47.0 > 30.72 0.K.

Thus the stud cross-section 1s satisfactory; it 1s left to
speclify a sultable diaphragm and check the possibility of buck-
ling between the fasteners.

Check 1nelastic behavior

The stress at Po = 30.72 k 1s
%95%5 = 29.4 ksi > 0.5 x 0.907 x 50

Then according to Eq. (23), inelastic buckling governs.
The next step 1s to find from the governing equations the
values of Q and F that satisfy the requirement, i.e. PO = 30,72
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k (inelastic).

(1) Design by the Use of the Governing Eguations

The design procedure outlined 1n Section 6.3 (part B, pro-
visions 4a, 4b and Uc) suggests the use of a trial and error
method to obtain values of Q and F. Herein an alternative
e quivalent to such an approach will be used.

Equation (24) gives the value of the inelastic buckling
load Pa for a known value of stress Oup corresponding to Pcr
computed on an elastic bases. Therefore, 1n our case, knowing
Pa’ then O,p Can be calculated. Hence the corresponding criti-
cal elastic load (Pcr = Onp X Area) can be obtained. Knowing
such a load will allow the direct use of the governing equa-
tions, based on elastic behavior, to obtain Q and F.

Therefore, substituting P, = 20.72 for P, in Eq. (24)

gives:

oCr = 32.0 ksi

Then the inelastic buckling load 32.0 x 1.05 = 33.60 k

1.05 in°.

where the area of the cross-section A

From Eq. (2) (flexural buckling),
Q = 33.6 - 8.14 = 25.46 k (see Fig. 17)
From Eq. (3) (torsional-flexural buckling) with F = 0,
Q = 40.0 k > 25.46

Torsional-flexural buckling governs (see explanation in previ-
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ous design case (I)). Therefore Q = 40 and F = 0 are the mini-
mum required values of the expected diaphragm. This gives an

idea from where to start assuming values of Q and F.

(11), (i111) Design by Approximate Formulas and Design Charts

The approximate formulas as well as the charts lose thelr
simplicity in the present design situation. Therefore their
use 1s not recommended. The computer program Bl of Appendix 4
may be utilized as a design aid.

Choosing the digphragm and checking its adequacy

Try 3/8" GYPSUM BOARDS with fasteners @ 12".

0.013 in/in

G' = 1.6 k/1in. Y4 =

F' = 0.0355 k.in/in.rad. ¢d = 0.12 rad.
then Q ='§ 1.6 x 24 x 2 = 51.4 k
and F = % x 0.0355 x 2 = 0.048 k.in/in.rad.

Since inelastic behavior.governs, then:
From Eq. (25) with ¢ = 29.4 ksi
E* = 26967.5 ksi
From Eq. (27)
G* = 10329.9 ksi
Therefore From Eqs. (1) with n = 1 and the above-computed val-

ues of E¥* and G¥,

51.699 k
7.445 k

) o
[ i

10.991 k

o
"
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FProm Egs. (11)
c, = 0.411"
- 1§
D, = 0.206
E, = 0.004 rad.
From Eq. (1ll4a) and Pr = 30.72 c, = 0.531
(14b) E, = 0.150
(12) Ymax - 0.02 > 0.013 N.G.
(13) $payx = 0-15 > 0.12 N.G.
Try 3/8" GYPSUM BOARDS with fasteners @ 9".
G' = 2.050 k/in
F' = 0.055 k.in/in.rad.
Yq = 0.014 in/in
¢4 = 0.15 rad.
Then Q =q-= % x 2.05 x 24 x 2 = 66.0 k.
and - F_, =F = % x 0.055 x 2 = 0.073 k.in/in.rad

Using the parameters Px’ Py, P¢, Co, DO and EO computed in the

previous trial case, the following is obtained:

From Eq. (l4a) Cl = 0.29
(14p) El = 0.072
(12) Ymax = 0.01 < 0.014 0.X.
(13) ¢max = 0.072 < 0.15 0.K.

Therefore, the dlaphragm is adequate
analysis,

ers.

and as a flnal step in the

check the possibility of buckling between the fasten-
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Buckling between fasteners

Following the procedure of analysis outllned in Example 1
for channel sections, the following has been computed by con-
sidering the distance between the fasteners (s = 9.0"):

a) Flexural buckling about y-axis

Pcrf = 2100.0 k
b) Torsional buckling
Popr = 1440.0 k < 2100 k (governs)

Since such behavior is in the inelastic range then from Egq. (24),

the inelastic load 1is

P = 44,80 k > Po = 30.72 k

crf

Then buckling between fasteners does not goverh; hence 9" fas-
tener spacing 1s acceptable.

Therefore the 3/8" GYPSUM BOARD with fasteners @ 9" satis-

fies all diaphragm requirements.

For a wide variety of Q and F-values see the sample output

of Computer Program Bl in Appendix 4.
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EXAMPLE 3 (bracing on one side)

Case (a): Calculate the ultimate and allowable loads of a
12'-0" wall stud of a 4" x 1%" channel section-12 gage, with
both ends hinged. The studs are spaced every 2-'0" and are at-
tached on one side only to 3/8" GYPSUM WALLBOARD with fasteners
every 12", Consider the following properties of the diaphragm,

obtained from dlaphragm test results:

G' = 1.88 k/1in.

Yg = 0.014 in/in.

F' = 0.06 k.in/in.rad.
bg = 0.15 rad.

The yleld stress of steel used in the studs is 50 ksi.
Case (b): Specify a suitable wallboard material so that
the same stud can safely carry an allowable load of 4.40 k.

Note: The computer programs A2 and B2

given in Appendix 4 are used to obtain 1.17"%
the solution of case (a) and case (b), o
respectively. In such a design case, )
the computer program provides a conve-
nient deslign tool.

= "
SOLUTION CASE (a) QZ - 8:%23

For the diaphragm:

= 2 Vo=
Q. = 5 x 1.88 x 24 30 k.

Yq = 0.014 in/in.

F, = % x 0.06 = 0.04 k.in/in.rad.



158
¢d = 0.15 rad.

The output of the computer program A2, shown 1n Appendix
4, gives the elastic critical buckling load P,ps computer by
Eq- (7)’

Pcr = 10.234 k. and n = 2

Checking the higher buckling modes has been considered in the
analysis by taking n = 1,2,3,...10, where n 1s the number of
half-sine waves into which the stud may buckle. The following
1s obtalned from the detailed output of program A2. These de-
talls are not shown in the outptut given in Appendix 4; howevef,

these are obtainable only if PRINT = 1 1s used in the program.

g
L]

or 12.,47) fqr n =

10.234

w N

13.966

= 105.%548 for n = 10

From the values of Pcr giver above, the folloWing may be con-
cluded:

i) Choosing n = 1,2,3,...10 for checking the possibility
of higher buckling loads 1s more than sufficient in the present
case.

11) Pcr-values for n » 2 are 1ncreasing.
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Check inelastic behavior

O.SQAOy = .05 x 0.953 x 50 = 23.83 ksi.

p
°r - 18:2%% = 15.897 < 23.83

Therefore according to Eq. (22), elastic behavior governs.

Check the possibility of buckling between the fasteners

Following the same procedure used in Example 1 (channel
section), the following loads are obtailned:
a) buckling about y-axis
PCrf = 143.681 k.
b) torsional buckling

P = 161.425 k.

crf
Both loads are larger than Pcr = 10.234; hence buckling between
the fasteners does not govern. This can also be shown from the
computer output and 1s given as
Elastic critical buckling load, considering buckling
between the fasteners = 10.234 k.
Now 1t is left to satisfy the requirements that the resulting

shear deformations and rotation of the stud are less than Yq

and ¢d (of the diaphragm), respectively, that is,

Ypax < 0-014 in/in.

and < 0.15 rad.

¢max

Consider inltial imperfections:
C_ = 0.411 1in.
0.206 in.

(=)
"

0.004 rad.

tx
]



For n = 2

Consider a trial load Pr = APcr

Cl’ El, and Ymax and ¢
(18), respectively.

Trial 1

Trial 2

Trial 3

Therefore the load capacity

max

ja *d o
(] 1} "

Therefore

= Q o
>
1} ] " [}

)
]

o Q i)
>
" 0 [} [

<
[}

A=

o <
1 O o
1 L " H ]

max

160

79.051 k
3.99 k
14,451 k

, Where A < 1.0,

0.94

10.234
2.008
0.780
0.019 > 0.014
0.783 > 0.15

0.84

Hence compute

from Eqs. (19a), (19b), (17) and

0.94 = 9.62 k.

10.234 x 0.84 = 8.59 k.

0.680
0.258
0.007 < 0.014

0.239 > 0.15

0.75

10.234
0.392
0.146
0.004 < 0.014

= 0.146 < 0.15

0.K.

N.G.

0.75 = 7.675 k.

0.K.
0.K.

of the stud Pr = 7.675 k.
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Allowable load P ; = Z:gg5 = 3.998 k
(see computer output of Program A2, given in Appendix 4.)
Notes:

1) It has been conclusively assumed that the number of
half-sine waves, n, into which the column may buckle is the
same for both perfect and imperfect columns. That is, n = 2,
obtained for Pcr = 10.234 k, has been used in the calculations

of C El and heﬁce Pr and Pall‘ This assumption has been dis-

1
regarded in the Computer Program A2 and hence the solution rou-
tine includes calculating Pr = APcr for n=1,2,3,...10, and
then choosing the smallest Pr'and the. corresponding n. The
results of the computatlions of thils example and other examples
substantiate the conslidered assumption. In the output of Pro-
gram A2 of Appendix 4, the following is printed.

Critical buckling locad Pop = 10.234 and n = 2

Load capacity P, = 7.675 and n = 2

Details of the above computations are obtainable from the com-
puter output of Program A2 with PRINT = 1.

2) It 1s of interest to note that the critical buckling
load of the unbraced stud 1is equal to 0.998 k. Therefore, by

bracing the stud on one side, the load capacity increased to

7.675 k (1.e. about 7.5 times the unbraced buckling load).

Case (b)
Load capacity PO = 4.4 x 1,92 = 8,445 k
Check that Py > Per,uB

Po < Pcr,x
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Py < Pyie1q

where Pcr UB eritical buckling load of the unbraced stud
3

P strong axls buckling

er,x

P = yield load of the stud

yield

For the glven stud,

Pcr,UB = 0.998 < 8.445 k 0.K.
Pcr,x = 19.763 > 8.445 k 0.K.
Pyield = 30.50 > 8.445 k 0.K.

Therefore, the stud cross-section 1s satisfactory. The next
step 1s to specify a suitable diaphragm and hence check the
possibility of buckling bectween the fasteners.

Check inelastic behavior

O.SQAOy 23.83 ksi

P
2= %féﬁ%-= 13.2 < 23.83

Hence elastic behavior governs.

Diaphragm bracing

i) Min. Q and F-values

Consider n = 1,2,3,...10.
Assume trial values of Q and F. Then from Eq. (7), find
Pcr and the corresponding n.

If P, < P, then increase Q and F and repeat the analysis

o’
untll a value of Pcr > Po is obtained. Such values are termed
as the minimum Q and F-values. |

From the computer output of Program B2, these two values

are:
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Q 25.0 k.

and F

0.04 k.in/in.rad.
By using these values in Eq. (7) and different values of
n, the critical buckling load is |

]
D

Pcr = 10,055 > 8.45 and n

1i) Trial of availlable diaphragms
Trial 1

From diaphragm test results of 3/8" GYP. and fasteners ev-

ery 9",
G' = 2.05 k/in.
F' = 0.060 k.in/in.rad.
Ygq = 0.014
¢q = 0.15
Then Q=q, = % x 2.05 x 24 = 33 0.K.
F.= F, = £ x 0.060 = 0.040 k.in/in.rad

With Q = 33.0 and F = 0.037 (n = 1,2,3,...10), Pcr 1s calculat-

ed from Eq. (7) and its value is equal to

)
"

10.30 > B.45 k 0.X.

and the corresponding n = 2.

Consider initial imperfections:

CO = 0.411
DO = 0.206
E = 0.004
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192), (19p), (17) and (18) with P =

8.45 and n = 2, and above values of the initial imperfections,

then

Cq

Ey
Ymax

¢max

Thus the diaphragm is not a
Trial 2

= 0.58 1in.

= 0.226 rad.

= 0.006 < 0.014 0.K.
= 0.226 > 0.15 N.G.

dequate for bracing.

Try 1/2" Homosote boards and fasteners every 6", and con-

sider the followilng:

G'
Fl

Then Q=q = % x 2

Following the same steps of

trial,

Fer =

and n 2. Hence,

2.80 k/in.

0.07 k.in/in.rad
0.012 in/in
0.175 rad.

.80 x 24 = 45,0 k

= 0.045 k.in/in.rad.

analysis considered in the previous

10.8 k > 8.45 0.X.

0.431
0.175

"
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0.004 < 0.012 0.K.

Y
¢

max
0.1748 < 0.175 0.K.

max

Thus the diaphragm is adequate for braclng.

Check possibility of buckling between the fasteners

Distance between fasteners s = 6"

a) Buckling about y-axis

Pcrf = 582.0 k.
b) Torsional buckling
Pcrf = 650.0 k.

Both loads are much larger than Po = 8.45 k; therefore buckling
between the fasteners does not govern.

Thus 1/2" Homosote boards with fasteners every 6" satis-

fies all the design requlrements.
Note: The computer output of Program B2 shown in Appendix U4

includes a list of Q, F, ¥ and ¢ With the alid of such a

max max”’

list, the sultable diaphragm may be chosen from Diaphragm Cata-
logues or from diaphragm test results, provided that Q, F, Yqo
¢d of the diaphragm are at least equal to one of the values of

Q, F, ¥ and ¢ma listed in the output.

max X



Appendix 2

COMMENTS ON THE METHODS USED TO SIMPLIFY
THE GOVERNING EQUATIONS

Methods 1 and 2 are iterative procedures commonly used to
give the roots of a polynomial when the coefficlents of the
varlables have numerical values; then the lterative procedure

(39,40,Ul). However, in the cases considered herein

1s possible
the coefficlents are parameters forming complicated algebrailc
expressions as in Eqs. (39) and (42); therefore the intent 1is
to find the smallest root only of these equations expressed in
a linear form 1n terms of the known parameters. Therefore it-
eration for more than two cycles at the most 1s not possible.
This disadvantage has been overcome by choosing the first trial
root as closé as possible to the real root, so that fast con-
vergence would be possible. Method 3 is simpler to use but
poor 1in accuracy unless at least the flrst three terms of the
expansion are considered. The abovementioned three methods are
used to obtaln an expression of the smallest root of the gov-
erning equatlons.

Approximation by plecewlse linear functions, Method 4, in-
volves reducing the nonlinear equations to a set of linear
functions (Fig. 13). This 1s done by selecting points lying on
f(p) as break points at which the slope changes. The points
should be chosen sc that the equations of the linear segments

would approximate as accurately as possible the original funce

tion and most important, that the equations of the segments are

166
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expressed in simple terms. Application of the method to zee-
sections braced on both sides 1s 1llustrated in Fig. 13. The
resulting equations are not simple and the approximation 1s not
satisfactory in the ragion of small values of Q.

Method 5(&1) 1s one of the strategies to solve nonlinear
algebraic equations by treating them as linear equations, dele-
gating the higher powers to an unimportant place on the right
hand side of the equation. For example, applying the method to

Eq. (59), then
2 2

PP + P Q-~-P + P
Pi+l - X X(P f B +X%) 3 where 1 = 0,1,2,...
X y

For the first approximation set Po = 0 and get the first ap-
proximate root. Repeat the steps until convergence 1is ob-
tailned. The method 1s not as effective as Newton's method
since it 1s not possible to perform more than one iteration.

The method of split rigidity‘*2)

was developed by Bijlaard
in 1932 to calculate the buckling loads of structures that buc-
kle in the composite mode. However, the method had been known
and used by F. Buckens, 1943, without any reference to Bij-
laard. Buckens used the method to overcome the difficulties
which are inhibited in certain relations of stability problems.
The method consists of splitting the buckling deflections into
two or more component modes and expressing the buckling stress
in terms of the critical loads for these component modes. Sim-
ple answers are obtained for sandwich plates for which the ba-

sic assumption that the split deflectlions have the same shape

is fulfilled. However, when the deflection has components in
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more than one direction (for example u,v,¢) the solution be-
comes as complicated as the solutions obtained in the present
irivestigation. Thls has been shown by Bijlaard in a paper

dealing with torsional-flexural buckling of open sections(u3).
The question of whether the method ylelds conservative answers

(45 s1ede‘™5) founa

or not has been discussed by Plantema
that 1n some cases of buckling of flat plates, the method glves
unconservative answers. It became clear after a few attempts
to solve the simplest case 1n the present ilnvestigation, the
methqd will not yield a simple expression of the buckling load.
This 1s mainly due to the involveﬁent of more than'one compo-
nent of the deflection in the buckling mode. |

Neglecting the term thought to be of minor influence,
method 6, did not lend itself to any loglcal answer. After
many tria;s it has been realized that.the equations of s<tabili-
ty are very sensitive to inconslstent changes in the quartities
forming the coefficients of the variables.

The governing equations of sections braced on both sides
are much simpler than those for one sided bracing. Methad 8
has been suggested to 1lnvestigate the possibility of obteining
a simple expression of the buckling load in the case of one
sided bracing in terms of the solutlon of two sided brac:.ng.
Comparison of the exact numerical results of channel sections
braced on both sides and channel sections braced on one side
revealed that a certain reduction factor can be introduced to
the diaphragm shear rigidity Q (Eq. 57) so that the modified

equation can handle the case of one sided bracing. However, it
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has been realized after examining numerically different cases

that the method lacks generality.



Appendix 3

SAMPLE DERIVATION OF LOAD-DEFLECTION RELATIONSHIP
OF AN IMPERFECT COLUMN
(general-shaped section braced on both sides)

End Condition u =v =¢ =20 at z o,L

u? = v = ¢ =0 at z = 0,L
The following are the details of deriving Eqs. (80) of Section
2.7B.1.

From Eq. (53) the following functions are chosen since

they satisfy the above end conditions.

Tz - nz

u = Clsint— u, = Cosini—
- 7z - nz

v = DlsinL Vs DosinL
= Iz = Tz

¢ ElsinL ¢o EoSinL

Considering that up =utu,, v =v+v,, ¢ =¢+ ¢,> and
substituting with the above listed displacement functions into
Eq. (79), the following equation is obtained:

2 2
Y4s1n 246753 (2 2c0s 22

1 2. mb . °m k. % 2/ m
= 5| {EI C7(7) sin 742ET_C.D. (F) sin T4EC E- (1 T z
O

y1l'L L xy 1'1'L L w1l

furd

-P[Ca(l)ecos?1£+2c c (E)2c03212+D2(3)2cos?1§+2D D (3)2
1'L L ““1°0'% L “1'L I 1'%’ ©°% 1

2
nz
L

2/2,M2 2wz 2 2wz T2
+ro(El(£) cos £—+2E1Eo(50 cos ETQ-ZXO(DlEl(Eﬁ cos

P

2 2
mne Tz T T2 Tz
+D1E°(L) cos f—+DoE1(L (+)cos ==

2
2 2
)"cos p=)+2y (C,E, (F L

2 2
2 nz me nz
+ClEo(L) cos f_+CoE1(L) cos p )] (contd.)
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2 2 a_+ 2 2 2
2,m,2 T 2 Mz, 1 2 o Lk
‘*Q[Cl(i—) cos L ( )<e i——( 5 )+C1E1(i') cos ——(d -4, Y]+F E,sin T laz
Then I = l(E)ZL{P 2+2p, C D +EC (D)%E +Gyr2+p DI
slg) 31P,C 1%1 1V x*1
2 2 2,.2
-P[Cl+ZClCo+Dl+2D1DO+rO(E1+2E1EO)
—2xo(D 1E,+D,E_+D_E )+2y (C1 l+ClEo+COE1)]
a°+ d2 2

+Q[C3+E( 1 —L.-2)+C,E; (d,-d,) +EP5}
o

Using the Rayleigh-Ritz method to minimize the above energy ex-
pression with respect to Cl’ Dl and El’ hence the followlng 3

equatlions are obtained:

oIl

BC;L

=0

: a,-d,
C) (P, -P+Q)+D, (P, )+E, (Q(—5—= 1 2y. ~Py_) = P(C_+y_E,)

T
— = ()
3D;
Cl(ny)+D1(Px—P)+El(PXO) = P(DO-XOEO)
3T
=0
3E)
a,-d, d2+d§ L2
¢, (QU25-2)-Py ) 4D, (Px )+E; (r2(P 4-P)+Q(-L2)+FL)

T

= 2n _
= P(roEo xoDo+yoCo)

Rearranging these equatlons in matrix form leads to Eq. (80).



Appendix &
WALL STUDS DESIGN PROGRAMS

(Documented Listings, Flow Charts and Sample Outputs)

4A. General ‘ _

Four programs, written in Basic FORTRAN IV Language for
the IBM 360/65 are included herein.

The input data and its format are described in the begin-
ning of each program listing.

Three cards within the program may need to be cahnged for
a given compller and application. These are:

1 and 2) LOGICAL RECORD UNITS of READ and WRITE state-
ments are replaced by J and K, respectively, provided that J
and K units, required by a certain compiler, are declared be-
fore any READ or WRITE statements. Herein the units of J and K
used in the program are

J =5
and K =6

3) The card containing the CONTROL VARIABLE (PRINT) is to
transfer control of the WRITE statements. If detalls of the
computations as well as the final answers are needed in the
output, then let PRINT = 1; if only the final answers are need-
ed, then let PRINT = 0,

In this Appendix, the flow charts, samples of computer
outputs and the dbcumented listing of the programs follow, in
order, Section 4D (Definitions of Varilables). Sample outputs
" are the solutions, without details (l1.e. PRINT = 0), of the de-
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sign examples of Appendix 1.

4B, Sources of Egquations

The solution routines are based on the suggested design
procedure outlined in Chapter 6, Section 6.3 and have the same
limitations specified in this report. The design equations
coded in Section 6.4 are utilized throughout the programs,
while formulas for computing section properties are obtained
from Refs. 49 and 53.

4Cc. Limitation of the Programs

1) The programs have been prepared to serve as design
aids for the analysls of wall studs made of I, channel and zee-
sectlons.

2) The studs are braced with diaphragms whose properties
are within the practical range of wall stud applications.

3) Uni?s for each design parameter are given in the be-
ginning of each program, as well as in Sectilon 4D of this ap-
pendix (Definitions of Variables).

4) The programs provide for the design of diaphragm-
braced wall studs of I, channel and zee-sections for the fol-
lowing cases:

- Sections braced on both sides

Find P_,, for given S and F-values (Prog. Al)

Find S and F-values for given Pall (Prog. Bl)
- Sections braced on one side only

Find P_,, for given S and F-values (Prog. A2)

Find S and F-values for gilven P_,, (Prog. B2)
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4D, Definitions of Variables

Some of the important variables in the program will now be

defined.  Some of these variables appear in the program output.

~Variables which appear in the READ statements are defined in

the beginning of each program. Units only for those variables

appearing in the output are given below.

AN

AREA
Cl

Cw

El
F.S.
FEMAX
GAMAX
GI

NU
NWAVE

all
PO

PA
PC
PCF

PCR

n2, where n 1s the numoer of half-sine waves into which
the stud may buckle

stud cross-sectional area

deflection in the direction of the wallboards, in.
warplng constant, 1n6

E1 = computed rotation, rad.

factor of saféty

computed rotation, rad.

computed shear strain in the diaphragm, in/in.
inelastic shear modulus, ksi

number of half-sine waves to be examined

number of waves corresponding to the buckling load un-
der consideration

allowable load, k-

given allowable load, K

inelastic: buckling load, k

elastic buckling load computed for each value NU, k
buckling load of the unbraced stud with buckling length

equal to the distance between the fasteners, k

elastic critical buckling load, k



PCUNB

PE

PFE
PFEF

PI

PR

PUNB

PX1

PX2

PXX

PXXF

PXY

PYIELD

PYY

PYYF
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buckling load of unbraced stud after investigating in-
elastlic behavior, k

elastic buckling load obtained from Eq. (24) of Sec-
tion 6.4 for a xnown value of inelastic buckling load
PA, k

torsional buckling load of the braced stud, k
torsional buckling load of the unbraced stud with
buckling length equal to the distance between the fas-
teners, k

polar moment of 1lnertia about the shear center, inu
load capacity of the stud, k

buckling load of the unbraced stud, k

Euler buckllng load of the unbraced stud about the mi-
nor axis of 1lnertia, k

Euler buckling load of the unbraced stud about the ma-
Jor axis of inertia, k

Euler buckling load of the unbraced stud about the
x-axls, k |

Euler buckliing load of the unbraced stud about the x-
axlis, used in checking the possibility of buckling be-
tween the fasteners of a channel section (= PXX), k
defined by Eq. (ic)

yield load of the stud (= Area x oy), k

Euler buckling load of the unbraced stud about the
y-axis, k

buckling load of the unbraced stud about the y-axis,

with the buckling length equal to the distance between



R2

TMOD
XI1
XI2

XL
XL1
XLAM

XJ
X0

XXI
XYI
YYI
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the fasteners, k
IP/AREA, where IP is the polar moment'of inertia about

the shear center (equivalent to rg used in the governing

equations, in2

inelastic modulus defined by Eq. (25), ksi

moment of inertlia about minor axils, inu

moment of inertla about major axis, inu

stud length

distance between the fasteners

a factor less than 1.0 (equivalent to A used in the de-

sign procedure

St. Venant torsion constant, inu

distance between centroid and shear center of the sec-

tion, 1in.

moment of inertia about x-axis, inu

product of inertia with respect to x- and y-axes, inu

moment of inertia with respect to yfaxis
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(] ]
o0
ow

<}
A

Section properties:

3

Call PCL: PXX, PYY, PXY, PFE, ...
¥

Elastic buckling loads: Pl, P2, ...

ERe* FUEEIIRg BRENEIR, EatEensre;
¥

PCR=MIN(P1,P2,...,(P4,P5,P6 or PCF))

T 3
check 1inelastic
behavior

—— XLAM=0.999

> PR=PCR#*XLAM -
P ]

MOD, GE-corresponding to PR
¥

Call PCL: PXX, PYY, PXY, PFE, ...
2

Compute: C1, E1, GANAX, FEMAX

{7 WY

X\ WRITE:
P, 11 GAMAX , FEMAX

|

o

FLOW CHART FOR PROGRAM (Al)
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R
- 1
Section properties: AREA, XXI, YYI, X0, XJ...
1
NU=10
1
I=1 >,
, NU <=
I=]+1
PC(I)
NWAVE
CALL PCL: PXX, PYY, ... =1
.CALL DPRQ: Roots of cubiq/
Compute PC for each valueg
of NU
;. -
I= >'-
NU . {= Y
I=1+1 If’c’n. NWAVE
PTESTI=PC(1) | o So
— NWAVE=1 1 <BC(1)-PTEST2
‘s
20 .I
- R |
heck buckling
betweaen fasteners -
heck inelastic
behavior

€) ®

FLOWN CHART FOR PROGRAM (A2)
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7

I=]1 >
( NU <=
> I=I+L XLAM=0 999
Y
i -
PRMIN(I) =XLAM«PCR
i PR=PRMIN(I)
¥
MOD, GE corre;gonding to PR
CALL PCL: PXX, PYY, ...
3
Cl. E1, GAMAX, FEMAX Y
XLAM=
XLAM-0.01

A

)

PRMIN(I), NWAVE

\

Y

I=2
NU

=]+]

PTESTZ=PRMIN(I)| <>

PR, NWAVE

>0 all =

PR=PTEST2, «<PRMIN(1) -PTE PR
JE!AVE A Rﬁ\\\j//’//STT F.S.
- — ~
¥ -
WRITE
X‘ ALLOWABLE LOAD %/
Y

FLOW CHART FOR PROGRAM (A2) (contd.)
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Start

Section properties: AREA, XXI, YYI, XO, XJ,...

1

Call PCL: PXX, PYY, PXY, PFE,...

1

PR=PO«F.S.

Y

Check: PR>PUNB, PR<PXX, PR<PYIELD

.

Check buckling between fasteners PR<PCUNB

1

Checkkinelastic behavior

Y

Compute Min. S,F
Y

MOD, GE cerresponding to PR,

Call PCL: PXX, PYY, PXY, PFE,...

¥

- Cl, E1, GAMAX, FEMAX
Y
S=545.0
¥
| WRITE
S,F,GAMAX,
EEMAX
. R ]
>
~22<G_SLIM - F=F+0.05
=0

|

FLOW CHART FOR PROGRAM (Bl)
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Section properties: AREA, XXI,YYI,XO0,XJ,..

1

NU

PR=POaF.S.

¥

Check: PR>PUNB, PR<PXX, PR<PYIELD

1

Check buckling between fasteners PR<PCUNB

1

"ghegk inelastic behavior PE=PR

t
S=STRIAL, F=FTRIAL, SMIN=S
_ r
I=1 2
NU s R
- I=I+1 ' pC(1)
NWAVE
CALL #CL: PXX, PYY, ...
CALL DPRQD: Roots of cubic
Compute PC for each value of NU y
1
I
I= 2
NU <= ]
T | 1=Ie1 PCR
NWAVE
PTEST2=PC(I)| _ @;f _ >o

FLOW CHART FOR PROGRAM (B2)
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S =S+5.0
F=F¢0.05
SMIN=S

4

L X

)

y

WRITE
PCR,NWAVE,S,F

/

Y

MOD,GE correspondimg to PR
CALL PCL: PXX, PYY, PXY, PFE,

” e

) 4

Cl, E1, GAMAX, FEMAX

\
WRITE

=0 V

) §

A

FLOW CHART FOR PROGRAM (B2) (contd.)
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SAMPLE OUTPUT OF PROGRAM Al

Solution of DESIGN EXAMPLE 1 (case 1)

ALLOWABLE LGOAD OF STUD BRACED CN BCTH SIDES

IFE - SECTIOCN STUD LENGTH= 6¢&.CO
SECTICN DIMENSIOCNS

DEPTH= 3.500 H= 3,440 B= 1.940 D= C.470
CA= (0.861

DIAPHRAGM PROPERTIES

S= 50.000 F= 0.060 GAaMD= 0,31100

YIELD STRESS FY=50.000

INITEAL IMPERFECTIONS C0=0.274 D0=0.137

SECTICN PROPERTIES

(PROG. Al)

T= 0.060

FED= 0.15000

EC=0.002

"AREA= 0.496 IXX= 1.018 1YY= 0.504 IXY= 0.470 XC= 0.000
IX2= 1.29¢

R2= 3.071 J= 0.001 CW= 0.547

MOD= 29500.0 P)
PFE= 11929 PXY= 14.837 PXl=

ELASTIC CRITAL B. LOAD= 26.559

Ix1=

7.133

C.226

GE= 11300.0 PXX= 32.15C Pvy=

PX2=

ALLOWABLE LOAD p

15.933

40.950
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SAMPLE OUTPUT OF PROGRAM Al

Solution of DESIGN EXAMPLE 1 (case II)

ALLOWABLE LOAD OF STUD ERACED CN BOTH SIDES (PROG. Al)

CHANNEL SECTION STUD LENGTH= G¢€.CC

SECTICN DIMENSICNS
DEPTH= 3.500 H= 3,440 B
CA= 0.8¢61

1.940 D= C.470 T= 0.060

CIAPHRAGM PRQPERTIES o .
S= 5C.000 F= 0.060 GAMD= 0.C1100 FED= 0.15000

YIELD STRESS FY=50.000
INITIAL IMPERFECTIONS C0=0.274 D0=0.137 E0=0.C02

SECTICN PROPERTIES

AREA= 0.496 1IXxX= 1.018 1YY= 0.278 1IXY= C.000
XC= 106"3 R2= 5.313 J= 00001 CH= 00649

MCD= 29500.0 GE= 11300.0
PXX= 32.150 PYY= 8.769 PFE= 5.125 PXY= 0,000

"ELASTIC CRITAL 8. LOAD= 21.680

ALLOWABLE LOAD p= 8.211
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SAMPLE OUTPUT OF PROGRAM Bl

Solution of DESIGN EXAMPLE 2 (Case I)

ALLOWABLE LOAD OF STUD BRACED ON BOTH SIDES (PROG. B1)

P R EE R E S I T T T T T E T E TS ETEEXETEEXXTISEXREIRXE

CHANNEL SECTION STUD LENGTH=144.00

GIVEN ALL. LNAD (POY = 8.000

SECTICN DIMENSIONS
DEPTH= 5.000 H= 4.895 B= 1.8%5 D= 0.647 T= 0.105

QA= 0.907

DIAPHRAGM PROPERTIES
SLIM= 35,000 FLIM= 0.020 XLl= 12.CO

YIELD STRESS FY=50.000
INITIAL IMPERFECTIONS CO=0.411 DN=0.206 EO0=0.004

SECTICN PROPERTIES
AREA= 1.048 I[IXX= 4.028 1YY= 0.580 IXY= 0.000
X0= 1540 R2= 6,770 J= 0.004 CwW= 2.698

MQD= 29500.7 GE= 11300.0 |
PXX= 56.554 PYY= B.144 PFE= 12.023 PXY= 0.000

S F GAMAX FEMAX Cci El
12.216 0.000 0.036 0.156 1.264 0.156
17.216 0.000 0.019 0.088 0.632 0.088
27.216 0.010 0.009 0.040 0.316 0.040
32.216 0.010 0.007 0.034& 0.253 0.034
12.216 0.015 0.032 0.087 l.264 0.087
17.216 0.015 0.017 0.061 0.632 0.061
22.216 0.015 0.012 0.047 C.421 0.047
27.216 0.015 0.005 0.038 0.316 0.038
32.216 0.015 0.007 0.032 0.253 0.032
12.216 0.020 0.032 0.076 1.264 0.076
17.216 0.020 0.017 0.055 0.632 0.055
22.216 0.020 0.017? 0.043 0.421 - 0.043
27.216 0.020 0.009 0.036 0.316 0.036

32.216 0.020 0.007 0.030 0.253 0.030



186

SAMPLE OUTPUT OF PROGRAM Bl

Solution of DESIGN EXAMPLE 2 (case II)

ALLOWABLE LOAD OF STUD BRACED ON BOTH SIDES

I rEE R R T E N E N T S T E S TS E TSI E S S EIIT XIS ETZIEST
CHANNEL SECTION STUD LENGTH=144.00
GIVEN ALL. LOAD (PO) = 16.000

SECTICON DIMENSICNS

DEPTH= 5.000 H= 4.895 B= 1.895 D= 0.647 T= 0.1

QA= (0.907

DIAPHRAGM PROPERTIES
SLIM= 80.009 FLIM= 0.070 XL1l=

YIELD STRESS FY=50.000

12.00

INITIAL IMPERFECTIONS CJ=0.411 D0=0.206 EC=0.004

SECTICN PROPERTIES

AREA= 1,048 IXX= 4.028 1YY= 0.580 1IXY= 0,000
X0= 1.540 Q2= 6.770 J= 0.004 CW= 2.698

MOD= 29500.00 GF= 11300.00
PE= 33.605 PR= 30.720

MOD= 26967.5 GE= 10329.9
PXX= 51.699 PYY= 7,445 PFE= 10.991

S F GAMAX FEMAX C1 £l
42.060 0.000 0.070 1.013 0.673 1.013
47.060 0.000 0.035 0.425 C.531 0.425
52.060 0.000 0.024 0.269 0.439 0.269
57.060 0.000 0.019 0.136 0.374 0.196
€2.060 0.000 0.016 0.155 0.326 0.155
67.060 0.000 0.013 0.128 0.289 0.128
72.060 0.000 0.012 0.109 0.259 0.109
77.060 0.000 0.010 0.065 0.235 0.095
42.060 0.005 0.052 0.691 0.673 0.691
47.060 0.005 0.021 0.355 C.531 0.355
52.060 0.005 0.02%3 0.239 0.439 0.239

PXY= 0.000

(PROG.

05

contd. on next page

B1)



62.060
£7.060
72.060
717.060
42.060
47.060
52.060
57.060
62.060
67.060
712.060
77.060
42.060
47.060
52.060
57.060
62.060
67.060
72.060
717.060
42.060
47.060
52.060
57.060
62.060
67.060
72.C60
T7.060
42.060
47060
52.060
57.060
62.060
€7.060
72.060
77.060
42.060
47.060
52.060
57.060
£2.060
67.C60
T72.060
77.060
42.060
47.060
52.060
57.060
62.060
67.060
72.060
77.060

0.040
0.040
0.040
0.040
0.045
D0.045
0.045
0.045
ND.045
0.045
0.045
0.045
0.050
0.050
0.050
0.050
0.050
0.050
0.050
0.050
0.055
0.055
0.055
0.055
0.055
0.055
0.055
0.055
0.060
0.060
0.060
0.060
0.060
0.060
0.060
0.060
0.065
0.065
0.065
0.065
0.065
0.065
0.065
0.070
0.070
0.070
0.070
0.070
0.070
0.070
0.070
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0.012
0.011
0.010
0.009
0.025
0.020
0.917
0.014
0.012
D.011
0.010
D.009
0.024
0.019
0.016
0.014
0.012
0.011
0.010
0.009
0.024%
0.019
0.016
0.014
0.011
0.C09
N.009
0.023
D.019
0.015
0.013
0.012
0.010
0.009
0.009
0.023
0.018
0.015
0.013
0.011
0.010
0.008
0.008
0.9222
0.018
N.015
0.013
0.011
0.010
0.009
0.008

0.099
0.087
0.C78
0.070
0.195
0.15%4
0.127
0.108
0.094
0.C84
0.075
0.068
0.179
O.144
0.120
0.103
0.090
0.081
0.C73
0.066
0.165
0.135
OD.114
0.099
0.078
0.070
0.064
0.154
0.127
0.108
0.094
0.C84
0.075
0.068
0.062
OD.144
0.120
0.103
0.090
0.C80
0.072
0.066
0.060
0.135
0.114
0.098
0.C87
0.078
0.070
0.064
0.059

0.326
0.289
0.259
0.235
0.673
C.531
0.439
0.374
0.326
0.289
0.259
0.235
0.673
0.531
0.439
0.374
0.326
0.289
0.259
0.235
0.673
C.531
0.439
0.374
0.326
0.289
0.259
0.235
0.673
C.531
0.439
0.374
0.326
0.289
0.259
0.235
O.673
C.531
0.439
0.374
0.326
0.289
0.259
0.235
0.673
0.531
0.439
0.374
0.326
0.259
0.235

0.099
0.087
0.078
0.070
0.195
0.154
0.127
0.108
0.094
0.084
0.075
0.068
0.179
Del4s
0.120
0.103
0.090
0.081
0.073
0.066
0.165
0.135
Oe.ll4
0.099
0.087
0.078
0.070
0.064
0.154
0.127
0.108
0.094
0.084
0.075
0.068
0.062
De.l44
0.120
0.103
0.0980
0.080
0.072
0.066
0.060
0.135
O0.114
0.098
0.087
0.N78
0.070
0.064
0.059
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SAMPLE OUTPUT OF PROGRAM A2

Solution of DESIGN EXAMPLE 3 (case a)

ALLOWABLS= (LOCAD OF STUD BRACED CN ONE SIDE ONLY (PRNG. A2)
==="= T I T RS E S ETE S N EE ST EZE ST RTITIESZETTITIRTE
CHANNFL SECTION STUD LENGTH=144.00

SECTICN DIMENSIONS
CA= 0.953

CIAPHRAGM PROPERTIES

S=  30.000 F= 0.040 GAMD= 0.01400 FED= 0.15000 XLl=
12.0

YIFELD STRESS FY=50.,000

INITIAL IMPERFECTIONS C0=0.411 DO0=0.206 EO0=0.004

SECTICN PROPERTIES
ARFA= 0.644 IXX= 1.408 1YY= 0.071 [IXY= C.000
X0= 0.558 Q2= 2.608 J= 0.002 CW= 0.195

ELASTIC CRITICAL B, LOAD PCR= 10.234 NWAVE= 2
CRITICAL B. LOAD ,CONSTDER. R. BETWEEN FASTENERS,= 10.234
LCAD CAPACITY PR= T€15 NWAVF= 2

ALLOWABLE DESTGN LOAD (( PALL )) = 3.998

P e T B B N R N TN Bk e
R 2 - - A 2 R i R



ALLOWABLE
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Solution of DESIGN EXAMPLE 3 (case b)
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SAMPLE OUTPUT OF PROGRAM B2

CHANNEL SECTION STUD

GIVEN ALL.

LOoAD (po)

SECTION DIMENSIONS
DEPTH= 4.00)

QA=

0.953

H= 3.895

DIAPHRAGM PROPERTIES

SLI
STR

M= 50.0

TAL= 25.000

00

FLIM=
FTRIA

YIELD STRESS FY=50.000
INITIAL IMPERFECTIONS CN=0.411

SECTICN PROPERTIES

ARE
XnN=

A= D.644
0.558

I
R2=

XX= 1.408
2.608

LENGTH=144

= 4.4C0

B= 1.1

0.050
L= 0.04

Iyvy=
= 0.002

18 D= 0.900

Xtl= 12
00

D0=0.206

00071 Isz
CW= 0.195

LOAD OF STUC BRACED ON ONE SIDE ONLY

.00

0O T=

«CO

EO0=0.

0.000

(PROG.

0.105

004 NU=10

25.000
30.000
35.000
40,000
45.000
50.000
25.000
30.000
35.000
40,000
45.000
50.000
25.000
30.000
35.000
40.000
45.000
50.000

0.040
0.040
0040
0.040
0.040
0.040
0.045
0.045
0.045
0.045
0.045
N.045
0.050
0.050
0.050
0.050
0.050
0.050

C.704
O.614
C.558
C.520
0.493
Q0.6472
0.610
D0.534%4
0.487
0.455
O0.431
O0.413
0.540
0.475
0.434
0.405
0.384
0.368

0.254
0.232
0.219
0.209
0.203
0.198
0.216
0.198
0.188
0.180
0.175
0.171
0.187
0173
O.164
0.158
0.154
0.150

B2)
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3 3 e e 3 3 ke e o o ok o o ok ok ke ok o o ok o ok ok ok kol ok ok ok ok kR R R kR ok koK

PROGRAM 'AlY

* x
* *
* *
* STUD BRACED ON BOTH SIDES *
* FIND ALL. LOAD *'P* FOR GIVEN *S* & 'F' VALUES =
* *
* *

e 3k e 2 3 2k Sk e 3k 3k a3 % o A xe A Ak A 3 3K A Xx XAk Xk A A 3g e Xe e 3 g 3k 3K 42 e ok ¥ e e e dle ek

THE *INPUT DATA* CONSISTS OF THE FOLLOWING PER CASE :
(ISECyXLoHHyHyBsD9sT9yQA4S+FyGAMAD,FED,FYyXL1)
THESE PARAMETERS ARE PUNCHED IN 2 CARDS ACCORDING TO THE
FORMAT STATEMENT NUMBER 500 FORMAT(I1047F10e34/+46F1045)
THE "ABOVE MAY BE REPEATED FOR EACH CASE INVOLVING
NEW VALUES OF THE ABOVE PARAMETERS.

TwO BLANK CARDS *WITH ISEC=C ° MUST BE PROVIDED AFTER
THE DATA CARDS TO SIGNIFY THE LOGICAL TERMINATION OF THE
PROGRAM

........... b A X Y TR

THE FOLLOWING DEFINES THE INPUT DATA AS WELL AS IMPORTANT
PARAMETERS USED IN THE PROGRAM, DEFINITIONS OF OTHER
PARAMETERS ARE GIVEN IN THE NOMENCLATURE OF APPENDIX # 4
OF THE MAIN REPORT.

FOR I-SECTION ISEC=1
CHANNEL~-SEC. ISEC=2
ZEE-SECTION ISEC=3

STOP PROGRAM ISEC=0

ALL DIMENSIONS , LOADS & STRESSES ARE IN THE FOLLOWING
UNITS EXCEPT OTHERWISE NOTED :

DIMENSIONS IN INCHES
LOADS IN KIPS
STRESSES IN KS1I

SECTION DIMENSIONS:

XL= STUD LENGTH

QA= SHAPE FACTOR

HH= TOTAL DEPTH OF SECTION
T = THICKNESS OF SECTICN

HyBsD ARE CENTER LINE DIMENSIONS OF WwEB,
FLANGE & LIP

DIAPHRAGM PROPERTIES:
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S= RELIABLE SHEAR RIGIDITY X

F= RELIABLE ROT. RESTRAINT K.IN/IN.RAD
GAMAD & FED ARE DESIGN SHEAR STRAIN AND
ROTATIONAL CAPACITY IN RAD.

XL1l= CISTANCE BETWEEN FASTENERS

INITIAL IMPERFECTIONS:
CO= STUD LENGTH /700
DO= STUD LENGTH /700.
EC= 0.0006 RAD. PER FJIOT LENGTH OF STUD

MATERIAL PROPERTIES OF STUD:
FY = YIELD STRESS OF STEEL

FLT= PROPCRTIONAL LIMIT (FLT= O0.5FY)
MOD= MCDULUS OF ELASTICITY (29500. KSI)
GE = SHEAR MODULUS (11300. KSI)

J & K ARE LOGICAL RECORD UNITS OF READ & WRITE STATEMENTS
REAL MOD
J=5
K=6

800 READ(J+500)ISECyXLsHHyHsB+DsT9sQAsSyFeGAMD,FEDyFY,XL1
MOD=26500.0
GE=11300.0
PIE=3.14159
WRITE(K,999)

INITIAL IMPERECTIONS
CO=XL/700.
DO=XL/4700.
E0=0.00C6*(XL/2.)/12.

FOR INITIAL IMPER. AND ACCEDENTAL LGAD ECCENTRICITY
CO0=2.%*C0O

LET PRINT=1 IF DETAILS OF COMPUTATIONS ARE NEEDED

LET PRINT=0 IF DETAILS OF COMPUTATIONS ARE NOT NEEDED
PRINT=0
IF(ISEC-0) 802,802,801

801 GO TO(771¢772+773),1SEC

771 WRITE(K,774)XL
WRITE(K,764)
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GO 10 807

772 WRITE(K.775)XL
WRITE(K,765)

GO TO 807

773 WRITE(K,776}XL
WRITE(K,766)

807 WRITE(K,502)HHsHeyB+D9» Ty QA
WRITE(K,503)S+F,GAMD,FED
WRITE(K,504)FY,C0,00,EO
GO T0O(101,201,+301),1ISEC

CALCULATION OF SECTION PROPERTIES I-SECTION

eNaNale!

101 AREA=Z2.%*T*{(H+B+2.%*D)
XXI=TH(Hx%3+3,%BXH*x%2 +6,%D¥(H~D) R*¥2+2 ,¥D%%3) /6.
YYI=B%%2%xTx(B+6.*D) /6.

XYI=0.0
X0=0.0
XJ=2 . %T%% 3% (B+H+2.%D) /3.
CW=B*%2%T%k(BRH®X%(2+ 6, %D H%X%2+12 , ¥H*D*%2+8,%D*%3) /24,
PI=XXI+YYI
R2=P[I/AREA
XIl=YY]
X12=XX1
WRITE(Ks600)AREA ¢ XXI o YYI s XYI 9 XO9yRZ2Z9eXJsCW
C
C CALCULATION OF ELASTIC BUCKLING LOADS I-SECTION
C
CALL PCLCISECyXXIsYYI o XYItXOsR2¢XJ9CWeMODGEZPIE XLy XI
C  1+XI2+PXX,PY
1Y.PFEPXY PX1yPX2]
WRITE(Ky601IMODyGEPXXy PYYy PFE,PXY
Pl=PYY+S
pP2=PXX
IF(P1-P2) 111,111,112

111 PCR=P1
GO TO 42

112 PCR=P2

42  CONTINUE

C
C CHECK POSSIBILITY OF BUCKLING BETWEEN FASTENERS
C DISTANCE BETWEEN FASTENERS = XL1
C
PCF=(PIE**2 ) *MODRYYI/(XL1%*%2)
IF(PRINT=-1) 950,951,951
951 WRITE(K.602)P14P2,4PCF
950 CONTINUE
IF(PCR=-PCF) 211,211,212

212 PCR=PCF

211 WRITE(K,603)PCR
GO TO 44
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C CALCULATION OF SECTICN PROPERTIES CHANNEL SECTION
C
201 AREA=T*(H+2.0%B+2.0Q*D)

XBAR=T*(B**x2+2.,0%D*B)/AREA :

XXI=Tx(H %3 +6 0*BRH*%24+6,0%D*(H=-D ) *%*2+2,0%D*%*3)/12.0
YYI=T*B*%2% (2, 0FH*B+B*¥2+42,0%D% (2. 0%B+3 ,0%H) )/ (3.0%(H+
C 2.0%B+2.0%#D)
1)

XY1=0.0
XMBAR=(B*H)*%2%T%x(1.042.0*%D/B=-8.0%D**3/(3,0%B*H*x*2)) /{(
C  4.0*%XXI)

XO0=XMBAR+ XBAR

PI=XXI+YYI+AREAXXD*%*2

R2=P1/AREA

XJ=T*%3%(H+2.0*%B+2.0%D) /3.0

CW=(B*H*T ) %%2%(2,0%B*H*%3+3 , 0% (B*xH)*x%2+6,0*¥D*(H+2,0%*B)
C *H*%2+12.0%D

1%%2% (H+4e 0%B ) +8. ORD** 3% (H+14,0%B) +4B0%D**%4) /(144 ,0%XX
c 1)

XIl=YY]

XI2=XX]

WRITE(KyO600)AREAJXXI s YYI o XYI ¢ XO9R24XJsC W

CALCULATION OF ELASTIC BUCKLING LOAD CHANNEL SECTION

(aNaXe!

CALL PCLOISECyXXIsYYIoXYI ¢ XO9R2¢XFyCWyMODsGELPIELXL,XI
C 1y XI2:PXX,yPY
lY,PFE+PXY+PX1,PX2]
WRITE(Ks601)IMODyGE+PXXsPYYPFE,PXY
Al=R2=X(0%*x2
. A2==(R2*(PFE+PXX) +S* (HH/2 4 ) %%*2+F%x(XL/PIE)*%2)
AB=PXX*{(R2*PFE+S*(HH/ 2. ) *%2+F % ( XL/PIE ) *%2)
Pl=(—A2+SQRT(A2%%2~4 %A1 %23 ) )/ (2.%Al)
P2=(=A2=-SQRT(AZ2%%2=~4 ., *¥A1%A3) )} /(2.%A1)
P3=PYY+S

CHECK POSSIBILITY OF BUCKLING BETWEEN FASTENERS
DISTANCE BETWEEN FASTENERS = XL1

OO0

PYYF=(PIE*%2)*MOD*YYI/(XL1%**%2)
PFEF=(GEXXJ+(PIE*%2 ) *MOD*CW/ XL 1%*%*2)/R2
PXXF=(PIE*%2 ) #MODEXXIA(XLE*2)
P4=PYYF
P5=PFEF
P6=PXXF
IF(PRINT=1]) 9524953,653
953 WRITE(Ks604)PL,P2+P3,P4&,P5,P6
952 CONTINUE
PCR=AMIN1(P1l,P2,P3,P44P5,P6)
WRITE(Ks603)PCR
GO TO 44
C
C
C CALCULATICN OF SECTICN PROPERTIES Z~SECTION
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C

C
C

OO0

aNaleXe!

194

AREA=T*(H+2.0%B+2.0%*D)
XXI=T*(Ha%346, 0% BEH¥ * 246, 0%D* (H=D)*%2+2 ,0%D¥%*3)/12.C
YY[=22.0%B*%2%T%(B+3,0*D) /3.0
XY1=B%T*(B*H+D*(H=-D))/2.0
X0=0.0
XJ=T*%3%(2.,0%¥B+H+2.0*D)} /3.0
CW= (B*T ) k%2%(2,0%H*%3%B+(H*B) %% 2+2 .0 %kD*H*x*2%(3,0%H+2 .0
C *B)+12.0%D%x%
12%H® (H¢B) +8 . 0*DA*%3% (H+2,0%B }+D*%4}/ (12, 0%*AREA)
PI=XXI+YY!
R2=PI/AREA ‘
XI1=s{(XXI+YY])/2)=SQRT({(XXI=YYI)/24)%%2+XY]%%2)
XI2=((XXI+YYI1/2)+SQRTC((XXI=YYT)/2.)%¥24XY [%%2)
WRITE(Ke666)AREBA 9 XXI s YYI o XYI g XO9R29XJsCWoXI1gXI2

CALCULATION OF ELASTIC BUCKLING LOADS {~SECTION

113

114
43

CH
DI

955
954

312
311

CA

44

957
956

40

CALL PCLCISECXXIsYYI o XYI s XOsR29XJsCWeMODyGEGPIE XLy XI
C 14XI24PXX,PY

1YsPFEPXY4PX1yePX2)

WRITE(K 606)MOD+GE+PXXyPYY ,PFEPXYPX1,PX2
G1=‘(PXX+P(Y+S)

G2==PXY®%2+PXX%PYY+PXX%S
Pl=(~Gl+SQRT(Gl*#2-4,%*62))/2.
P2=(=Gl-SQRT(G1l*®*2-4 ,*G2)) /2.

IF(P1=-P2) 113,1134114

PCR=P1

GO TQ 43

PCR=P2

CONTINUE

ECK POSSIBILITY OF BUCKLING BETWEEN FASTENERS
STANCE BETWEEN FASTENERS = XL1

PCF=(PIE**2)*MOD*XI1/(XL1**2)
IF(PRINT-1) S54,4955,955
WRITE(K,602)P1,P2,PCF
CONTINUE -

IF(PCR=-PCF) 311,311,312
PCR=PCF

WRITE(K,603)PCR

LCULATICN OF INELASTIC BUCKLING LOAD

FCR=PCR/AREA

FY=FY*QA

FLT=e5%FY

IF(PRINT=1) 956,957,957
WRITE(Ks61)IFCR,FLT
CONTINUE

IF(FCR=-FLT) 20420440
PA=AREAX(FY~-FY%®%2/ (4 .*FCR))
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IF(PRINT-1) S58,559,959
G598 WRITE(64+62)PA
S58 CONTINUE

PCR=PA
C
C .
C LOAD CAPACITY OF STUD
c
20 XLAM=0.99999
5 PR=XLAM*PCR

FR=PR/ AREA
IF(PRINT-1) S60,4961,961
S61 WRITE(K,63)XLAM,PR4FR
960 CONTINUE
IF(FR=-FLT) 90,90,91
SO MOD=2%500.0
GE=11300.0
GO TO 92
91 TMOD=29500.*%(FR¥(FY=-FR) /(FLT®(FY=-FLT2)})
MOD=TMGD
GI=11200.%TM0OD/29500.0
GE=G1
IF(PRINT-1) 9¢€2,963,963
363 WRITE(K,64)TMOD,GI
962 CONTINUE '
92 CALL PCLUISEC s XXIoYYI s XYI 9XOgR29XJrCWoMPDDsGESWPIELXLyXI
C 14 XIZ24PXX4PY
1Y+PFE+PXY,PX1,PX2)
IF(PRINT=1) S¢€44965,965
G65 WRITE(Ks601IMODyGEPXXsPYYHPFEPXY
964 CONTINUE

CHECKING THE DIAPHRAGM ADEQUACY

GO T0O(103,203,303),1SEC

CHECK YGAMAD®' & 'FED' REQUIREMENTS I-SEC

sXaleNe! OO0

103 Cl=CO*PR/(PYY+S=PR)
GAMAX=C1*PIE/XL
FEMAX=.0
IF(PRINT=1) 96649674967
S67 WRITE(K.66)C1l+GAMAXyGAMD,FEMAX,FED
966 CONTINUE

GO 7O 22
C
C
C CHECK *GAMAD®* & 'FED' REQUIREMENTS CHANNEL-SEC
c
203 A4=PYY=PR+S
AS5=PXX=-PR

A6=PR*X0
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C
c
C
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AT=R2*(PFE-PR)+S*(HH/ 24 ) **2+F*{ XL/PIE)*%2
DET=A4* (AS%AT7-A6%*%2)
Cl=PR*(CO*(AS5*AT-A6%X%*2) ) /DET
E1=PR*(-A4*A6*(DO’XO*EO%+A4*A5*(R2*E0-XD*DO))/DET
E1sABS(ELl)
GAMAX=PIE*(Cl+E1*HH/2.) /XL
FEMAX=E1l
IF(PRINT-1) 668,969,969
969 WRITE(K,67)C14EL1+GAMAXyGAMD,FEMAX,FED
968 CONTINUE

GO TO 22
CHECK  *GAMAD' & FED' REQUIREMENTS Z-SEC
303 G3=PYY=PR+S
G4=PXY
G5=P XX-PR

GO=(PFE=PR)*R2+S*x(HH/ 2. ) **%2+F*( XL/PIE ) **2
DET=G3*G5*G6~G4%%2%G6
Cl=PR*(CO*G5*%G6-DO*G4*G6) /DET
Cl=ABS(C1l)
El=PR*(EO*R2*(G3%G5-G4**2))/DET
E1=ABS(E1l)
GAMAX=PIE*(Cl+E1*HH/2.)/XL
FEMAX=E1
IF(PRINT-1) S78,979,919

979 WRITE(K,67)C1+E19yGAMAX9GAMD,FEMAX,FED

S78 CONTINUE

22 IF(GAMD-GAMAX) 10,11,11

10 XLAM=XLAM~-.01
GO TO 5

11 IF(FED-FEMAX) 12414414

12 GO TO 10

ALLOWABLE LOAD OF STUD

14 P=PR/1.92
WRITE(K,80)P

999 FORMAT('1%,4X,'ALLOWABLE LOAD OF STUD BRACED ON BOTH
C SIDES
1(PROGe Al)'y/95Xv44('=2),//4/)

500 FORMAT(11047F10.3,/46F10.5)

502 FORMAT(' *,1X,*SECTION DIMENSIONS',/,2X,'DEPTH=1,F6. 3,
C 2Xy'H='4F6.3
1,2Xy'B=¢,F6.342X,y'D="? ’F6o392X"T=.9F6.39/,2X"QA=' 1F6.
C 3./

503 FORMAT(' *,1X,'DI APHRAGM PROPERTIES* y/'ZX"Ss',F8.3'(.,x
C "Fz"F603'4
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61
62
63
64
66
67

600

601

602
603
604

606

666

774

764
775

765
776

766
80

802
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IXO'GAMD?—. 'F8.5‘14X"FED=. 'FB-S,/)

FORMAT (' *y1X,*'YIELD STRESS FY=',F6e3¢/ 92X, *INITIAL IM
C PERFECTIONS
1C0="3F5.3¢2Xy'00=",F5.392X+'EQ='"yF5.3,4/)

FORMAT‘. "1X9'FCR3'7F80315XQ'FLT='QF8.3)

FORMAT("' *,1X+'PA='3F843,//)

FORMAT(Y *,1X " XLAM=1 ,F5,3,5%X,'PR=F,F8.3,5X,'FR=*,Fl10.
c 3]

FORMAT(® '91X,*TMOD=",F1l2.3+8X+y'GI='yFl2a3,/)

FORMAT(®' ",1X4'Cl="3F10.595X4*'GAMAX=",F10.5,8X,"'GAMD="
C 2Fl0.5+5Xy¢F
1EMAX='3Fl0.595Xs*GAMD=",F10.5)

FORMAT(® %,1X,'Cl=",Fl0.5¢5Xy'E1l=*,FB.5,5X,*'GAMAX="?,F1
C 0.5+5Xy'GAMD
1=',F10.5g5x,'FEMAX=',FlO.S,SX,'FED ='9F10-59//,

FORMAT (' %,1X,*SECTION PROPERTIES',/92X+*AREA=®,F6.3,2
C Xe'IXX='",Fb.
1312Xy'IYY="F6.392X,'IXY='9F6.39/92X1'X0=',Fé.ByZX,'RZ
C =',F6e342Xy"
2J='yFé.ByZXQ'CW='vF6o3o/)

FORMAT(' ® ,1X,"MOD=*yF8.1+42X s 'GE=YyFBal s/ 92Xe'PXX=t,F7
C e392Xs'PYY="?

14 FT7e332X9'PFE=Y 2 FT 342X 'PXY="FT 43477

FORMAT(Y "3 1X¢'Pl='9FBe392Xs'P2="3FB8e3¢2X4'PCF=*,F8.3)

FORMAT("' *,1X,*ELASTIC CRITAL B. LOAD=*,F8.3,//7)

FORMATI(Y * 431X s'Pl="4FB.3¢2X+'P2=',FBe392X4'P3=*,F8.3,2
C Xs*P4=',4,F8,3
lyZX"P5=.QF8.3y2X0'P6="F8o3)

FORMAT(' "31X 2" MOD=" yF8al 42X s 'GE=",F8.1 92Xy 'PXX=',F7.3
C y2X1'PYY="F
176397 42X9"PFE=" 4 FT7a342X9 'PXY= "3 FT7 342Xy 'PX1='4FTa3,2X,
C 'PX2='yF T3,
2L/7)

FORMAT(' *,1Xs'SECTION PROPERTIES 4/ +2X9? AREA=*,F6.3,42
C X,'IXX=%,Fé.

130 2X s 8 IYY =" 3 FO 392Xy ' IXY=1 3 F6e342Xy "' XO=*3F6e39/£42Xy*R2
C ='9F6.392X"
2J=',F6.3,2X.'Cw=‘,F6.3,2X,'IX1=',F6.3,2X.'IX2=‘,F6.3'/
c )

FORMATE® *,1X,'1 - SECTION STUD LENGTH="',F
C 6.2)

FORMAT (* ', 1X24("'_*)+/7)

FORMAT(®* *,1X,*CHANNEL SECTION STUD LENGTH="
C yF6.21)

FORMAT(®* *41X,18¢*_*)4/7)

FORMAT(* €4,1X+'ZEE -~ SECTION STUD LENGTH=?
C +F62)

FORMAT(' ", 1X,17(*_"*),/7)

FORMAT(* *,12X,'ALLOWABLE LOAD P=%yFBa3e/912X,31(°*
C 3"0/)

GO TO 8OO

STOP

END

SUBROUTINE PCLOISEC XXIsYYI ¢ XYI9XOsR2¢XJsCWsMOD,GE,PIE
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C 'XL’XII'XIZ'
1PXXsPYYsPFESPXY4PX1yPX2)
REAL MQD
PXX=(PIE**2)%MOD*XXI/ (XL*¥%*2)
PYY=(PIE**2) *MOD*YYI /(XL **2)
PFE=(GE*XJ+(PIEX*2 ) #MOD*CW/XL*%2)/R2
PXY=(PIE**2)*MODEXYI/(XL%*%*2)
PX1=(PIE**2)*MOD*XI1/(XL%*%*2)
PX2=(PIE**2)%MOD*XI2/ (XL*%2)
RETURN
END

*DATA
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X 3 X 2k 2k A e e ke A e X 2 e dfe e e e % e X Aok s o 2k Xk XX Xk Xk e A A vk Xk e e A e A X 3k X dke o e e

PROGRAM *A2?

* *
* *
* *
* STUD BRACED ON ONE SIDE ONLY *
* FIND ALL. LOAD *P* FOR GIVEN *S*' & 'F' VALUES =*
5 %*
* *

3 3 X 2 ok 2 3 ok X A 3 34k 3 3 e ¥k 3K 2 Be Ak A A ok A K e X X 3 e ok 3 Xk Ak 2k Ae ae dk Ak Fe e o B g de A d

THE *INPUT DATA* CONSISTS OF THE FCLLOWING PER CASE :
CISECyXLyHHsHyB+sDsT+QAySsF+GAMAD,FED,FY,XL1)
THESE PARAMETERS ARE PUNCHED IN 2 CARDS ACCORDING TO THE
FORMAT STATEMENT NUMBER 500 FORMAT(I10947F10.3¢/96F10.5)
THE ABOVE MAY BE REPEATED FOR EACH CASE INVOLVING
NEw VALUES OF THE ABOVE PARAMETERS.

TWO BLANK CARDS *WITH ISEC=0 ! MUST BE PROVIDED AFTER
THE DATA CARDS 7O SIGNIFY THE LOGICAL TERMINATION OF THE
PROGRAM

.......... Weaw an o o v o o - - -

THE FOLLOWING DEFINES THE INPUT DATA AS WELL AS IMPORTANT
PARAMETERS USED IN THE PROGRAM, DEFINITIONS OF OTHER
PARAMETERS ARE GIVEN IN THE NOMENCLATURE OF APPENDIX # 4
OF THE MAIN REPORT.

FOR I~SECTIDON ISEE=1
CHANNEL-SEC. 1SEC=2
ZEE-SECTION ISEC=3

STOP PROGRAM ISEC=0

ALL DIMENSIONS o LOADS & STRESSES ARE IN THE FOLLOWING
UNITS EXCEPT OTHERWISE NOTED :

DIMENSIONS IN INCHES
LOADS IN KIPS
STRESSES IN KSI

SECTION DIMENSIONS:

XL= STUD LENGTH

QA= SHAPE FACTOR

HH= TOTAL DEPTH OF SECTION
T = THICKNESS OF SeCTION

HyByD ARE CENTER LINE DIMENSICONS OF WEB,
FLANGE & LIP

DIAPHRAGM PROPERTIES:
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S= RELIABLE SHEAR RIGIDITY K

F= RELIABLE ROT. RESTRAINT K.IN/INHRAD
GAMAD & FED ARE DESIGN SHEAR STRAIN AND
ROTATIONAL CAPACITY IN RAD,

XL1= DISTANCE BETWEEN FASTENERS

INITIAL IMPERFECTIONS:
CO= STUD LENGTH /700.
DO= STUD LENGTH /700.
EO= 0.0006 RAD. PER FOOT LENGTH OF STUD

MATERIAL PROPERTIES OF STUD:
FY = YIELD STRESS OF STEEL

FLT= PROPCRTIONAL LIMIT (FLT= 0L.5FY)
MOD= MODULUS OF £LASTICITY (29500. KSI)
GE = SHEAR MODULUS (11300. KSI)

HIGHER BUCKLING MODES ARE EXAMINED BY CONSIDERING

SUFFICIENT NUMBERS OF *NU'.IN THIS PROGRAM NU=17210eeee910
IF MORE VALUES ARE DESIRED,THEN CHANGE PRESENT *NU' VALUE

J & K ARE LOGICAL RECORD UNITS OF READ & WRITE STATEMENTS

REAL*8 C,Q.E,POL

DIMENSION P(3)

DIMENSION C(4]),Q(4)sE(4),POL(4)
DIMENSION PC(40)

DIMENSICN PRMIN(10)

REAL MOD

J=5

K=6

READ(J9y500) ISECyXLyHHyHyByDyTyQAsS+FyGAMD,FED,FY,XL1
MOD=29500.0

GE=11300.0

PIE=3.14159

UMBER OF BUCKLING MODES TO BE EXAMINED *NU®*

NU=10

WRITE(K¢999)

INITIAL IMPERECTIONS

CO=XL/700.
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o

801
771

172

773

807

OO0

101

aNeKa!

421

420

C

201

DC=XL/T700.
EO0=0.0006*(XL/2.)/12.

FOR INITIAL IMPER. AND ACCEDENTAL LOAD ECCENTRICITY

C0=2.*CO

LET PRINT=1 IF DETAILS COF COMPUTATIUONS ARE NEEDED
LET PRINT=0 IF DETAILS OF COMPUTATYIONS ARE NOT NEEDED

PRINT=1

IF(ISEC-0) 802+802,+801

GO TO(T7T719772¢773)+1SEC
WRITE(K,774)XL
WRITE(K,T764)

GO TO 807

WRITE(K,775)XL
WRITE(K,765)

GO TO 807

WRITE(K,776)XL
WRITE(K,766)
WRITE(Ky502)HHyHeB+D+T4QA
WRITE(K+503)S+FsGAMDFED+XL1
WRITE(K,504)FY,C0+D0,ED
GO TOt101+201,+301),1ISEC

CALCULATION OF SECTION PROPERTIES I-SECTION

AREA=2 ., *Tx(H+B+2 %D}
XXI=THx(H*%343 , *BAHEX 246, %DE(H~D ) %*¥242 . %Dx%3) /6,
YYI=B*¥%2%T*(B+6.%D)/6.

XY1=0.0

X0=0.0

XJ=2 . ¥T*%3%x(B+H+2.%D) /3,

CW=BX¥2% T (B¥HX%R2+6, ¥DRH*%X24]12 , *¥HRD%%2+B ,*xD%%3) /24,
PI=XXI+YY]

R2=PI/AREA

XI1=YY]

X12=XX1
WRITE(K)600)AREA XXT ¢ YYI o XYI ¢ XOyR2¢XJsCW

CALCULATION OF ELASTIC BUCKLING LOAD I-SECTION

IF(PRINT=1) 420,4214421

WRITE(K652)

WRITE(K.653)

CONTINUE

DO 50 I=1+NU,1

AN=( I*], ) *%2

CALL PCLUISEC $XXI YY1 eXYIeXOsR2:XJr1CWeMODoGEPIE¢XLyXI
1, XI2,ANyPXX
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OO0

C

23

“22

50

202

1,PYYsPFEPXY PX1,PX2])

Gl=—(PFE+PYY+S+(S*(HH/2. ) *%2+4F*(1./AN)*(XL/PIE)*%2)/R)
G2=(PYY+S)*(PFE+(S*(HH/2.,)%*2+F* (1. /AN) *(XL/PIE)*%*2) /R

1)*%2) /R2

Pl=(~Gl+SQRT(G1**2-4,%G2))/2.
P2=(-Gl=SQRT(Gl**2-4,%G2))/2.

P3=(PIE**2) *MOD*XXI/{ XL**2)

PC(I)=AMIN1(P1l,P2,P3)

IF(PRINT=1) 42244234423
WRITE(Ks601)IMOD¢GE 4 PXXaPYYyPFEPXY 4Pl yP2+4P34PC(I1,1
CONTINUE

CGNTINUE

TESTING FO THE CRITICAL BUCKLING MODE AMONG THE

'NU' MODES CONSIDERED AND THE CORRESPONDING HALF-SINE
WAVE (VALUE OF NU)

52

51

PTESTZ2=PCI(1)

AN=1.0

NWAVE=1

PCR=PTEST2

DO 51 I=2,NU
IF(PC(I)-PTESTZ2) 52452451
PTEST2=PC(I) ‘
AN=(]*]1.)%%2

NWAVE=]

PCR=PTEST2

CONTINUE
WRITE(Ks603)PCRyNWAVE

C CHECK POSSIBILITY OF BUCKLING BETWEEN FASTENERS

C
C

aNeNaNe] (@]

DISTANCE BETWEEN FASTENERS = XL1
PCF=(PIE#%2 ) *MOD*YY I/ (XL1%%2)
IF(PRINT-1) 950,951,951
951 WRITE(K,8Q8)PCR,PCF
950 CONTINUE
IF(PCR=PCF) 211,211,212
212 PCR=PCF
211 WRITE(K,803)PCR
GO TO 44
CALCULATIGN OF SECTION PROPERTIES CHANNEL SECTION
201 AREA=T*(H+2.0%B+2,0%D)

XBAR=T* (B**2+2.0%D%*B ) /AREA

XXI=TH(HRk%346,0%BRH*%246,0%0% (H=D ) *%2+42 .0*D*%3) /12.0

YYI=T#BAR2% (2, 0% H¥B+B* %242, 0%D*(2.0%B+3 .0%H) ) /(3.0%(H+
2.0%B+2.0%D)

1)



C
C
C
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XYI=0.0

XMBAR=(B*H ) #%2%T%(1,0+2.0%¥D/B~8.0%D%%x3/(3,0%B*H*x%*2) )/ (
C 4 .0%XX1)

XO0=XMBAR+XBAR

Pl=XXI+YYI+AREA*XXO%%*2

R2=PI/AREA

XJ=T*%3%(H+2.,0*B+2.0%D) /3.0

CW={B¥xHXT )%%k2% (2, 0%BRHE%X3+3, 0% (BXxH)*%2+6,0%D*(H+2,0%*B)
C *H*%*%2+12.0%D

1#%2% (H+44 0%B )48, 0% D%%3% (H114.0%B)+48.,0%D**4) /(144,0%XX
C 1)

XIl=YY]

XI2=XXI

WRITE(K y600)AREA XXI g YYTI o XYI 4 XO9yR2 ¢ XJeCW

CALCULATION OF ELASTIC BUCKLING LOAD CHANNEL=-SECTION

425

424

IF(PRINT=-1) 424,425,425

WRITE(K,652)

WRITE(K,653)

CONTINUE

00 71 1=1,NU,1

AN=( I%]1 ,)%%2

CALL PCL(ISEC+XXI4sYYIsXYI s XOsR29XJsCWyMODyGEPIE XLy XI
C 1,XI2,AN,PXX

1,PYYPFEWPXYPX1,PX2)

FO==(PYY+S) % (PXX®(R2*PFE+S*(HH/ 2. ) *%24+F%(1./AN)*(XL/P]
C E)*%%2))+PXX*

1(S*HH/2)%%2
Fl=(PXX*(R2¥PFE+S*(HH/2.)*%2+F%* (] /AN)*X(XL/PIE)%%2)+(P
C YY+S)*(R2%*(P
1FE+PXX)+S*(HM/ 2. )%%24F% (1o /AN)*(XL/PIE) %% 2)=(S%xHH/2.)*
C =%2)
F2==(R2*(PFE+PXX)+S*{HH/2.)*%24+F* (14 /AN)}*( XL/PIE ) *%*2+(
C R2=-X0O%%2)x(P

1YY+S))

F3=R2=-X0%*%2

C(l)=FQC

C(2)=F1

C(3)=F2

Cl4y=F3

I1C=4

IR=3

CALL DPRQDI(C+IC+Q+E+POLsIR,IER)

v1i=Q(1l)

v2=Q(2)

Vv3=Q(3)

W1l=E(1l)

W2=E(2)

W3=E(3)

IF(W1=-0.0) 645,6

v1i=0.0

pl=vl

IF(W2-0.0) 10,11,10
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11

14
12

24
23
25

427
426
71

aNeNoNaNe)

73

72

OOO00

53
952

C

204

V2=0.0

P2=V2

IF(W3-0.0) 14412414
V3=0.0

P3=V3

P(1l)=Pl

Pt2)=pP2

P(3)=P3
PTEST1=10000000.0

DO 25 N=1,3

IF(P(N)=0.0) 25425,24
IF(P(N)}-PTEST1) 23,423,425
PTEST1=P(NI]

CONTINUE

PC(I1)=PTEST1

IF(PRINT=1) 426,427,427
WRITE(K,601)IMODyGE+PXXyPYYIPFEsPXY4PL1lyP2,P3,PC(1),1
CONTINUE

CONTINUE -

TESTING FO THE CRITICAL BUCKLING MODE AMONG THE

'NU' MODES CONSIDOERED AND THE CORRESPONDING HALF-SINE
WAVE (VALUE OF NU)

PTEST2=PC(1)
AN=1 Qo

NWAVE=1

PCR=PTEST?2

DO 72 I=2,NU
IF(PC(I)-PTEST2) 73,73,72
PTEST2=PC(I)

AN=( 1%1, ) %%2

NWAVE=1

PCR=PTEST2

CONTINUE
WRITE(K,603)PCR,NWAVE

CHECK POSSIBILITY OF BUCKLING BETWEEN FASTENERS
DISTANCE BETWEEN FASTENERS = XL1

PYYF=(PIE*%2) *MOD*YY I/ (XL1%*%*2)
PFEF=(GEXXJ+(PIE*%2) *MOD*CW/XL1%%2) /R2
PXXF=LPIE**2) *MOD*XX1/ (XL **2)
P4=PYYF

P5=PFEF

P6=PXXF

IF(PRINT=-1) 952,953,953
WRITE(K,804) PCR,P4,P5,P6

CONT INUE

PCR=AMIN1 (PCR,P4,P5,P6)
WRITE(K,803)PCR

GO TO 44

C CALCULATION OF SECTICN PROPERTIES L-SECTICN
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aNelel

429

428

205

AREA=T* (H+2.0*B+2 .0%*D)
XXI=T®(H*%3+6,.0%BXH%%24+46, O%DR(H=D ) *% 242 . 0%D*%3)} /12 .0
YYI=2.0%¥B%%2%T%*(B+3.0%D}/3.0
XY1=BxTx(B*H+D*x(H=-D))})/2.0

X0=0.0

XJ=T*%3%(2 ,0%B+H+2.0*D) /3.0

CH=(BXT )%%x2x (2, 0%H¥x%3%B+(HRB ) %x%24+2 ,0¥D*kHE*2%k (3 ,0%H+2,0
C *%B)+12.0%D*%xx*

12%H* (H+B) +8.0%D*¥*3 % (H+2.0*B }+D*¥4}/(12.0%AREA)
PI=XXI+YY]

R2=P1/AREA
XI1=((XXI+YYI)/2F=SQRT(({(XXI=YYI)/2.)%¥24+XY]%%2])
XI2=((XXI+YYI )/2)+SQRT(UIXXI=YYI) /2 )*#2¢XYI%%2)
WRITE(K 666 IAREA S XX o YYI 9 XY I o XO9R29XJeCWeXI1eXI2

CALCULATION OF ELASTIC BUCKLING LOAD {~SECTION

IFC(PRINT=1) 428,429,429
WRITE(K.:652)
WRITE(K,653)

CONTINUE

DO 74 I=1,NU,1
AN=( 1%] . ) *%2

CALL PCLUISEC +XXIoYYI ¢ XYIyXOyR29XJeCWesMODsGEPIEXLyXI
C 1, XI2¢AN, PXX .
1+PYYPFEsPXY ¢ PX1,PX2)
Bl=PFE+PYY+PXX+S
B2=(((HH/2 ) %*%2 ) %xS+F* (1 . /AN)*CXL/PIE)%*%2) /R2
B3=(PYY+S)*PXX=PXY*%2
B4=(PYY+P XX+3S)*PFE
B5=PYY+PXX+S

Bé=( (SRHH/2.) *%2) /R2
FO=+B3%PFE-B3*B24B6*PXX
F1=B3+B4+B5*B2-B6
F2=-B1~-B2

F3=1.0

C(1)=F0

C(2)=F1

C(3)=F2

Cl4)=F3

IC=4

IR=3

CALL DPRQD(C,IC,QyEsPCL,s IR, IER])
vVi=Q(1l)

v2=Q(2)

Vv3=Q(3)

Wl=E(1l)

W2=E(2)

W3=E(3)

IF(W1-0.0) 8,7,8

V1=0.0

Pl=vl

IFIW2=0.0) 15416415
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76
77
75

431
430
74

OO0

79

78

OO0O0

955
954

312
311

C
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v2=0.0

P2=V2

IF(W3-0.0) 18,17,18
V3=0.0

P3=Vv3

P(1l)=P1

P(2)=P2

P(3)=P3
PTEST1=10000000.0

DO 75 N=1,3

IF(P(N)=Q.0) T5,75,76
IF(PI{N)=-PTESTL1) 77,777,775
PTEST1=P(N)

CONTINUE

PC(I)=PTEST1

IF(PRINT=1) 4304431,431
WRITE(Ky601)MOD¢GEyPXXyPYYyPFEsPXYsP14P29P3,PC(1)yI
CONTINUE

CONTINUE

TESTING FO THE CRITICAL BUCKLING MODE AMONG THE

*NU* MODES CONSIDERED ANB THE CORRESPONDING HALF-SINE
WAVE (VALUE OF NU)

PTEST2=PC(1)

AN=1.0

NWAVE=1

PCR=PTEST2

DO 78 I=2,NU
IF(RPC(I)=-PTEST2) 79,479,478
PTEST2=PC(I1)

AN=(I%], )*%2

NWAVE=1

PCR=PTEST 2

CONTINUE
WRITE(K+603)PCRyNWAVE

CHECK POSSIBILITY OF BUCKLING BETWEEN FASTENERS
DISTANCE BETWEEN FASTENERS = XL1

PCF=(PIE%%2)*MOD*XI1/ (XL1%%2)
IF(PRINT=1) 954,955,955
WRITE(K,808)PCR,PCF

CONTINUE
IF(PCR-PCF)311,311,312
PCR=PCF

WRITE{K,803)PCR

GO TO 44

C CALCULATICON OF INELASTIC BUCKLING LOAD

c
44

FCR=PCR/AREA
FY=F Y%QA
FLT= J5%FY
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IF(PRINT=1) 432,433,433
433 WRITE(Ks61)FCRHFLTY
432 CONTINUE
IF(FCR=FLT) 20420440
40 PA=AREA*(FY=-FY*%2/(4.*FCR))
IF(PRINT=1) 434,435,435
435 WRITE(6462)PA
434 CONTINUE

PCR=PA
c
C LOAD CAPACITY OF STUD
C

20 DO 111 I=1,NU
AN=( I%],)%%x2
NWAVE=1]
XLAM=0,.99999
42 PRMIN(I)=XLAM%PCR
PR=PRMINI(I)
FR=PR/AREA
IF(PRINT=1) 436,437,437
437 WRITE(Ks63)XLAM,PR,FR
436 CONTINUE
IF(FR=FLT) 90,90,21
S0 MOD=29500.0
GE=11300.0
GO TO @92
91 TMOD=29500.%(FR*(FY~FR)/(FLTX*{(FY=FLT))}
MOD=TMOD
GI=11300.%TM(OD/29500.0
GE=G1
92 CALL PCLIISEC +XXIoYYI o XYI yXCyR2sXJsCWoMODyGEZPIE XL,y X1
C 1,XI2+ANsPXX
1,PYY L PFEPXYyPX14PX2)
IF{PRINT=1) 438,439,439
439 WRITE(Ks602)MODIGE+PXXePYY PFE,PXY
4«38 CONTINUE '

C
C
C CHECKING THE DIAPHRAGM ADEQUACY
C
W=NWAVE=*]1.0
GO TO(103,203,303),ISEC
C
C CHECK *GAMAD* & 'FED' REQUIREMENTS I-SEC
c

103 Al=PYY=PR+S
A2==S*HH/2.
AS=R2¥(PFE=-PR)+SH*x(HH/24 )} ¥%¥2+ (1 /AN)*FX(XL/PIE) *%2
Cl=PR*(AS*CO/W=R2*(EQ/W)*A2)/{(A1*A5=-A2%%2)
El1=PR*(A2%CO/ W=R2*(EO/WI*A1 )/ (A2%%2=A1%AS5)
GAMAX=PIE*W*(Cl-E1*HH/2.,) /XL
GAMAX=ABS (GAMAX)
FEMAX=ABS(E1l)
IF(PRINT=1) 440+441,441
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441 WRITE(K,67)C1+E1,GAMAXyGAMDyFEMAX ¢ FEDy NWAVE
440 CONTINUE
GO TO 22
C
C CHECK *GAMAD' & 'FED' REQUIREMENTS CHANNEL=SEC
o
203 F4=PYY=-PR+S
F5==S*HH/ 2.
F6=PXX~PR
F7=PR*X0
FB=R2*(PFE=PR)+S*(HH/ 2. )*%2+( 1o /AN) ®F*x( XL/PIE) *%2
DET=F4*(FO*FB-F7%%2 )~F6%F5%%2
Cl=PR*(CO/W¥(FOXFB=FT*%2 ) +FT*F5% (DO/W=-X0%*EOLW)-FO6%F5%(
R2*EQ/W=X0*D
10/W) ) /DET
E1l=PR*(=CO/WXFS*F6=F4%FT%(D0O/W-XO¥EQ/ W) +F4*F6%(R2*ED/W
~X0*D0/W))/D
1ET
GAMAX=PIE*W%(Cl=-E1*HH/2.)}/XL
GAMAX=ABS (GAMAX)
FEMAX=ABS(EL)
IF(PRINT=1) 442,443,443
443 WRITE(K,67)CleELsGAMAXyGAMD, FEMAX+FEDyNWAVE
442 CONTINUE
GO TO 22
C
C CHECK *GAMAD' & 'FED* REQUIREMENTS 2-SEC
C
303 Fl=PYY~PR+S
F2=PXY
" F3==S*HH/2.
F4=PXX=PR
FS5=(PFE=PR)*R2+S* (HH®*%2) /4 o+ (1 /AN)RFE(XL/PIE)*%%2
DET=F1l*F4%F5=(F2%%2) %F5=( F3%%2)%F4
Cl=PR*(CO*F4*FS/W-DO*F2*F5/W~EO*F3%F64¥R 2/ W) /DET
El=PR*(~CO*F3%F4/WHDO*F3%F2/W+EQ¥R2*(F1%F4=F2%%2) /W) /D
ET
GAMAX=PIE*W*(CL-El*HH/2.)/XL
GAMAX=ABS{GAMAX)
FEMAX=ABSEL)
IF(PRINT=1) 444,445,445 ‘
445 WRITE(K$6T7)C19E13GAMAX,GAMD,FEMAX FED,NWAVE
444 CONTINUE
22 IF(GAMD=GAMAX) 46,47,47
46  XLAM=XLAM=-.01
GO TO 42
47 IF(FED-FEMAX) 48,49,49
48 GO TO 46
49  PALL=PR/1.92
IF(PRINT~1) 810,811,811
8l1 WRITE(K,80)PALL,PR,NWAVE
810 CONTINUE
111 CONTINUE

C

ALLOWABLE LOAD
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PTEST2=PRMIN(1)

NWAVE=1

PR=PTESTZ

00 112 I=24NU
IF(PRMIN(I)-PTEST2) 113,113,112
PTEST2=PRMIN(I)

NWAVE=]

PR=PTEST2

CONTINUE

WRITE(K,820)PRyNWAVE

ALLOWABLE LOAD OF STUD

D T T ——— . S > P T e W — -

PALL=PR/1.92
WRITE(K:S5T7TIPALL
WRITE(K.578)

FORMAT(*1',4X,*ALLOWABLE LOAD OF SYUD BRACED ON ONE S
C I0E ONLY

1(PREG. A2)%3/ +5X044( "= )y////)
FORMAT(I11047F10.3¢/+6F10.5)

FORMAT(®* *,1X,']I - SECTION STUD LENGTH="',F
C 6.2)

FORMAT(® '",1X,24('_"),//)

FORMATI(* *,1X,*CHANNEL SECTION STUD LENGTH="*
C +F6.2)

FORMAT(® ©,1X,18(%_*)4//)

FORMAT(* *,1X,*ZEE - SECTION STUD LENGTH="*
C 1 F6.2)

FORMAT(® *,1X,17(_2),//)

FORMAT(®* *,1X,*SECTION DIMENSIONS*/+2X,*DEPTH=" ,F6.3,
C 2Xy'H=®' 4F6.3 A

1,2X, 'B='9F6¢3'2X' .D:"FéoBQZX,.Tg. 1F603'/12X"QA=' yFba
C 3.+7)

FORMAT(® ',1Xs*DIAPHRAGM PROPERTIES®' e/ ¢2X9¢S=%,F8.3,54X
C "F='9F6o394

IXe'GAMD=" yFB o594 X4 *FED="yFB 542X+ ' XL1=*,F5.1,/)
FORMAT(®* *,1X,'YIELD STRESS FY=® ,Fé.35/ +2X'INITIAL IM
C PERFECTIONS

1C0=%4F5,3+2X1'00=" yF5.3+42X+%€E0=*9yF5.3,/)

FORMAT(®* ?*,1X,"SECTICN PROPERTIES's/ 42X s*AREA=',F6.3,2
C X 'IXX=t,F6.

1342Xe ' IYY=04F6e392X 0 ' 1 XY= yF0e343/7e2X9' X0 4yF6.342Xe'R2
C ="' ,Fbe3e2Xy! '

2J=’,F6.3v2X1'Cw="F6.3'/)

FORMAT("Y *4,1X,*SECTICN PROPERTIES' /72X +*AREA=",F6.3,2
C Xe'IXX=",F6.

13¢2X9 1YY= 3F6e3942X9 ' IXY="gF60392X9'X0O0=3F6E.39/42X9'R2
C =% 4F6e3+2Xy?

2J='.F6.3,2X,'CN=’,F6.3.2X,'IX1=' 2F6e392X9?IX2=*,F€e3,/
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c
FORMAT(® 'y1X42F12.292Xs8F10.392X,12)
FORMAT (' ',9X,4'MOD GE PXX PYY
C PFE
1 PXY P1 P2 P3 PC NWAVE!
c

FORMAT(* *42Xy116('=*),/])

FORMATUE' ' ,1X+"MOD="4F84] 44Xy 'GE="yFBel 14X,y"PXX=",F8.3
C  +4Xy'PYY=',F

18.344Xe'PFE="4FBe344Xy"PXY=",F8.3)

FORMAT(® *,1X,'ELASTIC CRITICAL B, LOAD PCR=',FB8.3+4X,
C 'NWAVE=',12,

1/}

FORMAT(* ',2X'ELASTIC Bs LOAD="4Fl0.342X"PCF=',F10.3
C /)

FORMAT(® ',2X,'CRITICAL B. tOAD .CONSIDER. B. BETWEEN
C FASTENERS,="

1,F1043,/7)

FORMAT(* *,2X+*'ELAST, Be LOAD=',F10e392Xy"': BUCKLING B
C ET. FAST.: P
14,P5,P6 =' 3F10.3,/)

FORMAT( ' 41X 4'FCR=!4,FB8.3y5X,'FLT=*,F8,.3)

FORMAT(® ',1X,'PA=*',F8.3,//)

FORMAT (' ', 11Xy 'XLAM="3F5.395Xy*'PR=?,F8.,3,5Xy'FR=',F10,
c 3)

FORMAT(? '.IX,'Cl=',F10.5,5X.'E1='.F8.5,5X,'GAMAX=' e F1
C 0.545Xy'GAMD

1=, Fl0e5¢5Xs *FEMAX=* 3 F10.595X,*FED =%, F1l0.542Xy "NWAVE=
C 'y212,71)

FORMAT(* *',4X,'ALLOWABLE DESIGN LOAD ({ PALL )) =',F1
C 0.347)

FORMAT(® ',4X444('='),/)

FORMAT(®* ®*42X,*LOAD CAPACITY PR="yFl0.346X,' NWAVE=
C *4212,/77)

FORMAT (' *,4X ' ALL.LOAD =%y F10e3+42Xy"PR=4yF106394Xy*'NW
C AVE='412://)

GO TO 800

STOP

END

SUBROUTINE PCLCISEC:XXIYYI +XY]3X0yR2¢yXJyCWoyMOD,GE,PIE
C s XLoXI1yXI2,

1AN,PXXyPYY,PFEPXY4PX1,PX2)

REAL MOD

PXX=AN*(PIE*%2 ) *MODRXXI/A (XL *%2)

PYY=AN*(PIE*%2)%xMOD*YYI/(XL**2)

PFE=(GE*XJ+AN*(PIE*%*2)*MOD*CW/XL*%2) /R2
PXY=AN*(PIE*%2 ) *MOD*XY I/ (XL*%2)

PX1=AN*{PIE*%*2 ) *MOD*XI1/(XL*%*2)

PX2=AN*(PJE*%*2 )} *MOD*XI12/(XL*%*2)

RETURN

END

SUBRCUTINE CPRQD(C,IC,Q,EsPOLsIR,IER)
DIMENSION C(4),Q(4),E(4) +POL(4)
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DOUBLE PRECISION QyEsOyPyTHEXPT+ESAV,UsV4W4C,POLLEPS,D
C ABS,DSQRT
IR=1IC
1ER=0
EPS=1.D~16
TOL=1.E=-6
LIMIT=10%*IC
KOUNT=0
IF(IR=-1)79,79,2
IF(C(IR))4,3,4
IR=1R~1
GOTO 1
0=1.0D0/C(IR)
1END=IR~-1
ISTA=1
NSAV=IR+1
JBEG=1
Qo 9 I=1,IR
J=NSAV~-I
IF(C(I))7,5,7
GOTO(6,8) 4 JBEG
NSAV=NSAV+1
Q(ISTA)=0.00
E(ISTA)=0.D0
ISTA=ISTA+1
GOTO S
JBEG=2
Q(JI=CtI)*0
C(IN=Q(J)
CCONTINUE
_ESAV=0.D0
Q(ISTA)=0.DO
NSAV=IR
EXPT=IR=-ISTA
ECISTA)=EXPT
DO 11 I=ISTA, IEND
EXPT=EXPT=1.000
POL(I+1)=EPS*DABS(Q(I+1))+EPS
E(I+1)=Q( I+1)*EXPT
IF(ISTA=-IEND}12,20,60
JEND=IEND-1
DO 19 I=ISTA,JEND
IF(I=-1STA)13,+16,13
IF(DABS(E(I))-POL(I+1))14,14,16
NSAV=1
DO 15 K=1I,JEND
IF(DABS(E(K))=POL(K+1})15,15,80
CONTINUE
GOTO 21
DO 19 K=I,IEND
E(K+1)=E(K+1) /E(I)
QIK+1)=E(K+1)-QlK+1)
IF(K=1)18,17,18
IFIDABS(Q(I+1))-POL(I+1))80,80,19
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QIK+1)=Q(K+1)/4Q(I+1)
POL(K+1)=POL(K+1)/DABS(Q¢EI+1))
E(K)=Q(K+1)-E(K)
CONTINUE

QUIR)==-Q(]IR)
E(ISTA)=0.D0
NRAN=NSAV~1
E(NRAN+1)=0.D0
IF(NRAN~ISTA)24,23,31
Q(ISTA+1)=Q(ISTA+]1 )+EXPT
E(ISTA+1)=0.0D0
ECISTA)=ESAYV
IF(IR-NSAV)60,6Q0425
ISTA=NSAV

ESAV=E({ISTA)

GOTO0 10

P=P+EXPT

IF(0)127,28,428

QI(NRAN)=P

Q(NRAN+1)=P

E(NRAN)=T

E(NRAN+]1)==T

GOTO 29

Q(NRAN)=P=-T
QI(NRAN+1)=P+T
E(NRAN)=0.0D0
NRAN=NRAN=2

GOTO 22

QI(NRAN+1 )=EXPT +P
NRAN=NRAN=-1

GOTO 22

JBEG=ISTA+]

JEND=NRAN-1

TEPS=EPS

TDELT=1.,E=2
KOUNT=KOUNT+1
P=Q(NRAN+1)
R=ABS(SNGL(E(NRAN)))
IF(R-TEPS)30,+30,33
S=ABS(SNGL(E(JEND)) ]
IF(S=R)38,438,34%
IF(R=-TDELT) 36,435,435
P=0.00

O=pP

DO 37 J=JBEGyNRAN
Q(J)I=Q(JI+E(J)-E(J-1)-0
IF(DABS(Q(J))-POL(J))BLs81,37
E(J)=Q(JI+L)I*E(JL/Q(J)
QI(NRAN+1)=-E(NRAN)+Q(NRAN+1)-0
GOTO 54

P=0.500%(Q(NRAN)+E (NRAN)+Q(NRAN+11))

O=P*xP=-Q(NRAN) *Q(NRAN+1)
T=DSQRT{(DABS(0))
IF(S=TEPS)26426,39
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IF(0)43,40,40
IF(P)42441,441

T==-T

P=P+T

R=S

GOTO 34

IF(S-TDELT)44,35,35
0=Q(JBEG)+E(JBEG)~-P
IF(DABS{O)-POL(JBEG))B1,81,45
T=(T/0)%%2

UsE(JBEG) *Q(JBEG+1)/(0*(1.0D00+T))
V=0+U

KQUNT=KOUNT+2

DO 53 J=JBEGsNRAN
O0=Q(J+1)+E(J+1F-U=-P
IF(DABS(V)I-POL(J))46,46,49
IF(J-NRAN)B1,47,81
EXPT=EXPT+P
IF(ABS{SNGL(E(JEND)))-TOL)48,48,81
P=0.5D0%(V+0-E(JEND))
O=P%P=(V=U)%(O=-U%T=0%Wx(1.00+T)/Q(JENDTI)
T=DSQRT(DABS(0})

GOTO 26
IF(DABS(0)-POL(J+1))46,46,50
W=U%0/V

T=T*(V/0)*%2

QUJ)=V+W=E(J=~1)

U=0. DO

IF(J=NRAN)S1 52,52
U=Q(J+2)*E(J+1)/(0%(1.D0+T).)
V=0+U-W
IF(DABS(Q(J))-POLEJI)BL,81,53
E(J)=W*V%(1.0D0+T)/Q(J)
Q(NRAN+1)=V=-E(NRAN)
EXPT=EXPT+P

TEPS=TEPS*1.1

TOELT=TDELT*1.}
IF(KOUNT-LIMIT)32,55,58

1ER=1

IEND=NSAV=NRAN~-1

E(ISTA)=ESAV

IE(IEND)S59459,57

DO 58 I=1,1END

J=I1STA+I

K=NRAN+1+1

E(JI=E(K)

Q(J1=Q(K)

IR=ISTA+IEND

IR=1R-1

IF(IR)78+78,61

DO 62 I=1,1IR

Q(1)=Q(I+1)

E(I}=E(I+1)

POL{IR+1)=1.D0
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IEND=1R~-1

JBEG=1

D0 69 J=1,IR
ISTA=IR+1-J
0=0.D0

P=Q(ISTA)
T=E(ISTA)
IF(T)65463,65

DO 64 I=ISTA,IR
POL(1)=0-P*POL(I+1)
0=POL(I+1)

GOTO 69
GOTO(66,67) 4 JBEG
JBEG=2
POL(ISTA)=0.DO
GOTO 69

JBEG=1

UsP*P+T*T

P=P+P

DO 68 I=ISTA, IEND
POL(1)=0-P*POL (I+1)+U*POL(1+2)
O=POL(I+1)

POL (IR)=0-P

CONT INUE
IF(IER)78,70,78
P=0.0D0

DO 75 I=1,IR
IF(C(I)IT2,71,72
0=DABS(POL(I1}
GOTCO 73

0=DABS{ (POL(II-C(I))£C(I))
IF(P=0)74,75,75
P=0

CONTINUE
IF(SNGL(P)=TOL)77,76,76
1ER=~1

QUIR+1)=pP
E(IR+1)=0.D0
RETURN

IER=2

IR=0

RETURN

1ER=4

IR=ISTA

GOTO 60

IER=3

GOTO 56

END
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% 23 3 o Xx e X 3k 3 3 Ak K A K Hef 3k X Ae oo e A e 3k A ek a3 Ak sk A ok e X %R A% X % % ok Xk kR ok Xk

PROGRAM *B1¢

* *
* &
* *
* STUD BRACED CON BOTH SIDES *
* FIND *S' & *F' VALUES FOR GIVEN ALL. LOAD PO *
* *
* *

22k dc Ae 2k Kk A X Ak 3k 3k W o e vk Ak dk Ak e T de vl Ax e ek e e e ade e e ek e % Bt ekl e e e e ke ok %k

THE *INPUT DATA* CONSISTS OF THE FOLLOWING PER CASE :
(ISECy XLy HHyHy B9 D9 T,QA,FYIELD,SLIM,FLIM,PO,XL1)
THESE PARAMETERS ARE PUNCHED IN 2 CARDS ACCORDING 70O THE
FORMAT STATEMENT NUMBER 500 FORMAT(I10,7F10434/¢5F10.5)
THE ABOVE MAY BE REPEATED FOR EACH CASE INVOLVING
NEW VALUES OF THE ABOVE PARAMETERS.

TWO BLANK CARDS 'WITH ISEC=0 ! MUST BE PROVIDED AFTER
THE DATA CARDS TO SIGNIFY THE LOGICAL TZRMINATION OF THE
PROGRAM

—————————— L

THE FOLLOWING DEFINES THE INPUT DATA AS WELL AS IMPORTANT
PARAMETERS USED IN THE PROGRAM. DEFINITIONS OF OTHER
PARAMETERS ARE GIVEN IN THE NOMENCLATURE OF APPENDIX # &
OF THE MAIN REPORT.

FOR I-SECTION ISEC=1
CHANNEL-SEC. ISEC=2
LEE-SECTION ISEC=3

STOP PROGRAM ISEC=0

ALL DIMENSICONS , LOADS & STRESSES ARE IN THE FOLLOWING
UNITS EXCEPT OTHERWISE NOTED :

DIMENSIONS IN INCHES
LOADS IN KIPS
STRESSES IN KSI

SECTION DIMENSIONS:

XL= STUD LENGTH

QA= SHAPE FACTOR

HH= TOTAL DEPTH OF SECTION
T = THICKNESS OF SECTION

HyByD ARE CENTER LINE DIMENSIONS OF WEB,
FLANGE & LIP

DIAPHRAGM PROPERTIES:
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S= RELIABLE SHEAR RIGIDITY K
F= RELIABLE ROT. RESTRAINT KJIN/IN.RAD
GAMAD & FED ARE DESIGN SHEAR STRAIN AND
ROTATIONAL CAPACITY IN RAD.

PARAMETERS INTUITIVELY ESTIMATED WITHIN
PRACTICAL RANGE OF WALL STUDS APPLICATION
XLl = DISTANCE BETWEEN FASTENERS

SLIM= MAX, AVAILABLE VALUE OF *S!

FLIM= MAX. AVAILABLE VALUE OF ‘'F!¢

INITIAL IMPERFECTIONS:
CO= STUD LENGTH /700.
DO= STUD LENGTH /700.
EO= 0.0006 RAD. PER FOOT LENGTH OF STUD

MATERIAL PROPERTIES OF STUD:
FYIELD= YIELD STRESS OF STEEL

FLT= PROPORTIONAL LIMIT (FLT= C.5FY)
MOD= MODULUS OF ELASTICITY (29500. KSI)
GE = SHEAR MODULUS €11300. KSI)

J & K ARE LOGICAL RECORD UNITS OF READ & WRITE STATEMENTS

OO OO0

REAL MOD
J=5
K=6
c
c
800 READ(Jy500)ISEC,XLyHHsH¢ByDyT9QA,FYIELDySLIMyFLIM,PO,X
C Ll
MOD=29500.0
GE=11300.0
PIE=3.14159
WRITE(K9999)

(e ¥ aNa

INITIAL IMPERECTIONS
CO=XL/700.
DO=XL/700.
E0=0.0006*%(0.5*%XL/12.)

FOR INITIAL IMPER, AND ACCEDENTAL LOAD ECCENTRICITY

CO0=2.%C0

(e NeNe (aNaN g

LET PRINT=1 IF DETAILS OF COMPUTATIONS ARE NEEDED
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C LET PRINT=0 IF DETAILS OF COMPUTATIUNS ARE NOT NEEDED
C
PRINT=0
C
IF(ISEC-0) 802,802,801
801 GO TO(771,772,773) 41SEC
771 WRITE(K,7T74)XL
WRITE(K,764)
GO TO 807
772 WRITE(KyT775)XL
WRITE(K,765)
GO 10O 807
T73 WRITE(K,776)XL
WRITE(K,766)
807 WRITE(K,522)PO0
WRITE(K:502)HHyHsB+Ds Ty QA
WRITE(KyS03)SLIMFLIM,XL]Y
WRITE(K,504)FYIELD,CO+DO,4ED
GO T0€(101+201,301),1ISEC
C
C
C CALCULATION OF SECTION PROPERTIES I-SECTION
c R
101 AREA=2.%T*(H+B+2.%*D)
XXI=Th(H%®%3+43 ,%kBRXH¥*X 246 D& (H=D) *%2+2 , %D*%%3) /6,
YYI=B*%2%xTx(B+6.%D) /6.
XYI=0.0
X0=0.0
XJ=2*TH% 3% (B+H+2,%D} /3.
CW=B%x¥2%T k({ BAH*%2+6  ¥DEH¥ % 2+12, ¥HRD%%2+8,%D%%3) /24,
PI=XXI+YY!
R2=P1/AREA
X12=XX1
XI1l=YY1
WRITE(K+600)AREA XXI ¢ YYT s XYI 4 XOsR2¢XJsCW
GO TO 44

CALCULATION OF SECTION PROPERTIES CHANNEL-SEC

OO0

201 AREA=T*(H+42.0*B+2.0%*D)

XBAR=T*(B*%2+2.0*D*B) /AREA

XXI=TH(H**34+6 40%¥B*H**24¢6.0%D*(H=-D)*%24+2 ,0%D%x%3)/12.0
YYI=T*B&%2% (2 ., O%H¥*B+B** 242, 0%D* (2 ,0%B+3 ,0%H) )/ (3. 0*(H+
C 2.0%B+2.0%*D)

1)

XYI=0.0

XMBAR=(B*H ) **2%T*(]1,04+2.0*%D/B=8.0%D%%3/(3,0%B%xH*x%2)) / (
C 4.0%XXI)

X0=XMBAR+ XBAR

PI=XXI+YYI+AREA*XO*%*2

R2=PI1/AREA

XJ=T**3%x(H+2,0%B+2.0%D) /3.0

CW=(BxHXT )%¥2%(2 ,0%B*H**3+3 ,0%(B*H)%x%2+6,0%D%x(H+2.0%*B)
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C  *H%x%x2+]12.,0*D
1%%2% (H+4,0%B ) +8. 0%D**3%(H+14 ,0%B) +48 .0*%D**4)/(144.0%XX

c I
XIl=YYl
XI12=XXI
WRITE(Ky6CO)AREAy XXI o YYTI 9 XY¥I 9 XO9R29XJrCW
GO T0O 44
C
C
C CALCULATION OF SECTION PROPERTIES L-SECTION
C

301 AREA=T*(H42.0%B+2,.0%D)
XXI=Tx(H*%3+46, 0%BRxH*%246, 0%D* (H=D ) %242 .0%D*%3) /12 .0
YYI=2.,0%B%%22T*x(B4+3.0%D)/3.0
XYI=B8%T*(B*H+D*(H=-D))/2.0
X0=0.0
XJ=T*%3%(2,0%B+H+2.0*%D} /3.0
CW=(BRT)*%2% (2, 0%H:*3%B+{ H* B ) %%x242 ,0%D*HEx*2% (3 ,0%H+2 .0

C %B)+12.0%D*x%

12*H* (H+B)+8.0%D*%3%x(H+2.0%B }+D**4)/({12.0%AREA)
PI=XXI+YY]
R2=PI/AREA
XI1=((XXI+YYI)/2)=SQRT(((XXI=YYI}/24)%%2+XY]I%%2)
XI2=({(XXI+YYL )/2. )+ SQRT(((XXI=YYI)/2.)%%24XY%%2)
WRITE(Ks666)AREA XXI o YYI o XYI g XOsR29XJyCWyXIlpXI2

44 PR=PO*1.92
IF(PRINT»1) 690,691,691

691 WRITE(K.680)PR

690 CONTINUE

CHECK IF PR (GIVEN LOAD X FeS.) SATISFIES THE CONDITIONS:
PR > UNBRACED BUCKLING LOAD (PUNB]I
PR < THE CRITICAL LOAD OF BUCKLING PERPENDICULAR TO
THE WALL
PR < YIELDING OF SECTION

OOCOOOOOOOO

CALL PCLUISEC Yy XXIsYYI9XYI¢XO9R29XJ9sCWyMODyGEWPIE,XL,yXI
C 1sXI2¢PXX,4PY
1Y,PFE+PXY,PX1,PX2)
IF(PRINT-1) 692,693,693
693 WRITE(K,681)PXXyPYY4PFE,PXY,PX1l
692 COUNTINUE
GO T0(102,2024302)+ISEC
102 PUNB=PYY
CALL PCUNBR(PUNByAREA,QA,FYIELD,PCUNB)
IF(PR-PCUNB) 113,113,114
113 WRITE(K,115)
GO TO 799
114 PUNB=PXX
CALL PCUNBR(PUNB,+AREA,QA,FYIELD,PCUNB)
IF(PR=-PCUNB) 116,116,117
117 WRITE(K,118)
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C
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GO 70O 799
116 PYIELD=FYIELD*QA*AREA
IF(PR-PYIELD) 119,120,120
120 WRITE(K,121)
GO 10O 799
202 Al=R2-XO*%*2
A2==R2*(PFE+P XX)
A3=pPXX*PFE*R2
Pl=(—-A2+SQRT(A2**2-4,*A1*A3) )} /(2.%A1)
P2=(-A2-SQRT(A2%*%*2-4 . *A1%A3))/(2.%Al)
P3=PYY
PUNB=AMINL(Pl,P2,P3}
GO TO 135
302 PUNB=PX1
135 CALL PCUNBR(PUNB,AREA+QA,FYIELD,yPCUNB)
IF(PR=-PCUNB) 123,123,124
123 WRITE(K,125)
GO TO 799
124 PUNB=PXX
CALL PCUNBR(PUNB+AREA,QA,FYIELD,PCUNB)
IF(PR-PCUNB) 126,127,127
127 WRITE(K,128)
GO TO 799
126 PYIELD=FYIELD*QA*AREA
IF(PR-PYIELD) 119,130,130
130 WRITE(K,131)
GO 70O 799
119 CCNTINUE
CHECK POSSIBILITY OF BUCKLING BETWEEN FASTENERS
DISTANCE BETWEEN FASTENERS = XL1
GO T0(105+2054305)41SEC
CHECKING BUCKLING BETWEEN FASTENERS I-SEC
105 PCF=(PIE*%2)%*MOD*YY]/(XL1*%x2)
IF(PRINT=1) 6S94+695,695
695 WRITE(K,682)PCF
694 CONTINUE
GO TO 899
CHECKING BUCKLING BETWEEN FASTENERS CHANNEL
205 PYYF=(PIE*%*2) *MOD®YY1/E(XL1%*%2)

697

PFEF=(GE*XJ+(PIE*%2)*MOD*CH/XL1%%2) /R2
PXXF=(PIE*%2)*MOD®XXI/ (XL*%2)

P4=PYYF

PS5=PFEF

P6=PXXF

PCF=AMINL(P&4,P5,P6)

IF(PRINT=1) 696,6S7,697
WRITE(K,683)P4,P5,P6,PCF

-SEC



220

696 CONTINUE

GO TO 899
c
C CHECKING BUCKLING BETWEEN FASTENERS {-SEC
C

305 PCF=(PIE**2)*MOD*XI1/(XL1**2)
899 PUNB=PCF
CALL PCUNBR(PUNByAREA,QA,FYIELDePCUNB)
IF(PRINT~1) 698,4699,699
699 WRITE(K+684)PRyPCUNB
698 CCNTINUE
IF(PR-PCUNB) 219,+219,889
889 WRITE(K,888)
GO TO 799

CHECK IF PR (GIVEN LOAD X FeSe) IS IN THE INELASTIC RANGE
IF SO 4 THEN FIND THE EQUIVALENT ELASTIC LOAD (PE)
CORRESPONDING TO (PR)

eNeNeNeaNeRaNe!

219 FY=FYIELD*QA
FLT=,5%FY
FPR=PR/AREA
IF(FPR-FLT) 90,90,91
90 PE=PR
GO TO 94
C
C EQUIVALENT ELASTIC LOAD *'PE' CORRESPONDING TO *PR?
C
91 PE=(AREA*FY ) *%¥2 /(4 .*( AREA®FY=PR))
WRITE(Ks679)M0OD,GE,PEsPR
94 CONTINUE

C
C
C COMPUTATIONS OF A LIST OF 'S*'&*F* ,ALSO THZ CORRESPONDING
C *GAMAX®* & 'FEMAX®* , SO THAT A SUITABLE DIAPHRAGM CAN BE
C CHOQSEN
C
GO T7T0(103,203,303)4+ISEC
C
C DI APHRAGM FOR I~-SECTIGN
C

103 S=PE-PYY

ROTATIONAL RESTAINT OF DIAPHRAGM IS NOT NEEDED

aNeNa!

F=0.0

CALL CONST(PR,FYIELDyQAyAREA,M0D,GE)

CALL PCLUISEC o XXIsYYI ¢XYI 4yXO9R2¢XJ9CWiMOD9GEyPIEXL,yXI
C 1,XI2+PXX,PY

1Y PFEJPXY yPX1lyPX2)

WRITE(K 669)MODyGE+P XXy PYYPFE PXY

WRITE(K,668)
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80

60
61

81

203

82

83
84
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62
63
86

87
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Cl=CO*PR/(PYY+S~-PR+,.001)

El=0.0

GAMAX=C1l*PIE/ XL

GAMAX=ABS(GAMAX)

FEMAX=,.0

IF(GAMAX-1.0) 60961461
WRITE(K,667)S,FyGAMAX,FEMAX,C1,E1l
S=5+5,

IF(S=-SLIM) BO,80,81

GO TO 799

DI APHRAGM FOR CHANNEL-SEC

S1lsPE-PYY

F=0.0

S2=((PEXXO) %% 2= (PXX~=PE)*(R2*(PFE=PE)+F*(XL/PIE)}%%2))/(
(PXX=-PE)*(HH

1/2.)%%2)

IF(S2-S1) 82+82,83

SREQ=S1

GO TO 84

SREQ=S2

S=SREQ

CALL CONST(PRLFYIELD+QA,AREA,MOD,GE)

CALL PCLCISEC +XXIsYYI 4XYI 4XO9R2¢XJyCWeMOD,GEZPIE,XLyXI
1o XI24PXXyPY

1YPFE +PXY oPX1,4PX2)

WRITE(KyG669IMODyGE P XXy PYYsPFESPXY
WRITE(K+668) '

A4=PYY=PR+S

AS5=PXX-PR

A6=PR*X0

AT=R2%( PFE=PR)#S*(HH/2. ) %% 2+FX(XL/PIE ) *%2
DET=A4%(AS*AT-A6*%2 }+.001
Cl=PR*(CO*{AS*AT-A6%%2))/DET
El=PR%({-=A4*%AG%X(DO-XO*EQ )+ A4XASR (R2*EQ=-XO%D0O) ) /DET
E1=ABS(El)

GAMAX=PIE*(Cl+EL1*HH/2.) (XL

FEMAX=E1

IF(GAMAX=1.0) 62+63,63
WRITE(K¢66T)S+FyGAMAXFEMAX,C1,E1l

S=S+5.,

IF(S=-SLIM) 85,85,+86

F=F+0.005

S=SREQ

IFtF-FLIM) 85,85,87

GO TO 799

DI APHRAGM FOR Z-SECTION

S1=((PE-PYY)%®(PXX-PE)+PXY%*%2):/ (PXX~-PE)
SREQ=S1

S=SREQ

F=0.0
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CALL CONST(PR,FYIELDsQA,AREA,M0OD,GE)

CALL PCLUISECoXXIoYYIoXYIyXO9R29XJ9CWoyMOD9sGEyPIE XLy XI
C 1,XI2,PXXy4PY
1Y PFE+PXY,PX1,PX2)

WRITE(K669)MOD+GE+PXXy PYY PFEyPXY

WRITE(K,668)

G3=PYY-PR+S

G4=PXY

G5=P XX=PR

GO6=(PFE=-PR)*R2HS*(HH/ 2+ ) *%2+F*( XL/P1E) **2

DET=G3%G5%G6=G4**%2%G6+.001

Cl=PR*(CO*G5*G6~DO*G4*G6) /DET

Cl=ABS(Cl)

E1=PR*(EO%R2* (G3*G5-G4%%*2))/DET

E1=ABS(E1l)

GAMAX=PIE*(Cl+E1*HH/ 2.}/ XL

FEMAX=E]

IF(GAMAX-1.0) 64465465 ,

WRITE(K.667)S,F,GAMAX,FEMAX,C1,4E1

S=S+5.,

IF (S-SLIM) 185,185,186

F=F#0.005

S=SREQ

IF(F-FLIM) 185,185,799

GO TO 800

FORMAT(® *',1X,*BUCKLING BETWEEN FASTENERS GOVERNS , DE
C CREASE
1DISTANCE BETWEEN FASTENERS o OR USE STRCNGER STUD')

FORMAT( Y %, 1X s 'MOD="yFBal 42Xy 'GE="9yFB8els/ 92X y*PXX=?,F7
C «342Xy'PYY="
l'F7o312X,'PFE='1F7o312X1'PXY="F7.3v//)

FORMAT( ' 31X *MOD="yFG 212X GE=",3F9,249/ 92Xy PE=t,F7
C 342X y'PR=?,
1F7.3,/7)

FORMAT(I10,7F1043,/+5F10.3)

FORMAT(® *,1X'SECTION PROPERTIES "9/ 12Xy 'AREA='3F643,2
C Xey'IXX=',Fb.
1342X0IYY= s F6a342Xs ' IXY="3F6e39/ 12X 'X0=?yF6.342Xy'R2
C =Y F6.392Xy?
2J="F60392X1'CN="F6.39/)

FORMAT(* *,1X,*'SECTICN PROPERTIES® /42X, *AREA=',F6.3,2
C Xy 'IXX="4Fba
13¢2Xe'IVYY=t3F6a392Xy ' IXY= " 3F0e342Xs"'X0=! yF6e3,/¢42X¢4'R2
C ='|F603QZXQ'
2J=1 yF6.3,2X¢'CW=1 )F6.3,2Xs" IXL=! 4 F6.342Xy ' IX2=",F6.3,/
c )

667 FORMAT(' *42X46FS.3)

668

999

774

FORMAT(®* ¢, S F GAMAX FEMAX
c Cl El
1'9/,5X'53("')9/)
FORMAT('1',4X,"ALLOWABLE LOAD OF STUD BRACED ON BOTH
C SIDES
1(PROGs Bl)*y/+45Xeb4t*=2)4////)
PORMAT(* *,1X,'] - SECTION STUD LENGTH=?,F



764
775

765
776

766
502

502

684
683

682
681

680

115

118

121

125

128

131

504

522

223

C 6.2)

FORMAT(' *,1X424(°%_"*),//)

FORMAT(* *,1X,*CHANNEL SECTION STUD LENGTH="?
C 1 F6.2)

FORMAT(* *,1X,18(°'_*),//)

FORMAT(* *,1X,*ZEE - SECTION STUD LENGTH="*
C 1F6.2)

FORMAT(® *,1X,17("_*),+/7)

FORMAT(* *,1X,*SECTION DIMENSIONS*,/+2X,'DEPTH=',F6.3,
C 2Xe'H=',F6.3

142X 'B=t 4 FOe342Xy D= 3F6.3:2Xy'T='3F6e3¢/+42Xs4"QA=*,Fb6.
C 3.71)

FORMAT(®* *,1Xs*DIAPHRAGM PROPERTIES'y/+2X,+'SLIM=*,F8,.3
C ’4Xy'FLIM=.v

1F803"4X’1.XL1=‘1F602'/,

FORMAT(* *32Xs'PR=,F10.3,2X,*PCUNBRACED=*,yF10.3,/7)

FORMAT (' * 42X +'P4="4F1l0a342X*'P5=",F10.3,2X,y'P6=*,F10.
C 392X9'PCF=',

1F10031,)

FORMAT(®* '"42X+*'PCF=*4,Fl043,/)

FORMAT(Y " 42X o' PXX=Y 3FTa392Xe?'PYY=',FT.3,2X,3'PFE=",F7.
C 3,2X,'PXY=',

1F7 342X 'PX1="4yFTe34/)

FORMAT(® '42Xs'PR=Y4FT.3,/)

FORMAT(* *,4X,'UNBRACED STUD CAN CARRY THE LOAD ,DIAPH
C RAGM ACTION

1IS NOT NEEDED , FOR ECCCNOMICAL DESIGN TRY SMALLER SEC
C TION'4w/7)

FORMAT ("' *,4X,*DESIGN LOAD CAN NOT BE REACHED SINCE BU
C CKLING PERPE

INDICULAR TO WALL IS SMALLER , USE STUD OF STRONGER SEC
C TICN'+/7)

FORMAT(' *44X,'IT IS NCT ECCONOMICAL TO DESIGN SUCH ST
C UDJSINCE LAR

1GE VALUES OF S&F WOULD BE REQUIRED,TRY STUD OF STRONGE
C R SECTION',/
27)

FORMAT(* ' ,4X,*UNBRACED STUD CAN CARRY THE LOAD ,DlAPH
C RAGM ACTION

11IS NGT NEEDED s FOR ECCCNOMICAL DESIGN TRY SMALLER SEC
C TION',/71

FORMAT(* ',4X,*'DESIGN LCAD CAN NOT BE REACHED SINCE B8U
C CKLING PERPE

INDICULAR TO WALL IS SMALLER , USE STUD OF STRONGER SEC
C TION®*yw//)

FORMAT(® *,4X,*'IT IS NOT ECCCNOMICAL TO DESIGN SUCH ST
C UD,SINCE LAR

1GE VALUES OF S&F WOULD BE REQUIRED,TRY STUD OF STRONGE
C R SECTION®,/

2/} .
FORMAT(® ', 1Xs*YIELD STRESS FY='43F6e39/+2Xs *INITIAL IM
C PERFECTIONS ,

1C0=" ’FS.B’ZX"DOg' 'FS.B.ZX,'EO=‘ ’F503'/)

FORMAT(® *,1Xs*'GIVEN ALL., LOAD (PO) =%,FB8.3,/)
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8oz STOP
END
SUBROUTINE CONST(PRyFYIELDyQAsAREA,MODy GE)
REAL MOD
FY=FYIELD
FY=FY*QA
FLT=.5%FY
FR=PR/AREA
IF(FR-FLT) 90,90,91
90  MOD=29500.0
GE=11300.0
GO TO 92
91  TMOD=29500.*(FR*(FY=FR) /(FLT*(FY=-FLT)))
MOD=TMGD
GI=11300.*TMOD{29500.0
GE=GI
92  RETURN
END
SUBROUTINE PCLUISECXXIsYYI4XYIXOsR24XJeCW,MOD,GE,PIE
C  +XLyXIlsXI2y
1PXXsPYYyPFE,PX¥yPX1,PX2)
REAL MQD
PXX=(PIE*%2)*MOD*XX I/ (XL*%2)
PYY=(PIE**2) *MOD® YY1/ (XL*%2)
PFE=(GE*XJ+(PIE*%2 ) *MOD*CW/ XL*%2) /R2
PXY=(PIE*%2) *MOD*XY I/ (XL%%2)
PX1=(PIE**2)*MOD*XI1/(XL%*2)
PX2= (PIE*%2) *MOD*X 12/ (XL**2}
RETURN
END
SUBROUTINE PCUNBR(PUNB,AREA,QA,FYIELD,PCUNB)
FCR=PUNB/AREA
FY=FYIELD*QA
FLT=,5%FY
IF(FCR-FLT) 20+20,40
40  PAZAREA*(FY=FY*%2/(4.,%FCR))
PCUNB=PA
GO TO 21
20  PCUNB=PUNB
21 RETURN
END
*DATA
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PROGRAM *B2°

* *
* *
* *
* STUD BRACED ON ONE SIDE ONLY %*
* FIND *S* & 'F' VALUES FOR GIVEN ALL. LOAD PO =%
* %*
%* *

e 3k 2 2k A 3 2 e 3k 4k ik 2 2 ok 3k K e Xk Ak 2 2 e e 2 Ak e A 3k Ak Ae 3k Do e s dke e 3k He A e e Ak X A 3 K

THE *INPUT DATA* CONSISTS OF THE FOLLOWING PER CASFE :
(ISECyXLsyHHyHyByDsyTyQA,FYIELD,
SLIMsFLIM,POsXL1,STRIAL,FTRIAL)
THESE PARAMETERS ARE PUNCHED IN 2 CARDS ACCORDING TO THE
FORMAT STATEMENT NUMBER 500 FORMAT(I1047F10.34/,7F10.5)
THE ABOVE MAY BE REPEATED FOR EACH CASE INVOLVING
NEW VALUES OF THE ABOVE PARAMETERS.

TWO BLANK CARDS *WITH 1ISEC=0 ' MUST BE PROVIDED AFTER
THE DATA CARDS TO SIGNIFY THE LOGICAL TERMINATION OF THE
PROGRAM

e e - K- ————— -

THE FOLLOWING DEFINES THE INPUT DATA AS WELL AS IMPORTANT
PARAMETERS USED IN THE PROGRAM, DEFINITIONS OF OTHER
PARAMETERS ARE GIVEN IN THE NOMENCLATURE OF APPENDIX # ¢
OF THE MAIN REPORT.

FOR I-SECTION ISEC=1
CHANNEL-SEC. ISEC=2
LEE-SECTION ISEC=3

STOP PROGRAM ISEC=0

ALL DIMENSIONS , LOADS & STRESSES ARE IN THE FOLLOWING
UNITS EXCEPT OTHERWISE NOTED :

DIMENSIONS IN INCHES
LOADS IN KIPS
STRESSES IN KSI

SECTION DIMENSIONS:

XL= STUD LENGTH

QA= SHAPE FACTOR

HH= TOTAL DEPTH OF SECTION
T = THICKNESS OF SECTION

HeBsy D ARE CENTER LINE DIMENSIONS OF WEB,
FLANGE & LIP :
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DIAPHRAGM PROPERTIES:
S= RELIABLE SHEAR RIGIDITY K

= RELIABLE ROT. RESTRAINT K.IN/IN.RAD
GAMAD & FED ARE DESIGN SHEAR STRAIN AND
ROTATIONAL CAPACITY IN RAD.

PARAMETERS INTUITIVELY ESTIMATED WITHIN
PRACTICAL RANGE OF WALL STUDS APPLICATION
XLl = DISTANCE BETWEEN FASTENERS

SLIM= MAX. AVAILABLE VALUE OF *S°?

FLIM= MAX. AVAILABLE VALUE OF *F!
STRIAL= FIRST TRIAL VALUE OF 'S¢

FTRIAL= FIRST TRIAL VALUE OF 'F?

INITIAL IMPERFECTIONS:

CO= STUD LENGTH /700.

DO= STUD LENGTH /700.

EO= 0.0006 RAD. PER FOOT LENGTH OF STUD
MATERIAL PROPERTIES OF STUD:

FYIELD= YIELD STRESS OF STEEL

FLT= PROPORTIONAL LIMIT (FLYT= 0.5FY)
MOD= MODULUS OF ELASTICITY (29500. KSI)
GE = SHEAR MODULUS (11300. KSI)

HIGHER BUCKLING MODES ARE EXAMINED BY CONSIDERING
SUFFICIENT NUMBERS OF 'NU'.IN THIS PROGRAM NU=1429eeeey1l0
IF MORE VALUES ARE DESIRED,THEN CHANGE PRESENT *NU®' VALUE

aNeoNeleNeEeEeNeloeleEaNalelaNata o aNeiaNeEeolaNaNaNaNeN oo NaN !

REAL*8 C,QsE,POL

DIMENSION P(3)

DIMENSION C(4),Q(4)4E(4),POL(4)
DIMENSION PC(40)

REAL MOD
C
C
C J & K ARE LOGICAL RECORD YNITS OF READ & WRITE STATEMENTS
C
J=5
K=6
c

800 READ(J+S500)ISECXLyHHsHyByDsToyQAyFYIELDySLIM,FLIM,PO,X
C L1,STRIALFT
1RIAL
MOD=29500.0
GE=11300.0
PIE=3.14159

C N UMBER OF BUCKLING MODES TO BE EXAMINED °*Ny:*

NU=10
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WRITE(K,999)

INITIAL IMPERECTIONS

CO=XL/700.
DO=XL/700.
EO0=0.0006*(0.5*XL/12. 1}

FOR INITIAL IMPER. AND ACCEDENTAL LOAD ECCENTRICITY

CO0=2.*CO

LET PRINT=i IF DETAILS OF COMPUTATIONS ARE NEEDED
LET PRINT=0 IF DETAILS OF COMPUTATIONS ARE NOT NEEDED

801
771

772

773

807

PRINT=0

IF(ISEC-0) 802,802,801

GO TO(771,772,773),1ISEC
WRITE(K,T774)XL

WRITE(KyT764)

GO 70O 807

WRITE(K,775)XL

WRITE(K,765)

GO TO 807

WRITE(K,776)XL

WRITE(K,766)

WRITE(K,522)P0
WRITE(Ks502)HHyHsBsD Ty QA
WRITEUKs503)SLIMFLIM XLY1,STRIAL,FTRIAL
WRITE(Ky504)FYIELD+CUODO,EQsNU
GO T0(101,201,301),1SEC

CALCULATION OF SECTION PROPERTIES I-SECTION

101

AREA=2 4% Tx ( H+B+2 « D)
XXI=TR(H*%34+3 ,%¥BxH%%* 246, *¥DX(H=D) %%2+2 ,%D**%*3) /6,
YYI=Bx%2%xTx(B+6.%D) /6.

XY1=0.0

X0=0.0

XJ=2 «*T*% 3% (B+H+2 .%*D) /3.
CW=B*¥2%TR(BRHXR 246, D¥kHX k2412 (XHRD*R &2 +8 ,%xD*%3) /24,
PI=XXI+YY]

R2=PI/AREA

XI1l=YY]

X12=XX1
WRITE(K)S6O0)IAREA s XXI o YYI o XYI ¢ XO9R2¢XJeCW

GO T0O 44

CALCULATION OF SECTION PROPERTIES CHANNEL SECTION

201

AREA=T*(H¢2,0*B+2.0*D)
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XBAR=T*(B**2+42,0*D*B)/AREA

XXI=TR(H %346, 0*BRH* %246 ,0%D* (H=-D)**2+2,0%D*%*3)/12.0
YY[=T*B#%2%(2,0%H*B+B*%2+2,. 0%D* (2. 0%B+3.0%*H) ) /(3.0*(H+
C 2.0*%B+2.0%D)

1)

XY1=0.0
XMBAR=(B*H)*%2%T%{]1,0+2.0%D/B=8,0%D**3/(3.0%B*H*%2)})/(
C 4.0*%XXI)

X0=XMBAR+XBAR

PI=XXI+YYI+AREA%*XO**2

R2=PI/AREA

XJ=T*%3%(H+2,0%8+2.0%*D) /3.0

CW=(B¥*HAT ) *%2% (2 ,0%B*xH*#3+3, 0% (B*H) *%2+6,0*D*(H+2,.0%*B)
C *H**2+412,0%D

1%%2% (H#4,0%B)+8, 0%D**3%(H+14,0%B)+48, 0%D**4} /(144.0%XX

c 1)
XIl=YYI]
XI2=XX1
WRITE(Ks600)AREA XXI ¢ YYIeXYI  XO9R29XJ9CW
GO TO 44
CALCULATION OF SECTION PROPERTIES Z-SECTION

301 AREA=T*(H+2.0%B+2.0%D)

cono

OOOOOOOO

XXI=THR(H¥%34¢6,0%B*¥H**246,0%D* (H=D)*%2+2 ,0%D%*%3)/12.0
YY[=2.0%B%%2%Tx(B+3.0*D) /3.0
XYI=B*T*(B%xH+D*(H=-D) ) /2.0

X0=0.0

XJ=T%*3%(2,0%B+H+2.0%D)} /3.0

CWs(BxT ) ®%2% (2 ,0%HX%*3%B+(H*B ) **x2+42 ,0%D%H%x%k2%( 3,0%H+2,0
C %B)+12.0%D%x%
12%H%X(H+B)+8.0%D%*%3%(H+2,0%B )+D*%*4) /(12.0%AREA)
PI=XXI+YY]

R2=P1/AREA
XI1=((XXI+YYI}/2)=SQRT(((XXI=YYI)/2)%%2+XY 1%%2)
XI2=((XXI+YY] }/2)4SQRT(((XXI=YYI)/2.)%%24+XY]I%%2)
WRITE(K666)AREAXXI ¢ YYI o XYI 9 XO9yR29XJ9sCWeXIleXI2

LOAD CAPACITY OF STUD

44 PR=P0O*1,.92

IF(PRINT=1) 690+4691,691
691 WRITE(K,680)PR
690 CONTINUE

CHECK IF PR (GIVEN LOAD X FeSe) SATISFIES THE CONDITIONS:
PR > UNBRACED BUCKLING LCAD (PUNB)
PR < THE CRITICAL LOAD OF BUCKLING PERPENDICULAR TO
THE WALL
PR < YIELDING OF SECTION
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AN=1.0
CALL PCLOISECyXXIoYYI 4XYI $XO9R2yXJsCWeMODsGEWPTIEs XLy X1
C 1, XI29AN,PXX
1y PYY+PFE+PXY 4+ PX1,PX2)
IF(PRINT=1) 692,692,693
693 WRITE(K,68lIPXXePYYPFE PXY,PX1
692 CONTINUE
GO T0(102,202,302),1ISEC
102 PUNB=PYY
CALL PCUNBR(PUNByAREA,QA,FYIELD,PCUNB)
IF(PR-PCUNB) 113,113,114
113 WRITE(Ks115)
GO TO 799
114 PUNB=PXX
CALL PCUNBR(PUNB,AREAQA,FYIELD,PCUNB)
IF(PR=PCUNB) 116+116,117
117 WRITE(K,118)
GO TO 799
116 PYIELD=FYIELD*QA*AREA
IF(PR-PYIELD) 119,120,120
120 WRITE(K,121)
GO T0 799
202 Al=R2-X0O*%*?2
A2==-R2*(PFE+PXX)
A3=PXX¥PFE*R2
Pl=(—A2+SQRT(A*%2~4 ,%A]1%®A3) )}/ (2.%Al)
P2=(=A2=-SQRT(A2%%2-4 . *¥A1%A3)}/(2.%Al)
P3=PYY
PUNB=AMIN1(Pl,P2,P3)
GO TO0 135
302 PUNB=PX1
135 CALL PCUNBR(PUNB,AREA,QALFYIELD,PCUNB)
IF(PR=PCUNB) 123,123,124
123 WRITE(K,125)
GO TO 799
124 PUNB=PXX
CALL PCUNBR(PUNB,AREA,QA,FYIELD,PCUNB)
IF(PR-PCUNB) 126,127,127
127 WRITE(K,128)
GO TO 799
126 PYIELD=FYIELD*QA*AREA
IF(PR-PYIELD) 119,130,130
130 WRITE(K,131)
GO TO 799
119 CONTINUE

CHECK POSSIBILITY OF BUCKLING BETWEEN FASTENERS
DISTANCE BETWEEN FASTENERS = XL1
GO TO(10542054305),I1SEC

CHECKING BUCKLING BETWEEN FASTENERS I-SEC
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C
105 PCF=(PIE**2)*MOD*YYI/(XL1*%*2)

IF(PRINT=1) 694,695,665
695 WRITE(K,682)PCF
694 CONTINUE

GO TO 899
C
C CHECKING BUCKLING BETWEEN FASTENERS CHANNEL -SEC
C

205 PYYF=(PIE*%2) AMOD*YY [/ (XL1%%2)
PFEF=(GEXXJ+(PIE**2)*MOD*CW/XL1%%2)/R2
PXXF=(PIE*%2) *MOD*XXI/ (XL *%2)

P4=PYYF

P5=PFEF

P6=PXXF

PCF=AMIN1 (P4,P5,P6)

IFCPRINT=1) 69646974697
697 WRITE(K683)P&4,P5,P6,PCF
696 CONTINUE

GO TO 899
C
C CHECKING BUCKLING BETWEEN FASTENERS I-SEC
c

305 PCF=(PIlE*%2)%*MOD*XI1/(XL1%%x2)
899 PUNB=PCF
CALL PCUNBR(PUNB,AREA,QA,FYIELD,PCUNB)
IF(PRINT-1) 698,699,699
699 WRITE(K.684)PR,yPCUNB
698 CONTINUE
IF(PR-PCUNB) 219,219,889
889 WRITE(K,888)
GO TO 799

IF SO o THEN FIND THE EQUIVALENT ELASTIC LOAD (PE)
CORRESPONDING TO (PR)
219 FY=FYIELD*QA
FLT=.5%FY
FPR=PR/AREA
IF(FPR=-FLT) 90,90,91

C

c .

C CHECK IF PR {GIVEN LOAD X F.Se.) IS IN THE INELASTIC RANGE
C

C

90 PE=PR
GO TO 94
C
C EQUIVALENT ELASTIC LOAD 'PE' CORRESPONDING TO *pR?
C

91 PE=(AREA*FY )*%2/ (4. *( AREAXFY=PR))
WRITE(Ks6T79)M0DyGEyPE4PR
S4 CONTINUE

COMPUTATIONS OF A LIST OF *S*&°'F' ,ALSO THE CORRESPONDING
'GAMAX®* & *FEMAX®' , SO THAT A SUITABLE DIAPHRAGM CAN BE
CHOOSEN

OO0
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S=STRIAL

F=FTRIAL

SMIN=S

WRITE(K,668)

GO TO (103,203,303),1ISEC

DI APHRAGM FOR I-SECTICN

aNeNaNe

103 DO 50 I=1,NU,1
AN=( I*%] ) %%2
C
C CALCULATICN DOF ELASTIC BUCKLING LOAD I-SECTION
Cc
CALL PCLOISEC s XXI oYY oXYI yXO9sR29XJsCWyMODyGEyPIEsXLyX1
C 1, XI2¢sAN,PXX
1yPYYJPFE«PXY PX1,4PX2)
Gl=—-(PFE+PYY+S+(SE(HH/2.,)*%24F%(1./AN)*(XL/PIE)*%2)/R)
G2=(PYY+S)*(PFE+(S*(HH/ 2. ) =% 2+4F* (1. /AN}*(XL/PIE)*%2) /R
C 2)=-(S*(HH/2.
1)*%2)/R2
Pl=(-Gl+SQRT(G1*%2=-4 ,%G2))/2.
P2=(-Gl-SQRT(Gl*%2=4,%G2))/2.
P3={PIE**2)MOD®RXXI/{ XL%%2)
PC(I)=AMIN1(P1l,P2,P3)
50 CONTINUE
PTESTZ=PC(1)
AN=1.0
NWAVE=1
_PCR=PTESTZ2
DO 57 I=2+NU
IF(PC(I)-PTEST2) 56,+564+57
56 PTEST2=PC(1)
AN=(I%1,.)%%2
NWAVE=]
PCR=PTESTZ2
57 CONTINUE
IF{(PRINT=-1) 260,2¢€1,261
261 HWRITE(Ky603)PCRyNWAVE.S,F
260 CONTINUE
IFEPCR~-PE) 195,196,196
195 S$S=S+5.0

F=F+0.005
SMIN=S
GO TO 103
196 CONTINUE
C
C CHECK *GAMAD* & ‘*FED® REQUIREMENTS
c

W=NWAVE#*1.0

CALL CONST(PR,LFYIELD,QA,AREA,MOD,GE)

CALL PCLUISEC +XXIoYYI 4 XYI s XOyR2sXJyCWoMODyGEJPIESXLyXI
C 1y4XI2+AN,yPXX
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6l

62

203
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1,PYY,PFEPXYPX14PX2)

Al=PYY=-PR+S

A2==5%HH/ 2,
AS5=R2%(PFE=PR)+S*(HH/ 2. ) **2+( 1o /AN)*FX( XL/PIE)*%*2
Cl=PR*({AS5%CO/ W=R2*(EO/W)*A2)/ (Al *A5=-A2%*2)
E1=PR*(A2%CO/W-R2*(EO/W)*Al) / (A2*%*2-A1*A5)
GAMAX=PIE*W*(Cl-E1*HH/2.)/XL
GAMAX=ABS(GAMAX)

FEMAX=ABS(E1l)

IF(PRINT=1) 26642674267

WRITE(K,818) PCR,PRyPE+MODyGEyNWAVE
CONTINUE

WRITE(K,667)S,FyGAMAX,FEMAX,C1,E1

S=S+5.

IF(S-SLIM) 103,103,€1

F=F+.005

S=SMIN

IF(F-FLIM) 103,103,62

GO TO 799

DI APHRAGM FOR CHANNEL-SEC

DO 71 I=1,NU,1
AN={ I*].)%%2

C .
C CALCULATION OF ELASTIC BUCKLING LOAD CHANNEL-SEC

C

CALL PCLUTISEC yXXIsYYI oXYI yXO9R29XJ9yCWeyMODyGE,PIEyXL,yXI
C 1,XI2,ANyPXX

1,PYYPFEPXY4PX1,PX2)

FO==(PYY+ShR(PXX® (R2*PFE+S*¥(HH/2 ¢ )%*%2+F%(1./AN}*(XL/PI
C E}**2))+PXX%

1 (SxHH/2)%%2
Fl=(PXX%X(R2%¥PFE+Sk(HH/2) *%2+F* (1 /AN)*(XL/PIE)*%2)+(P
C YY+S)*(R2%(P
1FE+PXX)+S*(HH/2 o ) *%2+F* (1 4/AN) *(XL/PIE)*%2 )~ (SEHH/2.) %
C =%x2)

F2==(R2*(PFE+PXX) +S*(HH/2.)%x%2+F* (14 /ANI*(XL/PIE) *x%2+(
C R22=XOx*2)%(P

1YY+S))

F3=R2=X0%%2

C(l)=FO

C(2)=Fl

Ct3)=F2

Clt4l=F3

IC=4

IR=3

CALL DOPRQD(C,yIC,4QyEsPOLyIRyIER)

vV1=Q(1l)

Va2=Q(2)

V3=Q(3)

W1l=E(1l)

W2=E(2)
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W3=E( 3)
IF(W1l-0.01) 64546
6 V1=0.0
5 Pl=vl

IF{W2-0.0) 10,11,10
10 V2=0.0
11 P2=Vv2
IF(W3-0.0) 14,12,14
14 Vv3=0.0
12 pP3=Vv3
P(1l)=P1
P(2)=pP2
P(3)=P3
PTEST1=10000000.0
DO 25 N=1,3
IF(PIN)=0.0) 25+25,24
24 IF(P{N)=-PTEST1) 23,423,425
23 PTEST1=P(N)
25 CONTINUE
PC(I)=PTEST1
T1 CONTINUE
PTEST2=PC(1)
AN=1.0
NWAVE=1
PCR=PTESTZ2
DO 72 I=24+NU .
IF(PC(I)-PTEST2) 73,473,772
73 PTEST2=PCI(1)
AN=(I%1,) %%x2
NWAVE=]
PCR=PTEST?Z
72 CONTINUE
IF(PRINT-1) 2€2:26342€3
263 WRITE(Ks603)PCRyNWAVEsS,F
262 CONTINUE
IF(PCR-PE) 95,96,96
95 S=S+5.0

F=F+0.005
SMIN=S
GO TO 203
96 CONTINUE
C .
C CHECK 'GAMAD* & ‘FED® REQUIREMENTS
C

WENWAVE*1 .0

CALL CONST(PRLFYIELD,QA,AREA,M0D,GE)

CALL PCLUISEC o XXIsYYI 4XYI 4XOeR2¢XJsCWeMOD,GEZPIE XLy X1
C 1 XI2yANyPXX

1,PYYPFEPXY+PX1,PX2)

F4=PYY=PR+S

FS5==S*HH/2.

F6=P XX=PR

F7=PR*X0
FB=R2*(PFE~PR)I+SE(HH/ 2. )%%2+ (1. /AN}*FX(XL/PIE)%%x2
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DET=F4X(FO*FB=FT%%2 )-FO*F2%%2
C1=PR*(CO/W* (FO6*F8=FT%%2 ) +F7%F5%(D0/W~-X0*EQ/NW)-F6XF5%(
C R2*EQ/W=XO0*D
10/W))/DET
E1=RPR*(=CO/WHF5%F6=-F4*FT7%(D0O/ W=-X0*EO/ W) +F4*FE6*(R2*EQ/W
C =X0*DO/W))/D
l1ET
GAMAX=PIE*W*(Cl-E1*HH/2.)/XL
GAMAX=ABS(GAMAX)
FEMAX=ABS(E1l)
IF(PRINT=1) 268,269,269
269 WRITE(K,818)PCR,PR,4PE,MOD,GE +NWAVE
268 CONTINUE
WRITE(K,667)SyFyGAMAX,FEMAX,Cl,E1
S=S+5.
IF(S-SLIM) 203,203,63
63 F=F+.C05
S=SMIN
IF(F=-FLIM) 203,203,64
64 GO TO 799

DI APHRAGM FOR Z-SECTION

OO0

303 DO 74 I=1,NU,1
AN=( I1%]1 4 )*%2
c
C CALCULATION OF ELASTIC BUCKLING LOAD I-SECTION
C
CALL PCLOISEC sXXI sYYI oXYI ¢4XO9yR29XJ9yCWoeMODoGEPIEyXLyXI
C 1,XI24ANyPXX
1,PYY,PFE+PXY,PX1,PX2)
Bl=PFE+PYY+PXX+S
B2=(((HH/2)*%2 ) %S+F%x(1./AN)*(XL/PIE)*%2) /R2
B3=(PYY+S)%PXX~PXY%k%k2
B4a=(PYY+P XX+S ) *PFE
B5=PYY#+PXX+S
Bé=( (S*HH/2.¥*%2) /R2
FO==B3%PFFE=-B3%B2+B6*P XX
F1=B3+B4+B5%B2-B6
F2==-B81-B2
F3=1.0
C(1)=F0O
Cl2)=F1
C(3)=F2
C(4)=F3
1C=4
IR=3
CALL DPRQD(CyIC+QyE,POLsIRyIER)
V1=Q(1)
v2=Q(2)
V3=Q(3)
W1=E(1)
W2=E(2)
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W3=E(3)
IF(W1-0.0) 84748
8 V1=0.0
7 P1=V1

IF(W2=-0.0) 15,416,415
15 v2=0.0
16 P2=Vv2
IF(W3=-0.0) 18,+17,18
18 V3=0.0
17 P3=V3
P(l)=P1
P(2)=P2
P(3)=P3
PTEST1=10000000.0
DO 75 N=1,3
IF{(PI(N)=0.0) 75,475,776
76 IF(PIN)=PTEST1) T7T7+77,75
T7 PTEST1=P(N)
75 CONTINUE
PC{I)=PTEST]
T4 CONTINUE
PTESTZ2=PC (1)
AN=1.0
NWAVE=1
PCR=PTESTZ
DO 78 I=2,NU
IF(PC(I)-PTEST2) 79,79+78
79 PTESTZ2=PC(I)
AN=( I%*] 4 ) %%2
NWAVE=]
PCR=PTESTZ2
78 CONT INUE
IF(PRINT=1) 264,265,265
265 WRITE(K:603)PCRyNWAVE,S,F
264 CONTINUE
IF(PCR=-PE) 93,344,334
G3 S=S+5,0

F=F+0.005
SMIN=S
GO TO 303
34 CONTINUE
c
C CHECK *GAMAD* & 'FED' REQUIREMENTS
c

W=NWAVE*]1 .0

CALL CONST(PR,FYIELD,QA,AREA,MOD,GE)

CALL PCLCISEC ¢XXToYYI ¢ XYI 4XOyR29XJsCWyMOD¢GEyPIE,XL,y X1
C 1+XI2+AN,PXX

1+PYYPFE+PXY,PX1,PX2)

Fl1=PYY=PR+S

F2=PXY

F3==-S*HH/2.

F4=PXX-PR
FS5=(PFE=PR)*R2+Sk(HH%*%2 ) /4, +(1/AN)*FX(XL/PIE ) **x2
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DET=F1l*F4*%F5=(F2%%2)%F5-(F3%%2)%xF 4

Cl=PR*(CO*F4%*F5/W-DO*F2*FS5/W=EQ%F3%F4*R2/W)/DET

El=PR*(=CO*F3*F4/W+DO%F3%F2/W+EQ*R2X(F1%F4~F2%*2) /W) /D
C ET

GAMAX=PIE*Wx (C1-E1*HH/2.,) /XL

GAMAX=ABS(GAMAX)

FEMAX=ABS(ELl)

IF(PRINT-1) 270,271,271

WRITE(K,818)PCRyPRyPE,MOD,GE,NWAVE

CONTINUE

WRITE(K y667)SeFyGAMAX,FEMAX,C1l,E1l

S=S+5,

IF(S-SLIM) 303,303,66

F=F+.005

S=SMIN

IF(F-FLIM) 303,303,799

GO TO 800

FORMAT(I1047F10e3+/47F10.5)

FORMAT(?' *42Xs*'PCR=? 4 FBa344Xy'"PR="yFB8.394X4'PE=*',F8.3,
C 4X,'MOD=',F1
12.344X9'GE="9F1l2e3,4X9s*NWAVE=*y12)

FORMAT(* *4,1X4*SECTICN PROPERTIES'y/ 12X s* AREA=' ,F6,.3,2
C Xe'IXX=',Fb.
1342XeIYY=? 4 F6 392X e ' IXY='3F6a39/92X9'X0=*9Fba392Xy'R2
C ='9F6.3y2Xp'
2J="F6.3.2X.'Cw="'F6.3./)

FORMAT(' *41X,s*SECTION PROPERTIES® /42X +'AREA=' ,F6,3,2
C X,'IXX='vF6.
13.2X,!IYY="F6.3'2X"IXY=',F6.3.2X,'XO=‘,F6.3,/.2X,'R2
C ='.F6.3.2X.'
2J=',F6.3.2X. 'Cw=',F6.3,2X,'IX1='.F6.3,2X.'IX2=' 'F6.3'/
c )

FORMAT(?® 'QZXQ'pR='1F703'/)

FORMAT (' " 32Xy 'PXX=" 3 F7e392Xe'PYY=%,FTe3,2Xs'PFE="',F7,
C 342Xe'PXY=",
1FT7.392Xe'PX1=4FTe3,4/)

FORMAT (' *,4X,'UNBRACED STUD CAN CARRY THE LOAD ,DIAPH
C RAGM ACTION
1IS NOT NEEDED , FOR ECCONCMICAL DESIGN TRY SMALLER SEC
C TION'/7)

FORMAT(® *,4X,*DESIGN LOAD CAN NOT BE REACHED SINCE BU
C CKLING PERPE
INDICULAR TO WALL IS SMALLER , USE STUD OF STRONGER SEC
C TION'.//)

FORMAT(' ",4X,*IT IS NOT ECCONOMICAL TO DESIGN SUCH ST
C UDJSINCE tAR
1GE VALUES OF S&F WOULD BE REQUIRED,TRY STUD OF STRONGE
C R SECTIGCN',/

27)

FORMAT(' *,4X,?UNBRACED STUD CAN CARRY THE LOAD ,DIAPH
C RAGM ACTION
11S NOT NEEDED s FOR ECCCONOMICAL DESIGN TRY SMALLER SEC
C TION®.//)

FORMAT(' ',4X,*'DESIGN LOAD CAN NOT BE REACHED SINCE BU
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C CKLING PERPE
INDICULAR TO WALL IS SMALLER , USE STUD OF STRONGER SEC
C TICN',w//)
131 FORMAT(* *,4X,'IT IS NOT ECCONOMICAL TO DESIGN SUCH ST
C UD+SINCE LAR
1GE VALUES OF S&F WOULD BE REQUIRED,TRY STUD OF STRONGE
C R SECTION®',/
271}
682 FORMAT(' *42X+'PCF='yFl0.3,/)
683 FORMAT (* 'QZX"P‘t:"FIOoBQZXQ'P5="FIOQ3QZXy'P6="Flo.
C 3¢2Xy*'PCF=4,
1F10.3,7)
684 FORMAT(® *,42X4*PR=',F1l0.392Xy "PCUNBRACED=*,F10e3,4/)
888 FORMAT(* *,1X,*BUCKLING BETWEEN FASTENERS GOVERNS , DE
C CREASE
IDISTANCE BETWEEN FASTENERS 4 OR USE STRONGER STuDt)
774 FORMAT(' *,1X,'1 - SECTION STUD LENGTH=t,F
C 6.2)
764 FORMAT(®' *,1X424(*'_')./7)
775 FORMAT(®' *,1X,*CHANNEL SECTION STUD LENGTH="?
C 1F6L2)
765 FORMAT(®* *,1X,18(*_*),/7/)
776 FORMAT(* ',1Xs*ZEE - SECTION STUD LENGTH="
: C sF6.2)
766 FORMAT(' *,1X,17('_*)+//)
999 FORMAT('1',4X+*ALLOWABLE LOAD OF STUD BRACED ON ONE S
C IDE CNLY
1(PROG. B2) '/ +5Xe44('=),//7/)
502 FORMAT(* *,1X,*SECTION DIMENSIONS?' 3/ ¢2Xs*DEPTH=",F6.3,
C 2Xy'H=',F6.3
1,2Xy 'B=t y F6.392Xy'D=? yFé-B'ZXy'T=',F693'/ 12X 9 ' QA= ,F6.
C 34/7)
504 FORMAT(' *,1X'YIELD STRESS FY=9,F6.3¢/7 92Xy *INITIAL IM
C PERFECTIONS
1C0=",F5.3,2X.'DD=' 9F5.3'2x"EO-’-':F5.3'1X"NU:' 'IZ'/)
503 FORMAT(' *',1X,*"DIAPHRAGM PROPERTIES®¢/+2Xe*SLIM=?,F8,.3
C 24X FLIM=,
1F8e394Xy " XL1="9F 629/ 42Xe ' STRIAL="yFT 344Xy FTRIAL=',F
C Teb4/)
522 FORMAT(®* *,1X,*GIVEN ALL. LOAD (PO) =',FB43,/1)
667 FORMAT(' ',2X+6F9.3)
668 FORMAT(* t,* S F GAMAX FEMAX
C c1l El
1%9/95Xe53(%=%),/)
679 FORMATI(' *,1Xe"MOD="4FO,.2¢42X s 'GE="4,FF.2,/92Xy* PE=',F7
C 392X *'PR=",
1F73,/4)
603 FORMAT(®* *,1X,"ELASTIC CRITICAL B. LOAD PCR=*,F8,3,4X,
C *NWAVE=*,12,
12F10.5)
802 STOP
END
SUBROUTINE CONST(PR,FYIELDyQA+AREA,MOD,GE)
REAL MOD
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FY=FYIELD

FY=FY*QA

FLT= .5%*FY

FR=PR/AREA

IF(FR=-FLT) 90,90,491

MOD=29500.0

GE=11300.0

GO TO 92
TMOD=29500.%*( FR*(FY=FR) /(FLT*(FY=-FLT)))
MOD=TMOD

GI=11300.%TM0D/29500.0

GE=GI

RETURN

END

SUBROUTINE PCL(ISEC+XXIsYYIoXYIXOyR2sXJ9CWMODGE,PIE
C ' XLoeXI1leXI2,
1ANPXXs PYY PFEJPXY PX1,PX2)

REAL MOD
PXX=AN*(PIE*%2)*MOD*XXI/(XL**2)
PYY=AN*(PIE*%2 ) xMOD*YYI/ (XL*%*2)
PFE=(GE®XJ+ANX(PIE*%2 )%*MOD*CW/XL*%2)/R2
PXY=AN*(PIE*%2)*MOD*XYI /7 ( XL*%*2)
PX1=ANX(PIEX*%2)%MOD%XI1/ (XL*%2)
PX2=ANX(PIEXx%*2)xMOD* X127/ ( XL*%*2)

RETURN

END

SUBROUTINE PCUNBR{PUNB,AREA,QA,FYIELD,PCUNB)
FCR=PUNB/AREA

FY=FYIELD*QA

FLT=.5%FY

IF(FCR~-FLT) 20+20,40
PASAREA*(FY=FY*%2/ (4 .*FCR))

PCUNB=PA

GO 70 21

PCUNB=PUNB

RETURN

END
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SUBROUTINE DPRQD(C,ICsQsE+POLs IR,y IER)

DIMENSION Ct4),Q(4),E(4),POL(4)

DOUBLE PRECISION Q+EsyOyP+T+EXPT,ESAV4U,V,W,C,POL,EPS,D

ABS ¢ DSQRT
IR=IC
IER=0
gPS=1.0-16
TOL=1.E=-6
LIMIT=10%IC
KOUNT=0
IF(IR=1)79,79,2
IF(C{IR})4,3,44
IR=IR~-1
GOT0o 1
0=1.000/C(1IR)
1END=1IR~-1
ISTA=1
NSAV=]IR+1
JBEG=1
DO 9 I=1,1IR
J=NSAV-]
IF(CCI})T745,7
GOTO0(6+8) yJBEG
NSAV=NSAV+1
QEISTA)=0.D0
E(ISTA)=0.D0
ISTA=ISTA+1
GOTO 9
JBEG=2
Q(J)I=C(I)=0
C(I1)=Q(J)
CONTINUE
ESAV=0.D0
Q(ISTA)=0.D0
NSAV=I]R
EXPT=IR=-ISTA
ECISTA)=EXPT
DO 11 I=ISTA,IEND
EXPT=EXPT-1.0D0
POL(I+1)=EPS®*DABS(Q(I+1))+EPS
E(I+1)=Q(I+1)*EXPT
IF(ISTA-IEND)12,420,60
JEND=IEND-1
DO 19 I=ISTA,JEND
1F(I=-1ISTA)13,16,13
IFIDABS(E(I))=-POL(I+1))14,14,16
NSAvV=1]
DO 15 K=1,JEND
IF(DABS(E(K})-POL(K+1)})15,15,80
CONTINUE
GOTO 21
DO 19 K=]141END
E(K+1)=E(K+1)/E(])
QIK+1)=E(K+1)=Q(K+]1)
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IF(K=-1)18,17,18
IF(DABS(Q(I+1))-POL(I+1))80,80,19
Q(K+1)=Q(K+1)/Q(I+1)
POLIK+1)=POL(K+1)/DABS(Q(I+1))
E(K)=Q(K+1)=-E(K)
CONTINUE

Q(IR)==Q(IR)
ECISTA)I=0.D0

NRAN=NSAV-1
E(NRAN+1)=0.D0
IF{NRAN=-ISTA)24,23,31
QUISTA+1)=Q(ISTA+1)+EXPT
E(ISTA+1)=0.00
E(ISTA}=ESAYV
IF(IR=-NSAV)60,60,25
ISTA=NSAV

ESAV=E(ISTA)

GOTO 10

P=P+EXPT

IF(0)27+28+28

Q(NRAN)}=P

Q{NRAN+1) =P

E(NRAN}=T

E(NRAN+1)=-T

GBTO 29

Q(NRAN)=P=-T
QUNRAN+1)=P+T
E(NRAN)=0.D0

NRAN=NRAN-2

GOTO 22

Q(NRAN+1)=EXPT+P
NRAN=NRAN-1

GOTO 22

JBEG=ISTA+]

JEND=NRAN-1

TEPS=EPS

TDELTY=1.E=-2
KOUNT=KOUNT+1
P=Q(NRAN+1)
R=ABS(SNGL(E(NRAN)))
IF(R=-TEPS)30,30,33
S=ABS(SNGL(E(JENDI}))
IF(S-R) 38438434
IF(R=-TDELTY)36,435,35
P=0.D0

0=pP

DO 37 J=JBEGsNRAN
Q(JI=Q(J)+E(J)-E(J-1)-0
IF(DABS{(Q(J))=-POL(J)))81,81,37
E(JI=QULJI+1E%E(J)/Q(J)
Q(NRAN+1)==-E(NRAN)+Q(NRAN+1)-0
GOTO 54

P=0.5D0%(Q(NRAN) +E(NRAN)+Q(NRAN+1))
O=pP*P=Q(NRAN) *Q(NRAN+1)
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T=DSQRT(DABS(0))
IF(S-TEPS)26426439
IF(0)43,40,40
IF(P)424,41,41

GOTO 34

IF(S=-TDELT)444+35,35

0=Q(JBEGJ) +E(JBEG) =P
IF(DABS(0)-POL(JBEG))Bl1+8l445
T=(T/0)*%2

U=E(JBEG) *Q(JBEG+1)/(0*(1.0D0+T))
V=0+U

KOUNT=KOUNT+2

DO 53 J=JBEGyNRAN
O=Q(J+1)+E(J+1)-U-P
IF(DABS(V)=POL{J)})46+46+49
IF(J=-NRAN)81,47,81
EXPT=EXPT+P
IF(ABS(SNGL(E(JEND)))=-TOLJ)48+48,81
P=0.5D0*(V+0-E(JEND) )
O=P*P=(V-U)*(0-U*T-0*W%x(1.00+T)I/Q(JEND) )
T=DSQRT(DABS(0))

GOTO 26
IF(DABS(QO)=POL(J+1))46446,50
W=Ux0/V

T=T*(V/0)*%2

QUJI=VE+H-E(J-1])

U=0.D0

IF(J-NRAN)51,52,452
U=Q(J+2)*E(J+1)/(0*(1.D0+T))
V=0+U~-W
IF(DABS(Q(J))-POL(J))B1,+8B1,53
E(J)=wWxVX(1.0D0+T)/Q(J)
QINRAN+1)=V=-E(NRAN)
EXPT=EXPT +P

TEPS=TEPS=%1.,1

TDELT=TDELT=*1l.1
IF(KOUNT-LIMIT)32,55,55

IER=1

IEND=NSAV-=NRAN-1

EC(ISTA)=ESAV

IF(IEND)S59959,57

DO 58 I=1,1END

J=ISTA+]

K=NRAN+1+]

E(J)I=E(K])

Q(J)=Q(K)

IR=ISTA+IEND

IR=IR~-1

IF(IR)78,78461

DO 62 I=1,41IR

Q(I)=Q(I+]l)
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63
64
65
66

67

68
69

70

71
12
13
14
75

76
77

78

79

80

81

*DATA
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E(I)=E(I+1)
POL{IR+1)=1.D0
IEND=]IR~-]

JBEG=1

DO 69 J=1,1IR
ISTA=IR+1~-J
0=0.D0

P=Q(ISTA)
T=e(1STA)
IF(Y)65,63,65

DO 64 I=ISTA,IR
POLIT)=0-P%POL(I+1)
O=POL(I+1)

GOTO 69
GOTO(664+67)4JBEG
JBEG=2
POL(ISTA)=0.D0
GOTO 69

JBEG=1

U=P%RP+T%T

P=P+P

DO 68 I=ISTA,IEND
POL(I)=0-PxPOL(I+1)+U%POL(I+2])
O=POL(I+1)
POL(IR)=0~-P
CONTINUE
IF(IER)78,70,78
P=0.00

DO 75 I=1,1IR
IFCC(I})T2+T1,472
O=DABS(POL(I))
GOTOo 73
O=DABS((POL(I)-C(I))/C(I))
IF(P=-0) 74,475,775
P=0

CONTINUE
IF(SNGL(P)=TOL)}TT7,76,76
IER=-]

Q(IR+1)=pP
E(IR+1)=0.D0
RETURN

IER=2

IR=0

RETURN

IER=4

IR=ISTA

GOTO0 60

IER=3

GOTO 56

END



Appendilx 5

BUCKLING LOAD CORRESPONDING TO ASSUMED DISPLACEMENT
FUNCTIONS OF DIFFERENT SHAPES

The governing equations derivéd in Chapter 2 are based on
assumed displacement functlions of similar shapes of the dia-
placements u, v and the rotation ¢. These functions, repre-
sented by the infinite series equations (18) and (20) for a
column with hinged and fixed ends, respectively, satisfy such
an assumption, since the number of half-sine or cosine waves
(n =1,2,3,...) appears simultaneously in each of these series.
On the other hand, 1f the number of half-since or cosine waves
take different values 1in each of these series, different shapes
of displacement functions ensue.

It is of 1nterest to note that thefe 1s a possibllity that
the buckling load obtalned by assuming different shapes of dis-
placement functions of u, v and ¢ is lower than the buckling
load obtained by assuming displacement functions of similar
shapes (Chapter 2). For a column with hinged ends, displace-
ment functions of different shapes may be represented by the

following infinite serles:

inZ

u = ;cisin—r— (5.18a)

v = ngsinJE—z (5.18b)

¢ = JE sinZIZ (5.18¢)
m

where 1, J, m are the number of half-sine waves chosen so that

different shapes of dlsplacement functions result.
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For a column with fixed ends, the displacements are given

in the form of the fbllowing seriles:

u = ici(l - cosgi%z | (5.20a)

v = §DJ(1 - cosgﬁg—z | (5.20b)

¢ = JE (1 - cosszlz (5.20¢)
L _

where (1,j],m) are as defined in Egs. (5.18).

Following the analytical procedure presented in Section
2.4, 1t has been found that for hinged ends columns an equation
similar to Eq. (23) results, from which it 1s concluded that
Eqs. (5.18) may be replaced by the following simpler functions

of displacement, without any effect on the final results:

u = Cisini—g—z (5.29a)
v = DJsinl%z (5.29b)
¢ = E_sin®Z (5.29¢)

where (1,j,m) are as defined in Egs. (5.18).

This conclusion 1s due to the fact that uncoupled modes of
buckling corresponding to each combination of the values of (i,
J,m) exist. However, for a column with fixed ends or other
types of end conditions listed in Table 1, this conclusion is
not valld, since in such cases the buckling mode resulting from
using Eqs. (5.20) is all coupled. Therefore, only the case of
hinged ends columns will be considered in detail herein, since

such a case 1s of particular interest to the suggested deéign
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approach given in Chapter 6 and also to avold presenting
lengthy and complicated equations of the cases with end condi-
tions other than hinged. Nevertheless, the analytical proce-
dure given in Chapter 2 lends 1itself easily to applications of
columns with these different end conditlons.

1. General Equations of Stability of Two Sides Braced Column
(Hinged Ends)

Following the same procedure of deriving Eq. (35) (with
similar displacement functions) equations of stability are de-
rived for the following cases by considering different shapes
of displacement functions, Egs. (5)-(29).

a) 1=3 #m

b) 1 =m#J

c) J=m#¥ i

d) 1i#J #m
where 1, J and m take certain chosen values to satisfy the
abovementioned four cases; for example, 1n case (a) possible

values of 1, J and m would be 1 = J = 1,3,5,... and m = 2,4,6,

... » The parameters Px’ Py and ny appearing in the following
equations are given by Egs. (25).
Case (a) 1 =31 #m
(42 2 1 (¢ )
-P+ i 0
i Py P+Q ny C1
2 2 _
1°p . 1%p,-P 0 <D1> = 0
2, .2
d;+d 2
2 l "2,,F L
L O 0 ro(P¢-P)+Q( 2 )+m2 - \Em/

(5.35a)
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2
: 1 2 T .
where P¢ = ;g(m ECw Eg + GJ)
(o] o
Case (b) 1 =m# J
- 12Py-P+Q 0 Py +Q(d;-dy) ) (C,)
0 J°P_-P 0 {DJ > =0
2, .2
dc+d 2
-Py_+Q(d;-d,) O 2(p -P)+Q(—% 2)+F_2_§_§ E, |
i T \.
N (5.35b)
where P, = *(1°EC e, GJ)
re Yy = 72 )
ro L
Case (¢) I =m#1
P12P -P+Q 0 0 7 ()
y 1
0 JZP -pP- Px . D = Q
X o | { Dyp
2,42
dS+d 2
1 2,,F L°
! 0] Px r, (P -P)+Q( )+J—2— g \Eﬂ
(5.35¢)
1.,,2 w2
where P¢ = =(J"EC, = ¢ GJ)
r L
Case (d) 1 #3 #m
-2 0 -
1 Py-P+Q 0 ’ci\
0 3%p_-P 0 b\ =g
x {0y 7
2,42 '
d%+d 2
1 2,,F L
! 0 0 ry (P -P)+Q(—=—=)+ 2—2- En )

(5.354)
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2
where P, = l---(m2EC T+ GJ)
¢ 2 w .2
r L
o]
2. General Equations of Stabllity of One Side Braced Column

(Hinged Ends)

Using Egs. (5.29) and following the same procedure of de-
riving Eq. (38) (similar displacement functions), the following
stability equations are obtained (i, J and m are defined in the
previous section):

Case (a) 1 =3 #m

- 2 N
1°P -P+Q 1P o 0 Cy
2 2 -
1P, 1°P -P 0 { Dyy =0 (5.38a)
0 0 re(P,.-P)+Qdo+E L2 E
. ° q) 2!;2-1774 \m/
2
_ 1 2 i
where P¢ = —§(m ECw —= + GJ)
r L
A (o]
Case (b) 1 =m ¥ }
42 - - - N s 3\
1°P ~P+Q 0 Py,-Qd, Cy
0 3%p_-p 0 D,V = 0 (5.38b)
p'e < 3 > )
-Py -Qd 0 r2(P.-P)+Qa+E ;EE E
| TFYoTM2 o' ¢ 2"72°72 J Bt
2
where P, = l—(izEC LA GJ)
¢ r2 w L2
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Case (¢) J =m¢# 4
" 1%p_-p+ 0 0 1 ()
vy Q i
0 3%P_-P 0 Dy =0 (5.38¢)
X < J |
2 | 2,F L2
- + + @ cmeeman E
! 0 Pxo ro(P¢ P) de ;E ﬂZJ By )
2
. _ 1 2 i
where P¢ = —7(3 EC, 5 + GJ)
r L
o)
Case (d) 1 #3J #m
[ 1°P_-P+Q 0 0 71 (c,)
y _i
0 3%p_-p 0 D,) =0 (5.38q)
X J *
2 2, F L2
0 0 PO(P¢-P)+Qd2+—§‘—§'-‘ \Em)
- m n
= 1 _(m2gc I
where P¢ = r2(m ECw L2 + GJ)
o
3. P__ of Particular Column Sections (Hinged Ends)

—r

Equations (5.35) and (5.38) can be used to derive the gov-

erning equations of the cases of channel, zee- and I-section

columns braced either on both sides or on one side.

For a particular cross-sectlion the governing equations of

the buckling loads can be derived - for each of the given cases

of 1, J, m combinatlons -~ by substituting for the geometric

terms appearing in the stabllity equations, those of the par-~

ticular cross-section under consideration.

outlined in detail in Section 2.4.3.

Such

a procedure is

In the present section
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only samples of these derivations will be given; other govern-
ing equations can be similarly obtained.

Channel Section Braced on Both Sides (Hinged Ends)

For channel sections Yo = 0
- = 7

Ixy = 0 hence ny =0

Substituting the above parameters into Egs. (5.35) yields the
following:
Case (a) 1 =3 #nm

From Eq. (5.35a) the critical buckling load Pcr is given

by the smallest value of P obtained from the following equa-

tions:
_ 42p .
P = 1 P (al)
2
P=1"P,+Q (a2)
2 2
_ 1 _nd F _L_
I‘o m T
2
where P, = l—2-(m2EC I +GJ) and 1 #m
¢ r w L2
O

To obtain the smallest value of P given by the above three
equations, let us start with Eq. (a3). Then, to find the value
of m that minimizes the expression (a3) differentiate Eq. (a3)

with respect to m and equate the results to zero; it follows

that

If L is in inches, F in units of k.in/in. rad, Cw in units of
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1n®, and E = 29.5 x 103 ksi, then

L N,F
m = L (al)
01 Cw

Equation (ad4) gives the value of m in terms of known parameters
L, F and Cw which makes P minimum. It should be noted that m
must be an integer; however, m given by Eq. (al) will be in
general a rational number. Therefore, in such a case m should
be rounded off to the nearest smaller and larger integer num-
ber. Hence for these two values of m, the smallest value of P
obtained from Eq. (a3) and its corresponding value of m will be
compared with the smallest value of P obtained from Egs. (al)
and (a2) and the corresponding value of i, respectively, as
will be 1llustrated in the following step.

It 1s obvious that the smallest buckling load given by
Eqs. (al) and (a2) corresponds to 1 = 1.0. Then one of the
following two cases may result:

I. If i1 =1.0<m

In such a case the critical buckling load Pcr is the

smallest value of P obtained from Egqs. (al) and (a2) with i1

1.0 and P obtained from Eq. (a3) as outlined above.
II. Ifm= 1.0 (as obtained by Eq. al)

In this case 1 must be equal to 2.0 (i.e. 1 = 2.0) since
by definition 1 # m. Hence the critical buckling load Pcr is
glven by the smallest value of P obtalned from Egqs. (al) and
(a2) with 1 = 2,0 and P from Eq. (a3) with m = 1.0.

Case (b) 1 =m# §

From Eq. (5.35b) the critical buckling load Pcr is given
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"by the smallest value of P obtalned from the following equa-

tlions:
_ .2
P=3 Px (pl)
_ .2
P=1 Py + Q (b2)
2 2
_ 1 d F .L
2 ° "
_ 1 2 T
where P¢ = ;5(1 ECw EE + GJ)

o
Following the procedure outlined in the previous case (a)

(1 = J # m) to determine Pcr’ the present and the following
cases can be accordingly treated.

Case (c¢) J =m# 1

From Eq. (5.35c) the critical buckling load Pcr is given

by the smallest value of P obtained from the following equa-

tions:
P = 12Py +Q (cl)
p? <1-f-2—) ‘P[J 2p +p 415 (Qz-,——rF ‘L2y14s2p <[Pytss Q%ii--ﬁnw (c2)
ro ¢ 2 37 ) rg 32 12

where P, = %5(32ECW %5 + GJ)

In this case an expression for J which makes P minimum cannot
be obtained in a simple form as in Case (a) (see Eq. al).

Hence sufficient values of J where J = 1,2,3... must be consid-
ered so that the smallest root of Eq. (c2) is a minimum, then

proceeding as outlined in Case (a)
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Case (d) 1 #3131 #m

From Eq. (5.35d), the critical buckling load P, 1s given

by the smallest value of P obtained from the following equa-

tions:
_ 42
P=J%P, (d1)
2
P=1 Py + Q (d2)
2 2
- 1 g ¢ F_L_
r m- w
2 o
e L mlpc IO
where P, = 2(m ECw 5 + GJ)

$
T, | L

Conclusion

Considering higher buckling modes is in féct a step towards
the refinement of the assumed displacement functions in which
only the first mode is considered (i1.e. n = 1) and therefore a
better approximation of the exact buckling load can be achieved.

Higher buckling modes have been considered in this inves-
tigation in two stages: first by assuming displacement func-
tions with similar shapes (given in Chapter 2), and second by
an attempt to improve the analysis by assuming displacemenﬁ
functions of different shapes, as lllustrated in the present
appendix. Both stages have introduced complication to that
method of analysls which considers only the first term of dis-
placement functions (see Section 2.6). However, the compliéa-
tion introduced by assuming:different shapes of displacement
functions 1s relatively greater than that resulting from assum-
ing similar shapes. This 1s so since the latter includes only

one varying parameter, namely n, while the former includes
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three parameters (i,j,m), which requires that four cases (a, b,
¢ and d) of different combinations of 1, J amd m must be inves-
tigated.

Fortunately, higher buckling modes resulting from assuming
functions of different shapes do not govern the buckling behav-
lor of all the cases considered except the case of I-sections
braced on one side only. This 1s so because in these cases the
resulting buckling modes are uncoupled and in principle, sudh
behavlior is similar to imposing certain constraints on the
freedom of the sectlon to undergo one or more of the displace-
ments of u, v and ¢. This 1s analogous to the cases of en-
forced axis of rotation or prescribed plane of deflectilon.

Such cases are known to give higher buckling loads than if the
section is free (if its geometry allows) to displace and ro-
tate, 1.e. 1n a coupled buckling mode. Therefore, it has been
concluded that higher buckling modes resulting from assuming
displacement functions of similar shapes (n only) would give
lower buckling loads than i1f functions of different shapes (i,
J,m) are assumed. This conclusion is valid for the following
cases:

~ channel sectlion braced on one or both sides

~ zee-section braced on one of both sides

- I-section braced on both sides.

Contrary to these cases 1is the I-section braced on one
side only. Equation (5.38b), which is based on displacement
functions of different shapes, gives the following two possible
solutions of the critical buckling load. Note that 1 ¥ j.
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3% -P =0 (5.1)

o : 2 2
(1°r, - P + Q)[r2(P - P) + Qf—+ i‘—g-%l-m%%o (5.2)
m

On the other hand, Eq. (38) (Chapter 2) which 1s based on dis-
placement functions of simllar shapes gives the following two

possible solutions of the critical buckling logd.

2
npP, - P = 0 (2.1)
2 2 2.2 ‘
(n’py, - P+ QLri(p, - P) + o+ by o= 0 (2.2)
n

It 1s easily seen that Egs. (5.1) and (5.2) for i = J re-
duce to Egs. (2.1) and (2.2), respectively. Therefore, if one
solves Egs. (5.1) and‘(5.2)‘for all intéger values of 1 and ]
the lowest buckling load can be obtained.

Evidently, the smallest P given by Eq. (5.2) is for j = 1.
Therefore investigating the possibillty of higher buckling
modes applies only to Eq. (5.2) and § = 1,2,3,... must be con-
sidered only when this equation is tullized.



Appendix 6
NOTES ON THE DESIGN CRITERIA

This appendix provides a record of the reasonling behind
and Justification for the different sections of the design cri-
teria outlined in Chapter 6. Herein each section 1s given the
same number as the corresponding section of Chapter 6 (except
that they are preceded by the letter X for cross-referencing.

X.6.1 Introduction

The design procedure suggested in Chapter 6 is based on
the ultimate capaclity of the column, utilizing a conservative
estimate of the shear rigidity Q and rotational restraint F of
the wallboards acting as bracing diaphragms. A factor of safe-
ty (F.S.)(Sz) of 1.92 on the ultimate loads is incorporated in
the method of analysis. _

Tests of 11 diaphragm braced assemblies as reported in
Chapter 5, Experimental Verification of the Theory, substanti-
ate the theoretical findings of the present investigation on
which the design procedure is based.

In order to achieve better approximation of the exact
buckling load, higher buckling modes based on assumed displace-
ment functlions of similar as well as of different shapes have
been investigated 1n Chapter 2 and Appendix 5, respectively.
X.6.3 Method of Analysis

Comments regarding inelastic analysis and the initial im-

perfections are given below.

+ Load Capaclty PrL Computation of the amplitudes of deflec-

255
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tlons C, as well as the rotation El’ and then the maximum shear

1
strailn Ymax and maximum rotation ¢max’ are essential for check-
ing the diaphragm adequacy. However, since deflections and ro-
tation become indefinitely large as Pcr 1s reached, values of
these parameters are computed at load levels equal to APcr
where A 1s a trial reduction factor less than 1.0, for example,
A =0.98, 0.96, 0.94, ... . The factor A is so chosen that the

and ¢ do not exceed those available by the

computed Yma

X max

bracing diaphragm (for additional explanation regarding A, see
Section 2.7 of Chapter 2).
* Possibility of Higher Buckling Modes. Higher buckling modes

are conventlonally assoclated with buckling in more than one
half-wave, 1.e. n > 1, In some cases, depending on the rela-
tive magnitude of the dlaphragm characterlstlcs and the column
stiffness, higher buckling modes govern the behavior of the
stud. Section 4.2 of Chapter_u includes a numerical investiga-
tion conducted to examine the possibility of higher buckling
modes. In the numerical investigation the variation of the di-
aphragm shear rigidity Q and the rotational restraint F, as
well as the column's flexural and torsional rigldities, were
chosen to be within the practiqal range of wall stud construc-
tion. The results indicate that higher buckling modes do not
govern the behavior of studs of channel, zee and I-sections
braced on both sides. Therefore, for these cases governing
equations based on n = 1 are listed in Section 6.4.1.1. Howev-
er, 1f a diaphragm of unusual characteristics 1s utilized it is

recommended that the pqssibility of higher buckling mode be
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checked. For this purpose Egqs. (44) and (45) for channel sec-
tions and Eq. (48) for zee-sections can be used (see Sections
2.4.3.1, 2.4.3.2 of Chapter 2). It should be noted that higher
buckling modes do not govern the behavior of I-sections braced
on both sides, regardless of the relatlive stiffness of the stud
and the diaphragm (see Section 2.4). However, for sections
braced on one side only, higher buckling modes are possible in
s ome cases and such a possibility should always be considered.
Hence for these cases, governing equations based on n = 1,2,3,
.+. are listed in Section 6.4.1.2. Higher buckling modes based
on displacement functlons of different shapes influence only
the I-section braced on one side. This has been indicated in
the conclusion and the end of Appendix 5. For this purpose Eq.
(9) of Section 6.4.1.2 gives a flexural buckling load P = Px
based on n = 1, while Eq. (10) (torsional-flexural buckling)
requires that the possibility of higher buckling modes be in-
vestigated (i.e. n = 1,2,3,...).

« Values of n. In the design procedure (Section 6.3) it has

been suggested to use n = 1,2,3,...6. Such a suggested number of
n's 1s not mandatory; 1t can be lncreased or decreased depend-
ing on the case under conslderation. However, in all the cases
considered 1n the numerical lnvestigatlon, higher buckling

modes have never occurred beyond n = 4. Yet, consideration of
any value of n 1s a simple task 1f computer subroutines are

utilized in the analysis.

- Required Q and F if P ., _1s known (channel braced on both

sides). Figure 16 illustrates the two buckling modes of chan-
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nel sections braced on both sides, namely flexural and torsion-
al-flexural. These two modes are given by Egs. (2) and (3),
respectively. If at a given load Pl (see Fig. 16), Qp obtained
from Eq. (2) 1s larger than QII obtained from Eq. (3) with F =
0, 1.e. QI > QII’ flexural buckling governs and QI obtained
from Eq. (2) controls, since with QII’ flexural buckling will
occur at a load smaller than that given by Pl' On the other
hand, if at a load P2, QII > QI, then otrsional-flexural buck-
ling governs; therefore QII controls and in sich a case, in-
cluding F in the analysis will result 1n economical design.
Otherwise larger values of Q would be required.

- Value of n Associated with P_. It has been stated in differ-

ent parts of the design procedure that when inelastic behavior
governs (i.e. P.p/A > O.SQAoy), then knowing P, (elastic), the
inelastic buckling load Pa may be determined by Eq. (24) (AISI
formula). Accordingly, in computing Ymax‘and ¢max
tions of Section 6.4.2 1t has been conclusively assumed that

from equa-

the value of n used in these equations 1s the value of n corre-
sponding to Pcr‘ Such a consideration has been examined numer-
ically and it has been found that the lowest value of the load

capacity (1.e. APa corresponding to Ymax © Y4 and ¢max < ¢d) is
always assoclated with that particular wvalue of n corresponding
to Pcr' However, in case that such an assumption is to be ver-
ified, the procedure can be summarized in the following. Hav-

ing obtained Pcr and the corresponding n, determine Pa ffom Eq.
(24). Consider n = 1,2,3,... and for each value of n, check

the diaphragm adequacy by using equatlions of Section 6.4,2,
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calculating Ymax and ¢max and hence determining the trial load

P_ = )P and ¢

r a’ max
the diaphragm, respectively. The output of thils algorithm is a

at which ¥ are smaller than Yg and ¢d of

max
set of load capacities Pr’ each corresponding to a certain val-
ue of n. The lowest value of these loads determines the load
capacity of the stud. Consequently, check wehther or not it is
assoclated with the same value of n corresponding to Pcr' Such
a procedure can be executed by the computer programs of Appen-
dix 4.

X.6.4.2 1Initial Imperfections (Egs. 11)

The 1nitial imperfections are the primary cause of deflec-
tions and rotations prior to the state of instability of the
column. The required strength of the bracing is a function of
these initial imperfections. In order to obtain a method of
analysls for practical design it 1s necessary to investigate
real rather than ideally straight columns. This 1s so because
the rigidity and restrainﬁ calculated for bracing an 1deal col-
umn are not sufficient to achleve the required bracing of an
imperfect column(g). Hence 1t 1s essential that the suggested
design criteria, which will be explained in detall in the next
sections, should provide a check to insure that the shear
strength and the rotational capacity of the diaphragm are not
exceeded before the deslign load 1s reached. Such a check will
be made by calculating the additional deflections and rotation
corresponding to the design load. Then calculate the maximum
of the diaphragm, and com-

shear slope Yma and rotation ¢

X max

pare these values with the availablé diaphragm shear strength
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and rotational capacity.

The amplitude of the 1nitial imperfections may be taken
from about 1/500 to 1/1000 of the column length. However, ini-
tial imperfections accounting for initial sweep plus accidental
load eccentricities may be considered according to the follow-
ing tentatively suggested formulas:

C, = 2(L/700)
and D, = L/700
Based on limited information available, the amplitude of the
initial twist 1is arbitrarily taken equal to 0.0006 radians per
foor of length(l7).
X.6.4.3 1Inelastic and Local Buckling Behavior

Depending on the values of Q and F, and the slenderness of
the stud, the compressive stress may exceed the proportional
limit cp of the stud material. As a result buckling will occur
at a stress lower than that predicted by the elastic governing
equations. To modify the elastic design équations, Section

6.4, so as to account for the inelastic range(12’15’17’38),

E
will be replaced by E¥ and G by G* = G(E*/E), where E* 1is the
inelastic modulus corresponding to the average stress level (o)
and 1s given by:

‘ o(oy - 0) ]
E
op(oy - opf

E* =

In addition, 1t 1is assumed that the behavior of the dia-
phragm remalns elastic until failure.
If inelastic buckling governs the behavior of the stud,

then two methods are available to compute the inelastic buck-
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ling load. Both methods are recorded hereln, even though the
second method 1s recommended for the design procedure.

a) Iterative Approach

1) From Egs. (25) and (27) find the value of E¥ corre-
sponding to Pcr'

2) Substitute E¥ for E in the elastic governing equation
and compute the new value of E¥,

3) Find the corresponding value of PCr and compare with
the previous value. Repeat the procedure until the loads con-
verge to the desired accuracy.

Such an iterative procedure is not desirable for design
use, though it 1s accurate.

b) AISI Formula'l’

In a previous deslgn recommendation(l7) the AISI formula
of Section 3.6.12 has been used for the design of diaphragm
braced columns.

In deriving these formulas, the general form of the in-
elastic buckling stress vs. the slenderness ratio 1s assumed,
obviating the necessity of obtaining the inelastic buckling
stress by 1teratlion, as may be requlired when the buckling
stress relation 1s obtained from an assumed analytical stress-
strain relation.

The formula gives a limit to the buckling load of the stud

in the inelastic range by the following value (without a factor

of safety):

2
o
P, = Alo, - %-Z-;)
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where P_ = inelastic buckling load.

The effects which local buckling of thin-walled compres-
sion members can have in reducing the column strength is pre-
sented in Section 3.6.1 of the current AISI Specification by a
form factor Q, here designated as QA‘ If this form factor is
less than 1.0, then replacing oy by QAcy in all equations in-
volving oy will furnish design formulas which provide adequate
safety against local buckling and accounts for cases in which
combinations of overall and local buckling occur.

6.4.4 Diaphragm Characteristics

In order to predict the behavior of the braced stud it is
necessary to know the nature and magnitude of the restraint
provided by the wallboards.

The two important parameters which characterize the brac-
ing diaphragm are its shear rigidity Q and 1ts rotational re-
straint F. These parameters are determined experimentally.
Methods of testing as well as values of Q and F of different
wall materials are presented in Chapter 5. The specific values
obtalned 1n the test program are only lndlcative and design
values should be obtained from tests representing the actual
structure. |

In a previous "Design Recommendations for Diaphragm-Braced
Beams, Column and Wall Studs,"(l7) a recommended value of reli-

able shear rigidity Qr was given by,
- 1o
Qr Gr v

,
°w

U)‘g\)

=
or Qr
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where G' 1s the shear stiffness obtained from a cantilever
shear test at 0.8 of the ultimate load of the diaphragm and w
is the width of the diaphragm contributing to the bracing of
one member.

Similarly, the design value of the shear strain of the di-
aphragm Yd 1s determined from the same cantilever test and is

given by

ﬂ’lD
(o}

Ya
wher: Ad 1s the shear deflection at 0.8Pult and a is the dimen-
sion of the shear diaphragm perpendicular to the test load di-
rection.

Since F 1s as 1mportant as Q 1n providing for the stabili-
ty of studs subjected to torsional-flexural buckling, it would
be reasonable to adopt the same reduction factors of Q and ¥y
for the rotational restraint F and the rotatlional capacity ¢ of
the diaphragm. The detalls of the test set-up to evaluate F
and ¢ for a certain diaphragm are included in Chapter 5. Hence

a reliable value of the rotational restraint F is given by

= &
F. = 5F

where F 1s the rotational restraint coefficient at O.8Pult.
Similarly, the deslgn rotational capacity of the diaphragm d

is obtained at O.8Pult and it represents the amount of rotation

in radians that the diaphragm can undergo at 0.8P (see Figs.

ult
19, 20 and 21).
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COZFFICILHNTS K

TABLE 1

FOR VARIQUS END CONDITIONS (n=1)

COEFFICIENTS

gggDITIONS 1% = E K s ‘9 f10. f12
u"=y"=¢"=0 1,0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 .0 1.0 1.0
u'"=y"=¢'=0 1.0 1.0 1.0 4.0 0.849 0.849 0.849 0.75 0.849 0.849 0.849 0.849
u“=v'=¢'=0 4.0 1.0 0.849 4.0 0.849 0.849 1.0 0.75 1.0 .0 0.849 0.849
u"=v'=¢"=0 4.0 1.0 0.849 1.0 1.0 1.0 0.849 1.0 0.849 0.849 0.849 0.849
u'sv'=¢"=0 4.0 L4L.0 4.0 1.0 0.849 0.849 0.849 1.0 0.849 0.849 0.849 0.849
u'=vi=¢"=0 1.0 4.0 0.849 1.0 0.849 0.849 1.0 1.0 1.0 .0 0.849 0.8u§
u'=v"=¢'=0 1.0 4.0 0.849 4.0 1.0 1.0 0.849 0.75 0.849 0.849 1.0 1.0
visvi=$t=0 4.0 4.0 4.0 4.0 1.0 1.0 1.0 0.75 1.0 .0 1.0 1.0
Notes

u=vs=4¢=0at z = 0,L for all cases

All end conditions shown are for Z = 0O,L

89¢
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TABLE 2

TYPE GF DIAPHRAGM FASTENER G Y F ®
SPACING d d
in/in k.in/in.rad. rad.
13
g GYPSUM 6" 2300  0.0041 NOT TESTED
gt 2700% 0.0132 NOT TESTED
11
% GYPSUM g 2050 0.014 0.055 0.15
11" 1600 0.013 0.0355 0.15
1
%' HOMOSOTE 11" 845  0.012 0.024 0.175
11"t
% CELOTEX gu 620 0.0083 0.0135 0.21
11" 490 0.0078 0.0094 0.21
1 3]
% IMPREGNATED 7" 660 0.0096 0.021 0.23
CELOTEX
11" 530 0.0086 0.014 0.23
11
% HEAVY IMPREG. 11" 940  0.0106 0.018 0.18
CELOTEX
G' = Diaphragm shear stiffness at 0.8Pult
Yq = Shear strain at 0.8P ;4
F' = rotational restraint coefficient at 0.8Pu
¢q = rotational capacity of the diaphragm at O.8Pult

Fastened along 4 sides



TABLE 3

SUMMARY OF TEST RESULTS

TYPE OF TEST  WALL MATERIAL Q F LOADS Prgsr TYPE OF

AND FASTENER ~ 5 FATLURE
SPACING THEORY  TEST THEORY
L L5 3oy en}’ 272 o.om 2.2 23.4 .97  TOR. FLEX.
] i

C . _L ec %' CELOTEX @ 11%-' 11.8  0.019 16.5 15.5 .94 FLEX.
7"

r [ 7C .21. (F:,%L(I)ﬁg)éEg 19.8 0.042 24,0 23.7 .99 FLEX.

I I 8D %" GYP. @ 11%" 27.2  0.071 28.8 26.5 .92 FLEX.

I %-" CELOTEX @ 11%—" 22.4  0.06 27.4 26.9 .98 FLEX.
IMPREG.
11 1!

L r10C % GYP. @ 11% 13.6  0.036 14.7 14.5 .985 T.F.

-F F 11D g" GYP. @ 11%" 13.6  0.036 19.26  18.6 .97 T.F.

—Em—— 1]

[ T 2" gyp. @9 41.5 nggm) 11.3 11.5 1.02 *

C [ 2A %" HOMOSOTE @ 11%" 21.0 0.03 11.3 10.6 0.94 *

e e "t 114

F L % HOMOSOTE @ 113" 10.5  0.015 5.93 6.0 1.01 T.F

—_—— e 1] "

C Lh 3" ayp. e 111" 155 0.029 6.44 5.0  0.78 T.F.

# Sudden local buckling

0lz
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Table U

THE EXPERIMENTAL PROGRAM

Test No. Type of t a b
Sec.
1A A 0.061 3.628 0.88 0.0
2A A 0.062 3.628 0.88 0.0
3A A 0.062 3.625 0.88 0.0
4a A 0.061 3.630 0.88 0.0
5B B 0.106 2.506 1.75 0.62
6C C 0.106 3.07 1.76 0.67
7C C 0.106 3.07 1.75 0.66
8D D 0.105 3.07 1.76 0.66
gD D 0.105 3.07 1.76 0.66
1nC C 0.106 3.07 1.75 0.66

Dimensions shown are the average along the column length.

16 gage

12 gage

©

12 gage

12 gage



Layout of wall-studs
construction

general section

channel section

+ =
s .

general and specific sections considered in the analysis

zee-section

Fig. 1) Columns braced with diaphragms on both sides.
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N\
N\

Lay-out of wall stud
construction

general section

channel section

zee-section

general and specific sections considered in the analysis

Fig. 2) Columns braced with diaphragms on one side.
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4
u
Y
X,Y are arbitrary axes n 7
passing through the
shear center (S)
X,y axes passing through _~along the
centroid C, parallel column axis
to and perpendicular S 7 - X,u
to the diaphragm Yo
Crd
+ )

‘f°_44‘l/ ¢ x

Y. v?

Fig. 3) Sign convention and displaced position of the column
cross-section. (Ref. 5)
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transverse moment
about z-axis

Fig. 4) Transverse rotation of the diaphragm.

‘ w |
p .
. x 3 X
- L
i\ H\ AN g\ Diaphragm\_ \
I\ R E\ i e — 3
b i \ 'Y
I ! L] \ \
i ' / 0 ’ 'I ! rA .. 3
VY R 0 B
! I, ! EJ / l
S AN e
| ] \Deflected |
shape of columfeme—o——
€ - 1
L il |
Fasy T = AJ
w = width of diaphragm contributing
to the bracing of one column [ 7
L/2 ¢ — 3
L/ 7

- X x ]

Diaphragm in the deformed shape

Fig. 5) In-plane shear deformation of the diaphragm.
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lateral displacement in the plane of the diaphragm:
bottom diaphragm = az + u - 3§' = u-¢d2
top diaphragm = u+¢d2

Fig. 6) Generalized displaced position of column braced on
both sides.
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cr
l
Pk F=2 -
* / F=3 =
Torsional-Flex.
Buckling
eq. 57
p -
¢~//// ) L E
/ gé?xééBuckllng pcr = Py 3s QB
P¢e
P
y
-— Q
Fig. 8) P.r» (Q,F) relationship for channel section braced on

both sides.

P

1]

Torsional-Flex, Buckling
P L, eq. 58 /

y

/ Flex. Buckling
eq. 59
. R N—
PCr = Px as Q@=
Y1 F has no influence

Fig. 9) P_..»Q relationship for zee-section braced on
both sides.
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CI‘J

Q

Fig. 10) Pcr’
one side.

(Q,F) relationship for channel section braced on

P
P
x e —— —
F=3
Torsional-Flex. Eq. 64
=0

Py J I

PCr = Px as Q,F+=
P
Y1

_Q

Fig. 11) Pcr’Q relationship for zee-section braced on one side
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()

p’minim -

—— £(2%)

Fig. 12) Effect of constraint on the potential energy function
Hp (Ref. 35).
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_C;r-___—

Equation of Line 1 P = Py1¢Q(Px-Py1-ny)/(Px-Py)
.ny-Py1
2 P =P -P  +(Q-P+P) 7P
2P _-P_, -
y "yl yl
2 b - 2P .QPX-PX¢Pyi

] ) y
P Py1*(Q Px1*P )

Py
TT%;*’gpx-Py

Fig. 13) Approximation by Piecewise Linear Function
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Fi
F=0
! L
Py QL,TQ_U Qr<Qrp |
Q1 Q, Qg
Fig. 16) Q and F required for a certain load P.
DESIGN PROCEDURE
P
PX=S6.SS
: F=0.04
P2=3U.72 .
' T.Flex.
P1=15.36
p =8.14
b4
— Q
Fig. 17) Q and F required for a certain load P.

DESIGN EXAMPLE 2

Q
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¢total -~ ®p * % * ¢g

Fig. 19a) Rotation of diaphragm and column assembly.

?total

A = AL+ AL+ A

total D S B

Fig. 19b) Deflection at the free end
(in the test set-up).
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Dial 1
arm to measure
deflection of flange

diaphragm
clamped
stud sec.

|

| 12"-2-

Dial 1 to measure Atotal

2 to measure deflection &g
due to flange deformation

Test set-up

ult test curve
0.8Nult
2(0.8M . ) .
N a1t design curve

rad.

Moment-rotation curves

Fig. 20) Test set-up and moment-rotation curves for
determination -of F,
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140 |
1/2" Homosote
120 |
100 |
&' GYP.
80 | 3/ GYP
5 /
o Impregnated Celotex
—y
= 60 |
' Celotex
40 0.80M,¢
‘_-_12" P
2 fasteners - j A
e 12" p =——*"total
i Atota\l‘r
20 sheet width = 24" 7 & =—ypr— (rad.)
tan-1F7Fastener (Celotex 1/2')
0.0 | i [ 1
0.0 0.1 0.2 0.3 0.4 0.5
¢ (rad.)

Fig 21) Rotational restraint (F) of different wall materials.
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Test layout

1 /

ult Test curve
0.8Pult
l // Design curve
2 %7//’
3(0-8P 1 ¢)

A

efi—

shear
deflection

Load-delfection curves

Fig. 22) Cantilever shear diaphragm test arrangement.
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PHOTOGRAPH 1

COLUMN ASSEMBLY AFTER FAILURE



PHOTOGRAPH 2

FAILURE OF DIAPHRAGM AT FASTENER LOCATION
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