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FOREWORD

ITis updated manual with revised seismic design provisions governs the design and construction of Army,
Navy, and Air Force facilities and supersedes the April 1973 issue. Basic criteria are stated herein with aug-
mentations and clarifications of the criteria. Also, commentary and design examples are included to provide
comprehensive applications and guidelines for the seismic-resistant design of facilities. The organization of
the manual has been revised to present the topics in a more orderly manner. Ihe dynamic analysis approach
for seismic design is not covered but its use is not precluded in this manual.

The basic criteria cited are the "Recommended Lateral Force Requirements and Commentary" as published
by the Structural Engineers Association of California (SEAOC). The design concepts and applications for the
design of: (1) supports for electrical, mechanical end architectural elements and (2) structures other than build-
ings, have been revised. The applications of essential, high risk and other occupancy type structures are in-
cluded with the use of the importance factors vice high-loss potential and low-loss potential facilities in the
1973 issue.

ITe general direction for the revision of the manual was by a Department of Defense TriServices Seismic De-
sign Committee, i.e., representatives of the Office of the Chief of Engineers, Headquarters, US Army; Naval
Facilities Engineering Command, Headquarters, US Navy; and Directorate of Engineering and Services,
Headquarters, US Air Force. Detailed development of the manual was under the direction of the Office of the
Chief of Engineers, Washington, DC and the US Army Division Engineer, South Pacific, San Francisco,
California.

Coordination was maintained with the Naval Facilities Engineering Command at Headquarters, Washington,
DC, and Western Division, San Bruno, California; and US Air Force Civil Engineering Offices at Headquar-
ters, Washington, DC, and Western Regional Office, San Francisco, California.
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Si CONVERSION UNITS

In view of the present accepted practice for building technology in this country, common U.S. units of
measurements have been used throughout this publication. In recognition of the position of the United States
as a signatory to the General Conference on Weights and Measures, which gave official status to the
International System of Units (SI) in 1960, the table below is presented to facilitate conversion to SI Units.
Readers interested in malkin further use of the coherent system of SI units are referred to: NBS SP 330,1972
Edition, The International System of Units; and ASTM E380-76, Standard for Metric Practice. For conver-
sion of formulas used in reinforced concrete design, the reader Is referred to ACI 318-77, Appendix D.

Table of Conversion Factors to SI Units

To Convert From To

inch (in) meter (in)
ing in2

in.3 ms
in4 m4
foot (ft) meter
pound-force 1f) newton (N)
lbf-ft N-m
Iblft N/im
lbf n N*m
lbflin Nlm
lbf/1n 2 (psi) pascal (Pa)

*Exact value; others are rounded to five digits.

Multiply By

2.54' X 10-2
6.4516* X 10-4
1.6387 X 10-5
4.1623 X 10-7
3.048* X 10-1
4.4482
1.3558
1.4594 X 10
1.1298 X 10-1
1.7513 X 102
6.8948 X 103

!.
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CHAPTER 1
GENERAL

1-1. Purpose and scope. a. Purpose. This man-
ual prescribes criteria and furnishes guidance for the
design of buildings, some structures other than
buildings, mechanical and electrical equipment sup-
ports, and utility systems in areas subject to
damaging earthquakes. These criteria apply to all
elements responsible for design of military con-
struction located in seismic regions. In overseas
construction, where local materials of grades other
than those herein are used, the working stresses,
grades, and other requirements of this manual will
be modified as applicable.

b. &ope. This manual is for guidance in the de-
sign of buildings and other structures that are gen-
erally regular in shape, size, and concept. Buildings
and other structures that are highly Irregular will
require analysis that rely on greater application of
engineering judgment and experience in seismic de-
sign. Dynamic analysis requirements and altera-
tions or evaluations of existing structures are not
covered in this manual.

c. Design Criteria. Preparation of seismic design
will be In accordance with the criteria and design
standards herein. Criteria and design standards
covered in the agency manuals for ordinary or non-
seismic design are applicable to seismic design ex-
cept where overriding criteria are contained herein.
The seismic design and detail requirements herein
are from the provisions of the "Recommended Lat-
eral Force Requirements and Commentary," 1975
edition, of the Structural Engineers Association of
California, 171 Second Street, San Francisco, CA
94105, except as modified herein.

1-2. Organization of manual. The general pro-
visions for seismic design are covered by chapters 2,
3, and 4. Chapter 2 provides an introduction to the
basic concepts of seismic design; chapter 3 contains
the seismic design provisions; and chapter 4 pro-
vides a guide to the implementation of the seismic
design provisions. Chapters 5 through 8 are con-
cerned with seismic design in relation to structural
materials, elements, and components. Chapters 9
and 10 cover seismic provisions for nonstructural
components such as architectural, mechanical, and
electrical elements. Chapter 11 covers structures
other than buildings, and chapter 12 gives some
guidelines for designing for the effects of earth-
quakes on utility systems. The appendices provide
examples of design calculations.

1-3. Preparation of project documents.
a. Design Analysis. A design analysis conforming
to agency standards will be provided with final
plans. This design analysis will include seismic de-
sign computations for the stresses in the lateral
force resisting elements and their connections, and
for the resulting lateral deflections and nterstory
drifts. (Note: In Zone 1, if wind loads control the de-
sign, a complete seismic analysis is not required;
however, the seismic detailing requirements will be
provided as specified.) The first portion of the De-
sign Analysis, called the Basis of tesign, will con-
tain the following specific information:

(1) A statement of the seismic zone for which
the structure will be designed.

(2) A description of the structural system se
lected for resisting lateral forces and discussion of
the reasons for its selection. If setbacks are in-
volved, the application of setback design provisions
will be established.

(3) A statement regarding compliance with this
manual and the selected values of "K", "C", "",
"l", and W'.

(4) Any possible assumed future expansion for
which provisions are made.

b. Drawings. Preparation of drawings will con
form to agency standards for ordinary construction
with the following additional specific requirements
for seismic construction.

(1) Preliminary drawings will contain a state-
ment that seismic design will be incorporated. The
Basis of Design submitted with these drawings will
give full information concerning the seismic loads
that will be used, and the assumptions that will be
made in carrying out the seismic design.

(2) Construction drawings for seismic areas will
include the following additional special information:

(a) A statement of the Seismic Zone and the
"K", "C", "S" "I", and "Z" values will be added to
the tabulation of design loads.

(b) A list of the portions of the structure for
which design was controlled by wind load will be
placed immediately below the statements concern-
ing seismic design.

(c) Details of construction will be similar or
equal to the typical seismic details shown in the var-
cus sections of this manual.
-j (dJ Assumptions made for future extensions
or additions.

(3) Site adaptation of standard drawings will in-
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dude design revisions for the seismic area as re-
quired.

c. Specifications. Project specifications wi be
prepared in accordance with agency standards and
practices for ordinary construction except that ap.
plicable seismic guide specifications or supplements
will be used as appropriate.

d Cost Estimates The special provisions re
quired for seismic design generally result in an In-
crease in construction costs of 1 percent to per.
cent. The amount of this increased cost depends on
the overall concept and configuration of the building
system and the geographical location of the building
site. In some cases, a small amount of additional re-
inforcing bars, anchors, stiffener plates, or weld ma
terlal may be all that is required to provide for the

seismic design provisionL However, in other car
where the basic concept or configuration of s
building does not provide an efficient system of lat-
eral force resistance, the additional costs to provide
sepmic force resistance can be appreciable. In geo-
graphical locations where the local construction in-
dustry is not experienced with the special details of
selic resistant construction, the differential costs
for seismic desiga will generally be greater than for
those areas, such as California, where seismic design
construction is in general use. For example, the
premium for seisic construction wil be higher for
reinforced masony, ductile reinforced concrete
frames, and ductile structural steel frames in areas
where these types of construction are not common.

1-2
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CHAPTER 2
INTRODUCTION TO SEISMIC DESIGN

2-1. Purpose and scope. his chapter provides
an Introduction to the basic concepts of designing
buildings to resist inertia forces and related effects
caused by earthquakes. General guidance is given
for the selection and use of proper structural sys-
tems.

2-2. Gonoral. An earthquake causes vibratory
ground motions at the base of a structure and the
structure actively responds to these motions.
Seismic design involves two distinct steps: deter-
mining (or estimating) the forces that will act on the
structure and designing the structure to resist these
forces and to keep deflections within prescribed lim-
its. Other hazards, related to site location, are dis-
cussed in paragraph 2-7.

a. Determination of Forces There are two general
approaches to determining seismic forces: an equiv-
alent static force procedure and a dynamic analysis
procedure. This manual Illustrates the equivalent
static force procedure. Dynamic analysis procedures
are not within the scope of this manuaL but some
discussion of structural dynamics is Included in this
chapter in order to explain the rationale of the equiv-
alent static force procedure that is used in this
manual.

b. Design of the Structure. The development of an
adequate earthquake-redstant design for a struc-
ture Includes the following (1) selecting a workable
overall structural concept, (2) establishing member
sizes, (3) performing a structural analysis of the
members to verify that stress and displacement re-
qulrements are satisfied, and (4) providing struc-
tural and nonstructural details so that the building
can perform as intended. The structural designer
must visualize the response of the structure to
earthquake ground motions and provide a design
that will accommodate the distortions and stresses
which will occur in the building. In certain cases,
some elements cannot accommodate these stresses
and distortions. Elements such as rigid stairs, rigid
partitions, and irregular wings can be isolated in or-
der to reduce the detrimental effects to the lateral
force-resisting system

2-3. Ground motion. The response of a given
building depends on the characteristics of the
ground motion, therefore, It would be highly desir-
able to have a quantitative description of the ground
motion that might occur at the site of the building

during a major earthquake. Unfortunately, there is
no one description that fits all the ground motions
that might occur at any particular site. The charac-
teristics of the ground motion are dependent on the
magnitude of the earthquake (i.e., energy released),
distance from the source of the earthquake (depth as
well as horizontal distance), distance from the sur-
face faulting (this may or may not be the same as
the horizontal distance from the source), the nature
of the geological formations between the source of
the earthquake and the building, and the nature of
the soil in the vicinity of the building site (e.g., hard
rock or alluvium). Although the fully accurate pre-
diction of ground motion is not possible, the art of
ground motion prediction has progressed in recent
years such that design criteria have been estab-
lished in areas where historical earthquake records
and geological information are available.
2-4. Structural response. If the base of a
structure is suddenly moved, as in the case of seis-
mic ground motion, the upper part of the structure
will not respond instantaneously but will lag be-
cause of inertial resistance and the flexibility of the
structure. This concept is illustrated in figures 2-1,
2-2, and 2-3 by showing the motion in one plane.
The stresses and distortions in the building are the
same as if the base of the structure were to remain
stationary while time-varying horizontal forces are
applied to the upper part of the building. These
forces, called Inertia forces, are equal to the product
of the mass of the structure times acceleration, or
F - ma (mass is equal to weight divided by the
acceleration of gravity). Because the ground motion
at a point on the earth's surface is three dimensional
(one vertical and two horizontal components), the
structures affected will deform in a three-dimen-
sional manner. Generally, however, the inertia
forces generated by the horizontal components of
ground motion required the greater consideration
for seismic design since adequate resistance to
vertical seismic loads is usually provided by the
member capacities required for gravity load design.
For ordinary structures within the scope of this
manual, the inertia forces are represented by
equivalent static forces. However, buildings can be
idelizd by the use of simplified models that
represent the dynamic characteristics of the
structure. For special structures the idealized
models are subjected to time-history, response-
spectrum, or other dynamic analyses, and the re-
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suits are used to determine the forces in the

building.

2-5. Behavior of buildings. Buildings are com-
posed of vertical and horizontal structural elements
which resist lateral forces. The vertical elements
that are used to transfer lateral forces to the ground
are: (1) shear walls, (2) braced frames, and (3)

moment-resisting frames. Horizontal elements that

are used to distribute lateral forces to vertical
elements are: (1) diaphragms and (2) horizontal
bracing. Horizontal forces produced by seismic
motion are directly proportional to the masses of

building elements and are considered to act at the
centroid of the mass of these elements. All of the

inertia forces originating from the masses on and of
the structure must be transmitted to the lateral
force-resisting elements, to the base of the structure
and into the ground. The path of these forces is
discussed in chapter 4, paragraph 4-4d

a. Demands of Earthquake Motion. The loads or

forces which a structure sustains during an earth-
quake result directly from the distortions induced in

the structure by the motion of the ground on which
it rests. Base motion is characterized by displace-
ments, velocities, and accelerations which are

erratic in direction, magnitude, duration, and se-
quence. Earthquake loads are nertia forces related
to the mass, stiffness, and energy absorbing (e.g.,
damping and ductility) characteristics of the struc-

ture. During the life of a structure located in a
seismically active zone, it is generally expected that

the structure will be subjected to many small earth-

quakes, some moderate earthquakes, one or more
large earthquakes, and possibly a very severe earth-
quake. In general, it is uneconomical or impractical
to design buildings to resist the forces resulting
from the maximum credible earthquake within the

elastic range of stress. If the earthquake motion is

severe, most structures will experience yielding in

some of their elements. The energy-absorption ca-
pacity of the yielding structure will limit the

damage so that buildings that are properly designed
and detailed can survive earthquake forces which

are substantially greater than the design forces that

are associated with allowable stresses in the elastic
range. Seismic design concepts must consider
building proportions and details for their ductility
(capacity to yield) and reserve energy-absorption ca-
pacity for surviving the inelastic deformations that

would result from a maximum expected earthquake.
Special attention must be given to connections that
hold the lateral force-resisting elements together.

b. Response of Buildings. A building is analyzed
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for its response to ground motion by representing
the structural properties in an idealized mathemati-
cal model as an assembly of masses Interconnected
by springs and dampers. The tributary weight to

each floor level is lumped into a single mass, and the
force-deformation characteristics of the lateral
force-resisting walls or frames between floor levels
are transformed into equivalent story stiffnesses.
Because of the complexity of the calculations for
methods of dynamic analysis, the use of a computer
program is generally necessary; these complex
methods of analysis are generally used for critical
structures. However, most buildings are designed
by the equivalent static force procedure prescribed
in this manual.

c. Response of Elements Attached to the Build-

ing. Elements attached to the floors of the building
(e.g., mechanical equipment, ornamentation, piping,

nonstructural partitions) respond to floor motion in

much the same manner that the building responds
to ground motion. However, the floor motion may

vary substantially from the ground motion. The
high frequency components of the ground motion
tend to be filtered out at the higher levels in the
building while the components of ground motion
that correspond to the natural periods of vibrations
of the building tend to be magnified. If the elements
are rigid and are rigidly attached to the structure,
the forces on the elements will be in the same pro-
portion to the mass as the forces on the structure.
But elements that are fexible and have periods of

vibration close to any of the predominant modes of

the building vibration will experience forces In a

proportion substantially greater than the forces on

the structure. For further discussion. refer to chap.
ter 10.

2-6. Nature of seismic codes. Codes and
criteria are established from the performance of

buildings in past earthquakes. A code represents the
consensus of a committee. Consensus means ele-
ments of compromise and generalized statements to

cover uncertainties and limitations. Codes must of

necessity be short and relatively simple; therefore,
they do not account for all aspects of the complex

phenomena of the response of actual structures to

actual earthquakes. Seismic design codes provide a

set of design static forces to represent the dynamic
response of a structure subject to a complex earth-

quake ground motion.

' a Purpose. The basic purpose of a building code

" to provide for public safety. The seismic provi-

sions of this manual (chap 3) are based on the fourth
edition of "Recommended Lateral Force and Com-
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mentary" of the Seismology Committee of the
Structural Engineers Association of California

(SEAOC. The introduction to the Commentary
that publication is reprinted below-*

"rho SEAOC Recommendations are intended to provide criteria to fulfill life safety concepts.
It is emphasized that the recommended design levels are not directly comparable to recorded or
estimated peak ground accelerations from earthquakes. They are however, related to the effec-
tive peak accelerations to be expected In seismic events. More specifically with regard to earth-
quakes, structures designed in conformance with the provisions and principles set forth therein
should, in generaL be able to:

1. Resist minor earthquakes without damage;
2. Resist moderate earthquakes without structural damage, but with some nonstructural

damage;
3 Resist major earthquakes, of the intensity of severity of the strongest experienced In

California, without collapse, but with some structural as well as nonstructural damage.

In most structures it is expected that structural damage, even in a major earthquake, could be
limited to repairable damage. This, however, depends upon a number of factors, including the
type of construction selected for the structure.

"Conformance to the Recommendations does not constitute any kind of guarantee that signifi-
cant structural damage would not occur In the event of a maximum intensity earthquake While
damage in the basic materials now qualified may be negligible or significant, repairable or virtu-
ally irrepafrable, it is reasonable to expect that a well-planned structure will not collapse in a ma-
jor earthquake. The protection of life Is reasonably provided, but not with complete assurance.

"It Is to be understood that damage due to earth slides such as those that occurred in Anchor-
age, Alaska, or due to earth consolidation such as occurred in Niigata, Japan, would not be pre-
vented by conformance with these Recommendations. The SEAOC Recommendations have been
prepared to provide minimum required resistance to typical earthquake ground shaking, without
settlement, slides, subsidence, or faulting in the immediate vicinity of the structure.

"Where prescribed wind loading governs the stress or drift design, the resisting system must
still conform to the ductility, design and special requirements for seismic systems. This is re-
quired in order to resist in a ductile manner potential seismic loadings in excess of the prescribed
loads."

b. Equivalent Static Force. The assumed equiva-
lent total lateral force, equal to the base shear, is
determined by the formula V = ZIKCSW (see chap
3 and 4 for seismic provisions). This approach at-
tempts to recognize the available recorded expe-
rience and to some degree the qualitative dynamic
analysis of simplified structures.

(1 The seismicity factor Z relates to severity of
the ground motion at the site of the structure.

(2) The factor I represents the importance of
the structure and Is used to categorize the risk
of damage to types of facilities.

(3) The factor K relates to the ductility and en-
ergy absorption qualities of certain types of struc-
tural framing systems, which historically have
shown characteristic degrees of earthquake resist-
ance.

(4) The product CS may be considered to be pro-
portional to a response spectrum; however, it is
applicable to base shear coefficients rather than
spectral accelerations. The factor C accounts for the
structural response as a function of the natural pe-

*From the publication "Recommended Lateral Force Require-
ments and Commentary" by the the Seismology Committee,
Structural Engineers Association of California. Copyright

riod and stiffness of structures. The coefficient S
accounts for the variability of site conditions. Al-
though CS is a function of the fundamental period of
vibration, it is intended to represent the combined
effects of all vibrational modes of the building.

(5) W is the weight of the structure.
(6) The total force V is distributed vertically

along the height 'of a structure according to formu-
las that approximate the fundamental mode of
vibration, with adjustments to approximate the ef-
fects of other participating modes of vibration.

c. Design Provisions. The seismic design provi-
sions furnish a method for establishing the forces.
describe acceptable basic systems, set limits on de-
formation, and specify the allowable stresses and/or
strengths of the materials. The seismic design provi-
sions are minimum requirements, and emphasis
must be placed on structural concepts and detailing
techniques as well as on stress calculations. The
provisions are not all-inclusive ones: they work best
fr regular, symmetrical buildings. For unusual or
lqrge buildings, alternatives to the static provision.

1976, Structural Engineers Association of California 
reproduced with permission.
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that rely on dynamic analyses and/or greater appli-
cation of engineering judgment and experience in
seismic design are required.
2-7. Location of site. Site planning must con-
sider geological, foundation, and tsunami sea-
wave) hazards as well as seismicity. Structures shall
not be sited over active geologic faults, in areas of
instability subject to landslides, where soil liquefac-
tion is likely to occur, or in areas subject to tsunami
damage.

a Seismic Zones. The probability of the severity,
frequency, and potential damage from ground
shaking varies in different geographic regions. Re-
gions with similar hazard factors are identified as
seismic zones. The seismic zones prescribed by this
manual are given in chapter 3, Design Criteria.

b. Fault Zownes. Damage which is directly or indi-
rectly caused by ground distortions or ruptures
along a fault cannot be eliminated by design and
construction practices; therefore, site planning must
avoid these particularly hazardous locations.

c Other Hazards. There are other hazards asso-
ciated with earthquakes that should be considered.
These include subsidence and settlement due to con-
solidation or compaction, landslides, and lique-
faction. Uquefaction Is a common occurrence in
relatively loose cohesionless sands and silts with a
high water table. The earthquake motions can
transform the soil into a liquefied state as a conse-
quence of the increase in pore pressure. This can
result in a loss of strength in bearing capacity of the
soil supporting a building, causing considerable
settling and tilting. Also, this loss of strength can
occur in the subsurface layer, causing lateral
movement of surficial soil masses of several feet, ac-
companied by ground cracks and differential
vertical displacements. These movements have sev-
ered pipelines and damaged bridges and buildings.
There are several ways to stabilize the ground such
as providing drainage wells, pressure grouting, or
removing the liquefiable zone, but often the
susceptible area is too extensive for an economical
solution. The exposure to these hazards varies with
the geography, geology, and soil conditions of the
site, and the type of structure to be constructed. The
professional judgment of geologists, soils engineers,
and structural engineers shall be used to establish
reasonable standards of safety.

d Tsunami Protection. Each region along the Pa-
cific Coast must be separately and carefully in-
vestigated for its tsunami-generation characteris-
tics. Particular coastlines, inlets, and bays of the
Pacific Ocean boundary are resonators of tsunami

waves and may amplify the effects to large
proportions. Assuming that tsunami warning serv-
ices can ensure the safety of human life, there is as
yet no hard-and-fast rule for establishing safety and
economic standards. Where feasible, power plants,
oil storage tanks, and other strategic facilities
should be located on high ground, out of reach of
high water. The methodology for predicting wave
run-up is published in U.S. Army Engineers Water-
way Experimental Station Technical Reports
H-74-3. H-75-17, and H-77-16.

2-8. Selection of the structural system. It is
of the utmost importance to make sure that the de-
sign efforts get off to a good start. Thus, it is
essential that careful professional scrutiny be given
to the design at its inception as well as at all signifi-
cant stages of design development. The proper
approach to be applied in the selection of a struc-
tural system that will achieve a reliable earthquake-
resistant building must be based on performance
criteria, alternative solutions, and corresponding
costs.

a. Objective. The objective is to produce the
structural system that is the most economical
without compromising function, quality, or reliabil-
ity. Final selection of materials and systems will be
made with due consideration given to the cost of
construction, architectural requirements, fire and
other safety hazards, and maintenance and operat-
ing costs over the life of the facility. It is essential
that the most efficient systems, methods, and mate-
rials be employed.

b. Economic Aspects. Usually, the major struc-
tural-architectural components of a building that
have the greatest effect on the cost of construction
are exterior walls, partitions, floor and roof decks,
and the structural framing system. In some in-
stances, the type of foundation may be a major
factor in a cost study. Skillful planning, simple
detailing, and arrangement of spaces to be compati-
ble with repetitive modular construction all con-
tribute greatly to reducing total building costs. On
the other hand, the use of exotic or unconventional
methods of construction may increase the costs and
reduce the reliability of earthquake-resistance per-
formance.

c. Planning Concepts. Participation of all disci-
plines of the design team in the conceptual planning
and selection of basic construction materials will en-
spre the optimal design at lowest construction cost
A~d miniize the total design effort. Procedures in
the approach to develop a concept will vary depend-
ing upon the type of facility and the individuals on
the design team.
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2-9. Techniques f seismic design. For grav-
ity loads, it has been .a long-standing practice to
design for strength and deflections within the elas-
tic limits of the members. However, to control
design within elastic behavior for the maximum ex-
pected horizontal seismic forces is impractical in
high-seismicity areas (refer to para 2-5a). Hence, de-
signers must resort to other techniques to achieve
acceptable building performance (refer to chap 4,
Design Procedures). A number of features contribut-
ing to seismic resistance are discussed below.

a. Layout. A great deal of a building's resistance
to lateral forces is determined by its plan layout.
The objective in this regard is symmetry about both
axes, not only of the building itself but of the ar-
rangement of wall openings, columns, shear walls,
etc. It is most desirable to consider the effect of
lateral forces on the structural system from the
start of the layout since this may save considerable
time and money without detracting significantly
from the usefulness or appearance of the building.

b. Structural Symmetry. Experience has shown
that buildings which are unsymmetrical in plan
have greater susceptibility to earthquake damage
than symmetrical structures. The effect of asym-
metry will induce torsional oscillations of the
structure and stress concentrations at re-entrant
corners. Asymmetry in plan can be eliminated or
improved by separating L-, T-, and U-shaped build-
ings into distinct units by use of seismic joints at
junctions of the individual wings. Asymmetry
caused by the eccentric location of lateral force-
resisting structural elements, e.g., a building that
has a flexible front because of large openings and an
essentially stiff (solid) rear wall, can usually be
avoided by better conceptual planning, e.g., by mod-
ifying the stiffness of the rear wall, or adding rigid
structural partitions to make the center of rigidity
of the lateral force-resisting elements close to the
center of mass.

c Irregular Buildings. Geometric configuration,
type of structural members, details of connections,
and materials of construction all have a profound
effect on the structural-dynamic respbnse of a
building. When a building has irregular features,
such as asymmetry in plan or vertical discontinuity,
the assumptions used in developing seismic criteria
for buildings with regular features may not apply.
Therefore, it is best to avoid creating buildings with
irregular features. For example, planners often omit
partitions and exterior walls in the first story of a
building to permit an open ground floor. This leaves
the columns at the ground level as the only elements

available to resist lateral forces, thus causing
abrupt change in rigidities at that level. This coin,
tion is undesirable. It is advisable to carry all shear
walls down to the foundation. When irregular
features are unavoidable, special design considera-
tions are required to account for the unusual dy-
namic characteristics (chap 4, para 4-4a(4)) and the
load transfer and stress concentrations that occur at
abrupt changes in structural resistance.

d Lateral Force-Resisting Systems. There are
several approved systems for the resistance of lat-
eral forces (chap 3, table 3-3 and pars 3-6; and chap
4, para 4-3c). All of the systems rely basically on a
complete, three-dimensional space frame; a coordi-
nated system of shear walls or braced frames with
horizontal diaphragms; or a combination of the two
systems.

(1) In buildings where a space frame resists the
earthquake forces, the columns and beams act in
bending (fig 2-4a). During a large earthquake, story-
to-story deflection (story drift) may be a measure of
inches without causing failure of columns or beams.
However, the drift may be sufficient to damage
elements that are rigidly tied to the structural sys-
tem such as brittle partitions, stairways, plumbing,
exterior walls, and other elements that extend be-
tween floors (para 2-9). Therefore, buildings 
have substantial interior and exterior nonstruct` v
damage, possibly approaching 50 percent of the
total building value, and still be considered as struc-
turally safe. While there are excellent theoretical
and economic reasons for resisting seismic forces by
frame action, for particular buildings this system
may be a poor economic risk unless special damage
control measures are taken (para 2-9k).

(2) A shear wall (or braced frame) building is
normally rigid compared with a framed structure.
With low design stress limits in shear walls, deflec-
tion due to shear forces (for low buildings) is
negligible. Shear wall construction is an excellent
method of bracing buildings to limit damage, and
this type of construction is normally economically
feasible up to about eight stories. Shear walls are
usually of reinforced unit masonry, reinforced con-
crete (fig 2-4b), or steel X-bracing (fig 2-4c) but may
be of wood in wood-frame buildings up to and in-
cluding three stories. The shear wall concept for
earthquake-resistant design of low buildings is quite
valid. Its effectiveness depends primarily on the
connections between the structural elements. Nota-

-ble exceptions to the excellent performance of shear
walls occur when the height-to-width ratio becof
great enough to make overturning a problem _
when there are excessive openings in the shear
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walls. Also, if the soil beneath its footings are rela-
tively soft, the entire shear wall may rotate, causing
localized damage around the walL

(3) Either of the above structural systems may
be used in combination with a wide variety of floor,
roof, wall, and partition components. When frames
and shear walls are combined, the system is called a
dual bracing system. The type of structural system
used, with specified details concerning the ductility
and energy-absorbing capacity of its components,
will establish the minimum K-value to be used for
calculating the total base shear and to distribute the
lateral seismic forces. The decision as to the type of
structural system to be used shall be based on the
merits and relative costs for the individual building
being designed.

(4) The design engineer must be aware that a
building does not merely consist of a summation of
parts such as walls, columns, trusses, and similar
components but is a completely integrated system
or unit which has its own properties with respect to
lateral force response. The designer must follow the
forces through the structure into the ground and
make sure that every connection along the path of
stress is adequate to maintain the integrity of the
system. It is necessary to visualize the response of
the complete structure and to keep in mind that the
real forces involved: are not static but dynamic; are
usually erratically cyclic and repetitive; and can
cause deformations well beyond those determined
from the elastic design. Seismic forces are assumed
to come from any horizontal direction and must be
combined with gravity loads.

e. Diaphragms Floor and roof systems are gener-
ally used as diaphragms. It is customary to design
the floor and roof (e.g., concrete slab, wood
sheathing, metal decking) as the web of a horizontal
beam and to provide for the flange stresses of the
beam with structural elements concentrated at the
edge of the floor system (e.g., edge beams or special
reinforcement in concrete slabs, continuous beams
in wood and metal deck sytems). Too frequently, it
is forgotten that these flanges must be made contin-
uous or be adequately spliced. Horizontal truss
systems may also be used as diaphragms (refer to
chap 5, Diaphragms).

f. Shear Walls. The shear wall is designed as a
vertical beam. To resist tensile stress due to bend-
ing moments, structural elements are concentrated
at the vertical edges of walls in a manner similar to
that described above for diaphragms. These bound-
ary elements must be anchored into a foundation
which is capable of transferring the forces into the
ground (refer to chap 6, Walls).

g. Connections. Past performance of buildings
earthquakes has shown that connections betwe&....
floor and roof diaphragms and the shear walls are
vulnerable to failure because of high stress concen-
trations. In order to develop the reserve capacity of
the structural elements, the design forces for
connections between lateral force-resisting elements
are required to be greater than the design forces for
the elements themselves (e.g., chap 3, para 3-3(Jj1g,
3a, b, andd; and chap 4, para 4-6).

h. Ductility. Ductility is the capacity of building
materials, systems, or structures to absorb energy
by deforming in the inelastic range. The capability
of a structure to absorb energy, with acceptable de-
formations and without failure, is a very desirable
characteristic in any earthquake-resistant design.
Structural steel (and wood to some degree) is consid-
ered to be a ductile material. Brittle materials such
as concrete and unit-masonry must be properly rein-
forced with steel to provide the ductility character-
istics necessary to resist seismic forces (chap 3, para
3-3(J)2b). In concrete columns, for example, the
combined effect of flexure (due to frame action) and
compression (due to the action of the overturning
moment of the structure as a whole) produces a
common mode of failure: buckling of the vertical
steel and spalling of the concrete cover near the fk
levels. Columns with proper spiral reinforcing ,>
hoops have a greater reserve strength and ductility
(refer to chap 7, Space Frames).

i Nonstructural Participation. For both analysis
and detailing, the effects of nonstructural parti-
tions, filler walls, and stairs (refer to chap 4, para
4-7d) must be considered. The nonstructural ele-
ments that are rigidly tied to the structural system
can have a substantial influence on the magnitude
and distribution of earthquake forces, causing a
shearwall-like response with considerably higher lat-
eral forces and overturning moments. Any element
that is not strong enough to resist the forces that it
attracts will be damaged; therefore, it should be
isolated from the lateral force-resisting system.

j. Foundations. The differential movement of
foundations due to seismic motions is an important
cause of structural damage, especially in heavy,
rigid structures that cannot accommodate these
movements. Adequate design must minimize the
possibility of relative displacement, both horizontal
and vertical, between the various parts of the foun-
dition and between the foundation and superstruc-
itre (refer to chap 3, para 3-3(J)3c; and chap 4, paer
4-8, for seismic requirements).

k. Damage Control Features. The design of a
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structure in accordance with the seismic provisions
of this manual will not fully ensure against earth-
quake damage because the horizontal deformations
from design loads are lower than those that can be
expected during a major earthquake. However,
without increasing construction costs, a number of
things can be done to limit earthquake damage
which would be expensive to repair. In considering a
building's response to earthquake motions, it is im-
portant to keep in mind the structural system and
the geometry of the building. During a major earth-
quake It should be assumed that deflections (story
drift) may be SIK times that resulting from the de-
sign lateral forces (refer to chap 8, para 8-8(J)ld). A
list of features to minimize damage follows:

(1) Provide details which allow structural move-
ment without damage to nonstructural elements.
Damage to such items as piping, glass, plaster, ve-
neer, and partitions may constitute a major finan-
cial loss. To minimize this type of damage, special
care in detailing, either to isolate these elements or
to accommodate the movement, is required.

(2) Breakage of glass windows can be mini-
mized by providing adequate clearance and flexible
mountings at edges to allow for frame distortions.

(3) Damage to rigid nonstructural partitions
can be largely eliminated by providing a detail at
the top and sides which will permit relative move-
ment between the partitions and the adjacent
structural elements.

(4) In piping installations, the expansion loops
and flexible joints used to accommodate tempera-
ture movement are often adaptable to handling the
relative seismic deflections between adjacent equip-
ment items attached to floors.

(5) Fasten free-standing shelving to walls to
prevent toppling.

(6) Concrete stairways often suffer seismic
damage due to their inhibition of drift between con-
nected floors. This can be avoided by providing a
slip joint at the lower end of each stairway to elii-
nate the bracing effect of the stairway or by tying
stairways to stairway shear walls.

L Redundancy. Redundancy is a highly desirable
characteristic for earthquake-resistant design.
When the primary element or system yields or fails,
the lateral force can be redistributed to a secondary
system to prevent progressive failure.

2-10. Alternatives to the prescribed provi-
sions. Alternatives to some of the seismic
provisions are permitted if they can be properly sub-
stantiated. In some cases, alternative solutions are
mandatory (e.g., rregular buildings and setback
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buildings); in other cases, they are optional (e.g., to
provide a more efficient design or to analyze the
building for the effects of a predicted earthquake
ground motion). The alternatives are generally clas-
sified as dynamic methods and are not covered In
this manual. Using dynamic loading and a computer
analysis, one can more accurately predict how a pro
posed building will act and deform under ground
motions from a specific earthquake. It will be found
that this response may sometimes cause deflections,
joint rotations, and stresses quite different from
those determined from the prescribed static load-
ings. Before proceeding with the equivalent static
force procedure, the designer should make sure that
there are no special conditions that would warrant
or require the use of more rigorous methods.

a. Elastic Analysis For most buildings requiring
an alternative design method, an elastic dynamic
analysis procedure is sufficient to determine load
distribution and member forces for design earth-
quake motion. A response spectrum analysis with
the modes combined by the square-root-of-the-sum-
of-the-squares SRSS) method or by some other ap-
proved method is generally sufficient for an elastic
analysis. A time-history analysis may be used if nec-
essary.

b. Inelastic Analysis. For major buildings, which
require added assurance so that the building can
withstand a major earthquake without collapse or
within a limited range of damage, an inelastic dy-
namic analysis may be used. This usually is a time-
history analysis; however, other approximate proce-
dures that can estimate inelastic effects may be
used.

2-11. Future expansion. When future expan-
ion of a building is contemplated, it is generally
better to plan for horizontal expansions rather than
for vertical growth because there will be greater
freedom in planning the future increment, there will
be less interruption of existing operations when ad-
ditions are made, and the first Increment will not
have to bear a large share of cost of the second incre-
ment. For future vertical expansion, the foundation,
floor/roof system, and the structural frame must be
proportioned for both the initial and future design
loadings, including the seismic forces. For future
horizontal expansion, either a complete structural
separation between the two phases must be pro-
vided, or the first increment must be designed for its
Aare of the loads under both conditions: the first
increment and the expansion. Many buildings that
have been designed for future expansion under past
seismic criteria do not satisfy the present criteria;
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therefore, these buildings must be upgraded and will
incur high seismic strentheni costs.

2-12. Major checkpoints. The process of achiev-
ing an adequate building must start with conceptual
planning and be carried through all phases of the de
sign and construction program. The major check
points include: perform site investigations; coordi-
nate the work of the architect and engineers
(structural, mechanical, and electrical) to establish

the plan, the system, and the materials of constri
tion; establish design criteria for the sped.,
facility; identify and locate primary structural ele"
ments; determine and distribute lateral seismi
forces; prepare design calculations; detail connec-
tions; detail nonstructural parts for damage controd
make clear, complete contract drawings; check shop
drawings; perform quality control inspection; and
maintain surveillance over any changed conditions
during the entire construction period.
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CHAPTER 3
DESIGN CRITERIA

3-1. Purpose and scope. This chapter pre-
scribes the criteria for the seismic design of build-
ings and other structures.

3-2. General. Te seismic design of buildings
and other structures will be In accordance with the
criteria and design standards herein. Tle structural
system or type of construction will admit to a ra-
tional analysis in accordance with established
principles of mechanics. Structures will be designed
for dead, live, snow, wind, and seismic forces. The
dead, live, snow, and wind loads wil be as given in
applicable agency manuals Every building or struc-
ture and every portion thereof will be designed and
constructed to resist stresses produced by lateral
seismic forces in combination with dead and live
loads as provided in this chapter. Materials and de-
tails will conform to the seismic provisions,
applicable guide specifications, and criteria herein.
The provisions of this chapter apply t the structure
as a unit and also to all parts thereof, Including the
structural frame or walls, floor and roof systems, an-
chorages and supports for architectural elements
and mechanical and electrical equipment, and other
elements.

3-3. Seismic design provisions. he seismic
provisions of this manual are based on the
"Recommended Lateral Force Requirements and
Commentary" of the Seismology Committee of the
Structural Engineers Association of California,

Fourth Edition, 19751 (hereafter referred to as the
SEAOC Recommendations). The SEAOC publica-
tion, which includes the Recommendations, the
Commentary, and Appendices, may be used as a ref-
erence for this manual. (Note: The SEAOC
Commentary discusses and explains the provisions
of the SEAOC Recommendations Lateral Force Re-
quirements. In some respects, the Commentary is as
important as the Recommendations. The Commen-
tary, in general, gives the intent of the seismic
provisions; however, it becomes an extension of the
SEAOC Recommendations when supplementing the
seismic provisions with clarifying interpretations.)
The following is a reprinted version of Section 1 of
the SEAOC Recommendations that has been modi-
fied to satisfy the requirements of this manual (see
chap 6 and 7 for references to SEAOC Sections 2, ,
and 4). The modifications consist primarily of (1)
additions and interpretations which extend the pro-
visions to more fully cover areas of lower seismicity,
outside of California, (2) special provisions devel-
oped by the Tri-Services Committee; and (3) 1978
SEAOC Seismology Committee revisions. Modified
portions are noted in italics. The SEAOC paragraph
identification system has been maintained such that
SEAOC Section l(J)2d is equivalent to paragraph
8-3(J)2d in this manual.

1Publahed by the Structural Engineers Assioation of
California. 171 Second Street, San Francisco, California 94105.

SEAOC, SECTION 1*

GENERAL REQUIREMENTS
FOR THE DESIGN AND CONSTRUCTION OF

EARTHQUAKE RESISTIVE STRUCTURES
(Modifications are In Italics)

(A) General.
1. The proper application of these lateral force requirements, both in de-

sign and construction, are intended to provide minimum standards toward
making buildings and other structures earthquake resistive. The provisions of
this Section apply to the structure as a unit and also to all parts thereof, in-

*From the publication iRecommended Lateral Force Requlrements and Commentary" by the Seismology Committee. Structural Engi-
ner Assodatlon of California. Copyright 1976, Structural Engineers Association of California, and reproduced with permission.
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cluding the structural frame or walls, floor and roof systems, and other ele-
ments.

2 Every structure shall be designed and constructed to resist stresses
produced by lateral forces as provided in this Section. Stresses shall be calcu-
lated as the effect of a force applied horizontally at each floor or roof level
above the base. The force shall be assumed to come from any horizontal direc-
tion.

. Where prescribed wind loads produce higher stresses, such loads shall
be used in lieu of the loads resulting from earthquake forces.

4. The effects of vertical accelerations must be considered for structures in
Seismic Zones 3 and 4 (chap 4, para 4-4c(2)).

& Dea4 live, snow, and wind loads will be in accordance with applicable
agency manuals Earthquake loads will be considered in combination with
dead loads and live loads as specified in paragraph 3U2c. Allowable
working stresses specified in agency manuals for ordinary or non-seismic con-
struction will be increased one-third for earthquake loading, provided the re-
quired section or area computed on this basis is not less than that required for
vertical loading, without the one-third increase Working stresses for rein-
forced masonry construction will be as given in chapter 8, Reinforced Ma-
sonry. The one-third increase in stresses does not apply when strength design
or plastic design methods are used

(B) Definitlons.
BASE is the level at which the earthquake motions are considered to be

imparted to the structure or the level at which the structure as a dynamic vi-
brator is supported.

BOX SYSTEM is a structural system without a complete vertical load
carrying space frame. In this sytem, the required lateral forces are resisted by
shear walls or braced frames as hereinafter defined. Refer to chapter 4, para-
graph 4-3c(4.

BRACED FRAME is a truss system or its equivalent which is provided to
resist lateral forces and in which the members are subjected primarily to axial
stresses. Refer to chapter .

DUCTILE MOMENT RESISTING SPACE FRAME is a moment resist-
ing space frame that complies with special requirements given in chapter 7 To
comply with the SEAOC Recommendations, only Type A concrete and steel
frames could be classified as ductile moment resisting space frames, however,
in this manual the definition is extended to include concrete frame Type B for
buildings in Seismic Zone 1.

ESSENTIAL FACILITIES are those structures which must be func-
tional for emergency post earthquake operations.

LATERAL FORCE RESISTING SYSTEM is that part of the structural
system assigned to resist the lateral forces prescribed in paragraph 3-3(D).

MOMENT RESISTING SPACE FRAME is a vertical load carrying
space frame in which the members and joints are capable of resisting forces
primarily by flexure. Classifications are given in chapter 7.

SHEAR WALL is a wall designed t resist lateral forces parallel to the
plane of the wall. Classifications are givedin chapter 6.

SPACE FRAME is a three-dimensional structural system, without bear-
ing walls, composed of interconnected members laterally supported so as to
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function as a complete self-contained unit with or without the aid of horizontal
diaphragms or floor bracing systems.

VERTICAL LOAD CARRYING SPACE FRAME is a space frame de-
signed to carry all vertical loads. Refer to chapter 4, paragraph 4-8c(4).

(C) Symbols and Notations.
The following symbols and notations apply to the provisions of this Sec-

tion:
C = Numerical coefficient as specified in paragraph 8-(D)
Cp Numerical coefficient as specified in paragraph 88(G) and as set

forth in table 8-4.
D = The dimension of the building in feet, in a direction parallel to the

applied forces.
di = Deflection at level i relative to the base, due to applied lateral

forces, I fa, for use in Formula (3-8). 
F1, Fn, Fx = Lateral force applied to level i, n, or x, respectively.

Fp = Lateral forces on a part of the structure and in the
direction under consideration.

Ft - That portion of V considered concentrated at the top of the
structure in addition to Fn.

fi = Distributed portion of a total lateral force at level i for use
in formula (3-8). *

g = Acceleration due to gravity.
hihn hx= Height in feet above the base to level i, n or x.

respectively.
I - Occupancy importance coefficient.

K = Numerical coefficient as set forth in Table 3-3.
Level i = Level of the structure referred to by the subscript i. i = 1

designates the first level above the base.
Level n = That level which is uppermost in the main portion of the

structure.
Level x = That level which is under design consideration. = I

designates the first level above the base.
N = The total number of stories above the base to level n.
S = Numerical coefficient for site-structure resonance.
T = Fundamental elastic period of vibration of the structure in

seconds in the direction under consideration.
T. = Characteristic site period.
V = The total lateral force or shear at the base.
W = The total dead load and applicable portions of other loads.

wi, wx = That portion of W which is located at or is assigned to level
i or x respectively.

Wpx = The weight of the diaphragm and the elements tributary
thereto at level x, including 25 percent of the floor live load
in storage and warehouse occupancies.*

Wp = The weight of a portion of a structure.
Z = Numerical coefficient related to the seismicity of a region.

(D) Minimum Earthquake Forces for Structures.
Except as provided in paragraphs 38-8G) and 3-3(1, every structure shall

be designed and constructed to resist mini'fum total lateral seismic forces as-

01978 SEAOC Revialons.
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sumed to act nonconcurrently in the direction of each of the main axes (chap
4-4c)) of the structure in accordance with the formula

V = ZIKCSW. 43-1)
However, th, productof ZIKCS wil not be less than O.1&

1. The value of Z is dependent upon the seismic zone as specified by fig-
ures 3-1, 3-2, 3-3 and 3-4 in paragraph 3-4 and is determined from table 3-1
below.

Table 3-L Z-Coefflie nt

Seismic Zone 0 1 2 1 3 4
Z-coefficent 0 0 1 316 3/8 34 1 1

2. The value of the coefficient I is dependent on the type occupancy, such
as discussed in paragraph 3-4 and is determined from table 3-2 below:

Table 3-1 I-Coeffilcent

Type of Occupancy I

EHsseniFac uties 1.50
High Rlis Faclites 1.25
All Others 1.00

3 le value of K shall be not less than that set forth in table 3-3.
4. The values of C and S are as indicated hereafter except that theproduct

of CS need not exceed 0.14.
& W Is the total dead load and applicable portions of other loads including

all permanent structural and nonstructural components of a building such as
walls, floors, roofs, and fixed service equipment

a Where partition locations are subject to change, in addition to all
other loads, a uniformly distributed dead load of 20 pounds per square foot of
floor will be applicable.

b. In storage and warehouse occupancies, a minimum of 25 percent of
the floor live load will be applicable.

c. Where the design uniform snow load is 20 psf or less, no part need be
included in the value of "Wn' Where the snow load is greater than 20 psf, an ef-
fective weight of 70 percent of the full snow load wil be included, however,
where the snow load duration warrants, the effective weight of the snow load
may be reduced to 20percent of the full snow load

The value of C shall be determined in accordance with the formula

C.. 1 ~~~~~~~~~~~~~~~~~13-2)'

The value of C need not exceed 0.12.
7. The period T shall be established using the structural properties and

deformational characteristics of resisting elements in a properly substantiated
analysis such as the formula

T-2 2.wA M) ( zt 3-3)0
where the values of fi represent any later force distributed approximately in

*1978 SEAOC Ravdon&
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accordance with the principles of formulas 3-54 (3-4, and (3-7) or any other ra-
tional distribution. The elastic deflections, di, shall be calculated using the ap-
plied lateral forces, fi** (efer to chap 4 para 4-3d.)

In the absence of a period de iation as indicated above, the value of T for
buildings may be determined by the formula

TcMUL O-SA)

or, for buildings in which the lateral force resisting system consists of moment
resisting space frames capable of resisting 100 percent of the required lateral
forces and such system is not enclosed by or adjoined by more rigid elements
tending to prevent the frame from resisting lateral forces, T may be deter-
mined by the formula

T'O.1ON 0-3B)
8. The value of S shall be determined by the following formulas but shall

not beless than 1.0.

T T -0.5 Fri ~~~~2. (4)For T 1.0 or less, S=1.0 + T - 0. T (J

T T r~~~~~~~~~~~ 0-4A)For T greater than 1.0,S=1.2 + 0.6 - 2 0.8 (

T in Formulas 0-4) and 03-4A) shall be established by a properly substan-
tiated analysis but T shall not be taken as less than 0.3 seconds
The range of values of T. may be establishd from properly substantiated ge-
technical data, except that Ts shall cot betaken as less than 0.5 seconds nor
more than 2.6 seconds. T. shall be that value within the range of site periods,
as determined above, thatls nearest to T.
When Ts is not properly established, the value of S shall be 1.5.

EXCEPJ70NM Where T has been established by a properly substantiated
analysis and exceeds 2.5 seconds, the value of S may be determined by as-
suming a value of 2.5 seconds for Ts.

(E) Distribution of Lateral Forces.
1. Regular Structures or Framing Systems. The total lateral force V shall be

distributed over the height of the structure in accordance with the following
formulas:

V-Ft+ ZFl- (-5)
The concentrated force at the top, Ft. shall be determined by the formula

Ft=0.07 TV. 0-6)
Ft need not exceed 0.25V and may be considered as zero where T is 0.7
seconds or less. The remaining portion of the total base shear V shall be
distributed over the height of the structure including level n according to
the formula

Fx V-Ftt wxhx _37)

Aewihi

At each level designated as x, the force F shall be applied over the area of
the building in accordance with the mass distribution on that level.

2. Setbacks. Buildings having setbacks-herein the plan dimension of the
tower in each direction Is at least 75 percent of the corresponding plan dimen-

197 SEAOC Revisions
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sion of the lower part may be considered as uniform buildings without set-
backs, providing other irregularities as defined in this Section do not exist.

3. Irregular Structures or Framing Systems. The distribution of the lateral
forces in structures which have highly irregular shapes, large differences in
lateral resistance or stiffness between adjacent stories or other unusual struc-
tural features shall be determined considering the dynamic characteristics of
the structure.

4. Distribution of Horizontal Shear. Total shear in any horizontal plane
shall be distributed to the various elements of the lateral force resisting sys-
tem in proportion to their rigidities, considering the rigidity of the horizontal
bracing system or diaphragm. Rigid elements that are assumed not to be part
of the lateral force-resisting system may be incorporated into buildings pro-
vided that their effect on the action of the system is considered and provided
for in the design.

5. Horizontal Torsional Moments. Provisions shall be made for the increase
in shear resulting from the horizontal torsion due to an eccentricity between
the center of mass and the center of rigidity. The forces shall not be decreased
due to torsional effects. Where the vertical resisting elements depend on dia-
phragm action for shear distribution at any level, the shear resisting elements
shall be capable of resisting a torsional moment assumed to be equivalent to
the story shear acting with an eccentricity of not less than five percent of the
maximum building dimension at that level.

(F) Overturning.
Every structure shall be designed to resist the overturning effects caused by

the wind forces and related requirements, or the earthquake forces specified in
this Section, whichever governs.

At any level, the incremental changes of the design overturning moment, in
the story under consideration, shall be distributed to the various resisting ele-
ments in the same proportion as the distribution of the shears in the resisting
system. Where other vertical members are provided which are capable of par-
tially resisting the overturning moments, a redistribution may be made to
these members if framing members of sufficient strength and stiffness to
transmit the required loads are provided.

Where a vertical resisting element is discontinuous, the overturning mo-
ment carried by the lowest story of that element shall be carried down as loads
to the foundation.

(0) Lateral Force on Elements of Structures.
Parts or portions of structures and their anchorage to the main structural

system shall be designed for lateral forces in accordance with the formula'

Fp=ZICpWp (3-8)

The distribution of these forces shall be according to the gravity loads pertain-
ing thereto.

1. The values of Cp are set forth in table 3-4. The value of the I coefficient
shall be the value used for the building.

EXCEPTIONS:
a. The value of I for wall panel connectors shall be as given in para-

graph 3-3(J)3d

*1978 SEAOC Revihons
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b. The value of Ifor elements of life safety systems (such as items as-
sociated with exiting and fire protection) shall be 1.6. *

2. For applicable forces on diaphragms and connections for exterior pan-
els, refer to paragraphs 8-8J2d and 8-JJ3d, respectively. 

8. For applicable forces on flexible and flexibly mounted equipment and
machinery (footnote A, table 3-4), refer to chapter 10 (equipment in buildings).

4. For applicable forces on storage racks, refer to chapter 9 (footnote 6, ta-
ble 8-4).

5. For applicable forces on lighting fixtures, piping, stacks, bridge cranes
and monorails, and elevators, refer to chapter 10.

(H) Drift Provisions.
1. Drift. Lateral deflections or drift of a story relative to its adjacent stories

shall not exceed 0.005 times the story height unless it can be demonstrated
that greater drift can be tolerated. The displacement calculated from the appli-
cation of the required lateral forces shall be multiplied by (1.O/K) to obtain the
drift. The ratio (1.0/K) shall not be less than 1.0.

2. Buiding Separations. All portions of structures shall be designed and
constructed to act as an integral unit in resisting horizontal forces unless sepa-
rated structurally by a distance sufficient to avoid contact under deflection
from seismic action or wind forces. Refer to chapter 4, paragraph 4-7.

(I) Alterhate Determination and Distribution of Seismic Forces.
Nothing in these Recommendations shall be deemed to prohibit the submis-

sion of properly substantiated technical data for establishing the lateral de-
sign forces and distribution by dynamic analyses. In such analyses the dy-
namic characteristics of the structure must be considered.

(J) Structural Systems.
1. Ductility Requirements.

a. Force Factor. All buildings designed with a horizontal force factor
K = 0.67 or 0.80 shall have ductile moment resisting space frames. (Some ex-
ceptions are permitted for dual systems with height limitations as specified in
table 3-7.

b. Tall Buildings. Buildings more than one hundred and sixty feet (1601 in
height shall have ductile moment resisting space frames capable of resisting
not less than 25 percent of the required seismic forces for the structure as a
whole.

EXCEPTION: Buildings more than 160 feet in height in Seismic Zone
No. I may have concrete shear walls designed in conformance with
chapter 6, paragraph 6-8a(,A in lieu of a ductile moment resisting space
frame, providing a K value of 1.00 or 1.33 is utilized in design.

c. Concrete Frames. AU concrete space frames required by design to be
part of the lateral force resisting system and all concrete frames located In the
perimeter line of vertical support shall be ductile moment resisting space
frames. (Some exceptions are permitted in Seismic Zones No. I and No. 2 with
height limitations as specified in table 8-7.)

EXCEPTION: Frames in the perimeter line of vertical support of
buildings designed with shear wallsitaking 100 percent of the design
lateral forces need only conform wit aragraph 8-3(J)1d

*1978 SEAOC Revisons
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d. Deformation Compatibility. All framing elements not required by de-
sign to be part of the lateral force resisting system shall be investigated and
shown to be adequate for vertical load carrying capacity and induced moments
due to 3.01K) times the distortions resulting from the required lateral forces.
The rigidity of other elements shall be considered in accordance with para-
graph 3-3(E)4.

e. Adjoining Rigid Elements. Moment resisting space frames and ductile
moment resisting space frames may be enclosed by or adjoined by more rigid
elements which would tend to prevent the space frame from resisting lateral
forces where it can be shown that the action or failure of the more rigid ele-
ments will not impair the vertical and lateral load resisting ability of the space
frame.

f. Frame Ductility. The necessary ductility for a ductile moment resisting
space frame shall be provided by a structural steel or reinforced concrete frame
complying with the requirements of chapter 7 and conforming to the classifica-
tions of tables 3-3 and 3-7.

g. Braced Frames. All members in braced frames shall be designed for
1.25 times the force determined in accordance with paragraph 3.WA Connec-
tions shall be designed to develop the full capacity of the members or shall be
based on the above forces without the one-third increase usually permitted for
stresses resulting from earthquake forces. Members of braced frames shall
comply with the requirements of chapter 6 paragraph 6-7. and conform to the
classifications of tables 3-Sand 3-7.

h. Shear Walls. Reinforced concrete shear walls for all structures shall
conforn to the requirements of chapter 6, paragraph 6-3 and conform to the
classifications of tables 3-3 and 3-7. Reinforced masonry shear walls shall con-
form to the requirements of chapter & For the calculation of shear stress only,
all masonry shear walls shall be designed to resist 1.5 times the force deter-
mined in accordance with paragraph 3-3(D).

i. Framing Below Base. In buildings where K = 0.67 or 0.80, the special
ductility requirements of SEAOC sections 2 (chapter 7, paragraph 7-3a/lD, 3
(chapter 6, paragraph 6-al)), and 4 (chapter 7, paragraph 7-5a(1)A as appropri-
ate, shall apply to all structural elements below the base which are required to
transmit to the foundation the forces resulting from lateral loads.

2. Design Requirements.
a. Minor Alterations. Minor structural alterations may be made in exist-

ing buildings and other structures, but the resistance to lateral forces shall be
not less than that before such alterations were made unless the building as al-
tered meets the requirements of these Recommendations.

b. Reinforced Masonry or Concrete. AU elements within the structure
which are of masonry or concrete shall be reinforced so as to qualify as rein-
forced masonry or concrete under the provisions of chapters 6 and 8.

EXCEPTION: See table 8-5 for Seismic Zone 1 exceptions.
c. Combined Vertical and Horizontal Forces. In computing the effect of

seismic forces in combination with vertical loads, gravity load stresses in-
duced in members by dead load plus design live load, except roof live load,
shall be considered. Consideration should also be given to minimum gravity
loads acting in combination with lateral forces.

d. Diaphragms.* Floor and roof diaphragms and collectors shall be de-
signed to resist the seismic forces determied in accordance with the following
formula.

'1978 SEAOC Revisions
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Fpx= X= WPX ^ftWp (3-9)

The force Fp determined from Formula 8-9 need not exceed 0.80 Z I wpx.
When the diaphragm is required to transfer seismic forces from the verti-

cal resisting elements above the diaphragm to other vertical resisting elements
below the diaphragm due to offsets in the placement of the elements or to
changes in the stiffness in the vertical elements these forces shall be added to
those determined from Formula 8-9.

However, in no case shall the seismic force on the diaphragm be less than
determined by the following formula-

Fp,=0.14ZIwpx V-9A)

Diaphragms supporting concrete or masonry walls shall have continuous
ties between diaphragm chords to distribute the anchorage forces specified in
paragraph S-8JAa into the diaphragm. Added chords may be used to form
sub-diaphragms to transmit the anchorage forces to the main cross ties. Dia-
phragm deformations shall be considered in the design of the supported walls.
(See paragraph -3J,3b for special anchorage requirements of wood dia-
phragms.)

3. Special Requirements.
a. Anchorage of Concrete or Masonry Walls. Concrete or masonry walls

shall be anchored to all floors and roofs which provide lateral support for the
wall. The anchorage shall provide a positive direct connection between the
walls and floor or roof construction capable of resisting the horizontal forces
specified in these Recommendations or a minimum force of 200 pounds per lin-
eal foot of wall, whichever is greater. Walls shall be designed to resist bending
between anchors where the anchor spacing exceeds four feet. In masonry walls
of hollow units or cavity walls, anchors shall be embedded in a reinforced
grouted structural element of the wall. (See paragraph -3JJ2d for the
requirements for developing anchorage forces in diaphragms. See paragraph
3-3WJ3b for special anchorage requirements for wood diaphragms.)

b. Wood Diaphragms Used to Support Concrete or Masonry Walls.
Where wood diaphragms are used to laterally support concrete or masonry
walls the anchorage shall conform to paragraph 3-34J)3a. In Seismic Zones No.
2 No. 3, and No. 4 anchorage shall not be accomplished by use of toe nails, or
nails subjected to withdrawal; nor shall wood ledgers be used in cross grain
bending. The continuous ties required by paragraph 3-3(J)2d shall be in addi-
tion to the diaphragm sheathing, the diaphragm sheathing shall not be used to
splice these ties.

c. Pile Caps and Caissons. Individual pile caps and caissons of every
building or structure shall be interconnected by ties, each of which can carry
by tension and compression a minimum horizontal force equal to 10 percent of
the larger column loading, unless it can be demonstrated that equivalent re-
straint can be provided by other approved methods. See chapter 4, paragraph
4-4 for supplemental requirements.

d. Exterior Element. * Precast orprefabricated nonbearing, nonshear wall
panels or similar elements which are attached to or enclose the exterior, shal

$1978 SEAOC Revislons
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be designed to resist the forces per Form ula 3-8 and shall accommodate move-
ments of the structure resulting from lateral forces or temperature changes.
Concrete panels or other similar elements shall be supported by means of cast-
in-place concrete or by mechanical connections and fasteners in accordance
with the followingprovisions:

(1) Connections and panel joints shall allow for a relative movement be-
tween stories of not less than two times story drift caused by wind or (31KW
times the calculated elastic story displacement caused by required seismic
forces, or 12-inch, whichever is greater.

(2) Connections to permit movement in the plane of the panel for story
drift shall be properly designed sliding connections using slotted or oversize
holes or may be connections which permit movement by bending of steel or
other connections providing equivalent sliding and ductility capacity.

(3) Bodies of connections, such as structural steel angles, rods, plates
etc., shall have sufficient ductility and rotation capacity so as to preclude frac-
ture of the concrete or brittle failures at or near welds. The body of the connec-
tion shall be designed for 1.33 times the force determined by Formula 3-a

(4) Elements connecting the body to the panels or the structure, such as
bolts, inserts welds dowels, etc., shall be designed for 4 times the forces deter-
mined by Formula 3-8 Elements of connections embedded in concrete shall be
attached to, or hooked around reinforcing stee4 or otherwise terminated so as
to effectively transfer forces to the reinforcing steeL

(5) The value ofthe coefficientlin Formula 3-8 shall be 1.0for the entire
connection (Le., the value need not be greater than 1.0 even if the I-coefficient
of the building is greater than 1.0).

e. Connections. For additional requirements for connections refer to chap-
ter 4, paragraph 4-6
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Table 3-3. EortzontaZ Force Factor "1K" for Buildings or Other Structures*

(Refer to Table 3-7 (Paragraph 3-6) for Smarly Tables

for K VaZuee for Each Seismic Zone.)

Basic
System Category Type or Arrangement of Resisting Elements Value of Kb

Buildings with a ductile moment resisting space frame designed n

I accordance with the following criteria: The ductile moment resisting 0.67sace frame shall have the capacity to resist the total required later-
^1force.

Frams Buildings with moment resisting space frames designed n accordance

2 with the following criteria: The moment resisting space frame shallhave the capacity to resist the total required lateral force and shall 100
comply with the height limitations and frame specifications of Table
3-7.

Buildings with a dual bracing system consisting of a moment resisting
space frame and shear wells or braced frames designed in accordance
with the following criteria:

a. The moment resisting space frames shall comply with the speci-
fications and height limitations of Table 3-7.

Dul b. The frame and shear walls or braced frames shall resist theDual 3 total lateral force n accordance with their relative rigidi- 0.80Systems ties considering the nteraction of the shear walls and frames.

c. The shear walls or braced frames acting independently of the
moment resisting space frame shell resist the total required
lateral force.

d. The moent resisting space frme shall have the capacity to re-
sist not less then 25 percent of the required lateral force.

Buildings with a vertical load carrying space frame and shear valls or
braced frames designed n accordance with the following criteria:

a. In Seismic Zones 2. 3 and 4 the height of the building shall
not exceed 160 feet.c

b. The shear wall or braced frame shall have the capacity to re-
4 sist the total required lateral force end shell comly with 1.00

the height limitations and wall specifications of Table 3-7.
c. The nteraction between the vertical load carrying space frame

and the shear walls or braced frames shall not result in the
loss of the vertical load carrying capacity of the space frame

IOOS in the cse of damage occurring to a portion of the lateral
walls force resisting system (see paragraph 3-3(J)ld).

or Building with wood frame construction and plywood shear walls designed
Braced in ccordance with the following criteria:**Frames

a. The height of the building shall not exceed 40 feet or three
5 stories. 1.00

b. The plywood shear walls shell have the capacity to resist
the total required lateral force.

C. Masonry veneers shell not be used. (If veneers are used.
K - 133.)

Buildings with a box system designed n accordance with the following
criteria:

S. In Seismic Zones 2 3, and 4 the height of the building a
6 shell not exceed 160 eet 133

b. The shear walls or braced frames shall have the capacity
to resist the total lateral force and shell comply with the
height linitations and wall specifications of Table 3-7.

Elevated Elevated tanks plus full contents, on four or more cross-braced legs
Tanks and not supported by a building. The braced frame requirements of par- d

and Inverted 7 graph 3-3(J)Ig and the torsional requirements of paragraph 3-3(E)S 2 *5
Pendulums shall apply. The product of CS will not be less then 0.12. Refer to
e___________ u ___urs___ Chapter 11 for nverted pendulurs.d

Structures Structures other than buildings, elevated tanks, or minor tructures
Other 8 set forth in Table 34. The product of CS will not be less than 0.10. 2.0
Then Also, refer to Chapter l1.d

Buildings

*Modification of SEAOC Table IA.

**In 1980 SEAOC modified this category to include "buildings--with stud wall framing
and uing horizontal diaphragms and vertical shear pls for the lateral force system."
Therefore, vells in accordance with either paragrapif4-5a or paragraph 6-5b of Chapter 6
vill be in compliance vith item 5b above.

P, .
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Footnotes to Table 3-3

a If K - 1.33 in one direction, it will be 1.33 in both directions. Other K-values may vary In the
two directions

. Generally, one value of K applies to the total height of the building; however, f there Is a
change in K along the height of the building (eg, due to change In framing systemA the K value
used at any level must be equal to or greater than the K value at the next level above (Also,
refer to provisions of paragraphs 3-3lBJ and2forsetback and irregular buildings.)

c In Seismic Zone I concrete shear wals may exceed the 160-foot Imit (paragraph 3- 11b.
d Categones 7 and & Refer to chapter 11 for alternate methods and additional requirements

Pedestal type elevated water tanks will not be permitted hi Seismic Zone Nos. and A In Seis-
mic Zone Nos. I and2 K will beSOforpedestal type elevated tanks.

Table 3-4 Horizontal Force Factor 'C,
forElements of StrUctures

Horizontal
Direction of Value of

Part or Portion of Structure Force Cp

Cantilever Elements: Normal to
a. Parapets flt

1 surfaces 0.8
b. Portion of chimneys or stacks that Any direction

protrude above rigid supports

All other elements such as walls, parti-
2 tions and simlar elements-see also

paragraph 3-3(J)3d. Also Includes
masonry or concrete fences over 6 feet high.

3 Exterior and Interior ornamentations and Any directlon 0.8
appendages. See chapter 9, paragraph 9-S

When connected to, part of. or housed
within a building
a. Penthouses
b. Anchorage and supports for tanks

4 plus contents Any direction 3.4
c. Rigidly braced chimneys and stacks'
d. Storage racks plus contents
e. Suspended ceilingss
f. All equipment or machinery

Connections for prefabricated structural
5 elements other than walls, with force Any direction OS

applied at center of gravity of assembly

Based on the 1978 SEAOC Revisions

Footnotes to Table 3-4

1. Cp for elements laterally self supported only at ground level may be 2 of
the valse shown. Also refer to chapters 10 and 11 (eg, equipment,
paragraph 10-C stacks, paragraph 104--ind tanks, chapterlIU

2 Chimneys or stacks that extend more thip 5 Lfeet above a rigid attachment
to the structure will be designed in accoidance with chapter 1L paragraph
10-8ca Also, refer to chapterl10forguyed stacks and stacks on ground

S For flexibl and flexibly mounted equipment and machinery the
appropriate values of C, shall be determined with consideration given to
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both the dynamic properties of de equipment and machinery and to the
building or structure in which it is paced but *hall not be Jess than the
fisted values. The desig of th equipment and machinery and their
anchorage is an ntegral part of the design nd specification of such
equipment and machinery (refer to hapter OJ.
ForEssential Facilites and ift safety system eitc when th value of the I-
coefficient is equal to 1.5perparagraph 9-GOJRA the design and detaiing of
equipment which must remain In place and be functional fblowing s major
earthquake lconsider th effect ofdrift

t Theforceshlberesisted bypositiveanchorage andnotby ction.
o W for storage racks shall be the weight of th racks phs contents. 1

value of C, for racks over two storage support levels in height shall be 024
for the levels below te top two evels In fieu of th tabuted vaues, steel
storage racks may be designed n accordance with chapter 4 paragraph
048.

£ Ceing weight shall Include fight fixtures and other equipment or
partitions which ae latraly supported by the cslM For purposes of
determining the lateral force, a celing weight of not less than 4pounds per
square footshalf be sed

3-4. Seismic zone maps. The seismic zones
required for the determatonof the coeffcient Z in
table 3-1, paragraph 3-S(D)1, are given on maps
shown on figures 3-1, 3-2, and 3-3 for the contigu-
ous states, Alaska, and Hawai, respectively. The
map on figure 3-4 shows the seismic zones for Cali-
fornia and Nevada in greater detafl and scale. Seis
mic zones for specific areas are tabulated in tables
3-5 and 3-6 for localities within the United States
and outside the United States, respectively. The
boundary lines are approximate, and in the event of
any conflict or uncertainty regarding the applicable
zone of any particular site, the higher zone will be
used.

3-5. Types of occupancy. General descriptions
and examples of various occupancy types are given
for the determination of the value of the coefficient I
in table 3-2, paragraph 3-8(D)2.

a Esentia acities = .5 Tese are struc-
tures housing critical facilities which are necessary
for post-disaster recovery and require continuous
operation during and after an earthquake. This in-
cludes facilities where damage from an earthquake
may cause significant loss of strategic and general
communications and disaster response capability.
Typical exampl are:
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Table 3-4 Seismic Zone Tabutadom U.S.

ALABAMA
Anniston ...................... 2
Maxwell AFB .................. 0
Birmingham .................. 2
Huntsville .................. 1
Mobile ............. ..... 0
Montgomery ................... 
Fort Rucker .................. 0 

ALASKA
Adak Island .................. 4
Anchorage .................. 4
Barrow .................. 1 
Bethel .................. 2
Elelson AFB .................. 3
Elmendorff AFB ................ 4
Fairbanks .................. 3
Fort Greely .................. 3
Juneau ............. ..... S
Kodiak Island .................. 4
Nome ....................... I

ARIZONA
Fort Huachuca ................. 2
Luke AFB .................. 1
Navajo AD .................. 1
Phoenix .................. 1
Tucson ...................... 1
Williams AFB ................... 1
Yuma .................. 4

ARKANSAS
Blytheville AFB ................ 3
Fort Chaffee .................. 1
Little Rock AFB ................ 1

CALIFORNIA
Castle AFB .................. 
China Lake .................. 4
Edwards AFB .................. 4
HamiltonAFB .............. ... 4
Hunter-Ligget MR .............. 4
Long Beach ............- 4
Los Angeles ..... ...... 4
March AFB ..... ...... 4
Mare Island ..... ...... 4
Norton AFB ........... 4
Oaland ........... 4
Fort Ord ............ 4
Camp Pendleton .......... . 4
Port Hueneme ....... .... 4
Sacramento ..... ...... 3
San Diego ............ 4
San Francisco ........... 4
Sharpe AD ..... ...... S
Sierra AD ............ , 8 3
Travis AFB ..... ...... 4
Vandenberg AFB ........... 4

COLORADO
USAF Academy ................ 1
Fort Carson ................. 1
Denver .................. 1
FltzslmonsAMC ................ 1
Peterson Field .................. 1
Pueblo .................. 1

CONNECTICUT
Hartford ................. 2
New Haven ................. 2
New London ................. 2

DELAWARE
Dover AFB ................. I
Wilnington ................. 2

FLORIDA
Eglin AFB ................. 0
HomestedAFB ................ 0 
Jacksonville ................. 
Key West ............... 0.. 
MacDiII AFB ................. 0
Miami ... 0
Orlando ... 0
PatrickAFB ................ 0 
Pensacola ................ 0 ,
Tampa ........ 0........ 
Tyndal AFB ................ 0 

GEORGIA
Albany ................. 1
Atlanta ................ 2
FortBeanning ............... .
Fort Gordon ................ 2
Hunter AFB ................ 2
Macon ................. 1
Robbins AFB ................. 1
Savannah ................ 2
Fort Stewart ................ 1

HAWAII
Barbers Point, Oahu ............. 2
Hickam AFB ................ 2
Hilo. Hawaii ................ 4
Honolulu, Oahu ................. 2
Kaneohe Bay, Oahu .............. 2
Lihuo, lauai ................ I
Schofield Barracks .............. 2
WheelerAFB ................ 2

IDAHO
Idaho Fals ................ 2
Mountain Home AFB ............ 1

ILLINOIS
Chanute AFB ................... 1
Chicago ....................... 1
Great Lakes TC .......... 1....... 
Joliet AAP ..................... 1
O'Hare IAP ..................... 1
Rock Island Arsna .. ............ I
Savanna AD ............. 1...... 
ScottAFB ..................... 2

INDIANA
Fort Ben Harrison ............... 2
Fort Wayne .................... 2
GrissomAFB ................... I
Indiana P .......... ........ 2

IOWA
Burlington ..................... 1 
Cedar Rapids ................... 1
Des Moines ............... 1..... 
Sioux City .................. 1... 

KANSAS
Kansas AAP ............. 1...... 
Fort Leavenworth ......... ...... 2
McConnell AFB ................. 1
Fort Riley ...................... 2
Sunflower AAP .................. 2

KENTUCKY
FortCampbell.
Lexington .....................
Louisville ....................... 1
Fort Knox ..................... 2

LOUISIANA
Fort Polk ...................... 1
Lake Charles ................... 1
Loutana AAP ................. 1
New Orleans .................... 1
Shreveport ..................... 1

MAINE
Bangor ........................ 1
Brunswick ..................... 2
LoringAFB ............... 1..... 
Winter Harbor .................. 1

AYLAND
Aberdeen Proving Ground ..... 1... 
AndreswsAFB ........... ....... 1
Annapolis ...................... 1
Baltinor ...................... 1
Fort Detrics ................... 1
Edgewood Areend ........ 1...... 
Fort Meade ............... 1..... 
Fort Ritchie ............... 1..... 

*Refer to table 3-1 for prescribed values of Z.
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Table 3-& Seismic Zone Tabuatioi, U.S.*

MASSACHUSETTS
Boston .......... ....... 2
Fort Devens ................. 2
L G. Hanscom Field ............. 2
OtisAFB .............. ... 2
Westover AFB ................. 2

MICHIGAN
Detroit .................. 1
Kincheloe AFB ................. 1
K. 1. Sawyer AFB ............... I
Selfridge AFB .................. 1
Wurtsnith AFB ................ I

MINNESOTA
Duluth .................. 1
Minneapolis .................. 1
Osceola AFB ................. 1

MISSISSIPPI
Biloxi ......... ........ 0
Columbus AFB ................. 1
Jackson ................. I
Keesler AFB ................. 0
Meridan ................. I

MISSOURI
Kansas City ................. 2
Lake City AAP ................. 2
Fort Leonard Wood .............. 1
St. Louis ................. 2
Richards Gebaur AFB ........... 2
Whitemn AFB ................. I

MONTANA
Helena .......... ....... S
Malmstrom AFB ................ 2
Missoula ................. 2

NEBRASKA
Cornhusker AAP ................ I
Lincoln .................... 1 
Offutt AFB ................. I

NEVADA
Carson City ................. 
Fallon ..................... 4
Hawthorne ................. 4
Las Vegas ................. 2

NEWHAMPSHIRE
Hanover ................. 2
Pease AFB ................. 2
Portsmouth ................. 2

NEW JERSEY
Atlantic City ................. I
Bayonne ............ ..... 2
Picatinny Arsenal ............... 2
McGuire AFB .................. 1
Fort Monmouth ................. 2

*Refer to table 3-1 for prescribed values of Z.

NEW YORK
Albany ................. 2
Buffalo ................. 2
Fort Drum ................. 2
Griffin AFB ................. 2
New York .............. ... 2
Niagara Falls IAP ............... 2
Plattsburg AFB ................ 2
Syracuse .................. 1
West Point Military

Reservation ................. 2
Watervliet ................. 2

NORTH CAROLINA
Fort Bragg ................. I
Charlotte ................. 2
Camp Lejeune ................. I
Greensboro ................. 2
Pope AFB ................. I
Seymour Johnson ............... 1
Sunny Point Ocean

Terminal ................. 1

NORTHDAKOTA
Bismarck ................. I
Fargo .................. 1
Grand Forks AFB ............... 1
Minot AFB ................. 1

OHIO
Cincinnati ................. 
Cleveland .................... 1
Columbus ................... 1
Ravenna AAP .................. 1
Wright-Patterson AFB ........... 1

OKLAHOMA
Enid!Vance AFB ................ 1
Fort Sill ............... ... 2
Tinker AFB .................. 2
Tulsa .... 1

OREGON
Coos Bay .................. 1
Eugene .................. I
Portland ................... 1
Umatilla AD ................... 1

PENNSYLVANIA
Carlisle Barracks ................ 1
Harrisburg ................... 1
Letterkenny AD ................ 1
Philadelphia .................. 2
Pittsburgh ................... 1
Scranton .................. 2

NEWMEXICO
Albuquerque ........ ..... .. 2
Cannon AFB ....... ..... I
HoUomon AFB .......... 2
White Sands MR ...... .... 2

RHODEISLA ND
Newport ................... 2
Providence .................. 2

SOUTH CAROLINA
Charleston .................. S
Fort Jackson .................. 2
Parris Island .................. 8 
ShawAFB .................. 2

SOUTHDAKOTA
Eilsworth AFB ................. 1
Pierre .......... ........ I
Sioux Falls .................. I

TENNESSEE
Chattanooga .................. 2
Holston AAP .................. 2
Memphis .................. S
Milan AAP .................. 3
Nashville .................. 1

TEXAS
Austin/Bergatrom AFB .......... 0
Corpus Christ .................. 
Dallas .................. 0
Dyess AFB .................. 0
Ellington AFB .................. 0
El Paso ............ 2
Galveston ............... 0 
Fort Hood ...... ...... 0
Houston ............. 0
Lone Star AAP .......... 1.. 
Reese AF8 ...... 1...... 
San Antonio ............ 0
Fort Worth ............ 0
Wichita Falls ................... 0-

UTAH
Dugway P.G ............... 2
HiUAFB ......... ...... S
Salt Lake City ............... S
Tooele Army Depot .............. S

VERMONT
AU ............... 2

VIRGINIA
Fort Belvoir ............... I
Fort Eustis ............. .. I
Fort Meyer ............... I
Norfolk ............... 1l
Petersburg/Fort Lee ............. I
Quantico ............... 1l
Radford AAP ............... 2
Richmond ............... 1 
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Table 3- Seismic Zone Tabulation, US.*

WASHINGTON
Bremerton ................... 3
FairchildAFB .................. 1
FortLOWIs ................... 3
McChordAFB .................. 3
Seattl ............. ..... 3
Wall Wal .................. I
Ykim .................. 1

WASHINGTON. DC.
Boiling AFB ........... 1
Fort McNair ................... 1
Walter Reed AMC .......... 1

WEST VIRGINIA
All............................

WISCONSIN
All ........ 1

WYOMING
Cheyenne ....... 1
Yellowstone ....... 3

*Refer to table 3-1 fog prescribed values of .
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Tabk$-&i smcZone Tabuaon Outside U.S.4

AFRICA:

Algeria.
Alger ............... 3
Oran ............... S

Botswana.
Gaberone ............. 0.. 

Camaroon:
Yaounde .......... 0..... 

Egypt.
Cairo ............... 2
Port Sald ............... 2

Ethopia
Addis Ababa ............... 2
Asmara . ............... S

Kenya
Nairobi ......... ...... 2

Liberia.
Monrovia ................ 1

Lfbya:
Tripoli ............... 2
Wheelus AFB.2 ............ 2

Malawi
Blantyre ...... 3...... 
Lilongwe ............ 3
Zomba ............ 3 

Morocco;
Casablanca. ............ 2
Port Lyautcy ............ 1
Rabat ..... ....... 2
Tangier ............ 8

Mozambiq ue:
Maputo ............ 1 

Niger
Niamey ..... ....... 0

Nigeria:
Ibadan ..... ....... 0
Kaduna ............. 0 
Lagos .... ....... 0

Senega
Dakar ..... ....... 0

Somali Repubic:
Modadiscio ....... ..... 0

South Afiica
Capetown ...... ...... S
Durban ............. 1
Johannesburg ............ 2
Natal ............ 1 
Pretoria ............ 2

Southern Rhodesia:
Salisbury ...... ...... S

Swaziland
Mbabane ............ 1 

Tanzani
Dar es Salam ............ 1
Zanzibar .............. 1

Tunisia.
Tunis ............. 3

Uganda:
Kampala ........... 2

Zaire:
Bukavu . .......... 
Lubumbashi ........... 2
Kinshasa ........... 0 

Zambia:
Lusaka .... ....... 2

ASIA:

Afghanistan:
Kabul ..... 4

Burma:
Mandalay ........... 3 
Rangoon .. 3

China.
Canton .... 2
Naning ........ 2
Peking ........ 4
Shanghai .. 2
Tihwa .... 4
Ttingtao .. 3 

Cyprs:
Nicosa .... 3

India.
Bombay .... 3 
Cacutta .... 2
NewDelhi .. ..... S
Madras .... 0

Indonesia:
Bandung ....... 4
Jakarta . . 4
Medan . . ..... S
Surabaya .... 4

Iran:
Isfahan .... S
Shiraz .... ... 
Tabriz ........ . 4
Tehran .... S

Iraq:
Bagdad . . S
Basra . .

Israek
Haifa . . S
Jerusalem ....... 3
Tel Aviv .... 3

Japan:
Itazuke AFB ... 3 
Misawa AF8 ... S
Okinawa .... 4
Osaka/Kobe .... 4
Tokyo .. ..... 4b
Wakkanai ....... 
Yokohama ... .... 4b
Yokota .. ..... 4b

Korea:
All ....... . 0

Kuwait ................ I
Laos:

Vientiane .............. 1
Lebanon.

Beirut ..... ........ 3
Malaysia:

Kuala Lumpur ............. I
Nepa:

Kathmandu ........... .. 4
Pakistan:

Karachi ............. 4
Peshawar ........ ..... 4

SaudiArabia:
Al Batin ....... ...... 0
Dhahran ............. I
Jedda ..... ........ 2
Jubal .............. 1
Khamis Mushayf .............. 1
Riyadh ...... ....... 0

Singapore:
AU .................. 1

Syria:
Aleppo ...... ....... 3
Damascus ............. 3 

Taiwan
All .............. 4

Thailand
Bangkok ............. 0
Udorn ..... ........ 0

Trkey:
Ankara .............. . 2
Istanbul ....... ...... 4
Karamursel ............. 3 

Vietnam:
Saigon ............. 0

Yemen:
Sanaa ..... ........ 2

ATLANTIC OCEANAREA:

Ascension Island ............. U
Azores ..... ........ 2
Bermuda ............. 1

CARIBBEANSEA:

'Bahama Islands .............. 1
Cuba ...... ........ 2

Dominican Republic:
Santo Domingo .............. 3 

Hait
Port au Prince .............. 3 

Jamaica:
Kingston .............. 3 

LeewardIslands ................ 3 
Puerto Rico .......... .... 3
7Trinidad .............. 3

1efer to table S-1 for prescribed values for seismic zone noe. 0 through 4. U denotes unknown seismicity.
hUse cal code If t Is more severe than mic zone no. 4.
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Table 3-6 Seismic Zone Tabulation, Outside U.S.'

CENTRAL AMERICA:

Canaoln ............ 2 
Costa Rica:

San Jon ...... ...... 3
ElSalvador

San Salvador ....... ..... 4
Guatemal ............ 4
Honduras

Tegucigalpa ............ 3
Mexicai

Ciudad Juares ............ 2
Guadalajara ......... ... 3
Mexico City ......... ... 3
Tjuana ............ 3

Nicaragua:
Managua ............ 4

Panama:
Colon ............. J
Panama .............. 3

EUROPE:

Belgium
Antwerp ............. 1
Brussels ............ 2

England-
London ..... ....... 2
Liverpool ............. 1

Francw
Lyon ............. 1
Marseill ............ 3
Nice .............. 3
Paris ............ 0

Germany:
Berlin ..... ........ 0
Bonn ............. 2
Bremen ..... ....... 0
Dusseldorf ............ I
Frankfurt ...... ...... 2
Hamburg ...... 0...... 
Munich ................. 1
Stuttgart ...... ...... 2

Greece:
Athens ............ 3
Thessaloniki ............ 4

Iceland
Keflavick ...... ...... 3
Reykjavik ............ 4
Thorshofn ....... ..... U

reland:
Belfast ..... ....... 0
Dublin ................ 0

Italy:
Aviano AFB ................ 3
Brindisi ................ O 0
Genoa .......... ...... 3
Milan ................. 2
Naples ................. 3
Rome .................. .. 2
Sicily ................. 4
Trieste ................ 9 3
Turin ................. 2

Nethertanda
A1J ................... . .. .

Norway:
Oslo ................. 2

Portugal
Lisbon ................. 4
Opporto .................. 3

Scotland:
Aberdeen ................ U
Edinburgh ................. 1
Edzel .................
Gluagow/Renfrew .............. 1
Londonderry ................ 1
Prestwick ................ U
Shetland Islands .............. U
Stornoway ................ U
Thurso ...................... I

Spain:
Barcelona ................ 2
Bilbao .................. 2
Madrid ................. 0
Rota .................. 1
San Pablo ................ U
Seville ................. 2
Zaragoza ................ U

Sweden:
Goteborg ................ 2
Stockhohn ................ 1

Switzerland
Bern .................. 2
Geneva ................ 1
Zurich ................. 2

NORTH AMERICA:

Canada:
Argentia NAS ................ 2
Churhill Man ................ 0 
Cold Lake, Alb ................ 1
Edmonton, Alb ................ 1
E. Harmon AFB ............... 2
Fort Williams, Out ............. 0 
Frobisher, N.W. Ter ............ O
Goose Airport ................ 0 
Ottawa. Ont ................ 2
St. John's Nfld ................ 2
Toronto, Out . .. ...... I
Winnipeg, Manf,;7 .......... 1

Greenland ..... .. 1

SOUTHAMERICA.

Argentina:
Buenos Aires ................. 0

Braci,
All ........ ......... 0

Bolivia.
La Paz ................. 9 3
Santa Crux ................. 1

Chile:
Santiago ................. 4

Colombia:
Bogota .................. 4

Ecuador
Quito .................. 4
Guayaquil ................. 3

Paraguay:
Asuncion ................. 0 

Perw.
Lia.4
Li ................... 4
Piura .................. 4

Uruguay:
Montevideo ................. 0 

Venezuela
Maracaibo ................. 2
Caracas .................. 4

PACIFIC OCEANAREA

Australia:

Canberra ...................
Melbourne .................. 1
Perth ...................... 1
Sydney .................. 1

Caroline Islands:
Koror, Paulau Is ............... 2
Ponape ................. 0

Sura .................. 3
Johnson Island ................. 1
Mariana slands:

Guam ............ ...... 3
Kwajalein ................. I
Saipan .................. 3
Tinian ............ ...... 3

MarshalIslands ................ 1
Midway Island ................. U
New Guinea.

Port Moresby ................. 3
New Zealand

Auckland ................. 3
Wellington ................. 4

Philippine Islands:
Cebu .......... 4.......4
Manila .................. 4
Baguio ................. S 3

Samoa ................. S 3
Volcano Islands ................ U
Wake Island ................. . 0

"Refer to table 3-1 for prescrlbed values for seismic zone nos. O through 4. U denotes unknown aesmicity.
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(1) Hospitals.
(2) Fire stations, rescue stations, and garages

for emergency vehicles.
(3) Power stations and other utilities required

as emergency facilities.
(4) Mission-essential and primary communica-

tion or data-handling facilities.
(5) Facilities involved in operational missile

control, launch, tracking or other critical defense
capabilities.

(6) Facilities involved in handling, processing,
or storing sensitive munitions, nuclear weaponry or
processes, gas and petroleum fuels, and chemical or
biological contaminants.

b. High Risk I =1.25. Those structures are
where primary occupancy is for assembly of a large
number of people, where the primary use is for
people that are confined (e.g., prison), or where serv-
Ices are provided to a large area or large number of
other buildings. Buildings in this category may suf-
fer damage in a large earthquake but are recognized
as warranting a higher level of safety than the aver-
age building. Typical examples are:

(1) Buildings whose primary occupancy is that
of an auditorium, a recreation facility, diring hall, or
commissary which is subject to occupancy by more
than 300 persons.

(2) Confinement facilities (e.g., prisons).
(3) Central utility (power, heat, water, sewage)

that are not covered by paragraph a(3) above, and
that serve large areas.

(4) Buildings having high value equipment
when justification provided by using agency.

c. AU Others I = 1.0). This includes all struc-
tures not covered by the above categories.

3-6. Summary of approved structural sys-
tems. The minimum values of the base shear
coefficient K are set forth in table 3-3. Table 3-7 is
provided as a guide to interpret table 3-3 and to
summarize the approved structural systems for
Seismic Zone 1, Seismic Zone 2, and Seismic Zones 3
and 4. The designations used for frame and wall
specifications are described below. Note that the
wall specifications include braced frames.

TM 5-809-10
NAVFAC P-355

AFM 88-3, Chap. 13

a. Frame Specifications. (The design require-
ments are covered in chapter 7.)

(1) Concrete Frame Type A. Ductile moment re-
sisting space frame.

(2) Concrete Frame Type B. Moment resisting
space frame. Qualifies as a ductile moment resisting
space frame in Seismic Zone 1 only. May be used as
a lateral force resisting system in Seismic Zone 2
with certain height and K limits.

(3) Concrete Frame Type C. Moment resisting
space frame. May be used as a lateral force resisting
system in Seismic Zone 1 only for buildings less
than 80 feet in height.

(4) Concrete Frame Type D. Vertical load carry-
ing space frame in accordance with ACI 3 18-77.

(5) Steel Frame Type A. Ductile moment resist-
ing space frame.

(6) Steel Frame Type B. Moment resisting
space frame. May be used as a lateral force resisting
system subject to certain height and K limits.

(7) Steel Frame Type C Vertical load carrying
space frame in accordance with AISC Specifica-
tions. May be used as a moment resisting space
frame lateral force resisting system in Seismic Zone
1 only for buildings less than 80 feet in height.

(8) Wood frames.
b. Wail Specifications (Includes Braced Frames).

(The design requirements are covered in chapter 6.)
(1) Shear Wall Type A. Concrete (or steel) shear

walls with vertical boundary elements. --
(2) Shear Wall Type B. Concrete shear walls.
(3) Braced frames. Steel or concrete.
(4) Masonry. Masonry shear wall. When ma-

sonry shear walls are used as part of a dual system
in Seismic Zones 2, 3 or 4, vertical boundary mem-
bers are required.

(5) Wood, Wood stud shear walls with plywood
or diagonal wood sheathing.** (Vote: Stud wall
shear walls other than those listed above limited to
2 stories with K 0 1.33. See Stud Walls below.)

(6) Stud walls. Wood or metal stud walls that
comply with chapter 6, paragraphs 6-5 and 6-6.
**See footnote on the bottom of table 3-3 for 1980
SEAOC modification.

..
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Tabe 3-7. Aroved Bui14ilg Syatmm

Height ZoneI Zone2 Zones 3 and 4
Basic Value Mii t Nln lnI MfitnA Minim= gtnft inimA

l feet) Requi red Required Required Required Required Required
Frme Wall Fran wall Frame wall

Concrete I Concrete A Concrete A
a 0.67 None or or or

Frs Steel A Steel A Steel A
(100: o .1 '\ /\ 
Force n
Frafe). 160No

Categories 1.00 Skel stsl Appicable

and 2 Concrete C Cocr te I
80 or \ or / \ / \

Steel C Skl / Steel 

Concrete Shear Mall A Concrete A Shear Mall A Concrete A Shear Mail A
Nora or or rw or or or

Steel A Braced FraIe Stell A Braced Fram Steel A Braced Frae

Dual Shear Wall A Concrete Shear VWal A
System 0.80 160 or or or Not Not

(Frame 25. Steel I Braced Fru Steel I Braced Fram Applicable Applicable
Wall 100S).
Category 3 Concrete I Shear Mall * Concrete Concrete A

80 or or or Masonry2 or Masonry'
Steel a Masonry Steel I Steel A

Concrete D3 Shear Will I
Nore or or Not pereitted over 160 feet

Steel C Braced Fraw

Concrete 03 Shear Wall A Concrete D3 Shear Mall A
160 Not Not or or or or

1.00 Applicable Applicable Steel C Braced Frame Steel C Braced Fre
Shear Concrete 0 Concrete Ds Shear Well I Concrete 0 Shear Wll B

Malls or 80 or Masonry or or or or
Braced Sk l C Steel C Isonry Steel C Masonry
Frams

(1001 of Ibd** lbod*
Force In 3 Stortes

Wall). Shear Wall I

Categories. Nne or Not petuitted over 160 feet
4. 5. and 6 Braced Frae

\.33 Not i Shear all A / Shear Wall A
1.33 160 Not or / o

Applicable Braced Fre Braced Frs

Shear Wall B Shear Wall 3

so Masonry or or
Masonry Masonry

2 Stories Stud VWls S \ Stud Malls"

lCategorfes as defined In Table 3-3.
2Vertical boundary elments In accordance with Chapter 6. paregraph 64.
'Frames required for gravity loads only. See reuirwent s of Table 3-3. category 4.
*iood fram or stud wall construction not In arcor4tnce with requiremnt b of Table 3-3, category S.

**See footnote on the bottom of Table 3-3 for 198b SUAOC mdifi ations.
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CHAPTER 4
DESIGN PROCEDURE

4-1. Purpose and scope. This chapter describes
a general procedure for the design of buildings to re-
sist the earthquake lateral forces specified in chap-
ter 8, Design Criteria. Procedures for designing and
detailing of structural elements of buildings are
more fully discussed in chapters through 8. De-
tailed examples for specific types of structures are
included in the appendices of this manuaL

4-2. Preliminary design. The preliminary seis-
mic design of the structure requires site investiga
tions, conceptual planning with the architect and
the mechanical and electrical engineer, selection of a
workable structural system, and selection of trial
member sizes.

a. Site Investigation. Before proceeding with the
design of a building, the engineer must know the
seismic zone, the foundation conditions and haz-
ards, and the tsunami generation characteristics (re-
fer to chap 2, para 2-7). In some cases geotechnical
data may be required to determine Ts (refer to para
4-3).

b. Conceptual Planning. Collaboration of the ar-
chitect and structural, mechanical, and electrical en-
gineers is required to establish a concept for the
overall building system, to select the materials of
construction, and to reconcile the conflicting re-
quirements of architectural structural mechanical,
and electrical sytems (refer to chap 2, para 2-8).

c- Selection of Structural System. Before select-
ing the structural system, a familiarity with the
techniques and application of seismic design is es
sential (refer to chap 2, para 2-9). Also the possibil-
ity of future expansion must be considered (chap 2,
para 2-11). The limitations on structural systems
(chap S. para S-3 and 3-6) and the special require-
ments for ductility, tall buildings, concrete frames,
braced frames, shear walls, concrete and masonry,
diaphragms, foundations, and exterior elements
(chap 3, paragraph 3-S(J)) must be reviewed.

d Selection of Trial Structural Member Size.
Some of the structural members of a building are
governed by the gravity load design and are not af-
fected by the seismic loads. For these members the
sizes will have been determined by the usual require-
ments for dead and live loads. For the sizes of mem-
bers that form the seismic lateral forceresisting
system, a trial and error process is required because
of the magnitude of the design forces depends on the

period of the building while the period depends on
the weight and stiffess of the building. First, trial
design lateral forces are obtained from approximate
caculation of period and weight. Next, trial member
sizes are selected using approxmate calculations
and judgment. Finally, a preliminary analysis is
made, and the trial aizes are confirmed or revised. If
there are substantial revisions to the Initial trial
sizes, the response characteristics of the structure
will change and a reanalysis may be required.
4-3. Minimum arthquake forces. Every
building will be designed for lateral seismic forces,
acting nonconcurrently In the direction of each main
axis of the structure (also, see para 4-4c). As a mini.
mum, the total forces (V = ZIKCSW) specified in
chap S. para S-3(D), will be applied to the structure
as a whole and will be distributed to the various
levels of the structure as prescribed in chapter S,
paragraph 3-8(E). The coefficients Z. I, K, C, and 8
depend on the seismic zone of the site, occupancy
importance, type of lateral resisting system (e.g.,
shear wall or space frame), the peiod of the struc-
ture, and the site characteristics, respectively. W is
the effective weight of the structure. These, as well
as other symbols, are defined in chapter 3. para-
graph S-8(C), and methods for determining their
values are discussed below. Some basic terminology
is defined in chapter S. paragraph 8-3(B). A graphic
representation of seismic forces is shown in figure
4-1. The product of ZIKCS can result in an upper
Emit of 0.28 for buildings in zones of the highest
seismicity. The lower limit for ZIKCS in any of the
four seismic zones is 0.015.

a. Z-Factor. The factor Z. which represents the
seismicity of the site, is equal to or less than 1.0. It
is obtained from chapter S. table 8-1, and is depend-
ent on the seismic zone maps of chapter 8, para-
graph 3-4. For California and Nevada use the map
in figure 3-4; the other Contiguous States, Alaska
and Hawaii use the maps in figures 3-1, 8-2. and
8-8, respectively. Seismic zones for specific areas
within the United States are tabulated in table 8-6.
For localities outside the United States refer to the
tabulation in figure 8-6. The boundary lines are ap-
proximate. If there is some uncertainty about the lo-
cat$6i or the seismicity of the site, the larger num-
ber*ill be used.

b. I-Factor. The value of the factor I is deter-
mined from the occupancy classifications of chapter

.1, -', .. .
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8, table 3-2. The valesrange from 1.0 to 1.6. Exam-
ples of vanous occupancy clasifcations are given
in chapter 3, paragraph 3-6. When there is some
doubt regarding the proper value of the I-factor, the
decision will be made by the Design Agent.

c. K-Factor. Te fictor K represents the type of
structural system and the nature of the structure
itself. The value of K, which is obtained from chap.
ter S, table 8-8, varies from 0.67 to 1.83 for build-
lugs and from 2.0 to 2.6 for structures other than
buildings.. Buildings that are considered to posss
considerable inelastic deformation bility and/or
have inherent redundancy are assigned the lower K
values. Buildings that tend to be more brittle and
lack redundancy are assigned the higher K-values;
Damping, to a certain extent, is also considered in
the K-value. Whereas buildings generally have a
multiplicity of nonatructural and onomued
resisting elements that effectively increase the re-
sistance of the structure, structures other than
buildings generally do not have such elements or
have low dampin c eteristics and are assigned
larger K-values. A sumary of approved structural
systems for each of the seismic zones is provided in
table 8-7 of chapter S. Although the selection of the
K-factdr is generally a simple process, for some
buildings it may be complicated by unusal com-
binations of materials, height limitations, ductility
reuiremets, and other special requirements. In
the f wowing paragraphs sveral of the parameters
that influence the Kfactor are dicused as a guide
to selecting the proper value.

(1) Seismic zone. The requirements for the K-
values vary slightly for the different seismic zones.
In Zone 1, there are fewer redrictions on buings
over 160 feet In height. In Zones 1 and 2 there are
fewer requ ts on ductility for frames.

(2) Height of buding. Some approved struc-
tural systems are restricted by height limitations.
Buildings over 160 feet in height must be ductile
momenteisting space frames (K = 0.67) or dual
systems (K = 0.80); however, some exceptions are
allowed for Zone 1. Some space frames that do not
satisfy special ductility requirements are limited to
80 feet; reinforced masonry walls are limited to 80
feet in height; and wood buildings are limited to
three stories or 40 feet in height.

(8) Combinations of K-values. If K = 1.33 
used in one direction of a building, it must be used In
both directions. For other values of K, it need not be
the same in both direction. Generally the K-value is
constant throughout the height of the building.
When a change of structural system does occur (e.g.,
steel frame on concrete shear walls, wood box y-
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tem on a concrete box system), the K-value at the
lower level cannot be less than the K-value of the
system above, and special consideration must be
given to the transition from one system to the other
to assure sufficient load transfer capacity and in-
elastic deformation capability

(4) Vertical loadcarrying system. If the build
ing does not have a complete vertical load-carrying
space frame. it b considered to be a box system and
has K = 1.83. In other words, if shear walls are
used to support the vertical floor loads, K = 1.83.
IR order to use a value of K less than 1.33, the build-
ing must have a vertical load-carrying space frame
that is designed to carry essentially all vertical
loads. However, some exceptions are acceptable
such as a minor load-bearing wall that does not sig-
nificantly influence the lateral force caistics
of the building. Also, basement walls below the level
considered as the base of the building may be bear-
ing for loads originating at such level. The test for
qualifying as a vertical loadcarrying space frame is
to determine whether or not the building can sup
port the vertical loads if the shear walls are seri-
ously damaged during an earthquake.

(5) Laterd force-resisting system The lateral
forceresisting system for A building is either (a) a
box stem (table 8-S, Categories 6 and 6, shear
wallsorbraced frames without a complete vertical
load-carrying space frame), (b) a shear wall (or
braced frame) stem with a n ic retig
vr l load-carrying space frame (table 8-8, Cate-
gory 4), (c) a dud system consisting of both shear
walls (or brace fame) and a lateral force-resisting
frame (table 3-8, Category 3), or d) a pace frame
systm-ductle moment-reisting or moment-re-
slating types (table 3-3, Categories 1 and 2). These
lateral force-resisting systems are reclassified in
table 3-7 to account for the various rireets in
the different seismic zones.

(6) Buildings not classified above. Any building
designed within the scope of this manual must qual-
ify under one of the clications defined in chap-
ter S. table 8-3, or table 3-7, or discussed above. If
there is doubt as to which of two classifications gov-
ern the cue with the larger value of K should be
used If the building does not appear to be covered
by any of the classifications, the structural system
must be modified to conform to one of the classifica-
tions or justification must be made that the struc-
tural system will satisy the intent of the seismic de-

gprovisions.
? ;d T, Building Period The period of vibration, T.

-is the time required for one complete cycle of oscilla
tion of an elastic structure in a particular mode of vi-
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bration. The building period referred to in the seis-
mic provisions of this manual is the fundamental
period of vibration for each of the two translational
directions of the building (e.g., transverse and longi-
tudinal directions). In the fundamental mode the
building acts as a cantilever essentially fixed at the
base, swaying first to one side and then to the other
side. The calculation of the period, in accordance
with formula 3-3, requires a knowledge of the lat-
eral stiffness characteristics of building (i.e., force
versus displacement relationship). The fundamental
period of vibration, T, in each direction of the pro.
posed structure, is required in order to determine
the C-factor, the S-factor, and in some cases to deter-
mine the force distribution, Ft, at the top of the
structure. Because the above factors must be known
during the initial design stage when the sizes and
details of all the structural elements may not have
been established (thus the stiffness characteristics
are not know), an estimated initial value of T must
be used. The estimated value need only be accurate
enough to establish reasonable values for C, S. and
Ft. The product of CS will be underestimated if the
assumed building period is too long, therefore, the
estimated period should be on the short side in order
to be conservative. At the final design stage, the
period must be checked so that C and S values used
in the design are either conservative or consistent
with the final period. The sensitivity of these factors
is discussed in more detail in paragraphs 4-3e, £
andg and 4-4a.

(1) Period for low-rise buildings. For most low-
rise buildings (eg., up to 5 stories with periods
shorter than 0.5 second) the calculation of T is not
necessary because C and CS are at their maximum
values and Ft is equal to zero. Refer to paragraph
4-3g for additional discussion.

(2) Initial period estimation As an initial step
to estimate the building period in the fundamental
mode, the use of Formulas 3-3A and 3-3B, as speci-
fied in chapter 3. paragraph 3-3(D), is acceptable.
These empirical formulas rely only on basic building
dimensions and the number of stories so that they
are easy to apply at the initial stage of the design.
The resulting period is generally shorter than the ac-
tual period, thus it can be safely used for the final
design. However, if feasible, a more accurate esti-
mate of the period should be made after the member
sizes of the lateral-resisting system have been deter-
mined.

(3) Alternate method for initial period estima-
tion. For some structures, member sizes are con-
trolled by limits on lateral drift (e.g., chap 3, para
3-3(H)I) rather than by stress limitations. This con-

dition generally applies to structural steel mome
resisting space frames systems with nonpart.,_
pating walls and partitions. If the drift limitations
are used as a basis for determining a predesign ini-
tial period estimation, precautions must be ob-
served in order not to underestimate the total lateral
force by estimating a period that is longer than the
actual period. After member sizes have been deter-
mined the period must be recalculated as described
in paragraph (4). The limiting values of paragraph
(5) will be applicable (refer to Design Example A-3).

(4) Period calculation. When formula 3-3 is em-
ployed (see fig 4-2), the most difficult part involves
the determination of the story displacements (d;).
The story weights (wi) are relatively simple to esti-
mate, and almost any set of story forces fif) can be
used (e.g., the inverted triangular distribution such
as obtained from formula 3-7 usually gives good re-
sults), but the corresponding lateral story displace-
ments must be calculated. The basic objective must
be a realistic approach to calculating the actual
period-rather than the manipulation of the struc-
ture model so as to obtain a "calculated" but non-
valid long period and low base shear. For simple
structures, the lateral displacements required for
Formula 3-3 can be obtained by hand calculation
methods. For complex structures, the calculatie
for lateral displacements become lengthy so that
aid of a computer program is normally used. o 
programs that calculate member forces and frame
deflections include a calculation of periods and mode
shapes. Calculations must take into account all ele-
ments which stiffen the structure even if they are
not part of the seismic-resisting system. (Note: The
assumption for the stiffer structure is used to calcu-
late the period for determination of lateral force
coefficients, but it is unconservative to use this as-
sumed stiffness to satisfy drift requirements as dis-
cussed in para 4-5c.)

(5) Maximum value for period Using an un-
realistically long period for calculating the coeffi-
cients C and S can result in an unconservative de-
sign. Because of the many parameters involved, it is
difficult to establish a hard and fast rule for what
the maximum value of the period T should be. The
SEAOC Commentary advises a thorough examina-
tion if the calculated T exceeds 0.5N2/3, where N is
the number of stories above the base to level n. This
formula results in periods ranging from 0.8 second
for a two-story building to 3.0 seconds for a 15-story
building. Even these periods are felt by some engi-
neers to be too long. The Applied Technology Cr
cil (ATC), in publication ATC 3-06, "Tentative
visions for the Development of Seismic Regulattezd'
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for Buildings,"* recommends that the minimum de-
sign lateral force be based on a maximum value of T
equal to 1.4 CRbn314 where ha is the height of the
building in feet and CR = 0.025 for concrete frames
and CR - 0.035 for steel frames. For steel frame
buildings, the formula results in periods ranging
from 0.5 second for a two-story (24 feet) building to
2.4 seconds for a 15-story (180 feet) building. In this
manual the ATC formula is suggested as a limiting
value for the period T for use in calculating the C
and S coefficients, in lieu of more current data. How-
ever, the designer must not use the above formulas
for estimating the period used in design. The for-
mulas are only to be used to check against the value
of T calculated from the actual building properties.

e. C-Factor. The factor C is dependent on the
period T of the structure as shown in formula 3-2,
chapter 3. The maximum value of C is 0.12, which
occurs for all values of T less than 0.31 second. At
the other extreme range of the scale, where T is 5.0
seconds (say a 50-story building), the value of C is
0.03 or about one-fourth of the maximum value.
Table 4-1 below gives some values for C as a func-
tion of T. This table may be used in lieu of formula
3-2. The factor S is also dependent on the period T.
Refer to paragraph 4-3g for combined CS factors.

f. S-Factor and T. The factor S is dependent on
the ratio of building period (T to characteristic site
period (Tj) as shown in formulas 3-4 and 3-4A,
chapter 3. The value of S may vary from 1.0 to 1.5.
The maximum value occurs when T = T.. To use
less than the maximum S, values for both T and T.
must be substantiated. For guidelines for determin-
ing T. refer to paragraph 4-3d above. In order to de-
termine a value for Ts, a geotechnical investigation
may be necessary (for guidelines for determining

'Publlbhed as National Bureau of Standards Special Pubi-
cation 510, U.S. Government Printing Office. Washington,
D.C. 20402. (Stock No. 003-003-01939-9, Price $6.75)

Ts, refer to "SEAOC Standard No. 1, Determin
of the Characteristic Site Period, T,," Appe
B of the SEAOC Recommendations). Howei
for most low-rise buildings (e.g., T < 0.3 second),
where the difference between the minimum and
maximum effective S value is only 5 percent. the
maximum value i used and Ts need not be deter
mined (refer to para 4-3g). For taller buildings,
where Ts can affect the base shear coefficient by as
much as 50 percent, it may be worthwhile to have a
geotechnical investigation made. On some sites the
values of Ta may be obvious without a detailed In-
vestigation. For example, if the building is to be
located on a firm site, Ts will be 0.5 second. A firm
site is defined as a site where bedrock is within 10
feet or where there is very dense granular soils. At
the other end of the scale, where there may be over
500 feet of dense sand or over 300 feet of consoli-
dated clay, T, may be about 2.5 seconds. When a
geotechnical investigation is made, Ts might not
always be presented as a simple value, but might be
represented by a reasonable range of values. When
this occurs, the building period must be compared
with the range of Ts values to obtain the highest
value for S.

(1) Example for Ts given as a range of values. If
Ts is given to be in the range of 1.0 second to ' 
seconds, then:

(a) For a building with a period shorter w_
1.0 second, use a Ts value of 1.0 second.

(b) For a building with a period longer than
1.5 seconds, use a Ts value of 1.5 seconds.

(c) For a building with a period within the
range of 1.0 to 1.5 seconds, TIT, will be taken to
equal 1.0 and S will equal 1.5.

(2) Table for S-factor. Table 4-2 below gives
some values of S as a function of TITs. This table can
be used in lieu of formulas 3-4 and 3-4A. Refer to
paragraph 4-3g, below, for CS factors combined.

t

Table 4-L. C - 1/151T (3-2)[ T | <0.S . 1 0.40 1 0.50 | 0.75 | 1.00 1 .25 | I.50 | 2.00 3.00 I
C | 0.120 | 0.105 | 0.094 | 0.077 | 0.067 | 0.060 | 0.054 | 0.047 | 0.038 | 0.030 |

1 the ATC publication, the 1.4 coefficient l applicable to the modal analysis procedure (ATC Se. 5. and a cefficlent of 1.2 Ia
recommended for the equivalent lateral force procedure (ATC Se 4.2.).

Table 4-2 S as a Function of TIT,

TIT. 0.12 j 0.20 J 030 j 0.40 0.60 10.80 1 1.20 1.60 2.00 1>2.29 1
.. I. Ad .,: I. __A I. . _ I - I,, I I Ii _ I

S I 1.11 I 1.18 I 1.26 I 1.32 1.42 . 1.48 1.50 I 1.49 I 1.40 I 1.20 1 1'
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13) Tand Ts limitations for the calculation of S.
(a) If the period of the building Is shorter than

0.3 second, use T = 0.3 second.
0) T. will range from .6 second to 2.5

seconds.
(c) If T is longer than 2.5 seconds and T. is un-

known, use Ts. 2.5 seconds.
g. Combined CS Factors. The product of C and S

factors describes the general relationship of base
shear coefficients to building period of vibration Z,
I, and K are independent of T). CS ranges from a
maximum of 0.140 for short period buildings to a
value of 0.027 for a building with a period of 6 sec-
onds (such as for a 60-story building). Table 4-3
gives some values of CS as a function of building pe-
riod f1) and site characteristic period (T.}. Figure
4-8 illustrates the relationship of CS to T graphi-
cally, showing the maximum and minimum CS
values. Note that for some building periods, CS is
not very sensitive to a variation in To.

h Weight. W, the total dead load and applicable
portions of other loads, represents the total mass of
the building. It includes the weight of the structural
slabs, beams, columns, and walls as well as non-
structural components such as partitions, ceilings,
floor topping, roofing, fireproofing material and
fixed electrical and mechanical equipment. When
partition locations are subject to change, a uniform
distributed dead load of 20 pounds per square foot
of floor space is used. Miscellan items such as
ducts, typical piping, awl conduits can be covered
by an additional 1 or 2 pounds per square foot. In
storage areas, 25 percent of the design live load shall
be ncluded in the seismic weight W. In areas of
heavy snow loads, some or all of the design snow
load must be included (refer to chap , para
3-3(D)5c). At the initial stage of design, the esti-
mated weights of the structural members will be
used. After the final sizes of structural members are
selected, the actual weights must be compared with
the estimated weights. In addition to determining
the overall weight W. the designer must determine
tributary weights at each floor for both vertical and
horizontal distribution. Therefore, the calculations
for W must be done in an orderly manner so that
tributary weights as well as the overall weights can
be accounted for.

(1) Vertical distribution For vertical distribu-
tion, the weight "we" that contributes to story level
"x" is calculated separately for each floor (refer to
chap , para 3-8(E)). This generally includes the
weight of the complete floor system, plus one-half
the weight of the story walls and columns above the
floor level and one-half of the weight of the story
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walls and columns below the floor level. If partitions
are laterally supported top and bottom, their weight
is divided between the two floor levels; however, if
the partitions are free standing, the total weight is
included with the supporting floor level.

(2) Horizontal distribution. The horizontal dis-
tribution of weight at each floor level is required in
order to calculate the center of mass (chap 3, para
3-3(E)5) and the diaphragm forces (chap 3. par
3-8(3)2d). The weight of the diaphragm and the ele-
ments tributary thereto (designated wp. in formula
3-9) include the floor system, tributary weights of
walls and partitions, and other elements attached to
the diaphragm. The weights of the shear walls (and
items attached thereto) that act in the same direc-
tion under onsieration for the diaphragm, need
not be included in the weight of the diaphragm un-
less there is vertical discontinuity such that redistri-
bution of the shear wall weight to other shear walls
Is required. The horizontal distribution generally
consists of a combination of uniform and concen-
trated weights along the length of the floor plus con-
centrated weights tributary to the shear walls at the
shear walls (see fig 4-4).

(3) Summation. The sum of the horizontal die-
tribution weight (in each direction of motion) will be
equal to the story weight, and the sum of the story
weights equal the total weight W of the building, ex-
cept that the bottom half of the first story generally
distributes itself directly to the base and is not
necessarily included in the weight W (fig 4-2).

4-4. Distribution of forces. The total lateral
force Is distributed throughout the building In a
manner that simulates the behavior of the building
during an earthquake.

a. Story Forces. The distribution of the lateral
force vertically along the height of the building is
determined by formula 3-7 (fig 4-1) except for those
buildings that are considered irregular. A sample
format for determining story forces is shown in
table 4-4. The procedure given is based on the as-
suznption of a uniform building and is aimed at a
reasonable evaluation of the relative maximum
story shear (e.g., column (9) In table 4-4) envelope
that will occur.

(1) Regular buildings with T < 0.7 second
When the period of the building is less than 0.7 ec-
ond, Ft will be equal to zero. Then formula 3-7, the
vertical distribution equation, will reduce to the fol-

P0wing.

I,-h-
FX=1i) (4-1)
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Tabie 4-3. CS as a Function of T and T8

T T <'0.3 0.5 0.75 1.00 1.25 g.50 .0 3.00 4.00 5.00 6.00

0.5 .140 .140 .110 .080 .060 .054 .047 .039 .033 .030 .027

0.75 .140 .136 .116 .098 .082 .065 .047 .039 .033 .030 .027

1.00 .140 .130 .113 .100 .089 .077 .057 .039 .033 .030 .027

1.25 .140 .124 .109 .099 .090 .080 .065 .039 .033 .030 .027

1.50 .140 .120 .106 .096 .089 .081 .069 .046 .033 .030 .027

1.75 .140 .117 .103 .094 .088 .080 .070 .052 .033 .030 .027

2.00 .137 .115 .100 .092 .086 .079 .071 .055 .040 .030 .027

2.50 .133 .111 .097 .088 .083 .077 .070 .057 .046 .036 .027

Unknown .140 .140 .116 .100 .090 .081 .071 .057 .046 .036 .027

FOOTNOTES TO TABLE 4-3

(1) If T i shorter MantiS seconds. This category covers most shear wall buildings up to four stories and frame structures up to two
or three stories. When T is less than 0.3, the product of CS ranges from 0.133 to 0.140. Unless T. is Iknown to be longer than 1.75 seconds.
useCS - 0.14.

(a) At this period range, C equals 0.12.
(6) The effective value of 8 ranges from 1.11 to 1.17. There is only a 5 percent difference between maximum and minimum. The

minimum value of TIT, equals 0.3. equals 0.12; thus, from table 4-2, the minimum B equals 1.11. The maximum value of CS is 0.14
and C is equal to 0.12; thus, the maximum value of S equals 0.1410.1 equals 1.17.

(c Some low rise moment resistant steel space frames may have calculated periods greater than 0.3 second. If the longer periods
are substantiated, a smaller value for CS may be justified. Refer to paragraphs 4-3d(4). 15) for period calculations and limiting values.

(2) If T is about (45 second This category generally covers shear wall buildings In the order of seven stories with a 50-foot base di-
mension or 10 stories with a 100-foot base dimension and frame structures up to five stories. CS ranges from 0.111 to 0.140. If T, Is un-

nown or if the building Is located on a relatively firm site, use CS equal to 0.14. It if appears that T. may be somewhat greater than 1.0
second. it may be worthwhile to substantiate a value for T. in order to use a value of CS less than 0. 14.

(3) If T is between (15 second and 1.0 second In this period range the values of CS are quite sensitive to period variations, ranging
from 0.14 to 0.08 (fig 4-4). The value of S will range from 1.2 to 1.5. depending oh the various combinations of T and T.. The value of C
will range from 0.094 to 0.067 itable 4-1).

(4) If T is 1.0 to 1.5 seconds Unless it can be substantiated that the building is located on a firm site (e.g., T. less than 06T), the CS
value wift be within about 10 percent of the maximum values shown in table 4-3.

(5) If Tl s 20 to 4Oeconds. In this buildingperiod range, the difference between a firm site and a soft site can affect CS by a factor
of 1 .5; therefore, the costs of substantiating the value of T. may be justified.

(6) If Ti gater man 5 seconds. When the building period is longer than 5.7 seconds, S equals 1.0 and T. has no effect on the value
of CS.
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Tab 4-4 Force distibution

j~UJ45UICOMING Q JTOeV i . W 10,40 Jcps
tMJAGCTlON LtONGtruNAL (s.}) T & S ec.

Z a.-L0 T. 1f0 Kg 0 c 0 ,07 5 jA 1S ZrIcJ 0076

VZZ KC W * 7T %Ft0.7rv z 0x056 VocY<tVy< I', o,1 Wh

(2)(4) Ea) (a () it V CO)4Cs)

- h Alh & J V AOTM OTM FstIFS'UYSL . F. S ~ 14rh W 14fitgf MIrs XRp-rr iCPF WWI
1) Ct) (A) (4) (6 () (7) (8) (e) C ) (l) (u)

I F, c44

4RoOf 6.7 10 9 2637 0.t26 170
___ . it Jo /0 214 16(d o 2

7 57.0 1460 670 68 206 15 t66

a 46.o 140 I 70S16 o174 15O cost
_ - 4.7 _ 4330 4q7 45%4 tS
£ 54.6 : O460 76CM 0.14 t06

4 30.6 1460- 46114 o. 65 4 4 .0
_ .7 -oe6! 7ZjFO

S 22.2 1460- S241C 0.060 410

C7to _ _60 t4706 0.0o! 46

2 1 060 4e,42' 0.00 749t7776 0 e u

* fo FutOA vFOMA~T1O 0VJU0*N1N OENT, Wf, X LUE /DWY tic UCG0C
Av t 6 4I'A (44 x 6 (..) DWJUN t I A NE C CEt6O. JCE PARtA6APN 4- AS ( ) .

r!O The story force F is distributed horizontally at
level x in proportion to its mass distribution at that
level (refer to para 4-3h(2) and fig 4-4).

(2) Regular building with >0.7 second When
the period of the building is greater than 0.7 second,
a lateral force Ft. as determined by formula 3-6, is
applied to the top level of the structure, usually the
roof. Ft will vary from 6 percent (T = 0.7 second)
to 25 percent (3.6 seconds) of the lateral force V.
The remaining portion of the force (V - Ft) is distrib-
uted throughout the height of the structure in
accordance with formula 3-7. The total applied force
at the top level of the structure will be Ft + F,
where Fn is the value of F obtained from formula
8-7 for the top level "n" (see fig 4-1).

(3) Additional comments on F,. The rationale
for Ft is based on the following assumption: For
buildings with periods greater than 0.7 second (e.g.,
tall and/or flexible structures), the fundamental
mode shape may depart from the straight-line as-
sumption (formula 4-1) and the effects of higher
modes of vibration may become more significant. To
account for this, a greater portion of the lateral force
is assigned to the top of the structure by use of Ft
from formula 3-6. This additional force is intended
to increase the shear force and the equivalent story

acceleration at the upper stories; however, in some
cases the strict application of Ft may result in exces-
sive forces for roof diaphragms and excessive
overturning moments at foundations. To lessen
these effects for diaphragms, chapter 3, paragraph
3-3(J)2d, places a limit of 0.30ZIvwp on the required
diaphragm force; and for overturning moments at
foundations, the SEAOC Commentary suggests
that Ft may be neglected. A better approximation of
the force distribution may be made by using the
principles of dynamics which include the significant
modes of vibration (see para (4) below).

(4) Irregular and setback buildings. For irregu-
lar structures or framing systems (chap 3, para
3-3(EP3) or for setback buildings (chap 3, para
3-3(E)2), the lateral force cannot be distributed in
accordance with the arbitrary rules for uniform
buildings that are contained in formulas 3-6 and
3-7. but must be distributed by a rational procedure
that takes into account the stiffness properties of
the lateral force resisting system, the mass distribu-
tion, and the principles of dynamics. Refer to
gEAOC Recommendations, appendix C, for pro-
posed provisions on setback buildings. Conditions
of irregularity that require special design proce-
dures include the following-
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(a) Buildings with irregular configuration in
plan or in the vertical dimension (eg., I,, U-, and T-
plan and setback buildings).

(h Buildings with abrupt changes in lateral
resistance within any level or between adjacent lev-
els (e.g., discontinuity of shear walls or columns).

(ci Buildings with abrupt changes in lateral
stiffness within any level or between adjacent levels
(eg., large change in size of shear walls or column
piers).

(dl Unusual or novel structural features.
b. Overturning. The overturning effects are deter-

mined by applying the story forces obtained from
formulas 3-6 and 3-7 as illustrated in table 4-4 and
figure 4-1. The structure must resist these forces in
accordance with chapter 3, paragraph 3-3(F). In
moment-resistant frame structures, the overturning
is resisted by a combination of coupled axial column
forces and bending moments in the column. In shear
wall buildings, the overturning moments are re-
sisted by bending in the shear walls. When shear
walls are linked together by beams, axial forces are
transmitted to the shear walls. The distribution
between the resisting axial overturning forces and
bending moments are dependent on the relative
stiffnesses of horizontal and vertical structural
elements. Accurate determination of the resisting
forces can be complex; therefore, approximate
methods are generally used. One method may be
used for calculating the axial forces and another
method may be used for calculating bending mo-
ments and shears to assure that the structural
elements are not underdesigned. The forces for the
columns and shear walls must be transmitted to the
foundations. In zones of high seismicity, the appli-
cation of the design forces create an apparent over-
turning instability condition that is difficult to rec-
oncile with observations in past earthquakes. The
SEAOC Commentary suggests supplemental crite-
ria for determining overturning to the foundations
(also refer to para 4-4a(3) and 4-8).

c. Direction of Force
(1) Horizontal forces. In general, the horizontal

design earthquake forces are applied nonconcur-
rently in the direction of each of the main axes of the
structure (chap 3, para 3-3(D)). Howev~er, in some
cases a more severe condition may occur when the
force is applied at a horizontal direction not parallel
to the main axes. For some elements of a building,
the effects of concurrent motion about both princi-
pal axes should be investigated.

(a) Buildings. An independent design about
each of the principal axes will generally provide
adequate resistance for forces applied in any direc-

tion. Special consideration must be made at outsi
comers and re-entrant corners for the vulnerable Ad
fects of concurrent motions about both principal
axes. An approved procedure for investigating the
effects of concurrent motion on the vulnerable ele-
ments is to combine the seismic forces acting in the
direction on one axis with 0.3 times the force effects
resulting from the seismic forces acting in the
direction perpendicular to the first axis.

(b Structures other than buildings. For strumc-
tures circular in plan, such as tanks, towers, and
stacks, the design should be equally resistant in all
directions. For four-legged structures substantially
square in plan, seventy percent 70%) of the pre-
scribed forces should be applied concurrently in the
directions of the two principal axes, especially for
purposes of designing for overturning effects on col-
umns and foundations.

(2) Vertical forces. Vertical components of
ground motion are not usually calculated but con-
sidered to be accounted for in the difference between
the vertical load capacity and actual vertical loads
and in special provisions using reduced dead loads.
Such provisions include the 0.9 factor for dead load
in chapter 6. formula 6-2, and chapter 7, formula
7-2, for considering the minimum gravity loads
(chap 3, pars 3-3(J)2c). These reduced loads apply f
axial compression due to gravity in concrete c
umns and walls when subjected to seismic bendiig-
moments and uplift forces and to beam bending
moments due to gravity when combined with
seismic bending moments in the opposite direction
(Le., bending moment reversal).

(a) Horizontal elements. In Seismic Zones 3
and 4, special considerations must be given to the ef-
fects of vertical accelerations on horizontal pre-
stressed elements (especially those with draped pre-
stressing) and horizontal cantilevers (chap 3, para
3-3(A)4). An approved procedure for investigating
the effects of vertical accelerations for the horizon-
tal prestressed elements is to rely on only fifty per-
cent (50%) of the dead load as a minimum gravity
load when applying the lateral forces. Horizontal
cantilever elements should be checked for the capa-
city of the elements to resist a net upward force of
twenty percent (20%) of the dead load.

(b Hold-downs. In Seismic Zones 3 and 4, the
design of hold-downs to resist bending moments and
uplift forces will use a maximum of 0.9 of the dead
load for gravity resistance.
Ad Path of Forces. All of the inertia forces origi-

naIting from the masses on and off the structr
must be transmitted from their source to the base
the structure (see fig 4-5 and 4-6).
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(1) Forces normal to the plane of a wall must be
transferred either vertically to the floors above and
below or horizontally to frames or shear walls. These
forces will be governed by formula 3-8.

(2) Diaphragms acting as horizontal beams
must transfer inertia forces to the frames andlor
shear walls. These forces will be governed by formu-
las -9 and 3-9A. In some cases, the diaphragm
forces are transferred to a collector member (or a
drag strut). This strut load must, in turn, be trans-
ferred to the shear walL

(3) Frames and shear walls must transfer forces
contributed from the diaphragms as well as their
own inertia forces to the foundations. These forces
are governed by formulas 3-1, 3-6, and 3-7.

(4) Forces applied to the foundations by the
shear walls and frames must be transmitted into the
ground. See paragraph 4-8 for design of founda-
tions.

(5) Connections between all elements must be
capable of transferring the applied forces from one
element to another. Special design requirements for
connections are reviewed In paragraph 4-6.

e RigidityAnalysis
(1) Horizontal forces. For rigid diaphragms,

the horizontal forces are transferred to the vertical
frames and shear walls in proportion to the relative
rigidities. When all the vertical elements (frames or
shear walls) are of equal size in a symmetrical build
ing, the diaphragm forces are distributed equally.
When there are large differences or a lack of symme-
try, a rigidity analysis must be performed. When
the diaphragms are flexible, the horizontal forces
are transferred in proportion to tributary area. (See
chap 3, para 3-3(E)4, and chap 5, para 6-24)

(2) Horizontal torsional moments. For rigid
diaphragms, where the center of rigidity of the verti-
cal lateral force-resisting elements (frames or shear
walls) is not coincident with the center of mass, pro-
visions must be made for this eccentricity. For a
symmetrical building, a minimum eccentricity of
6 percent of the maximum building dimension is re-
quired. (See chap 3, para 8-3(E)5, and chap 5, para
6-2d)

(3) Distribution between shear walls and fames
(dual systems). When a dual bracing system is used
(table 8-3, Category 3, K = 0.80), a rigidity analysis
must be made to determine the interaction between
the walls and the frames. Generally for tall
buildings, shear walls deflect as vertical cantilevers
in a concave shape and frames deflect in a straight
line or convex shape (see fig 4-7). In a dual system
with rigid diaphragms, the shear walls and frames
are forced to deflect the same amount at each sory:

therefore, some force transfer must occur between
shear walls and frames. Shear walls tend to support
the frame at the lower stories and the frame tends to
support the shear wall at the upper stories (see fig
4-7). (Also, see chap 6, para 6-2d(3).)

f Elements Not Part of the Lateral Force-Resist-
ing System. The elements designated as the lateral
force resisting-system must be designed to resist
the total applied lateral force. In addition, all load-
carrying elements not designed to be part of the lat-
eral force-resisting system must be analyzed to de-
termine if they are compatible with the lateral
force-resisting system (see chap 3, pars 3-3(J)ld and
e). Any element that is not strong enough to resist
the forces that it attracts or the interstory drifts
that occur will be damaged unless it is isolated from
the lateral force-resisting system.

g Dynamic Approach Alternative methods to
the static distribution of seismic forces are permit-
ted by chapter S. paragraph 3-3(I). Some basic
concepts are discussed in chapter 2, paragraphs 2-4
and 2-10.

4-5. Design of the structural elements. De-
sign of diaphragms, walls, and frames are covered
by chapters , 6. and 7, respectively. These struc-
tural-elements must be designed for various com-
binations of loads and must satisfy certain deforma-
tion requirements.

a. Load combinations will be in accordance with
chapter S, paragraph 3-3()2c.

6. Structural elements will be designed to resist
the combined axial, shear, and bending forces.

c. Deformations will be governed by the provi-
sions for interstory drift (chap 3, para 3-3(H1)1),
building separations (chap 3, para 3-3(H)2, and para
4-7), deformation compatibility (chap 3, para
3-3(Jld), diaphragm deformation (chap 3, para
3-S(J)2d, and chap 6, para 6-2b), and exterior ele-
ments (chap 3, para 3-3(J)3d).

(1) For determining compliance with the defor-
mation provisions, only structural elements should
be considered in the stiffness calculations. It is un-
conservative to include the stiffness participation of
nonstructural elements without substantiated data.
This is in contrast with the assumptions used in the
period calculation for obtaining values for C and S
(para 4-3d{4)). Thus, it is not uncommon to have one
set of stiffness assumptions for calculating the total
design lateral forces and another set of stiffness

jssumptions for calculating the design lateral
displacements. It is acceptable to calculate the
lateral deformations based on lateral forces corre-
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sponding to a building period TD longer than the
period T used for the design lateral forces and with-
out the limit specified in paragraph 4-3d(5). An
example is given below.

(2) In the seven-story building example in table
4-4, C and S are based on a building period T of 0.8
second. The design lateral forces include an addi-
tional top story force Ft of 44 kips and a total lateral
force V of 791 kips. The calculated period based on
the bare structural frame is 1.2 seconds. This period
is not valid for use in calculating the lateral forces
because it ignores some elements that will stiffen
the structure para 4-Sd(4)) and it exceeds the rec-
ommended maximum limit in paragraph 4-Sd(5).
However, the period of 1.2 seconds may be used as
TD to calculate the lateral forces used to determine
the lateral displacement. The resulting (Ft)D is 54
kips and VD is 644 kips. Therefore, to calculate the
lateral displacement, the values of 64 kips and 644
lips may be used In lieu of 44 kips and 791 kips, re-
spectively. This reduces the calculated displacement
from 2.7 inches to 2.2 inches. This displacement will
be multiplied by 1.0/K to determine drift compliance
or by 3.01K to determine deformation compliance
with provisions in chapter 8.

d The secondary effects of lateral deformation
(P-f, effect), when significant, must be investigated
to assure lateral stability.

4-6. Connections between elements. Fore-
most among requirements vital to earthquake-re-
sistant design of all types of buildings is the neces-
sity of tying the various structural elements to-
gether so that they act as a unit. Possibly the most
important aspect of lateral force design is the con-
nections (seams and joints) between the structural
elements. In designing and detailing, it Is well to
keep in mind that the lateral forces are not static, as
assumed for convenience, but dynamic and to a
great extent unpredictable. Since prevention of col-
lapse during a severe earthquake depends upon the
energy absorbing capacity of the structural ele-
ments, the ultimate strength of the structure should
be governed by the strength of the structural ele-
ments rather than by the strength of their connec
tions; thus, connectors should not be the weak link
of the structure. Obviously, a structural element
cannot transmit shears, moments, and torsions in
excess of the ultimate strength of the connection
used to join elements. As a general rule these con-
nections should be sufficient to develop the useful
strength of the structural elements connected, re-
gardless of calculated stress.

a. Design Crteria. Special design requirements
for connections are included in the following para-
graphs of this manual.

(1) Chapter paragraph 8-8401g, Braced
Frames. Connections of braced frames must be de-
signed to develop the full tension and compression
capacity of the members or they must be designed
for 1.25 times the design lateral force without the
usually permitted one-third increase.

(2) Chapter paragraphs 8-4J324 Dia-
phragms; 3-4T3a, Anchorage of Concrete or Ma-
sonry Walls, and 3-3)3b, Wood Diaphragms Used
to Support Concrete or Masonry Walls. These provi-
sions specify the minimum requirements for con-
necting floors and roofs to concrete and masonry
walls.

(3) Chapter paragraph 8-83J)84 Exterior
Elements. Connections of precast or prefabricated
'non-bearing, non-shear wall panels or similar ele-
ments must be designed in accordance with special
provisions for story drift, seismic design forces, and
ductility.

(4) Chapter , Diaphragms; chapter 6, Walls;
chapter 7, Space Frames; and chapter 8, Reinforced
Masonry, provide additional minimum connection
requirements for lateral force-resisting structural
systems.

6. Forces. Forces to be considered in design of
connections between structural elements, in addi-
tion to lateral force shears, are axial loads, flexural
and torsions (twisting), as well as secondary or pry-
ing forces within connections-separately or com-
bined as applicable to the specific case. These forces,
at juncture seam along the intersection of the struc-
tural elements, may be the resultant of gravity
loads, overturning, differential foundation settle-
ments, lateral forces both normal and parallel to
vertical elements, and shrinkage and thermal forces.
Positive means will be provided for transferring
shears from the plane of the diaphragm into the ver-
tical resisting elements, and also for transferring
wind or seismic forces from the vertical elements
into the diaphragm. In designing connections or
ties, it is necessary to make each and every connec-
tion consistent with the basic assumptions and dis-
tribution of forces. Provisions will be made in the
design of connections to lateral force movements in
walls arising from creep, temperature, and shrink-
age movements in decks, including steel beams or
girders when decking is fastened thereto. All signi-
~fiant loadings must be considered, and the joints
pnd connections designed for forces consistent with
all reasonable combinations of loadings.
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c. Details. Details of connections shall admit to a
rational analysis in accordance with well-established
principles of mechanics. Joints and connections may
be made by welding, bolting, by bond and anchorage
of reinforcement, by dowels, and by mechanical de
vices such as embedded shapes and welded studs.
The transfer of shear may be accomplished by using
reinforcing steel extended as dowels coupled with
cast-in-place concrete placed between roughened
concrete interfaces. The entire shear should be
considered as transferred through one type of de-
vice, even though a combination of devices may be
available at the joint or support being considered
unless one is sure that the combination of devices
will act in unison. Because joints and connections di-
rectly affect the integrity of the structure, their
design and fabrication must be adequate for the
functions intended. Rotational forces resulting from
eccentric connections must be considered. In gen-

eral, elements and members should be detailed
that torsion and moments are held to a minimum
the connections.

d Allowable Shear and Tension on Botts in Con-
crte. Table 4-5 shows the maximum allowable
forces on steel bolts A307 or better) embedded in
regular weight concrete (3,000 psi minimum
strength). Values are based on a bolt spacing of at
least 12 diameters with a minimum edge distance of
6 diameters. The bolts will have a standard bolt
head or an equal deformity in the embedded portion.
In Seismic Zone Nos. 2, 3, and 4, an additional 2
Inches of embedment will be provided for anchor
bolts located in the top of columns. When combining
tension and shear forces on a bolt, the following in-
teraction formula is applicable:

De! shear Foe+ nea4 Tendon Force -2)
AlloblShear Force J AlowbeTa Fensi o orce

Tabl 4-& Alwoble Sheaw and Tension on Bolts In Concrt.'

minimum
Diameter embedment' Shear Tendons
(inches) (Inches) (pounds) (pounds)

1/2 4 2.000 950
5/8 4 3,000 1.500
314 5 3,500 2.250
718 6 4,100 3,200

1 7 4.100 3,200
1-1/8 8 4,00 3,200
1-1/4 9 5.300 3,200

'Minimum concrete strength I 3.000 pd.
so additional 2 inches of embedment will be provided for anchor bolts at tops of columns for buildings
located in Zones 2.3. and 4.

3Where special inspection is provided tension values may be doubled.
Not& Adopted from Uniform Building Code, 1979 edition, by International Conference of Building

Officials.
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4-7. Special seismic detailing. Some of the
general requirements and details for satisfactory
performance under earthquake conditions are enu-
merated and discussed in the following paragraphs.
Also, refer to chapter 2, paragraph 2-9k.

a. Separation of Structures (chap X, para -(H)2).
In past earthquakes the mutual hammering re-

ceived by buildings in close proximity to one
another has caused significant damage. The sim
plest way to prevent damage is to provide sufficient
clearance so that free motion of the two structures
will result. 'Me motion to be provided for is pro-

duced partly by the deflections of the structures
themselves and partly by the rocking or settling of
foundations. The gap must equal the sum of the to-
tal deflections from the base of the two buildings to
the top of the lower building.

(1) In the case of a normal building, less than So
feet in height using concrete or masonry shear walls,
the gap shall be not less than the arbitrary rule of 1
inch for the first 20 feet of height above the ground
plus 1/2 inch for each 10 feet of additional height.

(2) For higher or more flexible buildings, the
gap or seismic joint between the structures should
be based on 3/K times the deflections determined
from the required (prescribed) lateral forces. If the
design of the foundation is such that rotation is ex-
pected to occur at the base due to rocking or due to
settlement of foundations, this additional deflection
(as determined by rational methods) will be in-
cluded.

b. Seismic Joints. Junctures between distinct
parts of buildings, such as the intersection of a wing
of a building with the main portion, are often de-
signed with flexible joints that alow relative
movement. When this is done, each part of the build-
ing must be considered as a separate structure that
has its own independent bracing system. The crite-
ria for separation of buildings in paragraph a above
will apply to seismic joints for parts of buildings.
Seismic joint coverages will be made flexible, water-
proof, and architecturally acceptable.

(1) An example that is frequently found in large
one-story industrial buildings with a relatively flexi-
ble frame follows:
At one end of the industrial building it is desired to
provide a small office section with stiff exterior or

interior walls. The office unit is relatively much stif-
fer than the rest of the building. If these two units
are tied together, the horizontal force of the entire
structure will be delivered to the small stiff unit
which may be incapable of resisting such large
forces (or excessive torsion may be developed in the

TM 5-809-10
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larger structure). Extensive damage has b ob-
served from past earthquakes which can be attrib-
uted to the omission of such separation. A separa-
tion between the two units will be required in such
cases.

(2) As an alternative to integral construction or
full separation, a properly substantiated separation
by a mechanical acting joint designed to take appro-
priate forces and displacements is permitted.

c. Bridges Between Buildings. Certain types of
structures commonly found in industrial installa-
tions are tied together at or near their tops by
connecting parts such as piping, conveyors, ducts,
etc. For instance, it may be necessary to connect
two buildings by a covered bridge or passageway. In
most cases It would not be economically feasible to
make such a bridge sufficiently rigid to force both
buildings to vibrate together. A sliding joint at one
or both ends of the bridge can usually be installed.
In general, it is preferable to avoid bridges between
buildings in Seismic Zone Nos. 8 and 4.

d Stairway. Stairways may be considered as in-
clined extensions of horizontal diaphragms. Since
the stairway has a vertical component it must be
considered as a vertical shear wall and designed as
such or be cut loose so as not to act in the case of
earthquake shock. If the stiffness of the stairway
acting as an Inclined vertical shear wall is relatively
small when compared to other vertical resisting ele-
ments in the building, the problem becomes lem
important. Thus, in general, the use of concrete
stairs in a stiff building with masonry or concrete
walls may be satisfactory. However, more flexible
steel stairs should generally be used in buildings
having a flexible moment-resisting frame. Interior
stairs usually create a hole in the diaphragm which
should be treated as an opening in the web of a plate
girder.

e. "Short-Column" Effects. Whenever the lateral
deflection of any column is restrained, when full-
height deflections were assumed in the analysis, It
will carry a larger portion of the lateral forces than
assumed. In past earthquakes, column failures have
frequently been inadvertently caused by the stiffen-
ing (shortening) effect of deep spandrels, stairways,
partial-height filler walls, or intermediate bracing
members. Unless considered in the analysis, such
stiffening effect shall be eliminated by proper detail-
ing for adequate isolation at the juncture of the
cblumn and the resisting elements.

it-8. Design of foundations. The foundations
must be designed for the seismic forces transmitted

F T""RIM", RIMI
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by the shear walls and frames of the lateral force-
resisting system.. The media used for the transmis-
sion of horizontal forces may be friction between
floor slab and ground; friction between bottom of
footing and ground; and/or passive resistance of
earth against vertical surfaces of footings, grade
beams, or basement walls. The overturning effects,
which require a careful analysis of permissible over-
loads for combined effect of vertical and lateral
loads, will be made as part of the foundation design
(refer to para 4-4b and to the SEAOC Commentary
on overturning for additional discussion of over-
turning effects). Resulting tensile forces must be
resisted by anchorage into the foundation. Stability
against overturning must be provided for the short-
time loading during an earthquake (or wind) without
Imposing such restrictions as to create wide dispar-
ity in foundation settlements under normal loading.
This disparity could create more damage to the
structure than that which might occur in an earth-
quake under highly increased soil pressures. The soil
pressure resisting combined static and prescribed
seismic loads can generally exceed the normal
allowable pressure for static loads by 1/3. However.
the various types of soils react differently to short-
time seismic loading and any increase over normal
allowable static loading will be confirmed by a soils
analysis. In no case will the footing size be less than
that required for static loads alone. Earthquake vi-
brations may cause consolidation or liquefaction of
loose soils, and the resultant settlement of building
foundations usually will not be uniform. In the case
of rigid structures supporte& on individual spread
footings bearing on such material, excessive differ-
ential settlements can result in damage to the
superstructure. Stabilization of the soil prior to con-
struction or the use of piles, caissons, or deep piers
bearing on a firm stratum may be the solution to
this problem.

a. Foundation Mhs. This paragraph supplements
the design criteria of chapter 3, paragraph 3-3(J)3c.
Individual pile, caisson, and deep pier footings of
every building or structure in Seismic Zones 2, 3,
and 4 will be interconnected by ties. For Seismic
Zone 1, provide ties only when surrounding soil has
low passive resistance values. Each'tie will be
designed to carry an axial tension and compression
horizontal force equal to 1/10 the larger pile cap
loading. Isolated spread footings on soil with a low
passive resistance will also be tied together in a way
to prevent relative movement of the various parts of
the foundation with respect to each other. Passive
resistance values vary greatly with type of soil and
depth. Adequacy of passive resistance should be de-

termined by the soils specialist. Passive resistr
or lateral bearing values are permitted only wQ ,
concrete is deposited directly against naturaI
ground or the backfill is well compacted. Passive re-
sistance should not be used where the lateral bear-
ing surface is close to an excavation unless such ex-
cavation is carefully backfilled with well-compacted
materiaL The shear in the earth between such bear-
ing surface and open or poorly compacted excava-
tion or a similar depression may be a critical item.
Where a building is supported by piles. caissons, or
deep piers. it is frequently necessary to develop
horizontal shear through lateral bearing against the
side of the pile, pier, or caisson. The upper soils may
not have sufficient lateral bearing value to resist the
lateral forces. This creates bending in the piles
which must be provided for in the design. Where a
building is supported on piles driven through very
poor material it is frequently economical to drive
batter piles to take care of horizontal shear transfer
to the ground. In instances where footings are sub-
jected to lateral thrusts due to applied vertical
loads, such horizontal thrust will be added to the
lateral seismic force indicated above. An example of
this case could be the outward thrusts on footings of
a rigid gable bent due to applied vertical loads. The
ties can be formed by an interconnecting grid Pv
work of reinforced concrete struts or structural s
shapes encased in concrete. As an alternate, a rehd
forced concrete floor slab, doweled to walls and
footings to provide restraint in all horizontal direc-
tions, may be used in lieu of the grid network of ties.
Slabs-on-grade will not be used as ties when signifi-
cant differential settlement is expected between
footings and slab. In such cases, slabs-on-grade will
be cut loose from footings and made free floating
(note that the effective unsupported height of the
wall is increased for this condition). Strut ties placed
below such slabs shall be cushioned or separated
from the slab sufficiently so that slab settlement
will not damage the strut ties. Alternatively, it may
be more economical to overexcavate the soil under
the footings and recompact to control differential
settlements and to increase passive resistance so as
to eliminate need for footing ties.

5. Pile oundations. For pile-supported struc-
tures subjected to horizontal loads, it must be
decided whether the lateral load-carrying capacity
of the vertical piles is adequate or whether batter
Riles should be used. The lateral load-carrying ca-
pacity of vertical piles is dependent on the proper-

.Ales of the soil; the size, length, and material of *'
- pile; and the pile grouping and spacing. These
tors should be taken into consideration in estimtr
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Ing the ability of vertical piles to withstand the hor-
frontal loads.

4-9. Parts and elements of buildings. Parts
and elements of buildings and their anchorages will
be designed for forces in accordance with chapter 3,
paragraph 8-3(G), formula 3-8, and table 8-4.

a. Structural elements include walls and parapets
with lateral loads normal to the flat surfae, dia-
phragns as horizontal beams (chap 8, para 8-3
W ,2d) and penthouses (chimneys and smokestacks
are covered in para c below). These elements will be
designed to resist the specified lateral forces as well
as to transfer these forces to the structural system
of the building through proper connections.

b. Architectural elements include partitions, or-
nmentation suspended ceilings, exterior panels
ichap 8, para 8-S(J)3d), and storage racks. Architec-
tural elements are covered in chapter 9.

c. Mechanical and electrical elements, which are
covered by chapter 10, include chimneys and smoke-
stacks, as well as equipment and machinery. For
rigid and rigidly attached equipment and macin-
ery, the force factors of table 8-4 will be used; but
for flexible and flexibly mounted equipment and ma-
chinery, the special provisions of chapter 10 are
required. When the mechanical and electrical ele-
ments are part of the life safety system, an "I"
factor of 1.6 will be used.

4-10. Structures other than buildings. This
manual is primarily concerned with the design of
buildings; however, provisions are also included for
some structures other than buildings. When these
structures are designed in accordance with formula
8-1 in chapter 8, paragraph 3-8(D), a K-value of 2.0
or 2.5 is used as specified n table 8-8. This higher
value is ustified by the assumption that these
structures will generally have lower damping char-
acteristics, less inelastic deformation capacity, and
less redundancy than typical buildings. Procedures
and guidelines for structures other than buildings
are included in chapter 11.

4-11. Final design considerations. After the
structural elements have been selected and anal-
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yzed, a final design check must be made to verify
that the Initial assumptions are correct, and
whether or not the resulting structure satisfies the
intent of the seismic provisions.

a Compare Final Sizes With Initial Estimates
(1) Weights. Compare the final weights of the

building with the weight used to determine the seis-
mic forces. If the weight has increased significantly
(say over 5%), redesign will be necessary.

(2) Stiffness. If the final member sizes are sub-
stantially different than the Initial estimates, a re-
evaluatign of the design will be necessary (see para
(s) and (4) below). If the relative stiffnesses of the
varying elements have changed significantly, the
distribution of lateral forces must be reevaluated.

(3) Period. If the initial period was determined
by a method using structural properties and defor-
mation characteristics, such as in formula 8-8, the
initial stiffness and weight properties must be com-
pared to the final properties of the structure. If the
final period is shorter than the initial period that
was used to calculate the lateral forces, a new set of
forces must be calculated and applied to the struc-
ture.

(4) Displacements. If the final stiffness, period,
or forces have changed substantially, displacements
will have to be recalculated to check for compliance
with the various provisions for drift and deforma-
tion.

b. Path of Forces. Upon completion of the design,
a final check will be made to determine that all the
Inertia forces can be tranitted without instability
from their source to the base of the structure. (See
para 4-4d.)

c. Details. Check the structural details to assure
that the intent of the design calculations and the
seismic design detailing are properly provided for on
the construction drawings.

d Specifications. Check the specifications to as-
sure that the intent of the design calculations,
material strength assumptions, and the seismic de-
sign detailing are properly provided for in the job
specifications.
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CHAPTER 6
DIAPHRAGMS

6-1. Purpose and scope. This chapter pre-
scribes the criteria for the design of horizontal di-
aphragms and horizontal bracing of buildings in
seismic areas, indicates principles and factors gov-
erning the horizontal distribution of lateral forces
and resistance to lateral forces, gives certain design
data, and lustrates typical details of construction.
Refer to chapter 8, paragraph S-S(J)2d. for design
forces.
5-2. General. Buildings are composed of vertical
and horizontal structural elements which resist lat-
eral forces. Horizontal forces on a structure pro-
duced by seismic ground motion originate at the
centrold of the mass of the building elements and
are proportional to the masses of these elements.
The forces originating at masses tributary to the
horizontal elements are distributed by such horizon-
tal elements to vertical elements which in turn
transmit such forces to the ground. Forces may also
be transmitted from vertical elements to horizontal
elements and then be redistributed to other vertical
elements. Refer to chapter 4, figures 4-4 and 4-5,
for tributary weights and path of forces, respec-
tively.

a. Function. Horizontal forces at any floor or roof
level are distributed to the vertical resisting ele-
ments by using the strength and rigidity of the floor
or roof deck to act as a diaphragm. Horizontal brac-
ing may be used to act as a diaphragm to transfer
the horizontal forces to the vertical resisting
elements.

(1) Diaphragms. A diaphragm may be consid-
ered analogous to a plate girder laid in a horizontal
for inclined in the case of a roof) plane where the
floor or roof deck performs the function of the plate
girder web, the joists or beams function as web stiff-

NB -North-South direction
EW - East-West direction
* - Distance between center of gravity CG) of forces

and center of rigidity cr) of the vertical resisting
elements

RR - Relative rigidity
V - Shear (or reaction)
A, -Deflection of vertical element
Ad -Deflection of diaphragm

eners, and the peripheral beams or integral rein-
forcement function as flanges (fig 5-1, 5-2, and 6-3).
A diaphragm may be constructed of materials such
as concrete, wood, or metal in various forms. Combi-
nations of materials are possible. Strength criteria
for such materials a cast-in-place reinforced con-
crete and structural steel are well established and
present no problem to the designer once the loading
and reaction system Is known. Other materials fre-
quently used to support vertical loads in floors or
roofs have well-established vertical load characteris-
tics but have required tests to demonstrate their
ability to resist lateral forces. Various types of wood
sheathing and steel decks fall in this category.
Where a diaphragm is made up of units such as ply-
wood, precast concrete floor units or steel deck
units, its characteristics are, to a large degree, de-
pendent upon the attachments of one unit to an-
other and to the supporting members.

(2) Horizontal bracing system. A horizontal
bracing system may be of any approved material,
such as reinforced concrete, structural steel or wood.
The bracing system will be fully developed in both
directions so that the bracing diagonals and chord
members form complete horizontal trusses between
vertical resisting elements (fig 5-4). Deflections and
web flexibility due to the required static forces will
be determined using normal design principles. The
stiffness category and span/depth limitations that
apply to diaphragms (see para d, and f below) also
apply to horizontal bracing systems. The general
layout of a bracing system and sizing of members
must be determined for each individual case.

b. Symbols and Notations. Additional terminol-
ogy which relates to diaphragms and which will be
used in this chapter is shown below:
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Figure -1. Floor Sab Diaphragm

Figure 5-2. Roof Deck Diaphragm

Figure 5-3. rusa Diaphragm

Upper chord shown
as truss diaphragm.
The truss diaphragm
may also be in lower
chord as shown in
Figure 5-3.

Figure 5-4. Bracing an nduatriaZ Buitding

;m
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c Seismic Loadings Floors and roofs used as
diaphragms will be designed for lateral forces speci-
fied in chapter 3, paragraph 3-3(J)2d, acting in any
horizontal direction. These forces include inertia
forces originating from the weight of the diaphragm
and the elements attached thereto, as well as forces
that are required to be transferred to vertical resist-
ing elements because of offsets or changes of stiff-
ness in vertical resisting elements above and below
the diaphragm (chap 4, fig 4-5 and 4-6).

d Distribution of Seismic Forces. The total shear,
which includes the forces contributed through the
diaphragm as well as the forces contributed from
the vertical resisting elements above the dia-
phragm, at any level will be distributed to the var-
ious vertical elements of the lateral force resisting
system (shear walls or moment resisting frames) in
proportion to their rigidities considering the rigidity
of the diaphragm. The effect of diaphragm stiffness
on the distribution of lateral forces is discussed and
schematically illustrated below (fig 6-5). For this
purpose, diaphragms are classified into five groups
of flexibilities relative to the flexibilities of the
walls. These are rigid, semi-rigid, semi-flexible, flex-
ible, and very flexible diaphragms. No diaphragm is
actually infinitely rigid and no diaphragm capable of
carrying a load is infinitely flexible.

(1) A rigid diaphragm is assumed to distribute
horizontal forces to the vertical resisting elements
in proportion to their relative rigidities. In other
words, under symmetrical loading a rigid dia-
phragm will cause each vertical element to deflect
an equal amount with the result that a vertical ele-
ment with a high relative rigidity will resist a
greater proportion of the lateral force than an ele-
ment with a lower rigidity factor (fig 5-5(b)).

(2) A flexible diaphragm and a very flexible
diaphragm are analogous to a shear deflecting con-
tinuous beam or series of beams spanning between
supports. The supports are considered non-yielding,
as the relative stiffness of the vertical resisting
elements compared to that of the diaphragm is
great. Thus a flexible diaphragm will be considered
to distribute the lateral forces to the vertical resist-
ing elements on a tributary load basis. A flexible
diaphragm will not be considered capable of dis-
tributing torsional stresses resulting from concrete
or masonry masses (fig 5-6(d)).

(3) Semi-rigid and semi-flexible diaphragms are
those which have significant deflection under load
but which also have sufficient stiffness to distribute.
a portion of their load to vertical elements in pro-
portion to the rigidities of the vertical resisting
elements. The action is analogous to a continuous
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concrete beam system of appreciable stiffness on
yielding supports. The support reactions are de-
pendent on the relative stiffnesses of both dia-
phragm and vertical elements. A rigorous analysis
is sometimes very time consuming and frequently
unjustified by the results; at best, the results are no
better than the assumptions that must be made. In
such cases a design based on reasonable limits may
be used; however, the calculations must reasonably
bracket the likely range of reactions and deflections
(fig 5-5(c)).

(4) Torsional moment is generated whenever
the center of gravity cg) of the lateral forces fails to
coincide with the center of rigidity cr) of the vertical
resisting elements, providing the diaphragm is suf-
ficiently rigid to transfer torsion. The magnitude of
the torsional moment that is required to be distrib-
uted to the vertical resisting elements by a dia-
phragm is determined by the larger of the following
(a) the sum of the moments created by the physical
eccentricity of the translational forces at the level of
the diaphragm from the center of rigidity of the
resisting elements MT = Fpe, where e = distance
between cg and cr) or (b) the sum of the moments
created by an "accidental" torsion of 6%. Te "ac-
cidental" torsion is an arbitrary code requirement
equivalent to the story shear acting with an eccen-
tricity of not less than 6% of the maximum building
dimension at that level (chap 3, para 3-3(E)5). The
torsional moments will be distributed through rigid
diaphragms to the vertical resisting elements in a
method analogous to the torsion formula T=TcJJ
(fig 5-6). Thus the torsional shear forces can be ex-
pressed by the formula FT=MTkdlIkd', where k is
the stiffness of the vertical resisting elements, d is
the distance from the center of rigidity, and kd'
represents the polar moment of inertia (Note:
MT=XFTd). The torsional shears will be combined
with the direct (translational) shears (fig 5-6(b)).
However, when the torsional shears are opposite in
direction to the direct shears, the lateral forces shall
not be decreased. A properly evaluated and rational
alternative (e.g., computer techniques) to this ap-
proach can be used (refer to SEAOC Commentary
on horizontal torsional moments). When dia-
phragms are flexible, relative to the vertical resist-
ing elements e.g., wood floor diaphragms and con-
crete or masonry shear walls), it will be assumed
that the diaphragms cannot transmit torsional mo-
mients, thus there will be no torsional distribution.
Qantilever diaphragms on the other hand will dis-
tibute translational forces to vertical resisting ele-
ments, even if the diaphragm is flexible. In this
case, the diaphragm and its chord act as a flexural
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beam supported by the vertical resisting elements
(fig 6-6(c)).

e. Diaphragm Deflections. A diaphragm will be
designed to provide such stiffness and strength so
that walls and other vertical elements laterally sup-
ported by the diaphragm can safely sustain the
stresses Induced by the response to seismic motion.
The total computed deflection t) of diaphragms
under the prescribed static seismic forces consists of
the sum of two components. The first component is
the flexural con (f) of the diaphragm which is
determined in the same manner as the deflection of
beams. The assumption that flexural stresses on the
diaphragm web are neglected will be used except for
reinforced concrete slabs. For such slabs the propor-
tional flexural stresses also may be assumed to be
carried by the web. The second component is the
web shear) deflection (A&) of the diaphragm. The
specific nature of the web deflection will vary de-
pending on the type of diaphragm. The total deflec-
tion of the diaphragm under the prescribed static
forces will be used as the criteria for the adequacy of

TM 5-809-10
NAVFAC P-355

AFM 88-3, Chap. 13

the stiffness of a diaphragm. The limitation on de-
flection is the allowable amount prescribed for the
relative deflection (drift) of the walls between the
level of the diaphragm and the floor below. Refer to
chap 6, fig 6-2 and para 6-2b. The limitation im
posed on diaphragms supporting flexible walls is a
maxnium span-to-depth ratio, see table 6-1.

f Flexibility Limitations. The determination and
limitations of the deflections of a diaphragm is a de
sign function. The deflections of some diaphragms
can be computed with reasonable accuracy. How
ever, other diaphragms have characteristic and fab
rication variables making an accurate solution of de
flection characteristics meaningless. Thus the
methods of determination of the deflection char-
acteristics for diaphragms of all materials given
herein will be used to keep the range of diaphragm
deflections within reasonable limits.

11) F-factor. In order to provide a means of
properly classifying and identifying the stiffness of
a diaphragm web, the factor "F" will be introduced.
The factor F is equal to the average deflection in

TABLE5-L FlxbilityLmiationonDiaphamZ= 

SpanlDepth Limitations

Maximum
Flexibility Span No torsion considered Torsion considered
category F Ifeet) in diaphragM in diaphragm!

Brittle Flexible Brittle Flexible
walst walls Walls t walls

Not Not
Very Over tobe tobe

flexib 150 used 2:1 used 1-112:1

Not
to be

Flexible 70-150 100 2:1 3:1 used 2:1

Not
semi- tobe

flexible 10-70 200 2-1/2:1 4:1 used 2-112:1

Sem-rigid 1-10 900 3:1 5:1 2:1 3:1

Less Deflection Deflection
than reqm't No reqm't

Rigid 1 400 only limitation only 3-112:1

Notes:
iWalls in concrete and unit-masonry are classified as brittle; in all ca owable drift before selecting type of diaphragm
'When applying these limitations to cantilever diaphragms, the sparbpth ratio shall be limited to one-half that shown.
'No torsion in diaphragm other than the 5% "accidental" torsion rered by chapterS paragraph S-3(E)S.
4For Zones 1 and 2 diagonally sheathed mnd plywood diaphragms in the "Very Flexible" category may be used to support laterally
masonry and concrete walls In one-story buildings where the diaphragm is not required to act in rotation.
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micro inches (millionths of an inch) of the diaphragm
web per foot of span stressed with a shear of one
pound per foot. Expressed as a formula this be-
comes:

F - !MX where 5-i
qaL 1

L - Distance in feet between vertical resisting element
(such as shear wall) and the point to which the
deflection is to be determined

q. - Average shear In diaphragm In pounds per foot
over length LI

A, -Web component of A4

Using the factor F, the flexibility categories of dia-
phragm webs have designated values as prescribed
in table 5-1. The span-depth limitations do not di-
rectly reflect deflections. The web deflection will be
determined by the equation

lor (5-2)

(2) Determination of F-factors The equations
for use in determining the strength and stiffness ca-
pabilities of various diaphragm materials have in
most cases only been published in the literature of
the companies supplying these materials. These
have been based usually on a limited number of
tests and have been derived empirically to fit the
test data available to them. As more and more tests
were run, these equations were altered to incorpo-
rate the new data. This led to many somewhat sim-
ilar equations for identical diaphragm components
supplied by different manufacturers. The equations
used in this manual have been developed using as a
basis all of the test data made available to the
Triservice Seismic Design Committee at the time of
the last edition of this manual (April 1973) and may
be subject to some revision in the future as new data
are obtained.

5-3. Diaphragm selectlon. In most buildings it
is economical to use the roof and floor systems as
diaphragms; therefore, the overall structural sys-
tem, including the vertical load resisting elements,
affects the selection of the diaphragm (or horizontal
bracing) system. The selected system must be com-
patible with the criteria governing the vertical load-
carrying capacities and the fire resistant qualities.
Relative costs of various types of suitable dia-
phragms should be investigated to achieve the
greatest economy. Some of the most common items
that affect the selection of the diaphragm system
are summarized below.

a. Transverse Frames and Longitudinal Walls or

Braced Frames. For buildings such as large 
houses with long span vertical moment resist.'
frames in the transverse direction, the diaphragm
connecting these frames need be only nominal sway
bracing with little or no computed stresses, since
each bent would be designed to carry its tributary
lateral force. However, in the longitudinal direction
where only the exterior walls resist seismic forces,
the diaphragm must span from side wall to side
waIL If the frames are of structural steel, considera-
tion should be given to the selection of a horizontal
steel bracing system as a diaphragm. If the frames
are of reinforced concrete, a concrete deck will nor-
mally be used. When applicable, torsion will be con-
sidered (para 5-2d(4)).

b. Multi-Story Frame Structure& For tall, multi-
story buildings with moment resisting frames, dia-
phragms will be rigid enough to distribute horizon-
tal forces and torsion in proportion to the relative
rigidities of the frames. A more flexible diaphragm
on such structures must be avoided because it will
permit portions of a building to vibrate out-of- phase
with the rest of the structure, creating reverse warp-
ing strains.

c. Deep Beam Analogy. Diaphragms are designed
as deep beams so that the web deckinr
sheathing) will carry shear and the flanges (spai
beams or other members) at the edges will resistse
bending moments. Webs of precast concrete units or
metal deck units will require details for joining the
units to each other and to their supports so as to dis-
tribute shear forces. Boundary members at edges of
diaphragms must be designed to resist direct tensile
or compressive (chord) stresses, including adequate
splices at points of discontinuity. For instance, in a
steel frame building the spandrel beams acting as a
diaphragm flange component require a splice design
at the columns for the tensile and compressive
stresses induced by diaphragm action.

(1) Openings. Diaphragms with openings, such
as cut-out areas for stairs or elevators, will be ana-
lyzed similarly to a plate girder with a hole in the
web, and require complete detailing to show that all
the stresses around the opening will be developed.

(2) L- and T-shaped buildings. The L and T-
shaped buildings will have the flange (chord)
stresses developed through or into the heel of the L
or T. This is analogous to a girder with a deep

. haunch.

,; Braced Frame Systems. When plannir a
bracing system of a building, consider the stn
as a whole. Visualize the ways in which the 
ture might fail and provide bracing with adequate
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strength and rigidity to keep the structure upright.
Before deciding upon the position of bracing, the
structural engineer must be certain just where every
obstruction and other controlling features will be
located (see para 5-8). (Refer to chap 6, para 6-2d,
for vertical bracing.)

e Connections. Connections and anchorages be-
tween the diaphragms and the vertical resisting
elements will be designed to conform to chapter 8,
paragraphs -3(J)lg, 2d, , and chapter 4,
paragraphs 4-4d(5) and 4-6.

6-4. Concrete diaphragms. a. General Design
Criterb The criteria used to design concrete dia-
phragms will be ACI 318-77 (except appendix A) as
modified by this paragraph. Concrete diaphragm
webs will be designed as concrete slabs which may
be designed to support vertical loads between the
framing members or rest on other vertical load-car-
rying elements such as precast concrete elements or
steel decks. If shear is transferred from the dia-
phragm web to the framing members through steel
deck fastenings, the design will conform to the re-
quirements in paragraph 5-6, Steel Deck Dia-
phragms.

b. Span and Anchorage Requirements. The fol-
lowing provisions are intended to prevent dia-
phragm buckling.

(1) General Where reinforced concrete slabs are
used as diaphragms to transfer lateral forces, the
clear distance (LJ between framing members or me.
chanical anchors shall not exceed 38 times the total
thickness of the slab (t).

(2) Cast-in-place concrete slabs not monolithic
with supporting fnming. When concrete slabs are
not monolithic with the supporting framing mem-
bers (e.g., slabs on steel beams) the slab will be
anchored by mechanical means at intervals not ex-
ceeding four feet on center along the length of the
supporting member. This anchorage is not a com-
puted item and should be similar to that shown on
figure 6-7. For composite beams, anchorages pro-
vided in accordance with AISC provisions for com-
posite construction will meet the requirements of
this paragraph.

(3) Cast-in-place concrete diaphragms pertically
supported by precast concrete slab units. If the slab
is not supporting vertical loads but is supported by
other vertical load-carrying elements, mechanical
anchorages will be provided at intervals not exceed-
ing Sk. Thus, the provisions of (1) above will be sat-
isfied by defining L, as the distance between the
mechanical anchorages between the diaphragm slab
and the vertical load-carrying members. This me-
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chanical anchorage can be provided by steel inserts
or reinforcement, by bonded cast-in-place concrete
lugs, or by bonded roughened surface, as shown on
figure 5-8. Positive anchorage between cast-in-place
concrete and the precast deck must be provided to
transmit the lateral forces generated from the
weights of the precast units to the cast-in-place
concrete diaphragm and then to the main lateral
force resisting system.

(4) Precast concrete slab units. If precast units
are continuously bonded together as shown on fig-
ure 5-9, they may be considered concrete dia-
phragms and designed accordingly as described
hereinbefore. Intermittently bonded precast units
or precast units with grouted shear keys will not be
used as a diaphragm.

EXCEPTION: In Seismic Zone 1 (fig 5-9a),
the use of hollow core planks with grouted
shear keys is permitted. Also the use of con-
nectors, in lieu of continuous bonding, for
precast concrete members is permitted if the
following considerations and requirements
are satisfied.
(a) Conformance with Prestressed Concrete
Institute PCI)-Design Handbook seismic
design requirements.
(b) Shear forces for diaphragm action can be
effectively transmitted through the connect-
ors. The shear will be uniformly distributed
throughout the depth or length of the dia-
phragm with reasonably spaced connectors
rather than with a few which will have local-
ized concentration of shear stresses.
(c) Connectors will be designed for at least
two times the actual shear force.
(d) Detail structural calculations be made
including the localized effects in concrete
slabs attributed from these connectors.
(e) Sufficient details of connectors and em-
bedded anchorage be provided to preclude
construction deficiency.

(5) Metal formed deck. Concrete slabs that are
cast by use of metal formed deck shall be governed
by either the requirements of paragraphs (2) above,

*or the requirements of paragraph -6d, Deck with
Concrete Fill, depending on the characteristics of
the metal formed deck.

c. Special Reinforcement. Special diagonal rein-
forcement will be placed in corners of diaphragms as
idicated in figure 5-10. Typical chord reinforce-
pAnt and connection details are shown in figure

d Flexibility Factor. The web stiffness factor F
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(see para 5-2/) will be determined by the following
formula:

loll
F 15-3)

8.5tw'Vi -

where
t Thickness of the ab n inches
w - The weight of th concrete in pounds per cubic foot.

Minimum value of w wig be 90 pounds per cubic
foot.

f, - The compressive strength of the concrete at 28
days in pounds per square inch.

Diaphragms of this type are in the rigid category of
stiffness and are usually limited only by the appro-
priate deflection limitations. The deflections of this
type of diaphragm will be determined using the
unfactored loads specified in chapter 3, paragraph
3-3. when controlled by the limits indicated in
paragraphs 5-2e and f

e. Electrical Raceways. The placement of electri-
cal raceways in concrete topping slabs may result in
the slab being ineffective as a diaphragm. The effect
of the loss of concrete section will be considered.
Coordination of structural diaphragm slab with elec-
trical plans will be provided.

5-5. Gypsum daphragms, cast-In-place.
a. General Design Criteria. The following criteria
will be used to design cast-in-place gypsum dia-
phragms.

b. Shear Capacity
(1) The allowable diaphragm shear on poured

gypsum concrete diaphragms will be as shown in

Table 5-2. Shear Valuea

tables 5-2 through 5-4 for roof systems using s
purlins and electrically welded wire mesh.

(2) In lieu of tables 5-2 through 5-4, the fo
lowing formula will be used to determine the
allowable shear of the diaphragm.

qD [.16fgtC + LO (kid, i- k2d2a)C2 5-4)
where

qD m Allowable manimum shear per foot on diaphragm in
pounds per linear foot. The one- third increase usu.
ally permitted to working stress in seismic design
Is not applicable.

fI 3 Oven-dry compressive strength of gypsum in p.as
as determined by tests conforming to ASTM
C472-73.

Cl 1.0 for Cbass A gypsum concrete; 1.5 for Class B
gypsum concrete.

Cg = 1.4 for Class A gypsum concrete 1.0 for Class B
gypsum concrete.

= Thickness of gypsum between subpurlins in inches.
k1 - Number of mesh wires per foot passing over

subpurlins.
di - Diameter of mesh wires passing over subpurlin in

inches.
k2 - Number of mesh wires per foot parallel to

subpurlins.
d- Diameter In inches of mesh wires parallel to

subpurlins.

c Flexibility Factor. The factor F para 5-2* and
f for determination of diaphragm stiffness and de-
flections will be determined by the formula

F = 140 - 1

where
qD hm allowable shear specified In tables 5-2 through

5-4 or Formula 5-4 in pounds per foot.
of Poured &1ipaun Diaphragme

| Poured *ALLWABLE SHEAR VALUES (qD)
Compressive . Gypsum

Class Strength Thickness Mesh Bulb Tees Trussed Tees

A 500 ~~~4x 889
A Soo 2811 12 - 14 Not Allowed 890

A 500 2k 6 - 6 Not Allowed ' 1,040
10 -10

B 1,000 2" 14 x 8 1,040 l, 040

B 1 1,000 21k" 6x 6 1, 114010 - 10

NOTE: *1/3 increase usually
design not applicable.

permitteC.^on working stresses in seismic
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Table -3. Shear on Anchor Bolts and Dowels -

Reinforced Gypsum Concrete*

Bolt or Dowel Size Embedment Shears
(Inches) (Inches) (Pounds)

3/8 Bolt 5 250

1/2 Bolt 5 350

5/8 Bolt 5 500

3/8 Deformed Dowel 6 250

1/2 Deformed Dowel 6 350

NOTES: *1/3 increase usually permitted on working stresses in seismic
design is not applicable.

See Details Al and A3 in Figure 5-12.

TabZe 5-4. Miawn Shear on Trussed ees*

Class A 840 pounds per foot

Class B 1,140 pounds per foot

.

NOTES: *1/3 increase usually permitted on working stresses in seismic
design is not applicable.
See Details A2, A4, and A in Figure 5-12.

Pio

I.,
P I
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This indicates that the diaphragm will be in the
semi-rigid category, however the span-depth and
span limitations of the semi-flexible diaphragm
should be used for this type of diaphragm.

d Typical Details. Refer to figures 6-12, 5-13,
and 5-14.

64. Steel Dock Diaphragms (Single and Mul-
tiple Sheet Decks). a. General Design Cteria.
The following criteria will be used to design steel
deck diaphragms. Three general categories of steel
deck diaphragms are Type A (para 6-6b), Type B
(para -6c), and Decks with Concrete Fill (para
5-6d).

(1) Typical deck uits and fastenings. The deck
units will be composed of a single fluted sheet or a
combination of two or more sheets fastened to-
gether with resistance welds. The special attach-
ments used for field attachments of steel decks are
shown in figure 5-16. In addition to those shown,
standard fillet (18 inch X inch) and butt welds are
also used. The depth of deck units shall not be less
than 1-112 inches.

12) Definitions of special symbols Definitions
of the special symbols used in the determination of
the working shears and flexibility of steel deck dia-
phragms are as follows:

a - Number of seam attachments In span along a
seam.

aP = Average spacing of profile channel closures. In
feet.

as - Center to center pacing of seam welds In feet.
Usually LIa.

a,,- Spacing of marginal welds in feet.
b - Width of deck unit in feet.
Cl I
C2 -I for button-punched seams; 40ts11 1, for welded

seams.
Cs - 1 for button-punched seams; 10t.1,, for welded

seams.
6

C4 I 1 for button-punched seams; L for welded
seams.

Cs - 1.2 for continuous angle closure; I for
1.44

continuous ee osure; ap for rofile channel
closure.

d Distance in feet between outermost puddle
welds attaching a deck unit to the supporting
framing member.

F1.F2... -Components contributing to the flexibility
factor F F - FS). See paragraph -2f.

f, - Compressive strength of fill concrete at 28 days
In pounds per square inch.

h - Height of fluted elements In Inches 1-1)2 Inch
minimum).

TM 5409-10
NAVFAC P-355

AFM 88-3. Chap. 13

ID -Gross moment of inertia of deck unit about
vertical centerline axis through unit in inches to
the fourth power.

ix -Gross moment of inertia of deck unit about the
horizontal neutral axis of the deck cros-section
per foot of width in inches to the fourth power.

Li Distance in feet between vertical resisting
element (such as shear walli and the point to
which the deflection is to be determined.

L2 e-Average length of each deck unit I feet.
1.- =Length of edge lip on deck panel in inches (ee

Detail G in fig 6-151.
Lit Distance in feet between shear transfer

elements.
Lv -Vertical load span of deck units in feet.
1 Minimum length In inches of seam weld.
1 Effective length in Inches of seam weld. The

ratio of for the various types of seam welds is

given in figure 6-15.
n =Average number of vertical deck elements per

foot which are laterally restrained at the bottom
by puddle welds.

qD -Working shear in pounds per foot. The onethird
increase usually permitted on working stresses
is not applicable to this value.

qq-. . - iComponents or limiting values of working shear
in pounds per foot.

q," *Average shear in diaphragm over length L In
pounds per foot.

R V

S Section modulus in feet of puddle weld group at
supports. (Each weld assumed as unit area.1

t T Thickness of flat sheet elements In Inches (22
gage minimum).

t2 -Thickness of fluted element in inches 22 gage
minimlum).

tj Effective thickness of fluted elements in Inches.
9;

See figure 5-16 for ratio of A.
t, - Thickness of closure element in Inches.
tt -Thickness of fill over top of deck in inches.
t Thickness in Inches of deck sheet at seams.
w =Unit weight of fill concrete in pounds per ubic

foot.

(3) Connections at ends and at supporting
beams. Refer to Type A and Type B details, para-
graphs 6-6b and -6c.

(4) Connections at marginal supports. Marginal
welds for all types of steel deck diaphragms will be
spaced as follows:

aw3SOt X+t) Cl 'or puddle ields. (5-6)

a,1-M l; for fillet welds and seam wds. (5-7)
q

In no case will the spacing be greater than feet.
See figures 5-16 and 5-26.
,k" (5) Non-welded fasteners. Fastening methods
iboher than welds, such as self drilling fasteners, may
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be used provided that equivalence to the welded
method can be shown by approved test data. The re-
sults of such test data will be presented by means of
equations or tables for qD and F in a manner similar
to that used in paragraphs 5-6b, 5-6r and 5-6d

EXCEPTION: The option to fasten steel deck
by powder actuated or pneumatically driven
fasteners will be limited to Setsmic Zone Na 1
and to areas with a wind velocity of less than
100 mph.

limited to that determined by the following
mulas

qDulq 1+qs where lbs C1 but qD is not to
!A2& '

exed I x108

1s4

1.i jf HFz+F+V~)

AApplie only when
1.< inch, refer to
Dotal G In Bs -15)

(5-11)
(6) Maximum effective thicknesses and weld

lengths Even though greater thicknesses and weld
lengths may be installed, the maximum values for
use in determining the working shears In each type
of diaphragm will be as follows:

t ts an to - .060 Inch
te = .075inch
1= 2Inches

(7) Thickness of steeL The thickness of steel be
fore coating with paint or galvanizing shall be in ac-
cordance with following table. The thickness of the
uncoated steel shall not at any location be less than
95% of the design thickness.

WheeK-

1.000

I I(t1+t)ti +loon,%g a ii
ill~a Vh-7V +Ca)J

360t0t~ , P+ 
q2= -1;-

(5-13)

(5-14)

(2) lexibility factor. The flexibility factor, F.
will be determined by the following formuln

Gage
22
20
18
16

Design
ickness

0.0295
0.0358
0.0474
0.0698

Mhaimum
Thickness

0.028
0.034
0.045
0.057

F-F+F+F

b. Type A Diaphragms-Decks Having Shear
Transfer Elements Directly Attached to Framing.
Multiple plate steel decks with the flat element ad-
jacent to framing members and single plate steel
decks fall into this category of diaphragms when
each deck unit is attached to the framing by at least
2 puddle welds as described on figure 5-15. t 1, t2 , to
will not be less than 22 U.S. Standard gage. Seam
attachments will be made at least at midspan of L,
but the spacing of attachments between supports
will not exceed 3 feet on center. Typical details of
Type A diaphragms and attachments are shown In
figures 5-16, 5-17, and 5-18.

EXCEPTION to 22 gage limitation: 22 gage is
the minimum thickness unless cross bracing is
used to take lateral loads. However, an excep-
tion in Seismic Zone No. 1, for pre-engineered
metal buildings with diaphragms less than 22
gage, requires that load tests be submitted for
evaluation and approval.

(1) Shear capacity. The working shear will be

Where

12(tl+t(b

F, b L[C 6 + ]q (5-17)
FX<160 4 D LvdS(tt+V~ lq

Fs- L.,t 12.6UZC1Za 6-8

The flexibility of these diaphragms will vary within
a wide range. Arrangements can be used which fall
into the semi-rigid, semi-flexible, and flexible cate-
gories.

(3) Sample calculations and tables. A summary
of allowable shear (qd) and flexibility factors (F) for
some of the more common cross-sections is shown in
figure 5-19 and figure 5-20. Sample calculations
using the formulas for these cross-sections are given
in figures 5-21 through 5-25.

c. Type B Diaphragms-Decks Having an El.-
vated Plane of Shear Transfer. Multiple steel decks
with fluted elements adjacent to framing members

,and single plate steel decks with fluted elements in-
4.capable of being welded to framing with at least two
-' puddle welds per unit fall Into this category of

phragm. This type of diaphragm has only w
seam attachments. TIe units will be compos7
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sheets not less than 20 U.S. Standard gage. Seam
attachment spacing will not exceed 3 feet on center.
Typical details of Type B diaphragms and attach-
ments are shown in figures 5-26 through 5-28.

(1) Shear capacity. The working shear will be
limited to that determined by the following for-
mulas:

5-4. Typical attachment details are shown in fig
5-29, Details A and B.

12) Steel deck as a diaphragm
(a) Shear capacity. If the diaphragm shears

pass through the deck and its attachments, the
working shear will be determined by the following
formulas:

qD = q3 . q4. or qua whichever is the lesser, but
not to exceed 1.050 pounds per foot. 15-19) (5-27)

Cbs 0.6%2aL( (5-20)

q4 t.(1y X106 (5-21)

cite a,,,
CstC- X 106

q6= 2h"' (5-22)

12) Flexibility factor. The flexibility factor, F.
will be determined by the following formulas:

Where

q1, 92S(t + t) inwhich K-1,000 (5-28)

(5-29)

Where

qn

And

1.6 .S
20

F-F1 +F4 +F5

Where
(5-23)

(5-301

(5-31)qj=2 ;t+ ;

F. I .5-24)
F1~2 (tl+t)

F35- 15-25)
q3

Fs 20 000 (5-26)
LRq5

The flexibility of these diaphragms will fall into the
semi-rigid and semi-flexible categories.

d Steel Decks with Concrete FiLL This type of
diaphragm is composed of a galvanized steel deck
with a superimposed fill of concrete having a mini-
mum fc of 2,500 p.s.i. at 28 days and a minimum w
of 90 pounds per cubic foot. Minimum concrete fill
over the deck will be 2-1/2 inches. Temperature rein-
forcement will be used in the fill with the minimum
area of 6X611104-10. Steel decks less than 1-1/2
inches in depth do not qualify as diaphragms, thus
only the concrete is considered as the diaphragm per
paragraph 1) below. To satisfy anchorage require-
ments required in paragraph 5-4b, positive inter-
locking between the steel deck and the concrete can
.be achieved by either deck embossments or indenta-
tions, transverse wires attached to the deck corru-
gations, holes placed in the corrugations, or deck
profile in which the fluted elements are placed up so
that the fill is keyed with the deck. If interlocking
between the deck and the concrete is not achieved,
then mechanical anchorages will be required to an-
chor the fill to the supporting member as prescribed
in paragraph 5-4b(2).

(i, Concrete as a diaphragm. If the diaphragm
is loaded and reacted without shear stresses passing
through the deck or its attachments, the diaphragm
is a concrete diaphragm as described in paragraph

(b) Flexibility factor. The flexibility factor, F,
will be determined by using the formula:

F- 2Oq; 15-32)

The flexibility of these diaphragms usually falls is
the rigid category.

(c) Sample calculation and table. Typical at-
tachment details are shown in figure 5-29, Details C
and D. A summary of allowable shears qd) and flex-
ibilities (F) for a typical cross-section is shown in
figure 5-30. A solution to the formulas for a typical
cross-section of this type of diaphragm is given in
figure 5-31.

5-7. Wood Diaphragms. a. General Design Cri-
teria. The following criteria will be used to design
wood diaphragms. (Also, refer to chap 3, para
3-3(J)3b.)

(1) Straight sheathing. Straight sheathing dia-
phragms will be constructed of one- or two-inch
nominal boards, six or eight inches nominal in width
with boards laid at right angles to the rafters or
joists. Boards will be nailed.to each rafter or joist
and peripheral blocking using two 8d common nails
for 1-inchX6-inch and 1-inchX8-inch sheathing.
For 2-inch sheathing, nails will be three 16d. End
joints of adjacent boards will be separated by at
least two joist or rafter spaces with at least two
Woards between joints on same support. The dia-

.jIhragm shear value will be as indicated in table 5- 
Diaphragms of this category will have a value o
(see para 5-2f and table 5-1) in the order of 1,5bv
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table 5-5. Fxibiity and Addoace Shears

ALLOWABLE SHEAR
HORIZONTAL DIAPHRAGMS- F Lbs. /Lin.Ft. (qD)

1" Straight Sheathing 1,500 so

2" Straight Sheathing 1,500 40

Conventional 1" Diagonal
Sheathing - 16" & lINx" 250 300

Conventional 2" Diagonal
Sheathing 250 400

Special Construction 75 600

i'
NOTE: THE ALLOWABLE SHEARS SOWN IN TABLE ARE BASIC VALUES TO WHICH THE

FACTORS FOR SPECIES SHOWN IN FIGURE 6-13 WILL BE APPLIED.

el 9
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and will be considered a very flexible diaphragm.
They will not be used for laterally supporting ma-
sonry, concrete, or other walls which would be
seriously affected by high floor to floor deflection.

(2) Diagonal sheathing. The one-third increase
usually permitted on working stresses in seismic de-
sign is not applicable to the working shears given in
this subparagraph.

(a)1 Conventional construction. These dia-
phragms will be made up of 1-inch nominal sheath-
ing boards laid at an angle of approximately 45
degrees to supports. Sheathing boards will be di-
rectly nailed to each intermediate bearing member
with not less than two 8d nails for one-inch by six-
inch (1X6) boards and three 8d nails for boards
eight inches (8') or wider, and in addition three 8d
nails and four 8d nails will be used for six-inch (8
and eight-inch (8W) boards, respectively, at the dia-
phragm boundaries. End joints in adjacent boards
will be separated by at least two joist or stud
spaces, and there will be at least two boards be.
tween joints on the same support. Boundary mem-
bers at edges of diaphragms will be designed to re
sist direct tensile or compressive chord stresses and
will be adequately tied together at corners.

1. Conventional wood diaphragms may be
used to resist shears not exceeding 300 pounds per
lineal foot of width. Two-inch (2') nominal diago-
nally sheathed diaphragms may be used with a
maximum design shear of 400 pounds per lineal foot
if 16d common nails are used in lieu of the 8d nails
specified for 1 inch nominal sheathing.

2. This category of diaphragms has a value
of F of approximately 250 and will be considered as
very flexible diaphragms and will not be used to lat-
erally support masonry or concrete walls.

(b) Special construction
1. Special diagonally sheathed diaphragms

will include two adjoining layers of 1 inch nominal
sheathing boards laid diagonally and at 90 degrees
to each other.

2. Special diagonally sheathed diaphragms
also include single-layered diaphragms, conforming
to conventional construction and which, in addition,
will have all elements designed in conformance with
the following provision: Each chord or portion
thereof may be considered as a beam loaded with a
uniform load per foot equal to 50 percent of the unit
shear due to diaphragm action. The load will be as-
sumed as acting normal to the chord in the plane of
the diaphragm and either toward or away from the
diaphragm. The span of the chord, or portion
thereof, will be the distance between structural
members of the diaphragm, such as joists or

blocking, which serve to transfer the assumed -

to the sheathing.
3. Special diagonally sheathed diaphrani

may be used to resist shears, due to seismic forces,
provided such shears do not stress the nails beyond
their allowable safe lateral strength and do not ex-
ceed 600 pounds per lineal foot of width. For
approximating deflections, a value of F of 75 will be
used. Thus they fit into the category of flexible dia-
phragms.

(3) Plywood sheathing
(a) All boundary members will be propor-

tioned and spliced where necessary to transmit
direct stresses. Framing members will be at least a
2-inch nominal width. In generaL panel edges will
bear on the framing members and butt along their
center lines. Nails will be placed not less than three-
eighths inch 3/8) in from the panel edge, not more
than twelve inches (12-) apart along intermediate
supports and six inches (6W) along panel edge-
bearings, and will be firmly driven into the framing
members. No unblocked panels less than twelve
inches (12W wide will be used.

(b The stiffness of plywood diaphragm webs
varies with the thickness of plywood, nailing, and
the joint blocking. These variables also occur in the
determination of the working shear values of the
diaphragm. An F value for determining the sti l
category and for estimating deflections .
determined using the following formula.

33,0004 av

qD
Where

(5-33)

qD Allowable shear specified in table 5-6 in pounds per
foot.

(ci For plywood diaphragms the tabular
values of qD vary between 110 pounds per foot to
820 pounds per foot. From this, the value of F can be
determined as varying between 300 and 20. Thus,
plywood diaphragms can be very flexible, flexible,
or semi-flexible diaphragms depending on the selec-
tion of the type of diaphragm to be used.

(dJ Nailing. Pneumatically or mechanically
driven steel wire staples with a minimum crown
width of 7/16 inch is an acceptable alternate method
of attaching diaphragms. The crown of the staple
will be installed parallel to the framing member.

Common
-I wire nail Staple

Minimum staplepenetration
in framing member

1 inch
I inch

1-118 inch

;. 6d No. 14 gage
8d No. 13 gage

lOd No. 12 gage
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Tabe 5-6.
R mended Shear In Pounds per Foot for Horizontal Plywood Diaphragms with Framing of Douglas Fir. Lurch or Southern Pine (a)
for Wind or Seismic Loading

Blocked Diaphr Unblocked Diaphragms
Nail Spacnr (in.) at diaphragm
boda ries (all cases), at con- Nails Spaced 6 Max. at
tinuous panel edges paraflel to Supported Edges fbl

Common Mm al Mnmm M.~load (Case3 841 and at all
Gra* Common~~~~~in P netaion Minium Min d F~mtn panel edges (Cain S h 61 lb) Ca I All OtherGrade Nail Penetration Plywood of Framin 6(Not Case 1p

Size in Framing Thickness M ber 6 4 2 2 (No Unbloed Confl tions
(inchel (inch) Nail spacing (in.) at other plywood Cotns r(

panel edges. (Ca 1. 2. 3 &4 loints Parallel 2 3.

6 6 4 3 to Loadt

1-1/4 5/16 2 185s 250 375 420 165 125
STRUCTURALI 6d 1./ /63 210 280 420 475 185 140

STRUCTURAt I_
C-D INT-APA or 2 270 360 530 600 240 180
STRUCTURAL I 8d I.1 2 18 3 300 400 600 673 265 200
C-C EXT-APA 2 320 42S 640 ( 730(c) 285 21S

lOdi I.5/8 1/2 3 360 480 720 820 320 240

5'16 2 170 225 -335 380 IS0 110
3 190 250 380 430 170 125

6d 1.1/4 2 185 250 375 420 165 125
3/8 3 210 280 420 47S 185 140

C-D INT-APA_
STRUCTURAL 11 2 240 320 480 545 215 160
C-D INT.APA. 38 3 270 360 540 610 240 180
STRUCTURAL If 8d 1-1/2 ____270 - - 610 1 240 too
C-C EXT-APA, 1/2 2 270 360 530 600 240 180
and other APA grades 3 300 400 600 675 265 200
except Species Group 5

2 290 385 575 c) 6551c) 255 1901/2 .1 325 430 650 735 290 215
lOd 1-5/8 -

518 2 320 425 640 c) 730(c) 285 215
1 360 480 720 820 320 240

(a) For framing other species: (I) Find species group of lumber in Table 8. 1 A. NFPA (c) Reducetabulated allowable shears 1O percent when boundary members provide
1977 Nat'l Design Spec. 2) Find shear value rom table for nail size. and for lessthan 3-inch nominal nailingsurface.
Structural plywood (regardless of actual grade). 3) Multiply value by 0.82 or Notes: Design for diaphragm stresses depends on direction of continuous panel joints
Lumber Group III or 0.65 (or Lumber Group IV, with reference to load not on direction of long dimensions of plywood sheet.

(b) Space nails 12 in. on center along intermediate framing members or roofs, and Continuous framing may be in either direction for blocked diaphragms.
10 inches on center for floors..

(
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b. Typical Details. Refer to figures 5-32 through
5-35.

5-8. Horizontal bracing (wood or steel).
a. General Design Citeria The criteria used to de-
sign horizontal steel bracing will be the "Specifica-
tion for the Design, Fabrication. and Erection of
Structural Steel for Buildings," AISC. The criteria
for wood bracing will be "National Design Speci-
fication for Wood Construction." Reference should
be made to chapter 3, paragraphs 3-3(J)lg and
3-3(J)2d; paragraphs 5-2a(2) and 5-3d; and chapter
S. paragraph 6-7, where applicable.

5. General Discussion
(1) General systena The entire system must be

as simple, direct, positive, and effective as practica-
ble. Although it is ordinarily preferable in nonsels
mic design to have one definite, predetermined, and

adequate means of resisting any given load
seismic purposes, when the damage to a spy
truss, column. or other member could cause com-
plete failure, multiple systems are generally used.
For example, if one truss is damaged, these braces
would pick up its load sufficiently to prevent com-
plete collapse.

(2) Functions of roof and floor bracing. Te
basic functions of roof or floor bracing are to: (a)
keep the top (compression) chords of trusses (or
frames) from buckling laterally, b) prevent trusses
from tipping over, (c) steady the columns, and d)
trwnsmit the lateral forces to the vertical bracing
system.

(3) Connection& lieu of developing the full
capacity of the member or part concerned, the con-
nections will be designed for 1.25 times the design
force without the one-third increase usually permit-
ted.

n2d.ft �-�
4. Z Z. -MM."IM."R.

1,

I?
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CHAPTER 6
WALLS AND BRACED FRAMES

6-1. Purpose and scope. This chapter pre-
scribes the criteria for the design of walls and
vertical bracing of buildings for seismic resistance;
indicates the principles and factors governing the
application of horizontal forces normal to the plane
of walls, parallel to the plane of walls (shear walls),
and parallel to the plane of braced frames; gives cer-
tain design data; and illustrates typical details of
construction.

6-2. General. Buildings are composed of vertical
and horizontal structural elements which resist lat-
eral forces. The forces originating from the mass of
vertical elements may be transferred either directly
to the ground, as in the case of vertical cantilevers,
or to horizontal resisting elements other than the
ground through vertical beam action of the vertical
elements. The forces originating from the mass
tributary to horizontal elements are distributed by
such horizontal elements to vertical elements which
in turn transmit such forces to the ground. Vertical
elements used to transfer lateral forces to the
ground are: (1) shear walls, (2) braced frames, and (3)
moment resisting frames. This paragraph covers
basic functions, essential characteristics, and seis-
mic loads for walls (loaded normal and parallel to
their plane) and braced frames. Specific factors, cri-
teria, and typical details of design of walls and
braced frames using various materials of construc-
tion are described in paragraphs 6-3 through 6-8.
Moment resisting frames are covered in chapter 7.

a. Types of Walls and Loading Conditions. Walls
may be subjected to both vertical (gravity) and hori-
zontal (wind or earthquake) forces. A wall carrying a
vertical load other than its own weight is called a
bearing wall. The horizontal forces acting on a wall
may be either normal to the wall or parallel to the
wall. A shear wall resists horizontal forces parallel
to the wall. Any wall or partition which carries a ver-
tical load other than its own weight, and/or. which
resists a horizontal force parallel to the wall, is
classified as a structural wall. The combined effects
of horizontal forces and vertical load on a wall must
be considered. Walls and partitions must be de-
signed to withstand all vertical loads and horizontal
forces, both parallel to and normal to the flat
surface, with due allowance for the effect of any ec-
centric loading or overturning forces generated.
Any wall which is isolated on 3 sides (both ends and
top) so as not to resist external loads or forces paral-

lel to the wall is classified as nonstructural. A
nonstructural wall shall be able to resist horizontal
wind or seismic forces normal to the wall. Noniso-
lated walls will obviously participate in shear
resistance to horizontal forces parallel to the wall,
since they tend to deflect and be stressed when the
framework or horizontal diaphragms deform under
lateral forces.

b. Loads Normal to Walls. Walls and partitions
must safely resist horizontal seismic forces normal
to their flat surface (figs 6-1 and 6-3 and fig 4-5);
and moments and shears induced by relative
deflections of the diaphragms above and below (fig
6-2). For diaphragm deflections refer to chapter 5.
When a wall resists horizontal forces perpendicular
to it, it usually distributes such loads vertically to
the horizontal resisting elements above or below. It
may also distribute horizontally to shear walls or
frames (chap 4, para 4-4d and fig 4-5). A wall may
be either continuous or discontinuous across its sup-
ports. The horizontal seismic force normal to a wall
is a function of its weight. The formula given in
chapter 3, paragraph 3-3(G), for the magnitude of
this force is F = ZICpW, with Cp = 0.30. (For
cantilevered walls, see paragraph c below.) This
seismic force will be applied to the wall in both in-
ward and outward directions. However, wind forces,
other forces, or interstory drift will frequently gov-
ern the design.

c. Cantilevered Walls. Where walls, such as para-
pets, are cantilevered, the anchorage for reaction
and cantilever moment is required to be fully devel-
oped (fig 6-3). Cp for this condition is 0.80 per
chapter 3, paragraph 3-3(G) and table 3-4. Where a
parapet wall is anchored to a concrete roof slab and
is not a continuation of a wall below, the roof slab
will be designed for the cantilever moment. Where
the parapet is a continuation of a wall below, the
cantilever moment will be divided between the con-
crete slab and the wall below in proportion to their
relative stiffnesses. Where the parapet is an exten-
sion of a wall below and is anchored to a roof or floor
of wood, metal deck, or other similar materials, the
moment at the base of the parapet will be developed
into the wall below. In this case the anchorage force
to the roof will be determined by the usual methods
6f. analysis, assuming a pinned condition for the con-
nection of the roof to the wall.

d. Shear Wall-Loads Parallel to Wall.
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Horizontal forces at any floor or roof level are gener-
ally transferred to the ground foundation) by using
the strength and rigidity of shear walls (and parti-
tions). A shear wall may be considered analogous to
a cantilever plate girder standing on end in a verti-
cal plane where the wall performs the function of a
plate girder web, the pilasters or floor diaphragms
function as web stiffeners, and the integral rein-
forcement of the vertical boundaries function as
flanges. Axial, flexural, and shear forces must be
considered in the design of shear walls. The tensile
forces on shear wall elements resulting from the
combination of seismic uplift forces and seismic
overturning moments must be resisted by anchor-
age into the foundation medium unless they can be
overcome by gravity loads (e.g., 0.9 of dead load)
mobilized from neighboring elements (this is dis-
cussed more fully in chap 4, para 4-4b, 4-4c(2), and
4-8). A shear wall may be constructed of materials
such as concrete, wood, unit masonry, or metal in
various forms. Working stresses of such materials
as cast-in-place reinforced concrete and reinforced
unit-masonry are well known and present no prob-
lem to the designer once the loading and reaction
system is determined. Other materials frequently
used to support vertical loads from floors and roofs
have well-established vertical load-carrying charac-
teristics but have required tests to demonstrate
their ability to resist lateral forces. Various types of
wood sheathing and metal siding fall into this cate-
gory. Where a shear wall is made up of units such as
plywood, gypsum wallboard, tilt-up concrete units,
or metal panel units, its characteristics are, to a
large degree, dependent upon the attachments of
one unit to another and to the supporting members.

(1) Rigidity. The magnitude of the total lateral
forces at any story or level depends upon the struc-
tural system as a whole. The proportion of that total
horizontal load carried by a particular shear wall is
based on its relative rigidity considering the rigidity
of the other walls and the diaphragms. The rigidity
of a shear wall is inversely proportional to its deflec-
tion under a unit horizontal force. Where shear walls
are tied together by a rigid diaphragm or bracing so
that all must deflect equally, the total translational
lateral force is shared in direct proportion to their
relative rigidities (torsional moments must also be
considered, chap 4, para 4-4e(2)). Wall deflection is
the sum of the deformations due to shear and
flexure (fig 6-4) plus any additional displacement
that may occur due to rotation at the base.

(a) The rotation at the foundation can greatly
influence the overall rigidity of a shear wall because
of the very rigid nature of the shear wall itself; how-

ever, the rotational influence on relative rigidities of
walls for purposes of horizontal force distribution
may not be as significant. Considering the complex-
ities of soil behavior, a quantitative evaluation of
the foundation rotation is generally not practical,
but a qualitative evaluation, recognizing the limita-
tions and using good judgment, will be provided.

(b) The relative rigidity of concrete or unit
masonry walls with normal openings is usually
much greater than that of any building framework.
Thus, the walls tend to resist essentially all or a ma-
jor part of the lateral force.

(2) Shear wall with openings. The impact on the
size and number of openings in shear walls to resist
lateral forces must be considered. If openings are
very small, their effect on the overall state of stress
in a shear wall is minor. Large openings have a more
pronounced effect and, if large enough, result in a
system in which typical frame action predominates.
Openings normally occur in regularly spaced verti-
cal rows throughout the height of the wall and the
connection between the wall sections is provided by
either connecting beams (or spandrels) which form a
part of the wall, or floor slabs, or a combination of
both. If the openings do not line up vertically and/or
horizontally, the complexity of the analysis is
greatly increased. In most cases, a rigorous analysis
of a wall with openings is not required. When de-
signing a wall with openings, the deformations must
be visualized in order to establish some approximate
method to analyze the stress distribution to the
wall. Figures 6-4 and 6-5 give some visual descrip-
tions of such deformations. The major points that
need to be considered are: (1) the lengthening and
shortening of the extreme sides (boundaries) due to
deep beam action, (2) the stress concentration at the
corner junctions of the horizontal and vertical com-
ponents between openings, and (3) the shear and di-
agonal tension in the horizontal and vertical compo-
nents.

(a) Relative rigidities of piers and spandrels.
The ease of methods of analysis for walls with
openings is greatly dependent on the relative rigidi-
ties of the piers and the spandrels, as well as the
general geometry of the building. Figure 6-6 shows
two extreme examples of relative rigidities ofexte-
rior walls of a building. In figure 6-6a the piers are
very rigid and the spandrels are very flexible.
Assuming a rigid base, the shear walls act as verti-
cal cantilevers. When a lateral force is applied, the
spandrels act as struts which flexurally deform to be

;mpatible with the deformation of the cantilever
piers. It is relatively simple to determine the forces
on the cantilever piers by ignoring the deformation
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(a) Shear Deformation (b) Flexural Deformation

Figure 6-4. Shear WaLZ Deformation
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characteristics of the spandrels. The spandrels are
then designed to be compatible with the pier defor-
mations. In figure 6-6b, the piers are relatively
flexible compared to the spandrels. The spandrels
are assumed to be infinitely rigid and the piers are
analyzed as fixed ended columns. The spandrels are
then designed for the forces induced by the columns.
The overall wall system is also analyzed for over-
turning forces that induce axial forces into the
columns. The calculations of relative rigidities for
both cases shown in figure 6 can be aided by the
charts in figure 6-11, paragraph 673b(3). For cases
of relative spandrel and pier rigidities other than
those shown, the analysis and design becomes more
complex.

li Methods of anaysi. Approximate moth-
ods for analyzing walls with openings are generally
acceptable. (See app C, example C-4.) For the simple
cases shown in figure 6-6 the procedure it straight-
forward. For more complex cases, a variation of as-
sumptions may be used to determine the most crit-
ical loads on various elements, thus resulting in a
conservative design. (Note In some cases a few ad-
ditional reinforcing bars, at little additional cost,
can greatly increase the strength of shear walls with
openings.) However, when the reinforcement re-
quirements or the resulting stresses of this ap-
proach appear excessively large, a rigorous analysis
may be justified.

(3) Dual systems. Buildings may utilize both
shear walls and moment resisting space frames to
resist lateral forces. The total lateral load is
assumed to be resisted by the shear walls and the
frame is assigned to resist nominally 25 percent of
the total lateral load. It is assumed that the contri-
bution of the frame for lateral resistance will
provide redundancy and will provide a reserve
strength against complete collapse if the shear walls
should fail. However, the difference in behavior be-
tween walls and frames results in non-uniform
interacting forces between these elements when
they are connected together by floor slabs (see chap
4, para 4-4e(3) and fig 4-7). Therefore, the distribu-
tion of forces in accordance with the relative
rigidities and the interaction of walls and frames
must also be considered (table 3-3).

(4) Special loading and detail requirements. All
portions of a shear wall will be designed to resist the
combined effects of axial loads (if any) and other
boundary forces as determined from a rational dis-
tribution of the total prescribed lateral forces on the
structure as a whole. Special criteria to control
brittle behavior and to provide greater elastic re-
sponse capacity of shear walls in concrete and unit-
masonry are required as stipulated in paragraph 6-3

and in chapter 3, paragraph 3-3(J)lh, respectiv
A modified load factor for shear and diagonal K
sion is used for buildings without a 100 percei
ductile moment resisting space frame. Vertical
boundary elements (e.g., structural steel or confined
reinforcement) are to be provided at the edges of
shear walls (and similar confinement adjacent to
wall openings) under certain prescribed conditions
(para 6-3a(lld) and 6-8).

e. Braced Frames. The use of braced frames is an
acceptable alternative method to resist lateral
forces in place of shear walls. The material may be
reinforced concrete, structural steel or wood. Verti-
cal bracing systems are used to transfer the
horizontal forces at the floor or roof levels to the
foundations. The function of the bracing is to resist
forces that tend to deform the building in the direc-
tion parallel to the plane of that bracing, and to
transmit these lateral loads to the foundation. As
with other systems, the deformations to be expected
in a major earthquake can be much greater than
those found using the prescribed forces. As the duc-
tility of conventional braced systems has not been
adequately demonstrated, multiple braces (see fig
6-7) should be used whenever possible to increase
the redundancy. See paragraph 6-7 for vertically
braced frames.

(1) Layout When planning a bracing systex
a building consider the structure as a whole (see hbo-'
5-4 and 6-7; also, refer to chap 5, para 5-2a(2), for
horizontal bracing systems). Visualize the ways in
which a structure might fail, and provide bracing to
keep the structure from collapsing. The designers
must be certain just where every door, window,
passageway, obstruction, and other controlling fea-
tures will be located before placing the bracing. The
architect must be certain just where the bracing is
to be placed before deciding the type of fenestration.

(2) Lateral force resistance. The braced framing
must be designed to carry the lateral force reactions
from the roof and floors. The entire system must be
as simple, direct, positive, and effective as practica-
ble. However, multiple systems will generally be
used for seismic purposes when the damage to a
specific member could cause complete failure. For
example, if one braced frame should be damaged,
the other braced frames would pick up its load suffi-
ciently to prevent complete collapse. Locate vertical
braced frames so as to limit torsion.

C6-3. Cast-In-place concrete shear walls and
,concrete braced frames. a. General Desitm
Criteria The criteria used to design reinforced
crete shear walls will be ACI 318-77 except Ap_'
dix A. and as modified by the SEAOC Section 3 (re-
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Concrete Floor and Roof
Diaphragms, (assued)-

(NOTE: See Figure 5-4 for system with horizontal bracing
system.)

Figure 6-7. Bracing for A Tier BuiLding
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printed below) and In this manuaL For tilt-up and (1) SEAOC Section 3 Concrete ShOr Wall
other precast concrete shear walls refer to para, and Braced Framesd (Modifications are in itaUlc
graph 6-4.

(A) General.
Design and construction of reinforced concrete shear walls and reinforced

concrete braced frames used to resist seismic forces shall conform to the re
quirements of the A.C.I. Building Code, A.C.I. 318, and all the requirements of
SEAOC Section 3 as modified herein.

Shear walls and braced frames shall be designed by the strength design
method except that the alternate design method may be used provided that
the factor of safety in shear and diagonal tension is equivalent to that achieved
with the strength design method.

AC.I. 318, for earthquake loading, shall be modified to:
U - 1.4(D+L) + 1.43 (E)
U = 0.9D + 1.4E (6-2)

provided further than 2.0 E shall be used In both equations in calculating shear
and diagonal tension in buildings other than those complying with require-
mentsforbuildingswithK 0.67.

(B) Braced Frames.
Reinforced concrete members of braced frames subjected primily to

axial stresses shall have special transve reinforcing as set forth in Section
2(E)40 throughout the full length of the member. Tension members shall addi-
tionally meet the requirement for compression members.

EXCEPTION: In Zone 1 and for Zone 2 buidings under 160 feet, the pro-
visions of chapter 7, paragraphs 7-4a(15) and (16) wiU satisfy this requirement.

(C) Shear and Diagonal Tension Strength Design.
1. Shear Stress. The nominal ultimate shear stress vu, resulting from

forces acting parallel to shear walls shall be computed by

=V u' p (6-3)

where
Vu = Ultimate shear computed according to Section 1 and including

the effect of gravity loads.
A0 Area of concrete sections resistingVu.

2. Shear Stress Limit. The ultimate shear stress vu thus computed Shl
not exceed that given by

vu=2Vrt2+pfy, (6-4)
where "p" is the ratio of the area of reinforcement to the area of concrete

'From the publicatiom "Recommended Lateral Force Requlementa and Commentary" by the
Seismology Committee, Structural Engineers Assocation of California. Copyright 1976,
Structural Engineers Assocation of California, and reproduced with permission.

lFormulas have been renumbered such that SEAOC Formula 3-1 Is designated as 6-11I this
manuel.

ISEAOC Section 2. Concrete Ductile Moment Resisting Space Frames, is reprinted, a modi-
fed In this manual, as chapter 7, paragraph 7-3a(lXesg, Section 21E4 Is paragraph 7-3a1)(E)4.

6-8
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section resisting the shear Vu. At least an equal percentage of reinforce-
ment p" shall be provided perpendicular to that required to satisfy
Formula (6-4).
The average horizontal shear vu for all wall piers sharing a common lateral
force component shall not exceed

8VQ (6-5)
and the vu in any of the individual wall piers shall be not more than

i O V (6-6)
The value of the vertical shear vu shall not exceed

10VZ (6-7)
for horizontal wall elements.
3. Minimum Reinforcement. The minimum reinforcing ratio "p" for

all walls designed to resist seismic forces acting parallel to the wall shall be
0.0025 each way. The maximum spacing of reinforcement each way shall not
exceed dls or eighteen inches (180), whichever is smaller, where "d" is the di-
mension of the wall element parallel to the shear force. That portion of the wall
reinforcement required to resist design. shears shall be uniformly distributed.
See figure 6-&

4. Anchorage of Reinforcement. Wall reinforcement required to re-
sist wall shear shall be terminated with not less than a 90 degree bend plus a 6
bar diameter extension beyond the boundary reinforcing at vertical and hori-
zontal end faces of wall sections. Wall einforcement terminating in boundary
columns or beams shall be fully anchored into the boundary elements.

(D) Vertical Boundary Members for Shear Walls. (See figure 6-9)
Special vertical boundary elements shall be provided at the edges of con-

crete shear walls designated as Shear Wall Type A in chapter .t table $-7Zd
These elements shall be composed of concrete encased structural steel ele-
ments of ASTM, A86, A441, A50 (Grades B and CA A501, A572 (Grades 42,
45, 50 and 55) orA588 or shall be concrete reinforced as required for columns in
Section 2(E) with special transverse reinforcement as described in Section
2(E)4 for the full length of the element The longitudinal reinforcing in these
concrete boundary elements shall conform to the requirements of Section
2(C)2.e (Le., chap 7, para 7-&z(l)(C2).0

The boundary vertical elements and such other similar vertical elements
as may be required shall be designed to carry all the vertical stresses resulting
from the wall loads in addition to tributary dead and live loads and from the
horizontal forces as prescribed in chapter & Horizontal reinforcing in the walls
shall be fully anchored to the vertical elements.

Similar confinement of horizontal and vertical boundaries at wall openings
shall also be provided'unless it can be demonstrated that the unit compressive
stresses at the opening are less than the prescribed limits when using For-
mulas (6-1) and (6-2) modified with 2.OE instead of 1.4E.

d1n Zones 2, $ and 4 ths Includes K 1.0 buildings ver 80 feet in height and all K = 0.8
buildings. In Zone 1. this Includes K = 0.8 buildings over 80 feet In height.

'1980 SEAOC Revions.
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NOTES: For Sections A-A, B-B, and C-C, see Figure 6-10.
Special vertical boundary members, as shown above, shall be
provided at the edges of concrete shear walls designated as
Shear Wall Type A (paragraph 6-3a(1)(D)).

Figure 6-9. Shear Wall Type A - Special Boundary Members
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(2) Classifieation of concrete shear walls and
concrete braced frames. Concrete shear walls and
braced frames are classified under three categories
for use in table 3-7 in section 3-6.

(a) Shear Wai Type A. Reinforced concrete
shear walls with vertical boundary members, de-
signed in accordance with the provisions. of para-
graph 6-3a(1), are classified as Shear Wall Type A.

(bi Shear Wail Type B. Reinforced concrete
shear walls designed similar to Shear Wall Type A,
with the exception of paragraph 6-3a(lHD) (i.e., spe-
cial vertical boundary elements are not required),
are classified as Shear Wall Type B.

(ci Braced frames. Reinforced concrete braced
frames will be designed in accordance with the pro-
visions of paragraph 6-3a(l)(B).

b. Discussion of WaIlDeflections,ShearDistribu-
tion, and Assumptions

(1) Wail deflections. The deflection of a concrete
shear wall is the sum of the shear and flexural deflec-
tions. In the case of a solid wall with no openings the
computations of deflection are quite simple. How-
ever, where the shear wall has openings in it, as for
doors and windows, the computations for deflection
and rigidity are much more complex. An exact anal-
ysis, considering angular rotation of elements, rib
shortening, etc., is very time consuming. For this
reason, several short-cut approximate methods in-
volving more or less valid assumptions have been
developed. These do not always give consistent or
satisfactory results. Therefore, conservative ap-
proach and judgment must be used. Refer to para-
graph 6-2d(2) for additional discussion.

(2) Shear distribution. It is necessary to make a
logical and consistent distribution of story shears to
each wall. Rigidity analysis is discussed in chapter
4, paragraph 4-4e, and in paragraph 6-2d of this
chapter. An exact determination of the story shear
distribution is very difficult and is not necessary.
Approximate methods in which the deflections of
portions of walls are combined usually are adequate.
Examples illustrating various methods of rigidity
computations are shown in appendix C.

(3) Deflection charts. Deflection charts for
fixed-ended corner and rectangular piers are shown
in figure 6-11. Curves 5 and 6 are for cantilever cor-
ner and rectangular piers. The corner pier curves are
for the special case where the I (moment of inertia)
of the corner pier is 1.5 times the I of a rectangular
pier. For other I values the bending portion of the
deflection would be proportional. The deflections
shown on the charts are for a horizontal load P of
1,000,000 pounds. The deflections shown on the
charts are reasonably accurate. The formulas writ-

ten on the curves can be used to check the result
However, the charts will give no better results ti.
the assumptions made in the shear wall analyst-
For instance, the point of contraflexure of a vertical
pier may not be in the center of the pier height. In
some cases the point of contraflexure may be
selected by judgment and an interpolation made be-
tween the cantilever and fixed conditions.

(4) Assumptions
(a) The foundation is unyielding or that soil

pressures will vary as a straight line under a wall
when subjected to overturning. These may not al-
ways be realistic assumptions, but are generally
adequate for design purposes.

(bi Where the openings in a shear wall are so
large that the resulting wall approaches an assem-
bly similar to a rigid frame (hid values off the chart),
the wall will be analyzed as a rigid frame.

c. Construction Joints and Dowels. The contact
faces of shear wall construction joints have exhib-
ited slippage and related drift damage in past
earthquakes. Consideration must be given to loca-
tion and details of construction joints. They must be
clean and roughened. It is highly desirable to pro-
vide intermittent shear keys in Seismic Zone Nos. 3
and 4. Shear friction reinforcement may be provided
in accordance with ACI (318-77) Section 11.7. A r
efficient of friction of 0.6 is suggested to account,
seismic effects.

6-4. Tilt-up and other precast concrete shear
walls. a. Analysis. Where tilt-up or precast con-
crete walls are used as shear walls, the basic
analysis is the same as that for walls of cast-in-place
concrete. In this case the boundary conditions be-
come critical and the shears between precast and
cast-in-place elements must be analyzed. Shears be-
tween two precast elements or between a precast
element and a cast-in-place element may be devel-
oped by shear keys, dowels, or welded inserts. The
contact joint itself is a cold joint and will be given no
shear or tension value.

b. Joints. Weakened plane joints are frequently
provided in poured-in-place concrete to route cracks
caused by shrinkage or temperature change. These
joints normally do not affect the analysis of shear
walls. However, in precast concrete elements, joints
are frequently provided which structurally separate
one element from another. In the case of precast
wall construction, for instance, one might have a se

of concrete elements tied together at top and
Xttom but structurally separated from each oths
by vertical joints. Since all elements in a line are t
together at the top they must have equal horizon.
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deflections and therefore a horizontal force parallel
with the line of units will be resisted by the individ-
ual elements in proportion to relative rigidities.
Such elements may not have equal rigidities since
some may contain large openings or may be of dif-
ferent height-width ratios. Some elements may
deflect primarily in shear and others primarily in
flexure. Where significant dissimilar deflections are
found, the building elements tying the individual
units together must be analyzed to determine their
ability to resist or accept such deformations in-
cluding angular rotation without losing their ability
to function as ties or diaphragm chords or footings.
The use of mechanical keys or sleeved dowels may
be used to assist in eliminating differential move-
ment of adjacent precast panels separated by
control joints where appearance and weather-tight-
ness are otherwise satisfactorily provided.

c Connectors for Shear Walls. Past experience in-
dicates that the performance of weld plates or other
nonductile connectors has been poor and in many
cases they have resulted in failures during earth-
quakes. These connectors have been weak links in
the shear wall connection. It is important that the
load bearing shear walls be more stringently or con-
servatively designed since any connector failure
during an earthquake may result in progressive fail-
ure to collapse. Therefore, all connectors for load
and nonload bearing walls will be designed for three
times the actual seismic shear forces. The shear
force will be uniformly distributed throughout the
height or length of the shear wall with reasonably
spaced connectors (maximum spacing 4'-0) rather
than with a few which will have localized concentra-
tion of stresses. Detailed calculations will be made
including the localized effects in concrete walls
attributed from these connectors. Sufficient details
of connectors and embedded anchorage will be pro-
vided to preclude construction deficiency.

d. Typical Details. Refer to figure 6-12 for typical
details of attachments.

6-5. Wood stud shear walls. a. Working
Shears Except Plywood Figure 6-13 gives in tabu-
lar form the maximum height-width ratios and
allowable shear per lineal foot for wood stud shear
walls with various types of sheathing or plaster ex-
cept for plywood sheathed walls. The usual 33-1/3
percent increase for short-time seismic loads is not
applicable to these allowable shear values. The
strength of any wood stud shear wall may be made
up of a combination of the materials listed. In no
case shall the allowable shears for combinations of
materials exceed 600 pounds per lineal foot.

TM 5-809-10
NAVFAC P-355

AFM 88-3, Chap. 13

b. Working Shears for Plywood Details of ply-
wood sheathed walls are shown on figure 6-14 and
the allowable working shears are shown in figure
6-15. When a combination of plywood and other ma-
terials is used, the shear strength of the walls will be
determined by the values permitted for plywood
alone (fig 6-15).

c. Deflections. The deflection of wood frame shear
walls at the present time is not readily computable.
The maximum height-width limitations given herein
are presumed to satisfactorily control deflections.
Relative stiffnesses of wood stud shear walls will be
measured by the effective lineal width of walls or
piers between openings.

d. Let-In Brace. Except when used in combina-
tion with diagonal sheathing or plywood, a one-inch
by four-inch brace let into the studs may be used to
resist an additional horizontal force not exceeding
1,000 pounds, provided the total value of the shear
wall does not exceed 600 pounds per foot. Each such
brace shall be nailed to each stud and to the top and
bottom plates with two 8d nails.

e. Wall Tie-Down. The end studs of any plywood
sheathed shear wall and/or shear wall pier will be
tied down in such a manner as to resist the overturn-
ing forces produced by seismic forces parallel to the
shear wall. This overturning force is sometimes of
sufficient magnitude to require special steel attach-
ment details. A commonly used detail is shown on
figure 6-16. Tie-downs will be computed using the
required stresses for wood and its fastenings in-
creased 33-1/3 percent for seismic forces.

6-6. Steel stud walls. Some small structures
may be constructed using steel stud structural
walls. In order for this type of wall to be capable of
acting as a shear wall, some form of bracing is re-
quired. When the design forces permit, the detail
shown on figure 6-17a may be used to resist a total
of 1,000 pounds. In larger buildings where the de-
sign forces become greater, this method is impracti-
cal and other shear wall systems may be required.
Figure 6-17b shows typical details at top of walls.

6-7. Vertically braced frames. a. General De-
sign Criteria. The criteria governing the design of
vertical braced frames will be chapter 3, paragraph
3-3(J)lg, paragraph 6-2 of this chapter, and as pre-
scribed in this paragraph.

11) Structural steel braced frames. Members of
braced frames will be composed of ASTM A86,
4441, A500 (Grades B and C), A501, A672 (Grades

'2, 45, 50, and 55), or A588 structural steel and will
conform to the AISC "Specification for Design,
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Recommended Shear In Pounds Per Foot for Plywood Shear Walls with Framing of Douglas Fir. Larch. or Southern Pine (a)
For Wind or Seismic Loading (O)

Plywood Applied Plywood Applied Over
Direct to Framing 1tr Gypsum Sheathing

Minimum Minimum
Nominal Nail

Plywood Grade Plod Penetration Nail Size Nail Spacing t Plywood Nail Size Nail Spacing at Plywood
Thicknns in Framing (cornmon or Panel Edges (in.) (common or Panel Edges (in.)

(in. (in.) galvanized - - galvanized -

box) 6 4 2y, 2 box) 6 4 2%S 2

5/16 1.1/4 6d 200 300 450 510 8d 200 300 450 510

STRUCTURAL IC-DINT-APA. or 3/8 1.1/2 8d 230(d) 360(d) 530(d) 610(d) tOd 280 430 640(e) 730(e)
STRUCTURAL I C-C EXT-APA _

1/2 1-5/8 10d 340 510 770(e) 870(e) _ _ _ _ -

C.D INTAPA 5116 or 1/4 (c 1-1/4 6d 180 270 400 450 8d 180 270 400 450
C-C EXT-APA
STRUCTtiRAL 11 C-D INT-APA 3/8 1-1/2 Sd 220(d) 320(d) 470(d) 530(d) 1Od 260 380 570(e) 640(e)
STRUCTURAL 11 C-C EXT.APA _
APA panel siding tf)and other
APA gradesexcept species 1/2 1-St8 lOd 310 460 690(ej 770(e) _ _ _ _
Group S.

NailSize - - Nail Size _
(galvanized (galvanized

APA grades except species 5/16(c) 1-1/4 cnit)t 140 210 320 360 Casing) 140 210 320 360
Group 5: 6d 8d _

3/8 1-1/2 8d 130(d) 200(d) 300(d) 340(d) 1Od 160 240 360 410

(a) For framing of other species: (1) Find species group of lumber in the NFPA Nat'l (c) 3/8-inchor3O3-16o.c. isminimumrecommendedwhenapplieddirecttoframingas
Design Spec. (2)(a For common or galvanized box nails fird shear value from table exterior siding
for nail size, and for STRUCTURAL I plywood (regardless of actual grade). b) For (d) Shears may be Increased 20 percent provided (1) studs are spaced a maximum o 16
galvanizedcasingnails,takeshearvaluedirectlyfromtable.(3)Multlplythisvalueby inches oc., or (2) plywood is applied with face grain across studs, or (3) plywood is
0.82 for Lumber Group Ill or 0.65 for Lumber Group IV. 1/2-inch or greater in thickness.

(b) All panel edges backed with 2-inch nominal or wider framing. Plywood installed (e) Reduce tabulated sheats 10 percenx when boundary members provide kss than 3-inch
either horizontally or vertically. Space nails 6 inches o.c. along intermediate mem- nominal nailing surface.
bers for 3/8-inch plywood with face grain parallel to-studs spaced 24 inches oc. For If 303-16 o.c. plywood may be S/16-inch. 3/8-nch or thicker. Thickness at point of
other conditions and plywood thicknesses, space nails 12 inch o.c. on Intermediate nailing on panel edges governs shear values.
supports.

Load -- arFraming

Shear wall bundarI

Shear wall boundary

Blocking Fra in7

I 1 eIstaH e
Foundation resistance

In

Z
W> .

. I"
e > ,= asa -P I -0

W 15 4n .
111011 0

Reprinted with permission from Table 22 and Figure 19 in PLYWOOD CONSTRUCTION GUIDE,
@ 1978 American Plywood Association.
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Fabrication, and Erection of Structural Steel
Buildings."

(2) Reinforced concrete braced frames. Will con-
form to the requirements of paragraph 6-3a(lXB).

(3) Wood braced frames. Wood braced frames
will be designed using normal procedures illustrated
in many easily obtainable texts and are not covered
in this manual. "National Design Specifications for
Wood Construction" (1977 Edition and 1980 Sup-
plement), NFPA, applies.

b. GeneralDiscussion.
(1) Definition of braced frame. In chapter ,

paragraph 3-3(B), a braced frame is defined as a
truss system or its equivalent which is provided to
resist lateral forces and in which the members are
subjected to axial stresses. The determination of
whether a bracing system, such as one utilizing deep
knee braces, is a braced frame or a moment resisting
frame is explained in the 1960 SEAOC Commentary
(p. 32) as follows: "If the deflection of a braced bent
is predominantly due to bending and rotation of in-
dividual members rather than the direct stress
distortion of shear carrying bracing nembers, it
may be considered a frame; if it deflects primarily
due to the distortion of the shear carrying member it
is a shear wall." Braced frames may be made of any
approved structural material (para 6-2e). Braced
frames may be of various forms. The X-braced pan-
els, consisting of diagonal tension members and
vertical compression members, are most frequently
used (fig 6-18). Trussed portal bracing or K-bracing
is frequently used to permit unobstructed openings
Ifig 6-20). Braced frames with single diagonal mem-
bers capable of taking compression as well as
tension are used to permit flexibility in the location
of openings (fig 6-19). The deflection of braced
frames is readily computed using recognized
methods.

(2) Function of braced frame. The function of
the bracing is that of resisting forces that tend to
deform the building in a direction parallel to the
plane of that bracing, and to transmit these lateral
loads to the foundation. As with other systems, the
deformations to be expected in a major earthquake

TM 5-809-10
NAVFAC P-355

AFM 88-3, Chap. 13

can be much greater than those found using the pre-
scribed forces. As the ductility of the usual braced
systems has not been adequately demonstrated,
multiple braces should be used whenever possible
(see para 6-2e).

(3) Connections. Obviously, a member will not
support loads in excess of what its connections and
other details can hold. As a general principle, these
details should be sufficient to develop the useful
strength of the member or part concerned, regard-
less of calculated stress. In lieu of developing the
full capacity of the member or part concerned, the
connections will be designed for 1.25 times the de-
sign force without the one-third increase usually
permitted.

a SpecialRequirements for Braced Frames. Refer
to chapter , paragraph -3(J)lg, for special load
factor and connection requirements for braced
frames. Reference should also be made to the
SEAOC Commentary, pages 47-C and 48-C.

6-8. Masonry shear walls. Distribution of
shears to masonry walls will be in a similar manner
as described for cast-in-place concrete walls. For
typical masonry shear wall details, see chapter 8,
Reinforced Masonry. When masonry shear walls are
used as part of a dual system (i.e., K=0.8 per cat-
egory 3 in table 3-3) in Seismic Zones 2, 3, or 4,
special vertical boundary elements are required.
These elements will be composed of structural steel
or reinforced concrete in accordance with paragraph
6-3a(l)(D) or will be composed of masonry columns
or pilasters in accordance with chapter 8, paragraph
8-14.

6-9. Metal wall systems. Metal wall panels or
sidings less than 22 gage are not permitted for use
as shear walls. Metal decking and attachments com-
plying with chapter 5, paragraph 5-6 will be
permitted for use as shear wall diaphragms.

EXCEPTION: In Seismic Zone 1, a pre-
engineered metal building with panels less than
22 gage requires that load tests be submitted
for evaluation and approval.

k ?
P.?
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CHAPTER 7
SPACE FRAMES

7-1. Purpose and scope. This chapter pre-
scribes the criteria for design of moment resisting
space frames of buildings in seismic areas; indicates
principles, factors, and concepts involved in seismic
design of moment resisting frames; gives design
data; and illustrates typical details of construction.
For braced frames which act as shear walls, refer to
chapter 6.

7-2. General. A space frame, as defined in chap-
ter 3, paragraph 3-3(B), is a three-dimensional
structural system, without bearing walls, composed
of interconnected members laterally supported so as
to function as a complete self-contained unit with or
without the aid of horizontal diaphragms or floor
bracing systems.

a. Seismic Space Frames. Horizontal forces at
any floor or roof level are transmitted to the founda-
tion (ground) by using the strength, rigidity, and
ductility of a moment resisting space frame. A seis-
mic space frame will be based on the assumption
that the frame depends on its own bending stiffness
for the lateral stability of the structure fig 7-1). It
is important to remember that deformations result-
ing from the dynamic response of a major
earthquake are much greater than those determined

* from the application of the prescribed forces. This
means that a space frame that conforms to the mini-
mum requirements of this manual will survive a
major earthquake only if it can yield without essen-
tial loss of lateral resistance or vertical load
capacity. Since normal building materials have very
limited energy-absorbing capacity in the elastic
range of action, it follows that what is needed is a
large energy capacity in the inelastic range. The
term "ductility" is used to denote this property.
Providing a ductile seismic frame may well prove to
be the difference between sustaining tolerable and,
in many cases, repairable damage, instead of cata-
strophic failure. The energy dissipation, ductility,
and structural response (deformation) of space
frames depend upon the type of members, connec-
tions Ujoints), and materials of construction used.
The behavior of joints is a critical factor in the effi-
ciency of building frames during high intensity cy-
clic loading. A seismic space frame will be a moment
resisting space frame or a ductile moment resisting
space frame.

b. Moment Resisting Space Frames. A moment
space frame is a vertical load-carrying space frame

in which the members and joints are capable of re-
sisting design lateral forces by bending moments.
Although a moment resisting space frame need not
comply with all the special requirements of a ductile
moment resisting space frame, it will comply with
the applicable requirements set forth in this chapter
to qualify as a seismic space frame.

c. Ductile Moment Resisting Space Frames. To
qualify for a K-factor of 0.67, the structural system
for resisting lateral forces must be a ductile moment
resisting space frame. A ductile moment resisting
space frame will be required for any building of any
height where a K-factor of less than 1 is used (some
exceptions are permitted for dual systems as pro-
vided for in table 3-7). A ductile moment resisting
space frame will be based on the assumption that
the frame depends on its own bending stiffness for
the lateral stability of the structure. Beams (or gird-
ers) shall be connected to columns by rigid joints
which are capable of developing in the beams the full
plastic capacity of the beams, under moment rever-
sals. To take advantage of the energy absorbing
capacity of the structural members, connections
shall be designed to be at least as strong as the
members connected. A ductile moment resisting
space frame will be constructed of structural steel or
reinforced concrete and will comply with the re-
quirements of Concrete Frame Type A (para 7-3) or
Steel Frame Type A (para 7-5). In Seismic Zone No.
1, Concrete Frame Type B (para 7-4a) qualifies as a
ductile moment-resisting space frame.

& Cassification of Moment Resisting Space
Frames. Space frames are classified under several
categories in chapter 3, paragraph 3-6a, for use in
table 3-7. The design criteria for Types A, B. and C
of both concrete and steel moment resisting space
frames are covered in paragraphs 7-3 through 7-6.
Concrete Frame Type D, which is not classified as a
moment resisting seismic space frame (although
such a frame will naturally have some moment re-
sistant capacity), is a vertical load-carying space
frame designed in accordance with ACI 318-77.

7-3. Concrete Ductile Moment Resisting
Space Frame-Concrete Frame Type A.
a General Design Criteria. The criteria used to de-
slin ductile moment resisting space frames will be
HfI 318-77 except appendix A, and as modified by
SEAOC Section 2 (reprinted below) and by this
manual.
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11) SEAOC Section 2, Concrete Ductile
Moment Resisting Space Framesa (Modifications
are in italics)

(A) General.
Design and construction of cast-in-place, monolithic reinforced concrete

framing members and their connections in ductile moment resisting space
frames shall conform to the requirements of ACI Building Code, ACI 318, and
all the requirements of SEAOC Section 2 as modifed herein.

EXCEPTION: Precast concrete frame members may be used, if the
resulting construction complies with all the provisions of this Sec-
tion.

All lateral load resisting frame members shall be designed by the strength
design method except that the alternate design method may be used provided
that it is shown that the factor of safety is equivalent to that achieved with the
strength design method.

ACI 818, for earthquake loading shall be modified to:
U=1.4(D+L)+1.4E
U=O.9D+1.4E (7-2)

Members of space frames which are designed to resist seismic forces shall
be designed, in accordance with the provisions of this Section, so that shear
failures will not occur if the frame is subjected to lateral displacements in ex-
cess of yield displacements.

(B) Definitions.
CONFINED CONCRETE is concrete which is confined by closely spaced

special transverse reinforcement restraining the concrete in directions perpen-
dicular to the applied stresses.

SPECIAL TRANSVERSE REINFORCEMENT s composed of spirals,
stirrup-ties, or hoops and supplementary cross-ties provided to restrain the
concrete to make it qualify as confined concrete.

STIRRUP-TIES OR HOOPS are continuous reinforcing steel of not less
than a No. bar bent to form a closed hoop which encloses the longitudinal re-
inforcing and the ends of which have a standard 135 degree bend with a 10 bar
diameter extension or equivalent.

(C) Physical Requirements for Concrete and Reinforcing Steel.
1. Concrete. The minimum specified 28-day strength of the concrete,

shall be 3000 pounds per square inch.
The maximum specified strength for lightweight concrete shall be

limited to 4000 psi
2. Reinforcement. All longitudinal reinforcing steel in umns and

beams shall comply with'ASTM A-615, grade 40 or 60. The actual yield
stress, based on mill tests, shall not exceed the minimum specified yield stress,
fy, by more than 18,000 psi. Retests shall not exceed this value by more than
an additional 3000 psi In addition the ultimate tensile stress shall be not less
than 1.33 times the actual yield stress, based on mill tests.c Grades other than
these specified for design shall not be used'

p?
'Foa the publication "Recommended lateral Force Re- ;trSctural Engineers Assocation of California. and reproduced

rgheata and Commentary" by the Seismology Committee, with permission.
Structural Engineers Assodatlon of California. Copyright 1976,

73
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Where reinforcing steel is to be welded, a chemical analysis of the steel
shall be providedd Welding shall conform to "Structural Welding Code- Re-
enforcing Steel, "A WS D1.4-79.

(D) Flexural Members.
1. General. Flexural members shall not have a width-depth ratio of less

than 0.3, nor shall the width be less than ten inches 101) nor more than the
supporting column width plus a distance on each side of the column of three.
fourths the depth of the flexural member. Flexural members framing into col-
umns shall be subject to a rational joint analysis. (figure 7-2)

2. Reinforcement. All flexural members shall have a minimum rein-
forcement ratio, for top and for bottom reinforcement, of 2001fy throughout
their length. The reinforcement ratio "p" shall not exceed 0.025.

The positive moment capacity at the face of columns shall be not less
than 50 percent of the negative moment capacity provided. A minimum of one-
fourth of the larget amount of the negative reinforcement required at either
end shall continue throughout the length of the beam. At least two bars shall
be provided both top and bottom. (figure 7-3)

3. Splices. Tensile steel shall not be spliced by lapping in a region of
tension or reversing stress unless the region is confined by stirrup-ties. Splices
shall not be located within the column or within a distance of twice the mem-
ber depth from the face of the column. At least two stirrup-ties shall be pro-
vided at all splices. (figure 7-)

4. Anchorage. Flexural members terminating at a column, in any ver-
tical place, shall have top and bottom reinforcement extending, without hori-
zontal offsets, to the far face of a confined concrete region, terminating in a
standard 90 degree hook. Length of required anchorage shall be computed be-
ginning at the near face of the column. Length of anchorage in confined re.
gions shall be not less than 56 percent of the development length, but not less
than twenty four inches (240). (figue 7-3)

EXCEPTION: Where the column resists less than 25 percent of the
story-bent shear, at least 50 percent of such top and bottom rein-
forcement shal be anchored within such column cores and the re.
mainder shall be anchored in regions outside the column core
confined as specified herein for columns.

5. Web Reinforcement. Vertical web reinforcement of not less than
No. 3 bars shall be provided in accordance with the requirements of ACI 318,
except that:

a. Stirrups shall be spaced to resist the ultimate design shear Vu in
which v j >LM i.4VD+L (7-3)

where M: and MA are ultimate moment capacities of opposite sense (double
curvature) at each hinge location of the member and VD+L is the simple span
shear. LAB is the distance between M: and M:. Ultimate moment capacities
shall be computed without the + factor reduction and assuming the maximum
reinforcing yield strength based on 25 percent over specified yield. Ultimate
shear capacities shall be computed with the + factor reduction.

*Formulas have been renumbered such that S>OC Formula 2-1 Is designated as Formula
7-1 n thi manual.

'ASTM A706 conforn to these provisions.
"Chemlcal analysi Is not required for ASTM A70&
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b. Stirrups shall be spaced at no more than df2 throughout the length of
the member.

c. Stirrup-ties, at a maximum spacing of not over d!4, 8 bar diameters,
24 stirrup-tie diameters, or twelve inches (12), whichever is least, shall be
provided in the following locations:

At each end of all flexural members, the first stirrup-tie shall be lo-
cated not moe than two inches (2') from the face of the column and
the last, a distance of at least twice the member depth from the face
of the columns.
Wherever ultimate moment capacities may be developed in the flex-
ural members under inelastic lateral displacement of the frame.
Wherever required compression reinforcement occurs in the flexural
members.

d. In regions where stirrup-ties are required, longitudinal bars shall
have lateral support conforming to the provisions of ties for tied columns.
Single or overlapping stirrup-ties and supplementary cross-ties may be used.

Section 2(E)
(E) Columns Subject to Direct Stress and Bending.

1. Dimensional Limitations. The ratio of minimum to maximum col-
umn thickness shall not be less than 0.4 nor shall any dimension be less than
twelve Inches (12 ). (figure 7-2)

2. Vertical Reinforcement. The reinforcement ration "p" in tied col-
umns shall not be less than O.Ol nor greater than 0.06. (figure 7-8)

3. Splices. Lap splices shall be made within the center half of column
height, and the splice length shall not be less than 30 bar diameters. Continu-
ity may also be effected by welding or by approved mechanical devices pro-
vided not more than alternate bars are welded or mechanically spliced at any
level and the vertical distances between these welds or splices of adjacent bars
Is not less than twenty-four inches (24'). (figure 7-4)

4. Spocial Transverse Reinforcement. The cores of columns shall be
confined by special transverse reinforcement as specified herein or as required
to meet shear requirements. (figure 7-6)

a. The volumetric ratio of spiral reinforcement shall not be less than
that required in ACI-318 nor

p =012 f ,74
whichever Is greater. 4

b. The total cross-sectional area (A'sh) of rectangular hoop reinforce-
ment shall not be less than

A'sh=0.30ahw '( Ag -1, 7-5)

nor

A'sh-0.12ah'i 17-6)

whichever is greater, where
a = center to center spacing of hoops in inches with a maximum of

four inches (4 ).
A, = area of column core.

7-5
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Ag = gross area of column.
A"h= total cross-sectional area in square inches of hoop reinforcement

including supplementary crossties having a spacing of (a) inches
and crossing a section having a core dimension of h.

he = core dimension of tied column in inches.
f = yield strength of hoop or spiral reinforcement.

Single or overlapping hoops may be provided to meet this require-
ment. Supplementary crossties of the same size and spacing as hoops using
135 degree minimum hooks engaging the periphery hoop and secured to a lon-
gitudinal bar may be used. Supplementary crossties or legs of overlapping
hoops shall not be spaced more than fourteen inches 14') on center trans-
versely.

EXCEPTION: Formula (7-5) need not be complied with if the column
design is based on the column core only.

c. Special transverse reinforcement shall be provided in that portion of
the column over a length equal to the maximum column dimension or one-sixth
of the clear height of the column, but not less than eighteen inches 18) from
either face of the joint.

d. At any section where the ultimate capacity of the column is less than
the sum of the shears (1V) computed by Formula (7-3) for all the beams fram-
ing into the column above the level under consideration, special transverse
reinforcement shall be provided. For beams framing into opposite sides of the
column, the moment components of Formula (7-3) may be assumed to be of
opposite sign. For the purpose of this determination, the factor of 1.4 in For-
mula (7-3) may be changed to 1.1. For determination of the ultimate capacity
of the column. the moments resulting from Formula (7-3) may be assumed to
result from deformation of the frame in any one principal axis.

e. Columns which support discontinuous members, such as shear walls,
braced frames, or other rigid elements shall have special transverse reinforce-
ment for the full height of the supporting columns.

5. Column Shear. The transverse reinforcement in columns subjected
to bending and axial compression shall satisfy the formula

'a'. ;, I- P..

qn . ..e ... it 3~-I_ 

Av fy e =VVA~Va TV (7-7)
where Vu shall be computed by using the ultimate moment capacity in the
ends of either the beams or columns framing into the connection. Ultimate
moment capacities shall be computed without + or other reduction factors and
under all possible vertical loading conditions and assuming the maximum re-
inforcing yield strength based on 25 percent over specified yield.

Vc=vcAc, where vc shall be in accordance with ACI 318, except that Vc shall

be considered zero where * < 0.12 fee
Ag

a = spacing, ( 1/2 minimum column dimension.
dc = dimension of column core in direction of load.
A, = total cross sectional area of special transverse reinforcement in

tension within a distance, 9, except that two-thirds of such area
shall be used in the case of circular spirals.

Ac = Area of column core.

(F) Beom-Column Connection. -
1. Analysis. The transverse reinforcement through the connection shall

7-6
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be proportioned according to the requirements of paragraph 7(J(E)4. The
transverse reinforcement thus selected shall be checked according to the pro-
visions set forth in paragraph 7-84a1AE)5 with the exception that Vu, acting
on the connection shall be equal to the maximum shears in the connection
computed by rational analysis taking into account the column shear and the
concentrated shears developed from the forces in the beam reinforcement at a
stress assumed at fy.

Within the depth of the shallowest framing member, special transverse
column reinforcement of one-half the amount in the preceding paragraph shall
be required where members frame into all four sides of a column and whose
width is at least three-fourths the column width. When a corner of a tied col-
umn, unconfined by flexural members, exceeds four inches (4'). the full special
transverse reinforcement shall be provided through the connection and around
bars outside of the connection.

Special transverse beam reinforcing shall be provided through the beam-
column connection to provide confinement for longitudinal reinforcement out-
side the column core where such confinement is not provided by another beam
framing into the connection.

2. Dsign Limitations. At any beam-column connection where Tu ;
0.12f,, the total ultimate moment capacity of the column, at the design earth-
quake axial load, shall be greater than the total ultimate moment capacity of
the beams, along the principal planes at that connection.

EXCEPTION: Where certain beam-column connections at any level
do not comply with the above limitations, the remaining columns
and connected flexural members shall comply and further shall be
capable of resisting the entire shear at that level accounting for the
altered relative rigidities and torsion resulting from the omission of
elastic action of the non-conforming beam-column connections.

(0) Inspection.
For buildings designed under this Section, a specially qualified inspector

shall provide continuous Inspection of the placement of the reinforcement and
concrete and report to the registered professional engineer responsible for the
structural design. The inspector shall submit to the appropriate authority a
certificate indicating compliance with the plans and specifications.

-. v__..:_.

(2) Summary of Major SEAOC Modifications
to ACI 818-77:

(a) Limitations of precast concrete members
(par 7-Sa(1)(A)).

(b) Modification to design load factors para
(A), formula 7-1).

(e) Limitations on grades of reinforcing steel
(para 7-a(lHC)2).

(d4 Limitations are placed on dimensions and
maximum percentage of reinforcing that can be
used (para 7-8a(1)(D)1,2).

(e) Special requirements for splices, anchor-
ages, beam stirrups, column ties and hoops, and
joint reinforcement (para 7-3a(1XD)3. 4, (E), (F)).

(t) Special requirements to provide the forma-
tion of inelastic hinges in beams rather than in col-
umns (pan 7-Sa(XE)4d).

(g) The provisions of paragraph 7-Sa(1) are
illustrated in figures 7-2 through 7-9.

(3) Special modifications
(al Prestressed, post-tensioned, and flat-slab

systems are not to be used as part of the lateral
force resisting space frame (see para 7-Sb for
general discussion).

(bi Column ties will be at least No. 4 bars for
vertical bars No. 11 or larger and for bundled bars
and at least No. 3 bars for vertical bars less than No.
11.

b. General Discussion. Ductility of reinforced
concrete frames is accomplished by: (1) using the
~ttod of design outlined in ACI 318-77 with a
bodified load factor, (2) limiting the percentage of
'steel reinforcement so that the steel will yield before
the concrete fails in compression, (3) confinement of
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the concrete with special transverse reinforcement
so as to prevent failure of joints under moment re-
versals (refer to ACI-352L, (4) proportioning mem-
bers so that any yielding will be confined to the
flexural members (girders) rather than to the col-
umns, and (5) avoidance of shear failure. The
standard acceptable method of construction for the
framing members and their connection is cast-in-
place monolithic reinforced concrete. It is some-
times feasible to precast beam-column elements and
join them at points of minimum moment with a cast-
in-place splice, so an exception is permitted (para
7-3a(1)(A)). However, the use of prestressing to
develop ductile moment capacity is a subject for
further study and is not presently permitted. The
use of flat slabs to develop ductile moment capacity
is also doubtful, thus does not qualify without spe-
cial design provisions to provide an equivalent duc-
tile frame within the depth of the slab. Other mem-
bers within the building, not part of the concrete
ductile moment resisting space frame, may be pre-
cast, prestressed. composite, or any other appropri-
ate system if adequate diaphragms and connections
are developed so the building will respond to seismic
input as a unit. These members shall comply with
the design requirements of the ACI Building Code,
ACI 318.

7-4. Concrete Moment Resisting Space
Frames-Concrete Frame Types B and C

a Concrete Frame Type B. The criteria used to
design Type B concrete moment resisting space
frames will be ACI 318-77 except appendix A. and
as modified below and illustrated in figure 7-10
through figure 7-15. Refer to chapter 3, paragraph
3-6 and table 3-7, for the limitations on the use of
this type of concrete space frame.

(1) The provisions of paragraphs 7-3a(1XA),
(B), and (D) 1 will apply (see fig 7-2).

(2) Prestressed post-tensioned, and flat slab
systems are not to be used as part of the lateral
force resisting space frame (see para 7-3b)

(3) The specified yield strength of reinforcing
steel will not exceed 60,000 p.si.

(4) Members of the moment resisting space
frame will be designed for the shear that results
from the formation of inelastic joint rotations, in the
same direction, at each end of the member (see fig
7-14).

'Committee 352 "Recommendations for Design of Beam-
Column Joints in Monolithic Reinforced Concrete Structures."
ACI Journal. Proceedings V. 73, No. 28, July 1976. This reference
provides stat-ofthe-art summary of current information.

(5) All frame flexural members will have a ir
mum reinforcement ratio, p for top and botL,
reinforcement of 200/fy throughout their length ex-
cept where a greater minimum is required by ACI
318. At least two bars will be provided, both top and
bottom, throughout their length.

(6) At locations where the ultimate capacity of
a member will be developed under inelastic lateral
displacement of the frame, the maximum p will not
exceed 0.025.

(7) The positive moment capacity of flexural
members at columns will be at least 40 percent of
the negative moment capacity.

(8) Splices in required reinforcing of flexural
members framing into columns will not be located
within the column nor within a distance of twice the
member depth from the face of the column. At least
two closed stirrup ties will be provided at all splices.

(9) Flexural member framing into a column
where there is no flexural member on the opposite
side will have top and bottom reinforcement extend-
ing to the far face of the confined region and
terminated with a standard hook.

(10) The length of anchorage in confined re-
gions may be 0.56 d. In other regions, anchorage
length will be d. In no case will the anchorage
length be less than 24 inches (d is developmn
length per ACI).

(11) Stirrup ties of not less than No. 3 bars
be provided at a spacing of not over d/4 nor 12 a for a
distance of at least the member depth at the end of
each flexural member and wherever ultimate capaci-
ties may be reached under lateral displacement of
the frame. The first stirrup tie will be placed 2' from
the face of the column.

(12J Standard stirrups will be provided at a
maximum spacing of 3/4d throughout the length of
the flexible member, or minimum required by ACI
318, whichever governs.

(13) The reinforcement ratio, p, in tied columns
will not be less than 0.01 nor greater than 0.06.

(14) Lap splices shall be made within the center
half of column height, and the splice length shall not
be less than 30 bar diameters. Continuity may also
be effected by welding or by approved mechanical
devices provided not more than alternate bars are
welded or mechanically spliced at any level and the
vertical distance between these welds or splices of
adjacent bars is not less than twenty-four inches

,(24 ).
(15) Special transverse reinforcement for col-

,"Jumns will be continuous reinforcement enclosing -

longitudinal reinforcement and ending with 
degree bend with a 10 bar diameter extension.
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tEZ COLUMS:
W = 12" Min,
W/C 0.4

.b..6 

up' S [111131-:~

FLEXURAL MEMERS:

b 10", Min.
b Col. + iD, Max.
D 3.33b Max..

DEEP BEAM SHALLOM BEAM

i.# a.* 4. 't. .. *-. .d

*This provis
of a flat l
considered 4
frame membei

PEAK/COLUM HINGE:
(Hay Also Control)

If P/Ag 0.12 fec

I of Columns including effects
P must be & Hu of flexural

members. (Frame Type A or
Type B only.) See paragraph
7-3a(1) (F)2.

Dimensional limitations apply
also to Frame Type B and Frame
Type C.

__

,on tend
ab (pla
I a on

i to prohibit the use
:e) floor being
rnt resisting

THIN EMBERS (Not permitted)

Figure 7-2. Concrete Frene Type A - Limitations on Dimensions
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i

See footnote
a, paragraph
7-3b, and
Example A-2,
sheet 24 of
25 --

fill'~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~Zrx. il'
C~ OOACD

dOWrAP-0A
(See Grder-
Column Joint
Analysis)

FLEXURAL MEMBER:

!9t.
!--t

I -If PIAS - 0.12 f c

I of Columns ncluding effects
o P must be A 14 of flexural
members.

C Top steel
(at column

ŽMin. top reinforcing:
* 2 continuous bars
* p - 2OO/fY
a 25% of top steel at

i lumn i_1

_~ . 1

I___ _ 1-f' I. I,?v .i _. _.4-;5

eLl
II P

* 1MW M l _ bh

/ Bottom steel Min.
at column o
equal to a
minimum of
50% of top

A- _ _ _ steel at
-----4 column

ELEVATION OF GIRDER AND COLUMN

I bottom reinforcing:
2 continuous bars
p - 200/fY

fe a 3,000 p.s.I. min. at 28 days

f 40 ksi (ASTN A615) or 60 ksi (ASTM A615 or ASTM A706)
Reinforcement-ratio, p - A /bd or p - A'/bd: p - 0.025 max.

tls is not a code requirement. It is a recommendation of

ACI Committee 352, ACI Journal, July 1976.

L Anchorage) 0.56 Id OR Min. 24"

L 1 Id for Top Member (without column above)
NOTE: For ldsdevelopment length of deformed bars

COLUMN: in tensionssee ACI 318-77, Sect. 12.2.

f £ - 3,000 p.s.I. at 28 days Min.

fY a 40 ksi (ASTM A615) or 60 ksi (ASTM A615 or ASTM A706)

Reinforcement ratio p (for tied columns)
b 0.01 and 0.06. Reference:

paragraph 7-3

Fgure 7-3. Concrete Frvnq Type A - LongitudinaZ Reinforcement
37.
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-4V
of

I I

I 1
I c

V

WELDED OR
ECHANICAL SPLICE

I

I

I

I
-S trcal aboutre f column

COLUN:

Id is the tension development length. See
At any levels not more than alternate bars
vll be welded or mechanical spliced.
Minimum distance between two adjacent bar
splices 24".
For 14S & 185 bars, welded splices are
recomnended. Lap splices will not be
used.

ACT 318-77, Sect. .12.2.

Reference:
paragraph 7-3

Figre 7-4. Concrete Frame Tpe A - SpZices in Reinforcement

,
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-~

.S r/ZRs UPS SRIRRUP -

vseno IW e8f41S

Min. hoop and tie size
is #3 for longitudinal
bars #10 or smaller, #4
for logitudinal bars #11
or larger.

I 0

II I 4

1. �1
HooP O COL UA'U r/& SPIRAL

.US&DSPIRAL RATIO:

IP6 0. 45 -

whichever is reater.

IL? COL Uk/VS
or 0.12 

HOOP REQUIREMENTS - TOTAL TIE AREA:

FUN~CTIONS 

&h U 0 

Shear Reinforcement _ * * 

Restrain Longitudinal * _
Steel rom Buckling

Confine Concrete _ * *

A"h - 0.30 ah" ft*

'tFormula 7-5
X0 Formula 7-6

All - 0.12 y , whichever

_ 1) or

is greater.

Provide hoops or spirals in columns
where special transverse reinforce-
ment is required. See paragraph
7-3a(l)(E)4.

Reference: paragraph 7-3

Figure 7-5. Concrete Frame TypeA - Traneverse Reinforcement
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I''

1 1.4 (D e-L)

I11 I I II

S hAX.- ; 8 ^A A;.e4 Z r/1ZVP
TeD 1A.a OM 1' WMIC& VG1R
-Ii LC-r~r'-

-.0 9 ^1

__ - - - - - - - __ __ i ,

"lb

=tF- -

II
S77rRPtUPS Li

E0W * 2 "IA1. -I

II
A LOADWGrC~~~~l N

ULAO4 CAPAC/V

_COk(ItW6I Sh6AR

* SrRRUP - 7l-bs R&Qu/Ro (Os Ivu) &A4cH
GCW; WJ4C-- Mu MAY *& O&VC-LOPC-);
WHZC&- lc-QUIRC-& COMP C&SSO.' S rcC-L
OCCUR2; AJI WAr ALL SPeCC-S.

DESIGW: Vertical web reinforcement in accor-
dance with Chapter 11 of ACI 318, and the mini-
mum requirements in paragraph 7-3a(1)(D) as
indicated herein.

VOTE: J & -- Ultimate moment capacit
of opposite sense, at each end of the
members computed without the factor re
duction and assuming the maximum rein-

forcing yield
vR~ Js 8 s strength based on

L + 1.4 O+L 25% over specified
yield.

(va-V S=

Vc . 2A ,V - U

V' AX /° a I O'

Reference:
paragraph 7-3

Figure ?-6. Concrete rame Type-A - Girder Web Reinforcement

P1t
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*Based upon Formula 7-7, paragraph
7-3a(1)(E)5. See also 7-3a(1)(F)2.
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-Q6S MAX/f1M OP-:
MAX. COL. DA&eMWTOAI;
P,-CLCAR HE/Qvr;
OR 8

-U~F A A4tJO.-:
AAX. COL. D1UCAS1WV;
ft - CL&AWR Herlam7S;
OR la V 

4

Ars' sc-crioii WAcmRe ri-c- vLrv4Arc- CAPACIry O- r-,e
COWMJW (Pu) 15 L C-Ess -f e rH& sc/k( oF- 7-H sHCHA/zS (£ VA)
coMPUMIr. i)V M.M t^ 1.1 Vo. J. . PvOR ALL ?-C- i:-GAMS .
AP&OV 7G- L-VC-L ubOc-R COJ3SUW-RIATrOV, COJJr-Wl.'JG7
,R-rf-OR CcC-A4C-r S MA LL aCr- PROYll6D1. EE /6l. 7- 6
seE ^ISO rHEPwor/s/oA'3 4F wfc 7-JA {4)f2Joe.

Reference:
paragraph 7-3

Figure 7-8. Concrete Frome Type A - Speciat Tranverse Reinforcement

I1
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k4
-==-+ r=ztAs 

P0/Ad? 0 AJ4LfC MU,

COLtAtJ

OPR

POIWr .4 OP A/-C 20

4Q

I

K - -V- As oe --4 UV
5 g ~WHURUaw If 0a7t. w xcp;
(Yr yr)e THUAm T4 a a

S. 4MAX.._'
Only 1/2 the special transverse reinforcement
Is required for columns where girders frame
Into all four sides.

r Ww OA, 4 .12 A

NOTE: Column Confining Reinforcerant s a inimua and
may govern. See Figure 7-5.
The amount of reinforcement at the
intersections frequently results in
congestion of bars. A careful study Reference:
of the bar layouts should be made paragraph 7-3
during design.

Figure 7-9. Concrete Frme Type A - Grder-Colwn Joint Analyis
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plementary cross ties, if needed, will have standard
hooks at the ends. Single leg cross ties may be lap
spliced if a minimum of 20 diameter lap is provided.
Refer to figure 7-13.

(16) At the ends of columns, special transverse
reinforcement will be provided over a length equal
to the maximum column dimension or one-sixth the
clear height of the column, but not less than 18"
from either face of the joint. This transverse rein-
forcement will be spaced at not over 4 on center
and have a total cross-sectional area of not less than

A'S=0.08 ah f' (see para 7-3a(l)E)4 for
ah definition of terms)

(17) A inimum special transverse reinforce-
ment of No. 4 at a maximum spacing of 4 on center,
or equivalent, will be provided throughout the
beam-column joint. The requirement for cross ties
(fig 7-13) may be omitted within the joint if the lon-
gitudinal column bars are confined by adjoining
beams.

b. Concrete Frame Type C. The criteria used to
design Type C concrete moment resisting space
frames will be ACI 318-77 except appendix A, and
as modified below. This type of space frame is lim-
ited in use to Seismic Zone 1, for K not less than 1.0,
and for buildings not taller than 80 feet, when de-
signed to resist earthquake forces (see chap 3, para
8-6 and table 8-7).

(1) For earthquake loading ACI 318 load fac-
tors will be modified to formulas 7-1 and 7-2 in
paragraph 7-3a(lXA), and the dimensional limits of
paragraph 7-3a(1KD)1 will apply (see fig 7-2).

(2) Flexural members are required to have web
reinforcement throughout the length of the member.
It will be designed in accordance with ACI-318 ex-

TM 5-809-10
NAVFAC P-355

AFM 88-3. Chap. 13

cept that such web reinforcement shall not be less
than 0.0016 times the product of the width of the
web and the spacing of the web reinforcement along
the longitudinal axis of the member. The first stir-
rup will be located at 2 inches from the column face.
The next six stirrups will be placed not over d/4.

(3) Positive moment reinforcement at the sup-
ports of flexural members subject to reversal of
moments will be anchored by bond, hooks, or me-
chanical anchors in or through the supporting
member to develop the yield strength of the bar. The
positive moment capacity of flexural members at
columns will be at least 0 percent of the negative
capacity.

(4) Lapped splices in flexural members, located
in a region of tension or reversing stress, will be con-
fined by at least two stirrups at each splice.

(5) The spacing of ties at the ends of tied col-
umns will not exceed 4 inches for a distance equal to
the maximum column dimension but not less than
onesixth of the clear height of the column from the
face of the joint. The first such tie will be located 2
inches from the face of the joint. Joints of exterior
and corner columns will be confined by lateral rein-
forcement through the joint. Such lateral reinforce-
ment will consist of spirals or ties as required at the
ends of columns.

7-5. Steel ductile moment resisting space
frames-Steel Frame Type A.

a. General Design Crteria. The criteria used to
design steel ductile moment resisting space frames
will be the latest edition of AISC Specification as
modified by SEAOC Section 4 (reprinted below).

(1) SEAOC Section 4 Steel Ductile Moment-
Resisting Space Frames:*

(A) General.
Design and construction of steel framing in ductile moment resisting

space frames shall conform to the latest edition of the American Institute of
Steel Construction "Specifications for the Design, Fabrication and Erection of
Structural Steel for Buildings" and the American Welding Society's "Struc-
tural Welding Code" AWS D1.1 latest edition and to all the requirements of
this Section.
(B) DefInitions.

CONNECTION consists of only those elements that connect the member
to the joint.

JOINT is the entire assemblage at the intersections of the members.

SFrom the publication "Recommended Lateral Force Require-
Juents and Commentary" by the Seismology Committee, Struc-
tial Engineers Aseocation of California. Copyright 1976,
Structural Engineers Assocatlon of California. and reproduced
with permission.
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k,'*1 W k". .l

*/V/j . at

.f fOdNi3Y * -

o~ eas I p'St-L L 3sg.
A._ ._ .
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WAShW&Va 7/7?d9

Figure 7-10. Concrete Frame ype B - Frame

Reference:
paragraph 7-4

Requirements
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See footnote
8, paragraph
7-3b, and
Example -2,
sheet 24 of
2S

LC

3T1. Hoo_/

L/OJrARC-A
(See para-
giaph 7-4a(7_

FLEXURAL MEMBER:

- If P/A* & 0.12 fIC

Hui of Columns including effects
of P must be a HU of flexural
members.

iSt
Top

§ at_ - - m

stee(
columr

__ _ _ _ 

_ - m

Kin. top reinforcing:
* 2 continuous bars

P 200/f
r. & 25Z of top steel at

'column

I/ IIk.. -

ZIX--

-e
/

4 ttom steel
column equal
a minimum of

at
to
40%

of top steel at
column

ELEVATION OF GIRDER AND

Q'Kin. bottom reinforcing:
* 2 continuous bars
* P - 200/fy

COLUMNCOLUMN
fec - 3,000 p.s.t. in. at 28 days

fy - 40 ksi (ASIN A615) or 60 ksi (ASTM A615 or A706).
Reinforcement ratio p - A/bd or p' - A;/bd: p 0.025 max.
t5 is'not a code requirement. It is a recommendation of ACI
Coimittee 352, ACI Journal, July 1976.

L (Anchorage) - 0.56 1 OR Mn. 24"

L a 1d for Top Member (ithout column above

*00TE: For 1d, development length
of deformed bars in ten-

t) uions see AdCI 318-7,
Sect-. 12.2.

COLUMN:
fS - 3000 p.s.i. at 28 days Mim.

f a 40 ksi (AST A) or 60 ki (ASTH A615 or ASTH A706)

Reinforcement ratio p (for tied columns)
& 0.01 and 0.06.

Reference:
paragraph 7-4

FiWure 7-11. Cncrete ane pe B - Legitudia Rin forcewnt
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- of Splice

5

la WELDED OR
MCHANICAL SPLICE

Provide at least
two stirrup-ties.

Symetrical about
iof column

COLUMN:

Id LB the tension development length. See ACI 318-77, Sect. 12.2.

At any level, not more than alternate bars
will be welded or mechanical spliced. Min.
distance between two adjacent bar splices 24".

For G14S & #18S bars, welded splices are
recommended. Lap splices will not be used.

Reference:
paragraph 7-4

Figure 7-12. Concrete Frame Type B - SpZices in Reinforcement

a.
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S6 rl/z R UPI S7S7J Il j -
USC WI A AW 

no* a h

I ' A
4: TCR 03$ *77639~~~~- 

m_ L~~.

Min. hoop and tie size
is 3 for longitudinal
bars 10 and smaller, and
#4 for longitudinal bars
#11 or larger.

I
0
i

I

a __ -- L

*HooP OR COL MA r&

SPIRAL RATIO:

'f I
P - 0.45 c

fy

US &LD L2)
SPI/RAL

ICO L (uouvS
HOOP REQUIREMENTS - TOTAL TIE AREA:A-a or .08 C -.

FUNCTIONS ' r

Shear Reinforcement * * * *
.An "gIngt - -

Restrain Longitudinal * * * *
Steel From uckling

Confine Concrete _

- 0.08 ah" ,,c

Reference:
paragraph 7-4

Figure 7-13. Concrete Frome Type,.- - Transverse Reinforcement
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DESIGN: Vertical web reinforcement n accor-
dance vith Chapter 1 of ACI 318, and the mini-
mum requirements in paragraph 7-3 ) CD).

NOIE: & - Ultimate moment capacity
of opposite sense, at each end of
the member.

iI ii I I I I IU I V

c .. .

co~da"D SA/89.0

A:4~ ~ + &4 sO+

x. -i* .
ftVa . 0"R

Av A! Reference:- paragraph 7-4
b d

K " .Y a / v
Figure 7-24. Concrete Frame ype . - Oirder Web Reinforcement

'-/
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(C) Materials.
Structural steel shall conform to one of the following ASTM Specifica

tions, latest edition: A36 A441, A500 (Grades B and Q ASOI, A572 (Grades
4Z 45 50 and 55A or A58& Exceptions: Structural Steel ASTM A283 Grade D
may be used for base plates and anchor bolts.
(D) Connections.

Each beam or girder moment connection to a column shall be capable of
developing in the beam the full plastic capacity of the beam or girder.

EXCEPTION: The connection need not develop the full plastic capa-
city of the beam or girder if it can be shown that adequately ductile
joint displacement capacity is provided with a lesser connection.

For steel whose specified ultimate strength is less than 1.5 of the specified
yield strength, plastic hinges in beams formed during inelastic deformations of
the frame shall not occur at locations in which the beam flange area has been
reduced such as by holes for bolts.
(E) Local Buckling.

Members in which hinges will form during inelastic displacement of the
frames shall comply with the requirements for "plastic design sections."
(F) Non-DestructiveWeldTesting.

Tension groove welded connections between primary members of the duc-
tile moment resisting space frame shall be tested by non-destructive methods
for compliance with AWS D1.1 and job specifications. A program for this
testing shall be established by the engineer.

b. GeneralDiscussion.
11) The beams (or girders) will be connected to

columns by rigid joints which are capable of devel-
oping in the beams the full plastic capacity of the
members framing into the joint, under moment re-
versals. Members in which hinges will form during
inelastic displacement of the frames shall comply
with the requirements of the AISC plastic design
method.

(2) Additional discussion is included in the
SEAOC Commentary on Section 4.

(3) For typical details refer to figure 7-16.

7-6. Steel moment resisting space frames-
Steel Frame Types B and C. a. GeneralDesign
Cteria. The criteria used in the design of steel
moment resisting space frames will be the latest edi-
tion of the specifications of the American Institute
of Steel Construction, AISC.

b. Limitations as Seismic Space Franes Steel
moment resisting space frames, not satisfying the
requirements of steel ductile moment resisting
space frames (Steel Frame Type A, para 7-5). are
limited in their use as seismic space frames by the
provisions of chapter 3, paragraph 3-6 and table
3-7. Ile seismic coefficient K will not be less than
1.0.

c Steel Frame Type B. This type of frame may,
used to resist seismic lateral forces for buildings 4llr'
to 160 feet in height in Seismic Zones 1 and 2 and up
to 80 feet in Seismic Zones 3 and 4. To qualify as a
Steel Frame Type B, a moment resisting space
frame (para 7-2b) will conform to the requirements
of paragraph a, above, and the following Each beam
or girder moment connection to a column will be de-
signed for forces resulting from the gravity loads
combined with twice the design seismic moment if
the connection is not designed for the fill beam or
girder moment capacity.

d Steel Frame Type C To qualify as a Steel
Frame Type C, a moment resisting space frame
(para 7-2b) will conform to the requirements of para-
graph a above It is permitted as a seismic space
frame in Seismic Zone for buildings up to 80 feet in
height.

7-7. Wood frames. Wood frames will be de-
signed using normal procedures illustrated in many
easily obtainable texts and are not covered in this
maanual. "National Design Specification for Wood

Construction" (1977 Edition and supplement),
:!NFPA, applies.
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71.1��
Q

,4 �'- K111,14,

I 'I

N 1 NOTE: Plate mustJ
be thicker than
beam flange as re-

* _~ | V quired to cover
rolling tolerances

-

D&-rA/L A-A jO6rA/ZL /S-/3

.
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ZMeArWio bUrr W61 LOs. aM6 ,dc'YiUwG SrRZsfP oe CH/PA/21
WC- 5ACM/GAJ W&LDS.
THG PVREP0S6 0P 77R/S eC-wA AUD GIAD&f2 coJJ/Jec7a'1 ro
rZeW coLUcI /3 ro Je&VCLOP 7ri6 P414L psric CAPAC1TV
or-- 5A AUD
07HeR CO JUc7-IO/oIX-rAILS WN/CRAR& CAPA,5L& O.
D&MVLOPIA/GI TrMPLAST7C CAPACITY Or- 7bI - COAlVC-CMD
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Figure 7-16. DuctiZe Steel Frane Type A
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CHAPTER 8
REINFORCED MASONRY

8-1. Purpose and scope. This chapter pre-
scribes the criteria for design of masonry construc-
tion for buildings in seismic areas.

8-2. General. Unit-masonry shall be reinforced
with deformed bare for axial, flexural, shear, and di-
agonal tension stresses as determined by design cal-
culations. In addition, there are several prescribed
arbitrary limitations on dimensions and reinforce-
ment requirements; for example: (1) the ninimum
thickness of a wall (or partition) is governed by the
type (structural role) or wall and the height between
supporting diaphragms, and (2) the manimum
spacing and minimum area of reinforcing bars de
pend upon the type of wall and the seismic zone.
Additional reinforcing bars are prescribed for use
around openings, at comers, anchored intersections,
in wall piers, and at end of wall-panels such as at
control joints. The minimum reinforcement pre-
scribed in the manual is to provide empirical require-
ments relative to damage control ductility and
boundary conditions). No attempt is made to go into
great detail regarding seismic load assumptions and
stress distribution. These are covered elsewhere in
the manual.

8-3. Definitions. Unless otherwise expressly
stated, the following terms shall, for the purpose of
this chapter, have the meaning indicated herein.
Where terms are not defined they shall have their
ordinarily accepted meanings, or such as the context
may imply.

a. Reinforced Masonry. Masonry units, reinforce-
ment, grout, and mortar combined in such a manner
that the component materials act together in resist-
ing forces, and with at least the minimum reinforce.
ment as prescribed by this chapter:

(1) Grouted masonry. Multi-wythe masonry
construction in which the space between wythes is
solidly filled with grout.

(2) Hollow masonry. Single-wythe masonry
construction composed of hollow units in which cells
and voids containing reinforcing bars or embedded
items are filled with gout as the work progresses.

(3) Filled cell masonry. Single-wythe masonry
construction composed of hollow-units in which all
voids are filled with grout after the wall is laid.

b. Reinforcement. Deformed reinforcing bars or
joint reinforcement embedded or incased in unit-
masonry in such a manner that it works with the

masonry in resisting forces. Joint reinforcement is
an assemblage of steel reinforcing wires designed
for use in masonry bed joints, serving to distribute
stresses and to tie separate wythes together.

c. Masonry Wal A vertical, plate-like element
(whose horizontal dimension exceeds five times its
thickness) constructed of stone, brick, concrete ma-
sonry units, glazed structural units, or other suit-
able masonry materials:

(1) Load bearing wall Any wall which in addi,
tion to supporting its own weight supports other
loads (floors, roofs, walls, etc.).

(2) Nonad bearing walL Any wall which does
not intentionally support the building above it.

(3) Shear wall Any wall which resists a horizon-
tal force applied in the plane of the wall (i.e., any
wall unless isolated along 3 edges).

(4) Structural wall Any wall which serves in
providing resistance to loads or forces other than
those induced by the weight of the wall itself.

(5) Exterior wall Any outer wall serving as a
vertical enclosure of a building.

(6) Partition. Any interior wall (or vice versa).
(7) Filler wall. A non-bearing wall in skeleton

frame construction, built between steel or concrete
vertical load-carrying space frame and wholly sup-
ported at each story.

(8) Composite wall A two-wythe wall in which
the wythes are of different material. The wythes are
so bonded as to exert a common reaction under load.
GSU faced masonry and BzickICMU grouted ma-
sonry are composite walls.

(9) Cavity wall A wall built of masonry units so
arranged as to provide a continuous air space within
the wall (with or without insulating material) and In
which both the inner and outer wythes of the wall
are reinforced so as to separately resist seismic
forces in proportion to their rigidities.

(10) Veneered walL A masonry faced wall n
which the veneer is attached to the back-up wall. It
will not be considered as part of the wall in comput-
ing strength nor considered a part of the required
thickness of wall.

d StructuralMembers
_ (1) Pilaster. An integral portion of a wall which

prbjects from either or both wall faces which may
Nerve as either a vertical beam or column or both.

(2) Column. A compression member, vertical or
nearly vertical, the width of which does not exceed
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three times its thickness and the height of which ex-
ceeds four times its least lateral dimension. Any
portion of a bearing wall not bonded at the sides into
associated masonry shall be considered a column
when its horizontal dimension does not exceed three
times its thickness. The least nominal dimension of
every masonry column or wall pilaster shall be not
less than 12 inches. No masonry column will have an
unsupported length greater than eighteen times its
least nominal dimension. Refer to paragraph 8-14.

(3) Wall-paneL A wall segment in one plane
which lies between: (1) wall ends, 2) control joints,
or (3) a control joint and wall end. Each wall-panel is
considered to be a separate vertical structural ele-
ment.

(4) Pier. An upright part of a wall between (or
adjacent to) openings, the width of which does not
exceed five times its thickness. Design as column if
width is less than three times the thickness; design
as a wall if width exceeds five times the thickness.
See paragraph 8-15, table 8-7, and figure 8-6.

(5) Lintel A beam located over any opening in a
wall to carry weight of the construction and super-
imposed loads above the opening.

(6) Bond beam. A horizontal reinforced ma-
sonry beam, serving as an integral part of the wall.
Its principle purpose is to provide structural integ-
rity and in turn crack-controL It may also serve as a
chord (flange) member of a horizontal diaphragm
provided reinforcement steel is made continuous for
full length of the diaphragm.

(7) Lateral support. Members such as cross
walls, columns, pilasters, buttresses, floors, roofs, or
spandrel beams which have sufficient strength and
stability to resist the horizontal forces transmitted
to them may be considered as lateral supports.

a Terminology
(1) Control joint. A continuous vertical joint in

a wall designed to accommodate movements result-
ing from temperature and moisture changes.

(2) Wythe Each continuous vertical section of a
wall, one masonry unit in thickness.

(3) Collar joint. The continuous vertical, longi-
tudinal joint between two wythes of masonry.

(4) Grout. A mixture of portland cement, aggre-
gates, and water which is proportioned to produce
pouring or pumping consistency without segrega-
tion of the constituents, serving to fill cells, voids, or
collar joints in masonry walls so as to encase rein-
forcing and bond units together for composite
action.

(5) Mortar. A plastic mixture of portland
cement and lime (or masonry cement), fine aggre-
gate, and water used to bond masonry.

(6) Low-lift grouting method contemplates
grout will be poured in small increments not exc&ew
ing 4 feet as the masonry work progresses.

(7) High-lift grouting method contemplates
that grout will be pumped into all wall voids after
the masonry units, reinforcing steel, and embedded
items are built to full story height. High-lift grout is
placed in one continuous pour by lifts which allow
time for consolidation and loss of water, but placed
at such a rate as not to form intermediate construc-
tion joints or blowouts.
f. Letter symbols are defined or illustrated where

first used and arranged alphabetically in figure 8-1.

8-4. Basis of design. Previous chapters of this
manual establish the basis for determining seismic
forces. This chapter prescribes the criteria for the
structural design of unit-masonry construction. Ex-
terior walls, partitions, and all masonry elements
will be reinforced with steel. Layout and details of
construction shall be compatible with the applica-
tion of the rules for modular measure. Masonry shall
conform to one of the following basic types: (1) rein-
forced grouted masonry, (2) reinforced hollow
masonry, or (3) reinforced filled-cell masonry. For
any specific facility, the adoption of the type of con-
struction, use of bases and wainscots, and selec'
of materials, including contractor's options, w y
governed by manuals and guide specifications of AV
plicable agency. For Zone 1 structures, the excep-
tion for wall reinforcement under paragraph 8-13,
table 8-5, applies. Where the exception applies,
masonry construction shall conform to TM
5-809-3/AFM-88-3, chapter 3 and NAVFAC
DM2.6.

8-5. Design criteria. The design assumptions for
reinforced unit-masonry, as regards the theory of
stress distribution and analysis, will be based on the
principles governing the design of reinforced con-
crete, except as modified hereinafter. Reinforced
masonry will not be used in rigid frames. Where
only intermittent cells are filled with grout, the f-
fective area for structural sections will be governed
by table 8-1 and figures 8-2 and 8-3. Several
arbitrary limitations on dimensions and reinforcing
are prescribed. The masonry construction must not
only meet these arbitrary prescribed limits and re-
quirements, but must also be structurally safe for
the loads and forces that will be applied.

,I-6. Working stresses. All reinforced masonry
'will be so designed and detailed that the
stresses do not exceed those required by tables
and 8-3. The shear and diagonal tension stresses re-
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Ag = gross area of masonry section.

Em = modulus of elasticity of masonry.

f = computed axial unit stress, determined from total axial load
and effective area.

Fa = axial unit stress permitted by paragraph 8-6 at the point
under consideration, if member were carrying axial load only,
including any increase in stress allowed.

fb - computed flexural unit stress.

Fb = flexural unit stress permitted by paragraph 8-6, if member
were carrying bending only, including any increase in stress
allowed.

fm = ultimate compressive stress as specified in Table 8-2.

fs = nominal working stress in vertical column reinforcement.

h - clear height in inches (paragraph 8-6, Formulas 8-1 and 8-2).

H - clear height in feet.

P = maximum concentric column axial load.

P. = ratio of the effective cross-sectional area of reinforcement
g to the applicable gross area of masonry section.

t a least thickness of column in inches (paragraph 8-6, Fomula
8-2).

t = nominal thickness of wall in inches (paragraph 8-6, Formula
8-1).

- deflection in inches.

Figure 8-1. SymboZe and NomencZature - Reinforced Manry
't

X? 
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Table 8-la. Assuned Dimenzions (Inches) for Effective Area
of Concrete BZock (Figures 8-2 and 8-3)

Nominal Design Shell Web d1 d2 d' xWidth Width Wdh Wdh d 2 d 

6 5-5/8 1 1 2.81 -- -- 7-1/2

8 7-5/8 1-1/4 1 3.81 5.31 3 7-1/2

10 9-5/8 1-3/8 1-1/8 4.81 7.06 4-1/2 7-1/2

12 11-5/8 1-1/2 1-1/8 5.81 8.81 6 7-1/2

TabZe 8-lb. EquivaZent Thickness of HoZZow Msonry
for Cputing Shear Parallel to Face (Figure 8-3(a))

Nominal Spacing of Reinforcement (inches) l
Width 8 16 24 32 40 48

6 5.62 3.92 3.36 2.96 2.81 2.64

8 7.62 5.20 4.42 3.86 3.65 3.40

12 11.62 7.58 6.23 5.29 4.94 4.53

. .,

Pt.t%: I
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EFFECTIVE AREA OF HOLLOW MASONRY (CMV): The working stresses to be used in
the design of reinforced concrete block apply to the net section of the
walls effective for resisting stress. In hollow masonry construction, the
effective net section will vary and generally will be dependent upon the
thickness of the face shells and cross-webs, the size of concrete-studs,
and on the type of mortar bedding employed in the construction. Since con-
tractors have the option to use standard (with plain or concave ends) or
open-end two-hole concrete-masonry-units, and since exact configuration may
vary between manufacturers, the precise net section will be unknown at the
time of design. As a general rule, the dimensions for concrete block units
may be assumed as shown in Table 8-1, and these values used in design cal-
culations, except that the effective area shall be adjusted to reflect loss
of area resulting from the use of, if any, reglets, flashing, slip-joints,
and raked mortar Joints.

Double-Bar Single-Bar
Stud, Stud

M. . . T:

Refer to Figure 8-3 for assumed effective area.

Fibe 8-2. Aeowned Dimenaions for Concrete BZock

�P
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Table 8-2. Basic Working Stresses for Reinforced Masonry'

YT OF S 8I So = MOW UIT 2 SOLD & OMO Us

for Cdes of Materl to f 1,500 pOsL fe a 1,350 psi 
pcifed" Building Bricks Concrete asonry *or materials where

AM C62, Units AST C90, ultiate compressive
Crade KW or SW Crade N-1 strtss (f ) is

Iteing Bricks Glazed Structussl *stabllsJ t
13STH C2169 racing Units$ approved prism tests.
Grade KW or SW AST C126 Type I but not to exceed

Concrete Building Hollow Brick Unit:
Bricks ASTH C55, AS3T C652 Grade
ASTH C145 Type - MW or SW

. ~~~~~~~~~~~~To xced

Axial, Vans, r. Formula 8-1 Formula 8-1 Formula 8-1
Axial, Columns, F Formula -2 Formula 8-2 Formula 8-2

,~ex~ I Fb 50 45 .' 900I
SHUR s

llo her Stit 5 40 35 . 07 S°
Full Shear Stel 6

nsxurzi mebbs llS 110 3 120
Shazr Vans 60 5S ., iS

NODUUIs
lastialty 1,500,000 1,350,000 1000 3,000,000

Rigdity 600,000 540.000 4Xf1 1,200,000
WARINGs

On MlAra 375 340 .25fs 900
0a 1/3 or ss ofArea 7 50 400 .30t 1,00

4... 

IA11 llowable stresses will be ncreased one-third when wind or seismic
forces are included, provided the required section or area computed on
this basis s not less than that required -ithout wind or seismic forces.

2 ltresses will be based on net ectlfn. Fgure 8-3 applies.

3Where prism tests are not performed these values of f may be assumed when
the units comply with the applicable ASTM standards.

"Minimum compressive strength 2 days for grout and mortar will be as
follow: Grout - 2000 psi, Type S mortar 1800 psi. and Type N mortar -
2500 psi.

$Web reinforcement will be provided to carry the entire shear In excess of
20 psi whenever there Is required negative reinforcement and for a d-
tance of one-sixteenth the clear span beyond the point of Inflection.

6 Relanforcement must be Capable of taking the entire shear.
7 This Increase will be permitted only when the edge. of the loaded and un-

loaded are is a minimum of one-fourth of the parallel side dimension of
the loaded area. The allowable bearing stress on a reasonably concentric
area greater than one-third but less than the full area will be Interpo-
lated between the values given.

J.
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suiting from the prescribed earthquake forces shall
be increased by 50 percent (see chap 3, para
3-3(J)lh). In walls or other structural members com-
posed of different kinds or grades of units,
materials, or mortars, the maximum stress will not
exceed the allowable stress for the weakest of the
combinations of units, materials, and mortars of
which the member is composed.

Table 84 AUowable Stresses forReinforcing Bars

Type of Stress PSI

Tensile 20,0001
Compression. Columns2
Bond-Plain Bars 60
Bond-Deformed Bars 140

'For deformed bars with a yield strength of 60,000 psi or more
and in sizes No. II and smaller. use 24,000 pai

2 0r 40 percent of yield strength, but not to exceed 24,000 psi.

. Allowable axial unit stresses in walls are de-
termined by the following formula:

F.-0.20 fl I (it I] (8-1)

b. Allowable axial forces in columns are deter-
mined by the following formula:

F., _(0.8f,+0.65 Pf,-40t _8-2)

c. Combinations of axial and flexural stresses will
satisfy the following formula:

f h { C . or C 1.33 when in combin- 83
_4 A 41-0ation with seismic or wind)

d See Figure 8-1 for symbols and nomenclature.

8-7. General design. In calculating wall
stresses, concentrated loads may be distributed
over a length of wall not exceeding the center to cen-
ter distance between loads. Where the concentrated
loads are not distributed through a structural ele-
ment, the length of wall considered shall not exceed
the width of bearing plus four times the wall
thickness. Concentrated loads shall not be distrib-
uted across continuous vertical joints. Due allow-
ance will be made for the effect of eccentric loads.
including additional moments caused by any end
rotation of floor or roof elements framing into walls.
Effective width in computing flexural stresses per
reinforcing bar shall not be greater than six times
the wall thickness or 48 inches for running bond or
three times the wall thickness or 24 inches for
stacked bond (fig 8-3(b)).

8-8. Height above grade limitation. Unit.
masonry construction will not be used for shear
walls where the structure exceeds 80 feet in height
above the adjacent ground level. Nonstructural ma-
sonry partitions may be used with skeleton con-

struction in structural steel or reinforced concr,
above the 80 feet, provided isolation compat 1
with three times (or 31K where K < 1.0) the floors
floor drift is assured by the detailing.

8-9. Vertical support. Members (girder, beams,
ledgers, etc.) which provide vertical load support
will be limited to non-combustible construction. The
vertical support will be such that the maximum de-
flection of the support under all design dead and live
loads will not exceed L/600 where L is the clear span
of the support. To limit settlement cracking, it is es-
sential that temporary shores be removed before
erecting masonry.

8-10. Lateral support. Exterior shear walls and
shear partitions shall be anchored to the structural
frame or diaphragm (horizontal resisting element)
by dowels, anchor bolts, or other approved methods
to withstand applicable horizontal forces, normal to
face, but in no case less than 200 pounds per lineal
foot. Dovetail anchors are inadequate for this pur-
pose. Nonstructural partitions should be isolated
from exterior walls and shear partitions so as to pre-
vent buttress action which would restrict shear
walls from deflecting with the diaphragms. Isolated
masonry partitions shall be braced to overhead con-
struction or anchored to other isolated cross-wall
assure lateral stability (refer to chap 9, para
and fig 9-1). Wedges will not be used between topv
partition and framing.

8-11. Lintel beams. Lintels are formed by
placing beam units over openings and reinforcing
with a minimum of two #4 bars embedded in
concrete corefill. Reinforcement shall extend 40-bar
diameters or 24 inches, whichever is greater, beyond
each face of opening; reinforcement shall be sup-
ported by wire chairs to insure proper coverage of
steel. Steel stirrups will be provided as required.
Bond beams serving as lintels shall be provided with
supplemental steel as required.

8-12. Bond beams. Reinforcement bars in bond
beams will be lapped 40 diameters or 24 inches.
whichever is greater, at splices, at intersections, and
at comers. Bar splices will be staggered. Bond
beams will be provided at top of masonry founda-
tion wall stems, below and at top of openings or
immediately above lintels, at floor and roof levels,
and at top of parapet walls. Intermediate bond

. beams will be provided as required to conform to the
. 'maximum spacing of, horizontal bars (para 8-13b,

* table 8-5). However, whenever the height is -"
multiple of this normal spacing, the spacing =
increased up to a maximum of 24 inches prou.d

6-s
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the bond beams are supplemented with joint rein
forcement. One line of joint reinforcement will be
provided for each 8-inch increase in the spacing. No
additional bond beam will be required between win-
dow openings which do not exceed 6 feet in height,
provided the prescribed supplemental joint rein-
forcement is installed. To facilitate placement of
steel or concrete corefill, the top bond beam for filler
walls or partitions may be placed in next to top
course. The area of bond beam reinforcement shall
be included as part of the minimum horizontal steel.
See figure 8-4.

8-13. Walls and partitions. Masonry walls and
partitions shall be designed for applicable vertical
loads and horizontal forces, both parallel and normal
to face, with due allowance for the effect of any ec-
centric loadings. Since distribution of lateral forces
to any wall-panel depends upon the relative stiffness
of the various vertical resisting elements at the par-
ticular level, the location of control-joints must be
established before distribution of the lateral forces
is made. For more complete discussion of lateral
force distribution refer to chapter 4, paragraph 4-4,
and chapter 6, paragraph 6-2. The resulting stresses
will comply with the requirements of paragraph 8-6.
In addition, there are certain prescribed arbitrary
limitations on wall dimensions, minimum reinforce-
ment, and maximum bar spacings.

a. Height and Thickness Limitations. The mini-
mum nominal thickness of a wall is controlled by the
type (structural role) of the wall and the height and
width between supports. Table 8-4 applies.

b. Minimum Reinforcement. Unit-masonry needs
to be reinforced not only for structural strength but
to provide ductile properties and to hold it together
in the event of severe seismic disturbanct. All walls
and partitions will be reinforced as required by
,structural calculations, but in no case, less than the
minimum area of steel and the maximnum spacing of
bars prescribed below. The minimum reinforcement
and the maximum spacing of bars is controlled by
the type of wall and the seismic zone. Table 8-5 ap-
plies. Only reinforcement which is continuous in any
wall-panel will be considered in computing the
minimum area of reinforcement. Joint-reinforce-
ment used for crack-control or mechanical bonding
may be considered as part of the total minimum hor-
izontal reinforcement, but will not be used to resist
computed stresses. Further, additional bars will be
provided around openings, at corners, anchored in-
tersections, in wall piers, and at ends of wall-panels
as prescribed elsewhere in this chapter. Vertical
bars in walls will be lapped spliced 40 diameters or

24 inches minimum

Table 8-4 Maximum Unsupported Wail Height orLengtr

Max. height
Nominal or length

Type of walbic ewan between
TIW o well thicknesa diaphragms

(inches? or supports
Ifeet)

Structural 8 12
(lead-bearing 8 16

or shearl 10 20
12 24
14 28
16 32

naonstructural 4* 10

reinforced ~~~~ msnya rsbebytis car

8 24
10 30
12 36
1 4 36
18 36

*4-inch wafta In Zone I only ini buildings not
exceeding three stories.

8-14. Columns and plasters. Masonry
umna and pilasters (fig 8-5) will be constructy
reinforced masonry as prescribed by this chapl&
and will be designed to withstand all horizontal and
vertical loads. Masonry columns or pilasters will not
be used to qualify a structure for a complete vertical
load-carrying space frame so as to reduce the factor
"K" below 1.33 of a box system. Masonry columns
will not be used in rigid frame construction.

a. Limiting Dimensions. The least nominal di-
mension of every masonry column or wall pilaster
will be not less than 12 inches. No masonry column
or pilaster will have an unsupported length greater
than 18 times its least nominal dimension. Table
8-6 applies (also, see pars 8-3d and table 8-7).

b. AUowable Loads. The maximum allowable ax
ial load on columns and pilasters will be governed by
paragraph 8-6 (formula 8-2).

c. Vertical Reinforcement. Vertical reinforcement
will be neither less than 0.005A& nor more than
0.04Ag, where Ag is gross area of column. Not less
than four #4 bars will be used. Bars will be lapped 30

C> diameters.

,fi d Lateral Ties. Hoop ties of not less than 12 hars
for #7 or smaller vertical reinforcement and ( a
for larger reinforcement will be spaced apa.__.ot

-10
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Table 8-5. Minimum Wal Reinforcement

Total Minimum Maximum spacing of bare fines)
reinforcement

4percent) 1 .2 Vertical bars Horizontal bars

Seismic Zone Seismic Zone Seismic Zone

409 1 2 13, 40S 2 is1 4&3 2 13
Structural 0.20 2 0.16 24 96 60 48 1 60 72

Nonstructural 0 |16 1 0.16 48 60 72 84 84 96-

. .

NOTES
IThe total minimum reinforcement b the sum of the vertical and horizontal reinforcement; not
les tha 11 of the prescribed total inum reinforcement l be used In ether direction.
sThe percentage of area reinforcement is based on gross area of wall (nominal dimensions).
sException: In Seismic Zone 1. one story structures with eave heights not exceeding 14 feet; and
two and three story structures with story heights not exceeding 12 feet may be reinforced or par-
tially reinforced masonry. These structures must be capable of resisting seismic zone 1 loads but
wilI be designed by the usual non-seismic criteria. (Partially reinforced masonry shall be designed
as unreinforced masonry except that reinforcement is provided in some areas to resist flexural
tension stresses. The maximun spacing of vertical reinforcement shall be 8 feet. Vertical rein-
forcement shall be provided at each aide of each opening and each corner of all walls Horizontal
reinforcement shal be provided at top of footings, at bottom and top of openings, at roof and
floor levels, and at top of parapet walls.) 

11-1�
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over 16 bar diameters, 48 tie diameters, or the least
nominal dimension of the column. Lateral ties will
be in contact with the vertical steel and not in the
horizontal bed joints. Lateral ties shall be placed not
less than 1-1/2 inches nor more than 3 inches from
the top of column. Additional ties of three 13 bars
shall be placed within the top 6 inches of column.

8-15. Wall piers. Masonry wall piers will be de-
signed to withstand all horizontal and vertical
loads. Every pier or wall section whose height ex-
ceeds four times its thickness and whose width is
less than three times its thickness will be designed
and constructed as required for columns. Every pier
or wall section whose width is between three and
five times its thickness will have all horizontal steel
in the form of ties. Table 8-7 and figure 8-6 apply.

8-16. Wall openings. Since the area ground wall
openings is vulnerable to failure, supplemental
reinforcement around the perimeter of openings is
prescribed herein. For purpose of this paragraph,
the term "jamb bars" shall mean bars of the same
size, number, extent, and anchorage as the typical
vertical stud reinforcement in that wall, and in no
case less than one bar, #4 or larger. Refer to figure
8-7.

a Case I. Provide jamb bars on each side of
opening and at least one bar, #4 or larger, at top and

bottom of opening. The lintel bars above the open-
ing may serve as the top horizontal bar and a bond
beam bar at the bottom of the opening may serve as
the bottom horizontal bar. Case I applies to: (1) all
openings in nonstructural partitions over 100
square inches, and (2) any opening in structural par-
titions or exterior walls which is 2 feet or less both
ways but over 100 square inches.

b. Case II. The perimeter reinforcement will be
the same as in Case I plus additional reinforcement
as follows: provide at least one bar, #4 or larger, on
all four sides of the opening in addition to required
bars in Case I and shall extend not less than 40 bar
diameters or 24 inches, whichever is larger, beyond
corners of the opening. Case II applies to exterior
walls and structural partitions for any opening
which exceeds 2 feet but not over 4 feet in any direc-
tion.

c, Case III. The perimeter reinforcement will be
the same as in Case II, except that vertical jamb
bars will be provided in lieu of the shorter vertical
bars. Case III applies to any opening which exceeds
4 feet in either direction in exterior walls or struc-
tural partitions.

B-17. Stacked bond. Since a running bond pat-
tern is the strongest and most economical, the
criteria in this manual are based upon each wythe of

0-11
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Table 8-7. Dimensfon of Falt Pier. (Inohe8)

Nominal Design as aNomnal Column If: Design s a Design as a
thalles Pier If Wall If
(inches) W less h greater W Equals W Exceeds

than than

6 24* 24 24 - 32 32

8 24* 32 24 - 40 40

10 32* 40 32 - 48 48

12 40 48 40 - 64 64

16 48 61 48 - 80 80

Design Paragraph 8-14 Paragraph 8-15 Paragraph 8-13

Criteria For additional reinforcement around
openings, see paragraph 8-16

*Requires pilaster

I ~ ~ ~ ~ I V A L L 4 L E V A W .
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Case I Case II Case III

Refer to paragraph 8-16 for application of Cases I, II, and III.

Figure 8-?7. Reinforcement Around WatZ Openings
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masonry walls being constructed in a running bond
pattern. Use of stacked bond pattern will be re-
striated to reinforced walls essential to the
architectural treatment. Filled cell masonry or
grouted masonry shall be used. For filled cell ma.
sonry, open end blocks shall be used and so arranged
that closed ends are not abutting.
8-18. Cavity walls. This form of construction is
commonly used where resistance to rain penetration
is desired and where thermal insulation may be pro-
vided. The two wythes of the wall forming the
cavity must be separately reinforced and thus de-
signed as independent structural walls. There is no
limitation on the width of the cavity. The wall thick-
ness and heights must comply with table 8-4. If the
exterior wythe is tied to the reinforced Inner wythe
but is nonbearing and isolated on three sides, the ex-
terior wythe may be unreinforced, in which case this
construction may be considered as an anchored
veneer and must comply with requirement for an-
chored veneer.

EXCEPTION: Seismic Zone 1, see table 8-S exceptions, cav-
ity wafls may be designed In accordance with TM-5 -S09-S.
AFM 884. chapter S and NAVFAC DM-2.6.

8-19. Veneered wall. There are two methods for
attaching veneer to a backup structural wall (see fig
8-8).

a Anchored veneer is a masonry facing secured
by joint reinforcement or equivalent mechanical tie
attached to the backup. All required load carrying
capacity (both vertical and lateral) shall be provided
by the structural backup wall. The veneer shall be
nonbearing and isolated on three edges to preclude
It from resisting any load other than its own weight
and in no case shall it be considered part of the wall
in computing required thickness of a masonry wall.
The veneer shall be not less than 1-112 inches nor
more than 5 inches thick. The veneer will be tied to
the structural wall with 816 inch round corrosion
resisting metal ties or joint reinforcement capable of
resisting in tension or compression, the wind load or
two times the weight of veneer, whichever governs.
Maximum spacing of ties is 16 inches and a tie must
be provided for each two square feet of wiall area.
Adjustable ties are not permitted. The maximum
space between the veneer and the backing shall not
exceed 2 inches unless spot mortar bedding is
provided to stiffen the ties. A noncombustible, non-
corrosive horizontal structural framing shall be
provided for vertical support of the veneer. he
maximum vertical distance between horizontal sup-
ports shall not exceed 25 feet above the adjacent
ground and 12 feet maximum spacing above the 25
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feet height. The deflection of a supporting lintel wili
be limited to L/600.

b. Adhered veneer is masonry veneer attached to
the backing with minimum 8/8 inch to maximum 8/4
inch mortar or with approved thin set latex Port-
land cement mortar. The bond of the mortar to the
supporting element shall be capable of withstanding
a shear stress of 50 p.s.i. Maximum thickness of the
veneer shall be limited to 1 Inch. Since adhered ve-
neer is supported through adhesion to the mortar
applied over a backup, consideration shall be given
for differential movement of supports including that
caused by temperature, shrinkage, creep, and deflec-
tion. A horizontal expansion joint in the veneer is
recommended at each floor level to prevent spalling.
Vertical control joints should be provided in the ve-
neer at each control joint in the backup.

8-20. Three basic types of reinforced ma-
sonry walls. a. Reinforced grouted masonry is
that type of construction made with two wythes of
masonry units in which the collar joint between is
reinforced and filled solidly with concrete grout. The
grout may be placed as the work progresses or after
the masonry units are laid. Collar joints will be rein-
forced with deformed bars, both vertical and hori-
zontal. Reinforcement and embedded items such as
structural connections and electrical conduit shall
be positioned so as to allow proper placement of
grout. All units will be laid in running bond with full
shoved head and bed mortar joints. Masonry head-
ers will not project into grout spaces. Clipped-brick
headers will be used where the appearance of ma-
sonry:headers is required. See figure 8-9.

(1) High-fift grouting procedures contemplate
that: first, both vertical and horizontal bars are erec-
ted; then, the masonry units are laid. one wythe of
masonry on each side of the reinforcement, with
space between for grout; finally, after the masonry
is built a full story height, the collar joint is filled
solidly with concrete grout. As the work progresses.
both wythes shall be kept approximately at the
same height to accommodate the wall ties (or ladder
bars) spaced not to exceed 24 inches horizontally
and 16 inches vertically to resist the hydrostatic
pressures of the fluid grout. These ties shall be laid
In the mortar bed and all ties shall be in the same
line vertically in order to facilitate the vibrating of
the grout pours. Width of the grout space shall be
not less than 3-1/2 inches and the wall shall be con-
tructed so as to preserve an unobstructed vertical

Alignment of the grout space. Cleanout openings
ihall be provided at the bottom of each pour. The

openings shall be of sufficient size and location to
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allow flushing away of mortar droppings and debris.
All mortar droppings and overhangs shall be re
moved from the foundation or bearing surface and
reinforcing. A sand bed or plastic filma will prevent
mortar droppings from bonding to the foundation
wall. Dislodge any hardened mortar from the collar
joint wall surfaces and reinforcing with a pole or rod
and remove the mortar debris prior to cleanup and
grouting. All cleanout closures, reinforcing, bolts,
and embedded connection items shall be in position
before grouting is started. Grout shall be handled
from the mixer to the point of deposit in the grout
space as rapidly as practical by pumping and
placing methods which will prevent segregation of
the mix and cause a minimum of grout splatter on
reinforcing and masonry unit surfaces not being
immediately encased in the grout lift. Use of the
high-lift grouting methods should be restricted to
walls where wall openings, arrangement of piers,
special reinforcing details, or embedded items do
not prevent the free flow of grout or inhibit the use
of mechanical vibration to properly consolidate the
grout. A grout admixture is recommended to reduce
early water loss to the masonry units and to produce
a slight expansion sufficient to offset initial shrink-
age and promote bonding of the grout to the interior
surface of the units.

(2) Low-lift grouting procedures contemplate
that: first, the vertical bars are erected; then, the
horizontal bars are placed and grouted in as laying
of the masonry work progresses. The contact sur-
face of all foundations and floors that is to receive
masonry work shall be cleaned and roughened to in-
sure a good bond between the grout fill and the
concrete surfaces. Width of collar joints shall be
such as to provide at least 1/2 inch grout coverage
around all reinforcement bars.

b. Reinforced hollow masonry is that type of con-
struction made with a single wythe of hollow
masonry units (concrete or clay blocks), reinforced
vertically and horizontally with steel bars, and cores
and voids containing reinforcing bars or embedded
items are filled with grout as the work progresses.
Construction procedures contemplate that the verti-
cal bars are erected first; then, the horizontal bars
and joint reinforcement, if required, are placed and
grouted in as laying of the hollow masonry work
progresses. See figure 8-10.

c. Reinforced filled-cell masonry is that type of
construction made with a single wythe of hollow ma-
sonry units, reinforced vertically and horizontally
with deformed steel bars, and all cores and voids are
filled solidly with grout after the wall is laid. Con-
struction procedures contemplate that, first, the

hollow masonry units are laid to full height of J
wall with horizontal bars and joint reinforcemei.,
being placed as the masonry work progresses; the
vertical bars may be either erected first or dropped
into position after the wall is erected. Finally, all
cores and voids are grouted solidly by the high-lift
grouting method. Use of open end units is preferred
and bond-beam units are required at all horizontal
bar locations. Both horizontal and vertical reinforce-
ment shall be held in position by wire ties or spacing
devices near each end and at intervals not exceeding
160-bar diameters. The contact surface of all foun-
dations and floors that are to receive masonry work
shall be cleaned and roughened before start of
laying. It shall be protected during construction to
insure a good bond between the grout fill and con-
crete surfaces. Cleanout openings shall be provided
through block faces at the bottom of each pour, of
sufficient size and location to allow flushing away of
mortar droppings and debris. After laying of ma-
sonry units is completed, the cells cleaned, rein-
forcing positioned, inspection completed, and
cleanouts closed, the high-lift grout shall be placed
in one continuous pour by lifts which allow time for
consolidation and loss of water, but placed at such a
rate as not to form intermediate construction joints
or blowouts. The maximum height of any pour she"
be limited to 12 feet for 8-inch walls and 16 feet.
12-inch walls. Low-lift grouting procedures my-
also be used for filled cell construction. See figure
8-11. .

8-21. Control oints (crack control). Cracking
of walls constructed with concrete-masonry-units is
caused by the development of tensile stresses -within
the wall assembly which exceed the tensile strength
of the materials comprising the assembly. Generally
it is due to tensile stresses which develop when wall
movements accompanying temperature and mois-
ture change as restrained by other elements, or
when concrete masonry places restraint on the
movements of adjoining elements. Moisture loss de-
pends on the shrinkage potential of the masonry
units and the drying conditions at the building site,
expressed in terms of relative humidity. Major
methods employed to control cracking in masonry
structures are (1) materials specifications to limit
the drying-shrinkage potential, (2) reinforcement to
increase crack resistance, and (3) control joints to
accommodate movement. Any crack control mea-

*sure taken must be compatible with the structural
design for seismic forces. Control joints provide a
complete separation of the masonry. Hence, locat'
of control joints fixes the length of wall-panels 
in turn, the rigidity of the walls, the distribution of
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seismic forces and the resulting unit stresses. There-
fore, adding, eliminating or relocating control joints
will not be permitted once the structural design is
complete. Control joints shall never be assumed to
transfer bending moments or diagonal tension
across the joint. Joint reinforcement and bars in
nonstructural bond beams will be terminated at con-
trol joints; deformed bars in structural bond beams
will be made continuous for length of the dia-
phragm. Using quality controlled concrete-masonry-
units and the prescribed minimum reinforcement of
seismic design, cracking is not normally a problem
when the maximum horizontal spacing of control
joints is limited to four times the diaphragm-to.
diaphragm height or 100 feet on center, whichever is
less. See figure 8-12.

8-22. Connections to other elements. The use
of joints and connections for the transmission of
shears, axial loads, moments, and torsions from dia-
phragms to walls and from walls to sub-structure is
inherent in seismic design. Great care must be taken
to properly design connections between the vertical
resisting elements (shear wall-panels) and the
horizontal resisting elements (floor and roof dia-
phragms) so as to make such walls an integral part
of the structural system. Positive means will be pro-
vided for transferring shear from the plane of the
diaphragm into the shear wall-panels into the dia-

-*A phragms. In designing connections or ties, it is
necessary to carry out the forces and their stress
paths according to relative rigidity) and also to
make each and every connection along each path
adequate and consistent with the basic assumptions
and distribution of forces. Because joints and con-
nections directly affect the integrity of the
structure, their design and fabrication must be ade-
quate for the functions intended. In designing and
detailing, it is well to keep in mind that the lateral
forces are not static, as assumed for convenience,
but dynamic and to a great extent unpredictable.

a Forces to be considered in the design of joints
and connections are gravity loads; temporary erec-
tion loads differential settlements; horizontal loads
normal to wall; horizontal forces parallel to wall; and
creep, shrinkage, and thermal forces-separately or
combined as applicable. Bond beams acting as
flange (chord) for horizontal diaphragms will require
reinforcement to be continuous at dummy control
joints for tensile and compressive chord stresses in-
duced by the diaphragm beam action, and the
marginal connections must be capable of resisting
the flexural and shear stresses developed.

b. Joints and connections may be made by
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welding steel reinforcement to structural steel
members, by bolting, by dowels, by transfer of ten-
sile or compressive stresses by bond of reinforcing
bars, or by use of key-type devices. The transfer of
shear may be accomplished by using reinforcing
steel extended as dowels coupled with cast-in-place
concrete placed between roughened concrete inter-
faces, mechanical devices such as embedded plates
or shapes. The entire shear should be considered as
transferred through one type of device, even though
a combination of devices may be available at the
joint or support being considered. Maximum spac-
ing of dowels or bolts will not exceed 4 feet. All
significant combinations of loadings should be con-
sidered, and the joints and connections should be
designed for forces consistent with all possible com-
binations of loadings. Details of the connections
shall admit to a rational analysis in accordance with
well-established principles of mechanics.

c. The strength of connections, as a general rule,
should be sufficient to develop the useful strength of
the structural elements connected, regardless of cal-
culated stress. The design forces for joints and
connections between lateral force resisting elements
will be at least 2.0 times the calculated shear when
using the prescribed lateral loads, except that the
connection need not be required to develop forces
greater than the ultimate capacity of the connected
elements, and in no case less than 200 pounds per
linear foot. The shear on every bolt shall not exceed
the values given in table 8-8.

d Cutionary Notes for Designers and Detailers.
Avoid connection and joint details which would re-
sult in stress concentrations that might result in
spalling or splitting of face shells at contact sur-
faces. Liberal chamfers, adequate reinforcement,
and cushioning materials are a few means by which
stress concentrations may be avoided or provided
for. Avoid direct bearing of heavy concentrated
loads on face shell of concrete masonry units. Avoid
welding to any embedded metal items which might
cause damage to the adjacent masonry by spalling,
in particular where the expansion of the heated
metal is restrained by masonry. All bolts and dowels
which are embedded in masonry will be grouted sol-
idly in place with not less than 1 inch of grout
between the bolt or dowel and the masonry. At tops
of piers and columns, vertical bolts will be set inside
the horizontal ties.

S23. Fire walls. A fire wall is a fire-resistive bar-
tier which must be able to withstand the temper-
ature of uncontrolled fires without disintegration,
prevent passage of fire from either side to the other

6-19
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Table 8& Alowable Shewon Bos andDowels

Minimum
Edge Distance

Minimum Embedment in Loaded
Diameter and Spacing Shear Direction
(inches) (lnche)eM (pounds) (inches)

112 4 850 3
/8 4 500 3

3/4 a 750 4
7/8 6 1,000 4

1 7 1.250 5
1-118 6 1,600* 6

For load applied at the top of and paalle to wa the bolt values may be nceasd 60 percent
when vertical bolts are set between horizontal bond beam reinforcement.
Allowable shear may be increased IS when wind or aemic forces re included.

Permitted only with not lee than 2.500 psi units.
*An additional 2 inches of embedment will be provided for anchor bolts at top of columns.

side, confine fire from sweeping over or around
either end (by use of parapet at roof line, and wing
walls or fire wall returns at exterior walls), have
insulating qualities to maintain low temperature on
the unexposed face of the wall, and remain standing
even when a portion of the building on either side
collapses. Stability is one of the essential properties
of a fire wall. Such a wall must remain standing
during a fire even when the building framing on one

-* side collapses. This stability requirement has led to
several little-appreciated design problems in loca-
tion of expansion (seismic) Joints and in selecting or
adapting a seismic structural system which is com-
patible with this fire wall requirement. A "Fire Cut-
Off Partition" is a fire-resistive barrier used to delay
the spread of a fire; but, unlike a fire wall, it is not
required to remain standing should a portion of the
building collapse. The most commonly used types of
fire walls are described below (other types may be
used, provided they conform to the principles in the
foregoing text). (Refer to fig 8-13.)

a Double fire wall Is a very reliable type of fire
separation. The separate walls are laterally sup-
ported by their respective building structural
system, and each may be part of a seismic structural
system. In case of masonry, it may be used as two
shear walls back-to-back. If there is an uncontrolled
fire on either aide of the double wall, the building
frame will collapse and pull one wall with it. The
other wall, being supported by the framing on the
side away from the fire, will remain in place. A dou-
ble wall having two 3-hour one-way walls may be
considered as a 4-hour wall. The double wall serves
as an expansion joint in the building. The width of

the gap between Is based on requirements for seis-
mic joints.

b. Free-atanding fire wag as an alternative to a
double fire wall, is entirely self-supporting without
any structural tie to adjacent framing. For stability
against horizontal forces, it must rely on its own
strength as a cantilever from the base. Horizontal
forces may be caused by wind, earthquake, or by the
pull of flashing as the burning portion of the build-
ing collapses. Lateral strength of the wall shall be
obtained by providing reinforcing steel in the wall
and by adding reinforced pilasters, if necessary. A
double seismic joint is required and each portion of
the building, adjacent to fire wall, will be designed
as an independent structure.

C One-way fire wall meets all requirements of a
regular fire wall except that it is limited to remain
standing when the fire exposure is from one (prese-
lected) side. Therefore, it is useful only to isolate a
hazardous area from an ordinary or light hazardous
occupancy.

8-24. Weatherproofing. Each job requires a
separate decision as to the requirements for weath-
erproofing, damp-proofing, thermal insulation, and
vapor control. Manuals and guide specifications of
applicable agency apply.

8-25. Surfac, bonding of concrete masonry
units. This method of construction is not permitted
id-Seismic Zones 2, 8, and 4. Use in Zone is re-

ricted to design agency approval.

8-26. Drawings. The locations of control joints,
and the Identification of structural and nonstruc-
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tural walls and partitions for all masonry construc-
tion will be shown on preliminary and contract
drawings. On contract drawings, show complete
details for masonry, reinroement, and connections
to other elements. Detailing procedures outlined in
ACI-315, "Manual of Standard Practice for Detail-
ing Reinforced Concrete" are generally applicable to
reinforced masonry.
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8-27. Overseas construction. In overseas con-
struction where local materials or grades other than
those herein are used, the working stresses, details,
and other requirements of this chapter will be
modified as required because of the characteristics
of the materials.

8-28. Additional details. See figures 8-14
through 8-17, and tables 8-9 and 8-10.
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TabZe 8-9. Average Weight of Concrete Masonry Unit

(2-CeZt Unit, 8" x 8" x 1")

Gross Area . Net Area Lightweight Sand-Gravel
Thickness of Unit of Unit Aggregate Aggregate
(inches) (square (square (pounds (pounds

inches) inches) per unit) per unit)

4 57 37 15 20

6 88 50 23 33

8 119 57 28 38

12 182 83 40 56

TabZe 8-10. Average Weight of Compfeted WaZtI

(Pounds per Square Foot of Watt)

.9 1* I. Y

Thickness
(inches)

Lightweight
Aggregate

Sand-Gravel
Aggregate

Grouted
BrickClay-

blockI . .
. . .

6 8 12 6 8 12 9 9-1/2 10 11 12

Solid
Grouled 56 77 11 68 92 140 68 90 95 100 110 120Wall I9 z r~

Spacing of 16 46 60 90 58 75 111 71
Vertical - - - - - - __

Grouted 24 42 53 79 53 68 99 64
Cores - - - -

(inches) 32 40 50 73 51 65 93 61

40 38 47 70 50 62 89 58

48 37 46 68 49 61 87 55

1A sand-gravel aggregate has been assumed for the
The above weights include an assumed average for
forcement.

k
.5J

grout and mortar.
bond beams and rein-
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CHAPTER 9
ARCHITECTURAL ELEMENTS
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9-1. Purpose and scope. This chapter defines
architectural elements, discusses their participation
and importance in relation to the seismic design of
the structural system, and prescribes the criteria for
their design to resist damage from seismic lateral
forces. The fundamental principle and underlying
criterion of this chapter are that (a) the design of ar-
chitectural elements will be such that they will not
collapse and cause personal injury due to the accel-
erations and displacements induced by severe seis-
mic disturbances, and (b) the architectural elements
will withstand more frequent but less severe seismic
disturbance without excessive damage and eco-
nomic loss (refer to chap 2, para 2-9k). Mechanical
and electrical elements are considered separately in
chapter 10.

9-2. Definition. Architectural elements are gen-
erally defined as all elements of a building shown
only in the architectural contract drawings (i.e., not
detailed in the structural or mechanical/electrical
drawings), such as nonstructural walls, partitions,
windows, suspended ceilings, ornamentation, and
appendages. A nonstructural architectural element
is usually isolated or is so flexible such that it does
not participate in the lateral shear resistance of the
structure. For example, a wall which is isolated at
the top and both ends, so as not to resist inplane de-
formations, is classified as a nonparticipating, non-
structural, architectural element. Note that such a
wall must be braced laterally at the top or else it
must cantilever from the floor (fig 9-1). A rigid non-
bearing curtain or filler wall (e.g., concrete or ma-
sonry) that is not isolated, although generally con-
sidered as a nonstructural element, will obviously
participate in shear resistance to horizontal forces
parallel to the wall because it tends to deflect and be
stressed when the building deforms under lateral
forces. The degree of participation is dependent on
the relative rigidities of such elements relative to
the overall structure.

9-3. Design criteria. Architectural elements (1)
must safely resist horizontal forces equal to a force
coefficient times their own weight, and (21 must be
capable of conforming (accommodating) to the lat-
eral deflections that they will be subjected to during
the lateral deformation of the building in which they
are located.

a. Lateral Forces. The equivalent static lateral
force that is applied to architectural elements is

given by the formula 3-8 in chapter 3, paragraph
3-3(G),

Fp-ZCpWp 13-8)

where the direction of the force Fp and the value of
the coefficient Cp are prescribed in table 3-4. In gen-
eral, the value of CD is 0.30; however, for ornamenta-
tion, parapets, and other appendages, where the po-
tential for collapse and injury is greater, Cp is 0.80.
For exterior wall panels, Cp is 0.30; however, the
special provisions of chapter 3, paragraph 3-3(J)3d
apply.

b. Deflections. For the design of the structure,
lateral deflections or drift of a story relative to its
adjacent story is limited to 0.005 times the story
height unless it can be demonstrated that greater
drift can be tolerated (chap , para 3-3(H)1). The
drift is calculated from the application of the re-
quired lateral forces multiplied by I/K (1/K not less
than 1.0).

(1) Architectural elements will be designed and
detailed to conform to these drift requirements
without damage.

(2) Exterior elements are required to allow for
relative movement equal to 31K times the calculated
elastic story displacement caused by required
seismic forces or 112-inch per story, whichever is
greater (chap 3, para 3-3(J)3d).

(3) The effects of adjoining rigid elements on
the structural system will also be investigated (chap
3, para 3-30J)le).

9-4. Detailed requirements. a. Partitions.
Partitions are classified into two general categories:
(1) rigid and (2) nonrigid. Reference is also made to
chapter 6, paragraph 6-2.

(1) Rigid Partitions. This category generally re-
fers to nonstructural masonry walls. Where such a
wall is unable to resist the lateral forces (parallel to
its plane) that it is subjected to, based on relative
rigidities, it will be isolated. Typical details for isola-
tion of these walls are shown in figure 9-1. These
walls will be designed for the prescribed forces nor-
mal to their plane.

(2) Nonrigid Partitions. This category generally
refers to nonstructural partitions such as stud-and-
drywall, stud and plaster, and movable partitions.
Mlen constructed according to standard recom-
mended practice, it is assumed that the partitions
can withstand the design inplane drift of 0.005
times the story height (i.e., 1/16 inch per foot of
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height) without damage. Therefore, if the structure
is designed to control drift within the prescribed
limits, these partitions do not require special
isolation details. They will be designed for the
prescribed seismic force acting normal to flat sur-
faces. However, wind or the normal 10 pounds per
square foot partition load will usually govern. If the
structural design drift is not controlled within the
prescribed limits, isolation of partitions will be re-
quired for reduction of nonstructural damage.
Economic justification between potential damage
and costs of isolation will be considered. Decision
needs to be made for each project as to the role, if
any, such partitions will contribute to damping and
response of the structure, and the effect of seismic
forces parallel to the partition resulting from the
structural system as a whole. Usually, it may be as-
sumed that this type of partition is subject to future
alterations in layout location. The structural role of
partitions may be controlled by height of partitions
and methods of support.

iv -p . l

b. Connections of Exterior Wall Panels. Precast,
nonbearing, nonshear wall panels of other elements
which are attached to, or enclose the exterior, will
accommodate movements of the structure resulting
from lateral forces or-temperature changes. The con-
crete panels or other elements will be supported by
means of cast-in-place concrete or by mechanical de-
vices. Connections and panel joints will be designed
to allow for the relative movement between stories
and will be designed for the forces specified in chap-
ter 3, paragraph 3-3(J)3d. Connections shall have
sufficient ductility and rotation capacity so as to
preclude fracture of the concrete or brittle failures at
or near welds. Inserts in concrete shall be attached
to, or hooked around reinforcing steel or otherwise
terminated so as to effectively transfer forces to the
reinforcing steel. Connections to permit movement
in the plane of the panel for story drift may be prop-
erly designed sliding connections using slotted or
oversize holes, or may be connections which permit
movement by bending of steel components without
failure. Typical design forces are shown in figure
9-2.

not less than 4 pounds per square foot shall be used
(reference table 8-4, footnote 6). The support of the
ceiling systems will be by a positive means of sup-
port such as wire or an approved seismic clip sys-
tem. Typical details of suspended acoustical tile ceil-
ings are shown in figure 9-3.

d Parapets, Ornamentation, and Appendages.
These elements will be designed for forces resulting
from Cp equal to 0.8 as prescribed in chapter 3, para-
graph 3-3(G) and table 3-4. For the design of para-
pets refer to chapter 6, paragraph 6-2c.

e. Window Frames. Window frames will be de-
signed to accommodate deflections of the structure
without imposing a load on the glass. As glass is a
brittle material, a considerable hazard of falling
glass may be present. It is particularly serious if the
glass is above and adjacent to a public way. This
hazard can be eliminated by proper isolation be-
tween glass and its enclosing frame. It is obvious
that the magnitude of isolation required depends
upon the drift and the size of the individual pane or
enclosing frame. Thus a pane of glass in a full story
height frame should have an isolation or movement
capability as great as the maximum possible drift
(e.g., 3/K times the calculated elastic story dis-
placement prescribed in chap 3, para 3-3(J)ld and
3-S)3d). The actual isolation clearance will depend
on the geometry and deformation characteristics of
enclosing frame, frame support, and structural sys-
tem. Special care will be exercised in the field to see
that such isolation is actually obtained.

f. Stairways The rigidity of the stairway, relative
to the structure, will be considered. In some cases
the stairway will be isolated from the structure for
lateral force considerations. Refer to chapter 4, para-
graph 4-7d, for special seismic detailing.

g. Storage Racks. Chapter 8, paragraph 3-3(G),
and table 3-4 prescribe the seismic design forces for
storage racks. However, two alternative methods
for determining the seismic design forces are per-
mitted under certain conditions.

(1) Table -4. Lateral forces are determined
from the formula Fp = ZICpWp (formula 3-8) where
Cp is equal to 0.30 and Wp is equal to the weight of
the racks plus contents. If the racks are self-sup
porting and located on the ground level of the build-
ing, Cp is reduced to a value of 0.20 (footnote 1 of
table 3-4). If the racks are over two storage support
le6ls in height, the Cp value for the storage levels
b-elow the top two levels is reduced by 20 percent
(.e., Cp equals 0.24, or 0.16 if self-supporting on the
ground level).

c Suspended Ceiling Systems. Earthquake dam-
age to suspended ceiling systems can be limited by
proper support and detailing. Suspended ceiling
framing systems in Seismic Zones 2, 3, and 4 will be
designed for the prescribed forces in chapter 3, para-
graph 3-3, table 3-4. The ceiling weight. Wp, shall
include all light fixtures and other equipment which
are laterally supported by the ceiling. For purposes
of determining the lateral force, a ceiling weight of
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12) Atternate No. L Where a number of storage
rack units are interconnected so that there are a mi-
nimum of four vertical elements in each direction on
each column line designed to resist horizontal
forces, the design coefficients may be as for a build-
ing with K values from table 3-3, CS = 0.20 for use
in the formula V = ZIKCSW (formula 3-1) and W
equal to the total dead load plus 50 percent of the
rack rated capacity.

(3) Alternate No. I For pallet racks, drive-in and
drive through racks, and stacker racks made of cold.
formed or hot-rolled steel structurarmembers which
are located on the ground level of the building, the

provisions of Uniform Building Code Standard 
27-11 may be used. This standard is based on"
terim Specifications for the Design, Testing, a
Utilization of Industrial Steel Storage Racks,"
1972, and "Supplement No. 1 to the Specification,"
June 18, 1973, by the Rack Manufacturers Institute
(1326 Freeport Rd., Pittsburgh, PA 15238). These
provisions are based on the formula V = ZIKCSW
formula 3-1), with the coefficients determined in a
manner consistent with the provisions of chapter 3,
paragraph 3-3, of this manual. W is equal to the
weight of the racks plus contents.
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CHAPTER 10
MECHANICAL AND ELECTRICAL ELEMENTS

10-1. Purpose and scope. This chapter pre-
scribes the criteria for structural design of anchor-
ages and supports for mechanical and electrical
equipment in seismic areas. Mechanical and electri-
cal equipment have been classified as being either
ongrade or supported by the building and as being
rigid or flexible. The principles and concepts given
herein are intended to illustrate principles and con-
cepts involved in seismic design of mechanical and
electrical elements of buildings. The fundamental
principle and underlying criterion of this chapter
are that the design of mechanical and electrical ele-
ment supports will be such that they will withstand
(1) the accelerations induced by severe seismic dis-
turbances without collapse or excessive deflection,
and (2) the accelerations induced by less severe seis-
mic disturbances without exceeding yield stresses.
The design of the equipment Itself is beyond the
scope of this manual.

a. Modification to SEAOCApproach. The seismic
force criteria for rigid and rigidly mounted equip-
ment are generally covered by the SEAOC provi-
sions in chapter 3, paragraph 3-S(G), and table 3-4.
In order to fulfill the requirements of mechanical
and electrical elements not specifically covered by
chapter 3, a modification to the SEAOC approach is

s presented in this chapter. Particular attention is
given to criteria for the estimation of horizontal
force factors on flexible and flexibly mounted equip-
ment.

b. Seismic Forces. The design forces applied to
equipment supports are generally higher than the
forces used in the design of buildings. One reason is
the amplification of the ground motion acceleration
transmitted to elements in the elevated stories of a
building due to dynamic response. Another reason is
equipment supports often lack the extra margin of
safety provided by reserve strength mechanisms,
such as participation of architectural elements, in-
elastic behavior of structural elements, and redun-
dancy in the structural system, that are characteris-
tic of buildings.

10-2. General requirements. All equipment
supports designed under the provisions of this
chapter, for either equipment on the ground or in
buildings, will conform to the following require-
ments:

a. Rigid Equipment awd Rigid Supports. Rigid
equipment that is rigidly attached to the structure

or to the ground will be designed for seismic forces
prescribed by chapter 3, paragraph 3-3(G), of this
manual. Limitations, exceptions, and commentary
are stated in paragraphs 10-3 and 10-5 below.

b. Flexible Equipment or Equipment on Flexible
Supports. For flexible and flexibly mounted equip-
ment and machinery, chapter 3, paragraph S-3(G)
and table 3-4, footnote 3. state that the appropriate
values of Cp, shall be determined with consideration
given to both the dynamic properties of the equip-
ment and machinery and to the building or structure
in which t is placed. As an alternative to a rigorous
analysis, a procedure is outlined in paragraph 10-4
to obtain horizontal design seismic forces for flexi-
ble or flexibly mounted equipment (and machinery)
located in the building. Paragraph 10-5 discusses
the criterion for locations on the ground.

c. Weight Limitations. Equipment in buildings
will be considered to be within the scope of this
chapter if:

-(1) The maximum weight of the individual item
of equipment does not exceed 10 percent of the total
building weight.

(2) The maximum weight of the individual item
of equipment does not exceed 20 percent of the total
weight of the floor at the equipment level.
The response of equipment is dependent upon the
response of the building in which it is housed. If the
weight of the equipment is appreciable, relative to
the weight of the building, the interaction of the
equipment with the building (i.e., coupling effect)
will change the building response characteristics. It
is assumed that equipment within the above weight
limitations has a negligible effect on the response of
the building. Equipment that is not within the
above limitations is outside the scope of this manual
and must be designed using a more rigorous method
of analysis.

d Rigorous Analysis. No portion of this chapter
will be construed to prohibit a rigorous analysis of
equipment and the supporting mechanism by estab-
lished principles of structural dynamics. Such an
analysis will demonstrate that the fundamental
principle and underlying criterion of paragraph 10-1
are satisfied. In no case will the design result in
capacities less than 80 percent of those required by
chapter 3, paragraph 3-3(G).

e. Combined States of Stress. Combined states of
stress, such as tension and shear on anchor bolts,

10-1
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will be investigated in accordance with established
principles of structural engineering. Refer to chap-
ter 4, paragraph 4-6d

f. Securing Equipment. Use of friction as a
method of resisting seismic forces is not acceptable
and will not be allowed. Both vertical and horizontal
accelerations are possible during an earthquake.
Under vertical acceleration, the normal force re-
quired to maintain friction can be greatly dimin-
ished. This could result in a reduction of the friction
force available to resist horizontal seismic loads as
both simultaneous vertical and horizontal accelera-
tions are possible. Thus, equipment will be secured
by bolts, embedment, or other acceptable positive
means of resisting horizontal forces. Rvefer to para-
graph 10-11 for example of typical details.

g. Special Requirements. Additional require-
ments for lighting fixtures and supports, piping,
stacks, bridge cranes and monorails, and elevator
systems are covered in paragraphs 10-6 through
10-10, respectively.

10-3. RIgId and rigidly mounted equipment
In buildings. Rigid and rigidly mounted
equipment will be considered to be those equipment
units and equipment supporting systems for which
the period of vibration as defined in paragraph
10-4b is estimated to be less than 0.05 second (i.e.,
frequency of vibration greater than 20 Hz). Compact
equipment directly attached to a concrete pad or a
footing will be considered rigidly supported. This
type of equipment-supporting system is very stiff,
and the period of vibration is very short (i.e., high
frequency of vibration). Equipment not satisfying
the rigidity requirement will be designed according
to the criteria of paragraph 10-4.

a. ExamplesofRigidlyMountedEquipment.
11) A boiler bolted or otherwise securely at-

tached to a concrete pad or directly to the floor of a
structure.

(2) An electrical panel board securely attached
to solid walls or to the studs of stud walls.

(3) An electric motor bolted to a concrete floor.
(4) A floodlight having a short stem bolted to a

wall.
(5) A rigidly anchored heat exchanger.

b. Equivalent Static Force. The equivalent static
lateral force is given by formula (3-8) in chapter 3,
paragraph 3-3(G).

Fp Z I C W 3-8)

Cp, as prescribed in table 3-4, is equal to 0.30 for all
equipment and machinery that are rigid and rigidly

attached to the building (see para 10-5 for eq
ment on the ground). For cantilevered portion
chimneys and smokestacks, Cp is 0.80; howevr
these items must also be investigated for the crite-
rion stated in paragraph 10-8.

10-4. Flexible equipment or flexibly mounted
equipment In buildings. Equipment that does
not satisfy the rigidity requirements of paragraph
10-3 will be considered to be flexible or flexibly
mounted. For flexible and flexibly mounted equip-
ment (and machinery), the appropriate seismic
design forces will be determined with consideration
given to both the dynamic properties of the equip-
ment (and machinery) and to the building or
structure in which it is placed (chap 3, table 3-4,
footnote 3). An approximate procedure, which
considers these dynamic properties within certain
limits, is presented below. Flexible or flexibly
mounted equipment that does not qualify within the
limits of this chapter is outside the scope of this
manual and will be designed using a more rigorous
method of analysis.

a Single Mass System. The approximate-proce-
dure is based on the equipment responding as a
single-degree-of-freedom system to the motion of
one of the predominant modes of vibration of te
building at the floor level in which the equipme
placed. Therefore, if the equipment and its supp,
ing system cannot be approximated by a single-
degree-of-freedom system (i.e., a simple oscillator
represented by a single mass and a simple spring), a
more rigorous analysis is required. Some examples
of systems that do qualify under this procedure fol-
low:

(1) Rigid equipment attached to the floor slab
with a spring isolation system.

(2) Rigid equipment, rigidly attached to a flex-
ible supporting system that is rigidly attached to
the floor slab.

13) Rigid equipment attached by a cantilever
support from the structure.

(4) Flexible equipment, which can be repro-
sented as a single mass system, rigidly attached to
the structure.

EXCEPTIONS Equipment that can be considered to
have uniformly distributed mass will be designed for seismic
forces in manner similar to stacks (par. 10-8). Lighting fix-
tures, piping, stacks, bridge cranes and monorail, and elevator
systems will be designed specified in paragraphs 10-8
t through 10-10. respectively.

b. Equipment Period Estimation. For equipmorit
responding as a single-degree-of-freedom syt
the period of vibration, T., is equal to 2 VPm-a' __

10-2



stiffness. In terms of inch and pound units, this
formula becomes

T,-2r g By 2 1 t 0.32 J 110-1)

where
T -- Fundamental period (sec).
k - Stiffness of supporting mechanism in terms of load

per unit deflection of the center of gravity lblin.j.
W - Weight of equipment andlor equipment supports

Obl. which Is equal to the mass times the accelera-
tion of gravity.

g - Acceleration of gravity at 586 InJsec2.

In lieu of calculating the period of vibration using
Equation 10-1, a properly substantiated experimen-
tal determination will be allowed.

c. Building Period Estimation. If a building has
more than one story it is considered to be a multi-
degree-of-freedom system with more than one mode
of vibration. Flexible equipment located in the
building can be excited to respond to any of the pre-
dominant modes of the building vibration. There-
fore, when investigating the response of equipment
to the floor motion response, all predominant modes
of vibration must be considered. The building peri-
ods will be based on realistic estimations that are
not restricted to limitations used in building design
criteria.

(1) Findamental mode of vibration. The funda-
mental period of the building vibration T1 corre-
sponds to the period T used in the design of the
building. A realistic estimation of Ti will probably
lie somewhere between the value used to determine
the force coefficients (chap 4, para 4-3d) and the
value used to determine the drift compliance (chap
4, para 4-5c).

(2) Higher modes of vibration. In addition to
the fundamental mode of vibration, the predomi-
nant higher modes of vibration must be considered.

(a) For regular structures (section 3-3(E)},
with fundamental periods less than 2 seconds, in-
clude the second and third modes of vibration
(translational modes in the direction under consider-
ation). In lieu of a detailed analysis, the second mode
period of vibration may be assumed to equal 0.30
times the fundamental period of vibration (i.e., T2 =
0.30 Ti) and the third mode period of vibration may
be assumed to equal 0.18 times the fundamental pe-
riod of vibration (i.e., Ts = 0.18 Ti).

(b) For buildings with fundamental periods
greater than 2 seconds, the fourth mode and possi-
bly the fifth mode should also be included.

(c) For irregular buildings the dynamic char-
acteristics of the structure must be Investigated to
determine other nontranslational or torsional) pre-
dominant modes.
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(d) In some cases, the vertical modes of vibra-

tion should be considered. This applies to floor sys-
tems that are flexible in the vertical direction and
equipment sensitive to vertical accelerations.

d Appendage Magnification Factor. The append-
age magnification factor M.F.) is the ratio of the
peak motion of the appendage (in this case, equip-
ment) to the peak motion of the floor level that it is
mounted on. A theoretical value of the M.F. is gen-
erally based on steady-state motion due to the floor
responding as a uniform sine wave. However, build-
ings that are responding to earthquakes move in a
somewhat random fashion and thereby do not gener-
ate magnification factors as large as calculated by
theoretical steady-state responses. Following are
discussions on the steady-state response and on an
approximate method for estimating appendage
magnification factors.

(1) The magnification factor for an idealized
single mass oscillator, with a period T. and damping
characteristics at 2 percent of critical damping, re-
sponding to a steady-state sinusoidal acceleration
having a period T. is plotted on figure 10-1. If Ta is
essentially equal to T. M.F. equals 25. In other
words, at a condition of resonance, the maximun ac-
celeration of the oscillator mass will be 25 times the
peak acceleration of the forcing motion. This ideal-
ized condition depends on (a) fine tuning of the two
periods, (b) linearity of the oscillator spring, (c) uni-
formity of the input sinusoidal motion, and d)
length of time of the input motion (at least 25 cy-
cles).

(2) If the oscillator represents the equipment,
the floor response represents the steady-state input
motion, and the Cp value of 0.30 is assumed to be
the floor acceleration, the peak acceleration for the
equipment is 25 times 0.30g = 7.5g. In other words,
the horizontal force on the equipment is seven and
one-half times its own weight. However, due to the
actual nonlinear characteristics of equipment and
buildings and particularly the finite duration of
earthquake motion, it is highly unlikely that such a
magnification could actually occur to a 2 percent
damped equipment appendage.

(3) In order to approximate a realistic value for
a design M.F. factor, it is assumed that (a) the peri-
ods Ta and T will differ by at least percent; (b)
buildings are not perfectly linear elastic, especially
at high amplitudes of response; (c) the floor response
is not an exact, uniform sine wave; and d) the num-
ber of high amplitude floor response cycles is sub-
stintially less than 25.
[A' (4) The design M.F. factor curve shown in fig-
ure 10-2 is presented as an aid to estimating the de-

i- ~ 
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sign response of single-degree-of-freedom append-
ages, in lieu of more rigorous analysis methods. The
peak M.F. of 25 is reduced to 7.5 by reducing the ef-
fectiveness of the period tuning, the peak floor re-
sponse amplitude, and the number of continuous cy-
cles to roughly two-thirds of the idealized values
(i.e., 25 X 213 X 23 X 2/3 2 7.5). The width of the
magnification factor is broadened to account for un-
certainty of actual period ratios.

e. Equivalent Static Force. The equivalent static
force for the anchorage of flexible and flexibly
mounted equipment is given by the formula

Fj.- Z I AP CP Wp (10-2)
which is a modification of the rigid equipment for-
mula 3-8, where Ap is the amplification factor for
the coefficient Cp. The value of Ap is related to the
M.F. values of figure 10-2; however, the maximum
value of 7.5 is reduced to a value of 5.0 to account
for multimode effects that are assumed to be in-
cluded in the C, values of table 3-4 (i.e., the C, for
rigid equipment considers the peak floor accelera-
tion for a combination of modes; however, only one
of these modes will excite the single resonance fre-
quency of the flexibly mounted equipment). The
value of A will be determined by one of the alterna-
tives listedbelow.

(1) If the periods of the building and equipment
are not known, AP = 5.0.

(2) If the fundamental period of the building is
known (see para 10-4c(1)), but the period of the
equipment is not known, Ap is determined by table
10-1.

(3) If building and equipment periods are both
known, Ap may be approximated by the graph in
figure 10-3.

f Use of the Equivalent Static Force Procedure.
The force Fp of formula 10-2 will be applied in the
same manner as the force Fp for rigid equipment in
chapter 3, paragraph 3-3(G). As an aid to determin-
ing the Ap value, the following examples are given.

(1) A standard anchorage system is to be
signed for some flexible equipment that will.
placed in several buildings. In order to have one um-
versal anchorage system that will apply to all build-
ings, use Ap equal to 5.0.

(2) An anchorage system is to be designed for
some flexible equipment that will be placed in a
builing with a fundamental period of less than as
seconds. Because the period of the equipment is not
given, use table 10-1. AP - 5.0.

(3) An anchorage system is to be designed for
some flexible equipment that will be placed in a
building with a fundamental period of roughly 1.4
seconds. Because the period of the equipment is not
given, use table 10-1. Interpolate between 1.0
second and 2.0 seconds. AP - 3.7.

(4) An anchorage system is to be designed for
equipment with a period T. equal to 0.2 second

(a) In a builng with T -0.5second Because
both the building period and equipment period are
known, use figure 10-3(a). TaIT =0.2/0.5 0.4 and
Ap = 2.7.

(bi In a building with T = 1.4 seconds. Use
figure 10-3(b). Ta/T = 0.2/1.4 - 0.14 < 1.2. Thus, Al
is equal to the value in Table 10-1; Ap = 3.7.

(5) An anchorage system is to be designed flr
equipment with a period T. equal to 20 seconds.

(a) In a building with T = 0.5 second <,
figure 10-3(a). T.IT = 2.010.5 = 4.0; Ap = 1.0.

(Jo In a building with T 1.4 seconds. Use
figure 10-3(b). T - 2.0/1.4 = 1.4. Interpolate
between the curves for T = 1.0 seconds and T = 2.0
seconds. Ap = 3.0.

g. Lateral Bracing. Stiffening of the equipment
supports by lateral bracing may be used to reduce
the appendage period; thus, possibly reducing the
design seismic loads. Lateral bracing for compres-
sion members expressly designed for seismic forces
will not exceed the slenderness limitation of Jr <
200 in any direction. L is the unbraced length in

Table 10-1. Amplification Factor, Ap for Flexible or
Flexibly Mounted Equipments

Less ~~~~~~~~Greater
Building period t, sec than 0.75 1.0 2.0 than

0.5 3.0

Ap 5.0 -~ 4.75 4.0 3.3 2.7

*The values for Ap are based on a modal &sysis using the period estimates of paragraph
10-4c, the design magnification factors of paragraph 10-4d. and a fairly standard response spec.
trum, shape. The values in table 10-1 apply only to regular structures or framing systems (chap 3.
para 3-34E)).
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inches in the direction considered and r is the
corresponding radius of gyration in inches.

h Storage Tank Hydrodynamic Effects Storage
tanks in which the liquid is rigidly contained need
not have hydrodynamic effects included in the
seismic design when using the equivalent static
force procedure. However, when the sloshing effects
of the liquid could be detrimental to the function of
the tank, the hydrodynamic effects will be
considered. Refer to chapter 11, paragraph 11-4, for
guidance in utilizing established principles of fluid
mechanics and structural dynamics.

10-5. Equipment on the ground. Equipment
classified as equipment on the ground will be that
equipment in contact with or buried in the soil; that
equipment supported by means of a slab, footing, or
pedestal directly supported by the soil or on piles
embedded in the soil; or equipment which Is
mounted on a tower, pole, or other similar structure
that is soil-supported. Such equipment may be clas-
sified in one of three general categories, depending
on its size, shape, and dynamic characteristics. The
general categories are: (a) rigid and rigidly mounted
equipment; (b) flexible or flexibly mounted
equipment; and c) large complex equipment or
equipment on large or complex supports that are
classified as structures other than buildings
(chapter 11).

a Rigid and Rigidly Mounted Rigid and rigidly
mounted equipment located on the ground are de-
fined in the same manner as equipment considered
in paragraph 10-3 except that the weight limitation
need not be considered. The equivalent static lateral
force is given by the formula

iFp-Z I 23 Cp) W 110-31

as prescribed by chapter 3, paragraph 3-3(G). Cp is
prescribed in table 3-4. The two-thirds reduction
factor applies for equipment and machinery sup
ported at ground level that is rigid and is rigidly
attached (table 3-4, footnote 1).

b. Flexible or Fkxibly Mounted Flexible or
flexibly mounted equipment located on the ground
responds to seismic motion in a similar manner that
a structure responds to seismic motion. Such equip
ment is generally not subjected to the additional
magnification factors of similar equipment located
in the elevated stories of buildings. Equipment con-
sidered in this paragraph is limited to that which
can be approximated by a single degreeof-freedom
system (para 10-4a). The equivalent static lateral
force is given by the formula

Fp'Z I (2 CS} W, 10-4)

or by Formula 10-3 in paragraph a, abo
whichever is larger. C and S will be determined
prescribed in chapter 3, paragraph 3-3, except that
the equipment period Ta (para 10-4b) will be used in
lieu of the building period T. When the periods are
unknown. (2 CS) will be equal to the maximum value
of 0.28.

c. Equipment Classified as Structures Other
Than Buildings. For large or complex equipment, or
when equipment is supported by a large or complex
structure, the equipment and support system are
classified as structures other than buildings and
their seismic design is governed by the provisions in
chapter 11, Structures Other Than Buildings.
Example of equipment that are classified in this
category are large pole mounted transformers
(Design Example F-2), a missile tracking device
situated on a truss tower Design Example F-3) and
large stacks or chimneys supported on the ground.
The equivalent static lateral force criteria is given
by formula 3-1 in chapter 3, paragraph 3-3(D).

Fp VZIKCSW (3-1)
where K is equal to 2.0 or 2.5 as prescribed in table
3-3 and in chapter 11. Distribution of lateral forces
will be in accordance with chapter 3, paragraph
3-3(E). For systems with uniform mass distribe'
tion, such as stacks and chimneys. refer
paragraph 10-8 for distribution of lateral forces.

10-6. Lighting fixtures in buildings. In ddi-
tion to the requirements of the preceding para-
graphs, lighting fixtures and supports will conform
to the Standards for Safety UL-57 and require-
ments given hereinafter.

a. Materials and Construction.
11) Fixture supports will employ materials

which are suitable for the purpose. Cast metal parts,
other than those of malleable iron, and cast or rolled
threads will be subject to special investigation to as-
sure structural adequacy.

12) Loop and hook or swivel hanger assemblies
for pendent fixtures shall be fitted with a restrain-
ing device to hold the stem in the support position
during earthquake motions. Pendent supported
fluorescent fixtures shall also be provided with a
flexible hanger device at the attachment to the fix-
ture channel to preclude breaking of the support.
The motion of swivels or hinged joints shall not
cause sharp bends in conductors or damage to insu-
lAtion.
5; 13) Each recessed fluorescent individual
continuous row of fixtures shall be supported b
seismic resistant suspended ceiling support systemw-
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and shall be fastened thereto at each comer of the
fixture; or shall be provided with fixture support
wires attached to the building structural members
using two wires for individual fixtures and one wire
per unit of continuous row fixtures. These suppor
wires (minimum No. 12 ga. wire) will be capable of
supporting four times the support load.

(4) A supporting assembly which is intended to
be mounted on an outlet box will be designed to ac-
commodate mounting features =foakr-In boxes.
threeinch plaster rings, and fixture studs.

(5) Each surface mounted fluorescent individ-
ual or continuous row of fixtures shall be attached
to a seismic resistant ceiling support system.
Fixture support devices for attaching to suspended
ceilings shall be a locking type scissor clamp or a full
loop band which will securely attach to the ceiling
support. Fixtures attached to underside of a
structural slab shall be properly anchored to the
slab at each corner of the fixture.

(6) Each wall mounted emergency light unit
shall be secured in a manner to hold the unit in place
during a seismic disturbance.

b. Tests. h lieu of the requirements for equip-
ment supports given In paragraph 10-4, lighting
fixtures and the complete fixture supporting
assembly may be accepted by passing shaking table
tests approved by the using agency. Such tests will
be conducted by an approved and Independent
testing laboratory, and the results of such test will
specifically state whether or not the lighting fixture
supports satisfy the requirements of the approved
tests. Suspension systems for light fixtures as
Installed, that are free to swing a minimum of 45'
from the vertical in all directions and will withstand,
without failure, a force of not less than four times
the weight it Is inteded to support wi be
acceptable.

10-7. Piping In buildings. Pipes are categorized
as either (a) pipes related to fire protection. {b pipes
not requiring seismic restraints, or M ervice pipes
not related to fire protection.

a. Are Protection Systems. All water pipes for
fire protection systems will be designed under the
provisions of the current issue of the "tandard for
the Installation of Sprinkler Systems" ce the Na-
tional Fire Protection Association NFPA No. 1).

(1) Justification. Pipes designed under WFPA
No. 1 have performed satisfactorily during earth-
quakes. To avoid possible conflict in some areas
with the NFPA recommendations, the criteria es-
tablished In the following paragraphs will not be
made applicable to piping expressly designed for

fire protection. Designers of fire protection systems
will thus obtain a more unified approach to seismic
design; one which will be consistent with all NFPA
requirements.

b. Pipes and Ducts That Do Not Require Special
Seismic Restraints. Seismic restraints may be omit-
ted from the following installations: (Exception: For
essential fcilities, critical piping will be designed In
accordance with para c.)

Ti) Gas piping less than 1-inch inside diameter.
(2) Piping in boiler and mechanical equipment

rooms less than 1-1/4 inches Inside diameter.
(3) All other piping less than 2-1/2 inches inside

diameter.
4) All electrical conduit less than 2-1/2 inches

inside diameter.
(5) All rectangular air handling ducts less than

6 square feet In cross sectional area.
(6) AR round air handling ducts less than 28

inches in diameter.
(7) Al piping suspended by individual hangers

12 inches or less in length from the top of pipe to the
bottom of the support for the hanger.

(8) Al ducts suspended by hangers 12 inches or
less in length from the top of the duct to the bottom
of the support for the hanger.

c. Pipes Not Related to Fire Protection. Piping
not governed by paragraph a. or b. above will be
designed in accordance with the applicable following
provisins.

(1) General The provisions of this paragraph
apply to the following.

(a} Risers. Al risers and riser connections.
See paragraph 10-7c(2) for design provisions and
design example figure 9, Water Risers.

(bi Horizontal pipe. All horizontal pipes and
attached valves. For the seismic analysis of
horizoifld pipes, the equivalent static force will be
considered to act concurrently with the full dead
load of the pipe, including contents.

(c) Connections. All connections and brackets
for pipe will be designed to resist concurrent dead

.end equivalent static forces. The seismic forces will
be determined from the appropriate provisions be-
low. Supports will be provided at all pipe joints
unless continuity is maintained. See figure 10-8 for
acceptable sway bracing details.

(dJ Flexib. couplings ad expansion joints.
Flexible couplings will be provided at the bottoms of
FUmers for pipes larger than 3-1/2 inches in diameter.
'lexible couplings and expansion joints will be
braced laterally unless such lateral bracing will in-
terfere with the action of the flexible coupling or

k
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expansion joint. See figure 10-9 for typical details
of pipe entrance to buildings. See figures 12-4 and
12-7 (chap 12, Utility Systems) for some typical
flexible couplings.

(el Spreaders. Spreaders will be provided at
appropriate intervals to separate adjacent pipe lines
unless the pipe spans and the clear distance between
pipes are sufficient to prevent contact between the
pipes during an earthquake.

(2) Rigid and rigidly attached piping systems
Rigid and rigidly attached pipes will be designed in
accordance with paragraph 10-3. The equivalent
static lateral force Is given by the formula 3-8 in
chapter 3, paragraph 3-3(G),

F.-Z 1%Wp (3-8-

where Cp is equal to 0.30, and Wp is the weight of
the pipes, the contents of the pipes, and attach-
ments. The forces will be distributed in proportion
to the weight of the pipes, contents, and attach-
ments. A piping system is assumed rigid if the
maximum period of vibration is 0.05 second (for
pipes that are not rigid see para (3) below). Figures
10-4, 10-5, and 10-6, which are based on water-
filled pipes with periods equal to 0.05 second, are to
be used to determine the allowable span-diameter
relationship for Zones 1, 2, 3, and 4 for standard
(40S) pipe; extra strong (80S) pipe; Types K, L, and
M copper tubing; and 85 red brass or SPS copper
pipe.

(3) Flexible piping systems. Piping systems
that are not in accordance with the rigidity require-
ments of paragraph 10-7c2) (i.e., period less than
0.05 seconds) will be considered to be flexible I.e.,
period greater than 0.05 seconds). Flexible piping
systems will be designed for seismic forces with con-
sideration given to both the dynamic properties of
the piping system and the building or structure in
which it is placed. In lieu of a more detailed analysis,
the equivalent static lateral force is given by for-
mula 10-2 of paragraph 10-4e,

Fp-ZI ApCWp (10-2)

where A = .0, Cp 0.30, and W is the weight of
the pipes, the contents of the pipes, and attach
ments. The forces will be distributed in proportion
to the wpight of the pipes, contents, and attach-
ments. Figure 10-7 may be used to determine maxi
mum spans between lateral supports for flexible
piping systems. The values are based on Zone 4
water-filled pipes with no attachments. If the
weight of the attachments is greater than 10 percent
of the weight of the pipe, the attachments will be
separately braced or substantiating calculations are
required. Temperature stresses have not been con-

sidered in figure 10-7. If temperature stresses a-
appreciable, substantiating calculations are
quired.

(aJ Use of Figure 10-. The maximum spans
and design forces were developed for Z I Ap Op =
1.50. For lower Z I ADCD values the spans and
forces may be adjusted y the values in table 10-2.

Table 10-2 Muldp~ectoa Fwtors
for Figure 20-7, in Seismic Zones 1. 2 andS

o0 When ZIA C NotEqual to L5

L ~F
Zone feet) (pmdsl ZIA.C.

3 rr I I 1.12
2 1.260.5 0.58
1 1.36 0.3 0.28

(bi Separation between pipes Separation will
be a rnimmum of four times the calculated maxi-
mum displacement due to F., but not less than 4
inches clear between parallel pipes, unless spreaders-
are provided (para 10-7c(1)(e)).

(c) Clearance from walls or rigid elements will
be a minimum of three times the calculated displace-
ment due to F., but not less than 3 inches clear from
rigid elements.

(4) Alternative method for flexible piping sys-
tem& If the provisions in the above paragraphs
appear to be too severe for an economical design, al-
ternative methods based on the rationale describ-
in paragraph 10-4, Flexible and Flexibly Moun.
Equipment, and paragraph 10-8, Stacks tn-
Buildings, may be applied to flexible piping sys-
tems.

10-8. Stacks. Stacks are actually beams with
distributed mass and, as such, cannot be approxi-
mated accurately by single-mass systems. The
design criteria presented herein apply to either can-
tilever or singly-guyed stacks. All stacks designed
under the provisions of this paragraph must have a
constant moment of inertia or must be approxi-
mated as having a constant moment of inertia.
Stacks having a slightly varying moment of inertia
will be treated as having a uniform moment of
inertia with a value equal to the average moment of
inertia.

a. Stacks on Buildings. Stacks that extend more
than 15 feet above a rigid attachment to the
building will be designed according to the criteria
prescribed below. Stacks that extend less than 15
feet will be designed for the forces prescribed in
jrphapter 3, paragraph 3-3(G), table 3-4, with Cp =

^O.80.
(1) Cantileverstacks

(a) The fundamental period of the stack
be determined from the period coefficient (i.e., (-
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Std. Wgt. Steel Ex. Strong Steel Copper Tube
Diameter Pipe - 40S Pipe - 80S Type L

L*(ft) Ft(lbs) L*(ft) Ft(lbs) L*(ft) Ft(lbs)

1 22 70 22 80 11 17
1-1/2 25 140 26 180 12 35
2 29 220 30 290 14 70
2-1/2 32 380 33 460 15 110
3 34 550 35 710 17 150
3-1/2 36 730 38 930 18 220
4 39 960 40 1,200 19 300
5 41 1,440 44 1,900 20 470
6 45 2,120 46 2,750 22 730
8 49 3,740 54 5,150 26 1,550

10 54 6,080 59 7,670 28 2,620
12 58 8,560 61 10,350 31 3,950

*Maximum spans (L) between lateral supports of flexible piping are based
on the resultant of an assumed loading of 1.5 w (ZIApCp 1.5) in the
horizontal direction and 1.0 w (gravity) in the vertical direction. The
resultant is 1.8 w.

I. 0 R

The assumed maximum stress s 20,000 p.s.i. for steel and 7,000 p.s.l.
for copper. Simple spans (pinned-pinned) are assumed. The calculated
maximum lateral displacements are 3.5 nches for steel (E 29 x 106 p.s.1.)
and 0.6 inch for copper (E * 15 x 106 p.s.i.).

tThe horizontal force (F) on the brace is based on 1.5 w L for the maximum
span. For shorter spans, design (Ldesign/L)F

Figure 10-7. M simm Span for Fexible Pipes in Seismia Zone 4
(See 2'abZe 10-2 for Other Seismio Zones)
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0.0909) provided on figure 10-10 unless actually
computed.

(bh The equivalent static force will be dis-
tributed as an inverted triangle per unit length as
shown on figure 10-11.

(c) The static force per unit length at the top
of the stack will be determined from the following:

f 1.6 Z I Ap C w 110-6)
Where

Z and I are defined In chapter 
Cp - 0.30 for rigid stacks In Table 3-4
A, Amplification factor for coefficient Cp, determined

In accordance with paragraph 10-4e
w Weight per unit length of stack

In no case will the product of ApCp be less than 0.8.
(d) If Ta is greater than 0.7 second, an addi-

tional concentrated force Ft will be applied to the
top of the stack. Ft will be determined by Formula
8-6, where T. is used in lieu of T and V is the sum of
the static forces in paragraph b). The product of
0.07T need not exceed 0.25.

Ft - 007TV (3-6)
- 007T, f 025 f

(2) Guyed Stacks. The analysis of a guyed stack
depends on the relative rigidities of the cantilever
resistance and the guy wire support systems. If the
wires are very flexible, the stack will respond in the
manner of the fundamental mode of vibration of a
cantilever (para (1) above). If the wires are very
rigid, the stack will respond in a manner similar to
the higher modes of vibration of a cantilever with
periods and mode shapes similar to those shown in
figure 10-10. The fundamental period of vibration of
the guyed system will be somewhere between the
values for the fundamental and the appropriate
higher mode of a similar cantilever stack. An illus-
tration for a single-guyed stack is shown in figure
10-12. The design of guyed stacks is beyond the
scope of this manual.

b. Stacks on the Ground For stacks where the
stack foundations are in contact with the gr3und
and the stack is not supported by the building, for-
mula 10-6 will be used in lieu of formula 10-5.

f - 16ZI(2CS)w (10-6)

where C and S are defined in chapter 3. The product
of 2 CS will not be less than 0.20. In the loading dia-
gram of figure 10-11, 2 CS will be substituted for
the coefficients Ap Cp. If the period of the stack is
greater than 0.7 seconds, the additional concen-
trated force Ft will be applied in accordance with
paragraph 10-8aUlld).

a Anchor Bolts. Anchor bolts for moment-
resisting stack bases should be as long as possible.
A great deal more strain energy can be absorbed

TM 5-809-10
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with long anchor bolts than with short ones. The use
of these long anchor bolts has been demonstrated to
give stacks better earthquake performance. In some
cases, a pipe sleeve is used in the upper portion of
the anchor bolt to assure a length of unbonded bolt
for strain energy absorption. When this type of de-
tail is used, provisions will be made for shear trans-
fer (e.g., shear keys, etc.). The use of two nuts on
anchor bolts is also recommended to provide an ad-
ditional factor of safety.

10-9. Bridge cranes and monorails. In addi-
tion to the normal horizontal loads prescribed by the
various other applicable government criteria, the de-
sign of bridge cranes and monorails will also include
an investigation of lateral seismic force as set forth
in this paragraph.

a Equivalent Static Force. A lateral force equal
to Z Cp times the weight of the bridge crane or
monorail will be statically applied at the center of
gravity of the equipment. This equivalent static
force will be considered to be applied in any direc-
tion. Cp will be equal to 0.60.

b. Weight of Equipment. The weight of such
equipment need not include any live load; and the
equivalent static force so computed will be assumed
to act nonconcurrently with other prescribed non-
seismic horizontal forces when considering the
design of the crane and monorails. When consid-
ering the design of the building, the weight of
equipment will be included with the weight of the
building.

10-10. Elevators. Power-cable driven elevators
and hydraulic elevators with lifts over 5 feet will be
designed for lateral forces set forth in this chapter.

a. Elements of the Elevator Support System. All
elements that are part of the elevator support
system, such as the car and counterweight frames,
guides, guide rails, supporting brackets and
framing, driving machinery, operating devices, and
control equipment, will be investigated for the
prescribed lateral seismic forces. See figure 10-13.

b. Equivalent Static Forces. The lateral seismic
forces will conform to the applicable provisions of
paragraphs 10-3 and 10-4 and chapter 3, paragraph
3-31G).

11) The car and counterweight frames, roller
guide assembly, retainer plates, guide rails, and sup-
porting brackets and framing will be designed for Cp
p0.30 in Formula 3-8

F,- ZICpWp 13-8)

where Wp for the elevator cars is the weight of the

..1"
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car plus 0.4 times its rated load. The lateral forceq,
acting on the guide raiLs will be assumed to be dis'q
trbuted 1/3 to the top guide rollers and 2/3 to they
bottom guide rollers of elevator cars and counter.
weights. ho elevator car and/or counterweight will
be assumed to be located at its most adverse posi-
tion in relation to the guide rails and support
brackets. Horizontal deflections of guide rails will
not exceed.1/2 inch between supports and horizontal
deflections of the brackets will not exceed 114 Inch.

(a) In Seismic Zones 3 and 4. a retainer plate
(auxliary guide plate) will be provided at top and
bottom of both car and co t. The clear-
ances between the machined faces of the rail and the
retain plate shall not be more than 3116 inc and
the t of the rail shalnot be less than the
dimension of the machined side face of the rail.
When a car safety device attached to the lower

members of the car frame comply with the lateral re-
straint requirements, a retainer plate Is not required
for the bottom of the car.

0) In Seismic Zones 3 and 4, the maimum
spacing of the counterweight rail tie brackets tied to
the building structure shall not exceed 1 feet. An
intermediate spreader bracket, not required to be
tied to the building structure, shall be provided for
tie brackets spaced greater than 10 feet and two
intermediate spreader brackets are required for tie
brackets greater than 14 feet.

(2) Machinery and equipment will be designed
for CD 0.30 in Formula 3-8 when rigid and rigidly
attal. Flexible or flexibly mounted equipment
will be designed in accordance with paragraph 10-4.
1011 Typcl detlhs for securing eulpmnt. See fig
ures 10-14 and 10-15 for examples of seismic re-
straints for equipment.

O -
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CHAPTER 1 1
STRUCTURES OTHER THAN BUILDINGS

"'Om.ft .

11-1. Purpose and scope. This chapter pre-
scribes the seismic design criteria for structures
other than buildings e.g., chap 3, table 3-3,
categories 7 and 8). This includes structures, inde-
pendent of buildings, that are located on the ground.
Refer to chapter 10, Mechanical and Electrical Ele-
ments, for seismic design criteria for equipment. In
some cases, equipment qualifies under this chapter
(chap 10, para 10-Sc). For stacks on the ground refer
to chapter 10, paragraph 10-8b.

11-2. General requirements. Structures other
than buildings are designed in accordance with
chapter S. paragraph 3-3D, formula 3-1

V-ZIKCSW (3-1)
where K is equal to 2.5 for certain elevated tanks
and inverted pendulums (category 7, table 3-3) and
K is equal to 2.0 for other structures (category 8,
table 3-3). Structures that have uniformly distrib-
uted mas may have the lateral force distributed in
a manner similar to cantilever stacks (see chap 10,
para 10-8b and fig 10-11). Structures that can be
approximated by lumped mass systems will have
the lateral force distributed in a manner similar to
buildings (chap 3, para 3-3(E)). Single degree of free-
dom systems will have the lateral force applied at
the center of gravity of the mass of the structure.

11-3. Elevated tanks and other Inverted
pendulum structures. Structures that represent
inverted pendulums, such as an elevated tank sup-
ported by a tower structure that is light in weight
relative to the tank and contents, will use the basic
formula V = ZIKCSW with the value of K equal to
2.5. The minimum value of KC is 0.12. The value for
W will include the effective weight of the contents.
The accidental torsion will be computed as for build-
ings. Stresses will be computed for the earthquake
forces in any horizontal direction.

a. Elevated Tanks on Cross-Braced Columns.
Foundation piers shall be interconnected by steel or
reinforced concrete struts. When supported by piles
or caissons, diagonal struts will also be required.
For most four-legged tanks, uplift and column de-
sign is critical when the horizontal force is applied at
450 to the major axes (see chap 4, para 4-4c(lb)).
Example G-1 in appendix G illustrates the method
of obtaining the seismic forces on a four-legged
water tank, including a method for computing the
period of vibration required to determine the values
for the C and S coefficients.

b. Hydrodynamic Effects. In general, W will in-
clude the total weight of the contents of an elevated
tank. However, properly substantiated procedures
that account for the reduction of the effective
weight of the liquid due to sloshing may be used.
Such procedures usually result in a mathematical
model that represents a two-degree-of-freedom sys-
tem consisting of an effective rigid mass of liquid
and an effective sloshing mass of liquid. The proce-
dure is similar to that used for vertical tanks on the
ground (para 11-4) and some of the technical publi-
cations referenced in paragraph 11-4 are applica-
ble.* In addition to designing the tower to resist the
equivalent static eismic forces, the effects of the
sloshing liquid on the interior of the tank will be
considered.

c. Elevated Tanks, Pedestal Types. Pedestal type
elevated water tanks will not be permitted is Seis-
mic Zone Nos. 3 and 4. In Seismic Zone Nos. 1 and 2,
K will be equal to .0.

11-4. Vertical tanks (on ground). The basic
formula V = ZIKCSW will be used for tanks in
which the liquid is rigidly contained (i.e., sloshing
prevented), for tanks holding highly viscous materi-
als, and for pressure tanks. The value of K is equal
to 2.0 (chap S, table 3-3), W is the weight plus con-
tents, and for calculating C and S the period T will
be assumed less than 0.3 seconds unless substan-
tiated to be longer (i.e., CS = 0.133 to 0.140 per
table 4-3 in chap 4). For tanks where the liquid is
not rigidly contained, the hydrodynamic effects of
the sloshing liquid may be considered in order to re-
duce the effective mass and determine the effective
centroid of the liquid.

a. Hydrodynamic Effects. During an earthquake
there is a complex redistribution of pressures in a
tank. The design procedure for considering these
hydrodynamic effects is based on a simplified pro-
cedure described aqd modified in several technical
publicationsg. 7- The effective force distribution is
illustrated in figure 11-1. The liquid is divided into a
constrained portion and an in-motion portion. (If h is
less than 1.5R there is no contrained liquid.) Part of
the in-motion liquid, combined with the constrained
liquid, forms the effective mass of the impulsive
frce PI (P1 + P2 = PI). The remaining portion of
LA.

*Reference -4 in paragraph 11-8.

*References lited in paragraph 11-8.
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in-motion liquid forms the mass for the convective
force Pc. PI and Pc are the resultant forces of the
horizontal pressures on the sides of the tank. PI rep-
resents the force of the effective mass of liquid that
moves rigidly with the tank and Pc represents the
force of the effective mass of the sloshing liquid. In
addition to PI and Pc, there is a vertical couple, Mb,
acting on the bottom of the tank due to the unbal-
anced vertical pressures (Pb). Bending and overturn-
ing moments are determined by multiplying PI and
Pc by the effective heights hi and ho, respectively.
In order to include the effects of Mb below the tank
base, modified effective heights h and h are

-given.
(1) Rigid body forces. The rigid body forces (fig

11-&) include the seismic forces due to the impul-
sive liquid, the walls of the tank and the roof. The
term rigid body is used to denote the impulsive li-
quid moving rigidly with the tank. Actually, the
tank does have some flexibility depending on the
size and shape. For calculating C and S it will be as-
sumed that the period of the tank and contents is
less than 0.3 second unless substantiated to be
longer. 
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where Z, I, and K are the same as used in formula
10-1. C and S are dependent on the sloshing period
T para b) below) and the site period Ts (refer to
chap 3). Wc, the weight of the convective liquid, is
determined from the effective weight ratio, Wc/W,
in figure 11-8 or table 11-1, where W is the total
weight of the liquid.

(6) The sloshing period is determined by
formula 11-4,

T - kT-ih (11-4)

'11�_

(a) 'Mne total horizontal rigid body force, VRB.
will be determined by formula 11-1,

VRB=Z IK Cs (W,+W,+W) (11-1)

where Z and I are prescribed in chapter 8, K equals
2.0, and CS equals 0.14 unless a lower value is sub-
stantiated. W. is the weight of the roof (if any), W,,
is the weight of the tank walls, and Wl is the weight
of the impulsive liquid. WI is determined from the
effective weight ratio, Wi/W, in figure 11-3 or table
11-1, where W is the total weight of the liquid.

(b) The moments at the base of the tank are
determined by formula 11-2,

where kT is determined from figure 11-4 or table
11-3.

ci The moments at the base of the tank are
determined by formula 11-5,

ML-ZIKC8Wch, (114)

where b, is the effective height of the convective li-
quid. h is determined from the effective height
ratio, h/h, in figure 11-3 or table 11-2, where h is
the height of the water level (at rest). To calculate
stresses in the tank wall, where Mb is not effective,
use h. Below the tank base, where Mb is effective,
use h.

(d: The maximum design height of the slosh-
ing wave is determined from formula 11-6 for cylin-
drical tanks O.76 (Z I K C SJ R

x m I1-kd(Z I KC S) I11-SI

and from formula 11-7 for rectangular tanks
0.8331ZIKCS)R 11-7)

d m' 1-kd(ZIKCS)

where kd is obtained from figure 11-5 or table 11-4.
R is the radius of a cylindrical tank or one-half the
plan dimension of a rectangular tank.

(3) Combining the rigid body forces and the
sloshing liquid forces. The rigid body forces and the
sloshing forces will. be combined by the square root
of the sum of the squares as shown in formulas 11-8
and 11-9.

Vwe&XV+VIL 11 1-8)

Mta^4iii; i7 111-9)

This is consistent with modal analysis procedures
where spectral responses of the predominant modes
are combined in such a manner.

(4) Sloshing wave height d,, The value of
du= must be less than the freeboard height (he-h)
for the simplified hydrodynamic procedure to be
valid. If do is greater than (hr-h), liquid will over-
flow the top of the tank when there is no roof or will
e confined by the roof if a roof exists. When there

.are interior elements, such as baffles or roof sup-
ports, the effects of sloshing liquid on these ele-
ments will be considered.

MRB'Z I K C S IWh+WKhs+Wjhl 411-2)

where hr is the height of the roof, E,' is the height to
the center of mass of the tank walls, and hl is the ef-
fective height of the impulsive liquid. h1 is deter-
mined from the effective height ratio, hI/h, in figure
11-3 or table 11-2, where h is the height of the
water level fat rest). To calculate stresses in the tank
wall, where Mb is not effective, use hi. Below the
tank base, where Mb is effective, use bl.

(2) Sloshing liquid forces (Figure 11-2b).
(a) The sloshing liquid forces VSL are equal to

the convective force, Pc, and will be determined by
formula 11-3,

VSL=ZIKCSWC (11-3)
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TabUe 11-1. fffeotive Weight Ratio

(See Pigur?11-3(a) for Ptot)
"--,/ mk.

3 1 0.5 0.75 1.0 1.5 2.0 2.5 3.0 13.5 4.0 5.0

W1W, impulsive 0.29 0.42 0.54 0.71 0.79 0.83 0.86 0.88 0.89 0.91

W /WI | Cylindrical 0.66 0.53 0.43 0.30 0.23 0.18 0.15 0.13 0.11 0.09

convectivej Rectangular 0.69 0.5 0.48 0.34 0.26 0.21 0.18 0.15 0.13 0.11

TabLe 11-2. Effeative Height Ratio
(See Fgure 11-3(b) for Plot)

a 0.5 0.75 1.0 1.5 2.0 12.5 3.0 13.5 4.0 5.0

hj/h, Impulsive 0.38 0.38 0.38 0.38 0.41 0.42 0.44 0.45 0.45 0.46

hi/h. mpulsive 1.6 1.0 0.80 0.58 0.51 0.49 0.48 0.48 0.47 0.47

hC/hq Cylindrical 0.63 0.57 0.60 0.68 0.74 0.79 0.82 0.84 0.86 0.89

convective Rectangular 0.53 0.55 0.58 0.65 0.71 0.76 0.79 0.82 0.84 0.87

hi/h, Cylindrical 1.6 0.96 0.79 0.73 0.75 0.79 0.82 0.84 0.86 0.89

convective Rectangular 2.0 1.11 0.86 0.73 0.74 0.77 .80 0.82 0.84 0.87
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TabZe 11-3. Period Constant kid
(See FipL % 11-4 for PZot)

0.5 0.75 1.0 1.5 2.0 2.5 3.0 4.0 5.0

kTI cylindrical 1.4 1.0 0.84 0.67 0.58 0.52 0.47 0.41 0.37

kT, rectangular 1.5 1.1 0.92 0.73 0.63 0.56 0.51 0.44 0.39

*Sloshing (convective motion) Period T kTvX. where h is the height

in feet.

Table 11-4. Ceffiietnt lcd

(See PagU' 11-5 for Pot)

m _ 0.5 0.75 1.0 1.5 2.0 2.5 3.0 4.0 5.0

kd. cylindrical 1.33 1.62 1.75 1.83 1.84 1.84 1.84 1.84 1.84

kd, rectangular 1.04 1.31 1.45 1.55 1.57 1.58 1.58 1.58 1.58

it-$
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b. Design of Tank The critical items of concern in
the seismic design of the tank are (1) horizontalu
shear at the base, (2) overturning and uplift forces ate
foundations, (3) compression buckling of the tani
shell, and (4) when tie-downs are used, the resulting
additional stresses at the attachment of the anchors
(e.g., possibility of tearing the shell). The stresses
resulting from the seismic forces will be combined
with other applicable stresses. Procedures for the
design of vertical tanks are beyond the scope of this
manual. Industry standards (at the time of this
writing) are developing seismic criteria for supple-
ments for the general design criteria Fle0 (e.g.,
AWWA and API). Procedures used for the design of
tanks will be substantiated by means of rational
analysis, tests, or past experience.

11-5. Horizontal tanks (on ground). The basic
formula V = ZIKCSW will be used. For this type of
tank, the value of K will be 2.0. The critical items of
concern in the seismic design are the stresses in the
saddles and in the base footing. The soil pressure in
the transverse direction due to overturning may be
critical. The resultant of forces must always fall
within the middle third of the footing pad.

11-6. Retaining walls. The design. of retaining
walls for seismic forces in Seismic Zone 4 will use an
additive seismic factor of 20 percent'of the total
earth pressure forces plus 20 percent of the weight
of the wall at a point 2/3 the fill height above the
base of the retaining wall. It is obvious that the
stresses in the concrete and reinforcing steel will not
be critical as the increase in stresses or decrease in
load factor is greater than the increase due to seis-
mic load. The overturning effect on the footing may
be critical in some cases. The footing will be sized so
that there is no theoretical net tension between
footing and the supporting ground. Refer to chapter
4. paragraph 4-8, for design of foundations. In
Seismic Zones 1, 2, and 3, the Z factor wll be applied
to the 20 percent factor used in Seismic Zone 4.

11-7. Burled structures. Buried tanks and pipes
of moderate size, or smaller, generally do not require
special seismic design considerations if applicable
nonseismic design criteria are satisfied. However,
tanks, tunnels, pipes, etc., which have large cross-
sections, or are classified for critical or important
usage, will require special considerations for seismic
design that are not included In the scope of this
manual. In the design of long structures, considera-

tion will be given to the wave shape resulting from
the seismic ground motion. Where changes in the
support system, configuration, or soil condition
occur, flexible couplings will be provided as dis-
cussed in chapter 12.
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CHAPTER 12
UTILITY SYSTEMS

12-1. Purpose and scope. This chapter pre-
scribes the criteria for utility systems and compo-
nents 5 feet or farther beyond buildings in seismic
areas. Utility systems have been classified as being
either above grade or underground. Principles, fac-
tors, and concepts involved in seismic design are il-
lustrated. These are not mandatory, therefore, other
equivalent methods or schemes complying with
applicable agency guide specifications and the in-
tent of this manual may be used.

12-2. General requirements. Utility systems
will be planned and designed in accordance with the
provisions given in this chapter, except as follows:

a. Systems Above Grad Utility system compo-
nents and equipment supports above grade will be
designed in accordance with the applicable provi-
sions of chapter 10, Mechanical and Electrical Ele-
ments.

4-

6. Rigorous Analysis. No part of this chapter will
be construed to prohibit a rigorous analysis of an
exterior utility system either above or below grade
by established principles of structural dynamics and
soil mechanics. Such an analysis must demonstrate
that the exterior utility system will withstand.
without disrupting service, the ground accelerations
induced in the system by a major seismic event. The
effect of such an event on the system will be deter-
mined using either acceleration-time history records
or equivalent response spectra of major seismic
events such as the May 18, 1940, El Centro earth-
quake. Te actual earthquake record or response
spectra used, including artificially generated
spectra, will be seismologically appropriate to the
site and may be scaled in amplitude for maximum
base acceleration as determined by the earthquake
history of the area and by the principles of engineer-
ing sesmology.

12-3. Earthquake considerations for utility
systems. a Earthquake-Resistant Facilities. A
fundamental precept of seismic design is that it is
virtually impossible to design facilities to resist
every earthquake. Some damage must always be
expected. The proper emphasis for good seismic
design of exterior utility systems should then be on
the development of earthquake-resistant facilities
for which measures have been taken to limit damage
and to provide for expedient restoration of service.
The two most important parameters in evaluating

the seismic resistance of utility systems are site ge-
ology and structural configuration.

6. Site Geology. The geology beneath a facility
exerts considerable influence on the magnitude of
the surface accelerations experienced during an
earthquake. Current seismic building codes gener-
ally recognize this by taking soil type into account
in seismic design (e.g., S factor In chap 3). The best
material on which to construct a utility system,
from a strictly seismic standpoint, is sound rock.
Unconsolidated sand or soft clay present the
greatest hazards. Unconsolidated materials, either
native soil or fill, present hazards of uncontrolled or
differential settlements. Even when utilities are
built on good soils, considerable structural difficul-
ties can develop. The interface between native soil
and engineered fill can present serious earthquake
hazards if the fill is improperly compacted or is im-
properly benched or terraced. Seismically induced
relative movement of the fill with respect to the na-
tive material can, through settlement or through
slippage at the fill-native material interface, shear
off an underground utility pipe.

c. Structural Configuration. Structurally flexible
underground systems have better earthquake re-
sistance than rigid systems. Underground utilities
can often be displaced during an earthquake, despite
the relatively large-magnitude forces that may be
required to initiate movement. A flexible system.
designed to permit some relative movement, Will be
less apt to fail during a major earthquake. Utility
pipes, rigidly attached to appurtenances, can be
sheared off by seismicallyinduced differential set-
tlements between the appurtenance structure and
the adjoining pipes. Flexibility should be provided
in utility pipes at entrances and exits to heavy, rigid
appurtenances, and especially in systems dependent
upon sound, uncracked pipe and connections for
satisfactory performance. The same is true for pipes
passing from native material into engineered fill.
While it is not feasible to design the utility pipe to
support some portion of the fill, the pipe can be
made flexible at the interface to thus accommodate
some relative movement.

12-4. General planning consideratlons. The
considerations presented herein are guidelines for
tO planning of earthquake-resistant facilities. Since
some damage should always be expected with major
seismic activity, the considerations given here

12-1
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stress procedures to be followed to lessen the effects
of seismic activity on utility systems and service.2.

a. Municipal-size facilities should be planned and
designed with due regard for possible seismic
emergencies; disaster plans and equipment which
may be required should be anticipated. Examples of
emergency provisions and policies which may be
anticipated in the planning stage are as follows:

(1) Specialized emergency equipment, such as
mobile flame ionization detectors necessary for the
detection of gas leaks, should be available.

(2) Structures that may be used as emergency
operation centers should be equipped with battery
or other standby power supply systems for com-
munication with emergency vehicles by two-way
radio.

(3) Provision should'be made for the procure-
ment of gasoline for emergency vehicles. Manually
operated fuel pumps should be provided for use in
pumping gasoline in the event of power failure.

(4) Emergency battery and/or gasoline driven
generator-powered lights should be provided for use
in restoring utility service in the event of a power
failure.

(5) The engineering staff responsible for the
utility system should, from time to time, bring the
emergency seismic disaster plans up to date.

(6) Seismic disaster plans should include con-
tingency plans defining procedures for dealing with
fires, landslides, and possible health hazards result-
ing from disrupted sanitary facilities.

b. Individual Facilities. Examples of earthquake
disaster procedures that may be implemented into
the design in the planning stage are as follows:

(1) Persons having responsibility for the super-
vision and maintenance of critical facilities should
establish earthquake disaster plans. Such plans will
be subject to the approval of the utility authority.

(2) The utility authority should emphasize the
importance of seismic disaster plans to the super-
visory personnel of critical facilities such as hospit-
als. Seismic disaster plans should be emphasized to
the same extent as fire protection plans.

(3) Capability should be established in critical
facilities for water to be supplied from emergency
reservoirs or wells.

(4) Personnel should be organized to shut off
gas service when necessary and instructed not to re-
store service until advised to do so by the utility
authority. For essential facilities in seismic zones 3
and 4, an approved earthquake actuated gas shut off
valve should be provided.

(5) Plans showing the locations of utility serv-

ice lines in buildings should be kept available for
emergencies.

12-5. Specific planning considerations. The
requirements given here are intended to be used in
the planning of a utility system of either a major
facility of municipal size or an individual facility of
high priority in seismic areas. These requirements
supplement applicable agency manuals.

a. GeneraL Whenever practical, utility piping
should avoid unstable ground or known earthquake
faults, should not traverse native soil structures
having widely varying degrees of consolidation, and
should not pass from natural ground to unstable fill.

b. Water. Where possible it is preferable to have
at least two independent sources of water supply for
municipal-size facilities in Zones 2, 3, and 4 (refer to
chap 3. parn 3-4 for seismic zone maps). When water
is furnished by a public utility company, a second-
ary supply may be provided from onsite wells or
from an onsite reservoir. When the water source con-
sists of an onsite well, an additional well should be
drilled at a point as widely separated as is practical
from the first well. Decentralization of municipal-
size waterworks will provide a more flexible water
supply network and thus promote a more depend-
able water supply during a disruptive earthquake.
Where practicable, onsite water distribution sys-
tems in Zones 2, 3, and 4 should be laid out in a grid
pattern. In the event service is disrupted in one sec-
tion of the grid, water may be drawn from any of
several adjacent sections. The grid will be valved to
permit the isolation of breaks and to facilitate the
emergency distribution of water (e.g., fig 12-8).

a. Gas. Provisions will be made such that installa-
tions normally supplied by public utility systems in
Zones 2, 3 or 4 for which a gas outage would be criti-
cal can be supplied by a liquid petroleum gas (LPG)
standby system. Gas distribution networks in
Zones 1, 2, 3, and 4 will be valved so that breaks in
gas lines may be isolated.

d Power. Two independent sources of support are
less likely to be available for electrical distribution
systems than for water and gas supply systems. For
Zones 2, 3, and 4, standby power generating facili-
ties should be maintained for use in critical areas
such as essential systems for hospitals, computer
centers, communication systems, etc., in the event
of normal power supply disruption. Such standby
systems may consist of diesel or gasoline engine
driven electric generators located within the
building.

"ftwi
J
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e. Sanitary Sewers. The design of sewer systems
for municipal-size facilities located in Zones 2, 3, and
4 will incorporate provisions to eliminate as much as
practicable the possibilities of wastewater flooding,
contamination of groundwater, and contamination
of open water storage reservoirs, should rupture oc-
cur to sewers and sewage disposal structures. The
design of sewage treatment facilities in Zones 2, 3,
and 4 will consider the possibility of decentralizing
treatment facilities to minimize possible damage.
The practicability of decentralization will be
weighed against increased operating, maintenance,
and initial costs. In Zones 2, 3, and 4 a means will be
provided to rapidly empty and bypass sewage
treatment and sewage pumping plant facilities.
Should it be impossible to dump raw sewage into
emergency outfalls, some simple method of treating
the raw sewage should be provided to safeguard
health and prevent a nuisance. Mobile pumping
equipment should be available for pumping raw
sewage into the nearest sewer collector in the event
of a pumping plant breakdown.

f. Storm Sewers. More damage to storm sewers
and storm sewer facilities can be tolerated than for
sanitary sewers and sewage disposal facilities.
Cracked or damaged storm sewers in most instances
present little danger to health or property. In
certain areas where damage to equipment can result
from flooding or from infiltration and settlement of
fill, care in the design of the storm sewer system
must be taken in order to minimize the possibility of
cracked or broken pipes.

g. Miscellaneous Systems. It is not feasible to
provide secondary distribution systems for central
steam, motor vehicle fuel, air, and imilar utility
systems, but all planning considerations given
above, where applicable, will apply to these sys-
tems.

12-6. Design considerations. The provisions of
this paragraph are intended to supplement rather
than supersede the provisions of the various mili-
tary design manuals and other applicable govern-
ment criteria.

a. Materials and Construction. Specifications for
materials and construction will be governed by the
applicable government criteria.

b. Pipe Flexibility. No section of a pipe in Zones 2,
3, or 4 will be held fixed while an adjoining section is
free to move, without provisions being made to re-
lieve strains resulting from differential movement,
unless approved calculations show that the pipeline
can resist the stresses caused by the predicted or

TM 5-809-10
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estimated pipe movements. Flexibility will be
provided by the use of flexible joints or couplings
(e.g., fig 12-1 through 12-7) at the following points:

(1) Immediately adjacent to both sides of the
surface separating different types of soil having
widely differing degrees of consolidation.

(2) At all points that can be considered to act as
anchors.

(3) At all points of abrupt change in direction,
and at all tees.

c Water. Buildings housing critical functions,
such as hospitals, will be provided with two or more
service lines. The service lines will be connected to
separate sections of the grid so as to provide contin-
ued service in the event one section of the grid is
isolated. Services will be interconnected in the
building with check valves to prevent backflow.
Flexible couplings or flexible connections will be
used between valves and lines for valve installations
on pipes 3 inches or larger in diameter. In remote
areas, auxiliary storage would be an acceptable al-
ternative.

d! Gas. When secondary or standby gas supply
systems cannot be justified for a site, gas distribu-
tion networks.for buildings in Zones 2, 3, or 4 hous-
ing critical functions dependent upon gas will
include an aboveground valved and capped stub.
Provision will be made for attachment of a portable,
commercial-sized gas cylinder system to this stub.
For essential facilities in seismic zones 3 and 4, an
earthquake-actuated valve will be provided. Provi-
sions will be made for the expedient restoration of
service and for the prevention of pilot light leaks
when service is restored. If an earthquake actuated
shutoff valve presents the possibility of disrupted
service in buildings where the fire hazard is small, a
manually operated shutoff -valve will be installed.
The location and operation of such a valve will be
made known to the supervisory personnel of the
building.

e. Power. Individual aboveground components of
electrical utility systems will be designed for seis-
mic forces under the provisions of chapter 10. Slack
will be provided in underground cables whenever
such cables enter or exit rigid appurtenances. The
provisions of paragraph 12-6b will not be held appli-
cable to underground electrical utility conduits.

f. Storm Sewer Facilities. While it is desirable to
have flexibility in storm sewer pipe, such flexibility
catuiot, in most instances, be provided without in-
ordinate cost. The provisions of paragraph 12-6b
will not be held applicable to storm sewer pipes.

12-3
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Every attempt, however, should be made to provide
flexibility in the connection of storm sewer pipea#
rigid appurtenances in Zones 2. 3, and 4. -,5

12-7. As-built drawings. Complete as-built
drawings will be required under all contracts for new
work for water and gas line installations. Such
drawings will show the location of valves and pipe-
lines referenced to permanent structures and exist-
ing survey monuments.

12-8. STsmIc dtals. Figures 12-1 through
12-8 are provided to show acceptable seismic de-
tails. Some of the plates show examples of good and
poor seismic details. Other plates merely illustrate
details that have exhibited good seismic details and
resistance. Where required by the provisions of this
chapter, these recommended eismic details or simi-
lar equivalent details will be incorporated in the util-
ity design.

1<.
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APPENDIX A
STRUCTURAL SYSTEMS

* S ,!

A-1. Purpose and scope. This appendix gives il-
lustrative examples for designing various types of
lateral systems. Generally, the calculations deter-
mine earthquake lateral forces and their distribu-
tion to the resisting elements of the buildings. Some
examples are essentially complete, covering frames,
walls, diaphragms, and foundations. Examples that
are not complete include references to other appen-
dices for examples of shear walls, frames, and
diaphragms. Calculations are not given where ordin-
arily accepted design procedures are involved, such
as sizing and detailing members once forces are
determined.

A-2. Use of appendixes. The appendixes are
purely advisory; they are not intended to place
super-restrictions on the manual. The appendixes
are not a handbook for the inexperienced designer.
Neither the manual nor the manual supplemented
by the appendixes, can replace good engineering
judgment in specific situations. Designers are urged
to study the entire manual

A-3. Commentary. a. Unless otherwise indi-
cated, all design examples in this appendix are
based on Zone 4, where Z = 1.00. But the principles
and methods for determining lateral forces are alike
for all zones. For instance, lateral forces can be con-
verted for use in other zones simply by multiplying
by the value of "Z" required for the applicable zone
(viz. 8/4 for Zone 8, 8/8 for Zone 2, and 3116 for Zone
1).

b. Examples A-l, A-2, A-3, and A-5 are for the
same basic building, using (1) bearing walls, (2) con-
crete frames, (3) steel frames, and (4) frames in
combination with shear walls (a dual bracing sys-
tem) respectively. These examples tend to illustrate
the relationship between architectural features (fen-
estration and materials of construction) and
structural design.

c. A 10-pound-per-square-foot weight is added to
the roof for the seismic effect of the upper half of the
top-story partitions.

d It is assumed that stairs are detailed so as not
to transmit shears from floor to floor. Also, remov-
able and special partitions (such as utility room

Desion
Example Description

walls) will be made flexible or isolated so as not to
affect the distribution of lateral loads or to act as
shear walls.

e. Metal-deck roofs are considered to form flexible
diaphragms, and roof loads are distributed accord-
ing to tributary area rather than relative rigidity of
walls below.

A-4. Design examples.

Of"'-

A-1 Box System. A two-story building with
bearing walls in concrete using a series
of interior, vertical load-carrying col-
umn and girder bents.

A-2 Concrete Ductile Moment Resisting
Space Frame. A three-story building
with a complete ductile moment resist-
Ing space frame in concrete without
shear walls.

A-3 Steel Ductile Moment Resisting Space
Frame and Steel Braced Frame. A
three story building with transverse
ductile moment resisting frames and
longitudinal frames with K-bracing.

A-4 Dual Bracing System. A two-story
building in concrete with a ductile
moment resisting space frame and
with shear walls.

A-5 Dual Bracing System. A three-story
building with a ductile moment resist-
ing space frame in structural steel and
with shear walls in concrete.

A-6 Wood Box System A two-story wood
framed building, using wood floor and
roof decks, and wood stud walls with
plywood sheathing.

A-7 Special Configuration. A one-story
building with concrete bearing walls on
three sides and open on one side.

A-8 L-Shaped Building. A three-story
building with bearing walls in concrete,
using a series of interior vertical load-
carrying columns and girder bents.

A-1
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DESIGN EXAMPLE: A-1

BUILDING WITH A BOX SYSTEM:

Description of Structure. A two-story administration building with bearing
walls in concrete, using a series of interior, vertical load-carrying column
and girder bents. The structural concept is illustrated on Sheets 3 and 4.

Construction Outline.
Roof:

Built-up, 5-ply.
Metal decking with
insulation board.

Suspended ceiling.
2nd - Floor :

Metal decking with concrete fill.
Asphalt tile.
Suspended ceiling.

1st Floor:
Concrete slab-on-grade.

Exterior Walls:
Bearing walls in concrete,
furred with GWB finish

Partitions:
Non-structural removable dry-
wall, except concrete as
structurally required.

N__I

IM00..

Design Concept. Since the structure is without a complete load-carrying
space frame, the K-factor is 1.33. The metal deck roof system forms a flex-
ible diaphragm, therefore the roof loads are distributed to the shear walls
by tributary area rather than by second story wall tiffnesses. The roof
diaphragm being flexible will not transmit accidental torsion to the shear
walls. The metal deck with concrete fill system for the second floor forms
a rigid diaphragm. The shear walls react to the forces from the diaphragm,
therefore the relative rigidities of the various walls and the individual
piers must be determined. This is necessary so that a logical and consis-
tent distribution of story shears to each wall and pier can be made. The
wall analysis utilizes the Design Curve for Masonry and Concrete Shear Walls
on Figure 6-11.

Discussion. A 10 psf partition load is included in the seismic roof loading
but is not included in the vertical design. The stairs are isolated so that
they will not transmit shears from floor to floor. The walls along Lines(D @ @ & act as vertical cantilever beams joined by struts at the
floor lines. The overturning moments are distributed to the individual
piers in proportion to the pier stiffnesses. The end wall along Line 
abuts an existing building, therefore a wall with no openings is provided.
The spandrels in wall along Line ( must be designed to transfer vertical
shears due to shear wall action.

Example A-1 1 of 4 Box System
.:
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Loads.
Roof:

5-ply roofing
1" insulation
Steel deck
Steel purlins
Steol girders 
columis

Clling
Miscellaneous

Dead Load

J. .f

,,.,

- 6.0 p.s.f.
a 1.5
a 2.3
a 3.7

- 1.2
- 10.0
- 1.0

25.7 p.s.f.

2nd Floor :
Finish
Steel deck
Concrete fill
Steel beams
Steel girders &

columns
Partition
Ceiling
Miscellaneous

Dead Load

- 1.0 p.s.f.
* 3.1
- 32.0
- 5.9

a 1.5
- 20.0
- 10.0
a 1.0
- 74.5 p.s.f.*

* 50.0 p.s.f.
Add for seismic:
Partitions 10.0 .s.f. Liv,

Total for'selsmic 35.7 p.s.f.*
Live Load' 20 p.s.f. (no snow)

Materials.
Structural steel .......... F - 36 k.
Concrete ................. =- 4,000 p.i
Reinforcing steel ......... fr ' 40,000 p.i
Allowable soil pressure ... - 3,000 p.i
Allowable soil pressure ... - 4,000 p.

a Load

s. i.
,.l., E 3.6 x 106 psi

.i.
,.f. Vertical Load
,.f. Vertical plus Seismic . . w~

*Weight of shear walls are not included here. The weight of the concrete
shear walls are calculated on pages 4 and 5. The weights of the exterior
windows and architectural,.wall panels are included in the partition weights.

w ample A-1 2 of 44 Box Systemn
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DESIGN EXAMPLE: A-2

BUILDING WITH A CONCRETE DUCTILE HOMENT-RESISTING SPACE FRAME:

Description of Structure. A three-story Administration Building with a
ductile moment resisting space frame in reinforced concrete without shear
walls, using non-bearing, non-shear, exterior walls (skin) of flexible in-
sulated metal panels. The structural concept is illustrated on Sheet 3.

Construction Outline.
Roof:

Built-up 5-ply.
Concrete joists
and girders.

Suspended ceiling.
2nd & 3rd Floors:

Concrete joists
and girders.

Asphalt tile.
Suspended ceiling.

lst Floor:
Concrete slab-on-grade.

Exterior Walls:
Non-bearing, non-shear,
insulated metal panels.

Partitions:
Non-structural removable

drywall.

Design ConcePt. Since the structure is a ductile moment resisting space
frame with the capacity to resist the total requited lateral force, the
K-factor is 0.67. Seismic Zone 4. Conc. Frame Type A (Table 3-7).

Discussion. Inasmuch as the design requirements for concrete ductile
moment-resisting frames are complex, a detailed design procedure is given on
p. 2 of the example.

Loads.
Roof: 5-ply roofing

1" insulation
Conc. frame
Ceiling
Miscellaneous

6.0
1.5

115 .0
5.0
3.5

Floors: Floor covering
Conc. frame
Partitions
Ceiling 
Mech. & Elect.
Miscellaneous

1
129

20
5
5
4

Dead Load 131 pf

Add for seismic loading:
Partitions 10

Dead Load

Live Load

164 psf

50 psf

L
Materials.

Concrete:

Steel:

Ive Load

f 

141 psf
20 psf

4 ksi

Exterior Wall

Ee - 3.6 x 106 psi

4 psf

fy = 60,000 psi

Example A-2 1 of 25< Concrete Frame
Al
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DESIGN P OCEDURR

Building System and Loads

Member Sizes

Building Weights

Base Shear

Story Forces and Overturning

Relative Rigidities of rames

Distribution of Forces to Frames

Sheet No.

1 - 3

4

5

6

7

7

8-v � -� ." %,... .. Lp.. . ..

. - .1
Ig

�W�-

Frame Analysis 9, 10

Design Forces for Beams

Longitudinal Reinforcement

Transverse Reinforcement

11, 12

13

14

Colu Forces

Slenderness

Capacity

Shear

Special Transverse Reinforcement

15

16

17

18

19 - 21

7

Beam-Column Joint 22 - 24

Summary of Design 25

Exaple A-2 2 of 2 Concrete Frame
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.1/
DISCUSSION O MEMBER SIMES

1. The example is intended to illustrate the procedure for designing a con-
crete ductile moment resisting frame. The design work is complex, and
several trials are required in order to achieve the optimum design.

2. The building configuration was arbitrarily made the same as that of the
steel frame of example A-3.

3. Frame B will be analyzed in this example and members between grid lines
1 & 2 will be designed to illustrate the design procedure.

a. The section of beam col. sizes is a trial and error procedure.
Architectural considerations, limitations on dimensions (Pig. 7-2),
space for bar placement, allowable stresses of concrete and steel,
etc., can affect the member sizes.

b. The beam was assumed to be 28" x 30",,and the required reinforcing
and the actual ultimate moment capacity were calculated.

c. For the min or ax Pu and the required H. (on the basis of column
No _ beam Hp), a suitable column was estimated to be 24" x 24", with
12 - #10 or 10 - Ill. (Note: Biaxial loading must be considered
for column forces in the transverse direction:)

Ik I .- :..

4. Results of a frame analysis are
representative beam, column and
forces from this analysis. The
since values can be obtained by
approximate methods.

given, and the example continues with
joint design, using sizes and design
frame analysis itself is not shown
computer or by any of the various

Example A-2 4 of Concrete Frame
In
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DMGN FORCES FOR BEAMS - PROCEDURE

1. Obtain end 'e and V's at face of support. These are given on
p. 10 for Frame B.

2. Calculate and tabulate factored M's and V's.

a. Vertical load only

1. AD + 1. L

b. Vertical plus maxium increase due to seismic

2.4 (Di-L*E) when E is in direction adding to -N

c. Vertical minus reverse loading due to seismic

0. OD + 1. if when E is In direction giving V

3. Calculate and tabulate max. pos. aom. away from the end of the beam:

1.

0

W 4

LV
W -.-

t -

noM

+M producew tension on
the bottom

1V is upward at the left
end of the beam

= M+ V2 (t > V O)

4. Select maximum values for design. It is strongly recommended to sketch
moment diagrams, especially when spans and loads are irregular.

5. Checkerboard loading may govern, maximum positive moments.

DESIGN FORCES FOR COLUMNS

1. Obtain P, N, V at face of support. These are given on p. 10 for Frame B

2. Calculate and tabulate factored 's and P's

a. 1.4 D
b. 1.4D + 1.7L
c. .4(D+L#E) for in direction adding to vert. load
d. 0.9Di-i.4E for E in direction opp. to vert. load

ExaMzzple A-2 11 of 2S Concrete Frame
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DESIGN EXAMPLE: A-3

BUILDING WITH STEEL MOMENT-RESISTING SPACE FRAMES AND STEEL BRACED FRAMES:

Description of Structure. A three-story Administration Building with
transverse ductile mment-resisting frames and longitudinal braced frames
in structural steel, using non-bearing, non-shear, exterior walls (skin) of
flexible insulated metal panels. There are a series of interior vertical
load-carrying column and girder bents in addition to the space frame. The
structural concept is illustrated on Sheets 2 and 3.

Construction Outline.
Roof: Exterior Walls:

Built-up 5 ply. Non-bearing, non shear,
Metal decking with insulated metal panels.
insulation board.

Suspended ceiling. Partitions:
2nd & 3rd Floors: Non-structural removable

Metal decking with concrete fill. drywall.
Asphalt tile.
Suspended ceiling.

1st Floor:
Concrete slab-on-grade.

Design Concept. The transverse ductile moment-resisting frames are indepen-
dent of the longitudinal braced frames. The moment frames are designed to

- 0.67; the braced frames to K - 100. The metal deck roof system forms
a flexible diaphragm; therefore the roof loads are distributed to the frames
by tributary area rather than by frame stiffnesses. The metal deck with
concrete fill system for the floors form rigid diaphragms and the seismic
loads are proportioned to the frames by the frame stiffnesses.

Discussion. Because of the importance of drift of flexible frames, the
example shows several stages of design. Preliminary design to find sizes by
approximate methods, using different sets of forces for stress and drift.
The resulting trial sizes are then used in a computer analysis. (The frames
are simple enough to be calculated by hand, but the computer makes short
work of calculating design forces, frame period and drift). Final design
is discussed, and examples are given for modifications to the results of
the computer analysis for accommodating various stress and deflection cri-
teria with consistent sets of member sizes, period, design force, and drift.

Stel Items J
Example A-3 I of 34. Steel Bras_8 -1
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I,

DESIGN PROCEDURE

AL GENERAL PORMHATION

1. Building Layout
2. Loads for Diaphragms

B. TRANSVERSE MWMENT-RESISTIUG FRAMES

1 -3
5, 6

% : �-j .
1.
2.
3.
4.
5.
6.
7.
8.
9.

10.

Frame Characteristics
Building Period
Lateral Forces
Distribution of Forces
Preliminary Design
Drift Check
Frame Aalysis
Final Design Criteria
Member Stresses
Connections

to Frames IP

7
7, 8
9

10, 11
12 - 15

16
17, 18

19
20, 21

22 - 24
1J^

C. LONGITUDINAL BRACED FRAMES.

1. Lateral Forces
2. Vertical Forces in Hebers
3. Lateral Forces in Members
4. Member Design
5. Connections
6. Deflections
7. Stiffness

D. FINAL PROPERTIES

25
26
27

28, 29
30, 31
32, 33

33

34
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BUILDING PERIOD- cnt'd

1. - 0.1 i 0.3 8ec. (Formula 3-3B)

2. hlternate method: (Chap. 4, Par. 4-3d(3))
Generally, low-rise steel ment frames have T longer than 0.IN. A more
realistic period may be obtained from the following procedure.

a) Upper Boubd: Consider the bare frme governed by drift.*
The period is approxiately = 2t6./% , where E6n is the roof de-

flection in inebes, and ak is the roof acceleration and is approxi-
mately 17Z1CS. The formula becomes

7 - 0.25 e with n in feet andC c 
Ar&_ .7115&

Assuming the average drift for the building is 2/3 the maximum inter-
story drift, which is limited to 0.005, the roof deflection is
en = 2/3 (0.005h,), and the formula above becomes

T c 0.11 with % in feet.

and for Z = 1, I C 1.0, S 1.5,12 = 34;! = 0.88 ec

This will be used for drift.

b) Limiting Value: Consider the whole building,
seismic frames and non-structural partitions.
estimated as 4

stiffened by non-
The period may be

T - 1.4Chn31 4 (Chap. 4, Par. 4-3d(5))

= 1.4 x 0.035 x (34) 3/4 = 0.69 sec

This will be used for the initial estimate of forces.

* This assumes that window-wall details are designed to accommodate these
deflections. Refer to para. 9-3a and 9-4e.

Example A-3 8 of 34' Steel Frames
*~ ~ ~~~ _ _ _ _ . ......
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DISTRIBUTION OF FORCES TO FRAMES

Since the roof-diaphragm is relatively flexible, the roof forces are distrib-
uted by tributary area.

The 2nd and 3rd floor diaphragms distribute the floor forces to the frames
according to their relative rigidities.

The transverse frames on lines 1, 4 and 7 are alike, and for preliminary
design we may take their rigidity proportio"a to

see page 9
1/3(143) I

K 1
1/3(BASE SHEAR)

DRMF)
I- IV*.

= 4XI KTE
2/3 0. 0051 ( 34 ' J 'i

Resee page 8
I -

a .; : .. .1: � : , .
.", """. _' .- "Z, I- The longitudinal frames on lines A and C have a rigidity based on prelim-

4n ti - 4 _i .
%.& i6^& .

KA Am
1/2(BASE SEAR)

DRITP

4 see page 25

= j1/2W - 5360 k/ft

'w-- prelim calcs (not shown)

Use Rel.* = and Rel. KA $ 5360
421 = 12.7, say 13

Because of symmetry there is no "calculated" torsi&n. The "accidental"
torsion is the story force, F times the nominal eccentricity of 5 of the
max. building dimension:

M = F x 0.05 x lS2' 9.6Ft X 

Torsional Shear 

ad2

9. 6f

Exanple A-3 10 of 3 Steel Frames
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h S6iSMIC L0OAO, PROM P ii

M =.I% .17.qa(4.00-475)= qO.7k A7 JRAC O 6IADM

G V&SArCAL. + JE/AtiC '
P =0 4 O rag
Ao5 0 qO7 qO7t

�,: .. .. . .

USE A SC 7 f5J,/T0iN, p. 3.6
TgRY WI4s 68, . -& Jx m- 0/915

PauJV. -
IGo-gi o.,96(qo7 X/2%/) 8f t

.83a

FOR h 'u 9 i A:E4 X x444/
3 5 4 '

L6XTOR OR OLUMN

VORrICAL + I/JM/C

M 50 (e:#)+ 9o.7/g:
144d

F 43

0 5 xW 4
4LLOW$ J* Qv1 .4 zM

LI/J 14" CPo&MNJ POX CcONt2Ot OP
,26PLECTION$ ANO QJE 7E rAMa
J6CTION Pu~4 ~/W/0H7.

Esample A-3 13 of 34 Steel Frames
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, J * >

;', . . . .. 4 ~ 

PRX /M. DOCS/GN - C f

G //?i#- 2N1D AZOOR

vdNTICA4 OA0 AT cemr6W co44

t 0O.O06xB 3L^ht4/.-Otlt

R(O.L. 0.4 Z 9u ED a; 1/ Pr

UW<>¢ L = (0 074#+O.021)A BP-" 2.31

WOIL 3.0SK 24 a73.8

MRWL m 7.0 _ e, X

S/SM/c M = 116.3

VeR7* SES/MC M e 6

USE A/SC obe6M CNARIr pA 2-9

UMcZ w a 9 S 4 jt? IJ??K'C

3 OR NCG. /J

W/ lx C0 AL.OW a k

$ ANSJ AS.4

(R: LIVE LOAl) RariucriOtN)

'?AMC 4

VMN

.2 (u74./sko)' 57. 7.
( - 0.675 0. 425)

B*CO.& 7 3. 06/,

t, 7 r/ J09 wIrv

-4 46N Ar' Of &

V*l/NG6

I Example A-3 14 of X4 Steel Frames
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PA5C/M. S/6N- CON7 XRA M 4

G /l:)rR - 3RD f 0 ooR
vdYr/CAL oAr) -SAJ As 

S/SM/C * 2 5 r
VRI? 2O -- / . ro

3A0PzR.) I 

LX?: coz...
eXx .c art..

INT. COC.

£ COS.M5/,4/@.t5
-2 K/

8 *7 -J *O1 R S 4f: O/M
4. *. /a Ma 

vdq.t sc/nJc a +6p5101 P.7'. 1.3 86

W/6*v AW 117

GIR/,R - AOOf
Vd`RICA( LOAM

ROOF nL &L 3Pa'(0.057 40.020)z 0a82*0.44=1 a 
W,* 08atZ4 " /9.7 t iX97 ei'

SU/SM/C

a2.S T A 0/?aOsR s.o 37.

VJ4r1?SgdRM/C : Mu 39.4 3.8 a 7. - 1.33 fl56.o81

Wif.%L AOW S8 O/,9* ST57R4SS

USt W/4^30 A4SOW 3 USS W/4JRPANGS
P0* 4S776R 13CM1 S

Example A-3 15 of34 Steel Frames
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CHECK (JR/f'r- PtCL//4IAgY SIZEs- PAA M6 4

FOR i/frI, 1S6 ORCES ASSOCeArEg WI/f AAR-PAME
AeR/OA T= 0.8B 6CFO A N MurTPCr 0AZPACEMErS
,3Y /1K ceiy r1R~s srorY

A~roRSroRY DEX ECI

79.,Ik
2 V.. ft 

r/O f Rq P. 70K
Mc ,IX //,C = j./X

v ~fjj xz7.9 =4.6'6
h =I0.'-1.so' = 9./7'
1 1 IA?

.4 

h (CAWR)
f

/WrN'/0 1 COWMAN

V/ Ma 48 1 -ZEXA a 7 _ - f t7 T

r. 3 7- 4i7 = 207 t.

= e Z07ic 1t
29.000 af/#

-kXA&,m 0.017/ 

= 0.0171.FT.

O.05es flb

A1.owgb7 ,/.7r a o.0o6A / 0.0945' >0025
5V/(6n7'rc MMMER S/Zd COU.O oE FfUCCe. n/51
7THIS w/1C moT A ApTreD INJt F/NAL
,OCS SCIN 7( PRSL1M/NARY S/tS W BE ISCJ
ROA WE ARAM AAYS/S.

Eample A-3 16 of i Steel Fraw"

A-P
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FRAME AALYSIS -

COMPurTrR NPI7'u

PflA M 4.

I(/dos, ,'6rr seCOOS
ZTas.

0

N

_~ -'S
cj

/G/ /,O A4hMS.

-F S6fS 5 4,I74,0600o/s
COLUMN i3ASES 91XC1.

*9 .
.II

.. ........ ..... -,
_ _ _ _ _ _ _ _ _ _ _ _ _ I

b.

%¾ , ~ '. 

A . �'-

i

I

* ,..

Z4.O i
74.0' 1

| SXr CO. | N. C04.

S Z 4 W44 44e

Z 00234 0.0309

A 0.0979 0. 243
Aw 0.0 3 ag 0.0365

1 

LEVEL G /A _ n A 7R4 h1ASf UZTRAL
S/6 x A Aw Was. W4 W T W/9 POqC*

R W4-a 30 0140 0.0613 Ot60 . 2 0.46 t 7" 5.61 2S.0
3 W/8aSS 0o0430 0.12s 0491 2,38 06.7 2 3 3 7.2 20.3
a 1a40 0.0474 0lZZ9 0.0527 2.38 0.67 2 3 7.24 50.4

DA7TA &tOM G6E 14 /S 55I /1

rmi&.roog w ts i 0/ rorL SINce ,olAP1. / orerw5Lt

7'RA Co000R W. IS 633..?0fAL ACCORD/NIG, rO R9c. R/&.Of
rA'AMeS. 3 32.2 r./.rcc

Example A-3 17 o34 Steel Frames
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FRAMC ANA LYJIJ CON7r . *:RAME 4

CoMfleA outPUr

RVI
' aw &of

0.10f.t.
'U
40
1

. I .;:
, - , - 4,1., <0! : " .1 I I'.. . .,..

'1-1� !

0 ?st

,00

i*. U 14 F

%S -, on !% 0

4JY LA
-06A,0 f.*A

a

I.

F

-v-
2 t ~~~~067 .I' ~ WIS x o

00

-f-- ~ t. .& _

- ______ 2.0'
3c ~ ~ ~ '

6 1* %9% oo

I.

10 qQ
A

IC f*

31

106

S7

I..tI

in

I

I

-- * Z. 0 0.1062

(0.0o90>

-20.3 0.0657

<0.0375>

_ .

1t1
117

'9
Q1

4

-- - _ o_10.4

9,

( .O8z>
,\Z! JNeas-arY bE.PL.

VYu s .?7
Je/JM I c

R/GirtrY: K< :g V 55. 7 _ 5 2t

Example A-3 18 of Steel Frames
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TM 5-09-10
NAVFAC P-35
AFM 88-3 Chap. 13

FINAL DESIGN CRITERIA - FRAME 4

1. BUILDING ERJRM.

a. For drift use bare frame period of 0.86 sec obtained in a
computer analysis assuming rigid diaphragms. See p. 34 for
approximate calculation.

b. For building design forces use whole building period of
0.69 sec (p.8)

2. DESIGN FORCES AD DEFLECTIONS

a. Use forces obtained from computer analylis (p. 17 and 18)
based on T - .69 sec base shear of 143 (p. 9) and frame
shear of 55.7 (p. 11).

b. Use deflections from this analysis inthe drift calculations.

3. DRIFT (Refer to paragraphs 4-5c(l) and (2)

a. Use bare-frame T - 0.86 sec (see la above).

b. C 1/15 10/.8B- 0.0719 -

CS 0.0719 x 1.5 - 0.108

ZIXCS - 1 1.0 z 0.67 x 0.103 0.0724

Base Shear - 0.0724 1789 130 k

Multiply deflections from frame analysis by the ratio
130/143 = 0.909 see page 18

c. Maximu= interstory defl. = 0.909 x 0.0395 ft

* 0.0359 ft

Drift - - x D .0359 - 0054 ftK 0.67

Allowred drift 0. 005 x 11 ft. - 0. 055 ft

ftawle A-3 19 of b4 Steel Frames,r,- 
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NAVFAC P355

AFM 88-3. Chap. 13

PIAL DE JI G N CON A. ERAM 4
.

MeMfef * JT/ .eJ$E J

(I) JAMP(. CALCUL4T/OW POR .2" LM. G/Rf/tS

AT e)r. COC. 76 36 /17 // z 17 g
AT7INT.CO(. I se 1/0 17/ I 

W/8xGO AOW M: IG K'

(2) JAMPLG CA LCULA4 7ON
Je NXT PAG.

/a4CC-0 LeNGrrH 6'

AhrC 7 ED ., P - 9

FOR COLUMN 

4.

I Example A-3 20 of i4 . Steel Frames
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TM 5-809-10
NAVFAC P-355
AFM 88-3, Chap. 13

FINA L DES(NV- CONT. FRAMe 4
.

EXT. INT.
mam~eg. J7RejSe$S- CONfr W14x4 )Y14xGl

A 14.1 A17.7
Ja7O.2 J z92.22.) JAMPLS CA4CU4A7ION 02OR COLUMSm

P/RJJ F7ORY AT 44J P M P M

ky 1. 0 (COLUMNf AR 4 AC6i'w
Sle SEAMS)

K >.C ) IJ' MOM0GRAPH IN
A1JC 7 e1b, p. 5-13q

1.0 FOR COLUMN
AIG6ALY ATTACH8 T Pilb

4dSn 4d

JD 60 18/4 0
L ?a a GS o

I' eaX8 ea 1q7 
zz 2Z 0 /0

a. a 83 92 l486/0

"t1 5.8 ic .27k$1
#'t /5.7 R 4I .1 1S
Xx 4.47 /.39

Xe/rk 19. 27.7
It __ ?0.0 o.i

C'V =

GA I eT

CGA I INT.

11I.iJ .7

0 +1,84

C40 -*e 60
11 .00 m

a 

- 2.27

_ .50S

0.865

+ 184w~
y"

K A/r
~.1 i

1.0
11"

1. q 
e2.3
17.2

/.0

2.46
48.@
Id.4

Fe Ifool I q 4
P'bx 24.0 Z4.0

4A/F14

AC L J'I tJ M M A XTIO N S -1 .
+ fig /- vi~zF

At.L JU44MA W oN8

, 342

.,'

.93

*44q

.. 9,

.97
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AFM 88-3. Chap. 13

I I- :

PINAL bUJIGN CON7T - FAM 4
2 4 24'CONN' CIrONS

JAMfO CALC. rOt JOINT A

I.PLAJrIC MOM, CAPACITY
OF 6rJt6It.*

Z -. _ , 

-I 1

2 t * + < 8, 5 8

IGNOX6* JMALL HOR/Z. P JiN Gro(iU6:
S C 4 / 68.67 > 5.9 

- O
Mp: G9^'

> 2co

C. G1Rneit CONNEw

Vs t, . : -- 13 8x (76 0 36() c
eivmi JM 3 /17 C

4 _C
AM , i .. 9

14'

t/St

c2la
_6 _ 1 WONv 1 71 

VEItrT.40A: V:(t.8+0.Co7)y -

DEV1ON V:
VORT. LOAO 1.3 x 34.1 44.5

i06J. V ' 75.1 <
4O4rJT: UJE 4 604T$ ; A#SUMf J+

Aq0-A H.X,A0LrS ARte xeLec'rai-
CoNSIA I/N6 ARAME A$ A WHOLE.'

Ald.OW V 4, x7 / -. 71

/0 7

JHOAf. PL: d0

76.1~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~1

*AIS5C JsPGc. PAR'T. 2

it : 34.1K

0 

}xamle A-3' 22 of 39 Steel Frames
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TM 5-809-10
NAVFAC P-35
AFM 88-3, Chap. 13

/NAt DES/GN CON PRA MS 4
JOnvT A - CONr

3. SHdAR IN CLUMN W94.

ALLOW VUO.6aSsytwd s O.SA3 exO.3 3 ?^/3 -2I:9I7a

V - *e7 e 36.8 % VI

H t x 4 2S 2 Q __
ar Q ~~~~~~~~~~~~~~~~~r-~~~~~

VIA :H- VgE -38.8 =16.L
it 23 > 9Z7I77- p. : _

OO&Ajr 4 /s /s e'O VI
(ORA COZIMN W/JWA Jmtlexe W)

213R(QQ t 7"*E x ..539 a 0. 7 7 70 T,4 L.

0.33 T, COL..WJ

USFe7/v X ,- 0.439 I004LE01

S//fAR M~ANSIM,? XOR1Cg

= 4 s(ua13) a Po '5

Si>, a f/~rrw s 2, ,70 . 7 67" 

o1. rf CAS r# r t w AA 4OPRf 01 S

=1a#(5x1.RS)mZ4

V ~~~~~~

9 et~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~-k

I.,
ff5

oLumA s r/reNff*. t 

COMPR.e~AN4 t C a (s6 ) :.7S >33Y

RE' A CC, A - (tb+ sx)3 ca =
S S7.S6aam-33?(.95 5A/.SfI?9

,*c2 e 22 3.a'V 5 0./45 Uass 'A J

_I

al2 _
lMumple A-3 23 of - 4 Steel Frn
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AFM 86-3, Chap. 13

F/NAt DESIGN- CONT.--CAM *

Jo/Tr.Ar- CON7

A rTE#V*Ire GIRDOR PCANe6 CONWCr7o0W
U4S IAB SO Sf

.... . . ..

*,"1., itl .. s

AM, hf$c 34?K 1

ASSUM1 PO/iTOF

1. 'C.ro C.
LCg Z8 '* CeCAR
L or= zo.P &o .Asr& oir

,OEfVSOOP PlAfr/cAWAVEw
A r LAsT J0CT:

XW/8%40 1 
_ 2 _ . IS*1]
/7-

i

-A-

, . . . . \�. wot ejc 4

v aSC 3& = 3 6k3.Oa
AOCTr AT A C 0 CO4 _ 86*9Aee.6,;

SMEAR ON sOcTS x u. :4

US C /-1' A4tO- M.S. OLT$ IN S. f.
AUOW /v /.7x 15.7/ = 3ak 4@

PORCE JN j A &4224 M/ 2260K

Ner Aw Ce7-(eH/.o6 I)Jc I 6 735

F- u86e4ASI CS XVD

CNtfCA COLUMN MOM{wT: Jtp ' X*

Mco. a 3 4. mm44$-. Vpz 4 r.&36

COL.MOM. Ar 4EAM ,CCAJ6E
-4tZCt t (,5-~tS t e.t< 235 Q>

Example A-3 24 of A4 Steel Fraes
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TM 5-809-10
NAVFAC P-3SS

AFM 884, Chap. 13

f5RA CE- FRAME - CON7.

VERTI CAL FORCS AtL EXCePr Roo LL

. ..r �;- :,' "

Tr/A.AJteA AT COLUMN
TRANJV. Gft*E/: 9'xse2' a eh s
f,6" JSEAM ( SL' + /PS )GO jP

7T/f/o. ARA AT MuCE KDK 3' I jF

LOAWf AT t04UMNj AT 49ACES

OOP (t,4.7 PJF + 0) x, 360 jp t. x46SFs
F4~ooR (74.6if-9G) x 6S~ 3F - Xl4 P 4 5 ; z SFS2
WA L(S.6ppA /I')K3' s 1J1(. :.JG

MACe AARCE c V= Cp. t H: c, (3,l) 4 , 5 1 K l

AXIAL ORCe i ( 1) a a.47K *

Example A-3 26 of j.4 Steel Frames

A-97



TM 5-809-10
NAVFAC P-355
AfM 88-3, Chap. 13

-I

AR4CeO FRAME - CONT.

J/JMIC FORC6$
PRAMOJ JHARG 0ooP LOAO ACCOMdONG O
TR/4UrA.Y AREA. AT PLOOR T lRtAMSJ
TAkE 0. A 9 X 7Y FORCE (P. /i). MeMseRS OS
ARACGO FRAMO JAL SO OG5IGN&E P4
1.Z x THd 49 FORCES.

IK�flK'11
a-60.asx .25

-- 0.59XI4U .26
7i

..� Ai.;,;-.-,.�O

I Vl I VJ I
,w--. pOR M&WkSi, v / 7 S

APPY e PORCd O AC: SRACGO 'AY

t.'-16.0

.wv im" v

I
I

I

q*5

13.8
23.1

0.8li

30.8

Fog 13601p dCTf ONj
us TeM Poicei
DIvI*OeI3 8y .45.

V 1 76 -a140"
1.ZS

TYPICAL 13RAC6 JAY
364 I GN FOACei
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TM 640-10
NAVFAC P45

AFM 8", Chap. 13

hAACEa FRA M - CONr,
MeMdeU t f*N

COLUMN PIA4GEX N PLANE O PRAMS

WIL4I DIRECTION 0
sTrRONG rJReCTlON:

GIR4E5 REACTCNZ (.0746 #0.0B)x e8a 3 1.8
e H4LiF.c LfJot bePrH 7

1 s1.age2 5 :i
C0NVlNUrr7'2

AXIAL
P 99i. .b$C £f {t7K NO £#CiP'T

KJiZE C CHOJEN FOR ARcitTeCrURAL
COMlt°TASIY WITH OERt COLUMN

7WrRY W14x4
AP 15?26 °5 S P~~

* j!OK AY e 37 TON
le/.#xL1 /Z k5

7. 
M/AGONAL 4SRACE

Pa -6.47t 55.2
JTL-( -ruA f 6 x i+

P : 8.7 
Pat.fS74 / < 1 5 5
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#SAC AAAMf - CON7
MCM(35R JI/GN- CON?..

647Gt SUAM- A/f44 LATEo/A4 4AgCI6 isy
iradc. /Z&CK. ASSUME WA44 LATERA. 4.OA$-
TMANSMITT)#0 it *Ec7s.r TO WS JUU&
/38CC,: NO 7044/0oN Ot HOi/VON44 C4oAt.

eUAM WfrlNOIJT IA6ON4 4AC 4 3 2'
SFAM MIJST7' J7/LL CA,1VAY VE/ CA 61 04
&V&N J 7W jSXACd SO/4iZ ~flor IN 4

ROOF
we (.og , + O.OtO) x3'A 321: .4 

W14 x 30 2
6-K ~ ~0.586"

.3B4 X 2qooo,~ V90: .8 qqS

W- (0-074LS + 0O0o.0) X sic,3t: /Z. 0 o3<
WNDOW 0 005 x l 2 a /. |

W18.4o AISCl #SAM 7AU d P.Zs3s
Am 16 xC 1.24 0f .46 "

J86'AM WIrH 7 RACO L3 MP

ARO 41SE W14x#O P CotIJ6N
P1O0iF UJE W b60 7/fA/LJ W/7H

UNJ3ACE3 SAJ
VMMT. W: 0./83KSx3'xIro'' 8.78K

8. _B78 J(/O'7 SK

17.Coxc12 3.oq 9si LOW
68.4

AXIAL P*4.61 43.8 a u+4<? 3

49:~~~~~~ 488 I? ° s o4-8 . 4. 0PXS 4 W

Example A-3 29 of .4 Steel Frames
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TM 6-809-10
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AFM 88-3. Chap. 13

13RAC513 FRAME * CONT.

4.51

An

-35.G

3.10 vAr.

25. SGIS1M.

... i .t is~ -
G.6.

_W

WAID61t JsEAlt (mro. baO)

'% e3' = 70 k

e '9C.4 Be. 

JO/Nr
I ..

lb
-

E

4,.1 743.3

a'4&-

2 NO PLR .
'4

'4.61 ±43.8

Nor7: CONNEC7/ONSR JNAL hbf O$1GN6D On
r7W AOVE ORCGS WTHOGr r asp4 .
oNG-7HI/O /NCRLAJ, OR SHA LC 16 A6f4G
ro /()LV6C.OP NS -J(.. CAPACITY O TMMbEAS

Example A-3 S0elFrme
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TM -809-10
NAVFAC P-355
AFM 88-3. Chap. 13

A*AC. P/4M@ .--Cot4T.

JOr a
a /JkSIGN FOUM4417ON

W/7tWO(J Tl (I.WA4
It i ta1.sf 1s

USe ACI 31877
APPON*IX PS WITH
FOUNOA 7/ON f ' 6000

43.6I � ::. . -� I.01, � ". -.. , �: : 1;

:: :: J:'

E$M-%GOOGD M. IS'x "
7d t so £T7 XUAS WGL&6OA
To 6MRE6360e PL.

VXERT. £IARING ON CONC. PS 4.6 G C.7 a Ia"
POR OUNOATIOA MUCH WIOGIR ZVMAN Ti COA130* ARgAs
ACCOWCD IEARINO SrResJ: 2 No. 3jf' 1oo PSI

RUQ'l A a ' 0.0 rn 

MI. LaNGN J 'PO-o0 a/'
1s

JWEAR TUOS V&4.61+45.8s 4.3'1
I/S - ' A 307 STU/3S 1MW .,
ALLOW 8x G.01 z 48.8<9

JUEAR LUG A6C4USQ O CONPIJ*SMENr OP CON C.

JSY co0. ASOVO, C$6 ACOW. 8EASAI/G /OO PSI

iSU4R/NG STRSS 48,300 a MC4O PSt O.c.

AedIMIN: M 4d. =4xl 8 _ 48.3K: X -N a C *
Exampl 4 3 31 f < F. oam

Rxaple A-3 31 of Y4Steel Frames
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DESIGN EXAMPLE: A-4

BUILDING WITH A DUAL BRACING SYSTEM:

Description of Structure. A two-story Office Building in Zone 4 with a com-
plete reinforced concrete vertical load-carrying space frame. The lateral
forces are resisted by a dual bracing system consisting of concrete ductile
moment resisting space frames and concrete shear walls. The structural con-
cept is illustrated on Sheet 2. The East-West direction is considered.

Construction Outline.
Roof: Exterior Walls:

Built-up, 5-ply. Bearing walls in concrete
Concrete joists and girders. and non-bearing, non-shear
Suspended ceiling. insulated metal panels.

2nd & 3rd Floors: Partitions:
Concrete joists and girders. Non-structural removable
Asphalt tile. drywall, except concrete
Suspended ceiling. as structurally required.

1st Floor:
Concrete slab-on-grade.

Design Concept. The structure is a dual bracingi.ssystem meeting the require-
ments for a K-factor of 0.80 as follows: (1) the concrete shear walls are
capable of resisting the total required lateral force; (2) the ductile moment.
resisting concrete space frame is capable of resisting not less than 25 of
the total required lateral force; and (3) it is assumed, for purposes of the

!'nAMMee~k example, that a rigidity analysis of the walls and frames, considering their
interaction, would show that they would not be called upon to resist forces
higher than those obtained under (1) and (2). The roofs and floors form
rigid diaphragms, and the seismic loads to the frames are proportioned accord
ing to their stiffnesses and the loads to the walls according to theirs. The
building is assumed to be symmetrical about both axes so that only accidental
torsion is involved. Special boundary conditions are required for the shear
walls. See Chapter 6, paragraph 6-3a(1)(D).

Discussion. Vertical and lateral forces are pre-computed. (See Example A-5
for a typical computation.) The shear walls in the south wall (Line D) are
designed for the given lateral forces. The seismic frames would be designed
for 25% of these forces, using the methods of Example A-2. Deformation com-
patibility is investigated for the nonseismic frames.

Materials.
Concrete c = 3,000 psi.

Reinf. Steel f = 60,000 psi.

I ~~~~~~~ 1IExample A-4 1 o.I1 Concrete Frames, Concrete Walls,
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FRAME PROVISIONS

The two interior frqmes (Lines B and C) will, be designed as ductile moment
resisting space frames to carry 25% of the total required lateral force.
See Example A-2. This example will deal only with Lines A and D which have
shear walls that carry 100% of the lateral force. Deformation compatibil-
ity (para. 3-3(J)ld) must be investigated for the vertical load-carrying
frames on Lines A and D (see p. 11).

As an alternate, the interior frames could be designed for vertical load
only (with an investigation for deformation compatibility), and the lateral
forces would be carried by ductile moment resisting space frames-on Lines A
and D. In these frames there is a choice concerning the columns on Lines 2
and 7: the columns may be treated as columns with adjacent girders of 10'
span, or they may be treated as boundary members for the shear walls. In
the latter case, the girders must still be designed, together with the col-
umns, for the actual 19' spans, but they must also be designed to span 20'
from 1 to 3 and from 6 to 8 in case the shear walls and boundary members
fail.

Example A-4 3 of i Concrete Frames, Concrete Walls
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Deformation Compatibility, (3/K) Times Deflection. In this example, the
shear walls (with vertical boundary members) on Lines A and D and the frames
on Lines B and C are designed to resist the seismic forces. The framing mem-
bers on Line A and D (other than the shear wall vertical boundary members)
are not part of the lateral force resisting system; therefore, they will be
investigated for deformation compatibility (para. 3-3(J)ld). When the lat-
eral forces shown on page 4 are applied to the structure, the lateral dis-
placement is 0.071 inch at the roof and 0.027 inch at the floor level. The
framing members on Lines A and D must be investigated for 3/K (3/0.8 - 3.75)
times these displacements. Refer to SEAOC Commentary, p. 4-C to p. 47-C.
Also, see Design Example A-7, p. 8 and 9.

____ -~ 0. 071 X5.75 0.27"

0. 0 ?7x L.7 Is0.10"1

I -/N're 0sRY DR/Sr O.r7"

The resulting member forces are combined with the forces due to vertical
gravity loads. In this example, the resulting stresses are within the elas-
tic capacity of the members and the P-A effects are negligible. Therefore,
the requirements for deformation compatibility are satisfied.

Example A-4 11 of 1 Concrete Frames, Concrete Walls
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DESIGN EXAMPLE: A-5

BUILDING WITH A DUAL BRACING SYSTEM:

Description of Structure. A three-story Administration Building in Zone 4
with dual bracing system consisting of a ductile moment resisting space frame
in structural steel and concrete shear walls. The structural concept is
illustrated on Sheets 2, 3, and 4.

�X'�"' . :;�

Construction Outline.
Roof:

Built-up, 5-ply.
Metal decking with
insulation board.

Suspended ceiling.
2nd & 3rd Floors:

Metal decking with concrete fill.
Asphalt tile.
Suspended ceiling.

1st Floor:
Concrete slab-on-grade.

Exterior Walls:
Bearing walls in concrete
and non-bearing, non-shear
insulated metal panels.

Partitions:
Non-structural removable
drywall, except concrete
as structurally required.

I'

Design Concept. Since the structure is a dual bracing system with a ductile
moment-resisting space frame in structural steel cpable of resisting not
less than 25 percent of the required lateral force and concrete shear walls
capable of resisting the total required lateral force, the K-factor is 0.80.
The metal deck roof system forms a flexible diaphragm; therefore the roof
loads are distributed to the frames and/or shear walls by tributary area
rather than by stiffnesses. The metal deck with concrete fill systems for
the floors form rigid diaphragms and the seismic loads are proportioned to
the frames and/or shear walls by their stiffnesses.

4

Discussion. Portions of the exterior walls are insulated steel sandwich
walls, not capable of acting as shear walls. Other portions of the exterior
walls are of reinforced concrete. Two interior concrete shear walls are
provided to the roof to support the flexible roof diaphragm and to reduce
north and south wall deflections. The rigidity of the steel frame as com-
pared to the shear walls is insignificant; therefore, the analysis of the
total structure assumes that all lateral forces go to the shear walls using
a K-factor of 0.80. The calculations for distribution of forces to the
shear walls is not given here since these follow procedures given i Example
A-1. Calculations are given for the amount of shear to each floor for 100%
of the total base shear to the shear walls and the amount of shear to each
floor due to the requirement of 25X of the total base shear to the frame
alone.

Example A-5 1 of 12 Steel Frame, Concrete Walls
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DESIGN EMPLB: A-6

BUILDING WITH A WOOD BOX SYSTEM:

Description of. Structure. A two-story wood framed classroom building In Zone
3, using wood floor and roof decks and wood stud walls. Girders and col-
umns on centerline of building support roof rafters and floor joists. The
structural concept is illustrated on Sheets 2 and 3.

.' k;' � �' � !

Construction Outline.
Roof:

Composition & gravel.
1" diagonal sheathing.
Wood rafters, wood girders,
and columns.

Ceiling (drywall + acoustic
tile).

2nd Floor:
3/4" plywood sheathing.
Asphalt tile.
Wood floor joists, steel
girders & columns.

Ceiling (drywall + acoustic
tile).

1st Floor:
Concrete slab-on-grade.

Wood stud
exterior
plaster.

bearing walls with
and interior

Partitions:
The stair enclosure walls
are wood stud with plywood
Asheathing on one. Other
interior walls are-removable
drywall.

..

Exterior Walls:

Design Concept. There is a line of columns and girders on the centerline of
the building, but the exterior walls are bearing walls. Thus the structure
does not have a complete vertical load-carrying space frame and is a Wood
Box System with a K-factor of 1.00. The diagonally-sheathed roof acts as a
diaphragm spanning between exterior walls. This is a very flexible dia-
phragm incapable of transferring significant rotational forces. The plywood
sheathed second floor is a flexible diaphragm. This second floor diaphragm
is interrupted by a stairwell. The permanent stair enclosure walls running
in a north-south direction are therefore used as shear walls.

Discussion. The accompanying computations show the load diagrams and dis-
tribution of horizontal forces to the various shear walls and the unit shear
and chord stresses in the diaphragm. Attention is called to the two second-
floor struts which must transfer diaphragm shears to the shear walls on each
side of the stairs. Double joists are used for these struts. Plywood
sheathing is given for one of the stair walls. As this wall is short, it
will be provided with special tie-down fastenings. Shear in piers of each
wall are computed as proportional to the solid space between openings.

Example A-6 1 o13 Wood Box
A.
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DESIGN EXAMPLE: A-7

SPECIAL CONFIGURATION:

Description of Structure. A one-story industrial garage building in Seismic
Zone 3. The north, east, and west walls are concrete bearing walls. The
south wall is largely open for drive-in access and has concrete columns and
concrete beams over the.openings. The roof is concrete slab and beams. The
structural concept is illustrated on Sheets 2 and 3.

Design Concept. The roof is a reinforced concrete beam and slab system
forming a relatively rigid diaphragm, even with a 6 to I length-width ratio.
The north, east, and west walls are concrete bearing walls. The south wall
is a rigid frame. The lateral forces are resisted by shear walls. The
building is a Box System with a K-factor of 1.33.

Discussion. An estimate of the relative deflections and stiffnesses of the
north wall versus the south wall rigid frame indicates that practically all
of the east-west forces would be carried by the north wall. The resulting
rotation is resisted by the east and west walls.' A computation of the de-
flection of the roof diaphragm in resisting north-south forces is shown. The
transverse bents formed by the south wall columns, the transverse roof beams,
and a portion of the north wall are checked to see if these bents are ade-.
quate for the vertical load carrying capacity and the induced moment due to
3/K times the deflection resulting from the latera.forces. The vertical
load stresses in the south wall beams will be combined with chord stresses of
the roof diaphragm.
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DESIGN EXAMPLE: A-8

L-SHAPED BUILDING WITH A BOX SYSTEM:

Description of Structure. A three-story L-shaped Administration Building in
Zone 3 with bearing walls in concrete, using a series of interior vertical
load-carrying column and girder bents. The structural concept is illustrated
on Sheets 2, 3, and 4.

Construction Outline.
Roof:

Built-up, 5 ply.
Metal decking with insulation
board.

Suspended ceiling.
2nd & 3rd Floors:

Metal decking with concrete
fill.

Asphalt tile.
Suspended ceiling.

1st Floor:
Concrete slab-on-grade.

Exterior Walls:
Bearing walls in concrete
furred with GWB finish.

Partitions:
- Non-structural removable

drywall.

Design Concept. Since the structure is without a9complete load-carrying
space frame, the K-factor is 1.33. The metal deck roof system forms a flex-
ible diaphragm, therefore the roof loads .are distributed to the shear walls
by tributary area rather than by third story wall stiffnesses. The roof
diaphragm, being flexible, will not transmit accidental torsion to the shear
walls. The metal deck with concrete fill system for the floors form rigid
diaphragms. The walls act as a series of vertical cantilever beams con-
nected together by struts at the floor lines. The wall analysis utilizes
the Design Curve for asonry and Concrete Shear Walls on Figure 6.11.

Loads.
Roof:

5-ply roofing - 6.0 p.s.f.
1" insulation - 1.5
Steel decks - 2.3
Steel purlins - 3.7
Steel girders
and columns - 1.2
Ceiling - 10.0
Miscellaneous - 1.0

Dead Load - 25.7 p.s.f.
Add for seismic:
Partitions 10.0

Total for
seismic - 35.7 p.s.f.

2nd & 3rd Floors:
Finish
Steel deck
Concrete fill
Steel beams
Steel girders
and columns

Partitions
Ceiling
Miscellaneous

Dead Load

Live Load

- 1.0 p.s.f.
- 3.1
- 32.0
- 5.9

- 1.5
- 20.0
- 10.0
_ 1.0
M 74.5 p.s.f.

- 50.0 p.s.f.

Example A-8 1 o8 L-Shaped Building
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APPENDIX B
DIAPHRAGMS

B-1. Purpose and scope. The details and examples given In this appendix are to illustrate principles, fac-
tors, and concepts involved in seismic design of horizontal diaphragms of buildings. These are not mandatory,
and other equivalent methods, materials, or details complying with this manual and applicable agency guide
specifications may be used.

8-2. Design examples.
Design
Example Description

B-1 Concrete Diaphragm: floor diaphragm supported by steel deck; diaphragm stresses and stress
transfer to concrete walls. See appendix A, design example A-1.

B-2 Steel Deck Diaphragm: stresses and connections in roof deck with concrete walls. See ap-
pendix A, design example A-1.

B-8 Steel Deck Properties: sample calculations for working shear, qD, and flexibility factor, F. for
six steel deck systems. See chapter 5, paragraph 5-6.

B-4 Wood Diaphragm: stresses and connections for diaphragms In a two-story wood building. See
appendix A, design example A-6.

h.~~~~~~~~~~~~~~~
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APPENDIX C
SHEAR WALLS

C-1. Purpose and scope. The data, details, commentary, and examples given in this appendix are to Mus-
trate principles, factors, and concepts involved in seismic design of shear walls of buildings. These are not
mandatory, and other equivalent methods, materials, or details complying with this manual and applicable
agency guide specificatIons may be used.

C-2. Design examples.
Design
Example Description

C-I Concrete Shear Wals. A detailed analysis and design of concrete shear walls Is included in the
design of a twostory building in appendix A. design example A-i, Box System.

C-2 Concrete Shear Wall with Concrete Frame. A special analysis for walls in buildings with K
0.80 is included in the design of a two-story building in appendix A, design example A-4.

C-8 Wood Stud Shear Wall. An analysis and design of plywood and diagonally sheathed shear
walls is included in the design of a two-story building in appendix A. design example A-6.

C-4 WaU Stiffnesses. Several methods of calculating wall rigidities are compared.

h.~~~~~.

P?
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DESIGN EXAMPLE: C-4

COMPUTATION OF WALL STIFFNESSES:

The examples on sheet 3 through sheet 10 illustrate various methods for
determining the rigidities of walls with openings parallel to plane of the
wall.

(1) Method A and the first example is taken from a textbook, "Stati-
cally Indeterminate Structures," by J. R. Benjamin (Copyright 1959 by McGraw-
Hill Book Company, Inc.), pages 221-223. It is a nearly precise method as it
includes the effect of rotation of piers and axial shortening of piers. How-
ever, it does not include the effects of spandrel and foundation flexibili-
ties. Computations made by this method are relatively accurate but can be
very cumbersome for ordinary use.

(2) Method B is a very commonly used method in which the total de-
flection of the wall is determined by adding the deflections of the piers at
various levels. The piers are assumed to be fixed-ended or guided cantile-
vers depending on available restraints at pier ends. Joint rotation and
axial shortening of piers is not considered.

(3) Method B2 is the same as Method B, except that all piers are
assumed to be fixed-ended.

(4) -Method C is considered more accurate than either Method B or
B2 . In this method the deflection of wall is obtained as though it were a
solid wall. From this is subtracted the deflection of that portion of the
solid wall having the height of the openings. Then the deflection of actual
piers at the openings is added, thus replacing the deflection of the ficti-
tious solid midstrip. In this method the piers are assumed to be fixed-ended
or cantilevers depending on available end restraints.

4

(5) Method D is a modification of Method B2 . Where a shear wall
with openings is to be compared with a solid shear wall, the wall with open-
ings is computed as in Method' B2 but the solid wall rigidity is computed by
dividing the wall into horizontal strips each of the same vertical height as
the strips used in the wall with openings. When comparing vertical resisting
elements of various types this method may become confusing. However, where
relative stiffnesses only are desired this is an Improvement on Method B2 .

(6) A resume is given for the first example on sheet 7. This shows
that Methods A, B2, and C give comparable relative rigidities. If in the ex-
ample, Piers B, C, and D each were of different proportions, there would be a
slight difference in stiffnesses computed by Methods A and C. Method B2 can
produce inconsistent results. This is shown by the second example on sheets
8 and 9 in which Methods A, B2, C, and D are compared. This shows consistent
results between Methods A and C but for Method B2 the wall with opening is

Example C4 1 of In Wall Stiffnesses
I,,'
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indicated as being stiffer than the solid wall. Method C is not generally as
well-known as Methods B and B but is considerably more accurate and is used
for the examples in Appendix A. The use of Method C to a more complex problem
Is shown on sheet 10.

4

Example C-4 2 of 0 Wall Stiffnesses

C-4



-------

TM 6-809-10
NAVFAC P455

AFM 88-3 Chap. 13

ACQMPUATIar OF IALL S /PPNES56
dwPsr6xA4vP: W4S -M444 W1W MtO oCAMA/&.

.dICN<OMCSS d 

MfOOV~de/I CA' e4/1rl/rYci . 2, r0 ru -g
AfOeIZ41,t f OA qJGeDamv

G 04.E = q60*O>e1.j

I "Aw AA A 

4 4"4:4'

jvt C' Ile
d' 4. 4* , W 

wX;

4'

0

4aAMALYS A cCOMr/IM&

%:.. 'A CA NE IAI AX IA L

XCKStATJC4LLY .MOC-

/75? pt, VeI 22/. 229 4

I 

W4LL ELCEVA7 /0

Mozdvr 4 d~tA/R4 DoeL6Ce0

e IS 4tAANe4 PROaf TMA 0.' WALL ro i.TO UPo tqa
100 60% ( 4 /.et/ 2O*OK x t

=AA w f.7OO- / 2t8 b 9 f'o~

F>JWR2S B""". AS 11ME -V -
P-CX /.t4cdorac

'Al e 'ab _ - A /.exssfi A

-s 8s3ff
!

ANlIt .?Vi t

AaC,3 J w 7. 5 v O'.- + /.9 sioZD V ~2t X / A'#CSCS

4$) % t4'QG^v U + I.2Ka o 9aAL KID atr 929/ ASye

74 TAtl) O. 4Qo lWC#tJf

Ezxample C-4 3 o1O Wall Stiffnesses
fr.,

C-6



TM 5-809-10
NAVFAC P-355
AFM 88-3. Chap. 13

RO rArJ0A1 OX jO/tq iA
iq t Z; v n e) 2x coon4.o 4t . 4,U X/rAA 0I4MS

A&dX rO 0$' WALL SIZ90.2, X: 0.02S"

AXIAL DVR,4A 77 0N or INz "A B 

AXIA4 L F'OF c-
AT MIOHOL1/6;H
0 PRS

ea V _ 73 75 

16 h Z A -&V 84/Z 20 -o aO/SX

A LO 7OP OA WALLs9x4xIcZa Zahx4'It.- 2K.g9fx4-9#1

rOrAL 4 e r(3 OP r WAIZ a 0.140OSOf ooo s./7f

Sxafi. 57

K '

ME rHOD ,S -Rr-F/£e I=/&. G-II.
AbIALYSIS QY -SACKIN0. PIPRA A10 UJ/P.A nSgcla3

ASs 8UMING WAtL.- AS A WHOLE A5S A CA4rALPVdA4c

pico bZ: 4 j 3.2O (cA, L&VaMq3) Cg4vg Q

. O7K- x 0 so.03283

Aat% CU'~~ ®o: , 4 (/~oto ~ t,

A j @ 314.481
,,,, S43 *ao A~ss *.fKo4 a,.4

q3 I '7 5 )( 240 K ° 3 OCOr a a'
.& Us O. O 7SX -30°0° X /*- -s . O a?.i*1

R) Cci~ve @9

.AId (La. A-4 Z044 S 7'4/$'622SAIJ1 S SS

/NO/ A Tds TAr JT7C WAL
W~rj$ WAM04W if Mo R.
AleIeD T/IAPV A O/D WA4L.
(At a 7. 22 -. r g A r*'D C )

Example C-4 4 of Y9 Wall Stiffnesses

C-6



TM 5-809-10
NAVFACP-3S

AFM 88-3, Chap. 13

Itm'mvoD 6t1 er ro fJG: -l.

AA146YS/$ 6Y sfmaeg/ PEe A.0 OIJO, 6 S/OV CV121Qb'6-
AAIAO W seo &6rHO.O f Xf54M,$A / AAFS
J:/o6D rOp orrwO41.

+ 0.290 OAhveo rop f 6 orr cue e 

A - 0.0/ le, 4 --p-f - a 0/Ca0

P/es R ,C. g ' X4Me Ms *esee - cv

X4CO ' /44 A4 eo'w 0.0(a94

4 .,.~~ 

/elA A h . 0. 2 0 0 60

A, 0a0016-

rop f 6)orr) Cv 0

A 4(rOTAo ) L..O3i6 f. o 4 a 0. /S?6 K'a 7.64

____ __Ls 0. 0 ?eo lr yvp/a o rn)SOLAb W S .0 tt t/ A

A . a C060 0 i 4AJr o.oS 

cazev 0

a 9. se

4

Example C-4 5 of 10 CA Wall Stiffnesses
h .

I

C-?



TM S-910
NAVFAC P-355
AFM k3. Chap. 13

lmfrioaI. I ARAda TO 0PjG. ra.11. 
teAo c-.I V aggg"EmriR~~~~~~~~~it~~~~~~~~~o2 ~~~~~~~~- oO )=eA8B~AHgER
}¢Rp OL D nWL ,,

A S O L/D WALL ,,20 , CO
30O0 /a .(A1taL eveC42)Cd1vd @

,6.-40,074-X 2440 -C d X0.133
go44 ------L 7 .2 2 J(fin",we

O./5Se Ole fulO WA)
-A Of 4 Hle& A1/0 SRI/P WALL 4 10.

I- = .it0 0.120 evb4M c

... ..

6UO.0lSZ4oQ S

INDIV/DUAL, P/I 'aA dCoA (fo roo 0for)
h _ 2 ,_ C v4 V g

-d - . O14 I

54a4a/a e~Owo X 'r 0. 204#' Ka z 1=Za00 a 6 0.208

A4 P 174.4 37S aC *~' j., x~

24.8/

4.81
4- 51+
14.43

,MrOTrA) U 0.1385 -0.0328 +010694 a A.-e7 , ku72
N0r? 7M//S JMWO 0R ANALYSIS Is ACCOMPLSH&D

IA 77WI PgS/*Ai dA'A41,146 C-/

AM4TLYJS AZSeD O , Co l.

O$ THE %O .10WALLAY

STrIP. A 4~ ( 7//4p
57t164dS Of ! WLL

wDPM Moz# MA 3 DL
4 yzei AM 0v.r -

-

4 

4.

'4.

Wa'DV AIL -!9
go6

A 0. 0 /xo4o04 
4W*O. C3 //L
A(roZQ) a axO.O5/ 

,KC7074S u' 0.544
0.0945~~s

'Ags' ituS 7Wde8W dfh1
Of FIAI/A' MA.W MTI
MUM E'41O C
*19,40 INAWA WA61
WILiO/r Nf04%5 £
esiff lVAreo.

Exmple C 6 of YP Wall Stiffnesses

C-s



TM 6-09-10
NAVFAC P35

AFM 8-3. Chap. 13

'CcTA#v4e ow #RXA7'vE -. Sf/c"Wd'S O W4z wll
OPf/MB6S IA COMP4R/SOW O A SOLD WA44 #VOd
T#V MA7'/HOVS '*A To IV AdovL,

A44 fo100

ME r/o o

METHOD

MAWrYO0D

Mi THOD

i a * 7.4icoo .6

,., 7.22. f Vo
FC" ,.72%dO s 79.2%,

*D *e d.7*i c/OO

H ;., :;. .F

7m/tltf C MTN0 W' W1OULD NOr GIVd QcU,*rt Af MUC fr,/tA,
70 r*' WALL W*IVh' 10f / Cbobf P.4AR/f/ 70 R14e MWO*
7EoRd rTrICA4 toMETHOD A tAI ADPIIOM 40N C G1LD err
vCey I'co sisr tEr Risults /r Heae Welve or11de
WALLS II MWe s4rSret wIrN MedRE COMPLI CA TD
ARA A4GeM CMli 0$ OpCV/$as. Mermop.*C C C4m$
WrL w'rh' M4O s4o 6ovr,, af M0 IW4qg rI4fd
cOvscVIIA1 7*Y4*V Mtr'NODI :abgdqb Mw OV Ml.J
CXAI4POd, P/Cf C C ANDV b 4,'4CW OXf 0I.4e
ggr PqR0PO qYON, /NA4- WOUS BC J0D/.C.'Jte
ZsCc A CfP4.qt$ov 09 Me#Yoo Aftro :.MErHoO 6e e/vfs GOOD dESCaLTt w°O 7W?5

IMCOA/5IJCAV, 94,c54rs MAY 4 4674/A/,D.

.4

Eample C4 7 4 10 Wall Stiffnesaes
,.

C-,



TM 5-809-10
NAVFAC P-355
AfM 88-3. Chap. 13

e0'Ur 7rO170 WL4 - 4t/ 8SS5 _ Cdt/
564COAA0 C6fAAPL&' AIMZ4 WlrA eW/ 0A4W'1-

.C V=1000M
G IV.:M '

7rNICKN69,S i - *'
MOt/a4Z/ o' 4ZAST/C-TY
,6=2404<0m/-W
A?0OZA.tUS 0r R/C/0/7Y

.5 = 0.4 40. /F

Im7erl-o - I

-- - - -
- - -- 

0 of a 0 

__ _ _ __ _ _ _ _ _
9' 20 9'

4 .

le

A.

.i�::

;T�i �.�

i4-R A" C-w r at/d V
16A = 7 X NCIMdS ,

P/EIS G3g3 V=SQ04 xax

500__ __- /.VXCSo4 c4
=AD ZSG.i2 4* ix4o8e& dx9x9C4
=I .26x43 4 2/-s3 1/4< e(9)'a.

FA

A

XR.*ez~~IS/,
A ^- 32., c-o /Av.
4(7Of Ar ) @ 0. /a d"

* qO7rAA OP 14ORV wr V ', A ;
,* = .2r 4 1"RAOIAMS

,I ,s
.- 7 -OP O-O VV4LI, ,.*2Z

AXIAL.

811h d9/2X 2400

^ 7TOP° Ot~"3t-2K0/ t*01ad4 UO.OO92"
tOTAL A @ 7OP or~ W4S~W0,SO?8,.025O..OO0>2./4?OW A e 'W . /( a #

(9 4 ra.O 000 W41_j
W.ALL Xa ,12 7. 04

57-wNeSS Im CoMPAR I/SON 70 $o4OD WZ ,.22
,& 7. 70. -

R a *48 a 0 u.0739 V&2/?.%2 /<D 2.04
4 UD'. 0 3 70 4 .4 3 /6

-4 A.0ZK36+'0970=./OOZ / 9
K 0 L D WA L 4('lXED) 9 2

sSrV.PP/343 IA COAIPAR4VOW
70¾50L/0 WALL

9.9d xioO s 04.ctya

Example C-4 8 of 10 Wall Stiffnesses
Pt

Cb10



TM6-M-10
NAVFAC P-45

AFM S, Chap. 13

Imagr/ioD cj-
SOIL I WALL(A,.a')
"sOsiMO 4., e" CC4.vr)

A 'O/3OS
A c0.0S2-

.e (,o ;9 (f'vtai)
e aao.07J9 &,o /,5Z 4m 9Z0 4s .0870-

A WAUo ./ ZSS -, $ OU 2 . 0S70 J /427 f lALL 7 w02

5STMWA&M l// COMPAJIfOJJ 70 s5ou w4et. a ? ? 7 s%

l _ _ _ Jr_ _ __2

*<,4 9.96 £acJQZ11P.4 s0c'O "4 X a/0.64
C~eu ea) (* ;C 6 oO2es-egg 48s) ~~epe & *it121w

sr 1ZoxcX. A..4, oAs1,oIALj'oA' T rW4o A U' Z

.45 hf" MUW fAer AUMPI. Wf oWM0,05 0'A0W V* e*6 W.
*fdfit YWC&S A#erhW V zzerrFe W~A1J AWi jJCesr
-esMIg10C6 t~r eA'AAMPWe MWArOTS efrI4 S fe.tS^r4Y4PW.
WOWASY V OfD 7rWAr /A/ 711S CX4~J YrNOD W 6PCS
,cooe kesA4 7Prs /4 FNAT TNw te tso .4 rd 6
sr/hCeca. Wra .rI#F SOM/0 W06.-

4

Example C-4 9 of 1 Wall Stiffnesses

C-1l



TMS -910
NAVFAC P-355
AfM 88-3, Chap. 13

44sArUMM d WA/W. 47ZXASoSJ- c0c

7WO 46Af/Ze: Caq," WR4t V M45r//40oD C

REVER TOIGIURE G-II

GIVe>J
7W/c/vers t s ,
M-oazov1 Otow 664srtIcry
D24o0 11

4 .
4

£

*...

.. . :!;~

.. . .

P¶01Q14Md At~46L ifl WAIL IL
a f ^ - ^ - -4- 4. 4' 4 4

,. SOLID WALL:-+:/4,: o. GO (C4,.mLCV<Aa,)<
w-s 07oX3^4t< Xr-O.01385 ot6d=72

5. 3OLI1D pitg ACD h- 6XIIPAfCSS or) Cq 04

4. .0 37 37 A X . I I q s"

,^ D PI C- 4- VQ. -333t(ixeq) cmqvc @
4'2 0.0207PC z° 'X

p00 R *. .J 4 7 1

3000 X__ __20_ Xs 0. 2 4. 812400~~~~~~~A5

A C+D~ - /.aC -c#o -.
^ ACO * 0>.Ji9ffa-0.OVo Ad./o0 :Oi#97"

r e° 1 4,v e l 5w$9

0 X. aC s, IO

X zo.*137.

*( A a A v- . .-r %2 0./57 4

<WAL -'j 0.4 ieOC. AIT/Levte cU

2 o o 4 r _ ___

KW^iL4'k0.204aOG: 4

Exaple C4 10 off1O Wall Stiffneasea
?it,

C-12



TM 5-809-10
NAVFAC P-355

AFM 88-3, Chap. 13

APPENDIX D
SPACE FRAMES

D-1. Purpose and scope. The data, details, and examples given In this appendix are to illustrate prnci-
ples, factors, and concepts involved in seismic design of moment resisting space frames of buildings. These are
not mandatory, and other equivalent methods, materials, or details complying with this manual and appli-
cable agency guide specifications may be used.

D-2. DeSIgn examples.
Design
Example Description

D-1 Concrete Ductile Moment Resisting Space Frames. Illustrates special analyses required to
design ductile moment resisting frames using reinforced concrete. See appendix A, design ex-
ample A-2.
Steel Ductile Moment Resisting Space Frames. Illustrates special analyses required to design
ductile moment resisting frames using structural steel. See appendix A, design example A-S.

D-2

I;.

4
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APPENDIX E
REINFORCED MASONRY

E-1. Purpose and scope. The data, details, and examples given In this appendix are to illustrate princi-
ples, factors, and concepts involved in seismic design of reinforced masonry buildings. These are not
mandatory, and other equivalent methods, materials, or details complying with this manual and applicable
agency guide specifications may be used.

E-2. General. Design methods are similar to those for concrete. For details of masonry construction, see
chapter 8.

E-3. Design examples.
Design
Example Description

E-1 WaU Design-Lateral Load Normal to WaU
E-2 Wai Design -LateralLoad Paralel to WaUl (Shear Wail
E-3 Composite Wall
E-4 WaU Stiffnesses. For calculation of wall stiffnesses see appendix C, design example C-4.
E-5 Shear Wail Buildings. For design of a shear wall building see appendix C, dssign example C-I.

4
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APPENDIX F
MECHANICAL AND ELECTRICAL ELEMENTS

F-1. Purpose and scope. The design examples in this appendix are to illustrate principles, factors and con-
cepts involved in seismic design. These are not mandatory; and other equivalent methods, materials or details
complying with this manual and applicable agency guide specifications may be used.

F-2. Design examples:
Design
Example Description

F-1

.. . .
hi z .. "

F-2

F-8

F-4

F-S
F-6

F-7
F-8

F-9

Pad-Mounted Transformer Illustrates the seismic design of a typical, rigidly mounted item of
equipment on the ground.
PoleMounted Transformer: Illustrates the application of the provisions of paragraph 10-5 to
the seismic analysis of flexible equipment on the ground.
Tower-Mounted Equipment. Tower-supported equipment is investigated for lateral seismic
loads. The tower period is computed.
Cooling Tower in Building: Presents analysis for a rigidly mounted cooling tower in a
multi-story building.
Unit Heater-Flexible Brace. Analysis of a unit heater not rigidly braced.
Unit Heater-Rigid Support: Demonstrates the reduction of the lateral seismic load by rigidly
bracing the unit heater of Design Example F-5.
WaterHeater: Indicates how a water heater In a barracks is investigated for seismic loads.
Tank on a Building: Demonstrates the seismic analysis of a storage tank on a building.
Emphasis Is placed on the period determination.
Water Riser: Illustrates an approximate scheme used to determine the seismic loading on pipe
connections. A riser in a multi-story building is treated.

4
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-PAD 14OUNreD
TRANSPORMeR
W7 a /O.OhKPS

I ~,; 1 -' z - , NATIVE SO1-
(INOR6AWC 4

G'VeN:

L " , -ccReTee PAD
PO)

W = /0.0 K/PS
A/GID C-QU/d'ENT ON 7W56 6ROtUD
ZONe 8 SeISMIC AR A I: 1.0
CheCK ANCHOR AOLT ACMIONS /WUE
7o SEISM/C LOAOS.

F-,z: (v's C.)* ( ls)

REQUIREl-:

AOLUM/ON:

r -/I 9 I , ,
Z a 1 :Z -10-1 CP sO. SO W & /0. - 0 KI

Fp / 4 (o)(2/3) (O.60) (/O): /.5 K/Pj
A.4/'41e 4T Ca

.

SwEAI/AOLr 
ALLOW. 4EAR

J,/"F/ 0. 58 KneJ/8O8T
C 1. 6 0 4K/1*S/iA0L

. 4 4OVOA-8. O.K.

ChE6CK OVefflUNIN' -

4e' X 1. 5K CC x /0.0o- .. OVegRARAWIH O.K.

Reference: Chapter 10, paragraph 10-5a

Design Example F-i -1 of P ad Mounted Transformer
I,
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RE.AINING bAR

-3.0 KI PS4E /

1 1 ff 11 ' I I I

.T,

Wr' 7WANSFORMERm B.0 I41P/1..
W77 POLES d L /F7/POLE
E (POLE6) l.C 10rLbllm 
Ts CSITe r-salo*) 1.S UKNOWN
ASSUME EACH POLE ACT A A
20' LONS CAN7r1LVei
SEISMIC ONE 3 1Hi11 QISK

FINO 7 6SMC FOA C
CO5Af4C16NT FOR THE BAgK
AXIS - Ti P0L6 $RAMS.
( . NOAMAL TO.THA PAP61t)

a I 9'-

/a PI PnO c
(3 TOTA L)
50UTe/oN:

.. $,�qk

8d2UnIPMeIJT ON GROUN), FLX6)I&4V MouNri.
C4ASS/IY AS SUCTUAG OrJ46 THAN i6U/L014.
(,AAA 0 )- i /NVej7ram AUN1DuwLL 4 (PAqAA n,-s),

T= 0.32.

wssooo i 3,30 3 jL/mOLe

CAL CULArOAJ 00 k 

IO (ONE POL) -, 7 4 S/Z- .76$4()*= t3Oh J

A.b 7 = 0 

O , - e m (/ C A IO G ( i00)
O= x ) 

= 3 .54 t.1 SliJl,

350= 9= 5 sac,
354

Gp-v = r c S 3J-1)
= 3oNd , a =X/. (H/GH ASK).

u , 5 (/-IVAr&,O AA11NULhi), S /I
(rsdr ,<MOWN)

C = //is = O7 0G 7 OROMULA 3-2)
A%/5 2,5 x 0G.7X 1. = - .236 W

Design Example P-2 1 oy 1 Pole Mounted Transformer I
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GIVEN:
MIl5SILE 7rACkING svIcE 6iTUArEO

ON TRiUJ6 rowcE: se/sm/c ZON# X,
ESSENyIAL PAC/L/ry
Zs (src ER1o13 W .0saC.

C.G.
8 k'

A& e .6INt JyP
Art; o ijvz yp. 

I 9 ~E t: OZ4x loraP I

h s9 
) W

I .

ASSUME DIAGONA(6
rAkfE OLY TNJION

f/NO) T CLATERAL 4E/Sm/C Foce roC T
APPUE Ar 7E CCNER OF GRAwyt Op THE
TAACK/NG 0EV/CE . CLASSIFY AS RJ61I
EGm/A416N7v ON A 8OrUC7riE Orb4A M4AJ A
AWILOIJC (As*A. / 0 m oc), /AIVERE PMW1/4CIM
(PAA.. It - 8)f

Design Example -3 1 of 2e, Tower Mounted Equipment
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SOLUTiON:

MeM - L. A P L
&8E FCE (IN.) (0.p1) A

(JPS) _

Ab 1.00 46 O 0
A C 0 146 .4.6 0
A O 1GC 1.0 0
b C 41. t1 7 C J.Oo 734-.6
hDW3 .2-alO' 144 5 230.G

C-t:) O.G? ? 1.16 Vt.6
CS +#.O'Z 146 t.;. ZS%&
CP 0 1 7 t.O 0
D LS -1. IC I Z 1.0 114 .t
OF -3.02 14e 2.6 eq'.0
EOF -0O. 0 CIG t6 I C.O
P1s -3.G 1 46 '2.5 cf+. 

f t - 5.C3 144 *2.6 ?G+.S-
G ft t O.0 IO 1 0 Ise 7t.2

1, A

C

6g .F

G
-, ,,f,,,. -, 7 7, ;/ ..

NOTE: PTH IS ASSUM&D TO
TAKE NO $A SE £WeA,2
AS MEAERI EH CARR /ES
NO LOAO.

Jt A =

AE
1K - -

y P L,
IZE 7

z P L
a = 401 14 //,/#,

JA1CHE /CI.¢0

N.

Ilp xI0O 0. 11

k = /P6 S/IN. P5R SJOE

T =043'Z
lk

- 0. -3
'V A6co

= o.22zSaCz.Qo1 -I)

Z ( -ZONe 2), z .I.6(6$SENTIAL ACILI7y)
A IS (V6EAM 0SAfLLUM), CS = 0.137(TAdS 4-3)
Foo=V =Z[J<C SW = -19 5 2.5 X a37 = ./93 W

- a/s3 K W H _P t.oS W44 r EaP

Nore: WEIG F WE A NG489Crf/3
Design Example -3 2 of 2 Tower Hounted Equipment
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/cOlDLING TOWEj
'- . -

'I

IAt.

_ _ 

- t -
- I -

GIVJEN:
Wr. COOLING OWR = go.9PS
ZONE 6 6EIGMIC AREA
CON605Q rOWER RIGIOLY
/dOUN4Tr 0
W: YP, FLOO a 400 IIPS
/00o MOM N r sEG/£srNG
FI.AME . Z .O.

REQUIREo:
FINO THE SEI8MIC E6IGN
FORCE TO bE 4PPLIEO Ar
C.G.OF COOLING TOWEQ,

_ _

-U ., U. , ,, -

~.p: 

owUrtoN :
CHECK MAS
Wp/troc FLOOR
WAp/W STRUCT,

.

/2A?1OS
s'lZ0/4O
tZ6/'twQ

(PARA. fo-2c)
( 0.W O.K.
< O.10 O,14.

QUALIFIES AS R161D
RjGrtt)LY A OUN7EO 11I
( P>A.- ZC0-3) ,

F4 -, ZCp WA

z (ZO a) r 

Cp 0.30 (,-AILCe 34.

6 tUtJP C-N T}
A l3aJ11,.-O e

(j3-6)

J.O

FP -4 O /.,O 0.30, W = o.22e5W/o
= O.ae5 y Co = 4.6 kpoS

Design Example F-4 1 ofiI Cooling Tower in Buildings
ItI
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-SdTLEL FAME CAN RESJTr
AT LAS7 26 % 0cA UICOING'$ UNIT HeATeR sUPPOaTsro
R&QUI4eO LATIRUl ORC y - /14!', 6L0 PIP6?-

CONCRETE 8#WAR \ IGIOLY- ATACHE C TOCOAICRO9 SHURC&LI~NGe
WALLSK '.80 -

ll I 3 X ) I ̂//t~~~~~~~~t/// A~

,tN~b~tssi5>s'Q's' >2s~t' . - //// {//77 ji . . C G.

GIVEN: NHGLEcr EPPecT o Iaor~tot4 op uNIt
HEATRg.

Wp - WJ. UN17' NATRA -3U0 Lb
WA W7 Y1CAL LOOR== O KIPO

W WT. STR/ uCTUREj V°O P
X (OCCUPANCY) 1.0
ZONE 6 EISMIC AEA
r 0 ( #'v P9PE) = .o0 37 IN 4
Ea PiPi ) - - * o /0 A4 IPSN 

REQUIRE0 : 4FINO OEGIGN SSlSMIC F04C TO
bE APPLIEO AT C.G oP uNIT NIATR

.- 8SOLUM10N: CHSCM MASS R70S : (PAA. O-2C)
tV/o/~ P4O04 = O.85/'oo (( o.'o OKC
WPA 3'4TUCT. = 0.86/400.OA 0.10 Ox

(094: 8-/04)
INVE4ff7r1A7,AS PL6 XJIILY M OUmre/3
EQUIPMENT IN ISUILWAJIGS

AA . 10- 4

Fp Z rAo CoWp 'o - )

Design Example F-5 1 o2 Unit Heater - Flexible Brace
_ !y, .~~~~~~~~~P
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Z 14 ome $), Z .o, C o.so (sLe -4),
Ap UH/C RJGEJ PdoM/. 705.0 I ffNIDN7
0N PRtO1-$ 7 (QUP.) AND TC4406.)
MP6A TO P44tA. /0 4 

%/,/, /,/
.

.

0
S.

1< / 

i4I
La

* .A

I-

k l 8 (o.z o) (o. 057)3 w 0.14-/ KIPG/INCI4.

rO a'Z m8O .- a = O.GO SEC, (iaO-i)

7a 0.C JC (PcOM NACY.F/ OAUILIZNG, 
-Rex~e/ 70 PARA, /O C())

^ s 0*50: 0.65
7 O. coo
OX/ F/ URE /0-36.Ap : 4.q O(A elo ia-i)

Fp -/4 X /.0N4*.9i O.0 0$p /.1 JP
/./0 30 C 38 co LAs.

NorO: A LA76RiA PORCE O 88G C4$, WILL
OvGLpJTReJ$ 7W6 -14"# PPE &RACEJ
r7H6erOPE Alti ZA/A60NA49/bPOA7S
Af. JHowN IN 3eJIGN EXAM04-6 A-C

Design Example F-5 2 of 0 Unit Heater - Flexible Brace
,.
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a I

0'4
I -IZ- IXIXYV L's

A= e . 4-) =. 6 IN.2

I - W 9& P/P~s
A a O ( 3) - G 1.t

C.G.s

DEAIL OP uNr HEATmI

GIVEN :
RESQUIQ50 I.

c/Ba DATA GIVEN IN OESIGN EX. F -
FIN 06/GN SEISMIC ORC6

IF soX M04 (3 -A) -
1F glealmy MoUNTOD, v ARA. O -

CALCULArlON OF FoR, xticIb/r cuc(:
APPAOXIMATE ANGLE CONNECrIN bY

PiNS * A4M8 ALL LA RAL FOaCE. 1S
986lorfED b 2hAACING ANGI..S. sE
ENZt2CY METHOD ro CALC. A4 

O + * 46°

Desigm Example -6 1 of Unit Heater - Rigid Support
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A,,(Kw VC)
AO

.. _
LA'b

. .kb
LC * 14-1 LA6

s

� �,,,
:�.I �, ::

ASSUME K- Vc 0:
1O4IZZON7AL FORCE
OIAGON4L.

z W EXTE
g ( ) 9 Alb

_ _L A,&( E

,A

K \oAAe
.i0x t 1 

THIS ASSUMES ALL OF TW
K 1 R5S1fTso by THU

I

kL= WINTePNAL
+ P1.1)2 1; b

-Z MAosc
/. 4 -1 LAb)

AbCU /

= 1.76 o6 Lb/INCw

= O.O11J EC. (/O 1)

4K -
f C

0ac * 1.8.5

O. ft /3o
1/2.78 x /ai

Tq ( 0.06 JfeC., THeRxecoE JUtaO(7rb 1$
R1/61 ( PARA. /O-8)

Pp: Z CWjp w /4X /.o O.OWipt 0 .eeS-W1
: -0. 26 ZS 0 S T .

Design Example F6 2 ofI Unit Heater - Rigid Support
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GIVN: 14.6 Lb. WATE(.
C EArEZ IN bAAACXS,
SEiSMC ZoN 4.

COGS
C.S. se bARRAACK HEATLg

7'RIPOr3 IbAEE

RequIQRerP INVEGTIGATE THE WATEQ
NiEA"TER FOZ EI9MIC LOA0O6.

SOLUTJON: PATEZ U4ATR WILL bg
CIASIFIFD AS bING E4UkMCNtr ON T145
GlaOUNO ANO WILL bE CONSiD6I1&0 TO b6
A IG10 bODY. WINCE FCTION ANNor
bE uo m RCGIST LAT1RAL
'CE1GMIC FC5S 7-Ha WATER eS=AkTF.
MtU-T b RIcGIDLY A77ACHG Q To 1rS
FouNoAwTON OLT wArez HEAaTo.
LEG6 TO FL00. REFeR TOPAA. o-Sq

Pp Zz (2/3Cp)Wp (10-3)
Z: 1.0, 1.0P Cpa 0.30 (TASL6 3-4)
Pp ZZ 1.0 x I.O0x Z/ 0.30 = 020pkV

Design Rumple 1-7 1 of Water Beater
f.1
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F* 0.10 W.
a0.IG? 14

a O. 20 x 1.44 S .
APPDLW AT

o.,qq KIP.
C..i

cHECI OP
X-M = Co

OVE7tL4NING Ab0o17 POHT 0.

X

Oq K X 6'#< l.445,K rAt4 .B0aI 'oZ
cis,261K < /Oa o itK

OVER TURNING 0. K

CHEC FOR 4A0 TI N LEG
OF T2IPOtO.
tA4 Ms=O ' T= 7 aw .#qx a'

_/4 4 6Kx AN W0x IVZ
7_ -O81K#.O =f 006 lp5s

COAMPRE5SION

0.21k
4 I

rENCt

boars
USE NOMINAL ANC4o(
USE g-%'ib'

ALLOW &1A$S H44A. =

S14EARP O. 8o.0< > as#Tr 29 14

I
4

II

Ie8#
JPT O

Desigm Exmple P-7 2 a( 2 Water Heater
Pz
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SHEAR WAK4
WATER TrANk

_ liq n
W -~ I W - W 

I

�iE-

ASSUME XAD0Le

Q - I _ l_ NRIG/I

O X . 6(ASWUMD TO

-6' Oa *TAKE N(Y

/%GT/4 OI TANK $UPtORT

I
-- WV#%,7.e

_T GO',
¾, ,' -M,~ ,0" j ,, 

GIVCtN: W7 OP TANK # WA r = /0. 0/ r/ 7e/ss

ZONE 2 SE/SM/C ARaA ANJ) Z1.0 OCCUPANCY
ASSUME ALL JA#TS ARE P/N CQ)eCTI/0N5.
ASSUM COSS ldA4d6e25 AK rKE ysTON QV4x
,VEG4EC7 Vr OF SUPVOT r44SH44$.

R*e/qRd : f Nyo -rH �E SIGN JEJSM/C FORCe.
SOLUION : HYOO-DMNAM/C EFFECTS AMe NEGLECUO
eV5N WHN rANK I/S PAIT/AC.Y PiLL. CACCULATON
P SrT/FFNESJ OF TAvV/ STRCtUZ: LSe $Nt6RGY

MUlWOo T-O M/t'O X,

C.6._
/K

__:

,,: = O.G
,r

OSA4$b ts

A)el-

o.cM

I C O.5s"'
T INRACIN6' ACs
_ /N TeN5I0N ONLY
,9 0

Design Example F-8 I of Tank oan a Building
f,_
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COMAITATlON OF A : / .< a I s 
F L

MEMb&E LENGTH AA F _F__A

Alb 6.00 Fr. 44/N.'z 4 G K /a 1 
C 6.00 1.44 - 1.GC .89
C__ _ 1,07 0A4 + 1.414 6,05

, I ~ ~ ~ ~ .17*I

. I /A\
40K-V1 q 

KC -F7
26/ )2 / /I7/r '0.5og xI10X lN -
e .0,K08 K//Ne) A=14 oo~oJJ ,0' 2

- = I K / I N .

0
0 TcwCs-P = t 4 COR SEC,

ar, eQul~puebT P01) oo > 0.05 0C

JUPpomr I JNoT mt/ (PARA. 0-m5)
bJ4GN AS sPL6XI[Y M0OU'ref3 (PAA4A, /o-)

T70tae>. PAI oI) IS CA C 4ATEz r a6 0. seC,
REACk To PRA, 10-4c (I)

7a/r: 0.10e/0.3: 0.33 AND T4 0.6J6C.
FI)fa Ar FlROM F(16UdE O-Sq

Aptl 0 t(°8 °)(S'0-1.0):.3

F,, Z UAPC W 

MPARA.10Ae /
tFOR.4ilt- /0"22

rzw1e z .CA44 S-/)
Ct /.O (TAt4iS 4 3 2)

Cp90-S0 (74A4-3-43w)

F a 3/ 8X /.0 X 2. I, K 0.30 Wp c 0.26 p
r-p : 0.26C x J0:c 2.6C KIP-SI TAUJS

Design Example F-8 2 of 2 Tank on a Building
_-t
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(MOM65NT Q 01677NG
ORAPSOF'QAM.

WrATEQ CAR2QYJNG
/iEeg LAref2ALLY

SUPPORT1 AT
HACH LOOA

4'RJ§E2 67ANDAIZO
WT- (4-a 8) 01PS -

A6SSUA46 RtSR
P/INNO Ar bAsE
(PO/Nr ). .,j .t ; s '. .

;i : i

5 0201 GO I
Gl VEN :

REQUII .

SOLUTON

RISER AS OHO4IN IN MVLTI - GTO4
ILDING . SESM C tONe 4

!SSN T1A AA C/L r 8au Tr4 eeije
1S NOT R6LA TSD TO F/IR idreOT0cr10o

FINO SEIGMIC FORCE AT EACH
4ATERAL 1i1iiZ UPPO/Qr.

4

J: AN APPfZOXIMA-r6 SOL.uTON
WlPL bfE MAOE.
fIf ST NVE8TIGATE THE ALLOW-
AbLE PAN F 4-"0 (4-0 6)
PIPE,- THEN APPLY' JCI/JMIC
LOAOING TO iV1etZ.

/, /P AhP/INa JrsYreM IJ AV/I
p a NrCp WI* C IARA . /O- 7C C) 

2. F P/ie SYS f7 M S Nor R101
p ie Ap C p COARA. 10- 7C () 0 4) 7

Design Example F-9 o.2 Water Riser
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1010E IAPPAOX1MATe MA'CMUM R/W/ Sp'S
6NIO CONO. fjjo-f /0-5j t0-()

A.b F/XE0 -PIN_ ___ 14-6 _ _

co C FIXIE -Fl)(E 0 _ _ _ - 6_

r0 a FIXE D-P-NNW 14- Ot

1���J, :��
, 0 , - "! --

2:
-jo(

10 iz(i <

PIPE SPANS AA
SPA t///T.'
3' /.0g (T44E
Wp= (r. 0 
AP a

A
5of e /

2O
Cdz c

/0'I
I o

APPROMMATS
CONFGUPAATiaONS

DI0'
E~~~~~~~ 4/

J JWOR7ER rEAN MAX/MUM 916IA)
p. Z Cp. W* A PP/f S.

'-1) zx /.s (rAc A-Z); CA 030
fP/PE + co tEretf ' (/08 a i. Ja/Pr eWr
I. 0 Wp 0. 4- Wp z 7. 3 5/'Z7

POiNr APPAOXIM ATe APPAOX1lAAra
ri IRbPUrAkY CON aC71ON

:_ _ -LErH (Fr) LOAO CLt5)
.0 _ 0.0 7;

C 10.0 is
_ 1'.0 66

E - 7.0 .51

Design Example F-9 2 g1 2 Water Riser
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APPENDIX G
STRUCTURES OTHER THAN BUILDINGS

04. Purp* and top. no design examples In this appendix ar to lustrate principles, factors and
concepts Involved in seimic design. hese are not mandatory and other eqWvalent methods, materials or de-
tails compbring with this mnual and applicable agency guide peccations may be used

0-2. D"..g
Desg
Example

G-1
0-2
0-a
0-4
0-5

examples:

Description

Eleated T7n (BrucedFrame): Fowr.egged, diagonal braced tower.
Vertical Tank On Oroun4 Vertical water tank supported directly by the ground.
Horizontal Tank (On Groun Typica horizontal tank supported on saddles.
Pok.Mounted Transfomer: ee Appendix F. Design Example F-2.
Tower-MountdEqdpnent See Appendix F. Design Example F-S.

J.,

.1._ft'

4
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I

DESIGN EXAMPLE: G-1

ELEVATED TANK (BRACED FRAME):

Description of Structure. A 100,000 gallon steel water tank on top of a
114.5 foot high steel braced frame.

Lateral Loads.

V = ZIKCSW (3-1)

woe Z =
I =
K c 

C and

3/4 (Zone 3, Table 3-1)
1.0 (Table 3-2)
2.5 (Table 3-3 and para. 11-3)
S are dependent on periods T and Ts

Ts = 0.8 sec (determined from a geotechnical investigation, para 4-3f)
T = 1.46 sec (calculated on sheet 2 of 2 of this example)
C = 1/15 /- 1/15 V'l.45 = 0.055 (3-2)
T/Ts = 1.45/0.8 = 1.81 2
S = 1.2 + 0.6(T/T,) -0.3(T/Ts) = 1.30 (3-4A)
KC 2.5 (0.055)= 0.14> 0.12 (o.k., para 11-3)
V 3/4 x 1.0 x 2.S x 0.055 x 1.30 W - 0.134 W

:,.

I 

,II
I
I

4

Design Example G-1 1 of z Elevated Tank
,i
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/00,000 414U0i M$4T TAM

WE/GHT 0A Wr
Sr6,6 74M4 (EST)

WAV4FI, 7o 7,4AR.

833 1
87

920o= W

A/66t6CT Wr. 7O, o0WdA

A55/A1 64 SCd CY 7SIOA
OA/IL Y.

COhiPUTf T!W PER/OD O T#y
sTiWucru'6 ro, deT!M1/N
cosFP/CI!NrS C AA4 S

7= 0.3c/if-- (/0- 1)

PrWPd O 01060".44S
P44AIS Ofc S1.05 ijt

9Zrgr1o0v A 1

hV'

'WIhG CONSv7AvT (xlP//Nc#)

'.0O LAT!RA OOAI /S
I'J A? 7W r! ANA C.G.,

T A ZTE/?RAL DFzLSC T/0N
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VERTICAL TANK (ON GROUND)

DESIGN EXAMPLE: G-2

Description of Structure. A cylindrical
of 10 feet'(R - 10), a height of 12 feet
10 feet h - 10). The tank is located it
is unknown. The weight of the tank is 2C

water tank on grade with a radius
(hr 12),. and a water depth of
1 Seismic Zone 4, 1.0, and TS
I kips.

Required. The period of the sloshing water, the maximu vertical dis-
placeeent of the water (dma.), and the design, seismic forces. Refer to
Chapter 11, paragraph 11-4.

Design Example G-2 1 ofi Vertical Tank on Ground
J.
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AFM 684, Chap. S

DESIGN EXALE: G-3

HORIZONTAL TANK (ON GROUND):

Description of tructure.
saddles on a concrete slab
Ts 2.5 sec.

A 20,000 gallon steel tank in concrete
on grade. Seismic Zone 2, 1 1.0,

; I ,:.. ..I
.'..1t..,

" -;5 a/

Lateral Loads:

V a ZIKCSW

where Z - 3/8, I 1.0, K 2.0, Ts * 2.5, assume T0.3 sec.
CS - 0.133 (Section 4-3, Table 4-3)
W = Weight of tank plus contents.
V = 3/8 (1.0) (2.0) (0.133) 

* 0.10 

4~~~~~~~~~~a

Design Example G-3 1 of $, Horizontal Tank on Ground_ I -
A.
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