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I. Introduction 

A. THE EARTHQUAKE PROBLEM 

It would be an ideal situation if the designer 
of an earthquake-resistant frame structure could 
know the response of the structure to the 
ground motion to which it would be subjected 
in its useful lifetime. This response is not 
possible to obtain. The nature of the ground 
motion encountered in earthquakes and the type 
of structures the engineer has to work with are 
much too complicated for that. On the other 
hand, much can be learned about structural 
behavior in earthquakes by response spectrum 
analyses of past strong-motion earthquakes. 
Moreover, the response spectrum is a powerful 
tool to aid the designer of earthquake-resistant 
structures. The general shape of the velocity 
response spectrum of an earthquake motion can 
also provide significant information about the 
expected inelastic response of a multistory 
structure. 

A linear response spectrum[ 1 ,2) * gives the 
maximum response of a single-degree-of-freedom 
damped linear oscillator to an earthquake as a 
function of the natural frequency and damping 
coefficient of the oscillator. The response may 
be expressed in tenns of acceleration, velocity or 
displacement. The linear oscillator can be repre­
sented by a single mass, spring, and dashpot. 

Response spectrum analyses of strong­
motion U. S. earthquakes[ 3] indicate seismic 
lateral forces to be much greater than the 
accepted code values currently in use in earth­
quake design, even when the structure is heavily 
damped. On the other hand, buildings designed 
in accordance with current seismic building 
codes have survived strong earthquakes without 
showing excessive structural damage. One pos­
sible explanation is that both the structural and 

*Numbers shown thus [ 2) identify references at the end of this 
report. 

1 

nonstructural components remain active when 
strained beyond their elastic limits and the 
energy transmitted to the structure by the 
earthquake is dissipated by inelastic deforma­
tion. [ 41 Dynamic response beyond the elastic 
range is therefore a topic worthy of further 
investigation. 

The elasto-plastic load-displacement relation 
has been used in a great majority of the studies 
of inelastic response to earthquake. The present 
study includes the elasto-plastic relation as a 
special case of a more general load-displacement 
relation called the Ram berg-Osgood relation, [ 5] 
in which three parameters, a characteristic load, 
a characteristic displacement, and an exponent, 
characterize the behavior. Experimental work in 
progress at the University of California, Berke­
ley, on structural steel members and connections 
indicates that the Ramberg-Osgood relation can 
provide a good approximation of actual member 
behavior. A detailed discussion of the Ramberg­
Osgood relation is presented later in this report. 

B. EARTHQUAKE CHARACTERISTICS 

U.S. Coast and Geodetic Survey records of 
strong-motion earthquakes show that during an 
earthquake the ground moves at random in all 
directions, and the ground accelerations is ex­
tremely irregular with respect to both frequency 
and amplitude. The digitized versions of the three 
components of ground motion of the earth­
quake recorded at Taft, California, on July 21, 
1952, are shown in Fig. 1. This record is typical 
of "strong-motion" earthquake accelerograms. 
The maximum acceleration recorded on any 
U.S.C.G.S. strong-motion earthquake accelero­
gram to date is .50 g, recorded at Parkfield, 
California, on June 28, 1966. Prior to that time, 
the maximum recorded acceleration was the .33 
g acceleration recorded at El Centro, California, 
on May 18, 1940. The duration of the intense 
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Fig. I. Accelerograms, Taft, July 21, 1952. 

portion of strong earthquakes ranges from 7 to 
30 seconds. [ 3] 

C. THE PRESENT STUDY 

In this report the response of a single­
degree-of-freedom structure subjected to strong 
motion earthquakes as well as to steady-state 
oscillations is studied. The principles and con­
struction of the response spectra, which include 
the linear, the elasto-plastic and the Ramberg-

2 

Osgood systems, are discussed in detail. 

The effect of shape of the force-displace­
ment curve on the earthquake response spectra 
is examined. The effect of changing the accelera­
tion-intensity and the time scale of a known 
earthquake accelerogram on the response spectra 
is investigated. The influence of vertical dead 

· lso load forces upon response of a structure IS a 
examined briefly. 



II. The Linear Oscillator 

A. THE DIFFERENTIAL EQUATIONS 
OF MOTION 

Consider a simple linear oscillator consisting 
of a single mass, spring, and dashpot subjected 
to a sinusoidal forcing function as shown in 
Fig. 2. The differential equation of motion for 
this system is 

mx+ cx+kx =Fa sin w t 

In terms of unit mass it becomes 

where 

.X+ 2 {3 wnx+ w~ x = Fo sin w t (2.1) 
m 

m =mass 

c = coefficient of viscous damping 

{3 

k 

= J-,zr, = fraction of critical damping 
2 k m 

= spring constant (stiffness) 

x =relative displacement of mass to ground, 
(function of time) 

wn =~the undamped natural frequency 

w =forcing frequency 

t =time 

Fo = maximum amplitude of the forcing 
function (a constant) 

Differentiation with respect to time is denoted 
by dots. 

The steady-state solution of Eq. (2.1) can be 
written as 

where 

x = Fo Rd sin ( w t - a) 
k (2.2) 

(2.3) 

3 

and a is the phase angle. 

B. STEADY-STATE OSCILLATION 

Curves showing Rd as a function of frequency 
ratio w I w n for various values of {3 are plotted in 
Fig. 3. 

The velocity and acceleration responses, 
obtained by differentiating Eq. (2.2) with respect 
to time are 

X = w -- Rd cos ( w t - ct>) = 
Fof...{kiii Wn 

R v cos ( w t - ct>) ( 2.4) 

and 

_L = -(~)2 Rd sin (wt- cl>) = 
Fo/m Wn 

- Ra sin (wt- ct>) (2.5) 

The response factor Rd reaches its maximum 
value of 1/(2{3 .jl- (32) at w/wn = .jl - 2(32, 

Ry has a maximum value of I/2{3 at w/wn = 1 
and Ra has a maximum of 1 /(2{3 .JT - (32) at 
w/wn = I /.JI - 2(32. 

A family of curves showing a four-way plot 
for response factors as functions of w I w n for 
various {3 values is drawn in Fig. 4; the grid lines 
sloping upward to the right are for Rd, the 
horizontal grid lines are for Rv, and the lines 
sloping downward to the right are for Ra as 
indicated. The Rt curves of Fig. 4 are the same 
as those of Fig. 3 except for the logarithmic scales. 

C. EARTHQUAKE RESPONSE 

Consider next the linear oscillator of Fig. 2 
subjected to ground motion only, as shown in 



Fig. 2. Linear oscillator subjected to a 
sinusoidal force. 
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Fig. 3. Frequency-amplitude response for 
steady sinusoidal load. [ 19] 

3.0 

Fig. 5. A simple one-story elastic frame with 
rigid foundations can be represented by a linear 
spring-mass-damper system. The motion con­
sidered here is translation in the direction of the 
spring and dashpot. 

The equation of motion of the system 
subjected to ground motion is: 

mx + ex + kx = - mji (2.6) 

where 

y = ground displacement, a known function of 
time. 

Equation (2.6) can be rewritten as 

X + 2{3 W n X + W ~ X = - ji (2.7) 

where w n and {3 are the same as previously 
defined. 

5 

The solution of Eq. (2. 7) for zero initial 
conditions is: 

x = - __ ]_ Jf ji(r)e- f3wn(t- r) sin w~ (t--r) dr w: 0 

(2.8) 
where 

w;:' = wn yl - (32 =damped natural frequency 

t =time 

r = a time parameter of integration 

D. THE RESPONSE SPECTRUM 

Let 

~....') = ft ji(r)e- f3wn(t- r) sin w;:' (t-r) dr (2.9) 
0 

and 

C =jfji(r)e-f3wn(t-r)cosw;:'(t-r)dr (2.10) 

The displacement response of the oscillator, from 
Eq. (2.8), is then 

X=- _l s (2.11) 
w;:' 

The ~....') and C integrals can be differentiated 
under the integral sign, leading to 

x= f3 ;:;: s - c (2.12) 
n 

x+ ji= (1 - 2(32) Wn2 s +2(3wn c (2.13) 
w;:' 

Both S and C are oscillating functions of 
time, and for earthquake input they tend to 
oscillate at approximately the same amplitude and 
about 90° out of phase. Hence, when one of the 
integrals is at its maximum, the other is nearly 
zero. 

Define: 

Sv = I f) lmax (2.14) 

The maximum of the absolute value of x, from 
Eq. (2.12), is: 

I xlmax= I {3 Wn s - c I max (2.15) 
w;:' 

Because {3 is small, the C term dominates and 
the right-hand side of this equation becomes 
approximately equal to I (' lmax, which is nearly 
equal to I S lmax, making 

lx lmax :::::: Sv (2.16) 
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Similar reasoning, and assuming small values of {3, Sa is more directly applicable to design 

leads to procedures because it is directly related to the 
lx lmax ""'-~ = Sd (2.17) force exerted on a structure. Sv finds more 

wn frequent application in theoretical develop-
IX+ .Ylmax ""' WnSv =Sa (2.18) 

Note that Sd and Sv are approximately equal to 
the maximum relative displacement and velocity, 
respectively, and Sa is approximately equal to the 
maximum absolute acceleration. Combining Eqs. 
(2.17) and (2.18) results in the simplified relation­
ship of 

(2.19) 

6 

ments. 

For a given ground motion, Sv can be 
calculated by numerical integration or by analog 
computer for different periods and fractions ~f 
critical damping. The plot of S 1• against period T, 
with damping ratio {3 as a parameter, is known as 
the velocity response spectrum. II I 



L.. y(t) 

(Relative 
to Ground) 

Fig. 5. Linear oscillator subjected 
to ground motion. 

Different definitions of velocity response 
spectrum have been used by different authors. 
Some define it to be the maximum relative 
velocity, others as the maximum relative dis­
placement times wn, and some others as the 
maximum relative displacement times w ~.Unless 
otherwise specified, the last is the definition 
used throughout this report. The real velocity 
spectrum is obtained by plotting the right-hand 
side of Eq. (2.15) against the period. Typical 
examples of this can be seen in Figs. 6a[ 8] and 
6b. [ 8] 

Arithmetic plots of Sd, Sv, and Sa against 
the period T for various values of {3 are shown in 
Figs. 7, 8, and 9, respectively, for the Taft 
earthquake and are typical. When the fraction of 
critical damping and the period for a single­
degree-of-freedom elastic system are known, 
values of Sd, Sv, and Sa can be obtained readily 
from these plots. As an example let T = 0.5 sec 
and {3 = 0.0. The corresponding response spectra 
from Figs. 7 to 9 are Sd = 3.55 in., Sv = 
4.44 in./ sec, and Sa = 1.44 g. 

Figure I 0 shows the same velocity spectra of 
Fig. 8 plotted in a log-log scale. Because of the 
relationship shown in Eq. (2.19), logarithmic 
diagonal scales can be constructed-for displace­
ment sloping up to the right, and for accelera­
tion sloping up to the left-and values of all 
response spectra (Sa, Sv , and Sd) read directly 
from the same plot. To illustrate this, let us use 
the same example as before. To find the 
response spectra one follows, in Fig. I 0, T = 0.5 
sec vertically up until the curve {3 = 0.0 is 

7 

reached. The intersection of a horizontal line 
through this point and Sv -axis (the vertical 
scale) gives Sv = 44.4 in./sec, the intersection of 
a sloping line parallel to Sd-axis through the 
same point and the Sa -axis gives Sa = 1.44 g. 

Similarly the intersection of a line parallel to 
Sa-axis through the same point and the Sd-axis 
gives Sd = 3.55 in. These are shown by the 
dotted lines in Fig. 10, and, as expected, are the 
same as the results obtained from Figs. 7 to 9. 
Thus the maximum displacement, maximum 
velocity, and maximum acceleration, all three, 
can be obtained directly from a single log-log 
plot. 

The maximum base shear VB for a simple 
oscillator is related to the response spectrum as 
follows: 

Vn = k lx lmax """ (m w~) (~) = m wnSv 
Wn 

Alternatively, one may write 

v B = m I X + ji 1m ax """ m Sa = Sa w g 

(2.20) 

(2.21) 

where W is the weight of the system and g is the 
acceleration of gravity. 

The quantity Sa/g corresponds to the seismic 
lateral load coefficient C in seismic building 
codes. Typical spectra for the latter are shown in 
Figs. 9 and I 0. The values given by these graphs, 
which may be considered typical for strong­
motion earthquakes, are much greater than the 
code values currently in use in earthquake 
design. 

The maximum strain energy per unit mass U 
developed in the system during the earthquake is 

u = -1- k x 2 """ l s2 
2m max 2 v (2.22) 

When a multi-degree-of-freedom system is 
elastic and its damping forces satisfy certain 
requirements, the structure possesses modes of 
vibration equal in number to the number of 
degrees of freedom. Each mode behaves as a 
single-degree-of-freedom system. Response spec­
trum techniques can be used to evaluate the 
maximum base shear in each mode, which in 
turn may be used to obtain an approximate 
value for maximum base shear in the structure. 
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Ill. The Elasto-Piastic System 

A. LOAD DISPLACEMENT RELATIONS 

With the present trend toward lighter con­
struction in buildings, due mainly to architec­
tural and economic considerations, the struc­
tural frames may need to withstand strains 
beyond their elastic limit in order to survive a 
strong earthquake. Response spectrum analyses 
of strong-motion earthquakes clearly show that 
elastic analysis cannot be reconciled with the 
observed behavior of actual structures in earth­
quakes. Invariably the elastic stresses indicated 
by the spectrum far exceed the yield strength of 
the structural materials. In the light of this 
knowledge, recent efforts have been made to 
extend spectrum concepts to inelastic systems. 

The force-displacement relationship of most 
structural members beyond the proportionality 
limit is difficult to characterize as a mathemat­
ical model. The model which has received the 
most attention in recent years, largely because 
of its simplicity, has been the elasto-plastic 
system, shown in Fig. 11. Ordinarily, no attempt 
is made to account for softening or possible 
decaying of ultimate strength of the member 
due to load reversals. 

A single-story frame with elasto-plastic 
members can be represented as an equivalent 
nonlinear damped oscillator consisting of a 
single mass, a spring, a dash pot, and a coulorn b 
friction element of capacity Qy as shown in Fig. 
12. 

B. THE DIFFERENTIAL EQUATIONS OF 
MOTION FOR EARTHQUAKE RESPONSE 

The equation of motion of the system when 
subjected to ground motion is 

m (.X + ji) + c .X + Q = 0 (3.1) 

This can be rearranged and written on a unit mass 
basis as 

13 

x + 2(3 w n x + q = - .Y (3.2) 

where 

q=Q 
m 

and (3 and w n are as defined earlier. The yield 
level of the system qy is defined as the amount 
of force per unit mass necessary to just bring the 
spring to its yield strength, i.e., qy = Qy /m. 

The force-deflection relation from Fig. 11 for 
the equivalent unit mass system (Eq. (3.2)) obeys 
the relations: 

q = 0 if I q I = qy and q x > 0 (3.3) 

q = w ~ x if I q I< qy or q x;"S 0 

The equation of motion (3.2), a second-order 
differential equation, was rewritten for the com­
puter solution as the following two simultaneous 
first-order differential equations: 

. 
x=v 

and 

V = X = - (jl + 2(3 w n V + q) (3.4) 

A Runge-Kutta fourth-order procedure [ 1 0] 
(with the aid of a digital computer) was used to 
solve Eq. (3.4). 

C. ENERGY DISSIPATION 

The force per unit mass exerted on the 
Structure by the foundation is - (q + 2(3 Wn X), 
and the rate at which energy is being delivered to 
the system is 

£ = - < q + 2(3 w n .x) .Y (3.5) 

The force on the damper per unit mass is 
2{3 wnx, and the rate of energy dissipation by 
the darn per is 

(3.6) 
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Fig. 11. Elasto-plastic force-displacement diagram. 

The kinetic energy per unit mass is 

' 1 . . )2 KE- =- (x + y 
2 (3.7) 

The strain energy is made of elastic (recover­
able) energy and plastic (dissipated) energy. 

The elastic energy per unit mass is 
2 u = __!L_ (3.8) 

2 w2 n 

and the rate of energy dissipation in plastic 
deformation is[ 8] 

D= qx if I ql = qy and qx > 0 

D= 0 if I ql < qy or qx ~ 0 (3.9) 

The sum of the various components of energy 
in the structure must, of course,equal the energy 
input 

E = L + K E· + D + U (3.1 0) 

This relation provides a useful check on the 
accuracy of the computed response. 

D. SIGNIFICANT RESPONSE PARAMETERS 

Two response parameters, namely, the duc­
tility ratio [ 6] and the energy ratio, provide a 
meaningful characterization of the response of an 
elasto-plastic system to earthquake. The ductility 
ratio 11 is defined as the ratio of the maximum 
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displacement to the yield displacement, J.l. = 
Xmax /xy. The energy ratio E is defin~d as the 
ratio of the maximum strain energy mput per 
unit mass Es to the recoverable strain energy 
per unit mass at yield, E = 2 (Es )max /qyxy. 

If all yielding occurred in the same direction, 
the two response parameters would have the rela­
tionE = 2p. - 1. In any case, 

€ > 2p.- 1 (3.11) 

E. RESPONSE SPECTRUM CONCEPTS 

FOR ELASTO-PLASTIC SYSTEMS 

The maximum elastic spring force Qm can be 
expressed as 

Qm = CsW (3.12) 

Where the lateral load coefficient Cs corresponds 
to I x + y lmax /g. For displacements in excess of 
the limiting elastic displacement xy, the max­
imum spring force is equal to the yield strength 
of spring. 

A plot of I x + y 1m ax against period T, for 
various values of ductility (or energy) ratio, a~d 
damping parameter {3, results in clasto-plasttc 
acceleration response spectra. 



f----1 •• y( t) 

Fig. 12. Equivalent nonlinear system. 

When the ductility ratio is known, the real 
maximum relative displacement can be obtained 
from the relation 

=xy (3.13) 

In elasto-plastic systems, because the spring 
force is equal to Qy when displacements are in 
excess of Xy, as previously noted, the absolute 
maximum displacement and the absolute max­
imum acceleration are related as follows: 

I X lmax ~ I X lmax (3.14) 
J.l. 

This relation is exact when fj = 0; otherwise it is 
approximate because it does not take the damping 
force into account. 

A plot of wn ixlmax!J.l. against period Ton a 
log-log scale, for specified ductility (or energy) 
and damping ratios, results in a pseudo-velocity 
response spectra. [ 6, 1 1 ] (Pseudo in the sense that 
wn lxlmax !J.l. is not equal to the absolute max­
imum velocity I xlmax, for there exists a discrep­
ancy between the two and this discrepancy in­
creases with increasing values of J.l. .) 

From Eq. (3.14) and the pseudo-velocity 
concept, diagonal log scales can be constructed 
on the chart as was done in the elastic case, and 
the maximum displacement lx 1m ax /J.l. and the 
maximum acceleration I .X+ ji 1m ax read from the 
diagonal scales directly. A typical example is 
shown in Fig. 13a. 

The maximum recoverable strain energy of 
the system per unit mass can be expressed by 

I - (wn 
2 

lxlmax ---)2 
J.l. 
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F. ELASTO-PLASTIC RESPONSE SPECTRA 
FOR THREE STRONG-MOTION 
EARTHQUAKES 

The input function y( t) consisted of 
punched card accclerograms[ 12] of the follow­
ing three strong-motion earthquakes: 

El Centro, California 
Taft, California 
Olympia, Washington 

N-S 
S21W 
S86W 

May 18, 1940 
July 21, 1952 
April 29, 1965 

Figures 13a-f and 14a-f show pseudo­
velocity response spectra plotted on a four-way 
logarithmic grid for various values of ductility 
ratio J.1. or energy ratio E, and specified values of 
damping parameter fj. This way of presenting the 
results, as previously mentioned, has the advan­
tage that values of the maximum spectral 
acceleration and the maximum displacement can 
be read from the diagonal scales at the same 
time. To obtain the true maximum relative 
displacement, the values read from these plots 
must be multiplied by the corresponding ductil­
ity ratio J.l.. It was found that the maximum 
acceleration occurred in the short-period portion 
of the spectra; in contrast the displacement was 
maximum in the comparatively long-period 
zone. The maximum pseudo-velocity in general 
was located between the periods ranging from 
0.5 to 3.0 sec. The periods referred to above 
were computed from the initial elastic behavior. 
i.e., the spring constant k. 

Ductility ratios of 1.0, 1.25, 2.0, and 4.0 
were considered. With no reversal, the cor­
responding energy ratios would be, respectively, 
1.0, 1.5, 3.0, and 7 .0. It is found that the 
spectral values for these energy ratios are much 
higher than those for the chosen ductility ratios. 
This was anticipated because the system is 
expected to experience yield reversals when 
subjected to an earthquake. 

Fig. 15 (two plates) shows the number of yield 
reversals plotted against the period of the system 
for a set of ductility ratios. A yield reversal is 
defined as a change of restoring force from yield 
in the positive sense to yield in the negative 
sense, or vice versa; strain reversals which do not 
involve going from yield to reverse yield are not 
counted. 
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A lower bound for the maximum accelera­
tion is obtained in terms of the energy ratio, by 
combining Eqs. (3.11) and (3.14). 

2 w~ 
lx + .Yimax > 1 lxlmax 

+€ (3.16) 

G. PROGRAMMING PROCEDURE 

As was described earlier, the response of a 
given system to an earthquake can be calculated 
by a numerical method. A fourth-order Runge-
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Kutta procedure was used for this purpose on 
the 7090 digital computer at The University of 
Michigan. The procedure used to obtain a 
response with a desired value of ductility ratio 
or energy ratio was as follows: 

The responses for a number of systems with 
arbitrarily assigned yield levels were first com­
puted. Then a linear interpolation method was 
adopted to interpolate between the obtained 
responses in order to determine the approximate 
yield levels which would give the desired results. 



These yield levels were used as input data and 
the corresponding responses calculated. This 
procedure was repeated until the desired re­
sponses were obtained. 

In the elasto-plastic system the accuracy of 
the final results relative to the desired values was 
within half of one percent. 
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IV. The Ramberg-Osgood System 

A. LOAD-DISPLACEMENT RELATIONS 

Actual structural members do not exhibit 
ideal elasto-plastic load-displacement relations; 
rather, the load-displacement curve has an elas­
tic branch followed by a transition curve that 
leads to a plastic branch. Upon reversed displace­
ment, the Bauschinger effect makes the transi­
tion more gradual. This behavior can be repre­
sented quite closely by a relatively simple 
mathematical model, the Ramberg-Osgood 
function. shown in Fig. I 6. Three parameters are 
employed, a characteristic or yield load QY, a 
characteristic or yield displacement x y, and an 
exponent r. It istheexponentrthatgovernsthe 
sharpness of the break away from the elastic 
branch. The Ramberg-Osgood function includes 
as special limiting cases the elastic case, obtained 
by setting r = I, and the elasto-plastic case, 
obtained as r tends to infinity. 

Some of the hysteresis loops obtained in 
recent tests of structural members and connec­
tions at the University of California [ 14] are 
shown in Fig. 17 along with a Ramberg-Osgood 
loop with the parameters Qy, xy, and r chosen 
to give the best fit in the sense of least squares. 
Fitting the curve to experimental data requires 
too much computation to be done by hand, but 
with the aid of a computer the task is relatively 
simple. Curves have been fitted to other experi­
mental load-displacement data, and it is found 
that the closeness of fit shown in Fig. 17 is 
about typical. The Ramberg-Osgood representa­
tion of the load-displacement relation is con­
sidered realistic if the structure is capable of 
maintaining stable, nondeteriorating hysteresis 
loops.[ 15.16,20] 

B. THE DIFFERENTIAL EQUATION 
OF MOTION 

A one-degree-of-freedom structure with 
Ramberg-Osgood characteristics can be repre-
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sented by an equivalent oscillating system made 
of a single mass and a Ram berg-Osgood spring as 
shown in Fig. 18. 

The equation of motion for this system with 
no damping when subjected to ground motion is 
given by 

m (x+ y) + Q = 0 ( 4.1) 

which upon rearranging and expressing in terms 
of unit mass becomes 

x+q=-.Y (4.2) 

where 

q=Q 
m 

The relation between the restoring force q and 
displacement x is given by 

= L ( I + I __lL I r- 1 ) 
Xy qy qy 
X 

(4.3) 

where qy = Qy /m, the characteristics restoring 
force per unit mass, Fig. 1 9. 

C. STEADY-STATE OSCILLATION 

The dynamic response of actual structures to 
steady-state sinusoidal excitation can be ob­
tained experimentally. Thus a study of the 
resonant amplitude, as a function of frequency 
and maximum amplitude of the forcing func­
tion, equivalent viscous damping to express 
inelasticity, etc., would be useful in determining 
the Ramberg-Osgood parameters of real struc­
tures. [ 16] 

The steady-state oscillation of a single­
degree-of-freedom system with hysteretic force­
displacement relation of the Ramberg-Osgood 
type, shown in Fig. 20, has been studied both by 
the energy method [ 5] and by the method of 
slowly varying parameters. [ 5, I 71 The energy 
method is limited in scope, for it gives the 
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Fig. 18. Equivalent Ramberg.()sgood system. 

response at resonance only. The results of the 
slowly varying parameters method are con­
sidered in this section. The latter approach gives 
the steady-state response for all values of w/wn 
and can be used to plot amplitude against 
frequency curves. 

ln the absence of viscous damping, the 
equation of motion for this system is 

mx + Q(x) = F(t) = Fo cos wt (4.4) 

where Fo is the force amplitude and w is the 
frequency of excitation. 

The equation of motion, Eq. (4.4), in dimen­
sionless form becomes 

d 2 ( __!.__) + _{L (..:£) = Fo cos 71T 
dr2 Xy Qy Xy Qy 

where 

T = Wnf 

71 =~ 
Wn 

Q (~) = Q(x)/Qy 
Qy Xy 

and 

(4.5) 

wn = j Qy , the undamped natural frequency. 
mxy 

X q 
-=-(1+ Xy qy 

I q ,,_, 

- )~ 9y , ----
X +X1 
2xy 

= 9+91(1+ 
2xy 

I q + q , 1r-•) --+----..... 

2xy 

( xo 
Xy I 

_g_) 
9y 

/ 
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2qy 

Fig. 19. Ramberg-Osgood load-displacement relations. 
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Let the solution for Eq. ( 4.5) be 

K_ = Xo cos 8 
Xy Xy 

where 

8 = (777 +a), 

xo/.\y and a are slowly varying functions ofT. 

(4.61 

Applying the method of slowly varying parameters[S], Eqs. (4.5) and (4.6) result in the expression\ 

where 

kFo)2 [1 +I Qolr-1] 2 _l_Q_ cr-l)21Qol2r 
\ Qy Qy 1r 2 r+ 1 Qv 

8: [I + 13: I'J 
(4.71 ( ~} = c C'(0 ) + 

Wn Xy 

C ( Xo) = l Xy 
Xy 7r Xo 

f 7r Q ( Xo -Q - cos 8) cos () d () 
o y Xy 

( 4.81 

Qo = the extreme value of the restoring force, 

and 

Xo = the displacement corresponding to Q0 • 

Equation (4.7) can be rewritten in the following form: 

(zj~)2 =c(M)2: \(Foy _l_2_(r-l) [-±fM __ Qo) Qo 12 
~ Qy M r + l 1r \: Qy Qy M 2 J 

(4.91 
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where 
_Xo 

/-1--
Xy 

For the elasto-plastic case, it can be shown that Eqs. (4.7) and (4.8) reduce to 

(~)2 = c(Jl) + Jc--Fo )2 _1 -[4- (g-_-_0-J 2 
Wn - \ Qy 1-12 n 112 

(4.10) 

and 

C(~) = l rcor I ( I _2_) ~ 2 (I Z) ~ ~-I J 
1f ~ J1 J1 /-12 

( 4. I I ) 

Equations ( 4.1 0) and ( 4.11) result in the following simple expression: 

(~)2 = ~ [cos-1(1_2)-2(1-2)j 11-ll + (Fol_l -[4(1-1-1)] 2 

Wn n J1 1-1 1-12 J Qy /-12 1T/-12 
( 4.1 2) 

The steady-state response results obtained 
from Eq. ( 4. 7) are shown in Figs. 21 a-d and 22. In 
order to check the accuracy of these results, a 
numerical analysis of Eq. ( 4.5) was performed 
on the digital computer. For given values of 
Fo/Qy and w/wn, values of x 0 /xy were found 
from Eq. ( 4. 7) and used as initial starting points 
in Eq. ( 4.5). Then Eq. ( 4.5) was solved numeri­
cally by using a fourth-order Runge-Kutta meth­
od. The error for each trial point was calculat­
ed from (xi + Xf)2 + i:t2, where "i" and "f" 
stand for initial and final, respectively. With the 
help of a downhill-climbing method an iteration 
procedure was established and the error mini­
mized to the desired accuracy of less than 
0.005. Figures 21 a-d and 22 show Ii.~ results 
for various values of F 0 /Qy and exponent r. 

D. ENERGY DISSIPATION AND 
EQUIVALENT VISCOUS DAMPING 

Past experience with viscous-damped sys­
tems has given the engineer an intuitive feeling 
for the effect of viscous damping upon earth­
quake response. It would help him to visualize 
the effect of inelasticity if he could somehow 
express it in terms of an equivalent viscous­
damping coefficient. 

Consider the steady-state oscillation of a 
system with hysteretic force-displacement rela­
tions of the Ramberg-Osgood type. The force­
displacement curve would follow a path such as 
that shown in Fig. 23 which is the same loop 
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shown in Fig. 17 except for a change in scale. 
The area enclosed by the loop. Ea, is the energy 
dissipated in one cycle of oscillation. It can be 
shown that[ 5] 

E _ 4 Q r- 1 Qo r+ 1 
d- Xy y --- ( --.. ) 

r+ 1 Qy 
( 4. I 3) 

The force- displacement curve for a viscous­
damped linear system oscillating at the same 
restoring force and displacement amplitudes. Qo 
and Xo, respectively, is shown in Fig. 24. Here 
the width of the loop depends upon the fraction 
of critical damping {3. Again, the area enclosed 
by the loop, Ec, is the energy dissipated per 
cycle of oscillation, and is given by the expres­
sion 

where 

27T 

Ec = JWn cx 2 dt 
0 

2 _ k - Qo 
Wn - ffz- mx;;-

(4.14) 

Qn substituting Eq. (2.4) for.-\: and 2f3wn 111 for 
c in Eq. (4.14) and integrating it, one obtains 

Ec = 2 1T {3 QoXo ( 4.1 5) 

An equivalent viscous-damping coefficient 
{3eq can now be obtained by equating L.c to Fa. 
The resulting equation for equivalent viscous 
damping is 

a - 2 ( r-1 ) ( 1 _ Qo /Qy) 
~Jeq - 1T r + 1 J1 · 

(4.16) 
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where Qo/Qy is the ratio of maximum force to 
~ield force, and J.1 = x 0 /xy is the ratio of max­
Imum displacement to yield displacement, pop­
ularly known as the ductility ratio. For the 
elasto-plastic system this reduces to 

f3eq = 2_ (I - l_) if J.1 > I 
7T J.1 

and ( 4.17) 

f3eq = 0 if J.1 ~ 1 

41 

The results are shown graphically in Fig. 25. 
Here the difficulty of trying to obtain an 
equivalent viscous-damping coefficient becomes 
apparent. The damping coefficient depends 
upon the amplitude as well as upon the charac­
teristics of the force-displacement relation. 

It should be observed that while equivalent 
viscous damping is a useful concept in giving the 
engineer an intuitive feeling for the behavior of 
an inelastic system, it has little merit toward 
producing meaningful quantitative results. 



E. RAMBERG-OSGOOD RESPONSE 
SPECTRA FOR TWO 
STRONG-MOTION EARTHQUAKES 

l·:q ua tion ( 4. 2) is evaluated, with the aid 
of the digital computer, for various values of 
tfr. Xy and r, through the same procedure as 
used in the clasto-plastic system. The maximum 
displacement. velocity, and acceleration are de­
fined as before, and the natural frequency wn is 
tkfined as VCf;·f'~Y. 

The relation between Wn lxlmax!J.l and 
1\· + i·lmax I w n established in the elasto-plastic 
"Ystem is generally not valid for this system. Thus 
it is in;1dvisablc to make a four-way log-log plot. 

The displacement and the acceleration spec­
tra for Ramberg-Osgood systems are plotted 
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separately on three-way log-log plots in Figs. 26 
a-hand 27 a-h. 

The values of r were chosen to be 5 and 10. 
To compare these parameters, ductility ratios of 
1.0, 2.0, 4.0, and 6.0 were considered, and the 
corresponding spectra were computed directly 
by the digital computer. The spectra for energy 
ratios of 1.0, 3.0, 7.0 and 11.0 were obtained by 
interpolating the computed data above. 

The accelerograms used in this analysis were: 

Taft, California 
Olympia, Washington 

S21W July 21, 1952 
S86W April 29, 1965 

The response spectrum curves presented 
were constructed throughout on the basis of the 
maximum displacement or the maximum ac­
celeration which occurred within the 30-sec 
duration of the earthquake. 

Fig. 25. Equivalent viscous damping. 
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Fig. 27e. Displacement spectra for Ramberg-Osgood system, 
Olympia, April 29, 1965, S860W. Constant ductility ratio "p." 
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Fig. 27f. Displacement spectra for Ramberg.Osgood system, 
Olympia, April 29, 1965, S860W. Constant energy ratio "e." 
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V. Effect of Shape of the Force-Displacement 
Curve Upon Earthquake Response 

The elasto-plastic system has been used as 
the basis for a great deal of earthquake research, 
and some basic concepts such as ductility ratio 
and energy absorption have been related to 
elasto-plastic system response. However, the 
actual structural members do not present ideal 
elasto-plastic load-displacement relation. It was 
found that the actual behavior of a member can 
be represented closely by Ramberg-Osgood func­
tion; thus the Ramberg-Osgood system has been 
applied to earthquake study to investigate the 
influence of the shape of the load-displacement 
curve upon the response. The results are com­
pared for r values of 5.0, 10.0, and infinity (the 
elasto-plastic case). The information presented 
here has been adapted from Reference 18. 

A. MAXIMUM DISPLACEMENT 

The question to be investigated here is how 
the yield level affects the maximum displace­
ment of the system while all other properties of 
the system remain unchanged. 

Typical results are presented in Fig. 28, with 
the yield level q , as a fraction of gravity, 
plotted against tJ!e ductility ratio J.1, which is 
Xm ax /xy. These results are for the El Centro 
1940 earthquake, N-S component. There are 
two sets of data with different periods as 
indicated to be 0.5 sec and 1.5 sec. The lines of 
constant maximum displacement which repre­
sent the maximum displacement for elastic 
systems of the periods indicated are straight 
lines with a 1 : 1 slope downward to the right, 
and can be determined as follows: 

jJ.:::: 

or 

X max 
Xy 

2 = Wn Xmax 

Qy 

IJ.Qy = w~ Xmax = constant 
Hence 

log J.L + log qy = constant 

(5.1) 
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It is observed that the computed maximum 
displacements for the inelastic systems are gen­
erally about the same magnitude as the maxi­
mum elastic displacement, often somewhat Jess 
at high yield levels and sometimes greater at 
lower yield levels. The ratio of the maximum 
elastic to maximum inelastic displacement was 
found to be greatest between tJ. = 2 and 6, ami 
attained a maximum value of about 2. At very 
low yield levels the ductility ratios get ex­
tremely large. The data points for r = 5 and for 
r = 10 are not markedly different from those for 
the elasto-plastic system. 

B. MAXIMUM ENERGY INPUT 

The maximum energy input to the system is 
another response parameter of interest. This can 
be expressed as an energy ratio e defined as the 
ratio of the maximum energy input to the 
recoverable strain energy at yield. The results 
used in this analysis are the same as those used 
in the preceding case. Similarly, the maximum 
strain energy for the elastic system is a constant 
regardless of the changes of yield level. 

The response points are plotted in Fig. 29 to 
show howe is affected by varying the yield level 
q alone. Lines of equal energy which represent 
the maximum strain energy for the clastic 
system of the periods indicated are st_raight lines 
with a 1:2 slope downward to the nght. These 
lines can be determined as follows: 

€ = = 

or 

" 2 ~:.· -Wn ~max 

q2 
y 

e q} = 2 w ~ Em ax = constant 

then 

Loge + 2 Log Qy. = constant 

(5.2) 



Figure 29 shows that the data points fall 
much closer here than in the Fig. 28, indicating 
that the maximum energy input for an inelastic 
system is approximately equal to the maximum 
strain energy for the elastic system. Thus it 
appears to be a good approximation to take the 
maximum energy input for inelastic systems to 
be the same as the maximum strain energy for 
the elastic system of the same period; moreover, 
it is independent of either yield level or the 
shape of the force-displacement curve. 

1.00 

.60 

. 40 

~ .20 -
L3 . 10 
> 
l..U 
_J 

~ .06 
l..U 

>-

.04 

.02 

.01 
. l 

Elastic Spectral Displacement 
T = l. 5 sec 

X 

X Elasto- Plastic 

A r = 10 

0 r = 5 

C. YIELD REVERSALS AND 
ENERGY DISSIPATION 

Yield reversal was well defined in the elasto­
plastic system. However, the Ramberg-Osgood 
system has no single definition for yield reversal, 
and at least four definitions for yield reversal are 
possible, namely: 

( l) +Qy to -Qy criterion, when a change 
from Qy in the positive sense to Qy in the 
negative sense is reached, or vice versa. 

(2) +xy to -xy criterion, when a change 
from xy in the positive sense to Xy in the 
negative sense is reached, or vice versa. 

4 

Elastic Spectral Displacement 
T = o .5 sec 

X 

6 10 20 40 60 100 

DUCTILITY RATIO f' =X max 
Xy 

Fig. 28. Typical qy vs. J1 curves, El Centro May 18 1940 N S 
' , , - component. 
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Fig. 29. Typical qy vs. e curves, EI Centro, May 18, 1940, N-S component. 

. (3) Sliding 2Qy criterion, when the absolute 
dtffe_rence between Q; (current extreme point 
obtat~ed by loading in one direction) and Q;+ 1 

( obtamed by loading in opposite direction) is 
greater than twice the yield load Qy, i.e., 12Qy I 
<IQ--Q.+ I I I I . 

d. ( 4) Sliding 2xy criterion, when the absolute 
Ifference between Xi (current extreme point 

obtained by loading in one direction) and Xi+ 1 

(obtained by loading in opposite direction) is 
g;eater than twice the displacement xy, i.e., 
l~xy I< lx; -xi+ I 1. An illustration of this criterion 
and the definition of excursion ratio ex are 
shown in Fig. 30. 

. A practical way to explore the question of 
Yield reversals is to examine the response of a 
particular system to an earthquake. Figure 31 
shows the first 20-sec response of an elasto-plastic 
system to an earthquake, plotted as displace-
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ment against time. It can be noted that the yield 
level is 0.25 g, which is in excess of the seismic 
coefficients of the uniform building code, and 
the system tends to oscillate at its own natural 
period. Moreover, it is seen that the system 
yields not only once or twice, but twenty differ­
ent times as shown. 

Figure 32 shows the response of a Ram berg­
Osgood system (r = 10) of the same period and 
yield level subjected to the same earthquake. 
Although the maximum displacement is about 
the same, the restoring force reaches yield only 
three times, according to the +Qy to Q_,. 

criterion. 

The first few seconds of the response cuiVc 
of Figs. 31 and 32 are shown in Fig. 33. plotted 
as force against displacement. It can be seen that 
the response follows the hysteresis loop and a 
complete circuit of the hysteresis loop involves 
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Fig. 30. Yield reversal criterion and excursion ratio for Ramberg-Osgood systems. 

62 



X 
Xy 

3 

2 
l 
0 

-1 
-2 

-3 3.36 

Elasto- Plastic Response 
T = o.5 sec, Qy= o.25g 

El Centro 1940, N-S 

Fig. 31. Typical displacement-time curve for elasto-plastic system. 

twq yield reversals. The energy dissipated by 
inelastic deformation is the sum of the areas 
enclosed by all the hysteresis loops. The effect 
of yield level upon the number of yield reversals 
is shown in Fig. 34; this is for the El Centro 
1940 N-S component. 

The excursion ratio Ex for the Ramberg­
Osgood function is defined as the sum of all 
deformation in the yield regions produced 
during the earthquake, to the yield deformation 
Xy (see Fig. 30). The total energy dissipated by 
hysteresis in a Ramberg-Osgood system is related 
to the excursion ratio. However, unlike the 
elasto-plastic case there is no simple way of 
converting hysteresis energy to excursion ratio. 

If all yielding occurred in the same direction, 
the relation between the energy and ductility 
ratios can be given as 
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c= 
Qo/Qy 
r + 1 

in any case 

, > ~ofqy [2r ~- (r-1) ~;; J 

( 5.3) 

( 5.4) 

When r=oo, Eq. (5.4) results in the elasto-plastic 
case, i.e., Eqs. (5.4) and (3.11) become identical. 

The energy ratio E could be a more critical 
parameter in inelastic earthquake design than 
the ductility ratio J.J.. It is felt that the energy 
ratio, along with the number of times the system 
reverses from yield in the positive sense to yield 
in the negative sense during the earthquake. will 
help provide indication of how a structure 
would perform in a strong-motion earthquake. 
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Fig. 33. Typical force-displacement curves for elasto-plastic and Ramberg-Osgood systems. 

64 



-Cl 

>. 
CT 

~ 
I.J.J 
> 
LLJ 
~ 

a 
~ 
I.J.J ..... 
>-

1.0 

.2 

. 10 

.08 

.06 

.04 

X El as to - Plastic 

.02 6 r = 10 

0 r = 5 

10 20 30 40 50 

NUMBER OF YIELD REVERSALS 

Fig. 34. Yield level q y vs. number of yield reversals, El Centro, May 18, 1940, N-S component. 

65 

X 



VI. Intensity and Time Scale Effects of Accelerogram 

It is of interest to consider what effect modi­
fying an earthquake accelerogram will have on 
the response spectra. It is assumed that spectral 
response curves are available for a system to a 
given accclerogram. The new accelerogram is to 
he prepared by multiplying either the accelera­
tion or the time scale of the given accelerogram 
by a constant. 

The purpose of this section is to establish 
relations between response spectra of the modi­
fied accelerograrns and spectra obtained from 
the original accelerogram. 

Consider the differential equation 

.\-+ 2 {3 wn -~ + q(x) =- y(t) (6.1) 

The numerical solution of this equation for 
various parameters will result in the response 
spectra for the given accelerogram y( t). 

Equation (6.1) in dimensionless form be­
comes 

(/'!.., ( ~-) + 2!3 _!}___ ( 2_) +__g_(...£) = 
lfT- Xy dT Xy (/y Xy 

Y(T/Wn) (6.2) 
qy 

where 

T = Wnl 

w~ =qy/Xy 

and 

(qq_ ( :x ) = q(x)/qy 
y ·'"Y 

(a) Consider now another system, with 
Jamping property f3t, undamped natural fre­
quency w 1. and force displacement relation 
p(::). It is desired to find the response of the new 
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system when the latter is subjected to an 
earthquake having accelerations K1 times those 
of the original earthquake, the time charac­
teristics remaining unchanged. 

The differential equation for the new sys­
tem is 

i + 2!31"-JI i + p( z) = - K1 y( t) (6.3) 

where z = relative displacement of mass to 
ground. 

In dimensionless form this can be written as 

where 

and 

7 1 = W 1 l 

wy =Py/Zy 

Pl.?__ ( L) == p(z )/py 
y Zy 

By proper choice of parameters, i.e., 

131 = 13 

and 

(6.4) 

(6.5) 

Equation (6.4) is made identical to Eq. (6.2). 

Thus at any instant the following relations must 
be valid: 



where 

dz =~ dx=K dx 
dr 1 xy dr I dr 

z 
z=__J!_x =K1 x 

Xy (6.6) 

In terms of maximum values the above 
expressions can be shown to become 

and 

lz I max = K1 lx I max 

lzlmax = K1 l.xlmax 

lz+ K1ylmax = K1 lx + .Y lmax 

(6.7) 

The ordinates of the new response spectra are 
therefore K1 times those obtained from the 
original accelerogram. Equation ( 6. 7) is valid for 
linear as well as nonlinear systems provided Eq. 
(6.5) relations are satisfied. 

To illustrate the preceding, it is desired to 
modify a given response spectra, say Fig. 14c, in 
order to obtain the response spectra for an 
earthquake of intensity K1 times that used in the 
former. This is done by multiplying the ordi­
nates of the curves of Fig. 14c by K1. On 
four-way log plots this result is accomplished by 
shifting the curves vertically by log (K1 ). The 
dash-dot curve in Fig. 35 shows the latter for K1 
== 3 applied to curve J.L = 2 of Fig. 14c. (For 
clarity the remaining curves of Fig. 14c are not 
shown in Fig. 35). 

(b) As a second case consider a system with 
damping property {3 2 , undamped natural fre­
quency w 2 , and a force-displacement relation 
p( z). It is subjected to an accelerogram obtained 
by dividing the time scale of y(t) in Eq. (6.1) by 
Kr; i.e., the duration of the modified accelero­
gram would be Kr times the duration of the 
original accelerogram. Such a modification for 
Kr == 0.5 is shown in Fig. 36. 

The equation of motion for this can be 
Written as 

i + 2{3 2 w 2 i + p( z) = - y ( K T t) ( 6 · 8) 

In normalized form this becomes 
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_4_ (~) + 2(32 _(j __ ( ~-) + p ( :: ) = 
dr 2 2 Zy dr2 zy 1'_1• =.v 

-- Kr y (--- 72) (6.9) 
W2 ----------
Py 

where 

and 

]!_ (Lp:: Efz) 
Py Zy Py 

Again by proper choice of parameters, i.e., 

and 

"2 = {J 

Py = Qy 

p (z) 
Py Zy 

q X == - ( ---;-) 
Qy Xy 

KT = w2/wn == v'xy/zy 

(6.1 0) 

Equation (6.9) is made this time similar to Eq. 
(6.2), and can be shown to result in the equalities 

d2 (:y) = 
d2z _ I J2x 

dr22 KT2zy dr2- Xy dr2 

d z dz = Jx = 
dr2 Zy KTZy dr Xy dr 

z = ~ ( 6.11) 
Zy Xy 

where 

r=r2/Kr 

The desired relations can now be found from 
Eq. (6.11) to be 

lzlmax = i 2- lx lmax 
T 

l.ilmax = -1- li-lmax 
Kr 

lz + y lmax = lx + j; lmax (6.12) 



Thus to obtain the new acceleration spectra, 
the period scale of the original acceleration 
spectrum curves arc divided by K T. The new 
velocity spectra are obtained from the original 
velocity spectrum curves by dividing the period 
ami the velocity scales by K T. The new displace­
ment spectra are obtained from the original 
displacement spectra by dividing the period scale 
by Kr and the displacement scale by Kr2. 
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On four-way log plots the modified response 
spectra described above are readily obtained by 
shifting the original curves horizontally as well 
as vertically by log (1 I Kr ). The dotted line in 
Fig. 35 shows the latter for Kr = 0.5 applied to 
curve J.l = 2 of Fig. 14c. 
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VII. Effect of Axial Load 

It was shown that in the absence of axial 
load. the force-displacement relationship for 
structural steel members can be expressed 
doscly hy a Rarnberg-Osgood function. Like­
wise. the relationship between the moment, M, 
and the curvature. cp, of a structural member can 
be expressed in the same form, 

cp_ =!tLo+IM\r'> 
C/Jy My My 

(7.1) 

where 

My = a yield or a characteristic moment 

and 

C/Jy =a yield or a characteristic curvature. 

The parameters My, C/Jy, and r are chosen by 
means of a least square method to give the best 
fit to the experimental data. When the axial load 
is not present. the My parameter for a steel 
member can be closely approximated by its fully 
plastic moment and C/Jy taken equal to My/ EI, EI 
being the elastic flexural stiffness of the mem­
ber. [ 21) 

It is known [ 22] that the plastic-hinge­
moment capacity of a steel member reduces 
with increase in the axial load acting on the 
llll'rnber. The behavior of beam-columns under 
static loading has been thoroughly studied and 
can be predicted with confidence. On the 
contrary, the behavior of a beam-column sub­
jected to a dynamic lateral loading is practically 
unknown, and no experimental data is available 
today ( 1968) by which the values of the 
parameters My, C/Jy , and r can be reestablished. 
Hence. the analysis that follows assumes that 
these parameters are not affected by the pres­
ence of the axial load in the member and that 
Eq. (7.1) is valid. 

Consider the cantilever column shown in 
Fig. 3 7, subjected to a constant vertical load p 
and a variable horizontal force Q. The force-
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displacement relationship for this column can be 
obtained from Eq. (7.1) as 

~;~ = cpy t/; (1 + ~~ lr-1 ) (7.2) 

where 

u =transverse displacement relative to base 

d 2 u = cp 
dy2 

x =transverse displacement of end of 
cantilever relative to base 

y =length along cantilever 

M = P(x - u) + Q( L - y ). (7.3) 

The numerical solution to Eqs. (7.2) and (7.3) 
is very time-consuming, hence an approximation 
was made. The actual bending moment curve 
was replaced by a linear moment variation as 
shown in Fig. 38. As a result, Eqs. (7.2) and 
(7 .3) reduce to 

d2u_ MFO-f) IMFO-r)lr-1) 
-- C/Jy (1 + . 
dy2 My My (7.4) 

where 

MF = QL +Px (7.5) 

This is the moment at the fixed end of the col­
umn. 

Integrating Eq. (7.4) twice and using the 
boundary conditions u'(O) = u(O) = 0, the follow­
ing expression is obtained: 

__£ = MF (1 +-3- jMF ,r--l) 
Xy My r+2 My 

. where 
£2 

Xy = C/Jy 3 

The lateral load from Eq. (7 .5) is 

Q = l (MF- Px) 

(7.6) 

(7.6a) 

(7.7) 



Equations (7 .6) and (7. 7) can now be used to 
construct a force-displacement curve. A com­
parison of the approximate method results with 
the exact solution is presented in Figs. 39a and 
39b. It can be seen that the deviation between 
the results of the two methods depends on the 
value of the three parameters employed, namely, 
ductility ratio, exponent r and axial load ratio 
P/Py. 

It is appropriate to investigate how axial 
load affects the shape of the force-displacement 
hysteresis loop. The skeleton curve for this is 
obtained from Eqs. (7 .6) and (7. 7), and the 
branch curves are derived (see Fig. 20) from the 
branch moment-curvature expression of 

and from which, making the same approxima­
tion for moment distribution as before, and 

y 
X 

.. Q 

L 

0 

Fig. 37. Loading condition for cantilever beam 
with axial load. 

71 

integrating twice over the proper limits. the 
branch equation for the lateral displacement is 
obtained: 

X - X 0 - M F - M 0 ( I + _l__ I~~! t: J I(} I ' I ) 
2xy - 2My r+2 2My · 

The corresponding lateral load 

Qo = t(Mo- Pxo) ( 7 .I 0) 

In Eqs. (7.9) and (7.10). Xo, Mo. and (Jo arc. 
respectively, the displacement, the end moment 
and the lateral load at the reversal point. 

The branch curves [Eq. (7.9)) arc similar to 
the skeleton curve [Eq. (7.6)). hut twice ;Js 
large. This is the same relationship that exists 
between Eqs. (7.8) and (7.1 ). 

Figures 40a and 40b show hysteresis loops 
computed from Eqs. (7.9) and (7.h) for various 

o_ r M( L! 

L 

y 

Fig. 38. Bending moment di_stribution for 
cantilever beam with axJalload. 
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Fig. 39. Force-displacement relation for cantilever beam with axial load. 
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Fig. 40. Hysteresis loops for cantilever beam with axial load. 

values of PIP~- and exponent r. Unlike ordinary 
Ramberg-Osgood functions, when axial load is 
pr~·sent, the maximum lateral force does not 
always occur on the skeleton curve. In steady­
state vibration, for (Qm ax) skeleton greater than 
()o. the maximum lateral force will occur on 
the loop [sec Fig. 40a( iv) I and is given by the 
relation 

(Qmax )hranch = 2 (Qmax )skeleton -- Q0 (7.11) 

Figure 41 shows the response of a single­
degree-of-freedom system for the first few 
seconds of El Centro earthquake using Eqs. (7.9) 
and (7.(1) as the restoring force Q in Eq. (4.1). 
The response is plotted as lateral force against 
displacement for P = 0 (without axial load), and 
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for P = 0.4 Py. In this case Qm ax and Xm ax are 
found to be greater without axial load. 

Equations (7.9) and (7.6) give exact results 
only when the axial load is zero. Otherwise the 
results obtained from them are approximate and 
must be used for small values of P/ Py. The 
presence of axial load (see Figs. 39a and 39b) 
seems to reduce the stiffness of the system. 

When axial load is present, it is no longer 
possible to express the force-displacement rela­
tion by ordinary Ramberg-Osgood functions as 
displacements become large. 

The brief discussion presented in this section 
seems to point out clearly that further investig~­
tion into the subject, especially in the experi­
mental side, is needed. 
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Fig. 40. Concluded. 
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Fig. 41. Shear-displacement response of cantilever beam 
with axial load subjected to ground motion. 
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VIII. Summary and Conclusions 

In this report, the response of a single­
degree-of-freedom structure to strong-motion 
earthquake was studied. The principles and the 
construction of the response spectra were dis­
cussed in detail for three different systems, 
namely, the linear system, the elasto-plastic 
system and the Ramberg-Osgood system. The 
discussion for each system generally included 
subjects such as force-displacement relation, 
equation of motion, energy dissipation, response 
spectrum concepts, steady-state oscillation, and 
response spectra for strong-motion earthquakes. 
Also, a family of spectral curves was presented 
for these systems, where the damping coeffi­
cient, the ductility and energy ratios were the 
main parameters considered. 

The effect of the shape of the force­
displacement curve upon the maximum displace­
ment and upon the maximum energy input of a 
system was examined. Furthermore, the in­
fluence of modifying the intensity and the time 
scale of an earthquake accelerogram as well as 
the behavior of a structure with axial loads were 
also investigated. 

From the results presented in this report the 
following conclusions can be drawn for the 
response of a single-degree-of-freedom structure: 

( 1) The Ramberg-Osgood representation of 
the force-displacement relation is considered 
realistic if the structure is capable of maintaining 
stable, non-deteriorating hysteresis loops. The 
Berkeley experiments have produced remarkably 
stable hysteresis loops at large cyclic 
strains[ 17], which can be approximated closely 
by a Ramberg-Osgood function. 

(2) The spectral relation 
lxlmax::::::: lxlmaxlwn::::::: lx + Ylmaxlw~ 

is exact for undamped linear systems, and is a 
good approximation for damped linear systems 
provided the damping is small. The response 
spectra for linear systems are represented by the 
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top curves of Figs. 13 and 14. (The elasto-plastic 
system reduces to the elastic system when the 
ductility ratio J1 or the energy ratio f becomes 
equal to 1.) 

Figs. 13 and 14. (The clasto-plastic system 
reduces to the elastic system when the ductility 
ratio J1 or the energy ratio E becomes equal to 
1.) 

(3) In nonlinear systems the above spectral 
relation is not valid. For the elasto-plastic 
systems this relation takes the form 

lx 1m ax = lx + Y I max w ~-·-······ 

n J1 wn 

The expression on the left above. a pseudo 
velocity, is the quantity that was plotted to 
obtain the response spectra in this case. 

( 4) For Ram berg-Osgood systems then: 
exists no simple spectral relation. It is noted 
however that in Ramberg-Osgood systems. if V<i 
and Va are defined as follows: 

lx I 1.\: + _l: lmax 
Vd = Wn _max and Va = 

J1 Wn 

then 

Vd > Va for J1 < 2 

Vd = Va for J1 = 2 

Vd < Va for J1 > 2 

For values of ductility ratio less than two. the 
maximum difference between vd and va occurs 
when 11 equals one. It is also observed that 
the difference between the displacement and 
the acceleration spectrum curves for constant 
ductility ratio is constant, and thus produces 
only a vertical shifting of the curves. 1 hls 
does not apply to curves of constant enLT!!Y 
ratio because the ductility ratio is not a constant 
in this case. For this reason, displacement and 
acceleration spectra for Ramberg-Osgood sys-



tems are plotted separately. 

( 5) It is noticed that in the Ram berg­
Osgood system. the acceleration spectra are 
much more sensitive to changes in exponent r 
than are the displacement spectra. The spectral 
characteristics of the clasto-plastic system are 
quite different from those of the Ramberg­
Osgood system. 

((l) Equivalent viscous damping is helpful to 
the intuition in comprehending response phe­
nomena. but it appears ill suited to the earth­
quake problem for quantitative purposes. 

( 7) The maximum displacement and the 
maximum energy input for Ramberg-Osgood 
systems are comparable with those obtained for 
elasto-plastic systems of the same period and 
yidd level. 

( ~) For the steady-state vibration response, 
slowly varying parameter results showed good 
agreement with those of "downhill-climbing 
method... The discrepancy between the two 
increased as exponent r and the ratio of input 
force to yield level of the system. F/Qy, became 
large. Neither result showed existence of an 
unstable zone for the Ramberg-Osgood system. 

(CJ) When an accelerogram is modified by 
multiplying the acceleration readings by an 
arbitrary constant K1. the response spectra for 
the new accelerogram are K1 times the spectral 
values obtained from the original accelerogram. 

I f. however. the new accelerogram is ob­
tained by multiplying the time scale by a factor 
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Kr, all quantities involving time must be 
changed appropriately. The new acceleration, 
velocity, and displacement-response spectra are 
obtained in this case by dividing the correspond­
ing original spectral values by 1, K T, and Kr 2 , 

respectively, and dividing the period values by 
Kr. 

When the intensity and the time scale of the 
accelerogram are modified simultaneously, then 
the above two cases must be superimposed to 
obtain the desired response spectra, as shown by 
the dashed line in Fig. 35. 

(I 0) When axial load is present, for large 
displacements, the force-displacement relation 
of a cantilever column is no longer of the 
Ramberg-Osgood type. Nevertheless, a Ram­
berg-Osgood curve can still be used as a good 
approximation when the axial load and the 
displacement are small. Figs. 40a and 40b 
illustrate the effect of axial load upon the shape 
of the hysteresis loop. It can be seen that for 
small values of axial load the loop is narrow. As 
the axial load increases the loop broadens and 
the curves show an unloading region even when 
the ductility ratio is small. Figs. 39a and 39b 
show that in the absence of axial load the 
approximate method yields the same results as 
the exact method. With axial force present the 
results of these two methods no longer coincide. 
The discrepancy is found to be proportional to 
the axial load in the column. A column without 
axial load is stiffer than the same column with 
axial load resulting in different response to the 
same earthquake. 



References 

1. Hudson, D. E., "Response Spectrum Techniques in 
Engineering Seismology," Proc. I. World Conf on 
Earthquake Engrg., Berkeley, Calif., June, 1956. 

2. Harris and Crede, Shock and Vibration Handbook, 
Vol. I, McGraw-Hill, 1961. 

3. Alford, J. L., Hausner, G. W., and Martel, R. R., 
"Spectrum Analyses of Strong-Motion Earth­
quakes," Earthquake Research Lab., Calif. Inst. of 
Tech., August, 1951. 

4. Berg, G. V., and Thomaides, S. S., "Energy Con­
sumption by Structures in Strong-Motion Earth­
quakes," Univ. of Mich. Research Inst., Report No. 
2881-2-P, March, 1960. 

5. Jennings, P. C., "Response of Simple Yielding 
Structures to Earthquake Excitation," Ph.D. Thesis, 
Calif. Inst. of Tech., June, 1963. 

6. Blume, J. A., Newmark, N. M., and Corning, L. H., 
Design of Multistory Reinforced Concrete Buildings 
for Earthquake Motions, PCA, 1961. 

7. Jacobsen, L. S., and Ayre, R. S., Engineering 
Vibrations, McGraw-Hill, 1958. 

8. Thomaides, S. S., "Effect of Inelastic Action on the 
Behavior of Structures During Earthquakes," Ph.D 
Thesis, Univ. of Mich., Dept. of Civil Engrg., 1961. 

9. Biot, M. A., "Analytical and Experimental Methods 
in Engrg. Seismology," ASCE Trans., Vol. 108, 
Paper No. 2183, 1943. 

10. Berg, G. V., and DaDeppo, D. A., "Dynamic 
Analysis of Elasto-Plastic Structures," Jour., Eng. 
Mech. Div., ASCE, April, 1960. 

11. Newmark, N. M. and Veletsos, A. S., "Effects of 
Inelastic Behavior on the Response of Systems," 
Proc. II World Conf on Earthquake Engrg., Tokyo, 
Japan, July, 1960. 

79 

12. Berg, G. V. and Thomaides, S. S .. "Punched Card 
Accelerogram of Strong-Motion Earthquakes." 
Univ. of Mich. Research Inst., Report No. 2~~1-1-P. 
September, 1959. 

13. Berg, G. V., "A Study of Error in Response 
Spectrum Analyses," Proc. Primeras Jornadas 
Chilenas de Sismologia E Ingenieria Antisismica. 
Santiago, Chile, July, 1963. 

14. Popov, E. P. and Franklin, H. A., "Steel Beam-to­
Column Connections Subjected to Cyclically Re­
versed Loading," Proceedings of Structural l:'ngi· 
neers Association of California, 1965. 

15. Jacobsen, L. S., "Frictional Effects in Composite 
Structures Subjected to Earthquake Vibrations." 
Report of the Dept. of Mechanical Fngrg .. Stanford 
University, March,l959. 

16. Hanson, R. D., "Post-Elastic Dynamic Response of 
Mild Steel Structures," Ph.D. Thesis. California 
Institute of Technology, June, 1965. 

17. Caughey, T. K., "Sinusoidal Excitation of a System 
with Bilinear Hysteresis," Journal of Applied Me­
chanics, Vol. 27, No.4, December, 1960. 

18. Berg, G. V., "A Study of the Earthquake Response 
of Inelastic Systems," Proceedings of Stmctural 
Engineers Association of California. 1965. 

19. Biggs, J. M., Structural Dynamics, McGraw-Hill 
Book Co., 1964. 

20. Morrow, J., "Cyclic Plastic Strain Energy and 
Fatigue of Metals," ASTM Special Technical Publi­
cation No. 378, 1965. 

21. Kaldjian, M. J ., "Moment-Curvature of Beams as 
Ramberg-Osgood Functions," Journal of the Struc­
tural Division, ASCE, ST 5 Oct 67:53, Proc. Paper 

5488. 

22. Tall, L. et al, Structural Steel Design, Ronald Press. 
N. Y.,l964. 



No. 1 

No. 2 

No. 3 

No. 4 

No. 5 

No. 6 

No. 7 

No. 8 

No. 9 

No.10 

No. 11 

No.12 

No.13 

No.14 

BULLETINS 
Steel Research for Construction 

Current Paving Practices on Orthotropic Bridge Decks 
Battele Memorial Institute, October, 1965 

Strength of Three New Types of Composite Beams 
A. A. Toprac, October, 1965 

Research on and Paving Practices for Wearing Surfaces 
on Orthotropic Steel Bridge Decks, Supplement to Bulletin 1 
Battelle Memorial Institute, August, 1966 

Protection of Steel Storage Tanks and Pipe Underground 
Battelle Memorial Institute, May, 1967 

Fatigue Strength of Shear Connectors 
R. G. Slutter and]. W. Fisher, October, 1967 

Paving Practices for Wearing Surfaces on Orthotropic 
Steel Bridge Decks, Supplement to Bulletins 1 and 3 
Battelle Memorial Institute, January, 1968 

Report on Investigation of Orthotropic Plate Bridges 
D. Allan Firmage, February, 1968 

Deformation and Energy Absorption Capacity of Steel 
Structures in the Inelastic Range 
T. V. Galambos, March, 1968 

The Dynamic Behavior of Steel Frame and Truss Buildings 
Dixon Rea,]. G. Bouwkamp and R. W. Clough, April, 1968 

Structural Behavior of Small-Scale Steel Models 
Massachusetts Institute of Technology, April, 1968 

Response of Steel Frames to Earthquake Forces 
-Single Degree of Freedom Systems 
M. ]. Kaldjian and W. R. S. Fan, November, 1968 

Response of Multistory Steel Frames to Earthquake Forces 
Subhash C. Goel, November, 1968 

Behavior of Steel Building Connections 
Subjected to Inelastic Strain Reversals 
E. P. Popov and R. B. Pinkney, November, 1968 

Behavior of Steel Building Connections 
Sub_jected to Inelastic Strain Reversals -Experimental Data 
E. P. Popov and R. B. Pinkney, November, 1968 




	Response of Steel Frames to Earthquake Forces
	Recommended Citation

	Page0001
	Page0002
	Page0003
	Page0004
	Page0005
	Page0006
	Page0007
	Page0008
	Page0009
	Page0010
	Page0011
	Page0012
	Page0013
	Page0014
	Page0015
	Page0016
	Page0017
	Page0018
	Page0019
	Page0020
	Page0021
	Page0022
	Page0023
	Page0024
	Page0025
	Page0026
	Page0027
	Page0028
	Page0029
	Page0030
	Page0031
	Page0032
	Page0033
	Page0034
	Page0035
	Page0036
	Page0037
	Page0038
	Page0039
	Page0040
	Page0041
	Page0042
	Page0043
	Page0044
	Page0045
	Page0046
	Page0047
	Page0048
	Page0049
	Page0050
	Page0051
	Page0052
	Page0053
	Page0054
	Page0055
	Page0056
	Page0057
	Page0058
	Page0059
	Page0060
	Page0061
	Page0062
	Page0063
	Page0064
	Page0065
	Page0066
	Page0067
	Page0068
	Page0069
	Page0070
	Page0071
	Page0072
	Page0073
	Page0074
	Page0075
	Page0076
	Page0077
	Page0078
	Page0079
	Page0080
	Page0081
	Page0082
	Page0083
	Page0084
	Page0085
	Page0086
	Page0087
	Page0088
	Page0089

