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Eighth International Specialty Conference on Cold-Formed Steel Structures 
St. Louis, Missouri, U.S.A., November 11-12, 1986 

DEVELOPMENT OF A UNIFIED APPROACH TO 
THE DESIGN OF COLD-FORMED STEEL MEMBERS 

by Teoman Pekoz 1 

A brief summary of the studies conducted to develop a unified approach 
to the design of cold-formed steel members is presented in this paper. A 
detailed discussion of the studies is given in [1], The unified approach 
developed in [1] has been the basis of many of the changes introduced in 
the 1986 Edition of the Specification for the Design of Cold-Formed Steel 
Structural Members published by the American Iron and Steel Institute. 
Some of the provisions of the unified approach are also being considered 
for the ECCS European Recommendations for the Design of Light Gage Steel 
Members. 

The unified design approach developed in [1] includes the treatments of 
plate elements, columns, beams and beam columns. The approach covers 
sections with plate elements that are locally stable as well as those in the 
post-local buckling range at overall failure. The overall failure modes 
include flexure and torsional-flexure. The author's studies on the develop­
ment of the unified approach used some of the data and conclusions reached 
in several research projects reported in [21 through [8] carried out by him 
and his collaborators. In these projects dgoroua analytical models were 
developed, empirical equations tried and the calculated results were com­
pared with the results of several hundreds of testa conducted within these 
projects as well as those conducted elsewhere. In the final development 
study [1], the results of 51 locally stable columna and beam-columns, 102 
locally unstable beams and 107 locally unstable columns and beam-columns 
were used. 

In the implementation of the unified approach in the 1986 Edition of the 
Specification for the Design of Cold-Formed Steel Structural Members pub­
lished by the American Iron and Steel Institute several new features were 
introduced in format as well as the technical content. The changes in 
format include determination of the allowable loads by applying a factor of 
safety to the calculated nominal load carrying capacity rather than through 
the use of allowable stresses. This feature will make the conversion to a 
load and resistance factor design approach very simple. Another change 
in format is the use of all nondimensionalized equations which can be used 
with any consistent system of units. 

BEHAVIOR OF PLATE ELEMENTS 

The post-buckling behavior of plate elements is represented by a generali­
zation of the Winter effective width equation [9]. The Winter equation was 
derived for plate elements supported adequately along the two longitudinal 
edges. This concept has been extended in [3] through [6] to unstiffened 
elements (element supported only on one longitudinal edge) and to elements 
with an edge stiffener or an intermediate stiffener of any size. 

1 Professor of Structural Engineering 
Cornell University, Ithaca, New York 

77 



78 EIGHTH SPECIALTY CONFERENCE 

The expressions developed in [3) through (6] are the basis of the effective 
section proper-ties calculated in the proposed approach with the exception 
of using the actual, rather than the effective moment of inertia in the 
equations of (5) to assess the stiffener adequacy, This gave improved 
results. A new approach for webs is also developed (1], The cross­
aectionnal geometry notation and the generalized effective section for a 
C and a tubular section are illustrated in Fig, 1. 

The unified approach (l) also contains new and more accurate expressions 
for affective widths to be used in deflection calculations. Also new 
expressions for the effective widths of compression elements with circular 
perforations are given in [1]. 

LOCALLY STABLE BEAM COLUMNS WITH OPEN SECTION 

For sections with fully effective plate elements, the studies by the 
author [ 10] show that interaction equations can be used. This approach 
was adopted in the RMI Specification [11]. The validity of the approach 
was further confirmed in [8] on the basis of extensive analytical and 
experimental studies. The interaction equation is 

l Eq. l 

P, Mx and My are the axial force and the moments about the x and y axes, 
respectively, due to the applied loading, P 0 is the failure load in the 
absence of any moment. Mxo is the failure moment for bending about the x 
axis in the absence of an axial load or bending about the y axis. Similarly, 
Myo is for the bending about the y axis. P0 , Mxo and Myo are determined 
considering both flexural and torsional flexural buckling. Cmx and Cmy are 
corrections to reflect the moment gradient in the member. Px and Py are 
the flexural buckling loads about the x and y axes, respectively. 

INTERACTION OF LOCAL AND FLEXURAL COLUMN BUCKLING 

The effect of local buckling on overall buckling behavior has been studied 
in several research projects at Cornell and elsewhere. On the basis of teats 
and analytical studies, [2] and [3] conclude that a satisfactory approach is 
to calculate the overall buckling load using the effective radius of gyration 
and the effective area, both calculated at the overall buckling stress. This 
results in an iterative procedure since the buckling stress depends on the 
effective section properties which in turn depend on the buckling stress. 
The iterative approach has been extended in [8] to the treatment of tor­
sional flexural buckling. 

The approach of [ 12] for flexural buckling is tried in [ 1] for a variety of 
sections and failure modes. This approach is very similar to the one pro­
posed by the author [10] and adopted in the RMI Specification [11] for the 
treatment of perforated columns and beam columns subject to torsional 
flexural buckling. The buckling stress is found for an unperforated column 
and the allowable load is found by multiplying this stress by the net area. 



UNIFIED DESIGN APPROACH 

The proposed approach consists of the following steps. First the elastic 
flexural buckling stress, Fe, is calculated for the full unreduced section: 

Then the failure stress, Fw is determined: 

F 
u 

F 
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y 

and the ultimate column load Pu is calculated as 

P = A F 
u e u 

where Ae is the effective area computed at stress Fu• 

Eq. 2 

Eq. 3 

Eq. 4 

Eq. 5 

The studies summarized in [1] show that proposed approach approximates 
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the iterative approach very closely for flexural, torsional flexural and lateral 
buckling as discussed below. 2 and 3 give some typical examples of 
the many comparisons presented [1]. In these figures Curve 1 is for an 
approach using Eqs, 2, 3 and 4 taking the section to be fully effective and 
multiplying the yield stress by the ratio ~ul A where ~u is the effective 
area for yield stress and A is the full area. Pu is taken as A Fu• Curve 2 
is for the iterative approach which is the best fit to the test data. Curve 3 
is obtained with the proposed unified approach. R is the ratio of the Pu 
obtained by a particular approach to that obtained by the iterative 
approach. >. is the slenderness ratio KL/ry• 

The remarkable accuracy of the proposed approach can be explained as 
follows. The reduction in the value of the radius of gyration resulting from 
local buckling is rather small. For small slenderness ratios where the 
column buckling stresses are high compared to the yield stress, the buck­
ling stress is quite insensitive to the changes in the radius of gyration. 
For small stresses, namely large slenderness ratios, the local buckling is 
not significant. However, the effective area gets influenced directly and 
significantly by local buckling, Therefore the behavior is well represented 
by ignoring the change in the radius of gyration and accounting for the 
reduction in the effective area in finding the ultimate load of the column. 

For locally buckled C and other singly symmetric sections, concentric axial 
loading with respect to the centroid of the effective section is not typical 
in structures. The centroid of the effective section depends on the 
magnitude of loading. The location of the centroid moves as the load is 
increased. The allowable concentric loading is important as a parameter in 
the interaction equation, 

INTERACTION OF LOCAL AND TORSIONAL-FLEXURAL COLUMN BUCKLING 

An analytical model for the behavior of locally unstable open sections is 
developed in [8] on the basis of the torsional flexura 1 theory for the 
effective section, The theory was confirmed by cor, . ,at ion with test 
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results. As in the case of flexural buckling, the approach involves itera­
tions. Again concentric buckling load is important for a locally buckled 
section only as a parameter in the interaction equation. 

The proposed approach for the torsional flexural buckling of locally buckled 
columns is exactly the same as that for columns subject to flexural buck­
ling. In the equattons 2 through 5 above, only the determination of Fe 
changes. Fe is determined according to the torsional flexural buckling 
theory for the full unreduced section. 

EVALUATION OF STUB COLUMN TEST RESULTS 

The proposed approach necessitates an expression for the effective area Ae 
as a function of the stress on the effective area f. The stress f is taken 
as Fu in calculating column strength. When Ae cannot be calculated, such 
as when the column has dimensions or geometry outside the range of 
applicability of the generalized effective width equations, a functional 
relation between f and Ae can be obtained by stub column teats. A stub 
column is a short column that is long enough to reflect the local buckling 
behavior but preferably short enough so that the behavior is not affected 
by the overall buckling. The effective area, Aew at ultimate load, Pu is: 

Eq. 6 

The effective area at any stress f on the effective area can be calculated as 
follows [ 1]: 

(A /A) 
A )(f/F ) eu 

eu y 

where A is the full unreduced area of the section. 

Eq. 7 

The validity of the above equations is verified in [1] by a rather extensive 
parametric study. Many plots as those given in Fig. 4 are presented in 
[1}, In these figures D is the axial shortening of the stub column at an 
axial load P. Du and Pu are the ultimate values of D and P. Curves 1 are 
baaed on actual testa. Curves 2 are calculated on the basis of Eqs. 6 and 
7. It is seen that the equations are satisfactory and give conservative 
(low) values of the axial stiffness and consequently the value of Ae• 

Approaches for determining an expression for Ae versus f from the 
measured axial shortening and for the treatment of the case when the stub 
column is not short enough are formulated in [1]. 

INTERACTION OF LOCAL AND LATERAL BEAM BUCKLING 

The approach proposed in [1] for this case is consistent with the one 
proposed for columns. First, the elastic lateral buckling stress, Fe, is 
calculated on the basis of the torsional flexural buckling theory for the 
full unreduced section using the equations of [13]. Then the failure stress 
Fu is determined using Eqs. 3 and 4. The lateral buckling moment is deter­
mined by multiplying Fu by the effective section modulus calculated for an 
outer fiber stress of Fu. 



UNIFIED DESIGN APPROACH 

The proposed design approach gives results virtually identical with those 
of the analytical approach developed in [8] on the basis of torsional-flexural 
buckling theory, There is no direct test data on the lateral buckling of 
cold-formed steel beams. However some data exists on the behavior of 
sections with eccentric axial loading. These test results show that the 
proposed approach is satisfactory [ 1], 

BIAXIALLY LOADED LOCALLY UNSTABLE BEAM COLUMNS 
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Singly symmetric open section cold-formed steel members are frequently sub­
jected to biaxial loading. The design problem is often complicated because 
the plate elements making up such sections may buckle locally below loads 
causing overall failure. The subject is relevant to several practical 
applications including thin walled square or rectangular tubes, end wall 
columns in metal buildings, many typical industrial storage rack columns and 
purlins in the end bays of metal buildings. 

The interaction equation given above was studied extensively and extended 
to locally unstable sections in [8] and [1]. The approach of [1] involves 
the use of Eq. 1 for singly or doubly symmetric open sections and closed 
tubes with some of the terms redefined to account for locally buckled plate 
elements. P 0 is determined as described above for locally unstable 
columns. It may be governed by flexural or torsional flexural buckling. 
Mxo and Myo are determined by the approach described above for lateral 
buckling. All eccentricities (for example ex in Fig. 1) are taken with 
respect to the centroid of the effective section for the axial load alone. 
The parameters Px and Py are the elastic buckling loads for the full un­
reduced section. 

The proposed formulation is confirmed in [ 1] by theory and 107 tests on 
simply supported, locally unstable C, channel and hat section beam columns. 
Correlation for angle and lipped angle sections is needed. The extension of 
the use of the interaction equations for frames is discussed in [ 1]. 

An example of the correlation with the test results is illustrated in Fig. 5. 
This figure presents the results of all the tests with loads with uniaxial or 
biaxial eccentricities. The figure on the left illustrates the presentation 
of the results. In this figure Rp 1 Rx and Ry represent the first, second 
and the third terms of Eq. 1. Eq. 1 defines the plane ABC. For a given 
test, the observed values of P, Mx and My are substituted into the equation 
and a point with the resulting Rp1 Mx and My values is plotted. The 
results that fall outside the volume OABC indicate that the proposed inter­
action equation is conservative for those cases. This three-dimensional 
situation is represented in the figure on the right in two dimensions by 
plotting the projections of the test points on the Rp-Ro plane. Thus from 
geometry Ro is equal to .707 (Rx + Ry)· The points that fall outside the 
area OAD in the figure on the right show that the Eq. 1 is conservative. 
The few points that fall within this area have been mostly explained in [ 1] 
and the approach is judged satisfactory. 

The unified approach [1] contains special procedures for the treatment of 
angles and columns and beam columns with perforations. 
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