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Abstract—This paper presents two neural network 
(NN) based decentralized controller designs for large 
scale power systems’ generators, one is for the excitation 
control and the other is for the steam valve control. 
Though the control signals are calculated using local signals 
only, the transient and overall system stabilities can be 
guaranteed. NNs are used to approximate the unknown and/or 
imprecise dynamics of the local power system and the inter- 
connection terms, thus the requirements for exact system 
parameters are released. Simulation studies with a three 
machine power system demonstrate the effectiveness of the 
proposed controller designs. 

Index Terms—Decentralized control, power systems, neural 
networks, and large scale system. 

I. INTRODUCTION 
OWER systems are large scale, distributed and highly 
nonlinear systems with fast transients. One difficulty in 

controller design is the coordination of the control activities 
for the subsystem controllers. Due to technical and economic 
reasons, the concept of centralized control is not applicable. 
A decentralized control strategy designs subsystem 
controllers separately, requiring local information and 
measurement only or with a minimum amount of information 
from other subsystems. 

The traditional decentralized control strategies of power 
systems were designed based on linearized system models at 
some operating points. The selection of base operating points 
and tuning of parameters are quite empirical. Furthermore, 
the controllers' performance cannot be guaranteed under 
certain unforeseen large disturbances. 

Since the differential geometric method was introduced to 
nonlinear control systems design, various stabilizing control 
results are reported based on nonlinear multimachine power 
system models [1-3]. However, there is a problem with the 
differential geometric based nonlinear controller designs. The 
problem is that exact feedback linearization requires the exact 
knowledge of the system dynamics. Imprecise knowledge 
will greatly degrade the performance of controller designs. 
Since it is impossible to make the assumption that the 
complex power system dynamics can be known exactly, the 
possible applications are limited by this assumption. In order 

 
1 Wenxin Liu and Dave A. Cartes are with the Center for Advanced 

Power Systems, Florida State University, Tallahassee, FL 32310, USA 
(e-mail: {wliu, dave}@caps.fsu.edu). 

2 Jagannathan Sarangapani, Ganesh K. Venayagamoorthy, Donald C. 
Wunsch II, and Mariesa L. Crow are with the Department of Electrical and 
Computer Engineering, University of Missouri - Rolla, MO 65401 USA, 
(e-mail: {sarangap, ganeshv, dwunsch, and crow}@umr.edu). 

 

to overcome the limitation of the above feedback 
linearization methods and to enhance robustness of systems, 
there appear numerous results on the decentralized nonlinear 
robust control of power systems [4-9]. As expected, these 
feedback linearization and backstepping techniques are 
modified to accommodate model uncertainties. In all these 
papers, the stability and robustness of the control system were 
demonstrated using Lyapunov analysis.  

Neural networks have been proved to be an excellent tool 
for function approximation. NN have been widely used in the 
indirect and direct types of nonlinear controller designs. 
Recently, NN were applied to the design of decentralized 
controllers [10-12]. In these papers, NNs are used to 
approximate the unknown nonlinear dynamics of the 
subsystems and to compensate the unknown nonlinear 
interactions. Though only local information/measurement are 
used to design the controllers for subsystem, the stability of 
the overall system and the coordination of subsystem 
controllers can be guaranteed. 

This paper presents two NN based decentralized controller 
designs for large scale power systems, one is for the 
excitation control and the other is for the steam valve control. 
For both controller designs, it can be concluded that all of the 
signals in the closed loop (system states and NN weights) are 
guaranteed to be uniformly ultimately bounded and 
eventually converge to a compact set. Simulation studies 
conducted with a three machine power system demonstrate 
the effectiveness of the proposed decentralized NN 
controllers. 

II. BACKGROUND 
The following mathematical notions are required for 

system approximation using NNs and system stability 
analysis in the design of an adaptive controller.  

A. Approximation Property of NN 
The commonly used property of NNs for control is its 

function approximation and adaptation capacities [13]. Let 
f(x) be a smooth function from Rn → Rm, then it can be shown 
that, as long as x is restricted to  a compact set nRS ∈ , for 
any given positive number εN, there exist weights and 
thresholds such that 

)()()( xxWxf T εϕ +=        (1) 
where x is the input vector, φ(.) is the activation function, W is 
the weight matrix of the output layer and ε(x) is the 
approximation error that satisfies Nx εε ≤)( .  

For the above function approximation, φ(x) must form a 
basis [14]. For two layer neural networks, φ(x)=σ(VTx), where 
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V is the weight matrix of the first layer and σ(x) is a sigmoid 
function. If V is fixed, then W becomes the only design 
parameter. It has been shown in [15] that φ(x) can form a 
basis if V is chosen randomly. The larger the number of the 
hidden layer neurons Nh, the smaller the approximation error 
ε(x).  

 

B. Stability of Systems 
To formulate the controller, the following stability notion 

is needed. Consider the nonlinear system given by 

)(
),(

xhy
uxfx

=
=&          (2) 

where x(t) is a state vector, u(t) is the input vector and y(t) is 
the output vector [16]. The solution to (2) is uniformly 
ultimately bounded (UUB) if for any U, a compact subset of 
Rn, and all Uxtx ∈= 00 )(  there exists an ε > 0 and a number T 
(ε,x0) such that ||x(t)|| < ε for all t  ≥  t0 + T. 

III. DYNAMIC MODEL OF LARGE SCALE POWER SYSTEMS 
For a large scale power system with n interconnected 

generators, the following dynamic equations are widely used 
to represent the subsystems [1, 5, 7, and 17]. 
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where i=1,…n, δi is the power angle in rad, ωi is the relative 
speed in rad/s, Di is the per unit damping constant, Hi is the 
inertia constant in second, Pmi is the mechanical input power 
in p.u., Pei is the electrical power in p.u., Eqi

’  is the q-axis 
internal transient electric potential in p.u., Eqi is the EMF in 
the quadrature axis in p.u., Efi is the equivalent EMF in the 
excitation coil in p.u., Pmi is the mechanical input power in 
p.u., Xei is the steam valve opening in p.u., Kmi is the gain of 
the turbine, Kei is the gain of the speed governor, Tmi is the 
time constant turbine in second, Tei is the time constant of the 
speed governor in second, Ri is the regulation constant in p.u., 
and Pci is the power control input in p.u.[6]. 

The following equations are necessary to calculated Eqi 
and Pei from the algebraic power network equations. 
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where Qei is the reactive power in p.u., Idi is the direct axis 
current in p.u., Iqi is the quadrature axis current in p.u., and Bij 
is the ith row and jth column element of nodal suseptance 

matrix at the internal nodes after eliminating all physical 
buses in p.u. [7]. 

A. Model for excitation controller design 
Since the time constants of the turbine control loop is 

much larger than that of the excitation control loop, the 
mechanic power input to the generator is assumed to be 
constant, that is Pmi=Pmi0. For simplification, the third state 
variable is substituted with the electrical power deviation ΔPei, 
defined as ΔPei=Pei-Pmi0. After transformation, the model 
used for the decentralized excitation controller can be 
expressed as (5). 
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where vfi is the control signal for the transformed system 
model, γi(δ,ω) is called the interconnection term because it is 
function of state variables other than the ith subsystem. vfi and 
γi(δ,ω) are defined according to (6) and (7) respectively. The 
process resulting the following equations can be found in [5]. 
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(6) 

0( )fi qi fi di di qi di mi d i ei iv I E x x I I P T Q ω′ ′= − − − −  (7) 
If vfi is designed as the control signal for the transformed 

model, then the actual control signal Efi can be calculated 
according to (7) from locally measurable variables.  

Our decentralized controller design requires the bound of 
the interconnection term to be expressed as a sum of functions 
of subsystem signals. Similar to the bound analysis in [17], 
the following assumption is proposed. 
Assumption 1: The Efi may rise by up to k times of the Eqi with 
k>1. 
Remark 1: It is necessary to note that we are not assuming the 
exact value of k to be known. We are assuming the ratio 
between Efi and Eqi is known instead. During the controller 
design, the impact of k will be approximated by NNs. 

According to [7], γi(δ,ω) is bounded according to 
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where γi1j and γi2j are unknown constants decided by system 
parameters. 

For simplification, define a new set of state variables 
T

iiii
T

iiii xxxx ][][ 0321 ωωδδ &−== so as to transform 
the system model into a format as (9). 
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where fi(.)=ki1xi2+ki2xi3 with ki1~3 defined as 
ki1=−Di/(2HiTd0i’), ki2=−Di/(2Hi) −1/Td0i’,  ki3=-ω0/(2HiTd0i’) 
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correspondingly, Δi(x)=-ω0/(2Hi)γi(x), and the newly 
introduced control signal ui is defined  as ui=- ω0/(2HiTd0i’)vfi.  

After transformation, the bound of the interconnection 
terms can be expressed as (10). 
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n
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j
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Δ ≤ ∑  (10) 

B. Model for the steam valve controller design 
The following set of equations is used in our decentralized 

steam valve controller design. 
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For this steam valve control model, Pei is the inter- 
connection term. According to [7], Pei is bounded by (12). 
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where gij are unknown constants decided by generation 
capacities. 

Define ΔPmi=Pmi-Pmi0, ΔXei=Xei-Xei0, where Pmi0 and Xei0 
are the stable values of Pmi, Xei respectively for some initial 
operating point, then (11) can be transformed into (13).  
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where, ki4=-Di/(2Hi), ki5=ω0/(2Hi), ki6=ki5/Pmi0, ki7=-1/Tmi, 
ki8=Kmi/Tmi, ki9=-Kei/(TeiRiω0), ki10=1/Tei. 

For simplification, define xi=[xi1, xi2]T=[δi, ωi]T and 
ξi=[ ξi1, ξi2]T= [ki5ΔPmi, ki5ki8ΔXei]T, then the system dynamics 
can be transformed into (14). 
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where, fi0(xi2)=ki4xi2+ki6, fi1(ξi1)=ki7ξi1, fi2(xi2,ξi2)=ki5ki8ki9xi2 

-ki10ξi2, and the bound of the interconnection term Δi(x) is 
given by (15). 

1
1

( )
n

i ij j
j

x xδ
=

Δ ≤ ∑  (15)  

IV. DECENTRALIZED CONTROLLER DESIGNS 
The decentralized excitation and steam valve controls are 

designed separately according to their corresponding 
transformed models. 

A. NN based decentralized excitation controller design 
First consider the ith subsystem. Define the filter error ir  as  

i
TT

ii xr ]1[Λ=  (16) 
where xi=[xi1,xi2,xi3]T, Λi=[λi1, λi2]T is an appropriately chosen 
coefficient vector such that xi→0 as ri→0 (i.e. s2+λi2s+λi1=0  
is Hurwitz).  

Taking the derivative of ri to get 

iiiii
T
ii dxufxr +Δ+++Λ= )((.)]0[&  (17) 

For subsystem without interconnection term Δi(x), the 
control signal ui can be chosen as: 

(.)]0[ ii
T
iiii fxrKu −Λ−−=  (18) 

where Ki>0 is the design parameter. 
To counteract the effects of interconnection terms, NNs are 

used here. According to the NN approximation theory, it can 
be conclude that there is a NN such that 

1 2
1

( ) ( , )
n

T
i i i i ji i i

j
W X x xε δ
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where 1 2[ , ,1]T
i i iX x x=  is the input vector to the NN, iε  is 

the bounded NN approximation error given by iMi εε ≤ . 
Thus, the actual control signal can be chosen as 

)(ˆ)sgn((.)]0[ ii
T
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T
iiii XWrfxrKu Φ−−Λ−−=  (20) 

The Lyapunov function for the ith subsystem is chosen 
according to 
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T
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2
1

2
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where iW~  is the weight estimation error defined as  

iii WWW −= ˆ~  (22) 
and 0>Γi  is another design parameter. 

Taking the derivative of iV  to get 
2 1

2 1

ˆ ( ) ( )

   ( )

T T
i i i i i i i i i i i i

T T
i i i i i i i iM i i i

V K r r W X r x W W

K r r W X r W Wε

−

−

= − − Φ + Δ + Γ

≤ − − Φ + + Γ

&& % %

&% % %
 (23) 

Thus the Lyapunov function for the overall system 
becomes 

∑
=

=
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Note that 
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The weight updating rule is chosen according to 

 iiiiiiii WXrW ˆ)(ˆ Γ−ΦΓ= α&  (27) 
Then (24) becomes 
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For simplification, define ∑
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selection of design parameters Ki and αi, such that Ki>γ+1/2, 
and )( 1
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−Γ≥ ii γλα , then we get 
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Theorem 1: Consider the closed-loop system consisting of 
system (8), the controller (17), and the NN weight updating 
laws (25). For bounded initial conditions, we have the 
following conclusion.  

All signals in the closed loop system remain uniformly 
ultimately bounded, and the system states x  and NN weight 
estimates Ŵ  eventually converge to a compact set Ω . 

⎭
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⎫

⎩
⎨
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<=Ω
γ
δVWr ˆ,  (33) 

Proof: From (33), it can be seen that if ir  and iW~  are outside 
of the compact set defined as (33), then V&  will remain 
negative definite until the systems state and the weight 
estimate errors enter the Ω. Thus, ir  and iW~  are uniformly 
ultimately bounded. Furthermore, since iW  exist and are 
bounded, then iŴ  are also bounded. Considering (16) and the 
boundedness of ir , we can conclude that ix  is bounded. 
Using (20), we conclude that control signal u  is also 
bounded.  

Thus, all signals in the closed loop system remain 
bounded, and the system states x , and NN weight estimates 

iŴ  eventually converge to a compact set Ω. 

B.  NN Based Decentralized Steam-Valve Control 
According to backstepping, the design procedure is 

described using three steps [18].  
Step 0: First consider the ith subsystem. Define the error 

between the actual and desired system output as 
 1 1i i i de x x= −  (34) 

Then the filtered tracking errors can be defined as 
 

0 [ 1]i i iz eλ=  (35) 

where [ , ]i i ie e e= & , λi>0 such that xi1->x1d as zi0->0 (i.e. 
s+λi=0 is Hurwitz).  

Taking the derivative of (35) and using (14) to get 
0 2 0 2 1( ) (.)i i i i i i iz x f xλ ξ= + + + Δ&  (36) 

By viewing 1iξ  as the virtual control signal, the ideal value 
of which can be chosen according to 
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where 00 >iK  is the design parameter. 
Based on NN approximation theory [] and applying the 

Assumptions, the latter part of the above equation can be 
approximated by using two NNs.  
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where T
ii xX ]1,,[ 201 = , T

ii xX ]1,,[ 102 = , and the approximation 

errors are bounded according to M
ii 0101 εε ≤  and M

ii 0202 εε ≤ .  
If 1iξ  is the actual control signal, the virtual control signal 

can be chosen as 

0 0 0 01 01 01 0 02 02 02
ˆ ˆˆ ( ) sgn( ) ( )T T

i i i i i i i i i ir K z W X z W X= − − Φ − Φ  (39) 
Remark 3: During the following controller design, it is 
necessary to take the derivative of the virtual control signal. 
The procedure cannot proceed if the virtual control signal is 
not continuously differentiable. This problem can be solved 
by approximate of the discontinuous sign function with a 
continuous function. A choice of the function is 
f1(x)=(1-e-kx)(1+e-kx) with k>0. When |x| is approximated by 
f2(x)=xf1(x).  It is easy to verify that the estimation error is 
bounded [11].  

Thus, Xi02=[f2(xi1|),1]T is selected to replace [|xi1|,1]T as the 
NN input and the realizable virtual control signal becomes 
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Choose the Lyapunov function for this step as 
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where Γi01= Γi01
T>0  and Γi02= Γi02

T>0  are the adaptation gain 
matrices. 

Choose the weights updating rules for 01
ˆ

iW  and 02
ˆ

iW  as 
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According to the bound analysis in [11], we know the 
following expressing is valid. 
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where Ci02 is a constant as long as k and the NN parameters 
(number of input neurons, number of hidden neurons, and 
type of transfer functions) are decided [11].  
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Step 1:Taking the derivative of (41) and using (14) to get 
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122 iiiz αξ −=  (48) 

By viewing ξi2 as the virtual control signal, the ideal virtual 
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According to NN approximation theory, we know that 
there exist two NNs, such that one NN satisfies 
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Similar to Step 0, change the input vector to the NN to 
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Correspondingly, the realizable control signal becomes 
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where Γi11, Γi12 >0   are the adaptation gain matrices, 11
~

iW  and 
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iW  are the weights estimation errors.  
The weights updating rules are chosen as 
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Similar to Step 0, taking the derivative (54) and using (55) 
to get 
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Step 2:Taking the derivative of (53) to get 
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Thus, 
1

2 2 2 2 1
2

1 1
02 0 02 02 12 1 23 12

02 12

( , ) (.)

     ( ) ( )ˆ ˆ

i
i i i i i i i

i

i i
i i i i i i i i

i i

z f x u
x

z X z X
W W

αξ φ

α α

∂
= + − − Δ

∂
∂ ∂

− Γ Φ − Γ Φ
∂ ∂

&
 (59) 

The desired control can be selected as: 
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Similarly, one NN is used to approximate 2 2 2( , )i i if x ξ  as 
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where M
knikni 2,,2,, −− ≤ εε  and the NN input is defined as 
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Since this is the last step, there is no need to approximate 
(.)sign  using (.)1f . Finally, the actual control signal can be 

chosen as 
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The Lyapunov function for the overall system is selected as 
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Evaluating (67)'s derivative and using the same analysis as 
[11] to get 
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Theorem 2: Consider the closed-loop system consisting of 
system (11), the desired output dx , the controller (65), and 
the NN weight updating laws (43), (55) and (66). If the NN 
transfer functions are selected to be smooth and bounded, and 
the NNs are large enough, such that they can approximate 
their objective functions accurately, then for bounded initial 
conditions, we have the following conclusion.  

All signals in the closed loop system remain uniformly 
ultimately bounded, and the system states and NN weights 
eventually converge to a compact set Ω. 
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Since the proof for this theorem is similar to Theorem 1, 
limited by pages number, the proof is omitted here. 

V. SIMULATION STUDY 
The proposed decentralized NN controller designs are 

evaluated with a three-machine power system described in 
[7]. For convenience, the configuration and the parameters of 
the example power system are shown in Fig.1 and Table 1 
respectively. 
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Fig. 1. Configuration of the three-machines power system. 
 

TABLE I 
GENERATOR AND TRANSMISSION LINE PARAMETERS 

Symbol Generator No. 1 Generator No. 2 
D (p.u.) 5 3 

H (s) 4 5.1 
Tm (s) 0.35 0.35 

Km 1.0 1.0 
Ke 1.0 1.0 

Te (s) 0.1 0.1 
R 0.05 0.05 

Ω0 (rad/s) 377 377 
x12=0.55p.u x13=0.53p.u. x23=0.6p.u. 

 

A. Simulations Results for Excitation Controls 
The excitation controller design is evaluated with a 3-phase 

short circuit fault. The fault happened at the middle of one of 
the transmission lines between generators G1 and G2. The 

fault happened at 1 second until it is cleared by disconnecting 
the faulted line at 1.2 second, and then the faulted line is 
restored at 2 second. 

The initial operating points are chosen as 

.. 0.1.,. 01.1P rad, 1.0584
.. 0.1.,. 10.1P rad, 1.0608
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The design parameters for the two decentralized excitation 
controllers are the same according to (71). 
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    (71) 

Simulation results when there is no excitation controller are 
shown in Figs. 2~3 and the simulation results under the 
proposed NN based excitation control are shown in Figs. 4~7.  
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Fig. 2. Power angle responses without excitation controls 
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Fig. 3. Speed deviation responses without excitation controls 
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Fig. 4. Power angle responses under the decentralized excitation controls 
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Fig. 5. Speed deviation responses under the decentralized excitation controls 
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Fig. 6. Weights updating process of the excitation control for G1 
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Fig. 7. Weights updating process of the excitation control for G2 

 
It should be noted that when there are no excitation 

controls in the system, after the fault is cleared, the system 
will still converge, but the oscillation takes long time and the 
system may converge to another operating point other than 
the original one.  

Furthermore, it can be seen from Figs 2 and 3 that the 
system responses compose of different frequencies. This is 
because the interaction of between the subsystems’ activities. 
From Figs. 4 and 5, it can be seen that the interactions have 
been successfully damped under the proposed decentralized 
excitation controls. Since there is no direct communication 
and coordination between the subsystem controllers, this 
performance is achieved by the analysis of the 
interconnection terms and the controller design. 

B. Simulations Results for Steam Valve Controls 
The proposed steam valve controller is evaluated under the 

same fault as the excitation controller.  
The design parameters for all of the decentralized 

excitation controllers are the same according to (72). 
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Simulation results are shown in Figs 8~12. 
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Fig. 8. Power angle responses comparison of G1 
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Fig. 9. Relative speed responses comparison of G1 
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Fig. 10. Power angle responses comparison of G2 

492



 
 

 

0 2 4 6 8 10
-0.3

-0.2

-0.1

0

0.1

0.2

time in seconds

re
la

tiv
e 

sp
ee

ds
 in

 ra
d/

s
w/o ctrl
with ctrl

 
 
Fig. 11. Relative speed responses comparison of G2 
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Fig. 12. Control signals responses of G1 and G2 
 

From the above simulation results, it can be seen that 
although the subsystem controllers only take into account the 
local signals, the coordination of the control activities can be 
realized. Furthermore, from Figs 12, it can be observed that 
the control signals are bounded. 

VI. CONCLUSION 

This paper proposed two NNs based decentralized 
controller designs for the excitation and steam valve control 
of multimachine power systems. The controller designs are 
based on the bound analysis of the interconnection terms and 
rigorous Lyapunov stability analysis. The introduction of 
NNs eliminates the need for precise parameters of the system 
model. Simulation results demonstrate the effectiveness of 
the two controller designs. Future work will includes the 
consideration of more practical power system model. 
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