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Two Neural Network Based Decentralized Controller Designs For
Large Scale Power Systems

Wenxin Liu', Jagannathan Sarangapani’, Ganesh K. Venayagamoorthy®, Donald C. Wunsch II%,
Mariesa L. Crow” and David A. Cartes'

Abstract—This paper presents two neural network
(NN) based decentralized controller designs for large
scale power systems’ generators, one is for the excitation
control and the other is for the steam valve control.
Though the control signals are calculated using local signals
only, the transient and overall system stabilities can be
guaranteed. NNs are used to approximate the unknown and/or
imprecise dynamics of the local power system and the inter-
connection terms, thus the requirements for exact system
parameters are released. Simulation studies with a three
machine power system demonstrate the effectiveness of the
proposed controller designs.

Index Terms—Decentralized control, power systems, neural
networks, and large scale system.

I. INTRODUCTION

OWER systems are large scale, distributed and highly

nonlinear systems with fast transients. One difficulty in
controller design is the coordination of the control activities
for the subsystem controllers. Due to technical and economic
reasons, the concept of centralized control is not applicable.
A decentralized control strategy designs subsystem
controllers separately, requiring local information and
measurement only or with a minimum amount of information
from other subsystems.

The traditional decentralized control strategies of power
systems were designed based on linearized system models at
some operating points. The selection of base operating points
and tuning of parameters are quite empirical. Furthermore,
the controllers' performance cannot be guaranteed under
certain unforeseen large disturbances.

Since the differential geometric method was introduced to
nonlinear control systems design, various stabilizing control
results are reported based on nonlinear multimachine power
system models [1-3]. However, there is a problem with the
differential geometric based nonlinear controller designs. The
problem is that exact feedback linearization requires the exact
knowledge of the system dynamics. Imprecise knowledge
will greatly degrade the performance of controller designs.
Since it is impossible to make the assumption that the
complex power system dynamics can be known exactly, the
possible applications are limited by this assumption. In order
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to overcome the limitation of the above feedback
linearization methods and to enhance robustness of systems,
there appear numerous results on the decentralized nonlinear
robust control of power systems [4-9]. As expected, these
feedback linearization and backstepping techniques are
modified to accommodate model uncertainties. In all these
papers, the stability and robustness of the control system were
demonstrated using Lyapunov analysis.

Neural networks have been proved to be an excellent tool
for function approximation. NN have been widely used in the
indirect and direct types of nonlinear controller designs.
Recently, NN were applied to the design of decentralized
controllers [10-12]. In these papers, NNs are used to
approximate the unknown nonlinear dynamics of the
subsystems and to compensate the unknown nonlinear
interactions. Though only local information/measurement are
used to design the controllers for subsystem, the stability of
the overall system and the coordination of subsystem
controllers can be guaranteed.

This paper presents two NN based decentralized controller
designs for large scale power systems, one is for the
excitation control and the other is for the steam valve control.
For both controller designs, it can be concluded that all of the
signals in the closed loop (system states and NN weights) are
guaranteed to be uniformly ultimately bounded and
eventually converge to a compact set. Simulation studies
conducted with a three machine power system demonstrate
the effectiveness of the proposed decentralized NN
controllers.

II. BACKGROUND

The following mathematical notions are required for
system approximation using NNs and system stability
analysis in the design of an adaptive controller.

A. Approximation Property of NN

The commonly used property of NNs for control is its
function approximation and adaptation capacities [13]. Let
f(x) be a smooth function from R" — R", then it can be shown
that, as long as x is restricted to a compact set S e R", for
any given positive number ey, there exist weights and
thresholds such that

S =W p(x)+&(x) (1)
where x is the input vector, ¢(.) is the activation function, W is
the weight matrix of the output layer and g(x) is the
approximation error that satisfies (x) < g, .

For the above function approximation, ¢(x) must form a
basis [14]. For two layer neural networks, ¢(x)=c(V'x), where
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V' is the weight matrix of the first layer and o(x) is a sigmoid
function. If V' is fixed, then W becomes the only design
parameter. It has been shown in [15] that ¢(x) can form a
basis if V' is chosen randomly. The larger the number of the
hidden layer neurons N,, the smaller the approximation error

e(x).

B. Stability of Systems

To formulate the controller, the following stability notion
is needed. Consider the nonlinear system given by
X = f(x,u)
y=h(x)
where x(2) is a state vector, u(2) is the input vector and y(z) is
the output vector [16]. The solution to (2) is uniformly
ultimately bounded (UUB) if for any U, a compact subset of
R", and all x(t,)=x, €U there exists an ¢ > (0 and a number T’

(e,xy) such that ||x(?)|| <eforallt > t)+ T

2

III. DYNAMIC MODEL OF LARGE SCALE POWER SYSTEMS

For a large scale power system with n interconnected
generators, the following dynamic equations are widely used
to represent the subsystems [1, 5, 7, and 17].

o =0,

== D w; + “h (P,—F)
2H, 2H,

RS

T

d0i

Pmi = _LBM +&Xﬂ
L. T
Xei:_ Ké'f a)i_LXex+ich
TRw, ' T T

ei” i ei ei

3)

E;,' = (Efi - Eqi)

where i=1,...n, ¢, is the power angle in rad, w; is the relative
speed in rad/s, D; is the per unit damping constant, H; is the
inertia constant in second, P, is the mechanical input power
in p.u., P, is the electrical power in p.u., Eq,-' is the g-axis
internal transient electric potential in p.u., E,; is the EMF in
the quadrature axis in p.u., £j; is the equivalent EMF in the
excitation coil in p.u., P,; is the mechanical input power in
p-u., X,; is the steam valve opening in p.u., K, is the gain of
the turbine, K,; is the gain of the speed governor, 7, is the
time constant turbine in second, T,; is the time constant of the
speed governor in second, R; is the regulation constant in p.u.,
and P,; is the power control input in p.u.[6].

The following equations are necessary to calculated E,;
and P,; from the algebraic power network equations.
Eqi = E(;i +(x, _'x:li)ldi

@

P, =E,> E\B,sin(6,-8,) |I,=- E,B,cos(5,~5,) )
= =

a4 /)

0, =-E, > E\B, cos(5,~6,) |1, = E,B,sin(,-5,)
J=1 Jj=1

where Q,; is the reactive power in p.u., I is the direct axis
current in p.u., I,; is the quadrature axis current in p.u., and B;
is the ith row and jth column element of nodal suseptance

matrix at the internal nodes after eliminating all physical
buses in p.u. [7].

A. Model for excitation controller design

Since the time constants of the turbine control loop is
much larger than that of the excitation control loop, the
mechanic power input to the generator is assumed to be
constant, that is P,;=P,,;. For simplification, the third state
variable is substituted with the electrical power deviation AP,;,
defined as AP,=P,-P,;,. After transformation, the model
used for the decentralized excitation controller can be
expressed as (5).

é.‘i:a)i
D

i

)

== w; = ) AF,

2H, 2H, °
LIPS N
Td'ni “ ]Z!',ni g 7/i '
where v; is the control signal for the transformed system
model, y;(d,w) is called the interconnection term because it is
function of state variables other than the ith subsystem. v; and
7:(6,) are defined according to (6) and (7) respectively. The

process resulting the following equations can be found in [5].

Apei:

7:(8,0) = Ej; Y By By sin(5; —8,)~Ej; ) Ey; By cos(S; =8, ),
j=1 j=1
(6)
(7

If vy is designed as the control signal for the transformed
model, then the actual control signal E; can be calculated
according to (7) from locally measurable variables.

Our decentralized controller design requires the bound of
the interconnection term to be expressed as a sum of functions
of subsystem signals. Similar to the bound analysis in [17],
the following assumption is proposed.

Assumption 1: The E; may rise by up to & times of the £,; with
k>1.

Remark I: 1t is necessary to note that we are not assuming the
exact value of k to be known. We are assuming the ratio
between Ej; and E,; is known instead. During the controller
design, the impact of k will be approximated by NNs.

According to [7], y:(d,w) is bounded according to

71(5,0))‘ Si(?’n,“““@""?’n wj‘)gz”:(%u‘&j""%z w]‘) (8)
j=1 j=1

where y;;; and y;,; are unknown constants decided by system
parameters.
For simplification, define a new set of state variables

— ! ’
Ve =L, E = Oy = %) d gy = By = T50,0,0,

x; =[x, X, x31" =[6,-6, @ @] so as to transform
the system model into a format as (9).
X =X,
X = X5 ©)
Xy =f,()+u,+A(x)
where  fi()=kix;tkoxi;  with  k;3 defined  as
kiy==Dy/(2H,Ta5:’), kiz=—Dy/(2H) —1/Tgoi’, kis=-wo/(2HTay;’)
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correspondingly, A4,(x)=-wy/(2H)y,(x), and the newly
introduced control signal u; is defined as u,=- wy/(2H;T;’)v;.

After transformation, the bound of the interconnection
terms can be expressed as (10).

|Ai(x)|gzn:5zj(|xj1|’|sz|) (10)
J=l
B. Model for the steam valve controller design

The following set of equations is used in our decentralized
steam valve controller design.

5:' =0,
o, == D o, + 2 (B —F)
2H, ' 2H, (11)
. K .
Pmi :_LPmi+¢Xei
T:m' T;ni
X,=— K, wi_iXei_FiR-i
T;iRia)O T;i Z’Li

For this steam valve control model, P, is the inter-
connection term. According to [7], P,; is bounded by (12).

SZn;gﬁ |sin5/.|szn:‘g[/.|5/.| (12)
J= i=

where g; are unknown constants decided by generation
capacities.

Define AP,,;=P,,i-Pyio, AX.i=X.i-X.i9, Where P,y and X,
are the stable values of P,;, X,; respectively for some initial
operating point, then (11) can be transformed into (13).

£,

o =0,
w, =k, 0 + kAP, +k,—kP, (13)
A}')mi =k, AP, +kAX,

mi
AX, = koo, — k) AX , +k, P,

where, ki,=-D/(2H), kis=wy/(2H), kis=kis/Pnio, kiz=-1/Ti;,
kis=Ki/ Ti, kio=-Kei/ (TeiRiwg), kijo=1 /T

For simplification, define x=/x;, xi.J'=/0, ;] and
E=[ ¢ &l T= [kisAP,,;, kiskisAX.;] T, then the system dynamics
can be transformed into (14).

X = Xip
Xy = Jio (%) + 8 + A (%) (14)
Qéil = fi (él) + §i2

& = f(x0:8) +u,

where, fio(xi)=kixiztkis, fi(Ci)=kirlit, fia(Xin &) =kiskiskioxiz
-kijo&i2, and the bound of the interconnection term A;(x) is
given by (15).

A, (x)‘ < Zé‘y
=

le‘ (15)

IV. DECENTRALIZED CONTROLLER DESIGNS

The decentralized excitation and steam valve controls are
designed separately according to their corresponding
transformed models.

A. NN based decentralized excitation controller design

First consider the ith subsystem. Define the filter error 7; as
n=[A 'y (16)
where x;=/x;,x;5,x:3] ", Ai=[Ai1, %2]" is an appropriately chosen
coefficient vector such that x,—0 as r—0 (i.e. s°+As+4,=0
is Hurwitz).

Taking the derivative of 7; to get
=100 AT+ fiO)+ i+ M)+ d (17)

For subsystem without interconnection term A;(x), the
control signal #; can be chosen as:

T

up ==K;r; =[0 A5 Ix; = f;()

where K;>0 is the design parameter.
To counteract the effects of interconnection terms, NNs are

used here. According to the NN approximation theory, it can
be conclude that there is a NN such that

(18)

(19)

9 xi2|)

WID,(X)+6 =36, (x,
=

where X, = [| X, ,1]T is the input vector to the NN, ¢; is

5[ X2

the bounded NN approximation error given by |gl-| <&y -
Thus, the actual control signal can be chosen as

u;==Kr; [0 ATTx = f;()—sgn(r) W, @,(X,)  (20)
The Lyapunov function for the ith subsystem is chosen

according to

Vi :l’"iz +ln7irri71WN/i (21)
2 2
where VI7, is the weight estimation error defined as
W, =W, ~W, (22)
and I'; > 0 is another design parameter.
Taking the derivative of V; to get
V=K = [n W @,(X,) + 5, () + T, W, (23)

< _Kiriz _|ri| Vf/iT(Di(Xi) +|ri|giM + W?irriiln;/i
Thus the Lyapunov function for the overall system
becomes

=y, (24)
Noltie1 that

;ZQ (|le|’|xﬂ|) = ZZQ (EANH) 25)

“Ths

V< i[_zqrf [l @, ) Tl | 20)
Thzlweight updating rule is chosen according to

Wy =T, (X ) - T, @)
Then (24) becomes

<3 K =l o)

=l (28)

Since
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_aiW:TWi <-¢ |W| +a;|Wz“W|S_&|W:| Wrznax (29)
2 2

and

si]\/[‘r,‘s’—+%s§u (30)

Thus,

VsZn:[—(K - |W| +—W,fnax+;g§w] €}

2
For simplification, define s = ZM . If the
2
i=1
selection of design parameters K; and a;, such that K>y+1/2,
and ¢, > y4,, (I[7"), then we get

‘max

Vs—yz[riz+VI7iTF;'VI7i]+5s—yV+5 (32)
i=1

Theorem 1: Consider the closed-loop system consisting of
system (8), the controller (17), and the NN weight updating
laws (25). For bounded initial conditions, we have the
following conclusion.

All signals in the closed loop system remain uniformly
ultimately bounded, and the system states x and NN weight

estimates W eventually converge to a compact set € .

V<5}
Ve

Proof: From (33), it can be seen that if #, and W, are outside

Q{W (33)

of the compact set defined as (33), then Y will remain
negative definite until the systems state and the weight
estimate errors enter the Q. Thus, 7; and 7, are uniformly
ultimately bounded. Furthermore, since W, exist and are
bounded, then , are also bounded. Considering (16) and the

boundedness of 7;, we can conclude that x; is bounded.

Using (20), we conclude that control signal u is also
bounded.

Thus, all signals in the closed loop system remain
bounded, and the system states x, and NN weight estimates

Vf/l- eventually converge to a compact set Q.

B. NN Based Decentralized Steam-Valve Control

According to backstepping, the design procedure is
described using three steps [18].

Step 0: First consider the ith subsystem. Define the error
between the actual and desired system output as

€ =X~ X (34)
Then the filtered tracking errors can be defined as
z=l4 1 (35)

where e =[e,é], 4>0 such that x;->x;4 as z->0 (i.e.
s+4;=0 is Hurwitz).
Taking the derivative of (35) and using (14) to get
Zig = Ay + [ () + 6 +A,() (36)
By viewing &;; as the virtual control signal, the ideal value
of which can be chosen according to

rio = —Kiozio —[Aixip + fio(x;2)] - Sig”(zio)z Slxa| 37
j=1
where K;, >0 is the design parameter.

Based on NN approximation theory [] and applying the
Assumptions, the latter part of the above equation can be
approximated by using two NNs.

W, TCDI()]( Xio)+ &0y = AXy + [io(x,)

i01

\ (38)
Wioqu)ioz (Xi02 )+Egp = z o
=

i |x,.1|

where X0, =[x,,,1]", )(1-02:|]in|,,l]T , and the approximation

: M M
errors are bounded according to |gi01| < &;; and |5i02| < &g -

If &, is the actual control signal, the virtual control signal

can be chosen as
Fy = Zjy Wzm D, (X)) — Sgn(ZIO)VVlOZT(DIOZ( Xin) (39)

Remark 3. During the following controller design, it is
necessary to take the derivative of the virtual control signal.
The procedure cannot proceed if the virtual control signal is
not continuously differentiable. This problem can be solved
by approximate of the discontinuous sign function with a
continuous function. A choice of the function is
fi(x)=(1-e"™)(1+e™) with k>0. When |x| is approximated by
fr(x)=xfi(x). It is easy to verify that the estimation error is
bounded [11].

Thus, Xip=/f>(xi1l), 1]" s selected to replace [|x,-1|,1]T as the
NN input and the realizable virtual control signal becomes

o ==Kz — o)~ f(Zzo) 102 D, (Xip) (40)
Define
zn=S&1—To
Choose the Lyapunov function for this step as

VO*ZVOI Z[ 10+ W01F1511Wz()1+ Wozrzonzozj (42)

101 101(

(41)

Where Ligi=T; >0 and Lipo=T ’>0 are the adaptation gain
matrices.

Choose the weights updating rules for W;,, and W, as
Wml =T, [2:0P 01 (X)) — i [01] (43)

Wioz = Tigal]2:0| @100 (X 00) = aiOZVf/iOZ]
According to the bound analysis in [11], we know the
following expressing is valid.

L& _op2
VOSZ( CiorZio + ZioZ ci02|VVi01| 103| 102| +Cio4) (44)
i=1

with

i0

and

3 a, o —1
OIZKiO__>0’Ci02:[_01>0’ Cm:aIL>O’
2 2 '

101 102 102 2 1 M2
| 101| | 102| + 102| 102|+ 7;02+28102

2
1 dM
+—{gf'§, +-2 J
2 &io

where Cj, is a constant as long as k and the NN parameters
(number of input neurons, number of hidden neurons, and
type of transfer functions) are decided [11].
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Step 1: Taking the derivative of (41) and using (14) to get

=¢,(. )+ i} Ap()+ T —T'n |ZIO|®10(X102) (45)
i VV{OZ
where
$o = Z:lz o, [fo(xlz)+§1] aWim —— W —% IOZaIOZW
(46)
Thus
Zy =[G+ S~ — 6 Ap()- . T2 |Zi2 (D102(Xi02) (47)
i2 VV:’OZ
Define
Zp =G — (48)

By viewing &, as the virtual control signal, the ideal virtual
control signal 7;;” can be chosen according to

rii 2y —[f1 (&) — 0]
_‘ |:z (|xn |):| +L |ZiO |}

According to NN approximation theory, we know that
there exist two NN, such that one NN satisfies

=-z, K,

(49)

Wil @1 (X)) + &y = f1(ED — o (50)
with X1y =[x, X125 §i1> Wigr, Wigo1] and |f9i11|S PR
and another NN satisfies
aal n
VViITZ(Dil2(Xi12)+£iIZ = 2 0 [Zaji(xil)]ﬁerozzfo D
i2 || =1

with X112 _[|Zl()| |x11| ] and |‘91]2| < 5112

12

Similar to Step 0, change the input vector to the NN to
Xina =1/ Gio)s / Gxin), f( “1) (52)

x12

Correspondingly, the realizable control signal becomes

=2 — Kyziy = :11 @, (X)) = fi(z)W, izq);iz(X;iz) (53)
Choose the Lyapunov function for this step as
(54)

V, = V+Z(

where Iy, I, >0 are the adaptation gain matrices, #,, and

1
T T+ -1
Z += Wm i VV,11+2W,12F:12 VV:IZ

W,, are the weights estimation errors.
The weights updating rules are chosen as

A

W: Fm[ i]](Xill)_aillVVi]]] (55)
an Fnz[ 1]2(X1]2) ) ;12]

Similar to Step 0, taking the derivative (54) and using (55)
to get

. . N ~
V1=V;)+Z|:ZZ +VVL]1F111VV111+VVIITZ nzW :|

(56)

Cio3 | 102| +Cios

Ly 0~ 102| 101|

2 Crmz

i=1

clll rl 112| l]]| 113| 112| +ci]4

3 Q, Qi —
where ey =K, —=>>00 ¢, =250 ¢y =—2—>0 and
2 ' 2 2

a; 2 a,,+C
Ci14—f VVilll +M| 12| +]:12| 12|+ 112
M
+l ,Al‘l+d""n +lg,ﬁ2
2 &in 2
Step 2:Taking the derivative of (53) to get
. or,
7= A )+ oy T, (X,
il ¢Il ax[z () 61/1/;02 102( 102) (57)
5
ll Fllz ilZ(XilZ)
i12
where
o oa; oa; oa; A
$=—"" 12+_1[f0(x:2)+~’§11]+_1 12+_1Wi01
ale 0x;y o0&, W, (58)
oa; Oy + da; ~
——TnapnW; ++Wi ——Tha.,W;
Y 02%i02" i W, 1 W 12%i12%i2
Thus
. o,
Zn = [ (X: &) tu, — 4, — : A ()
x; (59)
_ Oq,
~-T 102|Z,o|q)zoz(X,oz) 112|Zn|q)123(X112)

i02 i12
The desired control can be selected as:

uz* == Kz, =112 (x2,62) = 4]
(60)
_Slgn(ztz){ |:Z (|xi1|):|+ri02 |Z[0|+Fi12 |Zil|}

Similarly, one NN is used to approximate f, (x,,,&,) as
Wi @1 (Xin) + &1 = fi2 (X2, 60) (61)
where [¢,,,|< &Y, and the NN input is defined as
Xiar =% Xi25 Gt G2 Wiors Wioas Winis Wil (62)
and another neural network satisfying

122 D,y (X)) + 65 63)

ox

|le|{ |:25/t(|x11|):|+r102|ZIO|+r112|Zzll}

where |£,»’n,k,2| <&, and the NN input is defined as

i2

Xip = [|Z[O|s |Z- > X,-1|,

ooy
21 64
ox,, ] (64)

Since this is the last step, there is no need to approximate
sign(.) using f(.) . Finally, the actual control signal can be

chosen as

u=—zy —Kpzjp — WZlq)zZl( D)~ szgn(z,z)W 2Din (X, 22) (65)
Choose the weight updating rules for W,,, and W;,, as

Wizi :riZl[ZiZq)iZ](XiZI)_aiZIVViZI] (66)

Wiy = rizz[lzizlq’izz (Xi2) —aioWins ]
The Lyapunov function for the overall system is selected as

V= VI+ZV21—VI+Z( sz (67)

gFIZ VV!
Evaluating (67)'s derivative and using the same analysis as
[11] to get
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N , 2 Lo, 2 Lo, 2 68
V< _Zciklzik _Zcik2|VVikl| _chk3|Wik2| _zcm (68)
= pan) k=0 =0

i=1 =0

a, ‘
where ¢ -k,-1>0 Cpy=—2L o = %y , and
2 i23 2
M M W 2 2
& T éEy +ai2l| i21| +Q; |Wi22| )
Ci24 - 2

Theorem 2: Consider the closed-loop system consisting of
system (11), the desired output X, , the controller (65), and

the NN weight updating laws (43), (55) and (66). If the NN
transfer functions are selected to be smooth and bounded, and
the NNs are large enough, such that they can approximate
their objective functions accurately, then for bounded initial
conditions, we have the following conclusion.

All signals in the closed loop system remain uniformly
ultimately bounded, and the system states and NN weights
eventually converge to a compact set Q.

V<§}
Y

Since the proof for this theorem is similar to Theorem 1,
limited by pages number, the proof is omitted here.

(69)

Q ={XﬂE,VV;‘OI’VI/;'II’VViIDVV;‘OZ’VI/;‘Q’VViﬂ

V. SIMULATION STUDY

The proposed decentralized NN controller designs are
evaluated with a three-machine power system described in

[7]. For convenience, the configuration and the parameters of

the example power system are shown in Fig.l and Table 1
respectively.

Fig. 1. Configuration of the three-machines power system.

TABLE I
GENERATOR AND TRANSMISSION LINE PARAMETERS

Symbol Generator No. | Generator No. 2
D (p.u.) 5 3
H(s) 4 5.1
T (s) 0.35 0.35
K, 1.0 1.0
K. 1.0 1.0
T.(s) 0.1 0.1
R 0.05 0.05
Qy (rad/s) 377 377
x1,=0.55p.u x13=0.53p.u. X23=0.6p.u.

A. Simulations Results for Excitation Controls

The excitation controller design is evaluated with a 3-phase

short circuit fault. The fault happened at the middle of one of

the transmission lines between generators G1 and G2. The

fault happened at 1 second until it is cleared by disconnecting
the faulted line at 1.2 second, and then the faulted line is
restored at 2 second.
The initial operating points are chosen as
510 =1.0608rad, P, ;o =1.10 pat.,V, ;o =1.0 pas.

5y =1.0584rad, P, 5o =1.01 pat.,V,p0 =1.0 puu.
The design parameters for the two decentralized excitation
controllers are the same according to (71).

A, =A,=[2510]", K, =K, =5

I'=r,=5 a=a,=5,k=5
Simulation results when there is no excitation controller are
shown in Figs. 2~3 and the simulation results under the
proposed NN based excitation control are shown in Figs. 4~7.

(70)

(71)

power angles in p.u.

0.98 I I I I I I I I I
0 1 2 3 4 5 6 7 8 9 10

time in seconds

Fig. 2. Power angle responses without excitation controls

relative speeds in p.u.

0.2+

-0.25 I I I I I I | I |
0 1 2 3 4 5 6 7 8 9 10

time in seconds

Fig. 3. Speed deviation responses without excitation controls

1.065 T
— #1
— #2

1.055| L J

power angles in p.u.

1.05 | I I | I I I | I
0 1 2 3 4 5 6 7 8 9 10

time in seconds

Fig. 4. Power angle responses under the decentralized excitation controls
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B. Simulations Results for Steam Valve Controls

0.04 T
The proposed steam valve controller is evaluated under the
0.02 . .
_ same fault as the excitation controller.
2 The design parameters for all of the decentralized
£ . . .
2 excitation controllers are the same according to (72).
Q
g ooz i 4=5Ky=K,;=K,=5 k=5
2 ‘ - =T =T . =T. =T. =
B -0.04F “ 7 L= =Ty =T, =T =T =5 (72)
e
0.06L H | Qg = Oy = Qlyyy = Oy = Oy =y =5
! wherei=1, 2
-0.08 I Il Il I Il Il 1 1 1 . . . .
o 1 2 3 4 5 6 7 8 9 10 Simulation results are shown in Figs 8~12.
time in seconds
Fig. 5. Speed deviation responses under the decentralized excitation controls 1.12 . . .
0.2 ; ; ; ; ; ; ; ; ;
11
.
0.15} 1 B 108l A K \‘ A i
< \ \ / i\ /. ,
” 8 1.06 | @ LA AL AN
2 01l 1 o 106 ] 7Y
g g \W \ /f\ ‘ f \“‘ L\ \ /
[} o} | / !
= 2 104} [ \ 1
Z o005 g g ‘ \‘ \ / '
|
.02} \ | ]
0 N
J
l I Il Il Il
0 2 4 6 8 10
-0.05 L . - L L L . L L time in seconds
0 1 2 3 4 5 6 7 8 9 10

time in seconds
Fig. 8. Power angle responses comparison of G1

Fig. 6. Weights updating process of the excitation control for G1

0.07 0.3
0.06 - - 0.2
0.05- g é 0.1
) £
E 004 B 0
g E
Z oosf f @ 0.1
z E
0.02 - - g -0.2
0.01 R 0.3 1
0 , . , , , 0.4 I I I I
0 4 5 6 7 8 9 10 0 2 4 6 8 10
time in seconds time in seconds
Fig. 7. Weights updating process of the excitation control for G2 Fig. 9. Relative speed responses comparison of G1
It should be noted that when there are no excitation 114 ; ; ; ;
controls in the system, after the fault is cleared, the system with st
will still converge, but the oscillation takes long time and the " 112y
system may converge to another operating point other than % 11l n ]
the original one. = L
Furthermore, it can be seen from Figs 2 and 3 that the 8 108 f “‘ A / |
system responses compose of different frequencies. This is s Lob w A A
. . o ey Q . F 1 N
because the interaction of between the subsystems’ activities. 5 Vo ﬁ NV j ~
From Figs. 4 and 5, it can be seen that the interactions have 1.04} \ ‘\ | . k 1
been successfully damped under the proposed decentralized J v
excitation controls. Since there is no direct communication 1025 2 4 6 8 10

and coordination between the subsystem controllers, this time in seconds

performance is achieved by the analysis of the

. . . Fig. 10. Power angle responses comparison of G2
interconnection terms and the controller design.
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relative speeds in rad/s

Fig. 11. Relative speed responses comparison of G2
S ]
£ osf ‘w ‘ﬂ | F‘ er‘ﬁ |
B | [T
o R ]
1 |

time in seconds
Fig. 12. Control signals responses of G1 and G2

From the above simulation results, it can be seen that
although the subsystem controllers only take into account the
local signals, the coordination of the control activities can be
realized. Furthermore, from Figs 12, it can be observed that
the control signals are bounded.

VI. CONCLUSION

This paper proposed two NNs based decentralized
controller designs for the excitation and steam valve control
of multimachine power systems. The controller designs are
based on the bound analysis of the interconnection terms and
rigorous Lyapunov stability analysis. The introduction of
NN eliminates the need for precise parameters of the system
model. Simulation results demonstrate the effectiveness of
the two controller designs. Future work will includes the
consideration of more practical power system model.
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