

Scholars' Mine

Doctoral Dissertations

Student Theses and Dissertations

1966

Turbulence measurements in polymer solutions using hot-film anemometry

Gary Kent Patterson Missouri University of Science and Technology

Follow this and additional works at: https://scholarsmine.mst.edu/doctoral_dissertations

Part of the Chemical Engineering Commons Department: Chemical and Biochemical Engineering

Recommended Citation

Patterson, Gary Kent, "Turbulence measurements in polymer solutions using hot-film anemometry" (1966). *Doctoral Dissertations*. 459. https://scholarsmine.mst.edu/doctoral_dissertations/459

This thesis is brought to you by Scholars' Mine, a service of the Missouri S&T Library and Learning Resources. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

TURBULENCE MEASUREMENTS IN POLYMER

SOLUTIONS USING HOT-FILM ANEMOMETRY

BY

GARY KENT PATTERSON

А

DISSERTATION

submitted to the faculty of the

UNIVERSITY OF MISSOURI AT ROLLA

in partial fulfillment of the work required for the

Degree of

Doctor of Philosophy

Rolla, Missouri

January, 1966

THE UNIVERSITY OF MISSOURI AT ROLLA

GRADUATE SCHOOL

Graduate Form Ph.D. IV (Final Ph.D. Thesis Examination)

The Final Ph.D. Thesis Examination of Gary Kent Patterson

candidate for the degree of Doctor of Philosophy in

Chemical Engineering

has been conducted in accordance with the regulations of the Graduate School. The undersigned, appointed to conduct this examination, agree that the candidate has successfully passed this examination.

Respectfully submitted,

(Chairman)

Noted:

Date: 24 January 1966

Wouter Bosch, XXXXXXXX Dean Graduate School

ABSTRACT

Hot-film anemometry was used to study the detailed structure of turbulence (intensities, energy spectra, and auto-correlations) in Newtonian solvents, non-drag reducing polymer solutions, and drag reducing polymer solutions. This was done in two smooth wall tubes with diameters of 1.0 inch and 2.0 inches. A probe traversing mechanism was used for measurements at radial positions from the center to as near the wall as possible for both the film probes (r/a=0.85 in the 2-inch tube) and the impact tubes (r/a=0.98). The impact tubes were used to measure velocities for film probe calibration.

The solvents used in this investigation were toluene, cyclohexane, and benzene. Three concentrations of a medium molecular weight polyisobutylene (Vistanex L-80, molecular weight about 720,000) in cyclohexane, two concentrations of the same polymer in benzene, two concentrations of a high molecular weight polymethyl methacrylate (Plexiglas, molecular weight about 1,500,000) in toluene, one concentration of a low molecular weight polymethyl methacrylate (V-100 molding powder, molecular weight about 110,000) in toluene, three concentrations of a high molecular weight polyisobutylene (Vistanex L-200, molecular weight about 4,700,000) in toluene, and one concentration of the same polymer in cyclohexane were used.

In the liquids not showing drag reduction a viscous and/or elastic effect was found for both turbulence intensities and energy spectra. Turbulence intensities were higher and energy spectrum frequencies were lower for the polymer solutions of high viscosity. Unfortunately the most viscous solutions were also elastic, so purely viscous liquid studies will be necessary to distinguish between elastic and viscous effects.

During drag reduction it was found that the energy spectra changed little from purely viscous solvents. The turbulence intensities, however, showed very unusual effects. The intensities relative to friction velocity increased at low drag ratio values (high drag reduction), rather than remain constant as expected from mixing length considerations. This behavior was dependent upon the degree of mechanical polymer degradation, lower intensities occurring for fresh than for degraded solutions during drag reduction.

Normal stress differences $(P_{11} - P_{22})$ were measured for two of the solutions used in this investigation, one showing drag reduction at attainable flow rates in the 1-inch tube, the other showing drag reduction only in 0.5-inch and smaller tubes. Both solutions yielded normal stress differences of about the same level.

A quantitative viscoelastic mechanism of drag reduction was tested using the viscosity and normal stress data for the two solutions discussed above. The drag reduction mechanism demonstrated the relative effects of elasticity and viscosity on drag reduction. The adequate prediction of drag ratios for two solutions at two flow rates in each of two tube sizes demonstrated the validity of the mechanism and the reasonableness of the assumptions made.

TABLE OF CONTENTS

LIST OF FIGURES	Page vi	
LIST OF TABLES		
SUMMARY		
INTRODUCTION		
LITERATURE REVIEW		
1. Phenomenological Equations of Turbulent Pipe Flow		
1.1. The turbulent mixing length	2	
1.2. Universal velocity profile equation	3	
1.3. Comparisons with velocity profile data	4	
1.4. Recent inovations in velocity profile equations	6	
1.5. Velocity profiles for "drag reducing" solutions	8	
1.6. Pressure drop in turbulent pipe flow	13	
1.7. Friction factors for drag reducing solutions	15	
2. Statistical Theories of Turbulence	24	
2.1. Turbulent energy dissipation in pipe flow	24	
2.2. Time and space correlations	34	
2.3. Turbulent energy spectra	40	
2.4. Turbulent energy transfer hypotheses	43	
3. The Measurement of Statistical Turbulence Phenomena	46	
3.1. Hot-surface anemometry	47	
3.2. Turbulence measurements	54	
4. Viscoelastic Theories of Drag Reduction	58	
EXPERIMENTAL WORK		
1. Objective	66	
2. Equipment	68	
2.1. Pipe flow system	68	

	Page
2.2. Manometers	75
2.3. Flow meters	75
2.4. Impact tubes	76
2.5. Viscometers	76
2.6. Normal stress apparatus	78
2.7. Constant temperature anemometers	78
2.8. Correlator	79
2.9. Tape recorder	79
2.10. Spectrum analyzer	80
2.11. Hot-film probe	84
2.12. Experimental procedures	84
3. Materials	84
4. Calculations	86
5. Results	86
6. Discussion of Results	130
6.1. Turbulence intensity in non-drag reducing flow	130
6.2. Radial and tangential turbulence intensities	138
6.3. Velocity profiles	140
6.4. Energy spectra for non-drag reducing flow	141
6.5. Autocorrelation functions	145
6.6. Macroscale and microscale for non-drag reducing flow	146
6.7. Normalized energy spectra	152
6.8. Turbulence measurements in drag reducing flow	155
MECHANISM FOR VISCOELASTIC DRAG REDUCTION	161
1. Development of the Mechanism	161
2. Application of the Mechanism	165
CONCLUSIONS	172

iii

	Page		
RECOMMENDATIONS FOR FUTURE INVESTIGATIONS			
APPENDIX I. EQUIPMENT SPECIFICATIONS			
1. Anemometer	177		
2. Correlator	178		
3. Hot-Film Probe	179		
4. Two Channel Tape Recorder	179		
APPENDIX II. EXPERIMENTAL PROCEDURES	181		
1. Instrument Calibrations	181		
1.1. Hot-film probe calibration and turbulence intensity	181		
measurements			
1.2. Tape recorder frequency response calibration	183		
1.3. Band pass filter frequency response calibration	183		
1.4. Flow meter calibration	183		
2. Energy Spectrum and Autocorrelation Measurements	184		
2.1. Recording	184		
2.2. Energy spectrum measurements	184		
2.3. Autocorrelation measurements	185		
APPENDIX III. TABULATED DATA AND RESULTS	186		
1. Turbulence Intensity Data and Results	187		
2. Energy Spectrum Results and Transformations to	224		
Autocorrelations			
3. Autocorrelation Results and Transformations to	262		
Energy Spectra			
APPENDIX IV. CALIBRATION FACTORS	273		
1. Frequency Response of Ampex 601-2 Tape Recorder	274		
2. Peak Gain Factors for Band Pass Filter	275		
3. Hot-Film Calibration Results	276		

iv

	Page
APPENDIX V. CALCULATION PROCEDURES	277
1. Turbulence Intensity	277
1.1. Longitudinal intensity	277
1.2. Radial and tangential intensities and Reynolds	277
stresses	
2. Velocity Profiles	278
3. Energy Spectra	278
4. Autocorrelations and Macroscale	279
5. Dissipation Spectra and Microscale	279
6. Fourier Transformations	279
APPENDIX VI. MATERIALS	281
APPENDIX VII. NON-NEWTONIAN TECHNOLOGY	284
ABBREVIATIONS AND NOMENCLATURE	287
ACKNOWLEDGEMENTS	
VITA	294
BIBLIOGRAPHY	295

v

LIST OF FIGURES

Figure 1.	Velocity Profiles of Tao in Air Plotted as u ⁺	
	Versus y ⁺	5
Figure 2.	Wells' 1000 Parts Per Million Guar Gum Velocity	
	Profiles in a 1.427-Inch Tube Plotted as u/u_{max}	
	Versus y/r	10
Figure 3.	Wells' 4000 Parts Per Million Guar Gum Velocity	
	Profiles in a 1.427-Inch Tube Plotted as \bar{u}/u_{max}	
	Versus y/r	11
Figure 4.	Dodge's Friction Factor Data for CMC Solutions	16
Figure 5.	Shaver's 0.10, 0.20, 0.30, and 0.46 Per Cent	
	Ammonium Alginate Friction Factor Data Plotted	
	Versus Solvent Reynolds Number	18
Figure 6.	Laufer's Energy Dissipation Distribution for	
	Turbulent Pipe Flow of Air	28
Figure 7.	Sandborn's Longitudinal, Radial, and Tangential	
	Turbulence Intensity Data - 50,000 Reynolds	
	Number	33
Figure 8.	Hot-Film Probe	51
Figure 9.	Typical Frequency Response of DISA Anemometer	
	with Hot-Film Probe in Air	55
Figure 10.	Schematic Diagram of Pipe Flow Apparatus	70
Figure 11.	Installation of Hot-Film Probe in 2-Inch Tube	71
Figure 12.	Probe Mount for 1-Inch Tube	73
Figure 13.	Schematic Diagram of the Temperature Control	
	System	74

Page

vii

Figure 14.	Impact Probe for 1-Inch Tube	77
Figure 15.	Movable Playback Head on Ampex Recorder	81
Figure 16.	Autocorrelation Delay Time Calibration	82
Figure 17.	Typical Band Response for Band Pass Filter	
	(1000 cps)	83
Figure 18.	V-Film Probe	85
Figure 19.	Turbulence Intensity Profiles; Run 2; Toluene;	
	2-Inch Tube	89
Figure 20.	Turbulence Intensity Profiles; Run 2; Toluene;	
	2-Inch Tube	90
Figure 21.	Turbulence Intensity Profiles; Run 3; Cyclohexane;	
	2-Inch Tube	91
Figure 22.	Turbulence Intensity Profiles; Run 4; 0.05 %	
	PIB L-80 in Cyclohexane; 2-Inch Tube	92
Figure 23.	Turbulence Intensity Profiles; Run 6; 0.1 %	
	PIB L-80 in Cyclohexane; 2-Inch Tube	93
Figure 24.	Turbulence Intensity Profiles; Run 7; 0.3 %	
	PIB L-80 in Cyclohexane; 2-Inch Tube	94
Figure 25.	Turbulence Intensity Profiles; Run 8; 0.3 %	
	PIB L-80 in Cyclohexane; 2-Inch Tube	95
Figure 26.	Turbulence Intensity Profiles; Run 9; 1.0 %	
	PIB L-80 in Cyclohexane; 2-Inch Tube	96
Figure 27.	Turbulence Intensity Profiles; Run 10; Benzene;	
	2-Inch Tube	97
Figure 28.	Turbulence Intensity Profiles; Run 11; 0.25 %	
	PIB L-80 in Benzene; 2-Inch Tube	98

		Tage
Figure 29.	Turbulence Intensity Profiles; Run 12; 0.85 %	
	PIB L-80 in Benzene; 2-Inch Tube	99
Figure 30.	Turbulence Intensity Profiles; Run 13; 0.25 %	
	PMMA-G in Toluene; 2-Inch Tube	100
Figure 31.	Turbulence Intensity Profiles; Run 14; 0.9 %	
	PMMA-G in Toluene; 2-Inch Tube	101
Figure 32.	Turbulence Intensity Profiles; Run 15; Toluene;	
	2-Inch Tube	102
Figure 33.	Turbulence Intensity Profiles; Run 16; 0.95 %	
	PMMA V-100 in Toluene; 2-Inch Tube	103
Figure 34.	Turbulence Intensity Profiles; Run 17; 0.05 %	
	PIB L-200 in Toluene; 1-Inch Tube	104
Figure 35.	Turbulence Intensity Profiles; Run 20; Toluene;	
	1-Inch Tube	105
Figure 36.	Turbulence Intensity Profiles; Run 21; 0.82 %	
	PMMA-G in Toluene; 1-Inch Tube	106
Figure 37.	Turbulence Intensity Profiles; Run 22;	
	Cyclohexane; 1-Inch Tube	107
Figure 38.	Turbulence Intensity Profiles; Run 23; 0.38 %	
	PIB L-200 in Cyclohexane; 1-Inch Tube	108
Figure 39.	Radial Turbulence Intensities; Run 15; Toluene;	
	2-Inch Tube	109
Figure 40.	Tangential Turbulence Intensities; Run 15;	
	Toluene; 2-Inch Tube	110
Figure 41.	Radial Turbulence Intensities; Run 20; Toluene	
	1-Inch Tube	111

Figure 42.	Tangential Turbulence Intensities; Run 20;	
	Toluene; 1-Inch Tube	112
Figure 43.	Reynolds Stresses; Run 20; Toluene; 1-Inch Tube	113
Figure 44.	Velocity Profiles; Run 16; 0.95 % PMMA V-100	
	in Toluene; 2-Inch Tube	114
Figure 45.	Velocity Profiles; Run 19; 0.42 % PIB L-200	
	in Toluene; 1-Inch Tube	115
Figure 46.	Velocity Profiles; Run 20; Toluene; 1-Inch Tube	116
Figure 47.	Energy Spectra; Run 8; 0.3 % PIB L-80 in	
	Cyclohexane; 2-Inch Tube	117
Figure 48.	Energy Spectra; Run 9; 1.0 % PIB L-80 in	
	Cyclohexane; 2-Inch Tube	118
Figure 49.	Energy Spectra; Run 10; Benzene; 2-Inch Tube	119
Figure 50.	Energy Spectra; Run 12; 0.85 % PIB L-80 in	
	Benzene; 2-Inch Tube	120
Figure 51.	Energy Spectra; Run 14; 0.9 % PMMA-G in	
	Toluene; 2-Inch Tube	121
Figure 52.	Energy Spectra; Run 15; Toluene; 2-Inch Tube	122
Figure 53.	Energy Spectra; Run 15(pdm); Toluene;	
	2-Inch Tube	123
Figure 54.	Energy Spectra; Run 17; 0.05 % PIB L-200 in Toluene;	
	1-Inch Tube	124
Figure 55.	Energy Spectra; Run 18; 0.2 % PIB L-200 in Toluene;	
	1-Inch Tube	125
Figure 56.	Energy Spectra; Run 19; 0.42 % PIB L-200 in	
	Toluene; 1-Inch Tube	126

		0
Figure 57.	Energy Spectra; Run 20; Toluene; 1-Inch Tube	127
Figure 58.	Energy Spectra; Run 21; 0.82 % PMMA-G in	
	Toluene; 1-Inch Tube	128
Figure 59.	Energy Spectrum Transformed from Autocorrelation;	
	Run 8; $\bar{u} = 5.24$ fps at r/a = 0.85	129
Figure 60.	Turbulence Intensities at $r/a = 0.0$	131
Figure 61.	Turbulence Intensities at $r/a = 0.8$	132
Figure 62.	Turbulence Intensities at $r/a = 0.85$	133
Figure 63.	Intensity Correlation; <u'>/u[*] Versus r/a</u'>	137
Figure 64.	Dissipation Spectra for Run 15	143
Figure 65.	Microscale Versus r/a	157
Figure 66.	Normalized Energy Spectra	153
Figure 67.	Normal Stresses - 1.0 % PIB L-80 in Cyclohexane	
	and 0.42 % PIB L-200 in Toluene	166

х

LIST OF TABLES

Table	1.	Microscale and Macroscale Results	147
Table	2.	Turbulence Intensities During Drag Reduction	157
Table	3.	Velocities and Turbulence Intensities Used for	
		Drag Reduction Mechanism Calculations	168
Tab1e	4.	Turbulent Energy Dissipation Ratios and Drag	
		Ratios Calculated Using Viscoelastic Mechanism	169
Table	5.	Turbulence Intensity Data and Results	187
Table	6.	Energy Spectrum Results and Transformations to	
		Autocorrelations	224
Tab1e	7.	Autocorrelation Results and Transformations to	
		Energy Spectra	262
Table	8.	Frequency Response of Ampex 601-2 Tape Recorder	274
Table	9.	Peak Gain Factors for Band Pass Filter	275
Table	10.	Hot-Film Probe Calibration Coefficients	276
Table	11.	Solution Compositions and Properties	283

SUMMARY

The turbulent flow velocity profiles and friction factors in pipes for Newtonian and non-Newtonian purely viscous fluids have been well characterized using pressure drop and impact tube measurements. Completely general phenomenological relationships have not yet been developed, but the velocity profiles and pressure drops of these fluids in pipe flow can be predicted with little error.

This cannot be said for the polymer solutions which exhibit drag reduction in turbulent flow. The mechanism of drag reduction has not been adequately defined to permit predictions of turbulent pressure drop from measureable solution properties. The phenomenon has also presented great experimental difficulty because of its gradual disappearance while the solution is being pumped. Reliable velocity profiles have not been measured, because impact tube data are biased and yield low flow rates when integrated over the pipe area.

In this investigation hot film anemometry was used to study the detailed structure of turbulence (intensities, energy spectra, and autocorrelations) in Newtonian solvents, non-drag reducing polymer solutions, and drag reducing polymer solutions. This was done in two smooth wall tubes with diameters of 1.0 inch and 2.0 inches. A probe traversing mechanism was used for measurements at radial positions from the center to as near the wall as possible for both the film probes (r/a=0.85 in the 2-inch tube) and the impact tubes (r/a=0.98). The impact tubes were used to measure velocities for film probe calibration.

The solvents used in this investigation were toluene, cyclohexane, and benzene. Three concentrations of a medium molecular weight polyisobutylene (Vistanex L-80, molecular weight about 720,000) in cyclohexane, two concentrations of the same polymer in benzene, two concentrations of a high molecular weight polymethyl methacrylate (Plexiglas, molecular weight about 1,500,000) in toluene, one concentration of a low molecular weight polymethyl methacrylate (V-100 molding powder, molecular weight about 110,000) in toluene, three concentrations of a high molecular weight polyisobutylene (Vistanex L-200, molecular weight about 4,700,000) in toluene, and one concentration of the same polymer in cyclohexane were used.

In the liquids not showing drag reduction a viscous and/or elastic effect was found for both turbulence intensities and energy spectra. Turbulence intensities were higher and energy spectrum frequencies were lower for the polymer solutions of high viscosity. Unfortunately the most viscous solutions were also elastic, so purely viscous liquid studies will be necessary to distinguish between elastic and viscous effects.

During drag reduction it was found that the energy spectra changed little from purely viscous solvents. The turbulence intensities, however, showed very unusual effects. The intensities relative to friction velocity increased at low drag ratio values (high drag reduction), rather than remain constant as expected from mixing length considerations. This behavior was dependent upon the degree of mechanical polymer degradation, lower intensities occurring for fresh than for degraded solutions during drag reduction.

Normal stress differences $(P_{zz} - P_{rr})$ were measured for two of the solutions used in this investigation, one showing drag reduction at attainable flow rates in the 1-inch tube, the other showing drag reduction only in 0.5-inch and smaller tubes. Both solutions yielded normal stress differences of about the same level.

A quantitative viscoelastic mechanism of drag reduction was tested using the viscosity and normal stress data for the two solutions discussed above. The mechanism predicts the turbulent energy dissipation reduction for viscoelastic fluids. From this result the drag reduction was calculated using a relation between the turbulent energy dissipation and the wall shear stress derived from the Nikuradse friction factor correlation for turbulent pipe flow. The energy spectra measured for the two fluids tested were used for the dissipation reduction calculations.

The drag reduction mechanism demonstrated the relative effects of elasticity and viscosity on drag reduction. The adequate prediction of drag ratios for two solutions at two flow rates in each of two tube sizes demonstrated the validity of the mechanism and the reasonableness of the assumptions made.

INTRODUCTION

Hershey (33) has made a comprehensive study of the effects of polymer type and molecular weight, concentration, solvent type, tube size, and flow rate on the turbulent flow pressure drop of organic polymer solutions. That investigation showed the general polymer-solvent properties which cause drag reduction and led to a means of predicting the possibility of drag reduction for a given system and the flow rates required for incipient drag reduction.

This investigation was conducted to determine the detailed structure of turbulence for the tube flow of organic solvents and polymer solutions-with and without drag reduction. The results of the investigation provide a clearer picture of turbulent behavior during drag reduction flow of polymer solutions, and a viscoelastic mechanism which predicts the amount of drag reduction from viscosity and normal stress data.

LITERATURE REVIEW

1. Phenomenological Equations of Turbulent Pipe Flow

1.1. The turbulent mixing length

The turbulent flow of fluids is characterized by a stochastic fluctuation of velocity and pressure at each point in the flow field. The seemingly random nature of the velocity fluctuations was observed directly by Reynolds (76) and many others in streamline marker experiments using dye injection. These experiments showed visually that the straight streamlines of laminar flow in a pipe became sinuous, or turbulent, at a Reynolds number somewhere above 2100. Reynolds also observed the presence of eddies by illuminating his dye tracer with light from a spark. This irregular, eddying motion brings about a much higher shear stress for a given velocity gradient, and the heat and mass transfer rates are much higher than for laminar flow.

Early considerations of turbulent flow stressed the similarity between molecular diffusion as described by the kinetic theory and the larger scale turbulent diffusion of mass, momentum, and heat. The mixing length in molecular diffusion is the mean free path of the molecules. Prandtl (74) reasoned that in turbulent flow the magnitudes of u' and v', the fluctuating velocity components in the x and y directions respectively, were both proportional to $\mathbf{f} \mid \frac{d\bar{u}}{dy} \mid$, a mixing length times the velocity gradient. As will be shown later, the turbulent shear stress, known as the Reynolds stress, is given by:

$$\tau_{rz} = \rho \, \overline{u'v'} \tag{1}$$

Prandtl concluded, therefore, that the stress may be given by:

$$\boldsymbol{\tau}_{rz} = \rho \, \boldsymbol{\ell}^2 \left(\frac{d\bar{u}}{dy}\right)^2 \tag{2}$$

In order to use this analogy to obtain a velocity profile equation, a value for the length, \boldsymbol{l} , must be assumed. Prandtl let $\boldsymbol{l} = k_p y$ and used the model to derive the logarithmic velocity distribution for turbulent pipe flow:

$$\bar{u} = \bar{u}_{max} + \frac{u^*}{k_p} \ln(\frac{a-r}{a})$$
(3)

where $k_p = 0.40$, $u^* = \sqrt{\tau_w/\rho}$, and a is pipe radius. The derivation of this equation involves the assumption that:

$$\tau_{rz} = \tau_w(\frac{r}{a}) \approx \tau_w$$

which is valid only near the wall. If this assumption is not made (10):

$$\bar{u} = \bar{u}_{max} - \frac{u^*}{k} (\ln(\frac{1+\sqrt{r/a}}{1-\sqrt{r/a}}) - 2\sqrt{r/a})$$
 (4)

where a is the pipe radius. This equation, however, does not agree as well with the experimental data as the simplified form. This indicates that for a cylindrical pipe the mixing length should have been defined as $\boldsymbol{\ell} = k_p y \sqrt{r/a}$ (10). The velocity profile data of Nikuradse, which is generally accepted as the best available, fit the simplified logarithmic form very well away from the wall (65).

1.2. Universal velocity profile equation

In order to more nearly fit the velocity profile data near the wall the so called "universal" velocity profile equation was derived. The equation may be obtained by substituting the equation for the velocity profile in the laminar layer at the wall,

$$\frac{\bar{u}}{u^*} = \frac{y \ u^*}{v} , \qquad (5)$$

into the Prandtl logarithmic velocity profile to obtain:

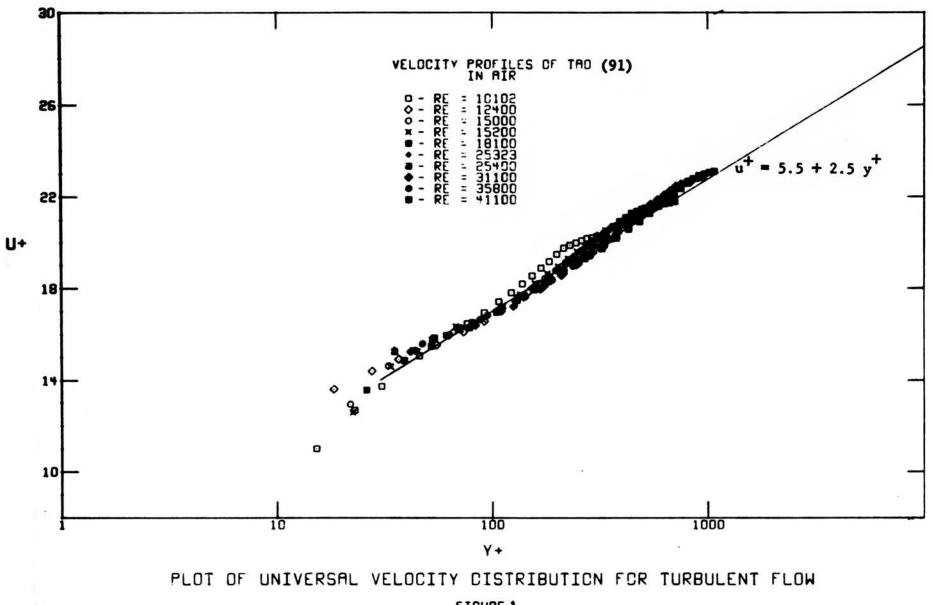
$$\frac{\bar{u}}{u^{*}} = \frac{u_{max}}{u^{*}} - 2.5 \ln \frac{a \ u^{*2}}{\bar{u} \ v}$$
(6)

Where the laminar profile intersects the turbulent profile:

$$\frac{1}{12} \max_{1} = \frac{u_{\delta}}{u^{*}} + 2.5 \ln \frac{a u^{*2}}{u_{\delta}}$$
(7)

Substituting 7 into 3 and letting $\frac{\overline{u}}{u^*} = u^+$ and $\frac{u^*y}{v} = y^+$,

$$u^+ = A + 2.5 \ln y^+$$
 (8)


A best fit of Nikuradse's data is given (65) by A = 5.5.

1.3. Comparisons with velocity profile data

The universal velocity profile equation fits the turbulent velocity profile data very well near the wall (except in the transition region below $y^+ = 50$). There is a consistent lack of fit, however, near the center of the pipe. The data of Hershey (33), Bunch (7), Tao (91), Bogue (4), and to some degree that of Nikaradse (65) and Deissler (12) show a positive deviation from equation 8 at the points near the pipe center. Figure 1 illustrates this deviation using the data of Tao. In the data of Bogue, Hershey, Bunch, and Tao the values of y^+ corresponding to the tube center are easily distinguished by their characteristic rise. An attempt to improve the $u^+ - y^+$ equation by an additive term as a function of y/a was made by Bogue. His equation was of the form:

$$u^+ - G(y/a) \sqrt{2/f} = 2.42 \ln y^+ + 5.57$$
 (9)

The correction term is purely empirical. The above equation suitably correlated velocity profiles for the turbulent flow of both Newtonian fluids (water and air) and some non-Newtonian fluids (water solutions of Carbopol and clay suspensions). No significant differences were found

S

FIGURE 1

between Newtonian and non-Newtonian velocity profile data by Bogue or Clapp (9) who also studied water solutions of Carbopol. Non-Newtonian rheological relations are summarized in Appendix VII.

Hershey (33) measured velocity profiles in the turbulent flow of the following solvents and solutions: toluene, cyclohexane, polyisobutylene L-80¹ in cyclohexane, polyisobutylene L-80 in benzene, and polymethyl methacrylate G^2 in toluene. The profiles for all these solutions were almost identical to previously reported Newtonian profiles when plotted either as \bar{u}/\bar{u}_{max} vs. y/a or as u⁺ vs. y⁺. All of Hershey's solutions were Newtonian except for the highest concentration polyisobutylene (PIB) L-80 in cyclohexane.

1.4. Recent inovations in velocity profile equations

Mention should be made of other recent improvements in the representation of turbulent velocity profiles. These will not be discussed at length because the data of interest here have been presented in terms of the universal equation. A significant improvement over the universal velocity profile is the use of two equations to describe the near wall and center regions. Ross (80) has recommended the use of the von Karman velocity profile equation based on the similarity theory in the region 0 < r/a < 0.85. The equation is:

$$\bar{u} = \bar{u}_{max} + \frac{u^*}{k_k} (\sqrt{1-y/a} + \ln (1-\sqrt{1-y/a})) + b$$
 (10)

Goldstein (27) recommended that $k_k = 0.295$ and b = 0.172. This equation is used for pipe flow, but is actually derived for flow between flat plates. Ross recommended the use of the universal equation for 0.85 < r/a < 1.0.

Enjay MM Vistanex; grade L-80; lot B40828 code 230; molecular weight approximately 720,000.

² Rohm and Haas 1/4-inch plexiglas sheet; molecular weight approximately 1,500,000.

Efforts to more nearly represent the velocity profile in one equation lead to the use of longer equations with more constants. Gill and Scher (26) modified the Prandtl mixing length as follows:

$$l = k_{p} y (1 - exp(- \phi y/a))$$

Using this length, they obtained the following equation for the velocity profile:

$$u^{+} = \int_{0}^{y^{-}} ((-1 + \sqrt{1} + 4cd)/2c) dy^{+}$$

where $c = k_{p}^{2} (a^{+})^{2} (1 - exp(-\phi y^{+2}/a^{+}))$
 $d = 1 - y^{+}/a^{+}$ (11)
 $\phi = (a^{+} - a^{*})/b$
 $a^{+} = au^{*}\rho/\mu$

The added constants are a' and b. a' is set to be 60 to force l=0 at Re=1800, and b is 22 for best fit to the velocity profile data. This equation reduces to $u^+ = y^+$ near the wall and near the center the experimentally observed deviation from the universal equation is reproduced.

Pai (68) obtained a series solution of the Reynold's equations¹ for turbulent flow in a pipe. The equation applied to the entire profile is as follows:

$$\frac{u}{u^{*}} = \frac{u_{max}}{u^{*}} (1 + \frac{s-n}{n-1} (r/a)^{2} + \frac{1-s}{n-1} (r/a)^{2n})$$
(12)
where $s = u^{*2} a\rho/(\mu u_{max})$

n is an adjustable constant which Pai set at 16. This equation has not been adequately tested to determine its generality. When s=1 the equation reduces to the laminar flow velocity profile.

¹ To be discussed later.

1.5. <u>Velocity profiles for "drag reducing" solutions</u>

Shaver (85) measured turbulent velocity profiles for solutions of carboxymethylcellulose (CMC) which were very non-Newtonian¹ (n=0.54 to 0.85) some showing lower than normal pressure drop. These solutions, in contrast to those mentioned previously, yielded higher slopes for \bar{u}/u^* versus ln y as the fluids became more non-Newtonian. Bogue (4) attributed this phenomenon to the elasticity² of CMC solutions, which possibly suppresses the turbulent fluctuations thereby producing a lower turbulent shear stress for a given shear rate. This means that $\frac{d\bar{u}}{dr}/u^*$ from equation 3, will be larger. Some evidence of suppression for the largest scale fluctuations was directly observed by Shaver in a dye injection experiment. It should be noted, however, that when plotted simply as \bar{u}/\bar{u}_{max} versus y/a, Shaver's data look the same as Newtonian data (33).

Ernst (18) measured velocity profiles in 0.05 per cent CMC solutions, and found a parallel shift (higher u⁺) in the velocity profile when plotted as u⁺ versus ln y⁺ using the apparent wall viscosity to calculate y⁺. Wells (98) found an upward shift plus an increase in slope for CMC and guar gum solutions when he attempted to correlate his velocity profiles using a generalized u⁺ - y⁺ diagram where:

$$u^{+} = \bar{u}/u^{*}$$

y⁺ = $\rho(u^{*})^{2-n} y^{n}/K$ (13)

See Appendix I for a summary of non-Newtonian rheological relations.
 Shear elasticity is discussed in detail in section 4, "Viscoelastic Theories of Drag Reduction".

This procedure is identical to the use of an apparent wall viscosity for $y^+ = \rho u^* y/\mu_w$ when the fluid considered follows the power law. As shown in Figures 2 and 3, even though Wells' $u^+ - y^+$ slopes are higher than for Newtonian fluids for his concentrated solutions, his profiles appear more blunt¹ when plotted as \bar{u}/\bar{u}_{max} versus y/a.

Newtonian fluids (air, water, organic solvents and solutions) and some non-Newtonian fluids (carbopol-water solutions and clay suspensions) seem to be adequately correlated if the apparent wall viscosity for the fluid is used to calculate y^+ in the $u^+ - y^+$ correlation. This is not the case, however, for the water solutions of CMC and guar gum discussed above. The profiles of Ernst showed a parallel displacement from the Newtonian $u^+ - y^+$ curve, but the data of Wells and Shaver demonstrated higher $u^+ - y^+$ slopes in the turbulent core with about the same u^+ intercepts at $\ln y^+=0$ as for Newtonian fluids.

The data for the Shaver, Ernst, and Wells profiles can be partially reconciled. The universal correlation can be written (after Bogue (4)):

$$u^+ = \frac{\bar{u}}{u^*} = 5.57 + 2.42 \ln yu^* \rho / \mu_w$$
 (14)

where μ_{W} is the apparent viscosity at the wall. The upward parallel shift of Ernst can be correlated by increasing the constant from 5.57 to some higher value. For a given wall shear rate this amounts to increasing the viscous layer thickness. Since Ernst mentions that his flow rates are about seven per cent below his integrated velocity profiles the shift might not actually be so great. In order to cause a steeper turbulent velocity profile for a given wall shear stress (or wall shear rate), the

¹ This does not necessarily indicate slip at the wall, because an infinite number of velocity profiles are possible with zero wall velocity.

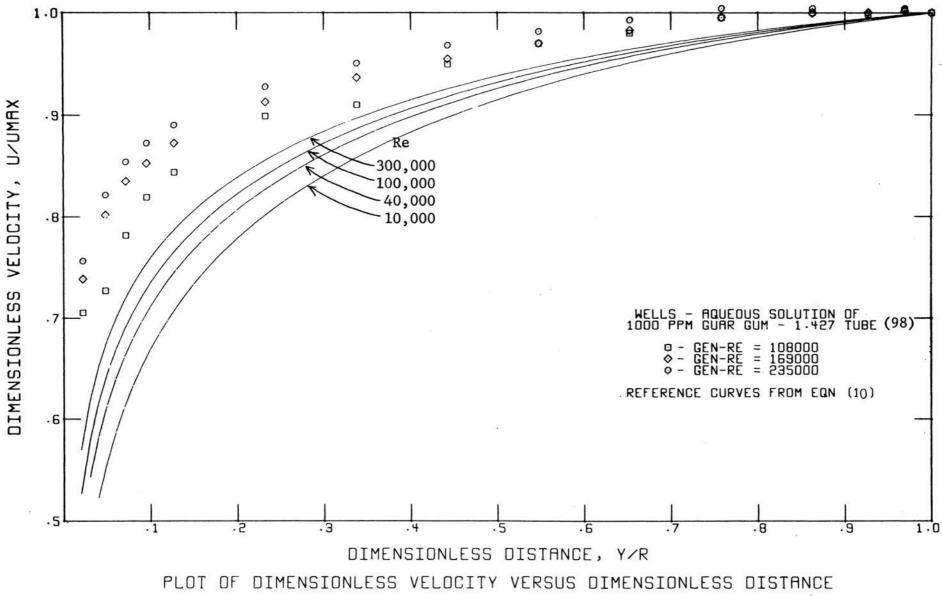
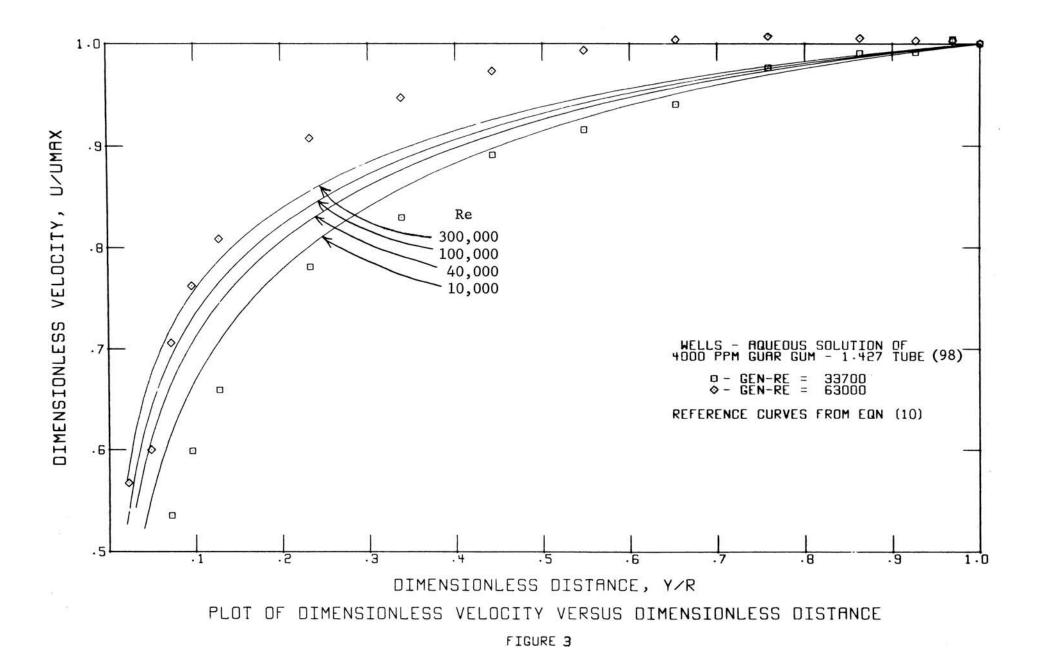



FIGURE 2

coefficient (which is actually $1/k_p$, the Prandtl mixing length constant) must be increased from 2.42 to some higher value. This means that k_p is decreased, so $\mathbf{l} = k_p \sqrt{r/a}$, the mixing length, is decreased. Ernst's profiles are displaced upward in the u⁺ direction only 20-30 per cent, whereas Wells' are displaced as much as 150 per cent giving rise to a much more significant slope change. Ernst used only 0.05 per cent CMC-7HSP¹ in his solutions, whereas Shaver's solutions were as high as 0.5 per cent CMC-70S¹ and Wells' solutions ranged from 0.05 per cent quar gum (J-2P)² to 0.4 per cent CMC-70¹, causing much larger effects on the velocity profiles.

It should be noted that Shaver's integrated velocity profiles average about six per cent below measured flow rates. Wells' were about 2.8 per cent below his flow rates. Ripken and Pilch (77) observed such poor agreement between integrated profiles and measured flow rates for CMC solutions, that they did not report their results pending further investigation. Savins (84) has suggested that impact tube measurements in turbulent flow might not indicate the correct velocity pressure head. This is because the wall pressure tap might indicate a pressure biased by the normal stress in the radial direction. All the present velocity profile data for drag reducing solutions show significant deviations from the average flow rates, but not in the same direction (Ernst's integrated velocity profiles were too high). ³ An intensive study of such profiles is needed to resolve this problem, as noted in the recommendations below.

¹ Hercules Powder Co.

² Westco Research Co.

³ Ernst's and Wells' data for water matched both the established friction factor data and velocity profile data (plotted as u⁺ versus ln y⁺), so the profiles should integrate to yield the proper flow rates. Shaver's water profiles integrated to yield somewhat high flow rates (33).

1.6. Pressure drop in turbulent pipe flow

The pressure drop for turbulent flow in smooth round pipes is best correlated for Newtonian fluids as a dimensionless friction factor versus the Reynolds number. These two groups are predicted by dimensional analysis. The Fanning friction factor has the form:

$$\mathbf{f} = \left(\frac{\mathbf{D} \Delta \mathbf{P}}{4\mathbf{L}}\right) / \left(\frac{\rho \ \mathbf{U}^2}{2 \, \mathrm{gc}}\right)$$
(15)

For laminar flow in circular tubes, the friction factor may be obtained by a rearrangement of the Hagen-Poiseuille equation:

$$f = 16/Re$$
 (16)

Von Karman (37) integrated the universal velocity profile equation to obtain an expression for the space mean velocity. He then substituted $U\sqrt{f/2}$ for u^{*} and obtained the equation for turbulent flow friction factor:

$$1/\sqrt{f} = 4.06 \log (\text{Re}\sqrt{f}) - 0.60$$
 (17)

Nikuradse used the best data available to him for Reynolds numbers 4000 to 3,240,000 and obtained an empirical correlation of the form (65):

$$1/\sqrt{f} = 4.0 \log (\text{Re}\sqrt{f}) - 0.40$$
 (18)

These two equations are almost identical.

A much simpler correlation of friction factor with Reynolds number is that proposed by Blasius (40):

$$f = 0.079 \text{ Re}^{-1/4}$$
 (19)

This equation represents the turbulent data from Reynolds number 3000 to 100,000 only.

Metzner and Reed (61) have proposed a generalized Reynolds number for non-Newtonian fluids based on the concepts of Rabinowitsch¹:

¹ See Appendix for summary of non-Newtonian relationships.

$$Re' = \frac{D^{n'} U^{2-n'} \rho}{g_c K' 8^{n'-1}}$$
(20)

where $K' = \tau_w / (8U/D)^{n'}$ and $n' = d(\log \tau_w)/d (\log(8U/D))$.

When n'=1.0 this generalized Reynolds number reduces to the conventional Reynolds number. Dodge (14) used the generalized Reynolds number to correlate the friction factors for the turbulent flow of non-Newtonian water solutions of Carbopol 934 (carboxypolymethylene) and Attasol (clay) suspensions in the form:

$$\sqrt{1/f} = 4.0 \log (\text{Re'f}^{(1-n')/2})/n!^{0.75} - 0.40/n!^{1.2}$$
 (21)

This equation correlated data from the systems mentioned above to within ± 2.5 per cent of the measured friction factors. The friction factor correlation also reduces to the Newtonian relation when n'=1. The form of this generalized correlation can be derived by integrating the generalized universal velocity profile as used by Wells and making the same substitution as von Karman, namely u* = $u\sqrt{f/2}$.

Clapp (9) measured friction factors in Carbopol 934 and correlated his data using an equation derived by integrating equation 13, assuming the power law. He obtained a correlation accurate to ± 4 per cent using:

$$\sqrt{1/f} = 2.69/n - 2.95 + 4.53 \log (\text{Re}^{(2-n)/2})/n + 0.69 (5n-8)/n$$
where $\text{Re}^{\circ} = 8D^n U^{2-n} \rho/K(6 + 2/n)^n$ (22)
for $0.698 < n < 0.813$ and $5480 < \text{Re}^{\circ} < 42,800$.

Clapp stated that the consistency of this equation with the velocity profile equation for non-Newtonian fluids makes it more generally applicable than Dodge's empirical equation. As is shown in Appendix VII, the Metzner and Reed Reynolds number may be used in place of the power law Reynolds number with no change in the form of the equation.

1.7. Friction factors for "drag reducing" solutions

Several investigators have measured friction factors in both Newtonian and non-Newtonian fluids which are not correlated by the equations of Dodge and Clapp. Dodge attempted to correlate data for CMCwater solutions along with his Carbopol and Attasol data. The friction factors as shown in Figure 4 for the CMC were, however, far below the correlation at high Reynolds numbers, even though the laminar data were well correlated by the relation:

$$f = 16/Re^{1}$$
 (23)

Moreover, in the turbulent region (Re' > 3000) there is a pronounced diameter effect in his data, the smaller tubes causing the lower friction factors. There was <u>no</u> diameter effect in the laminar region. Dodge attributed this anomalous behavior to the viscoelasticity of CMC solutions (elastic as well as viscous response to shear).

At about the same time Shaver made extensive friction factor measurements using CMC-70, polyvinyl alcohol, ammonium alginate, and Carbopol 934 all in water, and polyisobutylene (Vistanex B-100) in cyclohexane. Shaver obtained a modified Blasius type correlation that fit his data with maximum deviations of +33 to -15 per cent. It is interesting to note that in addition to being a poor fit of the data his correlation is a strong function of n:

f =
$$0.079/(n^5(\text{Re}^\circ)^{\gamma})$$
 (24)
where $\gamma = 2.63/10.5^n$

Most of the data below n=0.8 were obtained using CMC solutions, whereas the data above n=0.8 were obtained for primarily Carbopol and alginate solutions. Hershey (33) replotted Shaver's friction factor data

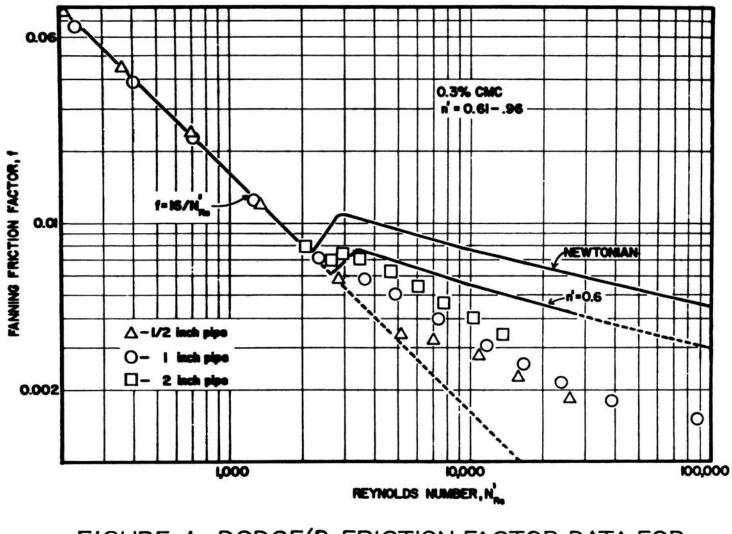
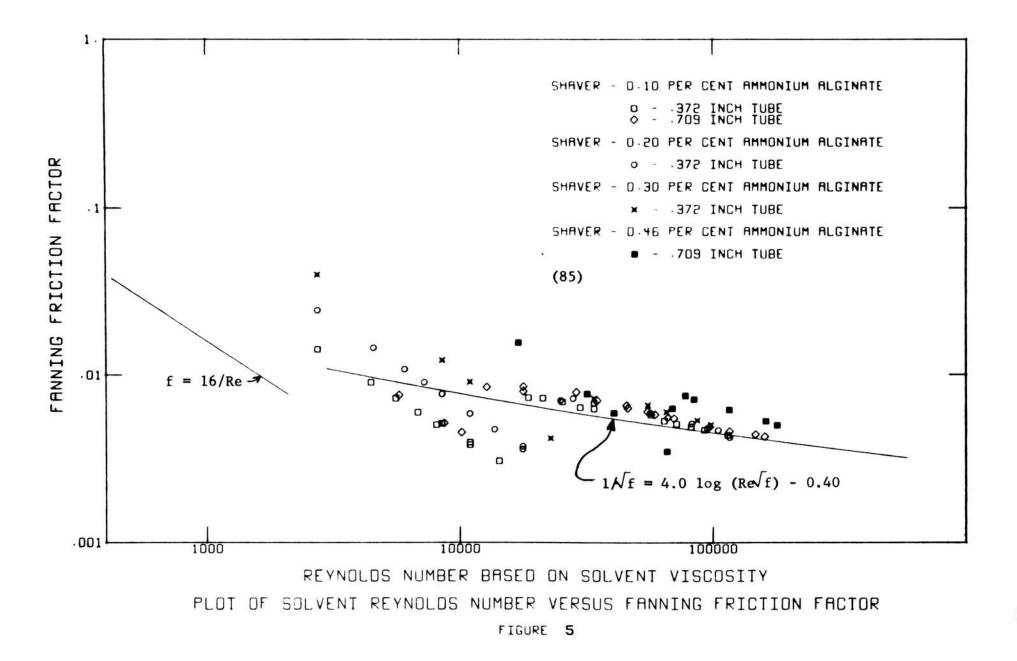



FIGURE 4. DODGE'S FRICTION FACTOR DATA FOR CMC SOLUTION (14)

using the solvent Reynolds number ($\operatorname{Re}_{s} = \operatorname{Du}/\nu_{s}$, where ν_{s} is the solvent kinematic viscosity). These plots show that in the high Reynolds number turbulent region the ammonium alginate and Carbopol data are much like that of Dodge's Carbopol data with friction factors above the solvent friction factors and little diameter effect. Shavers turbulent CMC-water data and polyisobutylene (PIB)-cyclohexane data, however, fall below the solvent friction factors.

The transitions from laminar flow to turbulent flow are difficult to relate to the turbulent flow phenomena. Some data (Shaver's alcohol and ammonium alginate) actually dip below 16/2100 (the laminar friction factor for Newtonian fluids at Re=2100, the usual transition point). This effect has also been observed for Newtonian non-elastic fluids during carefully controlled vibration free experiments in round tubes for Reynolds numbers up to 26,000 (23). Since Shaver's data were all taken in the same set of tubes and he did not observe this effect on his purely viscous fluids, some turbulence damping seems evident. This effect seems to be more striking in the smaller tubes as shown by Figure 5. The CMC solutions of both Dodge and Shaver, however, do not seem to exhibit an abrupt transition at all, but the friction factor-Reynolds number slopes gradually decrease as the flow becomes turbulent. The solutions exhibiting low turbulent friction factors seem to delay the laminar-turbulent transition to higher Reynolds number, then suppress friction producing effects in the turbulent region.

Savins (82) reviewed the earlier non-Newtonian friction factor data, and Hershey (33) recently reviewed this and the later data as well. Savins replotted the data of Toms (95) for the flow of polymethyl methacrylate (PMMA)-mono-chlorobenzene solutions in small tubes. The data for 0.25 per

cent PMMA were shown as friction factor versus a Reynolds number calculated using the limiting high shear rate viscosity. The laminar points fell on the established laminar line, but a striking diameter effect existed for the turbulent region. The largest tube (0.202 cm) showed a normal transition to turbulent flow, then the friction factors dropped below the Newtonian line at high Reynolds numbers. The small tube (0.0645 cm) had no definite transition point, but changed slope slightly at the transition point.

Hershey also replotted Toms' data for several concentrations (0.156 g/1 to 20 g/1) as friction factor versus solvent Reynolds number. Plotted in this way the effect of solution viscosity becomes evident. The concentration yielding the highest friction factor reduction below solvent friction factors depends on tube size. The 0.05-inch tube gave greatest reduction at about 0.5 g/1, but the 0.159-inch tube yielded greatest reduction at 2.5 g/1. It should also be noted that the drag reduction effect becomes evident only at higher Reynolds numbers for the larger tube, as is true for the data of Dodge and Shaver.

The effect observed by Dodge, Shaver, and Toms has been called drag reduction, turbulence suppression, and many other descriptive names. The following quantitative definitions will be used in the remainder of this discussion:

Drag reduction - the reduction in pressure drop at the same flow rate of a flowing fluid by the addition of a small amount of solute. This has been observed only in the turbulent region.

Drag ratio - the ratio of pressure drop for the solution to the pressure drop of the pure solvent at the same flow rate.

Friction factor reduction - the reduction of the friction factor of a flowing fluid below that predicted by the Dodge and Metzner correlation for purely viscous fluids.

Friction factor ratio - the ratio of measured friction factor to the friction factor predicted by the Dodge and Metzner correlation at the same Reynolds numbers. This definition is the same as Hershey's (33) "turbulence suppression".

It can be seen that the first definition has a practical basis - the comparison of pressure loss for the pumping of a treated fluid to the pressure loss for the untreated fluid. The definition of friction factor reduction, however, provides a better basis for the theoretical consideration of this phenomenon. This is because:

- The effect of viscosity increase with solute addition is eliminated, and
- (2) the only effects then evident are those causing deviation from the behavior of a purely viscous liquid.

Several investigators have obtained additional friction factor data for systems which show drag reduction with about the same results as Toms, Dodge, and Shaver. Meter (59) measured friction factors for seven water solutions of Natrosol hydroxyethylcellulose and one 0.4 per cent Carbopol 934-water solution in 1/2 inch and 1-inch tubes. All of Meter's Natrosol solutions (types G and H) were quite viscous. Plotting his data as log friction factor versus log solvent Reynolds number shows a laminar region with a slope of minus one. The solutions of concentration 1.0 to 2.0 per cent Natrosol G and 0.3 to 0.5 per cent Natrosol H show laminar-turbulent transitions with drag reduction at higher Reynolds numbers. The 0.7 and 1.0 per cent solutions of Natrosol H did not seem to exhibit transition points but extended to f < 0.001 on the laminar line. The data for these concentrations represent an extended laminar region even more striking than Shaver's ammonium alginate and PVA data.

Fabula (19) has measured the friction factors for dilute solutions of poly(ethylene oxide) in a single pass pipe flow system. Shaver (35) had reported considerable mechanical degradation of his CMC solutions (friction factors changed with pumping time), and his drag reducing PIB-cyclohexane solution degraded to a non-drag reducing solution after 24 hours of pumping. Fabula avoided this problem with his once through system and obtained drag reduction with concentrations as low as 1.1 parts per million poly(ethylene oxide) in a 0.4-inch pipe.

Hoyt and Fabula (36) in a later paper reported their work on drag reduction using rotating disks in the fluid. They compiled a list of nine major types of water soluble polymers (natural and synthetic) which caused a reduction in torque for a given disk speed. Of these, one type of poly(ethylene oxide) (Polyox coagulant) caused 35 per cent torque reduction at 40 revolutions per second at a concentration of only 12 parts per million. The disk used had a diameter of 45.7 cm. The other polymers giving torque reductions of at least 35 per cent at concentrations below 1000 parts per million were guar gum, locust bean gum, Irish moss, gum karaya, hydroxymethyl cellulose, CMC, polyacrylamide and Polyhall-27.

Park (70) measured drag reduction friction factors in water solutions of 0.3 per cent $J-100^1$ and 0.5 per cent CMC. He obtained a correlation

¹ Dow Chemical Co.

between the drag reduction of his J-100 solutions and their normal stress difference, $P_{zz} - P_{rr}$. This correlation will be discussed in the section on viscoelasticity. Ripken and Pilch (77) have also studied the turbulent flow of CMC solutions and, in addition, water solutions of Polyhall-27 and poly(methylene oxide). They studied solutions of CMC with values of flow index, n, from 0.433 to 0.835 and found, like Shaver, that for a given pipe size and given polymer, n is a good indication of the drag reducing characteristics. This is very misleading, however, because as has been shown earlier (data of Dodge (14)) drag reduction seems to have little general dependence on the value of flow index.

Hershey (33) in an effort to define those polymer properties which cause drag reduction, measured friction factors in several organic polymer solutions. He demonstrated drag reduction in a smooth 1/2-inch tube and several smaller tubes for cyclohexane solutions of polyisobutylene (PIB) L-80¹ at concentrations of 0.05 per cent to 1.0 per cent, the same polymer in benzene at concentrations of 0.25 per cent to 0.9 per cent, and in polymethyl methacrylate¹ in toluene at concentrations of 0.1 per cent to 1.0 per cent. His data show the same diameter effect as previous drag reduction data in water solutions. He did not obtain drag reduction using a medium molecular weight polystyrene (molecular weight about 240,000) in toluene and low molecular weight PIB LMMH (molecular weight about 45,000) in cyclohexane. This shows that molecular size in solution has an important effect on drag reduction. The drag reduction for PIB L-80 in benzene (a poor solvent) was not as high as in cyclohexane (a good solvent). Since polymer molecules are more extended in good solvents (21),

¹ See Appendix VI.

this also illustrates the effect of molecular size on drag reduction. The lack of drag reduction for the polystyrene solutions could be attributed to both the low molecular weight and to the rather inflexible polystyrene chain. Of particular interest, all the solutions studied by Hershey were Newtonian except the 1.0 per cent PIB L-80 in cyclohexane. The solutions obviously do not have to be non-Newtonian to be drag reducing.

The reduction in pressure drop below that predicted by the Dodge and Metzner equation causes the so called "friction velocity", $u^* = \sqrt{\tau_{r,r}/\rho}$, to be lower than for a purely viscous fluid since $\tau_{\rm w} = \frac{D\Delta P}{4L}$ for a pipe. The velocity profile when plotted as $(\bar{u}_{max} - \bar{u})/u^*$ versus ln y/r, becomes steeper than the accepted Newtonian data, if the slope $d\bar{u}/d$ (ln y) remains the same. This effect was observed for Shaver's velocity profiles in the preceding section. Hershey's $(\bar{u}_{max} - \bar{u})/\bar{u}_{max}$ versus y/r plots of Wells' data show velocity profiles more blunt than purely viscous turbulent pro-Since Wells' solutions exhibited great drag reduction at the flow files. rates studied, the slopes $d(\bar{u}/u^*)/d(\ln y)$ (from his $u^+ - y^+$ plots) were still steeper than for the purely viscous correlation of Nikuradse. Even though there is some doubt that the profiles of Shaver, Ernst, and Wells are accurate since they do not check the measured flow rates, the large increase in the slope $d(u/u^*)/d(\ln y)$ over the viscous case for both Wells' and Shaver's data indicates a much lower rate of momentum exchange in the radial direction for a given velocity gradient. If all molecular effects 1

At a concentration of 0.005 per cent (50 ppm) of PIB with a molecular weight of 10⁶ in toluene, there are approximately 2 x 10¹⁰ molecules per cubic millimeter. Since the microscale in 1-inch and 2-inch pipes is about 1 mm (experimental section), a solution of this concentration may be considered to be a continuum.

(even on the polymeric size scale) are negligible in the turbulent core, this means that the length scale of mixing must be diminished.

2. Statistical Theories of Turbulence

2.1. Turbulent energy dissipation in pipe flow

In an attempt to define the motion of a fluid in turbulent flow in a more detailed manner, it is necessary to consider the fluctuations of velocity which are superimposed upon the mean velocity of flow. This may be done by letting the velocity, u, be the sum of the average velocity and the fluctuating component, $\bar{u} + u'$. This can be done for each fluctuating quantity in the Navier-Stokes equations giving for constant viscosity (34):

$$(\rho + \rho') \frac{d(\mathbf{u}_{i} + \mathbf{u'}_{i})}{dt} = -\frac{\partial(p + p')}{\partial x_{i}} + \mu \frac{\partial^{2}}{\partial x_{j}^{2}} (\mathbf{u}_{i} + \mathbf{u'}_{i}) + \frac{1}{3} \mu \frac{\partial}{\partial x_{i}} \frac{\partial(\mathbf{u}_{i} + \mathbf{u'}_{j})}{\partial x_{i}}$$
(25)

where the summation convention for subscripts is used. Upon averaging this equation with respect to time, the following result is obtained:

$$\frac{\bar{\rho}\left(\frac{\partial\bar{u}_{i}}{\partial t}+\bar{u}_{j},\frac{\partial\bar{u}_{j}}{\partial x_{j}}\right) = -\frac{\partial\bar{p}}{\partial x_{i}} + \mu \frac{\partial^{2}\bar{u}_{i}}{\partial x_{i}^{2}} + \frac{1}{3}\mu \frac{\partial}{\partial x_{i}} \frac{\partial\bar{u}_{j}}{\partial x_{j}} - \left\{ \bar{\rho} \frac{\partial\bar{u}_{j}}{u'_{j}} + \rho' \frac{\partial\bar{u}_{i}}{\partial t} + \rho' \frac{\partial\bar{u}_{i}}{\partial t} + \rho' \frac{\partial\bar{u}_{i}}{\partial t} + \rho' \frac{\partial\bar{u}_{i}}{\partial x_{j}} + \bar{\rho}' \frac{\partial\bar{u}_{i}}{\partial x_{j}} + \bar{\rho}' \frac{\partial\bar{u}_{i}}{\partial x_{j}} \right\} (26)$$

The equation obtained for the time averaged turbulent motion is then the original Navier-Stokes equation plus the terms in the brackets which represent the effects of the turbulent motion. The equation of continuity states that $\rho \frac{\partial}{\partial x_i} u_i = 0$ for an incompressible fluid in stationary flow. The first term in brackets becomes, therefore, $\bar{\rho} \frac{\partial}{\partial x_j} \frac{u'_j}{u'_j} \frac{u'_i}{i} = \frac{\partial}{\partial x_j} \bar{\rho} \frac{u'_j}{u'_i} u'_i$, and the other four terms become insignificant for an incompressible fluid.

Equation 26 then becomes:

$$\rho\left(\frac{\partial \bar{u}_{i}}{\partial t} + \bar{u}_{j} \frac{\partial \bar{u}_{i}}{\partial x_{j}}\right) = -\frac{\partial \bar{p}}{\partial x_{i}} + \frac{\partial}{\partial x_{j}} \left(\mu \frac{\partial \bar{u}_{i}}{\partial x_{j}} - \rho \frac{u'_{i}u'_{j}}{u'_{i}u'_{j}}\right)$$
(27)

(The term $\frac{1}{3} \mu \frac{\partial}{\partial x_i} \frac{\partial u_j}{\partial x_j}$ is zero when incompressibility is assumed.)

The last term in equation 27 is called the Reynolds stress, because Reynolds first obtained this form of the equation. This term represents the additional average stress on the j plane in the i direction caused by the turbulent motion.

In cylindrical coordinates, which shall be used when considering turbulent flow in pipes, the Reynolds equations written for each direction become (where u=u_z, v=u_r, w=u_{θ}):

$$\rho \frac{d\overline{u}}{dt} = -\frac{\partial\overline{p}}{\partial z} + \mu \nabla^{2}\overline{u} - \rho \frac{\partial}{\partial z} \overline{(u')}^{2} - \frac{\rho}{r} \frac{\partial}{\partial r} r \overline{v'u'} - \frac{\rho}{r} \frac{\partial}{\partial \theta} \overline{w'u'}$$

$$\rho (\frac{\partial\overline{v}}{\partial t} - \frac{\overline{w}^{2}}{r}) = -\frac{\partial\overline{p}}{\partial r} + \mu (\nabla^{2}\overline{v} - \frac{\overline{v}}{r^{2}} - 2 \frac{\partial\overline{w}}{r^{2}\partial \theta}) - \frac{\rho}{r} \frac{\partial}{\partial r} r \overline{(v')}^{2}$$

$$-\frac{\rho}{r} \frac{\partial}{\partial \theta} \overline{v'w'} - \rho \frac{\partial}{\partial z} \overline{v'u'} + \rho \overline{\frac{(w')^{2}}{r}}$$

$$\rho (\frac{\partial\overline{w}}{\partial t} + \frac{\overline{v}}{r}) = -\frac{1}{r} \frac{\partial\overline{p}}{\partial \theta} + \mu (\nabla^{2}\overline{w} - \frac{\overline{w}}{r^{2}} + \frac{2}{r^{2}} \frac{\partial\overline{v}}{\partial \theta}) - \frac{\rho}{r} \frac{\partial}{\partial \theta} \overline{(w')^{2}}$$

$$-\rho \frac{\partial}{\partial r} \overline{w'v'} - \rho \frac{\partial}{\partial z} \overline{w'u'} - 2\rho \overline{\frac{w'v'}{r}}$$
(28)

The development of these equations may be found in any text covering turbulence (10, 34, 40).

Laufer (47) and others have shown that for fully developed turbulent flow in a pipe these equations may be reduced considerably. The overall conditions are:

$$\vec{v} = \vec{w} = 0$$
 for all t
 $\frac{\partial \vec{u}}{\partial t} = 0$
 $\frac{\partial \vec{A}}{\partial z} = 0$ for A any variable except pressure

$$\frac{\partial \overline{B}}{\partial \theta} = 0$$
 for B any variable

The Reynolds equations become:

$$\frac{\partial \bar{p}}{\partial z} = -\frac{\rho}{r} \frac{d}{dr} (r \bar{u'v'}) + \mu (\frac{d^2 \bar{u}}{dr^2} + \frac{1}{r} \frac{d \bar{u}}{dr})$$

$$\frac{d \bar{p}}{dr} = -\frac{\rho}{r} \frac{d}{dr} \bar{r(v')}^2 + \frac{(w')^2}{r}$$

$$0 = -\frac{d}{dr} \bar{v'w'} - 2 \frac{\bar{v'w'}}{r}$$
(29)

The last equation may be integrated using the condition that v'w' = 0 at r=a:

$$\overline{v'w'} = \frac{0}{r^2} = 0$$

Using the boundary conditions at r=0:

$$\frac{d\bar{u}}{dr} = 0$$
$$\frac{d\bar{u}}{dr} = 0$$

and at r=a:

-

$$\frac{\mu}{\rho} \frac{d\overline{u}}{dr} = - (u^*)^2$$

$$\overline{(v')^2} = 0$$

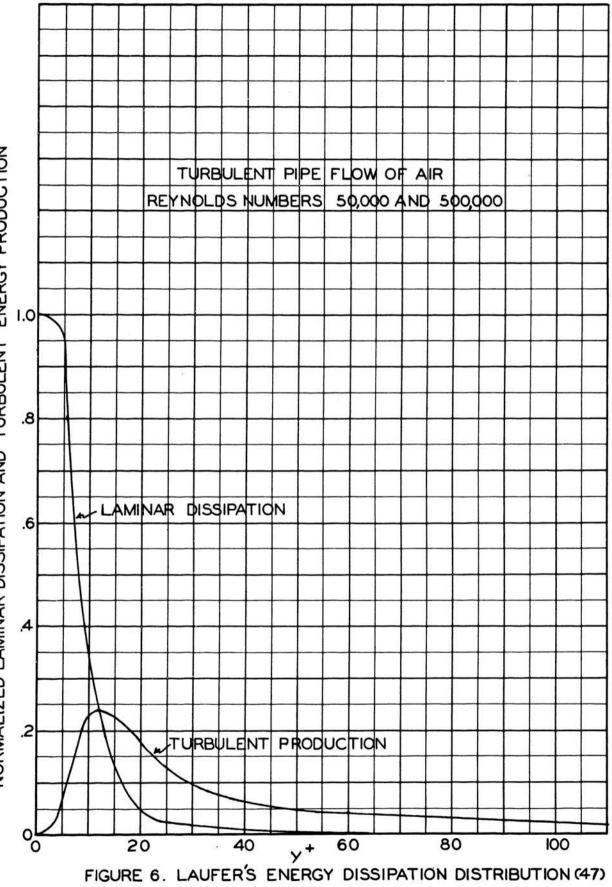
Laufer obtained:

$$\overline{u'v'} = \frac{\mu}{\rho} \frac{d\overline{u}}{dr} + \frac{r}{a} (u^*)^2$$
(30)

$$-\overline{(v')^{2}} + \int_{0}^{r} \frac{(v')^{2} - (w')^{2}}{r} dr = \frac{p}{\rho} + \frac{2(u^{*})^{2}z}{a}$$
(31)

where $\mathbf{\bar{p}} = 0$ at z = 0.

These equations can be used as a convenient check on the Reynolds stresses, since the shear stress, $\rho \ \overline{u'v'}$, and velocity gradient $d\overline{u}/dr$, occur in one equation and the normal stresses, $(v')^2$ and $(w')^2$, occur with the pressure in the other equation.


Multiplying equation 30 by $d\bar{u}/dr$ puts it in the form of an energy balance:

$$\mathbf{u'v'}(\frac{\mathrm{d}\bar{u}}{\mathrm{d}r}) - \frac{\mu}{\rho}(\frac{\mathrm{d}\bar{u}}{\mathrm{d}r})^2 - \frac{r}{a}(\mathbf{u'})^2(\frac{\mathrm{d}\bar{u}}{\mathrm{d}r})$$
(32)

The right side represents the total energy loss per unit mass per unit time for the flow. The first term on the left side represents the turbulent energy production which is ultimately dissipated by the small scale turbulent eddies, and the second term represents the direct viscous dissipation by the average velocity gradient. This equation may be used to calculate the contributions of the turbulent fluctuations and the average velocity gradient to energy dissipation in the form of heat if the velocity gradient and pressure drop are known.

Laufer has calculated the gradient and turbulent energy dissipation profiles from his velocity profile data in air at two flow rates (Re=50,000 and 500,000). As shown in Figure 6 most of the gradient dissipation and turbulent energy production occurs very near the wall - below y⁺=30. This is within the velocity profile transition region where measurements are very difficult in small pipes. The total energy for the two terms (both made dimensionless by multiplying by $(\mu/\rho u^{*4})$) may be obtained by integrating across the pipe cross section. It is found that the gradient dissipation accounts for about sixty per cent of the total energy dissipated for the turbulent flow of air in a 10-inch pipe.

In order to study in detail the distribution of turbulent energy production and dissipation in pipe flow, it is necessary to consider the contributions of the various fluctuating terms to both the dissipation and diffusion of the energy. By adding the continuity equation, $\frac{\partial u_i}{\partial x_i} = 0$, multiplied by u_j , to the Navier-Stokes equation, the following result is obtained:

$$\frac{\partial u_{i}}{\partial t} + \frac{\partial}{\partial x_{j}} (u_{i}u_{j}) = -\frac{\partial \rho}{\partial x_{i}} + \mu \frac{\partial^{2} u_{i}}{\partial x_{j}^{2}}, \qquad (33)$$

for an incompressible fluid. When this equation is multiplied by u, i, the mechanical energy equation is obtained:

$$\frac{\partial u_{i}^{2}}{\partial t} + \frac{\partial}{\partial x_{j}} (u_{i}^{2}u_{j}) = -2u_{i} \frac{\partial p}{\partial x_{i}} + \frac{\partial^{2} u_{i}^{2}}{\partial x_{j}^{2}} - 2\mu (\frac{\partial u_{i}}{\partial x_{j}})^{2}$$
(34)

Laufer, assuming stationarity, wrote this equation in three components for cylindrical coordinates. He then followed the Reynolds averaging procedure with the sum of these three equations and obtained:

$$u'v' \frac{d\overline{u}}{dr} + \frac{1}{r} \frac{d}{dr} r \overline{v'(q + \frac{p}{\rho})} = \frac{\mu}{\rho r} \frac{d}{dr} (r \frac{dq}{dr})$$

$$+ \frac{\mu}{\rho r} (\frac{4}{r} w' \frac{dv'}{d\theta} - \frac{(v')^2 + (w')^2}{r}) - \frac{\mu}{\rho} (\overline{\frac{\partial u}{\partial x_j}}) (\overline{\frac{\partial u}{\partial x_j}})$$
(35)
where $q = \frac{1}{2}((\overline{u'})^2 + (\overline{v'})^2 + (w')^2)$

The equation reads functionally as follows: the turbulent energy production + the radial diffusion of turbulent energy by radial velocity fluctuations = the radial diffusion of energy by the action of the velocity gradient + second order effect (usually neglected) + the viscous energy dissipation.

Laufer measured some of the terms in the turbulent energy balance equation for a pipe and assumed isotropy 1 to establish the others. He was

¹ Isotropic turbulence theory is reviewed later in this section.

able to measure $(\overline{\frac{\partial u'}{\partial z}}^2, (\overline{\frac{\partial u'}{\partial r}}^2, (\overline{\frac{\partial v'}{\partial z}}^2, (\overline{\frac{\partial v'}{\partial z}}^2, (\overline{\frac{\partial w'}{\partial z}}^2, (\overline{\frac{\partial u'}{\partial \theta}}^2, q, \overline{u'v'}, \frac{d\overline{u}}{dr}, and \overline{v'q}$. He assumed that:

$$\frac{\left(\frac{\mathrm{d}\mathbf{u}^{\mathbf{i}}}{\mathrm{d}\mathbf{r}}\right)^{2}}{\left(\frac{\mathrm{d}\mathbf{u}^{\mathbf{i}}}{\mathrm{d}\mathbf{\theta}}\right)^{2}} = \left(\frac{\mathrm{d}\mathbf{w}^{\mathbf{i}}}{\mathrm{d}\mathbf{\theta}}\right)^{2} = 2 \left(\frac{\mathrm{d}\mathbf{w}^{\mathbf{i}}}{\mathrm{d}\mathbf{\theta}}\right)^{2}$$
(36)

By utilizing the above assumptions and disregarding the diffusion terms and integrating across the pipe cross section, Laufer obtained a check within 10 per cent of the dissipation calculated from pressure drop.

When the distributions of the nine turbulent energy dissipation terms are compared, it is found that the most important are $(\frac{\partial u^{1}}{\partial r})^{2}$, $(\frac{\partial u^{1}}{\partial \theta})^{2}$, and $(\frac{\partial u^{1}}{\partial z})^{2}$. All the terms are at about the same level everywhere in the pipe except very near the wall (r/a > 0.9). Here the three important terms reach peak values which are about 35 times, 10 times, and 2.5 times the other terms, respectively. Thus, these three terms are responsible for most of the rise in turbulent energy dissipation near the wall.

The distribution of each of the terms of equation 35 for Laufer's data, show that the diffusion terms are small compared to the production and dissipation terms, which approximately balance at each point in the pipe.

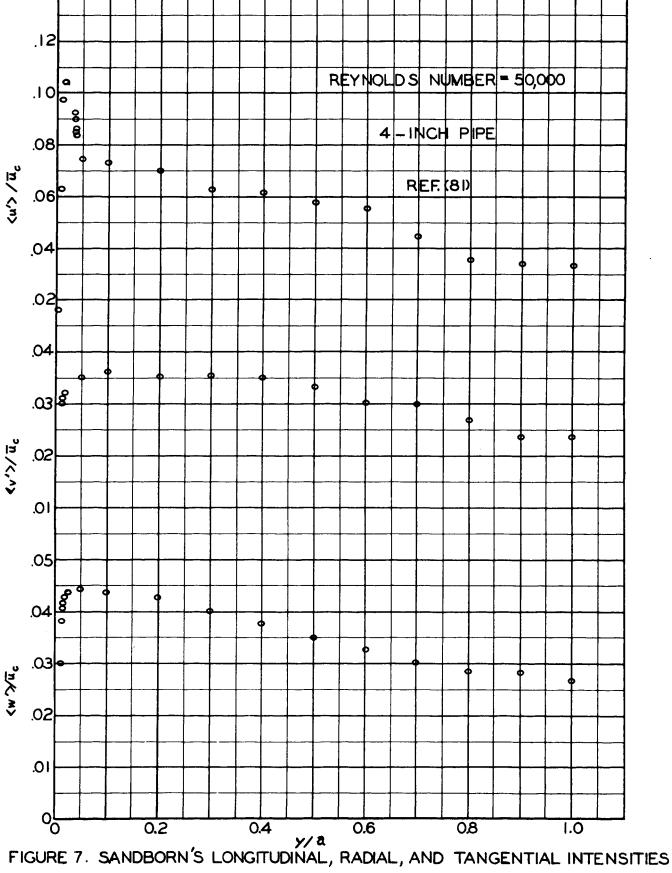
It should be noted that by multiplying each of the energy terms by $(\mu/\rho u^{*4})$ and plotting the resulting dimensionless quantity versus y^+ , Laufer's energy balance data near the wall for the two flow rates become a function of y^+ only.

The measurements made by Laufer in an effort to define the turbulent energy balance in pipe flow were done using hot-wire probes consisting of a fine resistance wire about 2 mm long which was electrically heated above the ambient fluid temperature. The rate of heat transfer to the fluid was then a function of the fluid velocity across the wire, this function being directly measureable. The use and operation of the hotwire anemometer and the hot-film modification are discussed in detail later.

The measurement most frequently made using the hot wire anemometer is the root mean square (rms) of the fluctuating velocity in a given direction. The intensity of turbulence is the root mean square fluctuating velocity divided by the average velocity at the point of measurement. Other ratios have been used, however, for pipe flow, these being the rms fluctuating velocity divided by friction velocity and the rms fluctuating velocity divided by the centerline velocity. These ratios are used in an effort to correlate the intensity data for different flow rates. Sanborn (81) found that the centerline longitudinal intensity of turbulence for air in 4-inch and 10-inch pipes and for a 5-inch channel are correlated to ± 10 per cent by the relation:

$$\frac{\langle u'_c \rangle}{\bar{u}_c} = 0.144 \text{ Re}^{-0.146}$$
(37)

A correlation of this form was made by Martin and Johanson (58) for the flow of water in a 6-inch pipe:


$$\frac{\langle u'_c \rangle}{\bar{u}_c} = 0.2415 \text{ Re}^{-0.189}$$
(38)

This correlation coincides with the Sanborn correlation at high Reynolds numbers (Re > 60,000), but is 16 per cent above it at a Reynolds number of 20,000. As will be shown later, the intensity data can be described as a function of position by correlating the rms fluctuating velocity divided by the friction velocity with a modified value of r/a. The mean square of the fluctuating velocity is a normal Reynolds stress. The total Reynolds stress tensor can be written as:

$$\tau = \rho \begin{bmatrix} \langle u^{\dagger} \rangle^{2} & \overline{u^{\dagger} v^{\dagger}} & \overline{u^{\dagger} w^{\dagger}} \\ \overline{v^{\dagger} u^{\dagger}} & \langle v^{\dagger} \rangle^{2} & \overline{v^{\dagger} w^{\dagger}} \\ \overline{w^{\dagger} u^{\dagger}} & \overline{w^{\dagger} v^{\dagger}} & \langle w^{\dagger} \rangle^{2} \end{bmatrix}$$
(39)

It has been shown above that the terms $\overline{w'u'}$, $\overline{v'w'}$, $\overline{w'u'}$, and $\overline{u'w'}$ do not appear in the equations for turbulent pipe flow. Also, it is easily shown that $\overline{u'v'} = \overline{v'u'}$. The terms $\rho < v' >^2$ and $\rho < w' >^2$ are the only normal stresses appearing in the equations. The data of Laufer (47) and Sanborn (81) show the dependence of < u' > (which does not appear in the equations of turbulent motion for pipe flow, equations 30 and 31), < v' >, and < w' >on the radial position in the pipe. < u' > is much more dependent on radius than the other two normal stresses since it increases from about 0.03 \overline{u}_c to about 0.1 \overline{u}_c near the wall as shown in Figure 7. The terms < v' > and < w' > increase from about 0.03 \overline{u}_c at the center to about 0.04 \overline{u}_c near the wall. Though the normal stress $\rho < u' >^2$ does not appear in the Reynolds equation for pipe flow, the importance of < u' > is in its contribution to the shear stress $\rho < \overline{u'v'}$.

A point in a turbulent field having all three normal Reynolds stresses equal is said to exhibit isotropic turbulence. A turbulence field in which the three normal stresses do not change during translation is called homogeneous. A turbulent shear flow between flat plates or in a pipe is homogeneous in the direction of flow only, but is not truly isotropic anywhere. Flow in a pipe does approach isotropy near the center, however, as shown by Laufer's and Sanborn's data.

.

2.2. <u>Time and space correlations</u>

Much of the work in the theory of turbulence has been done utilizing the approximately isotropic field behind a uniform grid in a wind tunnel. Several diameters downstream of the grid the individual vortex trails of the bars merge to form an isotropic field homogeneous in the transverse direction. The decay of the turbulent eddies as they are carried downstream from the grid is representative of the decay with time when the turbulence producing agent is suddenly removed. By measuring various properties of this approximately isotropic turbulence, many of the mathematical consequences of isotropy have been experimentally demonstrated.

Taylor (92) introduced the Eulerian space correlation coefficient as a means of measuring the scale (average eddy size) of turbulence:

$$g(\delta) = \overline{u'(y)u'(y+\delta)}/\langle u'\rangle^2$$
(40)

where δ is in the transverse direction. When $\delta=0$, $f(\delta)=1$. As δ increases $g(\delta)$ will drop toward zero, because the velocities at the two points will become more independent of one another. The scale of turbulence was defined by Taylor as:

$$Ly = \int_0^\infty g(\delta) d\delta$$
 (41)

A correlation coefficient has also been defined for a spacing in the flow direction:

$$f(\delta) = \overline{u'(x)u'(x+\delta)}/\langle u'\rangle^2$$
(42)

where δ is in the direction of flow.

The rate of viscous dissipation of turbulence energy per unit mass has been shown to be (34):

$$W = \frac{\mu}{\rho} \frac{\partial u_{i}}{\partial x_{j}} + \frac{\partial u_{j}}{\partial x_{i}} \frac{\partial u_{j}}{\partial x_{i}}$$
(43)

Taylor showed that for isotropic turbulence:

$$W = 7.5 \frac{\mu}{\rho} \left(\frac{\partial u}{\partial y}\right)^2$$
(44)

The transverse correlation coefficient may be expressed as a Taylor series (Brook Taylor):

$$g(\delta) = g(o) + \delta(\frac{\partial g}{\partial \delta})_{\delta=0} + \frac{\delta^2}{2}(\frac{\partial^2 g}{\partial \delta^2})_{\delta=0} + \cdots$$

-

For a homogeneous turbulence field it can be shown that the odd derivatives of $g(\delta)$ are zero (34), so:

$$g(\delta) = 1 + \frac{\delta^2}{2} \left(\frac{\partial^2 g}{\partial \delta^2} \right)_{\delta=0} + \frac{\delta^4}{4!} \left(\frac{\partial^4 g}{\partial \delta^4} \right)_{\delta=0} + \dots$$

$$(\frac{\partial^{2} g}{\partial \delta^{2}})_{\delta=0} = -\frac{1}{\langle u' \rangle^{2}} (\frac{\partial u}{\partial y})_{\delta=0}^{2}$$
$$(\frac{\partial^{4} g}{\partial \delta^{2}})_{\delta=0} = +\frac{1}{\langle u' \rangle^{2}} (\frac{\partial^{2} u}{\partial y^{2}})_{\delta=0}^{2}$$

The series thus becomes:

$$g(\delta) = 1 - \frac{\delta^2}{2 \langle u' \rangle} \overline{\left(\frac{\partial u}{\partial y}\right)^2}_{\delta=0} + \frac{\delta^4}{4! \langle u' \rangle^2} \left(\frac{\partial^2 u}{\partial y^2}\right)^2 + \dots \qquad (45)$$

Taylor defined a microscale as follows:

let
$$g(\delta)_{\delta \to 0} = 1 - \frac{\delta^2}{\lambda_g^2}$$

then $\lambda_g^2 = \frac{2 \langle u' \rangle^2}{\left(\frac{\partial u}{\partial y}\right)^2}_{\delta = 0}$ (46)

This microscale is an indication of the average rate of change of u with distance. The microscale, λ_f , for the direction of flow may be defined in a similar manner.

The rate of isotropic energy dissipation may be expressed in terms of the microscale or the correlation function:

$$W = 15 \frac{\mu \langle u' \rangle^2}{\rho \lambda_g^2} = -7.5 \langle u' \rangle^2 \frac{\mu}{\rho} \left(\frac{\partial^2 g}{\partial \delta^2}\right)_{\delta=0}$$
(47)

Karman and Howarth (38) extended Taylor's consideration of isotropic turbulence by defining a double correlation tensor:

$$R_{ij} = \frac{1}{\langle u' \rangle^2} \quad \overline{u'_{i}u'_{j}(\delta)}, \text{ for } i, j = 1, 2, \text{ or } 3$$
(48)

The equation of continuity was written in terms of R_{ij} , and the following relation obtained between $f(\delta)$ and $g(\delta)$:

$$f(\delta) - g(\delta) = - (r/2) \frac{\partial f(\delta)}{\partial \delta}$$
(49)

The applicability of this relation to grid induced turbulence has been demonstrated by Karman and Howarth by measuring both $f(\delta)$ and $g(\delta)$ and transforming $f(\delta)$ to $g(\delta)$, using equation 49.

Karman and Howarth also considered the triple correlations of velocity in isotropic turbulence. The various triple correlation coefficients are represented by:

$$T_{ijk} = \frac{1}{\langle u' \rangle^3} \overline{u'_{i}u'_{j}u'_{k}(\delta)}$$
(50)

where u'i and u'j are at the same point and u'k is separated by a distance δ . Specific triple correlations relate to the direction of flow as shown below:

$$\xrightarrow{u'_1(\delta)} f(\delta)$$

$$u'_{2}$$
 f_{2} f_{2} $g(\delta)$
 $(u'_{2})^{2}$ $u'_{1}(\delta)$ $h(\delta)$

$$(u'_{1})^{2} \qquad u'_{1}(\delta) \qquad k(\delta)$$

$$u'_{2} \qquad u'_{1} \qquad du'_{2}(\delta) \qquad g(\delta)$$

Double and Triple Correlations

Making use of the continuity equation, the relationship between k, h, and q is (38):

$$k = -2h$$

 $q = -h - (r/2) \frac{dh}{dr}$ (51)

By forming triple correlations from the equation of motion, Karman and Howarth obtained a general relation for isotropic turbulence between the double and triple correlation tensors:

$$\frac{\partial}{\partial t} (\langle u' \rangle^2 R_{ik}) - \langle u' \rangle^3 \frac{\partial}{\partial x_i} (T_{ijk} + T_{kji}) = 2 \frac{\mu}{\rho} \langle u' \rangle^2 \nabla^2 R_{ik}$$
(52)

From this equation, the relation between h and f was obtained by eliminating g, k, and q using the continuity equation:

$$\frac{\partial (\mathbf{f} < \mathbf{u'} >^2)}{\partial \mathbf{t}} + 2 < \mathbf{u'} >^3 (\frac{\partial \mathbf{h}}{\partial \delta} + \frac{4}{\delta} \mathbf{h}) = 2 \frac{\mu}{\rho} < \mathbf{u'} >^2 (\frac{\partial^2 \mathbf{f}}{\partial \delta^2} + \frac{4}{\delta} \frac{\partial \mathbf{f}}{\partial \delta})$$
(53)

An equation for the dissipation of turbulent energy can be obtained from the Karman-Howarth equation for f and h (52). When $\delta=0$, f=1 and $\frac{dh}{d\delta} + \frac{4}{\delta}$ h=0 because q=h. So:

$$\frac{\partial \langle \mathbf{u}' \rangle^2}{\partial \mathbf{t}} = 2 \frac{\mu}{\rho} \langle \mathbf{u}' \rangle^2 \left(\frac{\partial^2 \mathbf{f}}{\partial \delta^2} + \frac{4}{\delta} \frac{\partial \mathbf{f}}{\partial \delta} \right)_{\delta = \mathbf{0}}$$

using $f = 1 + 1/2 f_0^{II} \delta^2 + \frac{1}{4!} f^{IV} \delta^4 + ...,$

$$\frac{d \langle u' \rangle^2}{dt} = 10 \frac{\mu}{\rho} f_0^{II} \langle u' \rangle^2$$

where f_0^{II} and f_0^{IV} are second and fourth distance derivatives at $\delta=0$,

respectively. Introducing Taylor's microscale:

$$\lambda_{g}^{2} = -\frac{2}{g_{o}^{II}} = -\frac{1}{f_{o}^{II}}$$

$$\frac{d \langle u' \rangle^{2}}{dt} = -10 \frac{\mu \langle u' \rangle^{2}}{\rho_{\lambda_{g}}^{2}}$$
(54)

This is the rate of decay of the normal stress $\langle u' \rangle^2$ with time. The total turbulent energy is q = 1/2 ($\langle u' \rangle^2 + \langle v' \rangle^2 + \langle w' \rangle^2$),

so
$$W = -\frac{dq}{dt} = 15 \frac{\mu < u'>^2}{\rho \lambda^2_g}$$
 as above.

Other correlations may be formed for the fluctuating components of turbulent flow. In particular, the turbulent energy equation 35 for flow in a pipe involves the pressure-velocity correlation $\overline{v'p'}$. Laufer (47) did not measure this correlation because the technology for measuring high frequency pressure fluctuations has only recently been refined. Pressure-velocity correlations (6, 22, 101) and pressure spectra (15, 39, 100) have recently been made. Since these measurements are not pertinent to the research reported here, the reader is referred to the original literature for further discussion.

Taylor (94) postulated that if the turbulent velocity fluctuations are much smaller than the average velocity of flow the instantaneous velocity is the same function of (δ/\bar{u}) as of time, that is:

$$u = \Phi(t) = \Phi(\delta/\overline{u})$$

This led Taylor to define the autocorrelation function:

$$R(\tau) = \frac{\underline{u(t) u(t + \tau)}}{\langle u' \rangle^2}$$
(55)

where $\tau = \delta/\overline{u}$. The equivalence of $R(\tau)$ to $f(\delta)$ has been demonstrated experimentally by Favre, Gaviglio, and Dumas (20). Their measurements were made behind a grid in a wind tunnel, so the turbulence was probably nearly isotropic. Lin (53) has stated that the Taylor hypothesis is not generally valid in shear flows, because of the increased importance of the convective terms in the equation of motion. Care must be exercised, therefore, in the interpretation of autocorrelations in turbulent boundary layers.

More can be learned about the movement of large eddies by the mean flow through the use of time-space correlation. Favre, et al, and Baldwin and Walsh (2) have measured space correlations using variable time delays on one of the velocity signals. In this way the movement of an eddy (represented by the time correlation at each point) can be represented by a map of the lines of constant correlation on time-distance coordinates. If the Taylor hypothesis were strictly true for long times, the time-space map of the longitudinal correlation would be a single straight line. Since eddies are continually decaying and being replaced by others, the map of constant correlation coefficient consists of elongated ellipses, with the highest correlation at the center. Baldwin and Walsh have suggested that the locus of maxima for the time-space correlation curves is very close to the Lagrangian correlation coefficient. They show some similarity (even though the curve shapes are definitely different) by plotting these maxima versus time on the same graph with the Lagrangian correlation calculated from heat transfer measurements. A possible criticism of the comparison is that the Lagrangian correlation measured by heat transfer is for the radial direction, whereas their time-space measurement is a longitudinal correlation. One set of Favre's data is a transverse time-space correlation (δ is in radial direction). When the maxima

for these correlations are plotted, the curve shape is identical to the transverse (radial) Lagrangian correlation of Baldwin and Walsh.

The relationship between the Lagrangian correlation coefficient and the Eulerian correlation coefficient has not been defined mathematically. Experimental evidence showing the relationship suggests that the shapes of the correlation curves are very similar for the same flow conditions. Mickelsen (63) and Uberoi and Corrsin (96) have shown that the Eulerian and Lagrangian length scales have ratios of 0.5 to 0.8 in the range $10 < \text{Re}_{L} < 100$, where Re_{L} is a Reynolds number using Eulerian length scale as the distance. Baldwin and Walsh (2) have found that comparisons of Eulerian autocorrelations to Lagrangian radial correlations gave almost constant ratios of Eulerian length to Lagrangian length at the same correlation coefficient for a given velocity. Their ratios of length scale are much higher than 0.8, however, probably because of the comparison of a longitudinal Eulerian scale to a radial Lagrangian scale.

2.3. <u>Turbulent</u> energy spectra

The most detailed description of the turbulence at a point is the energy spectrum, defined as $\frac{2}{3} \frac{dq}{dk}$ as a function of k, the wave number. Since q = 1/2 ($\langle u' \rangle^2 + \langle v' \rangle^2 + \langle w' \rangle^2$):

$$3E(k) = 2 \frac{dq}{dk} = \frac{d < u' >^2}{dk} + \frac{d < v' >^2}{dk} + \frac{d < w' >^2}{dk}$$
(56)

The spectrum measureable using a hot-wire anemometer is called the onedimensional spectrum and is simply one component of E(k). For example:

$$E_{x}(k) = \frac{d \langle u' \rangle^{2}}{dk}$$
(57)

The normalized one-dimensional energy spectrum is $F_x(k) = E_x(k)/\langle u' \rangle^2$.

If the turbulence is isotropic, a three-dimensional¹ spectrum of turbulence may be defined which includes contributions from those velocity components in one direction only, that is, no partial contributions from other directions are included. The relation between the one-dimensional and three-dimensional spectrum is as follows (52):

$$E_{x}(k) = 3/2 \int_{k}^{\infty} (k'^{2} - k^{2}) E(k') dk'/k'^{3}$$
(58)

or
$$E(k) = 1/3 (k^2 E_x^{II}(k) - k E_x^{I}(k))$$
 (59)

where E(k) is defined such that:

$$\int_{0}^{\infty} E(k) dk = \int_{0}^{\infty} E_{\mathbf{x}}(k) dk = \langle u' \rangle^{2}$$

The concept of the three-dimensional spectrum is needed because the theories of energy transfer from wave number to wave number are formulated in its terms. The application of the theory to the results of the experimental work to be described, however, will be in terms of the measureable onedimensional spectrum. Examination of equation 59 reveals that any II linear regions in the log-log one-dimensional spectrum (log E_x (log k) = 0) have the same slope as the corresponding linear log-log three-dimensional spectrum. This fact will be used in subsequent comparisons.

Taylor (94) first showed that the normalized one-dimensional spectrum is simply the Fourier cosine transform of the correlation function, $f(\delta)$, if the Taylor hypothesis is valid:

$$f(\delta) = \int_{0}^{\infty} F_{x}(k) \cos k\delta \, dk$$

$$F_{x}(k) = \frac{2}{\pi} \int_{0}^{\infty} f(\delta) \cos k\delta \, d\delta$$
(60)

¹ The term "spherical" spectrum is clearer to the author, since spherical coordinates are used to determine the relation between this spectrum and the one-dimensional spectrum.

Expressed in terms of frequency and autocorrelation, these equations become:

$$R(\tau) = \int_{0}^{\infty} F_{x}(n) \cos 2\pi n\tau dn$$

$$F_{x}(n) = 4 \int_{0}^{\infty} R(\tau) \cos 2\pi n\tau d\tau$$
(61)

If the expression, equation 60, for $f(\delta)$ is differentiated with respect to δ (where $F_x(k)$ is not a function of δ):

$$\frac{\partial f(\delta)}{\partial \delta} = -\int_{0}^{\infty} F_{x}(k) k \sin k\delta dk$$
$$\frac{\partial^{2} f(\delta)}{\partial \delta} = -\int_{0}^{\infty} F_{x}(k) k^{2} \cos k\delta dk$$

Combining this result with equation 47 for the turbulent dissipation of energy in isotropic turbulence using the relation (34) that $\left(\frac{\partial^2 g}{\partial \delta^2}\right)_{\substack{\delta=0\\\delta=0}} = 2\left(\frac{\partial^2 f}{\partial \delta^2}\right)_{\substack{\delta=0\\\delta=0}}$:

$$W = -15 \frac{\mu}{\rho} < u' >^2 \left(\frac{\partial^2 f}{\partial \delta^2}\right)_{\delta=0} = 15 \frac{\mu}{\rho} \int_0^\infty E_x(k) k^2 dk \qquad (62)$$

The dissipation spectrum is, therefore, defined as:

$$D(k) = \frac{\rho}{15\mu} \frac{\partial W}{\partial k} = E_{x}(k)k^{2}$$
(63)

This is also called the vorticity spectrum because $\langle \omega_x \rangle^2 = 5 \langle u' \rangle^2 f_0^{II} = -5 \int_0^{\infty} E_x(k)k^2 dk$, where ω_x is the vorticity, $(\frac{\partial w'}{\partial y} - \frac{\partial v'}{\partial z})$ (75a).

Since the microscale, λ_f , is related to f_o^{II} (34), it may be found from a spectrum measurement:

$$\lambda_{f} = \frac{\sqrt{2 \langle u' \rangle}}{\left[\int_{0}^{\infty} E_{x}(k)k^{2} dk\right]^{1/2}}$$
(64)

All the above relations may be expressed in terms of frequency through

the relation $k = 2\pi n/\bar{u}$.

2.4. <u>Turbulent energy transfer hypotheses</u>

The primary objective of the study of turbulence spectra is the formulation of a general theory predicting the spectra using a minimum of parameters. The cosine transform of the Karman-Howarth equation results in the spectral energy balance (52):

$$\frac{\partial \mathbf{E}(\mathbf{k})}{\partial t} - \mathbf{T}(\mathbf{k}) = -2 \frac{\mu}{\rho} k^2 \mathbf{E}(\mathbf{k})$$
(65)

The first term is the rate of change of the spectrum with time at wave number k, the second term is the transfer of energy to wave number k, and the right side is the rate of viscous dissipation at k. The transfer term is composed of terms involving the triple correlation $h(\delta)$, but since various hypotheses of a simpler nature are of primary concern the Karman-Howarth form will not be discussed here.

The simplest of the well known transfer hypotheses is the Kovasznay (45) "local transfer" theory:

$$T(k) = -2K_k \frac{d}{dk} (k^{5/3} E(k)^{3/2})$$
 (66)

Obukhoff (66) proposed the "shear transfer" theory:

$$T(k) = -2K_{o} \frac{d}{dk} \int_{k}^{\infty} E(k') dk' \left[\int_{0}^{k} k'^{2} E(k') dk' \right]$$
(67)

The most thoroughly tested energy transfer hypothesis is that of Heisenberg (32):

$$T(k) = -2K_{h} \int_{k}^{\infty} \sqrt{E(k')/k'^{3}} dk' \left[\int_{0}^{k} k'^{2} E(k') dk' \right]$$
(68)

For values of k such that $\int_{0}^{\infty} E(k')dk' \gg \int_{0}^{\infty} E(k')dk'$, $\frac{\partial}{\partial t} \int_{0}^{k} E(k')dk' \approx \frac{W}{3}$ (75a). The expression for the energy spectrum using the Heisenberg hypothesis is then:

$$3E(k) \approx \left(\frac{8W}{9K_h}\right)^{2/3} k^{-5/3} \left(1 + \frac{8\mu^3 k^4}{3K_h^2 \rho^3 W}\right)^{-\frac{4}{3}}$$

So for $(3K_h^2 \rho^3 W/8\mu^3)^{1/4} >>k$, this reduces to:

$$3E(k) \approx \left(\frac{8W}{9K_{h}}\right)^{2/3} k^{-5/3}$$
 (69)

$$3E(k) \approx (K_h W \rho^2 / 2\mu^2)^2 k^{-7}$$
 (70)

Kolmogoroff (43) arrived at the k^{-5/3} law for energy transfer in the inertial range (where little dissipation takes place) by dimensional arguments. He also defined a length scale, $\lambda_k = (\mu^3 / \rho^3 W)^{1/4}$, or a characteristic wave number, $k_k = 1/\lambda_k$, which is a parameter in his universal equilibrium spectrum for very high wave numbers (in the dissipative range):

$$E(k) = W^{2/3} k^{-5/3} A(k/k_k)$$
(71)

Kolmogoroff's analysis did not determine the form of the function A. A basic assumption of Kolmogoroff in the formulation of the spectrum function for the universal equilibrium range was that the velocity fluctuations at high wave number approach isotropy. This has been supported experimentally by Laufer (46). He measured the spectrum of both the normal stress $\rho < u' >^2$ and the shear stress $\rho \cdot u' \cdot v'$ in a channel. The spectrum for $\overline{u' \cdot v'}$ became nearly zero at frequencies far lower than for the normal stress. Since the shear stress for isotropic turbulence is zero, the high wave number spectrum must have been isotropic.

A number of investigators have confirmed the $k^{-5/3}$ law for several different types of turbulence. Gibson (24) obtained a $k^{-5/3}$ spectrum for a jet of air. He also obtained data supporting the universal spectrum. About the same time Gibson and Schwarz (25) published data yielding the $k^{-5/3}$ inertial energy transfer region for the flow of water behind a

grid (yielding nearly isotropic turbulence). Their data were combined with data of Stewart and Townsend (89) and the data of Grant, Stewart, and Moilliet (30) to show the existence of the universal spectrum at high wave numbers. The data were plotted as $E_x(k)k_k^{\ 3}(\mu/\rho W)$ versus k/k_k and became single valued at a wave number ratio of about 10^{-1} to 10° with a log-log slope of -7. This is very strong support for the Heisenberg hypothesis (equation 70). The Stewart and Townsend data are for turbulent air behind a grid, and the Grant, Stewart, and Moilliet data are for the very high Reynolds number turbulence in tidal flow of sea water. The latter data were obtained using a probe mounted on a torpedo towed beneath a ship.

Betchov (3) obtained the $k^{-5/3}$ spectra for flow of air into a duct from a porcupine box¹. After applying wire length correction factors to his data, however, the high wave number region exhibited a log-log slope of -6, instead of the -7 slope of the uncorrected data. Deviation from the Heisenberg hypothesis was also shown by the data of Tanenbaum (90). He showed a slightly better fit using the more complicated model of von Karman for energy transfer. This is to be expected because the von Karman model is a generalized version of the Heisenberg model and includes three adjustable parameters instead of one.

Pao (69) formulated a new energy transfer hypothesis for the high wave number region, based on a cascade model for energy transfer to higher wave numbers. The energy flux in wave number space is set equal to the product of the energy at k and the rate of increase of k. The rate of

¹Many jets protruding into the box from all directions.

increase of k, $\frac{dk}{dt}$, was given by dimensional reasoning as:

$$\frac{\mathrm{d}\mathbf{k}}{\mathrm{d}\mathbf{t}} = \alpha^{-1} \mathbf{W}^{1/3} \mathbf{k}^{5/3}$$

where α is a constant. This yields a transfer function:

$$T(k) = -\frac{d}{dk} (\alpha^{-1} W^{1/3} k^{5/3} E(k))$$

Pao then obtained the following expression for the universal equilibrium spectrum:

$$E(k) = \alpha W^{2/3} k^{-5/3} \exp(-3/2\alpha W^{-\frac{1}{3}} k^{4/3} \mu/\rho)$$
(72)

This expression fits all the above data for k/k_k above 10^{-3} . As k approaches zero, E(k) becomes proportional to $k^{-5/3}$. At high k the spectrum is approximately proportional to k^{-7} .

A large portion of the effort devoted to the study of energy spectra has been associated with attempts to formulate laws for turbulence decay behind a grid. In the case of steady flow in a conduit, however, the time derivative of the spectrum function in equation 65 becomes zero, and the energy balance is:

$$T(k) = 2 \frac{\mu}{\rho} k^2 E(k)$$
 (73)

Since $E(k) = 1/3(k^2 E_x^{II}(k) - k E_x^{I}(k))$, equation 73 may be expressed in terms of the one-dimensional spectrum in isotropic turbulence as follows:

$$T(k) = \frac{2}{3} \frac{\mu}{\rho} (k^{4} E_{x}^{II}(k) - k^{3} E_{x}^{I}(k))$$
(74)

The energy transfer function must then balance the dissipation spectrum. This relationship will be used in the treatment of the experimental spectra for the flow of drag reducing solutions described later.

3. The Measurement of Statistical Turbulence Phenomena

In order to obtain a mechanistic picture of turbulence in ordinary viscous fluids and in drag reducing fluids, it is necessary to obtain a detailed experimental description of the occurrences the turbulent field. This means that techniques are needed to measure instantaneous velocity and instantaneous pressure as a function of time at any point. In general this is not possible, but may be approached.

Hot-wire or hot-film anemometers can be used to measure one component of velocity. Two components can be measured simultaneously using an X-wire anemometer probe. In addition to the limitation to measuring velocity components only, the frequency response of the anemometer system causes an attenuation of high frequency fluctuations. The successful use of hot-surface anemometry involves proper matching of anemometer frequency characteristics and turbulent field properties to obtain the desired information.

The measurement of rapid pressure fluctuations is not nearly as well developed as the measurement of fluctuating velocities. The best developed method involves the use of a piezoelectric crystal which generates a voltage signal as a function of pressure. It is difficult to make crystals small enough to have good space resolution with high sensitivity. The size of piezoelectric crystal required is usually much larger than the microscale of liquid turbulence in pipes. Eagleson and Perkins (16) have used a probe with a piezoelectric crystal inside a necked-down impact tube, but frequency response was limited by the restriction. Fluctuating pressure measurements will not be discussed in detail here, since none were made in this study.

3.1. Hot-surface anemometry

Hot-surface anemometry is based on the effect of fluid velocity on the heat transfer from a surface to a fluid. The most common surfaces are wires perpendicular to the flow, metal films plated on various shaped probes, and metal films plated on surfaces mounted flush with the flow boundary. The wires or films are heated by an electrical current. Since the electrical resistance of the wire or film rises with temperature, resistance is used as an indication of surface temperature.

The rate of heat transfer from a cylinder perpendicular to the flow is adequately described for use in anemometry by the equation of King (29), which relates Nusselt number to Reynolds number:

$$Nu = A + B Re^{0.5}$$
(75)

This equation is also of the proper form for use with wedge type hot-film anemometer probes. For the calibration of hot-surface anemometers, it is necessary to relate the electrical power input to the probe to the instantaneous velocity of the fluid. This is usually expressed as (34):

$$i^{2}R/(R - R_{0}) = A' + B' u^{0.5}$$
 (76)

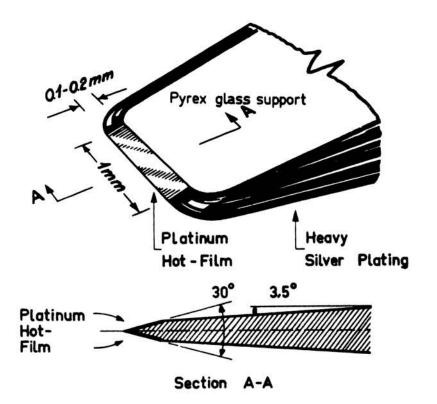
where R is the probe operating resistance and R_0 the probe resistance at fluid temperature. The physical properties in the Nusselt and Reynolds numbers are absorbed into the calibration constants A' and B'. The value of R increases with temperature increase.

There are two common operating modes for hot-surface anemometry. The first, which was for many years the only practical mode, is constant current operation. This mode is applicable only to fine wires as shown below. The second mode of operation is the constant temperature or constant resistance mode in which the current is varied to maintain constant probe temperature.

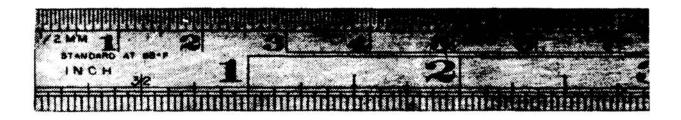
In the constant current method the current, i, is held constant and the value of the wire resistance, R, is determined by the equilibrium wire temperature. If the wire is incorporated in a resistance bridge, this value of R may be measured. By measuring i with the bridge balanced for several different velocities, A' and B' may be determined. The time average of equation 76 for turbulent flow is of the same form if the turbulence intensity is low. The time average velocity may be measured after A' and B' are known by measuring the i required to obtain a predetermined value of R. This method is usually more accurate than the simpler method of measuring bridge unbalance voltage for fixed i (29).

In order to measure the velocity fluctuations in turbulent flow, it is necessary to relate the resistance fluctuation of the wire to the velocity. If a large resistance is inserted in the supply current to the bridge containing the hot-wire, the current will remain constant despite small variations in wire resistance, which occur when velocity fluctuations cause wire temperature fluctuations. If $R = \overline{R} + R'$ and $u = \overline{u} + u'$ in equation 76, the following equation is obtained after some rearrangement (34):

$$\langle \mathbf{E'} \rangle = \mathbf{i} \langle \mathbf{R'} \rangle = - \left(\overline{\mathbf{R}} - \mathbf{R}_{o} \right)^{2} \mathbf{B'} \langle \mathbf{u'} \rangle / 2\mathbf{i} \mathbf{R}_{o} \sqrt{\mathbf{u}}$$
(77)


where E' is the fluctuating voltage when the bridge is balanced for average wire resistance. By calibrating the wire to obtain the value of B', the root-mean-square (rms) velocity may be calculated from the measurement of the root-mean-square (rms) bridge voltage using equation 77.

The most serious performance problem inherent in the constant current technique is the attenuation of high frequency temperature fluctuations by the mass of the hot sensor. The necessity of using a low mass sensor limits the use of the constant current method to fine wires. The frequency response generally drops off with increasing frequency starting at about 100 cps (29). In order to extend the frequency response it is necessary to incorporate a compensation circuit in the bridge. In this manner the region of fairly flat frequency response can be extended to several thousand cycles per second.


Many difficulties are encountered in the use of wire probes for the measurement of velocity fluctuations in liquids (56). The small size and low strength of the wire probes limits their use in liquids to low velocities. (The author, however, used a 0.005 mm platinum plated tungsten wire 1 mm long in organic solvents at velocities up to 10 feet per second without breakage). A much more serious problem is the tendency of lint particles to wrap around the wire. Since large liquid pumping systems are very difficult to maintain completely free of lint, the wire quickly becomes covered, drastically affecting the calibration of the probe.

The wedge film probe developed by Ling (56, 57) is much more suitable for measurements in liquids because of the great strength of the probe and because the configuration allows lint to be swept away by the stream. The probe consists of a 30° wedge of glass plated with platinum at the leading edge. The entire probe looks somewhat like a small screwdriver as shown in Figure 8. The electrical connections are usually gold or silver strips plated on the glass support from each end of the platinum plated wedge to the probe support leads. The dimensions of the platinum plated wedge are usually about 1 mm long (transverse to flow direction) and 0.2 mm wide (in flow direction).

The high frequency response of a film probe would be severely attenuated if it were used in the constant current mode, since the large mass of the glass support has a high heat capacity. For this reason film probes are used in the constant temperature mode of operation to extend their frequency response. This method requires the use of a feedback circuit which limits probe temperature variation to an insignificant amount. The anemometer makes use of the bridge balance technique in a slightly different manner than the constant current anemometer. In the

FIGURE 8. HOT-FILM PROBE

constant current anemometer the bridge is balanced for the measurement of time average velocity, but fluctuating components are indicated by the fluctuation of the probe voltage about the average. Although the bridge is in a time average balanced condition, it is not balanced during fluctuations from the average. The constant temperature anemometer utilizes a balanced bridge for the measurement of both fluctuating velocity <u>and</u> time average velocity. The bridge is maintained in balance by the feedback circuit which varies the bridge current to hold the probe temperature at the level required to give a preset resistance.

The balanced bridge mentioned above is not precisely balanced at all times. When the instantaneous velocity varies from the time average velocity, the bridge becomes slightly unbalanced. This unbalance is amplified by the feedback circuit, which then alters the bridge current in the direction required to restore balance. As with all amplifier feedback controllers, this system is prone to overcontrol and oscillate when improperly adjusted. Amplifier instability causing such oscillations hampered the development of the constant temperature anemometer until very recently (67). The development of successful circuits has been well covered in the literature (48, 49, 67, 99) and will not be discussed here.

Calibration of the constant temperature anemometer is straightforward. It can be conveniently done during the measurements of turbulence intensity in a stream where several known local velocities are used. This autocalibration procedure allows operation in dirty streams where occasional calibration changes occur because of particle impact. If three or more different velocities have been used since the last calibration change, a new calibration can be established. Equation 76 can be written:

$$E^{Z} = A + B u^{C}, \qquad (78)$$

since $(R - R_0)$ is a constant value for a given overheat ratio, R/R_0 . The overheat ratio is determined by the bridge resistance setting which must be matched by the probe resistance. The exponent, c, generally is not equal to 0.5 for liquids. It decreases in value for polymer solutions of increased viscosity, as will be seen. In this equation \sqrt{A} is the voltage drop across the bridge for zero flow rate. The voltage drop across the bridge, E, is proportional to bridge current.

If the velocity fluctuations are small compared to the average velocity, the rms turbulent velocity fluctuation can be calculated from the rms bridge voltage fluctuation and the slope of the curve represented by equation 78 at the flow rate of interest:

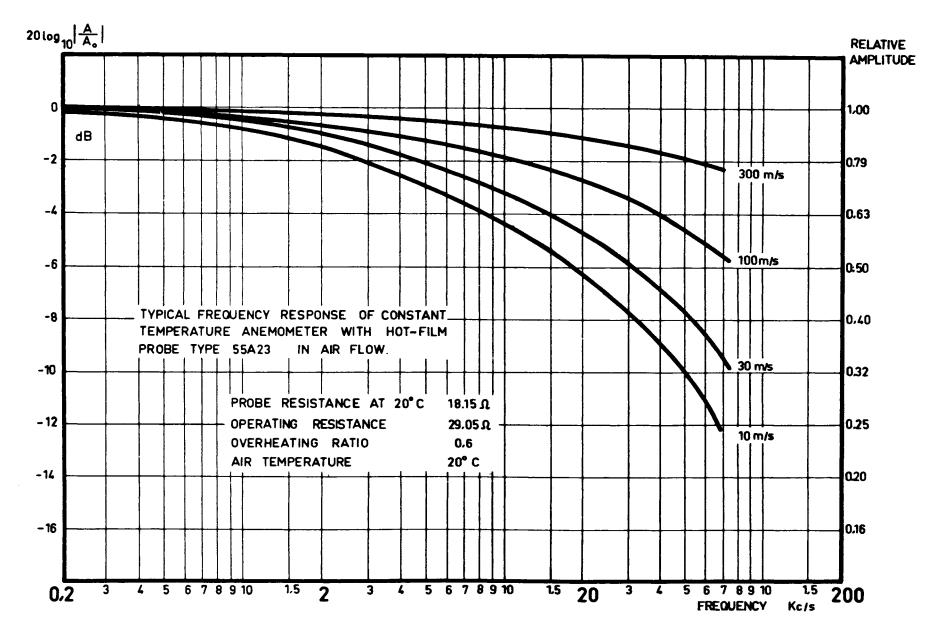
$$u' \approx E'/(dE/du)$$
 (79)
so $\langle u' \rangle \approx \langle E' \rangle/(dE/du)$

This relation is usually accurate for turbulence intensities ($\langle u' \rangle / u$) up to 10 per cent, and is only slightly in error for values as high as 20 per cent when using the flat part of the calibration curve. Care must be exercised, however, to make sure that the curvature of the calibration curve, E versus \bar{u} , is small at the point of interest. Linearizers which allow the measurement of a modified rms bridge voltage proportional to $\langle u \rangle$ without regard to curvature are coming into use.

Of utmost importance in hot-surface anemometry, particularly in the measurement of turbulence spectra, is the maintenance of a low noise to signal ratio. The tendency for feedback oscillation in the constant temperature anemometer has already been mentioned, but will not contribute to the noise if properly adjusted. Other noise sources within the circuit are more difficult to recognize and must be kept low through the use of sophisticated components.

The condition opposite to oscillation is undercontrol. The sensitivity of the bridge to inbalance must be run as high as possible without causing instability. The slight unbalance necessary to cause a feedback signal is not measured as a fluctuating voltage and represents a loss in measured turbulence intensity. This signal loss increases with frequency, since the response is a frequency dependent function. The typical response of a well adjusted DISA constant temperature anemometer with a hot-film in air flow is shown in Figure 9.

3.2. <u>Turbulence measurements</u>


The turbulence measurements made by Laufer and Sandborn for air flowing through large pipes have already been discussed. A number of measurements in air for other configurations have also been made, but will not be mentioned here because they have no direct bearing on this work.

Few turbulence measurements in liquids have been made, as the development of the hot-film anemometer was quite recent and interest in these measurements is just developing. All but one of the liquid turbulence investigations previous to the work described in this thesis were made in water, the earliest being those measurements made by Ling (56) during his development of the hot-film probe. His test measurements were made on a turbulent water jet.

Grant, Stewart, and Moilliet (30) made their measurements in a tidal channel (Discovery Channel, Canada) using a conical film probe. The platinum film was a tapered ring plated around the tip of the cone. In order to avoid probe current leakage and polarization in the sea water, it was necessary to use alternating current probe potential under 1.2 volts. The anemometer was the constant temperature type.

The probe signal was analyzed to determine the spectrum function during the tidal flow. The spectrum tended to support the existence of

the inertial subrange with a slope of $k^{-5/3}$ as proposed by Kolmogoroff. The high wave number region of the spectrum had a slope of k^{-7} , as expected from the Heisenberg transfer hypothesis.

A more comprehensive comparison of spectra with the concepts of Kolmogoroff was made by Gibson and Schwarz (25). Using their data for the flow of water behind a turbulence inducing grid, the data of Grant, Stewart, and Moilliet, and the data of Steward and Townsend for air, Gibson and Schwarz demonstrated excellent experimental support for both the inertial subrange and the universal equilibrium range. The data were normalized by plotting $E_x(k)k_k^3\nu/W$ versus k/k_k , where k_k is the Kolmogoroff microscale. This normalization caused the spectra above k/k_k of 1 to coincide with a slope of k^{-7} . The inertial subrange lay below k/k_k of 10^{-1} with a slope of $k^{-5/3}$.

Gibson and Schwarz's measurements were made withal mm X 0.2 mm wedge type film probe made by Lintronics. The purity of the water was high enough to avoid current leakage.

The work mentioned above was done with spectrum measurement as the primary objective. Measurements of the intensity of turbulence in water have been made by Rosler and Bankoff (79) for the flow of a jet into a large tank of water. These measurements were made using a Lintronics film probe and defined the intensity profiles at axial distances up to thirty diameters from the jet outlet. The data were very similar to air jet data taken previously by Corrsin and Uberoi (11). These data, however, are difficult to relate to pipe flow of liquids, which is of primary interest here.

Lee and Brodkey (50) measured the longitudinal intensity of turbulence in the pipe flow of water using a Lintronics film probe. The intensity, energy spectrum, and microscale were measured in a 3.068-inch polyethylene pipe. The intensity data obtained are questionable because the investigators experienced calibration drift during their measurements causing a slight peak at the pipe center. This is commonly experienced in measurements in water with an uncoated probe. Lee and Brodkey obtained a microscale at the center of the pipe of 0.092 inches at a Reynolds number of 50,000. Their spectrum at the pipe center is compared with spectra determined in this investigation in Figure 52.

Corino and Brodkey (10a) have recently measured turbulence intensities in the turbulent flow of trichloroethylene in conjunction with visual studies of the turbulence in the boundary layer. Their data are not yet available to the author, however, so they cannot be discussed in detail.

The measurement of turbulence intensity in water by Martin and Johanson (58) has been mentioned above. They also measured the autocorrelation function at Reynolds numbers between 19,000 and 160,000 in a 6-inch pipe. They calculated macroscales from the autocorrelation functions and correlated the values with Reynolds number. The correlation is discussed in detail in section 6.4.

The most complete investigation of the longitudinal intensity of turbulence was done by Lindgren (54). His measurements were made with a film probe with a 2 mm long film in a 127 mm pipe. In order to obtain measurements of mean velocity and turbulence intensity near the wall, Lindgren cut a groove in the pipe wall deep enough to allow the probe tip to approach the wall very closely. Unfortunately his data were quite scattered even though they were in general agreement with Laufer's data for air flow in a 10-inch pipe. Lindgren measured intensity profiles for Reynolds numbers of 5500 to 51,000. Having strong Reynolds number effects, they did not correlate well when <u>/u* was plotted versus r/a.

4. Viscoelastic Theories of Drag Reduction

A number of the fluids whose turbulent friction factors and velocity profiles were discussed above have been shown to exhibit elastic properties in laminar flow. This led Dodge (14) to postulate that the anomalous results he obtained in his friction factor measurements in CMC-water solutions were caused by elasticity. Savins (83) has reviewed the drag reduction literature and concluded that the elasticity of the polymer solutions studied caused the turbulent fluctuations to be damped. Savins did not propose quantitative expressions to describe the damping postulated. Some evidence of turbulence damping has been experimentally observed by Shaver (85) and Meter (59) in dye injection experiments. Meter recognized the need to correlate drag reduction with elasticity in a quantitative manner. Using a cone-and-plate rheogoniometer and a vibrating rod (0.1-400 cps Birnboim-Ferry apparatus), Meter measured elastic phenomena in Natrosol, CMC, and Carbopol solutions. He obtained higher elasticities for Carbopol (non-drag reducing in turbulent flow) than for CMC at infinitesimal rates. This anomaly was attributed to gel formation in the Carbopol solutions.

Meter devised an empirical correlation based on the ratio of wall shear stress to the shear stress $\tau_{1/2}$ at $\mu_0/2$ for his Natrosol solution friction factor data, where μ_0 is the zero shear viscosity of the solution. This correlation was recognized by Meter to lack generality because $\tau_{1/2}$ does not exist for dilute solutions. It may also be criticized for a more basic defect. This correlation implies that elastic phenomena may be correlated as a function of solution viscosity. The elastic phenomena for a given polymer in solution may be a single-valued function of solution viscosity, if elasticity and viscosity are related to concentration in the same way. On this basis Fabula (19) was able to relate the drag reduction of a series of Polyox-water solutions to the intrinsic viscosity, which is a function of molecular size in solution. Correlations of this type, however, have not been shown to be generally applicable to different polymer-solvent systems.

One of the properties of viscoelastic liquids which is frequently measured is the normal stress phenomenon in shear flow. Normal stresses in laminar flow through a capillary tube will be discussed here, since capillary tube flow can yield the high shear rates of interest in this study of turbulence. The equations of motion may be expressed as follows:

$$\frac{\partial \mathbf{p}}{\partial \mathbf{z}} = \frac{1}{r} \frac{\partial}{\partial \mathbf{r}} (\mathbf{r} \tau_{r\mathbf{z}})$$

$$\frac{\partial \mathbf{p}}{\partial \mathbf{r}} = \frac{1}{r} \frac{\partial}{\partial \mathbf{r}} (\mathbf{r} \tau_{r\mathbf{r}}) - \tau_{\theta\theta}/r$$

$$= \frac{\partial}{\partial r} \frac{\tau_{r\mathbf{r}}}{r} + \frac{1}{r} (\tau_{r\mathbf{r}} - \tau_{\theta\theta})$$
(80)

The stress tensor may be divided into an isotropic and a deviatoric tensor for the capillary flow:

$$\begin{bmatrix} \tau_{zz} & \tau_{zr} & 0 \\ \tau_{rz} & \tau_{rr} & 0 \\ 0 & 0 & \tau_{\theta\theta} \end{bmatrix} = \begin{bmatrix} -p & 0 & 0 \\ 0 & -p & 0 \\ 0 & 0 & -p \end{bmatrix} + \begin{bmatrix} P_{zz} & \tau_{rz} & 0 \\ \tau_{zz} & rr & 0 \\ 0 & 0 & P_{\theta\theta} \end{bmatrix}$$
(81)

The pressure is negative in this equation because the stress tensor is in terms of tension. The terms P_{zz} , P_{rr} , $P_{\theta\theta}$ are the normal stresses which arise in shear flow. The equation of motion for the r-direction may be expressed as a function of the deviatoric stresses:

$$\frac{\partial \mathbf{p}}{\partial \mathbf{r}} = \frac{\partial \mathbf{P}_{\mathbf{r}\mathbf{r}}}{\partial \mathbf{r}} + \frac{1}{\mathbf{r}} \left(\mathbf{P}_{\mathbf{r}\mathbf{r}} - \mathbf{P}_{\mathbf{\theta}\mathbf{\theta}} \right)$$
(82)

For Poiseuille flow it has been shown (as discussed by Metzner, et al (62)) that $P_{rr} \approx P_{\theta\theta}$. The second equation then gives upon integration:

$$p(r,z) = p(0,z) + P_{rr}(r)$$
 (83)

 P_{rr} is a deviatoric quantity. Therefore, if it exists, P_{zz} must also exist and be of opposite sign. The difference, $P_{zz} - P_{rr}$, is usually measured.

Shertzer (87) measured this normal stress difference for J-100 and PIB solutions by measuring the thrust of a jet of the polymer solutions issuing from a capillary. Using this technique high shear rates are possible, allowing the range of shear rates encountered in turbulent flow to be covered. The method has a serious shortcoming, however, in that significant normal stress values cannot be measured for dilute polymer solutions (below 0.1 per cent) where a high degree of drag reduction has been observed by several investigators (Hershey (33), Fabula (19), Lindgren (55)). This is because the viscosities of dilute solutions are low giving high Reynolds numbers (in turbulent regime) at measureable thrusts. Shertzer reported unusual effects in measurements above a Reynolds number of 1000.

Park (70) has attempted to correlate his drag reduction data with normal stress as a parameter. Using dimensional analysis Park obtained the following groups for the correlation of the turbulent flow of a viscoelastic fluid:

$$\frac{f_{pv} - f}{f_{pv} - f_1}, Re', \frac{(P_{zz} - P_{rr})_w}{\tau_w}$$

where f_{pv} is the friction factor for a purely viscous fluid, and f_1 is on the extension of the laminar line, (16/Re'). These groups were successfully used to correlate the friction factor data for a viscoelastic 0.3 per cent solution of J-100 in water. Park also measured friction factors for several solutions of CMC in water, but he was unable to use normal stress data for correlation because the normal stress-shear rate curves were discontinuous for different capillary tubes. The thrust method of Shertzer was used to measure the normal stress difference, $P_{ZZ} - P_{rr}$.

The Park correlation promises to yield a practical means of representing turbulent friction factor data of drag reducing solutions, but it fails to lead to greater understanding of the mechanism of turbulence damping.

Astarita (1) has proposed a method of correlating turbulent drag reduction data based on the relaxation times of the polymer solution. He asserted that if the relaxation time (based on a Maxwell model) is longer than the reciprocal of the lowest dissipative frequency in the turbulent flow, drag reduction will result. Following the development of Levick (51), Astarita approximated the lowest dissipative frequency in pipe flow to be $(U/2a)Re^{1/2}$. The frequencies predicted are well above the frequencies of maximum dissipation for the liquids studied here. Astarita reasoned that drag reduction takes place because the dissipative frequency frequency range of the energy spectrum becomes conservative as does a Maxwell model when stressed at frequencies higher than the reciprocal relaxation time. He further reasoned that as the total energy dissipation approaches laminar flow dissipation, the turbulent velocity profile must become steeper. There is no conclusive experimental evidence to support this contention nor is it a mathematical necessity.¹

As the drag reduction becomes greater, the shear rate at the wall must decrease, possibly causing a thicker laminar boundary layer (98). Depending upon the relationship between the Reynolds stress, $\rho u v$, and the velocity gradient, the turbulent core may have a higher or lower velocity gradient. If the boundary layer thickness approaches the pipe radius, the laminar portion will approach the laminar flow profile, but the turbulent core may still have a velocity gradient much lower than the laminar case, depending on the reduction of turbulent momentum exchange during drag reduction.

Hershey (33) demonstrated the relationship between calculated relaxation times of the polymer solution and the experimentally determined onset of drag reduction in turbulent flow. Using the theory of Zimm (102), Hershey estimated the relaxation times (first five modes) for the polymer molecules in each of his solutions. The reciprocals of these relaxation times were then compared with the wall shear rates at incipient drag reduction in turbulent flow. It was found that better than "order of magnitude" agreement was obtained between these two reciprocal times, thus providing a basis for predicting the presence or absence of drag reduction based on the molecular weight, intrinsic viscosity, steady flow viscosity, and the temperature of the polymer solution in question. The time scale for turbulent flow used by Hershey, the wall shear rate, can be a rough estimate of the time scale of the dissipative eddies in the turbulent stream. Though the molecular relaxation times were calculated using a theory that has been little tested, the agreement was surprisingly good.

A more direct view of the mechanism of drag reduction can be obtained by considering the spectrum of the turbulent fluctuations. If the proper viscoelastic data are available, it should be possible to consider the elastic effects over the complete range of shear rates represented by the turbulence spectrum.

The simplest representation of a viscoelastic material is the Maxwell element, which is simply an elastic element in series with a viscous element. It is defined by:

$$s = s_{g} + s_{\mu} = \tau_{rz}^{\prime}/G + (1/\mu) \int_{0}^{t} \tau_{rz}^{\prime} dt$$
 (84)

where s is the amount of shear. This model can be used to represent the behavior of a viscoelastic material in an approximate manner, if the fluid may be considered to be a continuum. The use of a complete relaxation spectrum function would allow an exact representation of the behavior of the material under stress, but this approach is too complex for the following considerations.

In order to determine the effect of viscoelasticity on the turbulence spectrum, it is necessary to know the shear rigidity, G, and the viscosity, μ , as a function of shear rate. There is still some doubt as to the exact relationship between shear stress and normal stress. The relation accepted by Philippoff (71) and others (derived by starting with the strain energy function) is:

$$P_{zz} - P_{rr} = Gs_g^2$$

$$\tau_{rz} = Gs_g$$

$$G = \tau_{rz}^2 / (P_{zz} - P_{rr})$$
(85)

The recoverable shear, s_g, is defined as the derivative dz'/dr, where z' is the recoverable deformation in the shear direction. Philippoff has shown (71a) that the first equation above is valid even when G is not constant.

Considerations of the viscoelastic behavior are greatly simplified if the shear modulus of rigidity is constant (Hook's Law in shear). This has been found approximately true for only a few polymer solutions. Brodnyan, Gaskins, and Philippoff (5) have found, for instance, that low concentration PIB solutions follow Hook's Law in shear at shear rates up to 10^5 seconds⁻¹. They used the flow birefringence technique to measure normal stresses. Other measurements of normal stresses in PIB solutions, however, do not indicate constant values of G. Shertzer's (86) measurements of $P_{zz} - P_{rr}$ for PIB in decalin and Green's (31) measurements for PIB in cyclohexane yield shear rigidity moduli which increase with shear stress. These measurements were made using jet thrust apparatuses in different laboratories. Measurements using other methods and other solutions have shown the same trend of G with shear stress -- nitrocellulose in n-butyl acetate (72), methylcellulose in water (44), and J-100 in water (70, 87). This means that the shear stress must be known to determine the shear rigidity of the solution. A rigorous solution for the elastic effect in turbulence would require knowledge of the rigidity and viscosity as functions of shear rate. An approximation may be made to obtain a solution, which is shown below.

The term in the Maxwell model involving the viscosity represents the energy dissipative component of the model, and the term involving shear rigidity is the non-dissipative (conservative) term. For a given deformation history, the energy dissipation may then be calculated if the viscosity and rigidity are known. For a purely viscous material $(G \rightarrow \infty)$ the entire deformation contributes to energy dissipation, but for a viscoelastic material the part of the deformation described by τ_{r_7}/G is recoverable -- hence recoverable shear. For a steady shear flow (laminar) the elastic deformation is at equilibrium after reaching the value dictated by the shear stress. The viscous deformation increases until the shear stress is removed. Upon removal of the shear stress the conserved elastic deformation relaxes. It is this recovery of elastic deformation that lowers the amount of energy dissipation in a given volume of turbulent Since the shear stress on each element of fluid is continually flow. impressed and relaxed, the elastic potential energy is recovered at each relaxation. Even very low concentration polymer solutions may be considered a continuum at the microscale size of turbulent pipe flows¹.

¹ See footnote on page 23.

For application to turbulence fluctuations which can be resolved into a spectrum of periodic deformations, viscosity and shear rigidity data measured in a periodic oscillating device should be directly applicable. Such devices have been used consisting of vibrating reeds, longitudinally and torsionally vibrating rods, and torsionally vibrating piezoelectric transducers. For the high frequency data (10 kcps up) the piezoelectric transducers are preferable. A number of investigators have measured the spectrum of shear rigidity and viscosity using the latter method (la, 72, 80a). Unfortunately the shear rates attainable with the piezoelectric crystals have been very low (less than 1 second⁻¹). This is much lower than the shear rates existing in turbulent flows (up to 10^5 seconds⁻¹ in this investigation). For use in the study of viscoelastic turbulence, the instrument must be capable of shear rates in the range 10³ to 10⁶ seconds⁻¹. For this reason in this study normal stress data obtained at high shear rates in capillary tubes were used to calculate moduli of rigidity in the discussion of the mechanism of drag reduction.

EXPERIMENTAL WORK

1. Objective

The experimental work was done to develop hot-film and hot-wire anemometry techniques suitable for studies of the flow of organic solvents and non-drag reducing and drag reducing polymer solutions, and to investigate the turbulence intensities, autocorrelations, and energy spectra of these fluids. Comparisons of the turbulence properties were to be made in order to determine the effects of polymer type and molecular weight, solution viscosity, polymer-solvent interaction, Reynolds number, and tube size. The effects of drag reducing polymers on turbulence were also to be investigated to help determine the mechanism of the energy dissipation reduction.

Anemometry measurements of turbulence intensities, autocorrelations, and spectra were made on solvents and non-drag reducing polymer solutions in a 2-inch smooth tube, using a wedge type hot-film probe. The solvents studied were toluene, cyclohexane, and benzene. The polymer solutions studied are listed in Appendix VI. All the solutions studied in the 2-inch tube (Runs 1-16) were the same as those used by Hershey (33) except the 0.95 percent V-100 PMMA¹ in toluene of Run 16. The solutions studied were of wide viscosity range, and so a large Reynolds number range was covered.

Progress was made on the development of a film probe for the determination of radial and tangential intensities of turbulence and the Reynolds stresses, $\overline{u'v'}$ and $\overline{u'w'}$. The probe is described in section 2.11. The results of the measurements are summarized in the discussion of results.

¹ See Appendix VI.

A few measurements were made with a hot-wire anemometer, but they did not yield good results because of the poor lint shedding characteristics of the wire. The calibration of the wire changed too rapidly for reliable intensity measurements.

In order to obtain measurements in a solution having substantial drag reduction characteristics, it was necessary to use a higher molecular weight polyisobutylene¹ than that used in Runs 8, 9, 11, and 12^2 and to make the measurements in a 1-inch smooth tube instead of the 2-inch tube used previously. Hershey has discussed the relative drag reduction in tube sizes from 2-inch down to 0.033 inch diameter for all the solutions studied here except the V-100 PMMA in toluene and the toluene and cyclohexane solutions of PIB L-200. No significant drag reduction was found in the solutions studied by Hershey in a tube larger than 0.5-inch diameter. Because of the high molecular weight of the PIB L-200, toluene and cyclohexane solutions of this polymer were significantly drag reducing in a 1-inch tube. Several energy spectra were measured for three concentrations of this polymer in toluene, but only two intensity of turbulence measurements were made. This is because of the rapid degradation of the polymer by shear which caused much of the drag reduction to be lost in a Intensity measurements were made in one concentration very short time. of PIB L-200 in cyclohexane, which was drag reducing in the 1-inch tube. Thus, only exploratory data were obtained for solutions under drag reducing flow conditions.

Vistanex L-200

² Vistanex L-80

2. Equipment

2.1. Pipe flow system

The recirculating pipe flow system consisted of a reservoir tank, with $\mathbf{a} \pm 0.05^{\circ}$ C temperature control system, two Viking gear pumps in parallel yielding flow rates of one gpm to 100 gpm, pressure surge damping cylinders on each pump and in the test section feed header, three smooth wall tubes (2-inch I.D., 1-inch I.D., and 0.51 inch I.D.) making up the test section, a calibrating tank on a platform scale, and two turbine meters for flow rate measurements. The pipe flow unit has been described in great detail by Hershey (33), so only those points of special interest will be covered here. A schematic of the unit is shown in Figure 10.

The pressure surge damping cylinders on each pump discharge consisted of vertical pipes of 0.1 cu ft capacity. Closed at the top, the air in these cylinders served to damp the low frequency surges created by the gear pumps. Another surge damping cylinder of 0.3 cu ft volume was located on the inlet manifold to the smooth wall tubes. This surge volume further reduced any remaining disturbances. Spectrum data indicated that the surge volumes were adequate since no peaks were found near the expected surge frequencies of the gear pumps.

The smooth wall tubes were of carbon steel. The 0.510-inch and 1.00-inch tubes were welded and drawn tubing of exceptional smoothness procured from Tube Sales, St. Louis, Missouri. The 2-inch tube was a seamless cylinder tube procured from Babcock and Wilcox Company, St. Louis, Missouri. The tube inside diameter tolerences were \pm 0.0025 inch for the 0.51-inch and 1-inch tubes, and \pm 0.005 inch for the 2-inch tube. The tube lengths were as follows: 0.510-inch tube, 17.5 feet;

1.00-inch tube, 24.0 feet; 2.00-inch tube, 27.0 feet. The lengths of the tubes were, therefore, more than sufficient for good velocity profile development. Friction factor data for Newtonian solvents were obtained using test sections 100 or more diameters in length after entrance sections of 50 or more diameters in these tubes. These friction factors showed average deviations from equation 18 of only \pm 2.0 per cent (33). The turbulence measurements with a hot-film anemometer were, therefore, made on fully developed turbulent pipe flow with smooth walls.

The hot-film anemometer and the impact tube were installed in the tubes using the same probe mount. The installation in the 2-inch tube was at a point 2 feet upstream of the end of the tube. This point was 150 diameters downstream of the tube entrance.

As shown in Figure 11, nylon bushings were used to mount the probe and the micrometer positioner. This was necessary to insulate the probe support surface, which was a conductor, from grounding on the tube. Swagelok fittings with Teflon ferrules were used as packing glands for the sliding probe support rod. Since the probe was insulated from the tube, it was possible to use an electrical resistance method of probe positioning. When the probe contacted the wall, the resistance between the probe support rod and the tube fell to zero. This established the reference position for use in locating the probe by the micrometer to within \pm 0.0005 inch. Since the probe could not be allowed to contact the wall during measurements, the reference position could only be approached.

Velocity profiles and turbulence measurements in the 1-inch tube required the construction of a different type of probe mount. The same

FIGURE 10. SCHEMATIC DIAGRAM OF PIPE FLOW APPARATUS

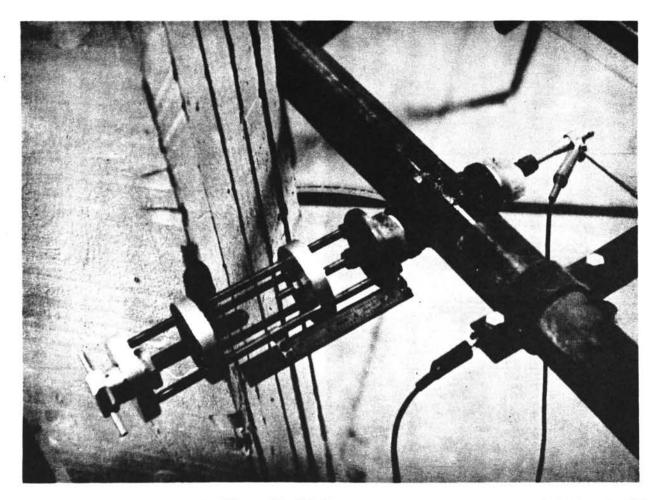


FIGURE 11. MICROMETER POSITIONER AND PROBE MOUNT FOR 2 - INCH TUBE

nylon bushings were used, but instead of installing the probe through the tube wall (as in the 2-inch tube) it was installed in a modified 1-inch pipe cross. As shown in Figure 12, the pipe cross was fitted with a sleeve of 1-inch inside diameter to provide a relatively smooth wall behind the probe tip. This sleeve minimized flow disturbances propagated upstream toward the probe tip from the pipe cross. Since electrical contact with the sleeve wall was not an accurate reference position for the probe in the 1-inch tube, an inside caliper and micrometer were used to establish the reference distance from the tube wall each time the probe was installed.

The temperature of the fluid during hot-film measurements must be held within \pm 0.05°C inorder to maintain a constant probe calibration. A sensitive temperature control system was used, the diagram of which is shown in Figure 13. The temperature sensor was a Jumo thermoregulator with a precision of $\pm 0.01^{\circ}$ C. The sensor was installed in the side of the surge tank with a Swagelok connector. The glass thermometer bulb was protected by a perforated steel sleeve inside the tank and by a slotted sleeve (to expose the scale) outside the tank. The thermoregulator operated an electonic relay which in turn operated a 30 watt relay in the electric heater circuit. The relay operated a 1500 watt heater installed in the inlet line to the water coils in the surge tank. Another heater (2000 watts) was controlled manually. The heated water flowed through two 30-foot stainless steel coils in the tank and then to the drain. The water flow rate was controlled by a 3/8-inch globe valve on the coil exit. Provision for water preheating with steam was provided for use during the winter by a concentric tube heat exchanger. The test fluid temperature was measured at the smooth tube inlets and

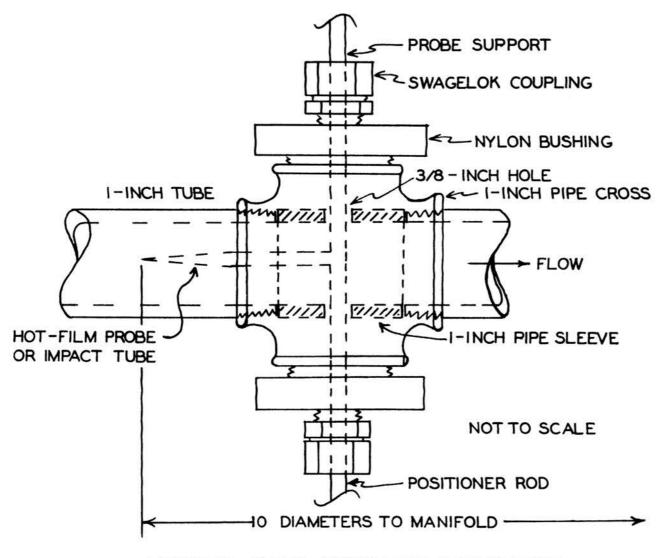


FIGURE 12. PROBE MOUNT FOR I-INCH TUBE

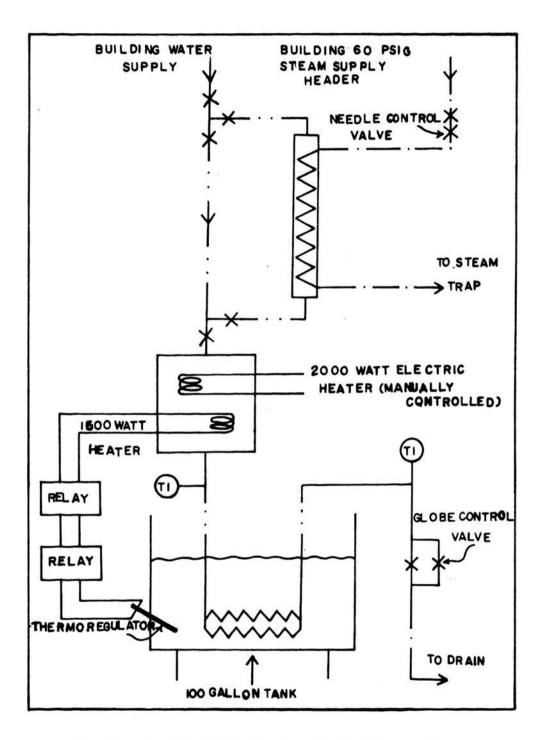


FIGURE 13. TEMPERATURE CONTROL SYSTEM

outlets by thermometers graduated in 0.1° C intervals. They were found to be accurate to better than 0.05° C by Hershey (33).

The filter used to remove small lint and dirt particles and yet allow high flow rates was a 200 mesh Tyler sieve of about 3 square inches area. As noted above, it was not able to remove all lint particles in the flow.

2.2 Manometers

The tube pressure drops and velocity profiles were measured by three manometers described in detail by Hershey (33). They were as follows:

- (1) a mercury U-tube manometer 9 feet high,
- (2) an inverted U-tube manometer with process fluid as the indicator 9 feet high,
- (3) an inverted slant U-tube manometer with process fluid as the indicator. The range was 0 to 4.75 inches of fluid using 6-foot gauge tubes inclined at an angle of 3.78° from the horizontal.

2.3 Flow meters

The flow rate in the pipe flow system was measured by either of two turbine meters-a $1\frac{1}{2}$ -inch Brooks Hydropoise Model HP-24N for flows between 10 and 40 gpm, and a 3/4-inch Brooks Hydropoise Model HP-12N for flows between 1.5 and 15 gpm. These meters produce a fluctuating voltage whose frequency is proportional to flow rate with a linearity of \pm 0.5 per cent. The frequency was measured by a Heath Audio Frequency Meter. This meter had a tendency to drift, so it was calibrated at each use by a Heath Audio Signal Generator which was very stable and accurate at all frequencies to better than one percent. The primary use of the flow meters was to show any deviations from a constant flow rate, because weight calibrations were made for every measurement.

2.4. Impact tubes

Velocity profile measurements, made by Hershey in the 2-inch tube using an impact tube, were used for calibration of the hot film anemometer. They are described in detail in his thesis. Additional measurements were made in the 1-inch tube for use in calibrating the anemometer for the intensity measurements made in that tube.

Because of the limited clearance in the 1-inch tube, a special impact probe was designed which was not inserted through the side of the tube as it was in the 2-inch tube. The design of this special probe allowed the impact tube to be removed from the support tube so that it could be easily inserted through the sleeve in the mount. The impact tube was then replaced on the support tube by means of threads which were sealed with teflon pipe dope. A diagram of the probe is shown in Figure 14. Both the original and the special impact tubes had outside diameters of 0.036 inches at their tips.

2.5. Viscometers

The capillary viscometer used to measure the laminar flow behavior of the fluids studied and also to measure some of the turbulent friction factors was described by Green (31) and Hershey (33). The characterizations used by Hershey are used here for the solutions which are in common for both investigations. The viscometry measurements for the solutions used only in this investigation are reported by Rodriguez (78).

Intrinsic and low shear rate viscosities were measured using an Ubbelohde suspended level viscometer. The fluid densities were measured with a Lipkin pycnometer. These measurements were described by Chang (8).

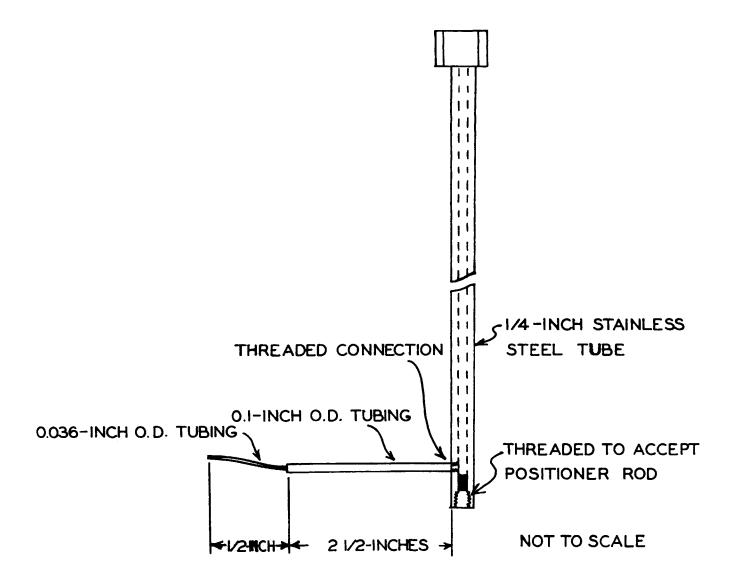


FIGURE 14. IMPACT TUBE FOR I-INCH TUBE

2.6. Normal stress apparatus

An improved version of the analytical balance thrustometer described by Green (31) was used to measure the normal stress difference, $P_{zz}-P_{rr}$, of the 0.42 per cent PIB L-200 in toluene solution. These measurements, described below, were made using a 24-inch loop of $\frac{1}{4}$ -inch nylon tubing in place of the 6-inch length of tygon tubing used by Green to connect the constant temperature bath coil to the capillary mounted on the balance. The nylon tube did not expand under pressure as did the tygon tube. As a result, the zero thrust reading of the balance was preserved. The sensitivity of the balance was about 100 mg/division, allowing measurements to the nearest 12 mg of thrust. A thermometer telescope was used to observe deflections of the indicating needle.

2.7. Constant temperature anemometers

The constant temperature anemometers used in this study were model 55A01 manufactured by DISA Elektronic, Herlev, Denmark. The anemometers were designed to operate with hot-wire or hot-film probes with resistances between 1 and 50 ohms. The maximum probe current available was 250 milliamperes, thus setting maximum power at about 1.25 watts for a 20 ohm probe. The anemometers were equipped with a three decade balance resistor system for measuring cold resistance to the nearest 0.01 ohm and for setting probe operating resistance. Each anemometer had a damped d.c. voltmeter which was equipped with four ranges and four zero shift bias voltages for the measurement of time average bridge voltages up to 30 volts. The rms fluctuating bridge voltages were measured by a thermocouple meter in the anemometers with ranges from 5 millivolts to 1000 millivolts. The anemometers were each equipped with both a high pass and a low pass filter to eliminate any undesired high or low frequencies. The frequency response of the anemometer-probe combination was determined using the 2.5 kcps squarewave generator, which is part of each anemometer. Detailed specifications of the instruments including drift, transductances, and noise levels are given in Appendix I.

2.8. Correlator

The DISA Elecktronic 55A06 correlator was used to measure autocorrelation coefficients, microscale, and the sums and differences required when using an X-wire probe or V-film probe. The instrument consisted of an rms voltmeter (thermocouple type) with ranges of 0.01 volts to 100 volts on 9 scales with variable gain and a calibrating voltage source, a ratio meter for measuring the rms value of the ratio of two signals, and circuits to supply the signals to the meters. The voltmeter could be used on either of two channels or could measure the sum or difference of the two channels. The ratio meter could be used to measure the ratio of the two channels, the ratio of the sum to the difference of two channels, or the microscale. The microscale was measured as the ratio of the signal to the time derivative of the signal. The frequency response of the amplifiers in the instrument was 3 cps to 200,000 cps with less than 3 db drop in signal. More detailed specifications are given in Appendix I and in the DISA catalog.

2.9. Tape recorder

The autocorrelation and spectrum measurements were done on recorded signals. The recorder used was an Ampex 601-2 two channel model using $\frac{1}{4}$ -inch standard tape at a speed of 7.5 inches per second. The frequency response of the recorder was adjusted by the author to give the best

range for this study. This is described in detail in Table 8, Appendix IV. Three response calibrations were used during the work. These values were used as correction factors for the spectrum measurements. Detailed manufacturer's specifications are given in Appendix I.

The recorder was modified for the autocorrelations. The photograph in Figure 15 shows the installation of a movable playback head and a stationary recording head on the side of the recorder. The auxiliary recording head recorded one channel and the standard recording head recorded the other. On playback the movable playback head could be moved by the micrometer to cause the auxiliary channel to be delayed compared to the standard channel. The calibration of delay time with micrometer movement was linear and is shown in Figure 16 for a recorded 100 cps signal. Each complete cycle of autocorrelation value is equivalent to 0.01 seconds. The average calibration value was 8.88 inches of movement per second of delay. The calibration was obtained by playing both the standard and delayed channels into the correlator and varying the delay time (see Appendix II).

2.10. Spectrum analyzer

The spectra were measured using a 34 band active band-pass filter designed and built by T. B. Watson (97). The bands each covered 1/3octave and covered the range of 10 cps to 20,000 cps. The broader bands at high frequency allowed more accurate measurement of the low energy occurring at high frequency. The frequency response of each band was shown in detail by Watson, but a typical band is shown in Figure 17. The filter instrument was designed to operate with constant response for signals up to 200 millivolts for a given band or 400 millivolts total input signal. The noise level was 0.2 millivolts for

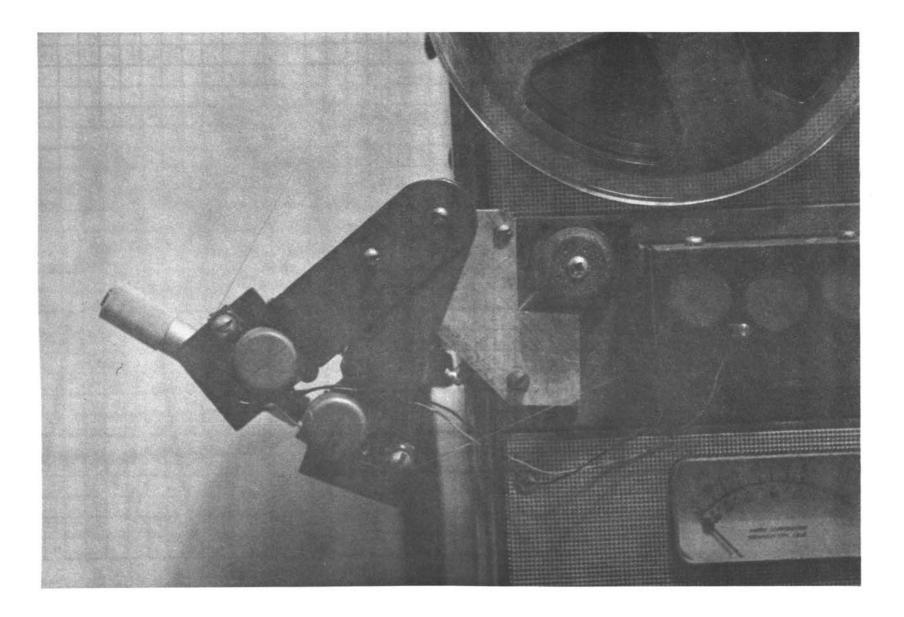
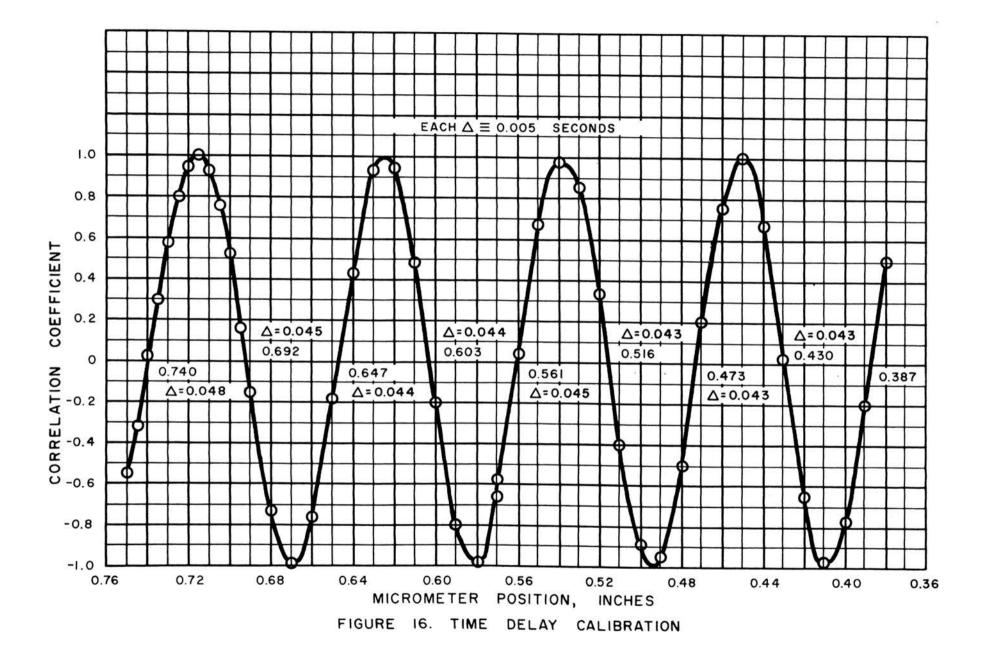
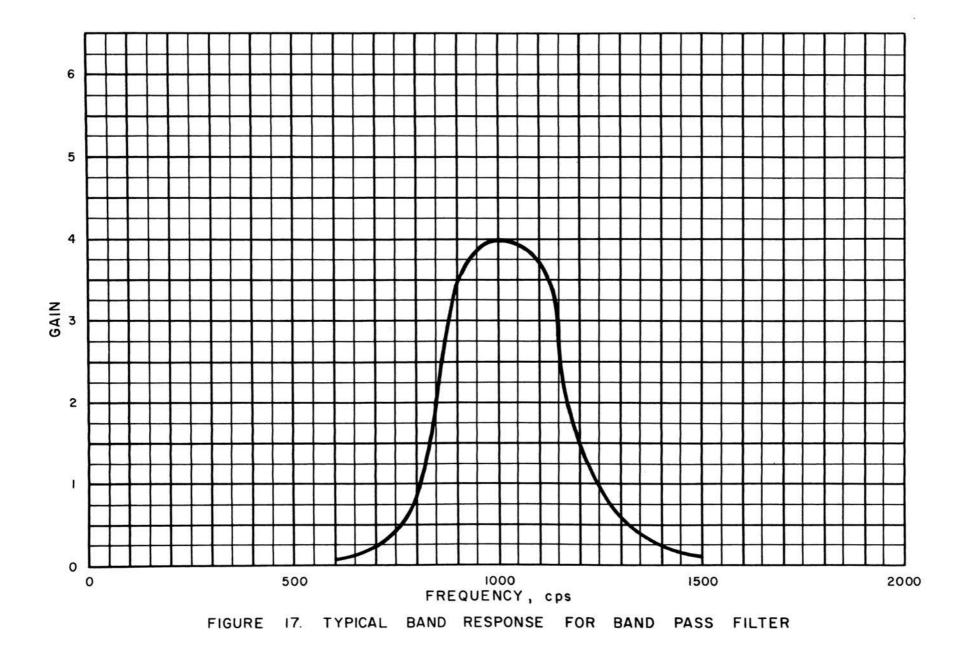




FIGURE IS. MOVABLE PLAYBACK HEAD ON RECORDER

all bands except those centered at 100 cps and 126 cps, which had noise outputs of 1.2 mv and 2.2 mv, respectively. This increased noise was caused by the second harmonic of the 60 cps cathode heater supply. The band gain factors are shown in Table 9, Appendix IV.

2.11. Hot-film probes

The hot-film probe made by DISA is shown in Figure 8. The dimensions of the film and the general shape show that the probe is very similar to the one used by Ling (56, 57). Detailed specifications are given in Appendix I.

The V-film probe used for the Reynolds stress and transverse fluctuating velocity measurements is shown in Figure 18. This probe was too large for the small microscale in 1-inch and 2-inch pipes. The characteristics and interpretation of the data would be the same as for an X-wire probe if the films were centered at the same point as are crossed wires. Unfortunately this is not true and the film separation had to be accounted for in the data interpretation. This is discussed in section 6.1.

2.12. Experimental procedures

The procedures for using the equipment described above to make the desired measurements are discussed in detail in Appendix II. The measurements of friction factor, velocity profile, and viscometry were discussed by Hershey (33) and are not repeated here. The procedure used for normal stress measurements was covered by Green (31).

3. <u>Materials</u>

The specifications of solvents and polymers used in this study are given in Appendix VI. Table 11 shows the solution concentrations used. The solution of the polymers in the solvents was accomplished by using

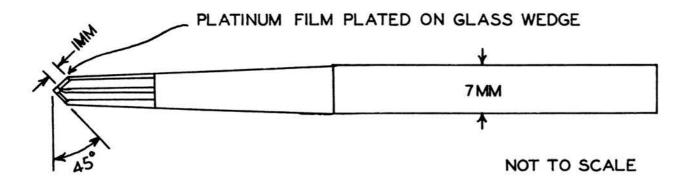


FIGURE 18. V - FILM PROBE

a slow stirrer in 12-inch diameter by 18-inch high Pyrex vessels. These stock solutions were then added in the proper amounts to produce the desired concentrations in the pipe flow unit. A short period of pumping was used to disperse the stock solution uniformly in the fluid already present in the pipe flow system.

4. <u>Calculations</u>

The calculations necessary for conversion of raw data to turbulence intensities, correlation coefficients, and energy spectra are discussed in Appendix V. All these calculations were done using an IBM 1620 Model II computer with disk files and would have been extremely laborious by hand or desk calculator. The large number of spectra converted to autocorrelations and vice versa by Fourier transforms would not have been possible without the computer.

5. Results

The results of the longitudinal turbulence intensity measurements are shown in Figures 19-38. Each figure indicates polymer concentration, solvent, location in the pipe, flow rate, and Reynolds number. Runs 1-16 were in the 2-inch tube, and Runs 17-23 were in the 1-inch tube.

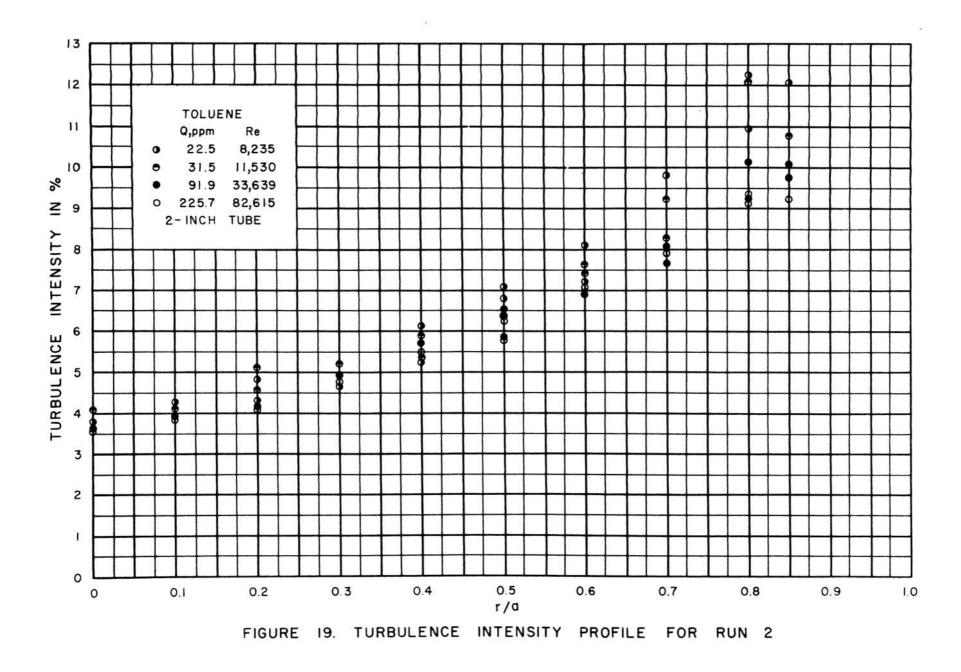
The results of the radial and tangential turbulence and Reynolds stress measurements for toluene in the 2-inch and 1-inch tubes are shown in Figures 39-43. These data represent initial efforts toward development of a film probe suitable for measurement of radial and tangential turbulence intensities in liquid flow in small tubes.

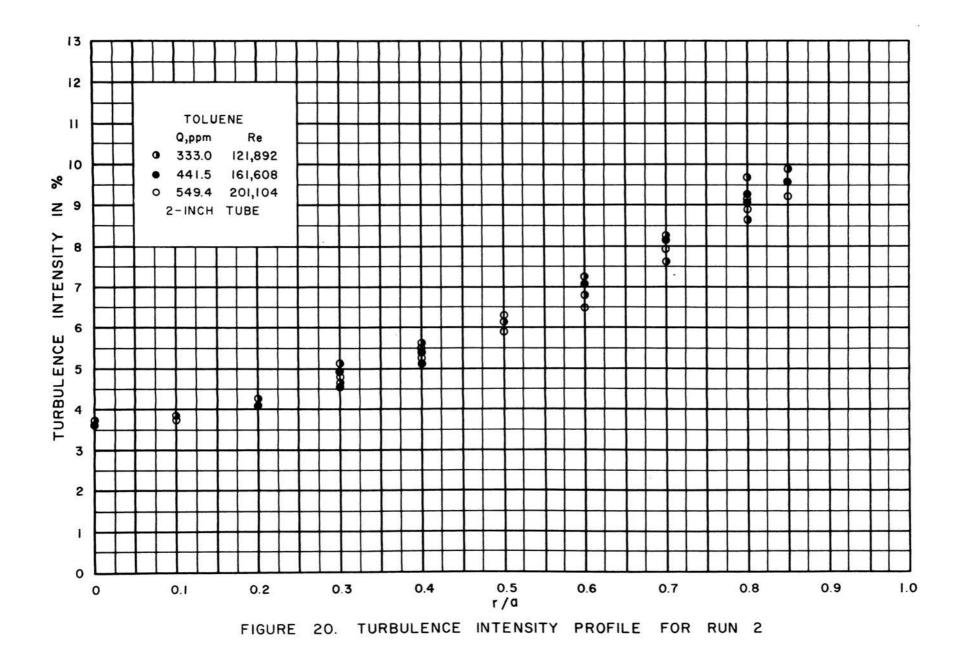
The velocity profiles measured for Run 16 in the 2-inch tube and Runs 19 and 20 in the 1-inch tube are shown in Figures 44-46. The velocity profiles for all runs before Run 16 were reported by Hershey (33).

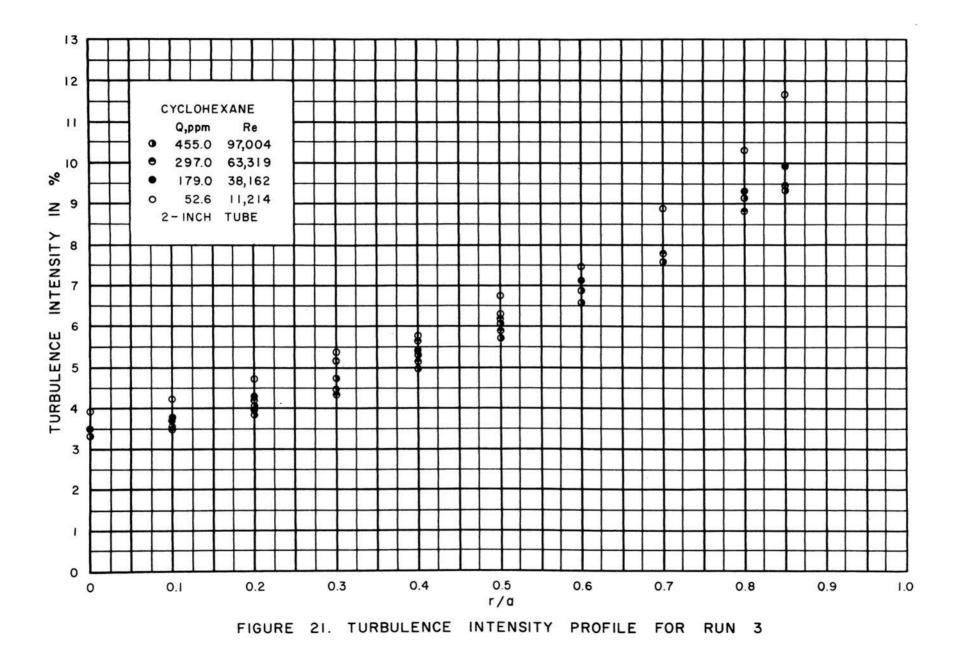
Velocity profiles were not measured for all runs because all the Newtonian solvents and polymer solutions measured had velocity profiles little different from accepted data, except for the drag reducing solution of Run 19 which was more parabolic in shape, but which integrated to give a flow rate 13 per cent below the measured value. For hot-film anemometer calibration, therefore, calculated profiles based on established nondrag reducing data were more accurate than measured profiles for the drag reducing solutions.

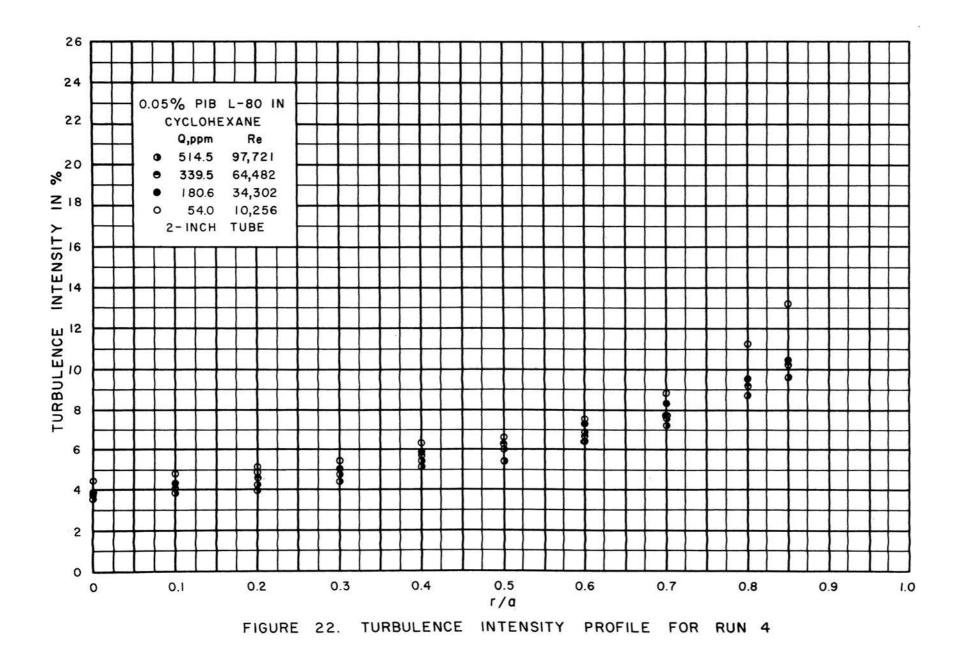
Figures 47-58 show the energy spectra measured. The figures indicate fluid composition, probe location, fluid time average velocity, microscale (calculated from the integral of the dissipation spectrum), and the macroscale (calculated from the integral of the autocorrelation transformed from the spectrum function)¹. Run numbers correspond to intensity run numbers.

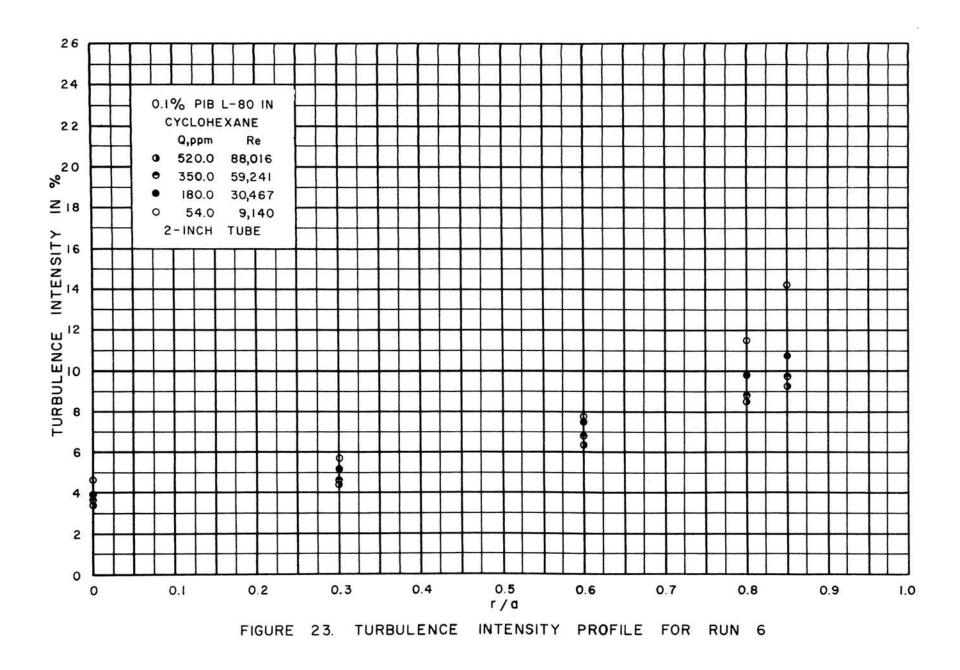
The autocorrelation data were not all plotted since they served primarily as a check on the spectrum measurements and their transformations. Figure 59 shows a comparison of a spectrum measured by the band pass filter and a spectrum calculated from autocorrelation data for Run 8. These comparisons and the limitations of the Fourier transformation methods will be discussed later.

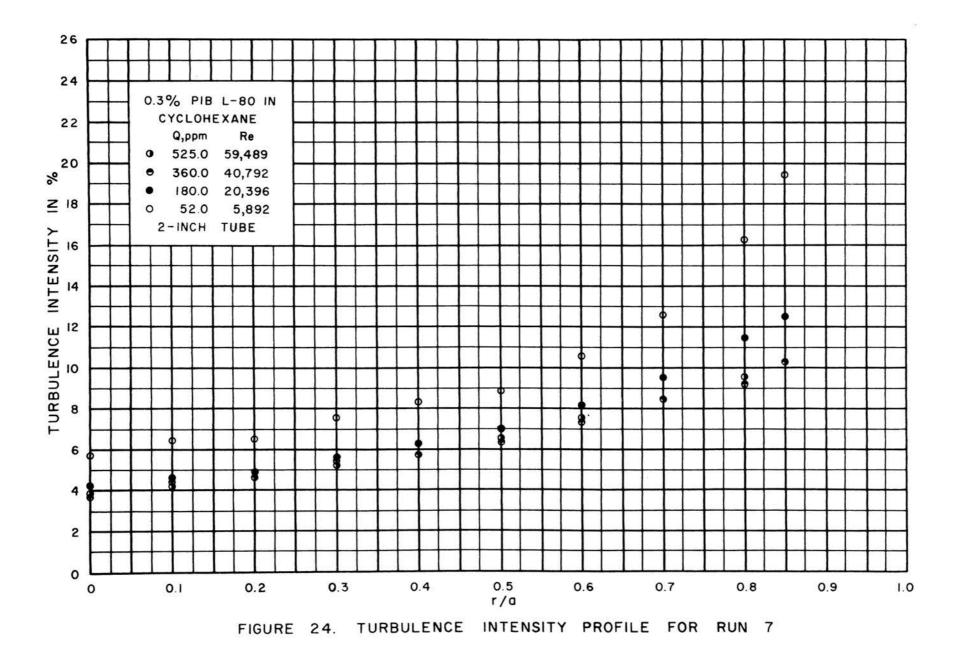

Figure 65 shows the results of the microscale measurements plotted against radius. These data were obtained from measured spectra.

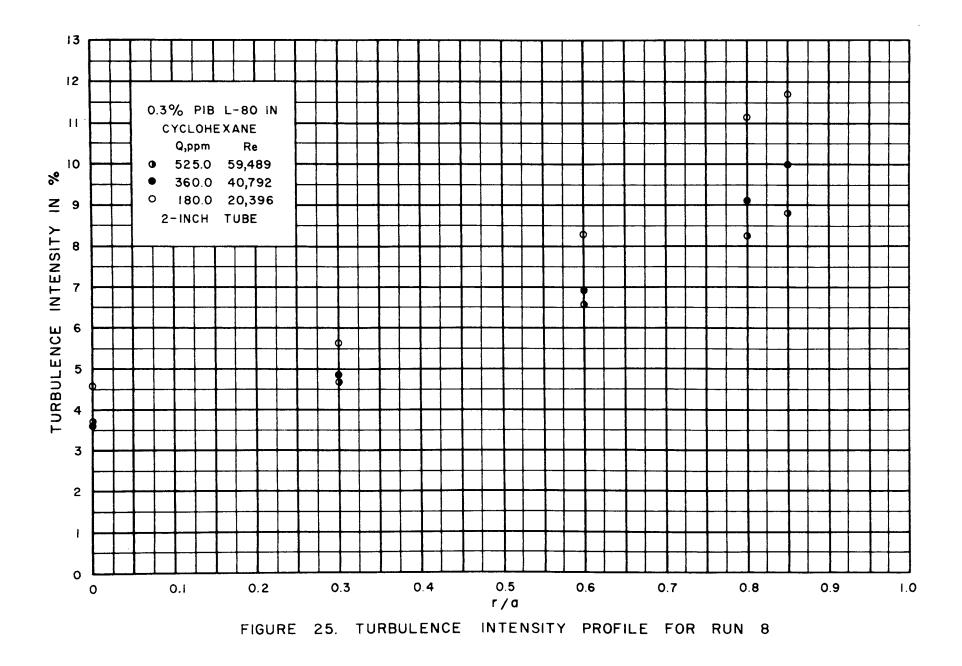

The viscometry and drag reduction data obtained since Hershey's thesis are reported in detail by Rodriguez (78). The normal stress data (P_{zz} - P_{rr} vs shear rate) for the solution used in Run 19 (0.42 per cent PIB L-200 in toluene) is shown in Figure 67.

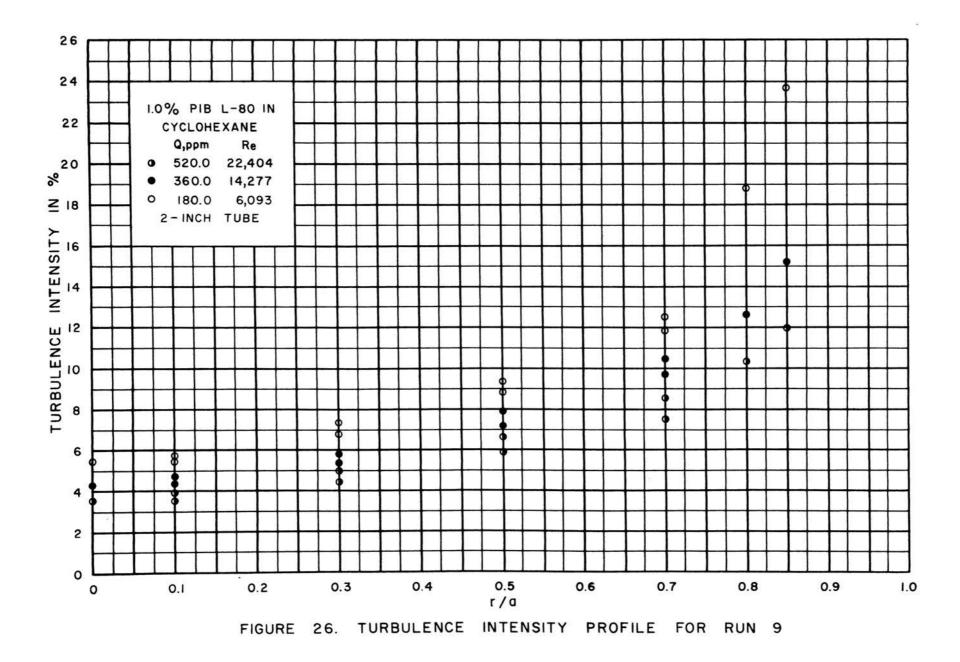

¹ See Appendix V.

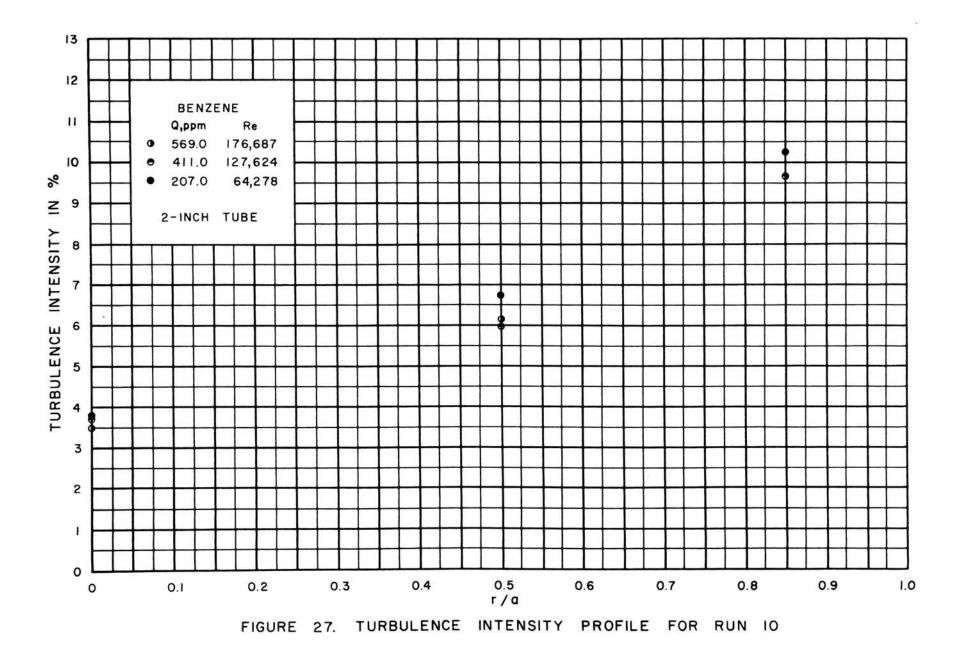

Computer printouts of the numerical results for turbulence intensities, energy spectra, and autocorrelations are listed in Appendix III, Tables 5, 6, and 7.

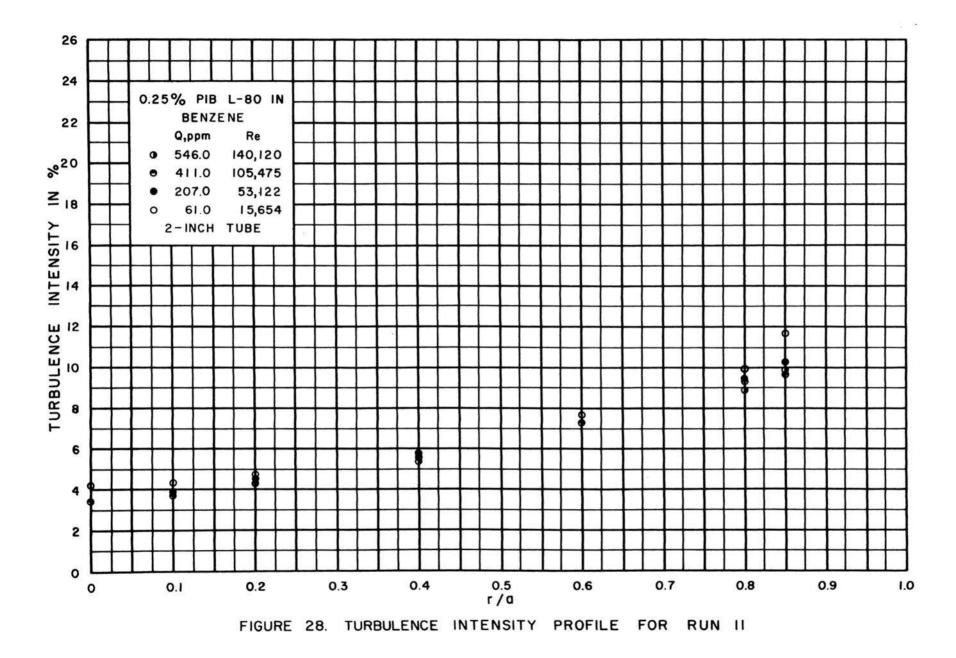

The calculations involved in conversion of data to results and in making the Fourier transforms are described in Appendix V.

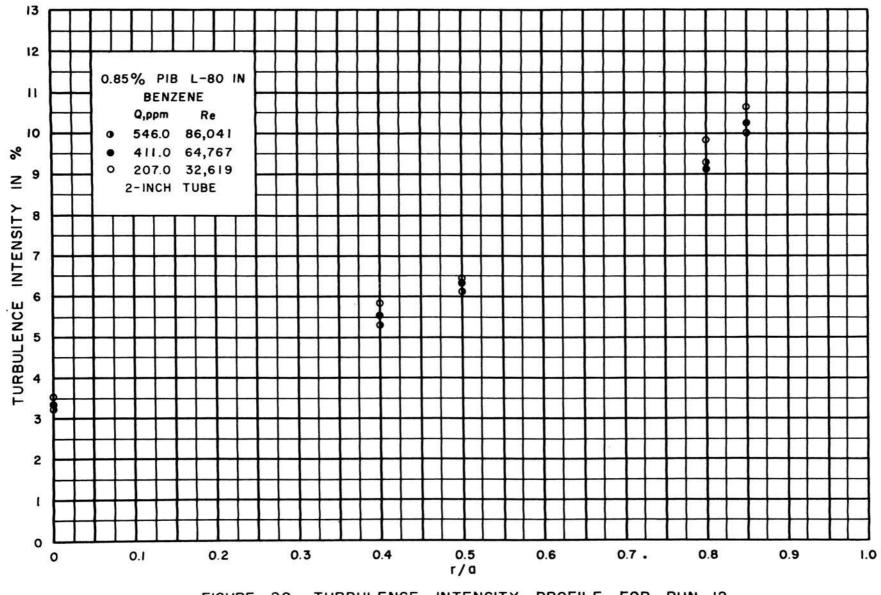
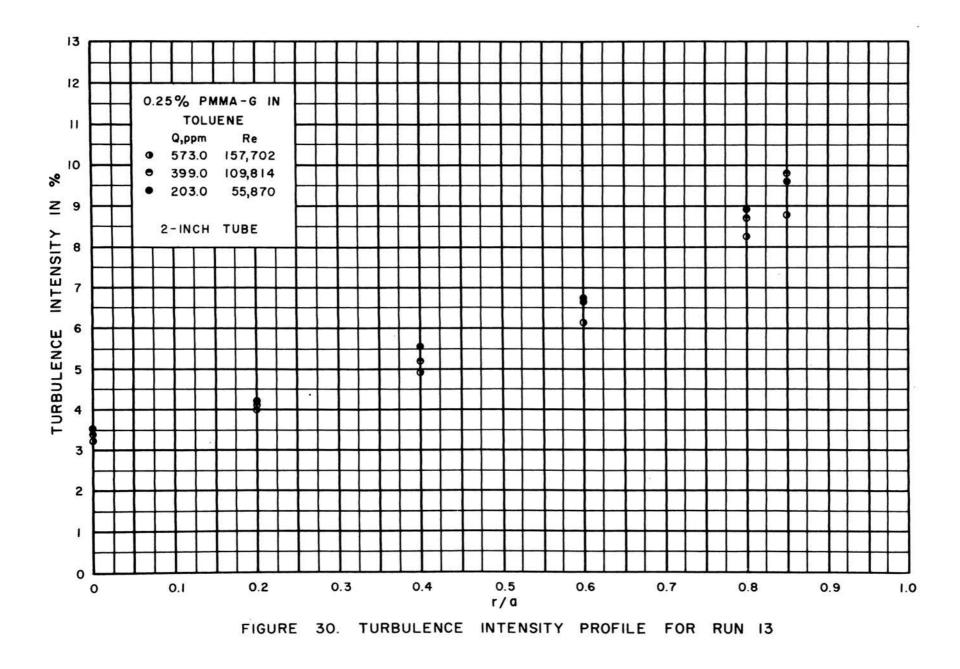
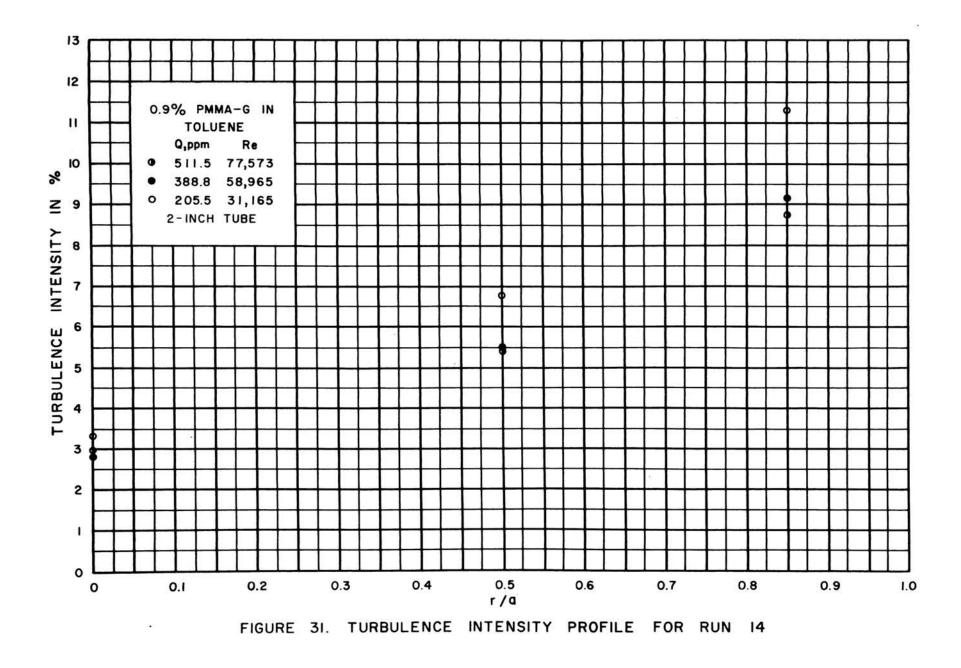
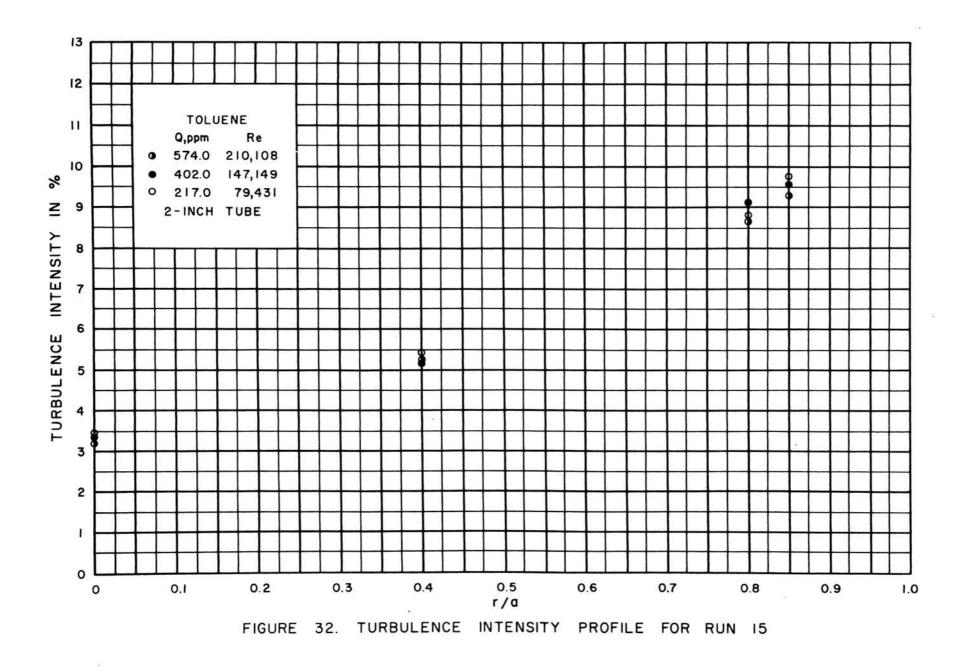


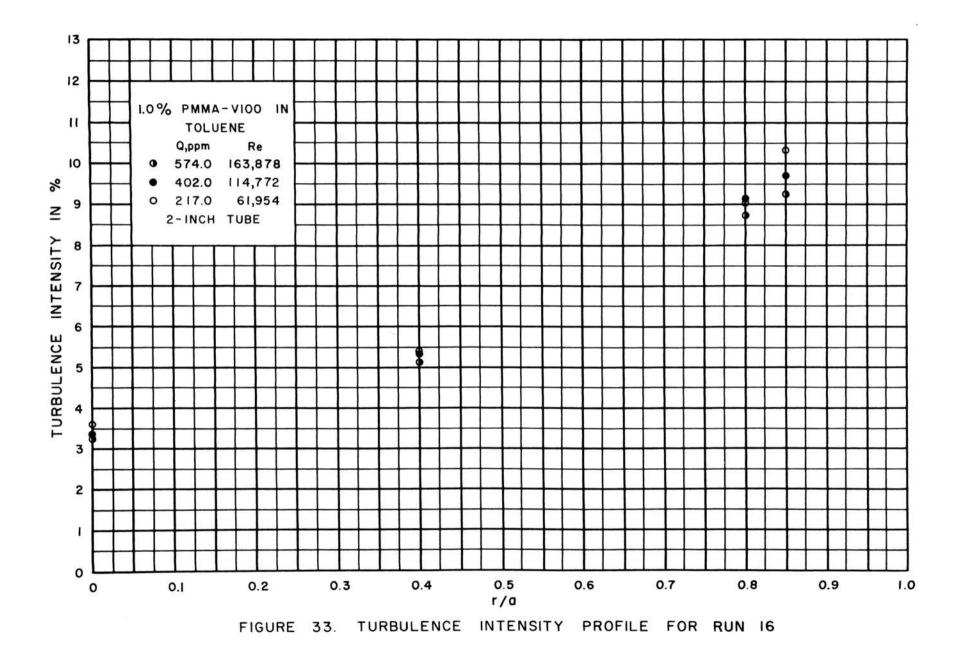


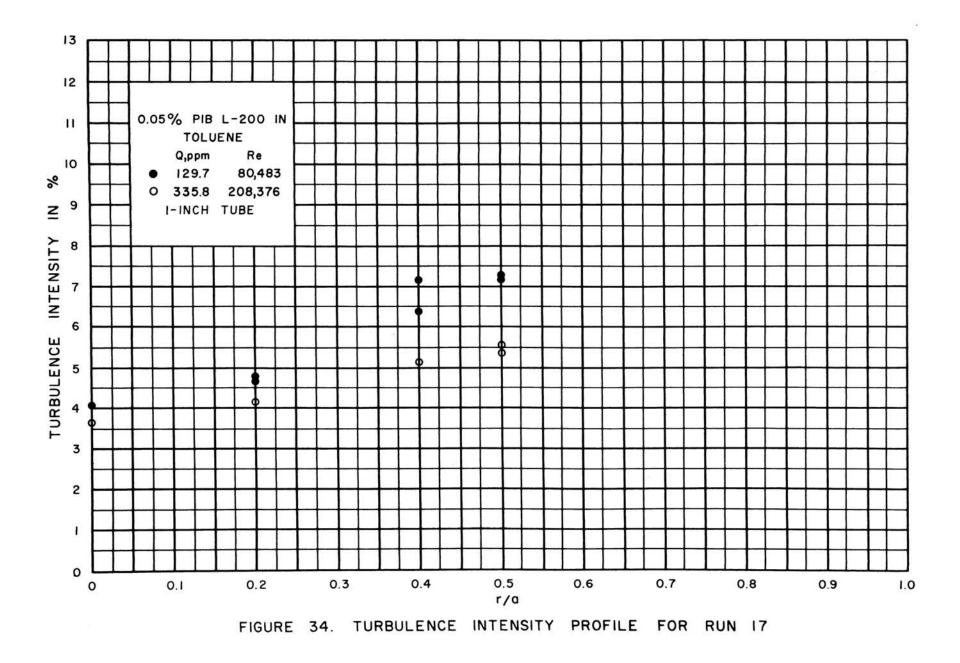


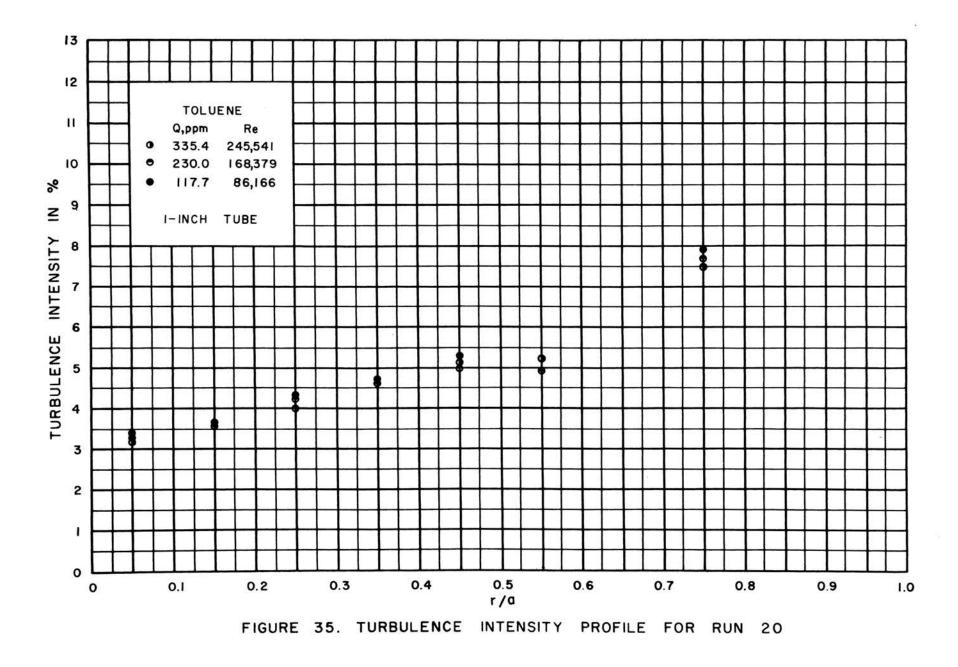


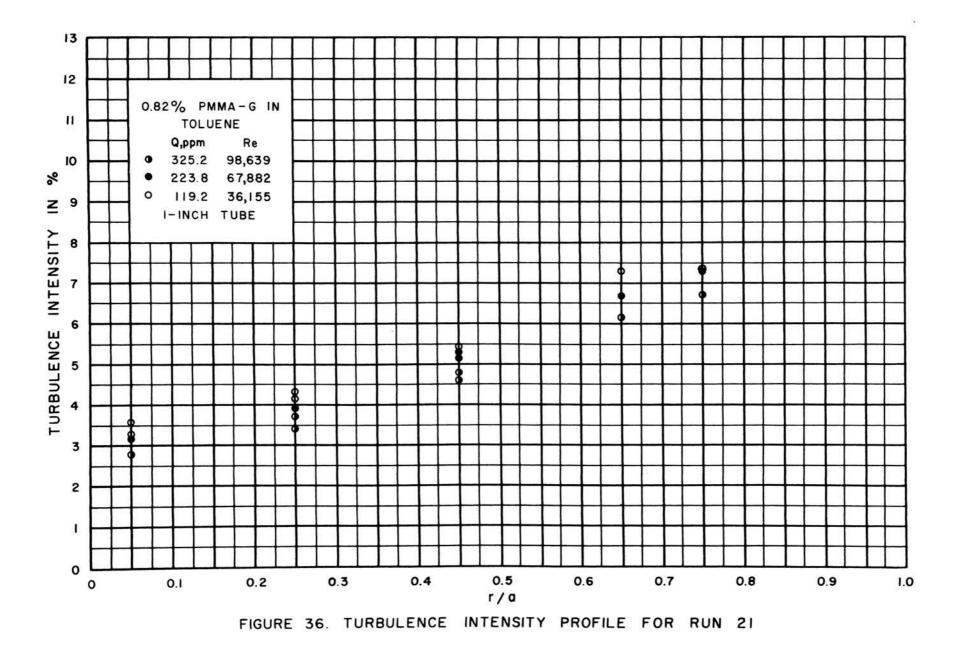


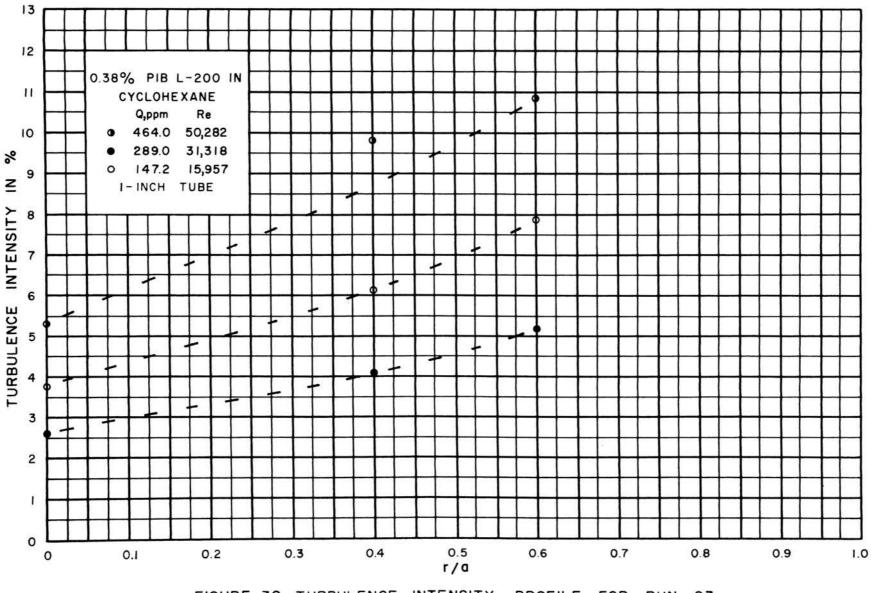
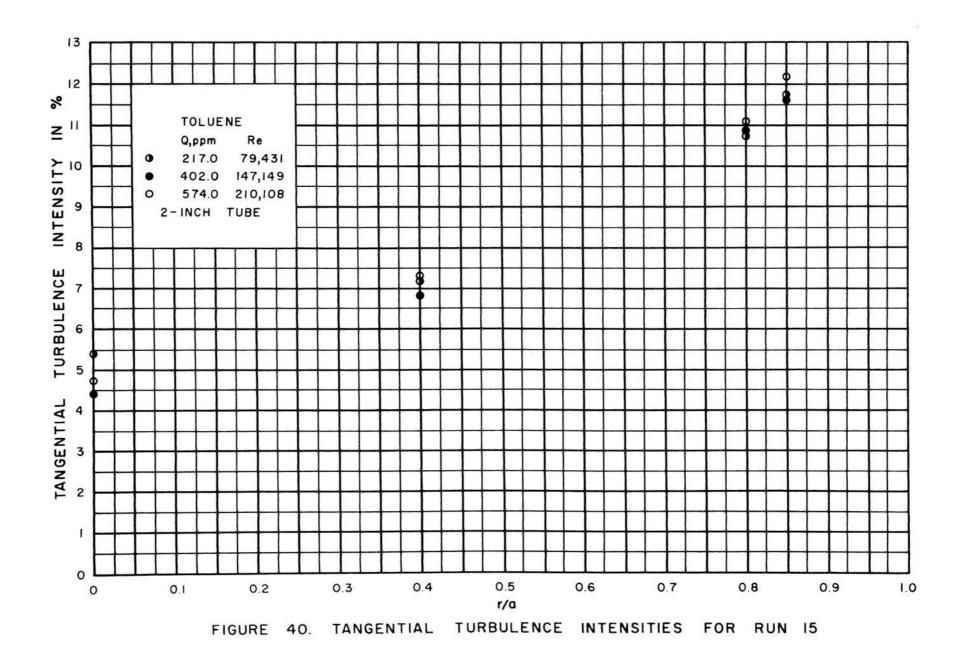
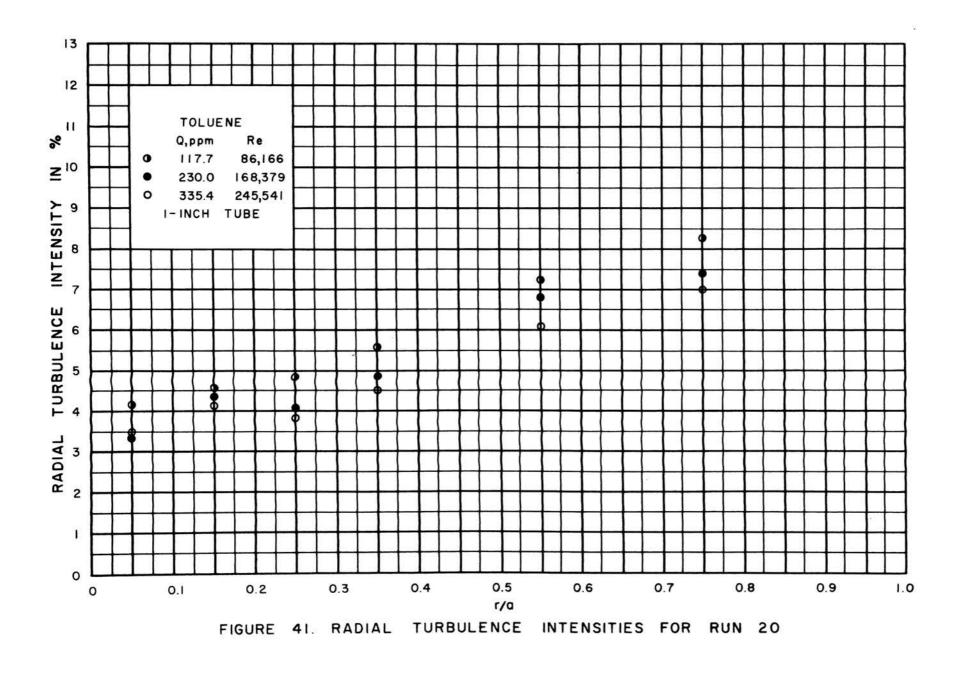
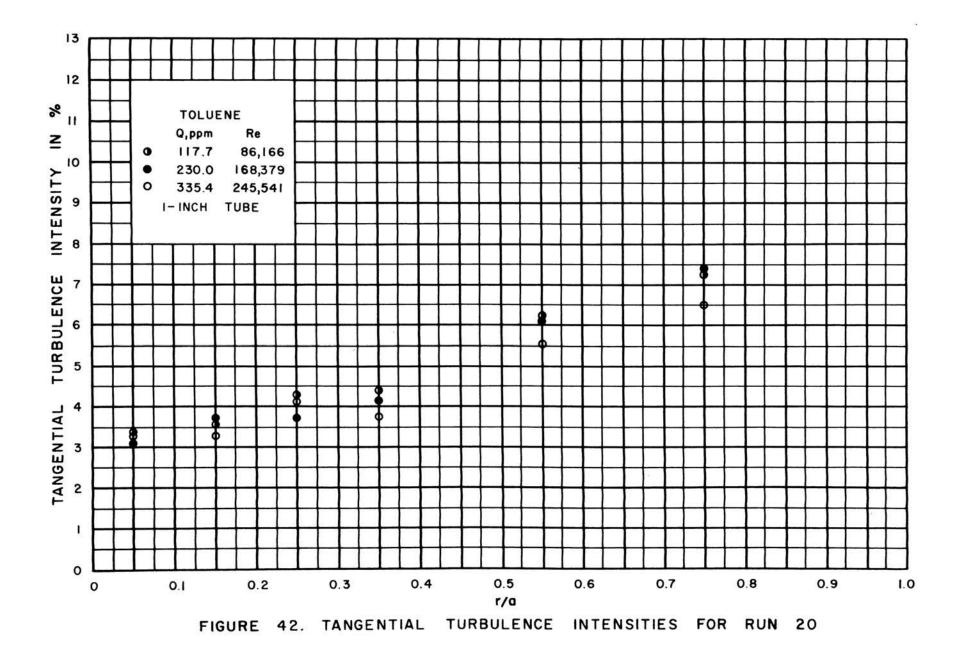





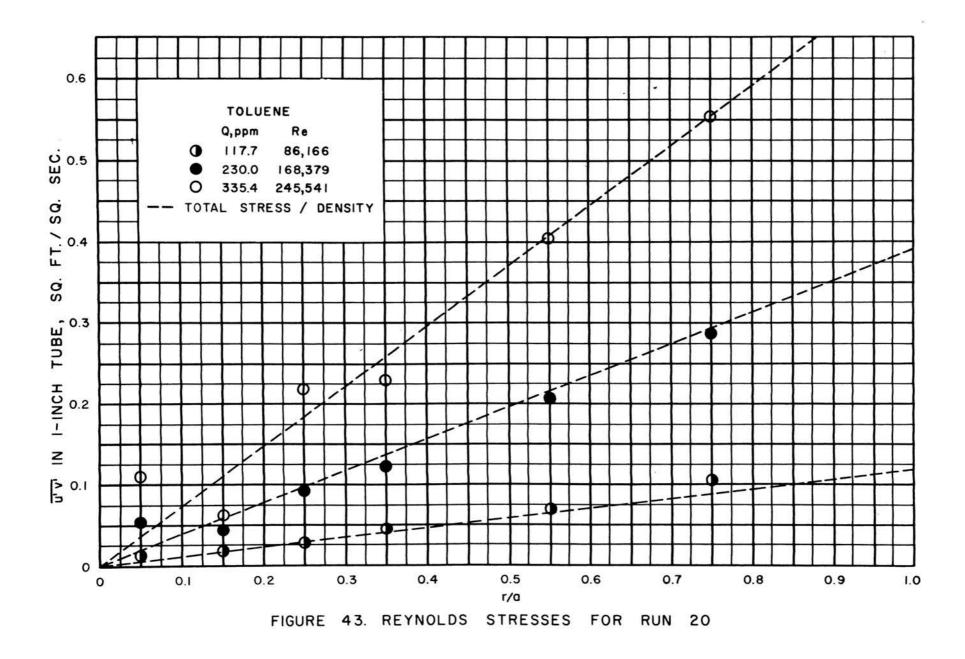

FIGURE 29. TURBULENCE INTENSITY PROFILE FOR RUN 12

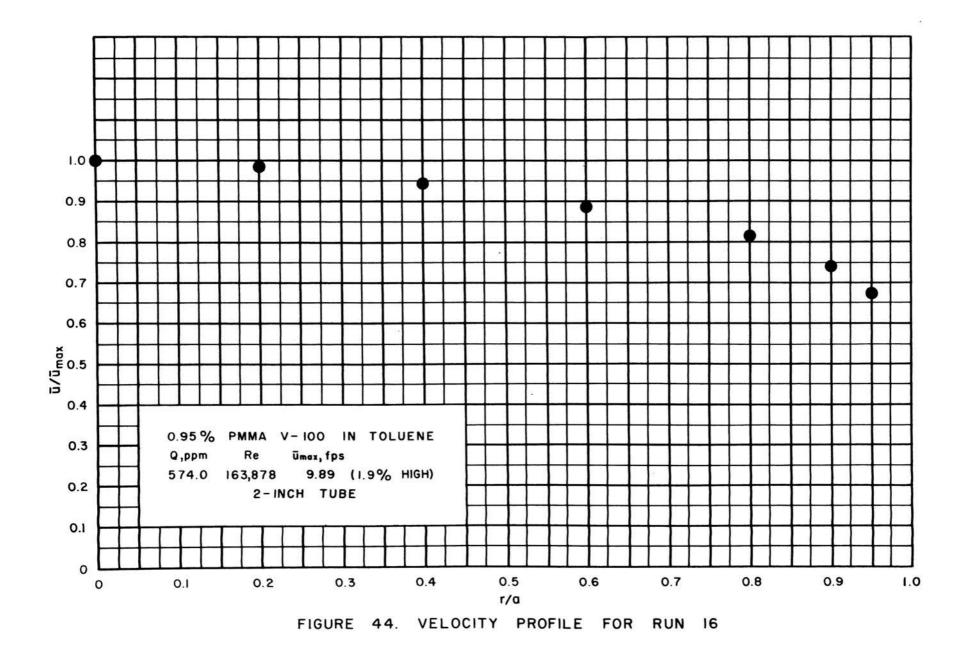

99

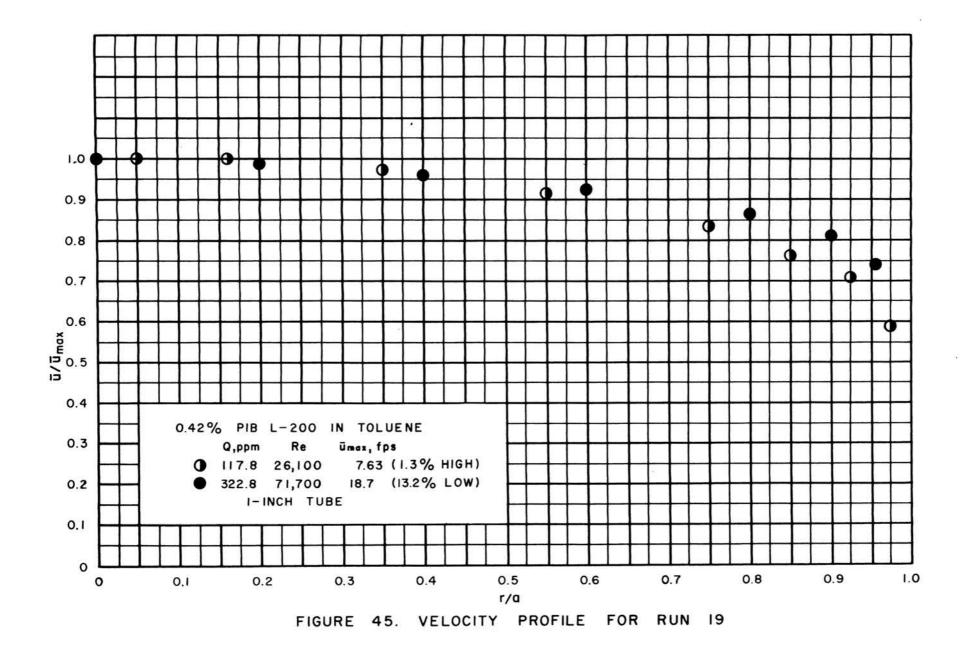


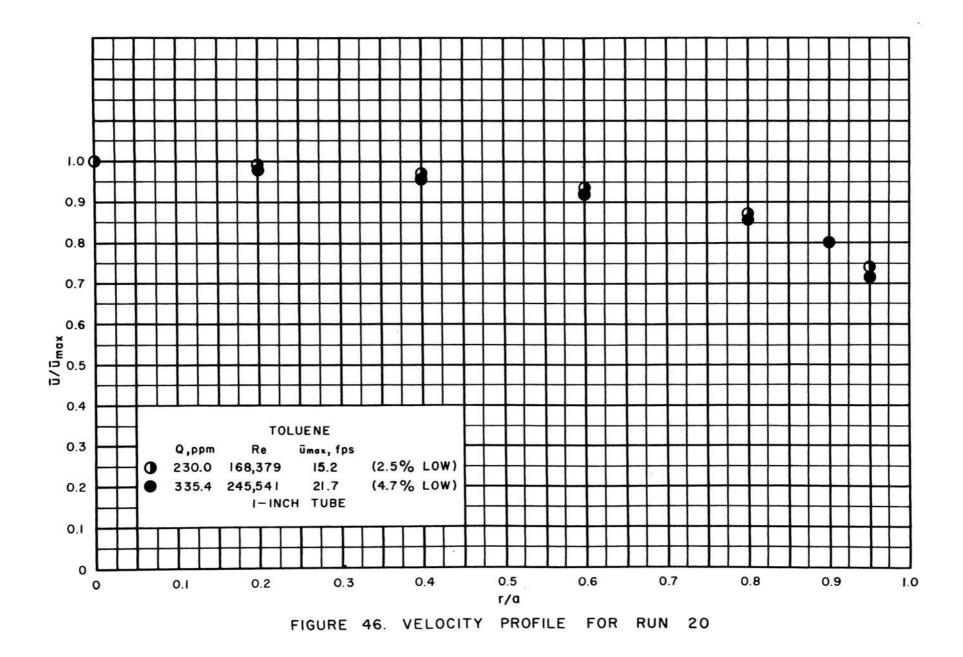


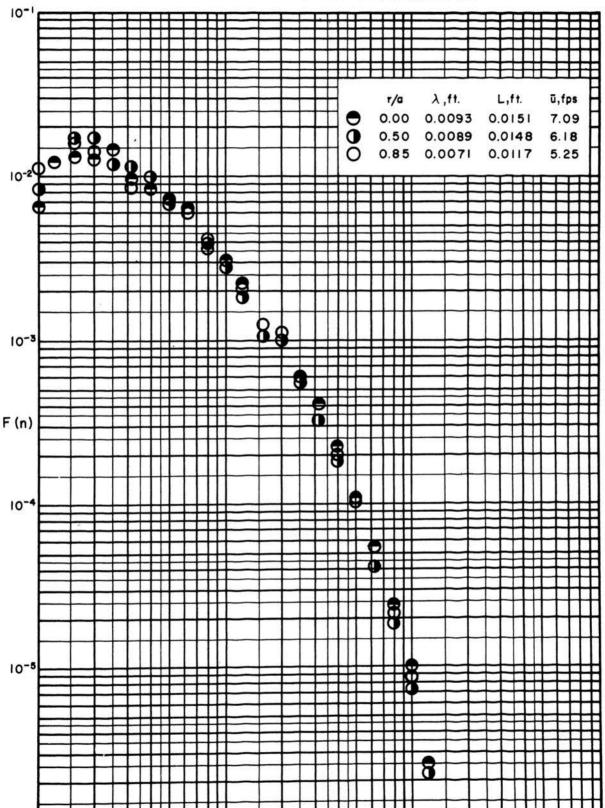






FIGURE 38. TURBULENCE INTENSITY PROFILE FOR RUN 23







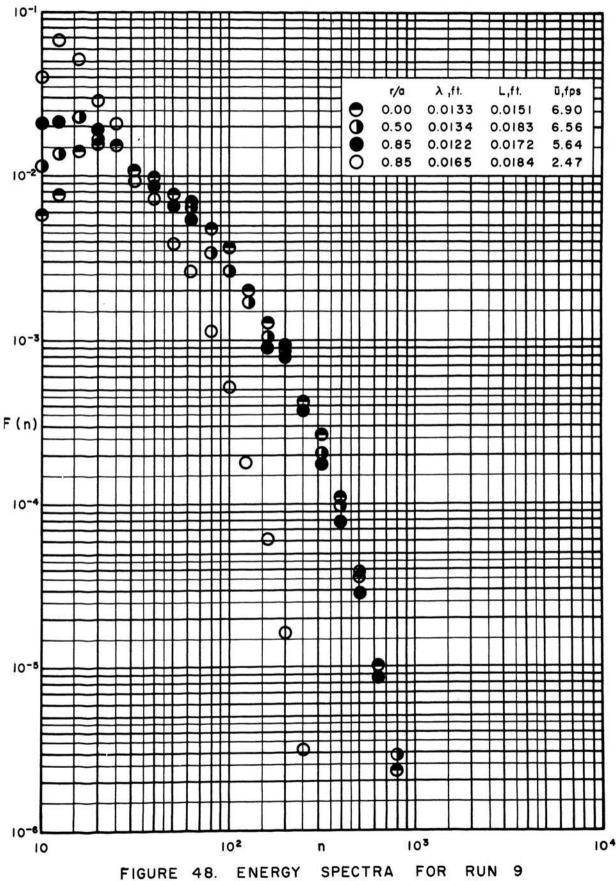


102

FIGURE 47. ENERGY

n

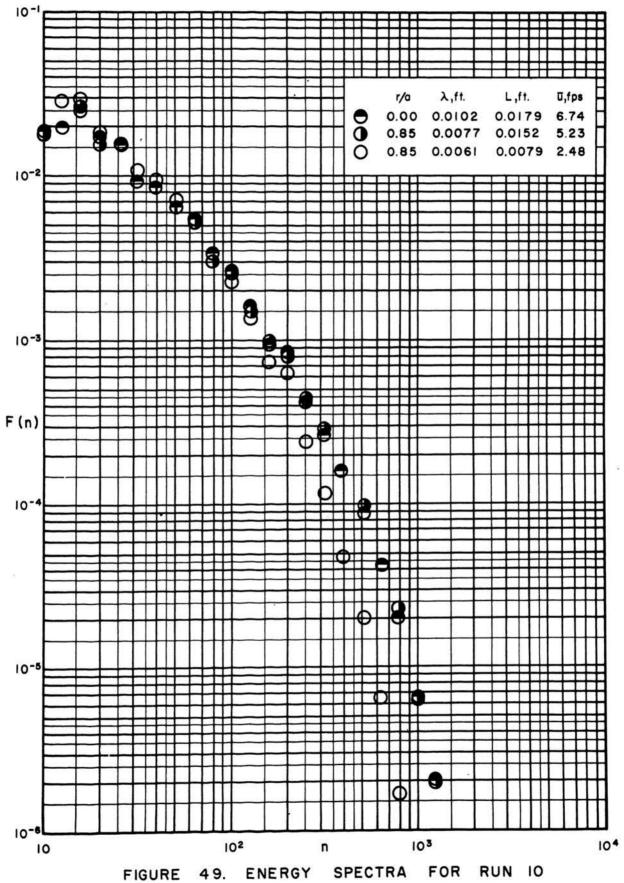
10-6

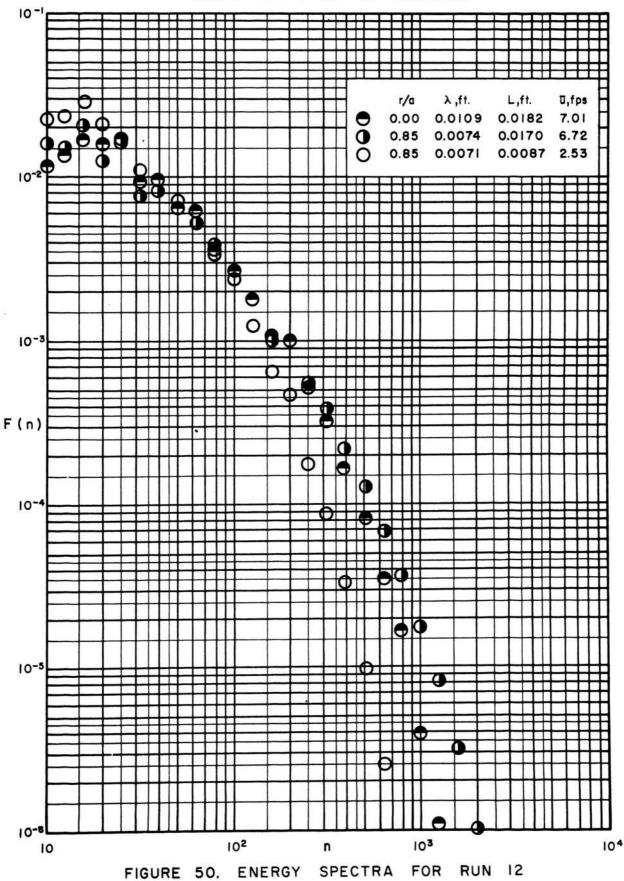

10

0.3% PIB L-80 IN CYCLOHEXANE

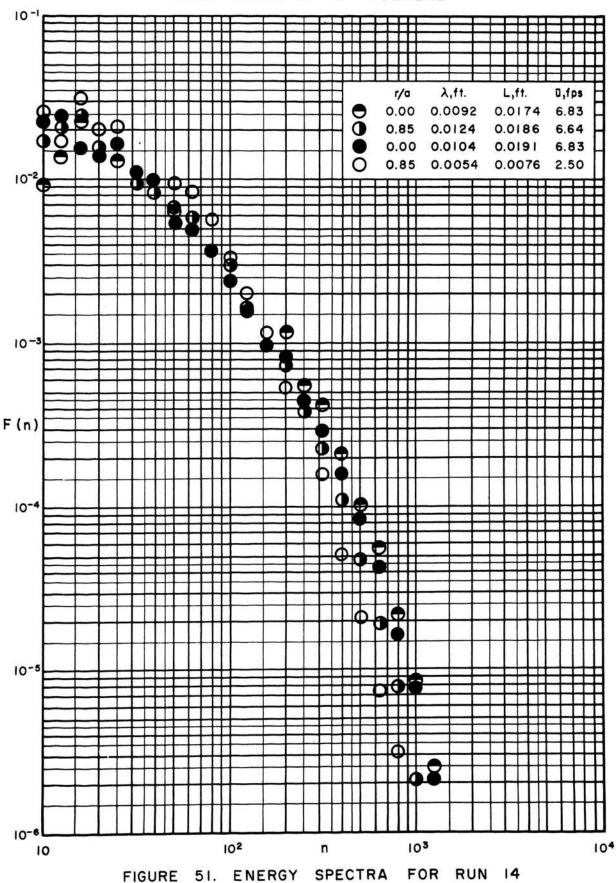
103

RUN 8

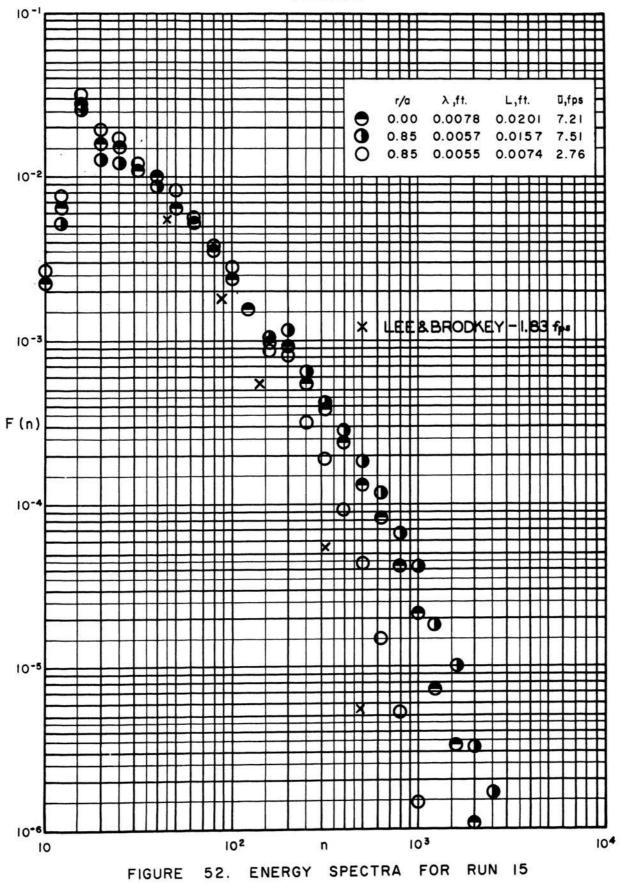

SPECTRA FOR

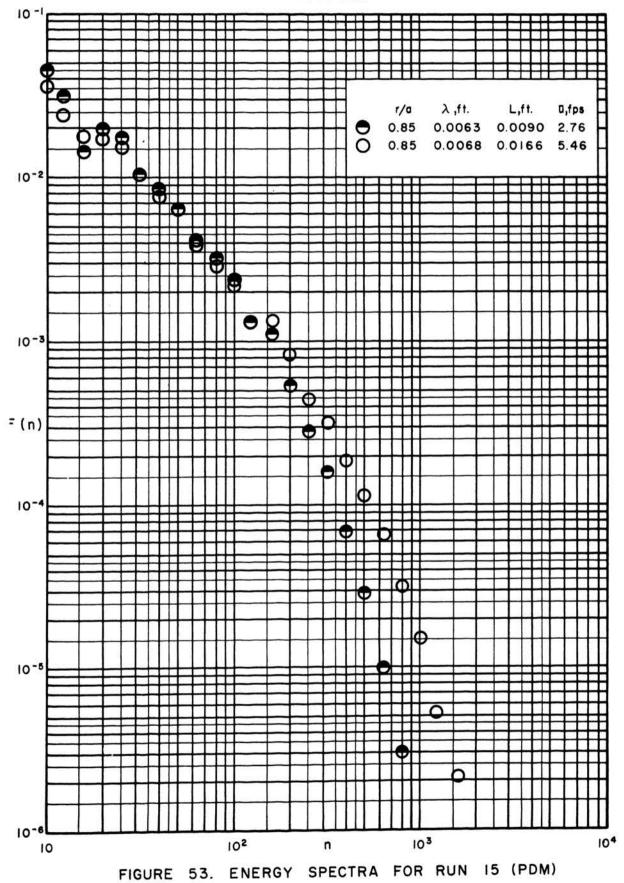


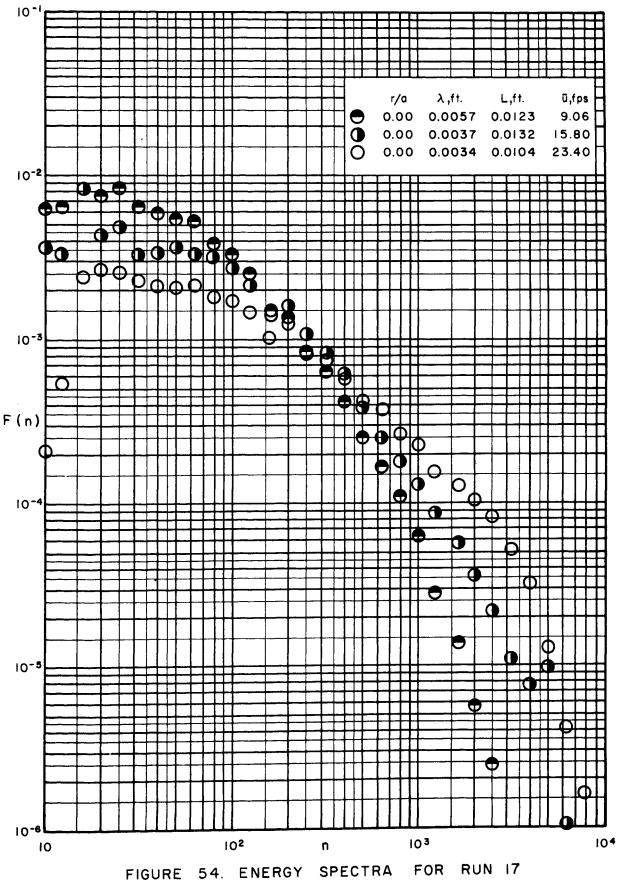
1.0%


PIB L-80 IN CYCLOHEXANE

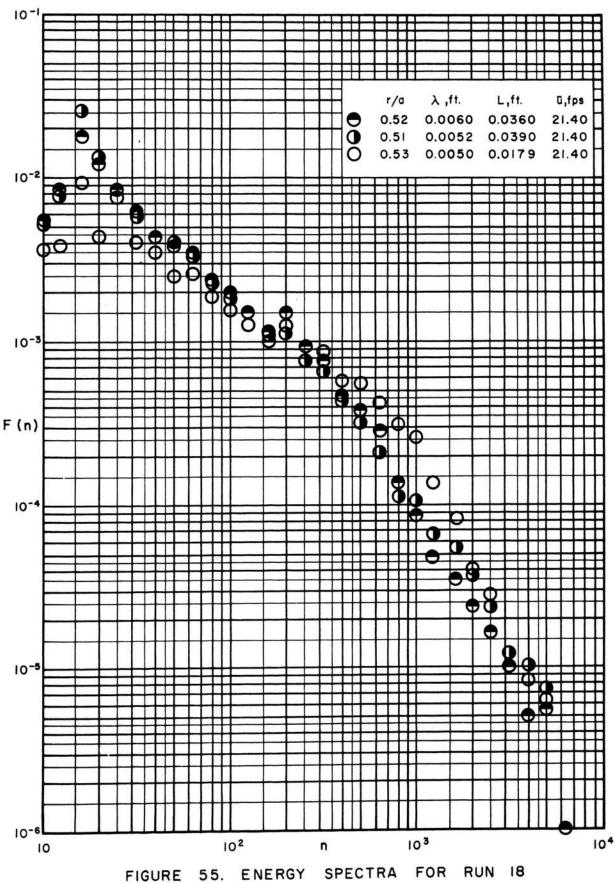
BENZENE


0.85% PIB L-80 IN BENZENE

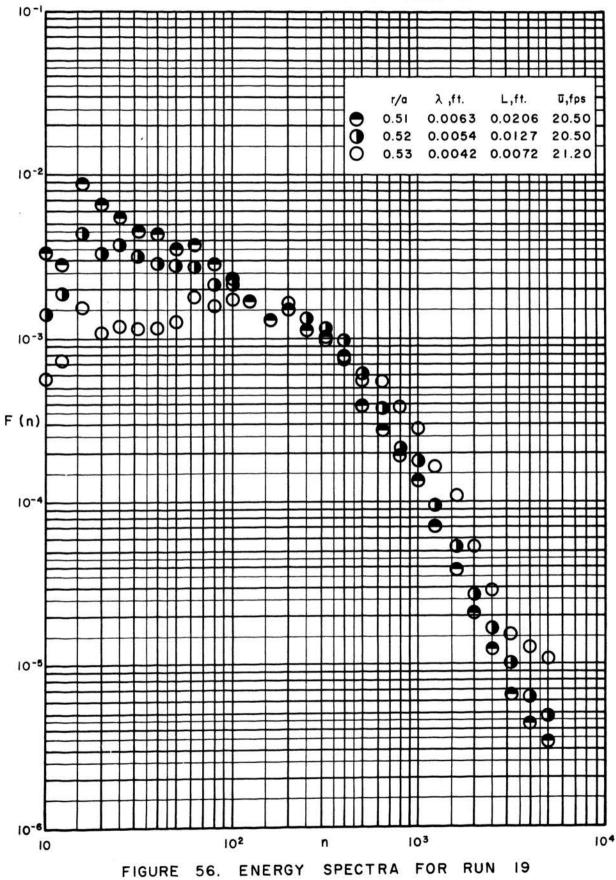

0.9% PMMA-G IN


TOLUENE

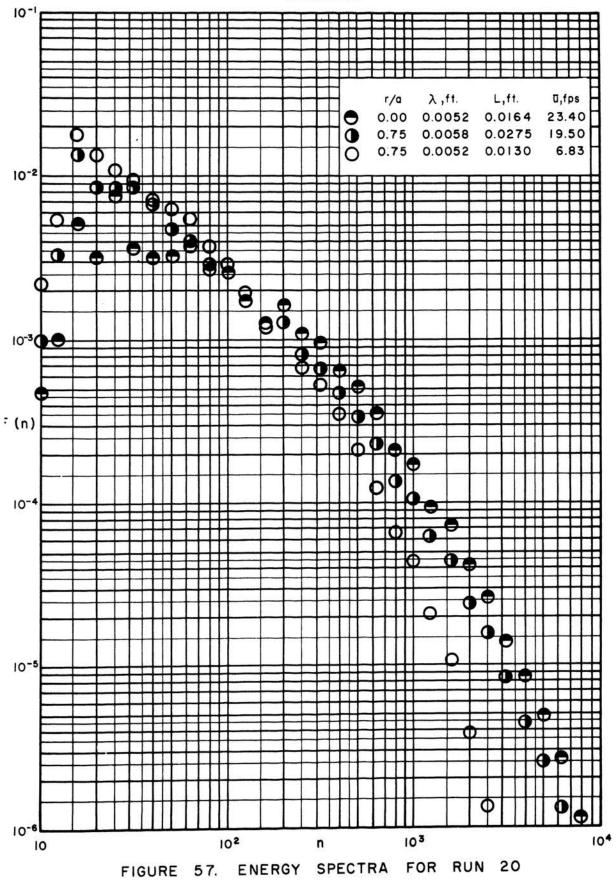
TOLUENE

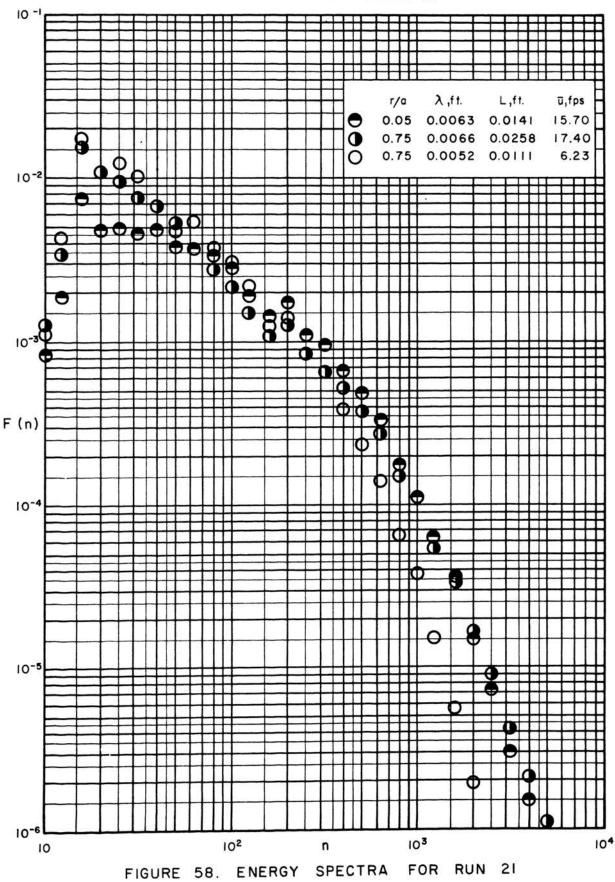


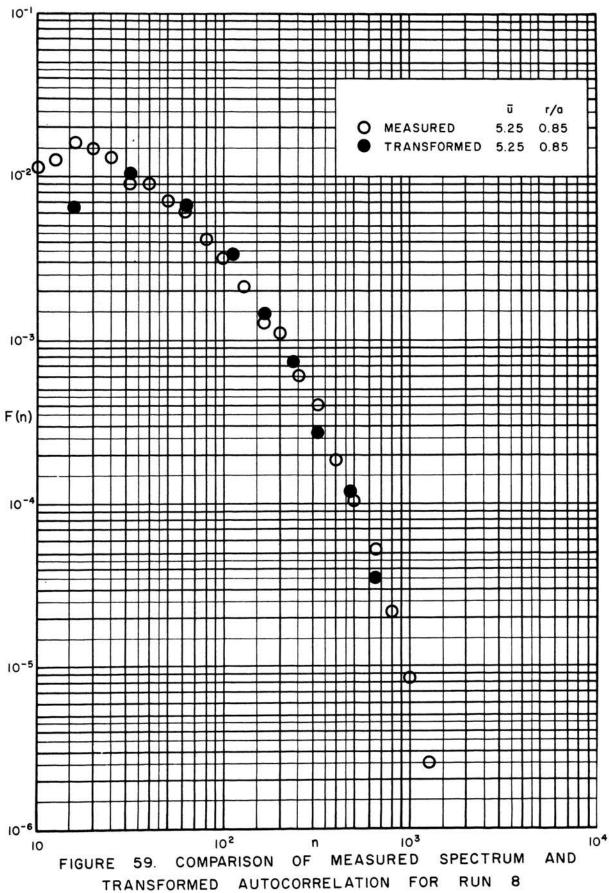
TOLUENE



0.05% PIB L-200 IN TOLUENE

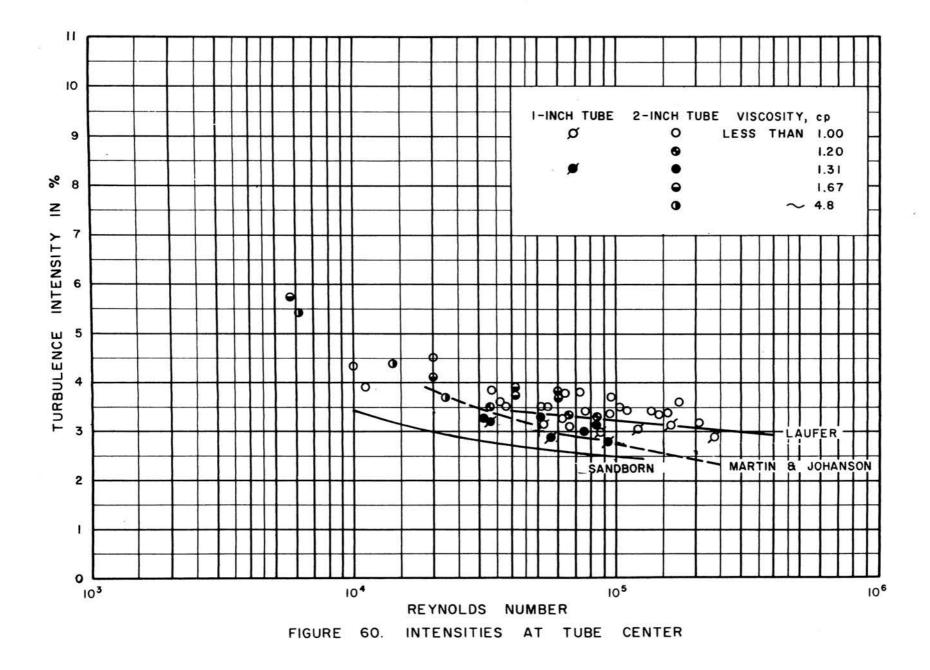


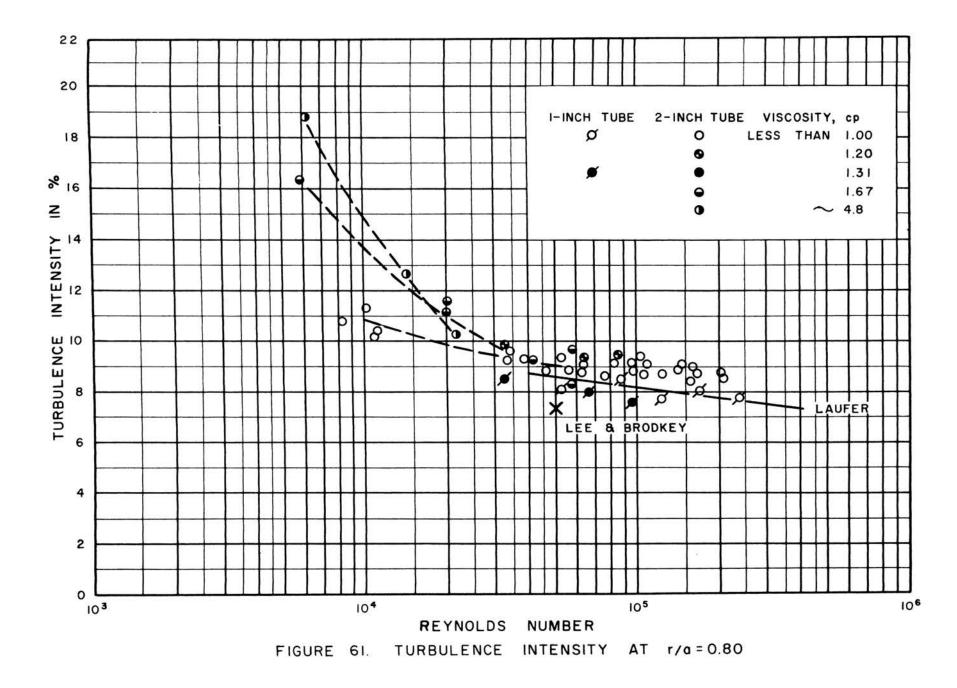

0.2% PIB L-200 IN TOLUENE

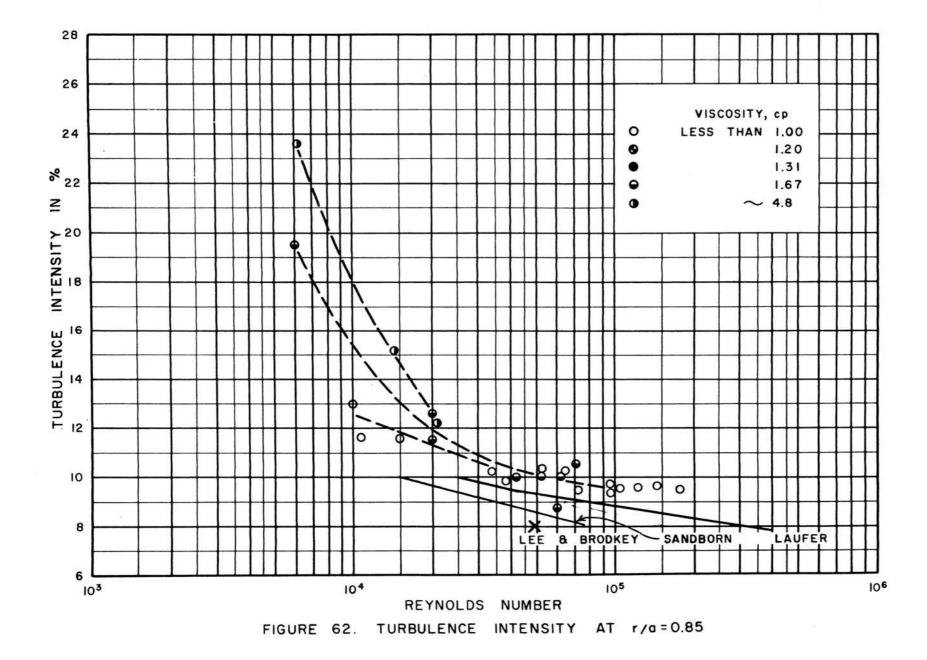

0.42% PIB L-200 IN TOLUENE

TOLUENE

0.82% PMMA-G IN TOLUENE


6. Discussion of Results


Since the two main phases of this investigation were a study of turbulence intensities and energy spectra in the pipe flow of polymer solutions without drag reduction and the measurement of the same quantities for drag reducing flow, the discussion of results will contain separate sections for non-drag reducing turbulent flow (Runs 2-16 and 20-22) and for drag reducing turbulent flow (Runs 17-19 and 23). 6.1. <u>Turbulence intensity in non-drag reducing flow</u>


Longitudinal turbulence intensity data were obtained for Runs 2-16 and 20-22. The intensities are plotted in Figures 19-38 as a function of reduced distance from the tube center, r/a, with Reynolds number as a parameter. The turbulence intensities ($\langle u' \rangle / \bar{u}$) for these runs showed increases from about 3-6 per cent at the tube center to about 9-23 per cent at r/a=0.85. The trends for these results in liquids are similar to those for air reported by Laufer (47) and Sandborn (81). There are differences in absolute intensity levels, however, which will be discussed below.

The turbulence intensities for the flow of all solutions without drag reduction studied are plotted versus Reynolds number for r/a=0.0, 0.8, and 0.85 in Figures 60, 61, and 62, respectively. A small diameter effect may be seen in Figures 60 and 61 with the 1-inch tube data giving lower intensities. This is similar to the diameter effect shown for Laufer's 10-inch pipe data for air and Sandborn's 4-inch pipe data for air.

The turbulence intensity data for organic solvents and polymer solutions increase with decreasing Reynolds number in a manner similar to the Laufer and Sandborn data for air and the Martin-Johanson (58) data for water shown in Figures 60, 61, and 62. The Laufer air data

are in closest agreement with the data of this investigation, lying in the lower portion of the 2-inch tube data at the tube center. Laufer's data do not rise as high at r/a=0.85 (Figure 62), probably because of the large size of his pipe compared to the boundary layer thickness giving higher y^+ values at r/a=0.85. The air data of Sandborn are lower than Laufer's data both at the pipe center and near the wall. Baldwin and Walsh (2) measured air turbulence intensities at the same laboratory as Sandborn and obtained a value of 3.5 per cent at the center of an 8-inch pipe at Reynolds numbers of 290,000-640,000, compared to Sandborn's value of 2.5 per cent. Although Baldwin and Walsh ascribed the difference to calibration procedures, there may also be some diameter effect as observed in this investigation.

The effect of Reynolds numbers above 30,000 on turbulence intensity in this investigation is closest to that observed by Laufer, although the Sandborn data show a very similar slope in Figures 60 and 62. This is not the case, however, for the data taken in a 6-inch pipe for the turbulent flow of water by Martin and Johanson. Their data are in approximate agreement with Sandborn's, but show a stronger dependence on Reynolds number effect (Figure 60). Their absolute intensity levels were lower at high Reynolds numbers than the levels obtained in this investigation. The intensity profile of Lee and Brodkey (50) at a Reynolds number of 50,000 in a 3.068-inch pipe is also lower than the data reported here except for a rise in intensity level at the pipe center. They attribute this to anemometer drift. The data of Lindgren (54) are quite scattered and since he did not discuss them in detail in his report, they will not be compared with the data of this investigation.

Below a Reynold's number of 30,000 there seems to be an effect of solution properties which becomes very evident near the tube wall (Figures 61 and 62), causing much higher turbulence intensities. The effect could have been caused by the viscosity or the elasticity of the higher viscosity fluids. The two solutions showing the strongest effects were 0.3 per cent and 1.0 per cent PIB L-80 in cyclohexane with viscosities of 1.67 cp and about 4.8 cp, respectively. The 1.0 per cent solution showed significant normal stress effects in jet thrust measurements by Green (31). Although these solutions were not even friction factor reducing¹ in the 2-inch tube where the intensity measurements were made, they were drag reducing in tube sizes of 0.5-inch down for the flow rates obtainable (33). From dimensional considerations, it seems unlikely that the high intensities could be caused by high viscosity. In order to demonstrate that the effect is caused by elasticity, turbulence intensities must be measured on high viscosity, non-elastic fluids.

The hot-film probe used in this investigation did not permit measurements to be made closer than 0.15 inches from the 2-inch tube wall or 0.12 inches from the 1-inch tube wall. This corresponds to a minimum y^+ value of 30 in the 2-inch tube for the 1.0 per cent PIB L-80 solution at a Reynolds number of 6100. The high intensity effect could not be determined for the location of maximum intensity at $y^+=12$ (47). Intensity profiles through this point would show whether the intensity peak is located at this point but with a much higher peak for viscoelastic or viscous fluids or whether the peak is simply displaced further from the pipe wall.

¹ See definition page 20.

If the normal stress, $\rho < u' >^2$, were closely related to the Reynolds stress, $\rho u'v'$, equation 32 suggests that $\langle u' \rangle$ might be proportional to u* where du/dr is small. This is the same as saying that <u'> is proportional to $\sqrt{\tau_w/\rho}$, which seems reasonable. <u'>/u* was plotted versus r/a for the data of this investigation to determine the validity of this assumption for data of widely varying viscosity. The graph of typical data points is shown in Figure 63. The points are plotted to distinguish Reynolds number ranges of 0-10,000; 10,000-20,000; 20,000-50,000; 50,000-100,000; and 100,000-up. The lowest values of <u'>/u* are generally in the intermediate Reynolds number range, 20,000-50,000. These results show the difference of dependence on Reynolds number of <u'> and u*. The solution property effect discussed above causes the low Reynolds number points (lower than 10,000) to be much higher than the grouped data near the tube wall. In the correlation r/a was modified slightly to make "a" the distance from $y^+=12$, the point of maximum intensity, to the pipe center. Since most of the data are for y^+ >100 the modification made little difference in the correlation, but it spread the data points somewhat to make them easier to plot.

The solid and broken lines in Figure 63 are Laufer's data for air at Reynolds numbers of 400,000 and 40,000, respectively. The Laufer data are in general agreement with the data of this investigation for the low viscosity solutions. Comparisons with this correlation will be made for the drag reducing fluids discussed in Section 6.7 to show the relative changes of turbulence intensity with wall shear stress during drag reduction.

The precision of the data obtained here is indicated in two ways. For many of the intensity profiles, data were obtained on both sides of

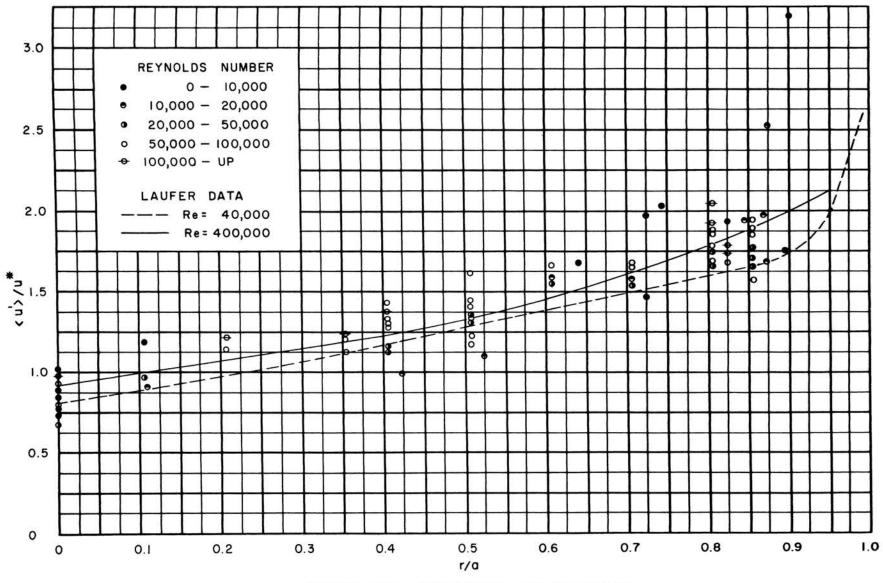


FIGURE 63. INTENSITY CORRELATION

the tube center to check axisymmetry of the flowing stream. Indications of the symmetry may be seen in the plots for Runs 2,3,4,9,17,20,21,22. The worst checks are for Run 2, Reynolds numbers 8240 and 11,500, where differences of about 2 per cent in intensity values were observed for regions near opposite walls, where the intensities were about 10 per cent. These two profiles were measured at very low velocities in a low viscosity solvent (toluene) where the flow rates were difficult to maintain constant. All the rest of the data exhibited good axisymmetry checks, that is, differences of less than 10 per cent of the average of the two points with most being less than 5 per cent different. Hershey (33) discussed the axisymmetry of the velocity profiles, which showed good checks.

If it is assumed that there is no significant viscosity effect above a Reynolds number of 30,000, the mean deviation of the intensity measurements from the average may be calculated from these data. Using the data for the tube center, this deviation for all non-drag reducing solutions was \pm 0.2 per cent intensity or about \pm 6 per cent of the average value (about 3.5 per cent). If more were known about the effects of viscosity, elasticity, and diameter, the average <u>random</u> deviation would not be this large. Martin and Johanson, using a hotfilm probe for measurements in water in one pipe size, obtained an average deviation of about \pm 8 per cent for the data plotted in their article (58). Sandborn using a hot-wire probe in air, obtained an average deviation of about \pm 1 per cent.

6.2. Radial and tangential turbulence intensities

The preliminary results of the measurements of radial and tangential turbulence intensities using the V-probe are shown in Figures 39-42. Measurements were made in both the 1-inch and 2-inch tubes. Comparisons of the results for the two pipes indicates that the 1-inch tube data are apparently more reliable than the 2-inch tube data. The 2-inch pipe data show a reverse trend with Reynolds number (lower intensities at lower Reynolds numbers). Also, the Reynolds stresses $\rho u'v'$ for the 2-inch tube were about 15 per cent higher than the total shear stresses, and the Reynolds stresses $\rho u'w'$ for the 2-inch tube were not near zero. The radial and tangential intensities in the 1-inch tube showed the same trend of decreasing intensity with increasing Reynolds number as the Laufer and Sandborn data.

The u'v' values shown in Figure 43 were very close to the total stress curves, and the u'w' values were about 10 per cent of the magnitude of the $\overline{u'v'}$ values. The Reynolds stress calculations involve the subtraction of two large numbers (see Appendix V) and are, therefore, very sensitive to small calibration errors. This might have caused the poorer results in the 2-inch tube.

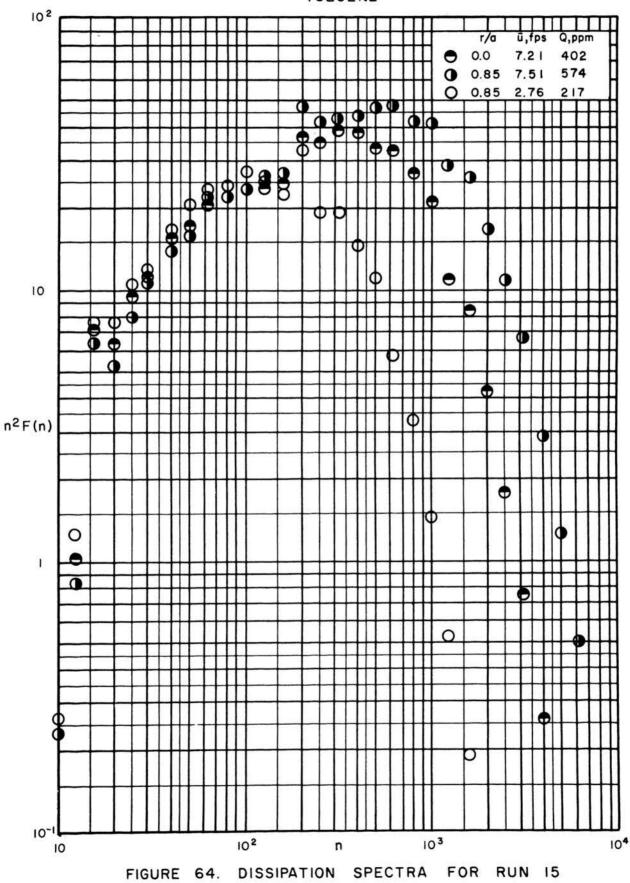
The results show a marked deviation from the data of Laufer and Sandborn for radial and tangential turbulence intensities. The Laufer and Sandborn data for air showed only small increases of $\langle v' \rangle / \bar{u}$ and $\langle w' \rangle / \bar{u}$ close to the wall. The tangential and radial turbulence intensities measured in this investigation increased toward the tube wall in almost the same manner as our longitudinal turbulence intensities. The tangential intensities in the 1-inch tube are slightly higher than the longitudinal intensities at the tube center and are slightly lower than the longitudinal intensities at r/a=0.75. The radial intensities are slightly higher than the tangential intensities at all locations. The data for the 2-inch tube are all much higher than the longitudinal turbulence intensities and are probably in error since the Reynolds stresses did not check the total stresses. These data are for an incompressible liquid of much higher density and viscosity than air, and so the deviations from air measurements may be significant. Since the data were for trial runs of a somewhat unsatisfactory (too large) prototype V-probe, however, further work will be necessary to verify the results.

6.3. <u>Velocity</u> profiles

The velocity profiles used for anemometer probe calibrations for Runs 2-15 were reported by Hershey (33) and will not be discussed here. Additional profiles were measured using the impact tubes described above for Runs 16, 19, and 20 (see Figures 44-46). For non-drag reducing flow conditions (Runs 16 and 20) these velocity profiles were similar to the Newtonian profiles obtained by Hershey. Since all measured profiles for non-drag reducing fluids were quite similar, profiles were calculated from the Run 16 and 20 measurements assuming Reynolds number similarity for Runs 21 and 22.

In Run 19 the low flow rate velocity profile was similar to the profiles measured in Runs 16 and 20, but the high flow rate profile, where the drag ratio was 0.85, was more blunt than the others (as shown in Figure 45). In addition the blunt profile yielded an integrated flow rate 13.2 per cent lower than the flow rate measured in a weigh tank. This is the same sort of behavior observed by Shaver (85) and Wells (98), again indicating the need for a detailed study of the effects of viscoelasticity on turbulent velocity profiles using either corrected impact tube measurements or another type of instrument. Because of the poor check between integrated flow rates and measured flow rates, velocity profiles calculated from established Newtonian data were used in Runs 17, 18, 19, and 23 where drag reduction was observed.

6.4. Energy spectra for non-drag reducing flow


The energy spectra in Figures 47-58 show that there are no large differences in the spectra for different solvents and polymer solutions at similar flow conditions in the same size tube. The slopes of all the spectra measured in the 2-inch tube approach the -7 value (on log-log plots) expected from Heisenberg's transfer theory (32) at the high frequency end (above 1000 cps). Many of these spectra exhibit the -5/3 log-log slope in the energy transfer region, although this region is short and the curve is sometimes rounded because of the low microscale Reynolds numbers ($\text{Re}_{\lambda} = \lambda \overline{u}/\nu$) obtained in the 2-inch pipe.

The spectra measured in the 1-inch tube for non-drag reducing fluids at high velocities in Runs 20 and 21 (Figures 57 and 58) do not exhibit a slope of -7 at the high frequency end (about 5000 cps). This slope is not reached in the frequency range studied because of broader energy transfer regions (slopes of -5/3) in these spectra.

The data for Runs 8, 9, 10, 14, 15, 20, and 21 show that spectra at different radial locations up to r/a=0.85 are nearly identical. The differences that do occur show slightly higher frequencies at the tube center than near the wall. Laufer (47) found that for the flow of air in a 10-inch pipe, differences in the spectra occur only within 0.1a of the wall. These differences are small when the spectra are plotted as a function of frequency. When wave number is used ($k = 2\pi n/\bar{u}$), the lower mean velocity near the wall causes the spectra to be shifted to higher wave numbers than spectra measured at the pipe center. This is shown in Laufer's plots of $F_x(k)$ versus k. It should also be noted that since Laufer made his measurements at high velocities giving high microscale Reynolds numbers, his spectra exhibit a long energy transfer region with -5/3 log-log slope. The effect of flow rate on the spectrum curves is much more evident. As may be seen in Runs 9, 12, 14, 15, 20, and 21, the spectra have a smaller portion of their energy in the high frequency range at low flow rate than at high flow rate. These differences are magnified when comparing the dissipation spectra, as shown in Figure 64 for Run 15, because of the strong effect of the n^2 term at high frequencies. The normal rise in turbulence intensity at low Reynolds numbers might be explained by the lowered dissipation caused by the spectrum changes discussed above. Higher intensity might be necessary to obtain a balance between turbulence production and dissipation.

At the same velocities in the 2-inch tube all the spectra for different solutions seem about the same except for Run 9. This solution had an apparent wall viscosity of 4.8 cp at a time average velocity of 6.5 fps at the tube center (Appendix VI). As mentioned before, it also showed a strong normal stress effect in a jet thrust apparatus. The effect of the viscosity and/or elasticity of this solution on energy spectra may be seen by comparing the spectra of Runs 8 and 9 (Figures 47 and 48). There is some evidence that, unlike the turbulence intensity effect mentioned above, the spectrum effect is caused by viscosity instead of elasticity. Comparison of spectra for Runs 19 and 20 (Figures 56 and 57) shows that there is little difference in these spectra, even though the 0.42 per cent PIB L-200 in toluene was more elastic (longer relaxation time) than the 1.0 per cent PIB L-80 in cyclohexane of Run 9.

The energies at high frequencies for Run 9 are much lower (by about 50%) than at the same frequencies and comparable flow rate for

TOLUENE

Run 8. This will not cause drag reduction, however, because the viscosity increase as well as the turbulence intensity increase at the lower Reynolds number compensate for the lowered dissipation spectrum.

Small differences in spectra are caused by pipe size as shown by comparing Runs 20 and 21 (Figures 57 and 58) for the 1-inch tube with Runs 15 and 14 (Figures 52 and 51) for the 2-inch tube. At comparable velocities (about 6-7 fps) the high frequency data from the 1inch tube are slightly higher in energy level than the 2-inch pipe data. The slopes at high frequencies are about the same (approaching -7). As mentioned above, however, the slopes of the higher velocity runs in the 1-inch pipe (about 20 fps) did not approach -7 in the frequency range covered.

Most of the measured energy spectra were obtained using a recording of the anemometer bridge voltage made on an Ampex 601-2 audio recorder. In order to determine any errors introduced by the recorder, some comparisons were made with measurements of spectra obtained directly from the output of the anemometer. For Run 14 (Figure 51), comparison of the direct spectrum with the recorded spectrum shows that the recorded spectrum was almost identical to the directly measured spectrum.

Another comparison in Run 15 shows the correspondence of spectra measured from recordings on the Ampex audio tape recorder and Lyrec pulse-duration-modulation (pdm) tape recorder loaned by Zitzewitz Engineering Associates ¹. Comparison of the spectra at r/a=0.85 and $\overline{u}=2.76$ fps for the audio and pdm recordings in Figures 52 and 53, respectively, shows that they are almost identical except at frequencies of 10 cps and 12.6 cps. The response characteristics of the audio recorder are very poor below 15 cps, and even with calibration corrections

¹ Wyckoff, N.J.

some scatter is expected at these low frequencies. This scatter is the reason that an fm or pdm recorder is desireable to study the low frequency spectrum. Fortunately, these low frequency results are unimportant when considering the dissipation spectrum, $n^2 F(n)$.

6.5. Autocorrelation functions

The autocorrelation function is useful for the calculation of microscale and macroscale values and for transformation to the energy spectrum. The autocorrelations measured in this investigation were used primarily to establish the validity of the energy spectra measured with the band pass filter.

Figure 59 shows a comparison of a spectrum measured using the band pass filter and the transformed autocorrelation for Run 8, \overline{u} =5.24, r/a=0.85. The fair agreement between the two completely different methods of measurement supports the validity of the spectrum measurements. The low values at low frequencies (below 30 cps) for the transformed autocorrelation were caused by the lack of correction for the poor low frequency response of the recorder. Response corrections were used in the band pass spectrum measurements (see Appendix V). The transformed spectra did not extend to frequencies above about 600 cps because the autocorrelation measurements were not precise enough at very low delay times to give good high frequency transforms. Autocorrelation measurements were made for Runs 8-12, but are not plotted because their use was primarily to demonstrate the validity of the spectrum measurements.

Details of the Fourier transformation are discussed in Appendix V. The experimental methods used to record and measure spectra and autocorrelation functions of the anemometer output are discussed in Appendix II.

6.6. Macroscale and microscale for non-drag reducing flow

The macroscale (integral scale) and the microscale may be calculated from the autocorrelation function, upon which their definition is based (93). These quantities were calculated from the autocorrelation functions measured in Runs 8-12 (see Table 7). Macroscale and microscale obtained from the energy spectrum measurements were more reliable than the autocorrelation values because of the improved high and low frequency results. The high frequency region of the spectrum was more reliable than the corresponding very low delay time portion of the autocorrelation. The low frequency region of the spectrum was corrected for recorder response down to 10 cps, giving a more reliable representation of the low frequency occurrences than the uncorrected autocorrelation function.

Microscale values were measured using the anemometer differentiator circuit for Runs 14-17 and 19-23. The values shown in Table 5 for Runs 2-14 are in error because very high frequency anemometer noise was not filtered out. Table 1 lists the microscale and macroscale values for Runs 8-23.

The macroscale was calculated from each energy spectrum by first transforming it to an autocorrelation function, then integrating to find the area under the curve of $R(\tau)$ versus delay time (see Appendix V). As may be seen by comparing the directly measured spectrum with the audio recorder spectrum of Run 14 (Figure 57) and by comparing the audio recorder spectrum with the pdm spectrum of Run 15 (Figures 52, 53), the macroscales measured using audio recordings are 10 to 15 percent low. This is because the low frequency occurrences (below

Table l

Run No.	r/a	ū, fps	Microsc spectrum	Macroscale, ft		
8	0.0	7.09	0.0093		0.0151	
	0.5	6.51	0.0089		0.0148	
	0.85	5.25	0.0071		0.0117	
9	0.0	6.90	0.0133		0.0157	
	0.5	6.56	0.0134		0.0183	
	0.85	5.64	0.0122		0.0172	
	0.85	2.47	0.0165		0.0184	
10	0.0	6.74	0.0102		0.0179	
	0.85	5.23	0.0077		0.0152	
	0.85	2.48	0.0061		0.0079	
12	0.0	7.03	0.0104		0.0191	
	0.85	6.71	0.0074		0.0170	
	0.85	2.53	0.0071		0.0087	
14	0.0	6.83	0.0092	0.0049	0.0174	
	0.0	6.83	0.010 4 (dir	rect)	0.0191	
	0.85	6.64	0.0124	0.0079	0.0186	
	0.85	2.50	0.0054	0.0073	0.0076	
15	0.0	7.21	0.0078	0.0065	0.0201	
	0.85	7.51	0.0057	0.0082	0.0157	
	0.85	2.76	0.0055	0.0078	0.0074	
	0.85	2.76	0.0063 (pdm	1)	0.0090	
16	0.0	7.16		0.0086		
	0.4	6.71		0.0095		
	0.85	5.38		0.0084		
	0.85	2.72		0.0077		
17	0.0	23.2	0.0034	0.0033	0.0104	
	0.0	16.0	0.0037		0.0132	
	0.0	9.06	0.0057	0.0055	0.0123	
18	0.5-1	20.7	0.0052		0.0390	
	0.5-2	20.7	0.0060		0.0360	
	0.5-3	20.7	0.0050		0.0172	
19	0.5-1	20.5	0.0063	0.0075	0.0206	
-	0.5-2	20.7	0.0054		0.0127	
	0.5-3	21.2	0.0042	0.0058	0.0072	

Run No.	r/a	ū, fps	Micro	scale, ft	Macroscale, ft		
			spectrum	differentiator			
20	0.05	23.4	0.0052	0.0064	0.0164		
	0.75	19.5	0.0058	0.0071	0.0275		
	0.75	6.8	0.0052	0.0071	0.0130		
21	0.05	15.7	0.0063	0.0058	0.0141		
	0.75	17.5	0.0066	0.0063	0.0258		
	0.75	6.2	0.0052	0.0049	0.0111		
22	0.1	16.0		0.0056			
	0.75	19.8		0.0064			
	0.75	7.5		0.0065			
23	0.6	31.0		0.0066			
	0.6	20.3		0.0079			
	0.6	9.6		0.0078			

Table I (continued)

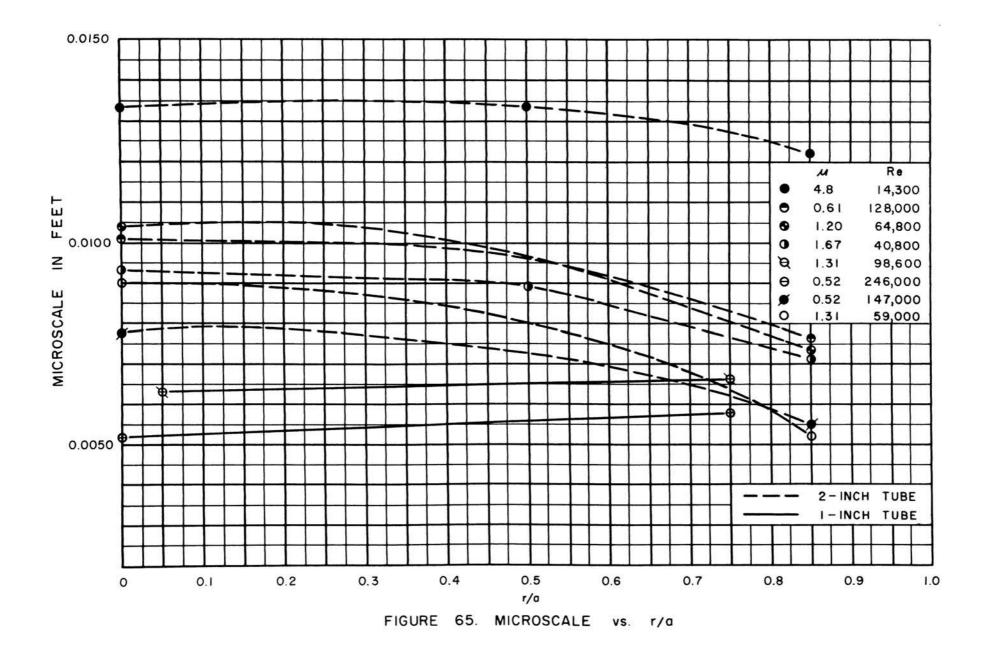
10 cps) have an important effect on the macroscale value, and these are lost in an audio recording.

Martin and Johanson (58) integrated their autocorrelation curves to obtain macroscales for the flow of water in the center of a 6-inch pipe. Their data were fit by the equation:

$$L_x = 1.692 \times 10^{-2} a (Re \times 10^{-3})^{0.509}$$

where L_x is in feet. A comparison of values calculated using this correlation with values measured in this investigation shows that the correlation probably does not account for pipe diameter correctly. The macroscale calculated using the above equation for toluene flowing in the 2-inch pipe with a centerline velocity of 7.21 fps is 0.0178 feet, whereas the value measured in Run 15 was 0.0201 feet. The calculated value deviated even more from the measured value in the 1-inch pipe. Run 20 for toluene in the 1-inch pipe yielded a measured macroscale of 0.0164 feet and a calculated value of 0.0110 feet for toluene flowing at 23.4 fps.

The macroscale measurements in more viscous solutions show that viscosity does not have as strong effect on macroscale as calculated using the Martin-Johanson correlation. The measured macroscale in Run 8 (μ =1.67 cp) was 0.0151 feet at a velocity of 7.08 fps, but the calculated value was only 0.0093 feet. Run 9 (μ =4.8 cp) yielded a measured macroscale of 0.0157 feet at a velocity of 6.90 fps and a calculated value of 0.0056 feet. These comparisons indicate that the effect of viscosity is far weaker than given in the equation. In fact, comparison of all the solutions used shows that the viscosity effect is insignificant.


Examination of the macroscale data reveals that the dependence of macroscale on radial position is different for the 2-inch and 1-inch tubes.

There is no consistent change of macroscale with r/a in the 2-inch tube. In some cases microscale values increase with r/a (Runs 9 and 14) and in others it decreases (Runs 8, 10, and 15). Most of the changes are small. In the 1-inch tube, however, macroscales at r/a=0.75 are nearly double the values at r/a=0.05 for Runs 20 and 21. There is no obvious explanation for this behavior at this time.

Values of microscale were calculated by integrating the dissipation spectra and making use of equation 64, as described in Appendix V. The microscales for space average velocities of about 7 fps in the 2-inch tube and 18 fps in the 1-inch tube are plotted versus r/a in Figure 65. The general trend of the data shows that, unlike macroscale, microscale increased with viscosity when flow rate was constant (viscosity values are shown beside each curve in Figure 65). This is to be expected since microscale is closely related to the high frequency region of the energy spectrum, which also showed a dependence on viscosity.

Data listed in Table 1 show that there is no clear trend of microscale with velocity. Laufer's (46) investigation in a 5-inch channel for the flow of air showed very slight increases in microscale with decreasing velocity. Thus, the variation in microscale among the various solutions cannot be explained in terms of Reynolds number, because no consistent velocity effect was observed.

The effect of pipe size on microscale is more evident at the center than near the wall. Near the wall, microscale values for all the fluids studied (except the very high viscosity solution used in Run 9) seem to approach the same value. Closer to the wall than r/a=0.85, the Run 9 microscales might also approach the others. At equal velocities and viscosities the microscales at the center of the 1-inch tube are smaller than those at the center of the 2-inch tube, but the microscales are

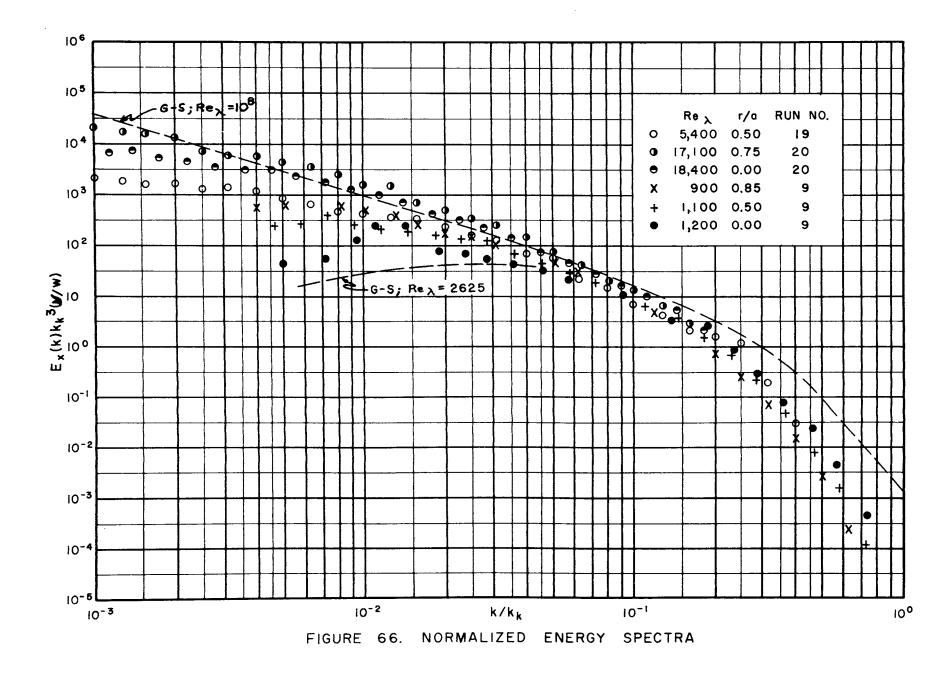

not proportional to pipe size. Data for a greater range of tube size are needed to determine the dependence of microscale on diameter.

Table 1 shows values of microscale measured by the DISA differentiator circuit in comparison with the spectrum values. The average difference between corresponding values is about 20 per cent. For the 2-inch tube the differentiator values at the pipe center are smaller than the spectrum values, and the opposite condition prevails near the wall. The checks in the 1-inch tube are better with Run 21 giving nearly identical values for the two methods. The very poor check in Run 14 is probably because the spectrum microscale value at r/a=0.85, $\overline{u}=6.64$ is a bad point, caused by some gross error. These comparisons show that the accuracy of the microscale determinations is no better than about $\pm 20\%$. Since most of the runs show internally consistent results, for either the spectrum or differentiator values, the errors are probably systematic in nature, but the causes are not yet known.

6.7. Normalized energy spectra

The energy spectra measured in Runs 9, 10, 19, and 20 were normalized in the manner of Gibson and Schwarz (25) in order to determine how these data correspond to the air and water data correlated by them. The plot of $E_x(k)k_k^3 v/w$ versus k/k_k in Figure 66 shows that there is general correspondence between the Gibson and Schwarz (G-S) correlation and selected data for Runs 9, 10, 19, and 20.

The greatest deviation is in the high wave number region where the slopes of the spectra increase to about -7. The data of this investigation have slightly greater negative slopes and are lower than the G-S correlation starting at about $k/k_k=0.25$. All the data plotted for Runs 9, 10, 19, and 20, which are for solutions of widely different viscosities (0.518 - 4.8 cp) and two pipe sizes (1-inch and 2-inch

diameters), coincide with some scatter in the high wave number region. The slope between a normalized wave number of 0.3 and 1.0 seems to be slightly greater than -7 on the log-log plot. The main reason for deviation from the G-S correlation, however, is that the -7 slope is reached at a lower normalized wave number.

The low normalized spectrum values at high wave numbers are accompanied by high normalized values at low wave numbers for corresponding microscale Reynolds numbers ($\operatorname{Re}_{\lambda} = \lambda u/\nu$). The energy levels where the spectra of this investigation level out are in general about 10 times the levels for the G-S correlation.

Reference to Figure 66 shows that normalized energy spectra of comparable Reynolds number are lower in the low wave number region for the tube center than near the wall. All the data used by Gibson and Schwarz in their correlation were probably isotropic, because all but one set of data (the tidal turbulence data of Grant, Stewart, and Moilliet (30)) were for grid induced turbulence. The plotted spectrum data of this study for a $\text{Re}_{\lambda}\approx1000$ at r/a=0.0, 0.5, and 0.85 are above the G-S curve for $\text{R}_{\lambda}=2625$ in the low wave number region. However, the tube center data approach the G-S curve, where the turbulence is more isotropic.

The highest normalized energy spectrum values in the high wave number region correspond to the lowest spectrum values in the low wave number region for the three spectra with $\operatorname{Re}_{\lambda}\approx 1000$. If true isotropy existed, the tube data would probably correspond to the grid turbulence data. These data show that the tube center energy spectra approach the isotropic spectrum.

6.8. <u>Turbulence measurements in drag reducing flow</u>

Since none of the fluids studied jointly by Hershey (9) and the author (Runs 1-15) nor the PMMA V-100¹ solution of Run 16 were highly drag reducing in the 1-inch or 2-inch tubes, high molecular weight polyisobulylene solutions, Vistanex L-200, dissolved in toluene and cyclohexane, were used to establish drag reduction in the 1-inch tube. No appreciable drag reduction has yet been found in the 2-inch tube for any organic polymer solution. Details of the friction factor data for Runs 17, 18, 19, and 23 are presented by Rodriguez (78), but only the results will be used in this discussion.

The turbulence data obtained with the hot-film anemometer in these drag reducing solutions are limited because of the high rate of degradation of the high molecular weight polyisobutylene in toluene during pumping. One solution (0.2 per cent L-200 in toluene, Run 18) degraded at such a rate that the intrinsic viscosity decreased from 4.21 to 3.91 d1/g in one hour. The 0.42 per cent PIB L-200 in toluene solution used in Run 19 degraded from an intrinsic viscosity of 4.81 to 4.22 d1/g in the same length of time. In both cases the drag ratio rose from about 0.70 to about 0.85. The initial intrinsic viscosities of the two solutions were different because the solution concentrations were increased by adding fresh polymer to the unit at each change, so the ratio of degraded to fresh polymer was not constant. The PIB L-200 in cyclohexane did not degrade as rapidly and should be more suitable for future turbulence measurements. A 0.38 per cent solution still had a drag ratio of 0.69 in the 1-inch tube after 6 hours of pumping.

¹ See Appendix VI.

The turbulence intensities at different velocities and radial positions for Runs 17, 19, and 23 are shown in Table 2 along with measured <u'>/u* values, <u'>/u* values from Figure 63, drag reduction values, intrinsic viscosities, and low shear rate viscosities (Ubbelohde viscometer). Data for Run 18 are not shown in the table as no intensities were measured for that run.

These data show an unusual dependence of turbulence intensity on velocity. The most complete set of data is that for Run 23, 0.38 per cent PIB L-200 in cyclohexane. This solution showed extremely high drag reduction in the 1-inch tube (drag ratio of 0.5 at an average velocity of 35 fps before degradation (78)). After 4 hours of degradation the lowest velocity produced no drag reduction (drag ratio of 1.17) and the turbulence intensities are about normal for this velocity and viscosity. At the intermediate flow rate, where the drag ratio was 0.89, the <u'>/u* values were slightly lower than for non-drag reducing solutions as shown in Table 2. At the highest flow rate, however, where the drag ratio was 0.69, the <u'>/u* values were very high. Thus, as drag ratio dropped from 1.17 to 0.69, the turbulence intensity first dropped slightly below normal, then increased to a level much higher than normal.

The toluene solutions of PIB L-200 were not as highly drag reducing after equivalent degradation as the cyclohexane solution. Toluene is not as good a solvent for polyisobutylene as cyclohexane, and Hershey (33) found that better solvents produced higher drag reduction for a given polymer and concentration. The 0.05 per cent PIB L-200 in toluene (Run 17) was not highly drag reducing, the drag ratios being above 0.9 as shown in Table 2. The <u'>/u* values were very close to the

Table 2

Turbulence Intensities During Drag Reduction

Run No.	r/a	ū, fps	<u'>/u</u'>	<u'>/u* measured</u'>	<u'>/u* Fig. 63</u'>	Drag Ratio	[η] d1/g	μ _o cp
17	0.0 0.0 0.5 0.5	23.2 9.06 21.4 7.73	0.0364# 0.0406# 0.0541# 0.0725#	1.05 0.97 1.40 1.61	1.05 0.95 1.45 1.40	0.92 0.96 0.92 0.96	3.72	0.579
19	0.5 0.5 0.5	20.5 14.2 7.63	0.0387# 0.0493# 0.0429#	1.19	1.40 1.20 1.30	0.70	4.81	2.17
	0.5 0.5 0.5	21.2 13.9 7.26	0.0737* 0.0741* 0.0476*	2.12	1.40 1.20 1.30	0.85	4.22	1.85
23	0.0 0.0 0.6 0.6 0.6	37.0 23.4 11.4 31.0 20.3 9.57	0.0543+ 0.0268+ 0.0376+ 0.1084+ 0.0519+ 0.0788+	1.76 0.71 0.83 2.95 1.18 1.45	0.80 0.75 0.85 1.35 1.30 1.45	0.69 0.89 1.17 0.69 0.89 1.17		

1-Inch Tube

[#] Fresh solutions.
* After pumping for one hour.
+ After pumping for four hours.

values from Figure 63 for non-drag reducing solutions. These results fit the pattern of the results of Run 23.

The turbulence intensity measurements in Run 19 produced anomalous results. The $\langle u' \rangle/u^*$ value for fresh solution at the highest flow rate and drag ratio 0.70 was slightly lower than the non-drag reducing values in Figure 63. After one hour of pumping, however, the drag ratio increased to 0.85 at the same flow rate, and the turbulence intensity increased to a level much higher than normal. The low velocity intensities measured at both times fell on the $\langle u' \rangle/u^*$ correlation. Although pressure drops were not measured at the lowest velocity, it is believed that there was no drag reduction.

This behavior indicates different behavior patterns for fresh and degraded polymer solutions in drag reducing turbulent flow. The degraded toluene solution in Run 19 behaved similarly to the degraded cyclohexane solution in Run 23. The fresh solution in Run 19 showed a slightly reduced turbulence intensity. This means that the polymer molecular weight distribution probably has a very strong effect on the drag reduction mechanism.

The behavior for the degraded solutions indicates that the turbulence intensity is reduced slightly in the region of low friction factor reduction (drag ratios slightly below one up to the drag ratio of the purely viscous solution). At higher friction factor reductions, however, the turbulence intensity relative to u* increases. In no case can the large $\langle u' \rangle / u^*$ values be completely accounted for by the decrease in u* caused by the drag reduction. For polymers of increased drag reduction power, the drag ratio or friction factor ratio where the intensity starts to increase seems to be lower than for poorly drag reducing polymers, based on the comparison of the fresh and degraded solutions of Run 19.

The energy spectra measured during drag reduction in Runs 17, 18, and 19 (Figures 54-56) did not show large deviations from non-drag reducing spectra (Runs 20 and 21, Figures 57 and 58). The small effects observed are best seen in Runs 18 and 19 where three spectra measured during the degradation of the polymer are plotted on each figure. The first two spectra (labeled r/a=0.5-1 and 0.5-2 to indicate run order at r/a=0.5) in each case were measured during the first 15 minute period of the run. The last spectrum for each run (labeled r/a=0.5-3) was measured during the last ten minutes of the one hour period. As the polymer degradation and drag reduction was lost, the spectra shifted to slightly higher relative energy levels in the high frequency region, lowering the relative low frequency energies. The effect is most pronounced in Run 19 where the concentration of PIB L-200 was highest (0.42 per cent).

For stationary turbulence, equation 74 expresses the equality of the spectral energy transfer function and the energy dissipation function. The energy spectrum changes for the drag reducing polymer solution in Run 19 are the result of changes in the transfer function. From the data of this investigation, it is impossible to determine whether the spectrum changes are a result of the viscosity change during degradation, the changes in solution elasticity, or both. In any case it is evident that a successful transfer function theory for liquids must include the effects of liquid properties in order to account for the changes caused by viscosity in the non-drag reducing spectra and the changes in the drag reducing spectra in Runs 18 and 19.

The shift to higher frequencies caused the microscale values to become lower, as may be seen in Table 5, Runs 18 and 19. In Run 19 the microscale changed from 0.0063 feet to 0.0042 feet as drag ratio changed from 0.70 to 0.85. This means that the isotropic energy dissipation

calculated using equation 47 at a drag ratio of 0.70 is about 45 per cent of the value at a drag ratio of 0.85 for the same turbulence intensity. The turbulence intensity change brings the dissipation at 0.70 drag ratio to about 12 per cent of the dissipation at a drag ratio of 0.85. Most of this decrease is brought about by the high turbulence intensity when the drag ratio is 0.85.

Unless the energy spectra change drastically near the wall where dissipation is greatest, the changes in dissipation spectrum, or microscale, cannot explain drag reduction. The dissipation calculated using equation 47 is 230 per cent higher at a drag ratio of 0.85 in Run 19 than in Run 20 at \overline{u} =18.5 and r/a=0.75 for toluene. If the dissipation at r/a=0.5 were estimated for Run 20, the difference would be even greater because the turbulence intensity would be lower than at r/a=0.75.

MECHANISM FOR VISCOELASTIC DRAG REDUCTION

1. Development of the Mechanism

The viscoelastic mechanisms for drag reduction proposed by Savins (83), Park (70), and Astarita (1) were not developed quantitatively. Hershey's (33) comparisons of polymer solution relaxation times calculated using Zimm's theory with wall shear rates at incipient drag reduction offered a means of determining flow conditions necessary for drag reduction with a polymer solution. Park's dimensionless correlation offered a means of relating drag reduction to measured solution properties. Both of these correlations demonstrated the dependence of drag reduction on solution elasticity, but did not offer quantitative insight into the mechanism.

In this section a quantitative expression for the reduction of turbulent energy dissipation during drag reduction will be developed and tested using normal stress data measured with the jet thrust apparatus. The relation of turbulent energy dissipation reduction to laminar boundary layer dissipation will be discussed with reference to the observed anomalies in velocity profiles and turbulence intensities for drag reduction.

A Maxwell model was assumed to approximate the viscoelastic response of the polymer solution under shear. If the shear stress is a cosine function of time, $\tau = A \cos \omega t$, substitution into equation (84) gives:

$$s = s_g + s_\mu = (A/G) \cos \omega t + (A/\mu\omega) \sin \omega t$$
 (86)

The energy dissipation equals $\int \tau ds_{\mu}$. Differentiation of equation 86 with respect to time and substitution into the integral yields the equation for viscous dissipation for the Maxwell model:

$$W = A^2 \omega/2\mu$$

For a purely viscous fluid, the energy dissipation would be:

$$W_s = B^2 \omega/2\mu_s$$

if $s = (B/\mu_s \omega) \sin \omega t$

For equal rms displacement amplitudes, the viscoelastic model and purely viscous model may be related:

 $(B/\mu_s \omega)^2 \sin^2 \omega t = (A/G)^2 \cos^2 \omega t + (A/\mu \omega)^2 \sin^2 \omega t + (A^2/\mu G \omega) \sin \omega t \cos \omega t$ After time averaging, this relation yields:

$$A^2 = B^2 G^2 \mu^2 / \mu_s^2 (G^2 + \mu^2 \omega^2)$$

So the ratio of viscoelastic to viscous dissipations at equal rms displacement is:

$$W/W_{s} = \mu/\mu_{s} (1 + \mu^{2} \omega^{2}/G^{2})$$
 (87)

For application of this relationship to turbulent flow, the spectrum of shear fluctuation frequencies on a fluid element must be known. This would be a Lagrangian spectrum and, therefore, impossible to measure with known techniques. Using the approximate relationship between the Lagrangian and Eulerian autocorrelation coefficients, the Lagrangian energy spectrum can be calculated. This spectrum expresses the distribution of frequencies of velocity fluctuation of a particle of fluid.

It is easily shown that if the Eulerian and Lagrangian correlation functions are of the same form, that is:

$$R(\tau) = R(\beta < u' > \tau_{L}/\bar{u})$$
 (88)

where τ and τ_{L} are Eulerian and Lagrangian time delays, and β is the ratio of Eulerian to Lagrangian length scales. Then the relation between Eulerian and Lagrangian energy spectra is:

$$E(n) = E(\overline{u}n_{L} / (\beta \langle u' \rangle))$$
or $n_{L} = n\beta \langle u' \rangle / \overline{u}$
(89)

This relation will generally produce Lagrangian frequencies much lower than Eulerian frequencies, since the intensity of turbulence, $\langle u' \rangle / \bar{u}$, is usually a small fraction.

Equation 89 provides the needed relation between Eulerian and Lagrangian velocity fluctuation frequencies to determine the latter from measurements of the former. If the shear stress fluctuations occur at frequencies equal to the Lagrangian velocity fluctuations, then the viscoelastic energy dissipation is the viscous dissipation function times the ratio of viscoelastic to purely viscous dissipation, calculated from equation 87.

From equation 62, the isotropic viscoelastic energy dissipation is:

$$W = 60\mu(\pi < u' > /\bar{u})^2 \int_0^{\infty} n^2 F(n) (1/(1 + \omega^2 \mu^2 / G^2)) dn$$
(90)

The radial frequency $\boldsymbol{\omega}$ must be the Lagrangian radial frequency:

$$\omega = 2\pi n_L = 2\pi n\beta \langle u' \rangle / \bar{u}$$

Thus, the ratio of viscoelastic dissipation to purely viscous dissipation is:

$$\frac{W}{W_{s}} = \frac{\mu \int_{0}^{\infty} n^{2} F(n) \left(\frac{1}{(1 + 4\pi^{2} n^{2} \beta^{2} < u' >^{2} \mu^{2} / \bar{u}^{2} G^{2}) \right) dn}{\mu_{s} \int_{0}^{\infty} n^{2} F(n) dn}$$
(91)

This relationship describes a turbulent energy dissipation reduction mechanism which involves the following assumptions:

 The Lagrangian and Eulerian spectra have the relationship described by equation 89.

- β, if not a true constant, shows less than order of magnitude variation, with tube size, radial location, flow rate, and fluid properties.
- The shear stress fluctuation frequencies are approximately equal to the Lagrangian velocity fluctuation frequencies.
- 4. The polymer solution viscoelasticity may be adequately described by a Maxwell model.
- 5. The ratio of non-isotropic purely viscous dissipation to non-isotropic viscoelastic dissipation in turbulent tube flow is nearly equal to the ratio for isotropic turbulence.

In order to test the validity of the proposed mechanism for turbulence energy dissipation reduction, it was necessary to postulate an approximate relation between turbulence energy dissipation reduction and wall shear stress reduction. This was possible because the retardation of turbulent momentum flux (turbulent shear stress) near the tube wall in elastic fluids is apparently caused by the recovery of elastic fluid shear displacement. This is a phenomenon directly related to recovery of elastic shear energy described in equation 87.

The relation between turbulent energy dissipation and wall shear stress in the tube flow of purely viscous fluids will be used to establish the relation between reductions of both.

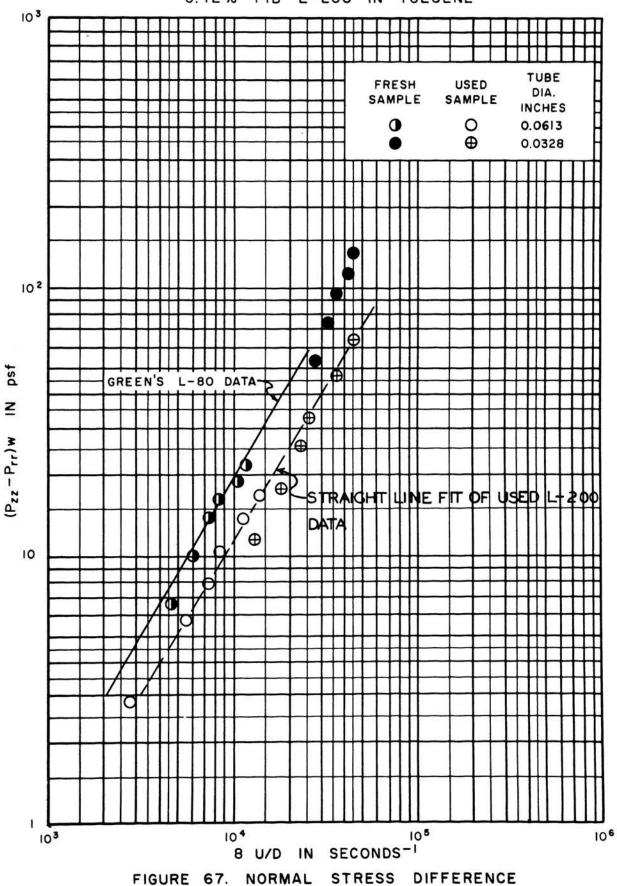
The wall shear stress in the turbulent flow of non-drag reducing fluids is approximately proportional to Reynolds number to the 1.8 power. In laminar flow $\tau_w \propto$ Re. The ratio of turbulent wall shear stress to laminar wall shear stress is then proportional to Re^{0.8}.

It was observed that for the energy spectra measured in this investigation the high frequencies were proportional to velocity to a power of approximately 0.8 at a given normalized energy level. Combining this with the above relation, the ratio of turbulent to laminar wall shear stresses is proportional to $n/\mu^{0.8}$.

Equation 62 shows that the isotropic energy dissipation rate, W, is approximately proportional to μn^3 . This means that the ratio of turbulent to laminar wall shear stress is approximately proportional to the cube root of the rate of turbulent energy dissipation divided by viscosity to the 1.1 power:

$$(\tau_{w}^{t}/\tau_{w}^{1}) \propto (W/\mu)^{1/3}/\mu^{0.8} = W^{1/3}/\mu^{1.1}$$
 (92)

The ratio of the above ratio for the polymer solution and the solvent yields:


$$\frac{(\tau_{\omega}^{t}/\tau_{\omega}^{1})}{(\tau_{\omega}^{t}/\tau_{\omega}^{1})_{s}} = (\frac{W}{W_{s}})^{1/3}(\frac{\mu_{s}}{\mu})^{1.1}$$
(93)

Since for the same flow rates:

$$\tau_{w}^{1}/\tau_{w_{s}}^{1} = \mu/\mu_{s},$$
then $\tau_{w}^{t}/\tau_{w_{s}}^{t} = (W/W_{s})^{1/3}(\mu_{s}/\mu)^{0.1}$ (94)

2. Application of the Mechanism

The turbulent energy dissipation ratio of equation 90 has been computed for several radial positions in both the 1-inch and 2-inch tubes for two polymer solutions (1.0 per cent PIB L-80 in cyclohexane and 0.42 per cent PIB L-200 in toluene). Normal stress data were obtained on the first solution by Green (31), and normal stress differences were measured by the author on fresh and degraded samples of the second solution. Figure 67 shows a comparison of the L-80 and L-200 normal stress ($P_{zz} - P_{rr}$) data.

0.42% PIB L-200 IN TOLUENE

Turbulence intensities for the locations close to the wall were estimated from Laufer's data for air (47). Since turbulence intensity measurements were not possible very near the wall in this investigation, the effect of drag reduction on intensity near the wall was not known. No attempt was made, therefore, to account for this effect. Calculations were made for turbulent core locations and locations as close to the wall as $y^+ = 12$, the point of maximum energy dissipation according to Laufer's data. Use of measured intensity results using a close wall probe in drag reducing solutions will improve the accuracy of the calcuations. The turbulence intensities and average velocities used in each pipe are shown in Table 3.

The shear rates used to calculate viscosities and normal stresses were calculated using the following equation for isotropic turbulence (see equations 44, 47, and 64):

$$< du'/dr > = [30\pi^2 < u' >^2 \int_0^\infty n^2 F(n) dn]^{1/2} / \overline{u}$$
 (95)

The rms turbulent shear rates obtained from this equation are only an approximation of the true shear rates experienced by the polymer solution. The instantaneous shear rate calculated for non-isotropic turbulence would yield a more rigorous result. This was impossible with present knowledge of turbulence. Nevertheless, as shown below the final results are still close to measured drag ratios.

The comparison of the calculated results using the proposed mechanism of turbulent energy dissipation reduction and its approximate relation to wall shear stress with experimental results is shown in Table 4. Calculated drag ratios were obtained by using the W/W_s value at $y^+ = 12$. Since energy dissipation at this location is dominant, integration over the entire tube cross section caused only small changes in drag ratio from

Table 3

Velocities and Turbulence Intensities Used in Drag Reduction

Mechanism Calculations

Tube Size Inches	Space Average Velocity, fps	y ⁺	<u'>/u</u'>	ū, fps
	the second s			
1.0	18	12*	0.28	9.0
		24*	0.20	11.5
		48*	0.15	13.7
		100	0.13	16.0
		300	0.10	18.2
		1000	0.04	20.5
		2000	0.03	22.8
1.0	6.6	12*	0.30	3.14
		24*	0.22	4.29
		48*	0.17	5.11
		100	0.15	5.76
		300	0.12	6.60
		1000	0.05	7.42
		2000	0.03	8.25
2.0	5.5	12*	0.35	2.62
		24*	0.25	3.59
		48*	0.20	4.28
		200	0.12	5.51
		667	0.05	6.22
		1334	0.03	6.90
2.0	2.8	12*	0.40	1.32
2.0	210	24*	0.30	1.81
		48*	0.25	2.16
		200	0.15	2.78
		667	0.06	3.14
		1334	0.04	3.48

Table 4

Turbulent Energy Dissipation Ratios and Drag Ratios Calculated Using Viscoelastic Mechanism

(all values for $y^+ = 12$, $\beta = 0.1$)

Tube Size, Inches	Space Average Velocity,fps	Polymer in Solution	w/w _s	Calculated Drag Ratio	Measured Drag Ratio
1.0	18	L-80	2.08	1.04	1.21
1.0	6.6	L-80	3.56	1.21	1.55
1.0	18	used L-200	0.84	0.84	0.85
1.0	6.6	used L-200	1.21	0.95	~ 1.0 *
1.0	18	fresh L-200	0.48	0.69	0.70
1.0	6.6	fresh L-200	0.69	0.77	~ 0.9 ∗
2.0	5.5	L-80	4.59	1.40	1.50
2.0	2.8	L-80	7.12	1.60	1.59
2.0	5.5	used L-200	1.51	1.02	+
2.0	2.8	used L-200	2.28	1.17	+
2.0	5.5	fresh L-200	0.93	0.85	+
2.0	2.8	fresh L-200	1.57	1.01	+

* extrapolated from data for a lower concentration. + not measured, but estimated to be 1.0 or slightly higher.

÷ 1 values calculated for $y^+ = 12$. W/W_s values were obtained using a value of $\beta = 0.1$, this adjustment from measured values of 0.4 - 0.8 for air turbulence being necessary to obtain correct absolute drag ratio levels. The necessity of using such a low value for β indicates that the dissipation ratio overestimates the elastic effect or that the ratio of Eulerian to Lagrangian scales is lower in viscoelastic turbulence.

Since two flow rates were used in each of two tube sizes for three polymer systems, the good checks with measured values indicate that the assumptions and approximations involved did not seriously affect the calculated results. Calculated drag ratios were generally slightly lower than measured values, but the trends with velocity, pipe size, and solution properties were all very close to measured trends. This mechanism shows quantitatively the relative importance of solution properties (viscosity and shear rigidity modulus) and flow conditions (velocity, turbulence intensity, and pipe size). A relatively viscous solution may be very friction factor reducing (friction factor ratio may be calculated by using the solution viscosity in place of solvent viscosity in equations 91 and 94), if it has a long relaxation time, yet not be drag reducing at a given flow rate because of the high ratio of its viscosity to that of the solvent.

The diameter effect observed for drag reduction (greater reduction in smaller tubes at the same Reynolds number) occurs because of the small effect of pipe size on spectrum frequencies at the same space average fluid velocity.

The effect of pipe size on macroscale (a reflection of the proportion of low frequency energy) does not affect the drag reduction mechanism greatly, because of the insensitivity of energy dissipation to low frequency fluctuations. The retardation of turbulent momentum transfer near the wall has not been explained quantitatively. The elasticity of the solution probably has little effect on momentum transfer far from the wall where low frequencies predominate. Near the wall, however, high frequency momentum transfer must gain in importance because of the restriction of the wall to low amplitude fluctuations. It is visualized that the elastic portion of the velocity fluctuations does not contribute to momentum transfer, because the elastic displacements are always recovered. This leaves momentum transfer to the viscous portion of the velocity fluctuations, whose displacements are not recovered.

The mechanism described above probably accounts for the success of the empirical relation between turbulent energy dissipation reduction and wall shear stress reduction. If the momentum transfer rate near the wall were not modified as described above, there would probably be no drag reduction, because the turbulence intensities in the turbulent core were actually seen to increase with drag reduction. These increases would tend to cause the turbulent momentum flux far from the wall to increase. This suggests that flatter velocity profiles should be obtained in the turbulent core during drag reduction to account for the reduction in the total shear stress.

CONCLUSIONS

Turbulence intensities measured for the tube flow of low viscosity organic solvents and non-drag reducing polymer solutions showed good agreement with data for the pipe flow of air. A diameter effect was found which causes turbulence intensities to be slightly lower for smaller tubes.

A strong viscous and/or elastic effect exists for high viscosity polymer solutions, causing turbulence intensities near the wall to be much higher than for low viscosity solvents and solutions.

A $<u'>/u^*$ versus r/a correlation for the two tube sizes used in this investigation shows that $<u'>/u^*$ is a weak function of Reynolds number. The $<u'>/u^*$ values reach a minimum for a given r/a in the range of Reynolds numbers from 20,000 to 50,000. The Laufer data for air flow in a 10 inch pipe agree very well with the low viscosity $<u'>/u^*$ values for liquids.

Transverse turbulence intensity measurements using a prototype hot-film V-probe yielded good Reynolds stress results. Smaller models of this probe design promise to be applicable to transverse intensity measurements in small tubes for the study of drag reduction.

Energy spectra for the solvents and non-drag reducing solutions show only small diameter effects at the same flow rates, but a strong viscous and/or elastic effect exists, the more viscous solutions having lower frequency spectra and higher microscale values (this shift cannot, however, account for drag reduction). Tube flow turbulence energy spectra differ from isotropic grid induced turbulence energy spectra as demonstrated by comparison of Gibson-Schwarz normalized data.

Velocity profiles measured during drag reduction using an impact tube are generally unreliable. Data obtained in this investigation confirmed the low velocities obtained by previous investigators.

Turbulence intensities in drag reducing tube flow depend on flow rate in a manner different from non-drag reduction intensities. At low drag ratios (high drag reduction) the $\langle u' \rangle / u^*$ values were higher than for non-drag reduction results, causing the turbulence intensities to increase with flow rate. The degree of polymer degradation has an effect on the amount of turbulence intensity increase during drag reduction. This effect has not yet been well characterized.

The energy spectra during drag reduction are little different from non-drag reduction results. Changes occur during polymer degradation, but no explanation is offered because of the lack of an energy transfer function involving solution properties. Irregularities in the drag reduction spectra may be indications of characteristic solution frequencies, because these irregularities were not observed for any other spectra.

A quantitative viscoelastic mechanism for turbulent energy dissipation reduction and an approximate relation between turbulent energy dissipation and wall shear stress successfully predict drag reduction levels. The mechanism makes possible the estimation of drag ratios for the turbulent flow of polymer solutions using measurements of the solution viscosity and normal stress difference $(P_{zz} - P_{rr})$ and a knowledge of the energy spectrum. In practice the energy spectrum may be estimated from available data for limited viscosity, velocity, and pipe size ranges, since the spectra do not vary greatly. Since measured energy spectra have been Gibson-Schwarz normalized and are well correlated for pipe flow in the dissipation frequency range, a microscale estimate could be used to calculate a spectrum for use in the mechanism.

The mechanism demonstrates the relative importance of elasticity and viscosity in drag reduction. The predicted reduction in turbulent energy dissipation probably allows the observed increases in turbulence intensities during high drag reduction.

RECOMMENDATIONS FOR FUTURE INVESTIGATIONS

Further investigation of the turbulence intensity increase during drag reduction would lead to a better understanding of the drag reduction mechanism and would provide data for better drag ratio predictions. Measurements closer to the wall than obtained here are necessary.

The relation between Eulerian and Lagrangian energy spectra must be studied in detail to improve the usefulness of the drag reduction mechanism proposed and to improve our knowledge of the mechanisms of turbulence production and dissipation.

Complete energy balance profiles in the pipe flow of liquids, both non-elastic and elastic, would provide more detailed comparisons between the turbulence structures in the two types of fluids. These profiles must approach the pipe wall very closely, since most of the turbulence production and dissipation occur at about $y^+ = 12$.

A study of the effect of viscosity using non-elastic fluids would help separate elastic and viscous effects in polymer solutions.

Velocity profiles should be measured during drag reduction with an instrument not affected by the normal stress phenomenon. With a probe designed for close wall measurements and a long time averaging circuit on the dc bridge voltmeter, the hot film anemometer should be such an instrument.

Further work should be done to relate the normal stress effect to the shear relaxation spectrum of polymer solutions. A more rigorous viscoelastic energy dissipation mechanism should include such a relaxation spectrum rather than the Maxwell model approximation.

A shear rate distribution function for turbulent pipe flow should be used in the viscoelastic mechanism for energy dissipation reduction,

instead of using the root-mean-square shear rate based on an isotropic turbulence relationship. Efforts to measure the shear rate spectrum as a function of radial position should, therefore, be made.

APPENDIX I

EQUIPMENT SPECIFICATIONS

1. Anemometer

The detailed specifications for the DISA 55A01 constant temperature anemometer as stated in the DISA Instruction Manual are as follows:

Frequency Response - 0 - 50 kcps. The upper level is dependent on the fluid conditions and probe used. With a hot-film in a flow of air at about 600 fps the response is at the -3db level for 50 kcps (Figure 9). For the work described here the 3db response drop occurred at about 8000 cps for all velocities using the hot-film probe.

Probe Resistance Range - 1 - 50 ohm probes may be used.

Maximum Probe Resistance Range - 250 ma, continuous or peak.

This value sets the maximum power output of a given probe. Amplifier Transductance, ac - approximately 8 ma/mv

at 125 ma current output.

Amplifier Transductance, dc - approximately 300 ma/mv at 125 ma current output.

Equivalent Input dc Drift - ± 25 microvolts at 125 ma current output.

Cold Resistance Measurement Accuracy - 0.5 per cent.

Direct Current Voltmeter - 1 per cent of full scale accuracy using scales of 0-2, 0-5, 0-10, and 0-20 volts with zero shift voltages of 1, 2, 5, and 10 volts.

RMS Voltmeter - 2 per cent of full scale accuracy using scales of 0-5, 0-10, 0-20, 0-50, 0-100, 0-200, 0-500, and 0-1000 mv.

Low Pass Filter - RC filter with seven calibrated positions of 100, 50, 20, 10, 5, 2, and 1 kcps.

High Pass Filter - RC filter with seven calibrated positions of 5, 20, 50, 100, 500, and 1000 cps.

Square Wave Generator - 2.5 kcps for frequency response checking. Output Impedance - 1000 ohms

Noise Level - With either a hot-film probe or a hot-wire probe, the noise level at the RMS voltmeter is less than 3.7 mv without filtering. (Since nearly all the rms voltages measured in this investigation were about 100 mv and most were above 200 mv, this noise level represents less than 3.7 per cent error. Also, since most of this noise is above 20,000 cps, it was possible to filter it out of the measured signal, lowering the error.)

2. Correlator

The detailed specifications for the DISA 55A06 random signal indicator and correlator are tentatively stated in the instruction manual as follows:

Root-Mean-Square Voltmeter:

Frequency Response - 3 cps - 200,000 cps above -3db.

Accuracy - 2 per cent of full scale for ranges 0-10, 0-31.5, 0-100, 0-315, and 0-1000 mv; 0-3.15, 0-10, 0-31.5 and 0-100 volts.

Input Impedance - 1 megohm in parallel with 50 picofarads for each
 of two inputs.

Noise and Hum Level - less than 50 microvolts rms.

Output Impedance - 100,000 ohms in parallel with 200 picofarads for the five outputs which are two amplified inputs, sum, difference, and differentiator. The voltmeter measures the value of each of these outputs. Differentiator - differentiates one input signal using a time

constant of 0.05, 0.1, 0.2, 0.5, 1.0, or 2.0 milliseconds.

Reference Voltage - 50 cps for calibration, varies less than 0.2 per cent when line voltage varies 10 per cent.

Ratiometer (measures the ratio of two input signals):

- Indicates ratio of voltmeter inputs, ratio of sum to difference of voltmeter inputs, ratio of voltmeter input to differentiator output.
- Scale ratios 0-∞; calibrated for correlation coefficient -1 to
 +1.

Correlator Accuracy - 0.03 at 50 cps - 10 kcps

0.06 at 15 cps - 50 kcps

3. Hot-Film Probe

The specifications for the DISA 55A23 hot-film probe are:

Metal Film - platinum

Film Dimensions - 1 mm x 0.2 mm

Resistance at 20°C - 15 ± 3 ohms

Temperature Coefficient of Resistance at 20°C - approximately 0.0031

ohms/°C

Maximum Film Operating Temperature - 500°C

Maximum Ambient Temperature - 150°C

Maximum Fluid Velocity - 500 mps air

10 mps water

Frequency Response - typical frequency response is shown in Figure 9 for air flow.

4. Two Channel Recorder

The detailed specifications for the Ampex 601-2 two channel audio tape recorder as stated in the instruction manual are as follows:

- Tape Width 1/4 inch
- Reel Size 7 inch maximum
- Tape Speed 7 1/2 inches per second
- Reproduce Time Accuracy 0.2 per cent
- Flutter and Wow below 0.17 per cent rms.
- Frequency Response 40 to 15,000 cps; ± 2db, 50 to 10,000 cps (As shown in Table 8 the response varies according to adjustment.)
- Inputs high impedance microphone and line inputs for each
 channel.
- Outputs 600 ohm load required.
- Head Assembly separate two track record and reproduce heads, and a full-track erase head.
- Signal-to-Noise Ratio-below 0.0032, or noise more than 50 db below peak record level.
- Monitor v-u meter for each channel.

APPENDIX II

EXPERIMENTAL PROCEDURES

1. Instrument Calibrations

1.1. Hot-film probe calibration and turbulence intensity measurements

In order to measure the intensity of turbulence using a hot-film probe the relation between fluid velocity and probe voltage must be established. With a constant temperature (constant resistance) anemometer the calibration may be done at the same time as the intensity measurements. The procedures for making the calibration and intensity measurements are combined.

The probe resistance at the fluid temperature was measured after installing the probe. Using this resistance and the temperature coefficient of resistance for the film probe, the operating resistance at a temperature well below the fluid boiling point was calculated. In this work the operating temperatures were 70°C for toluene solutions and 60°C for cyclohexane and benzene. These temperatures gave good sensitivity without any evidence of gas bubble formation. (The normal solvent boiling points are: toluene - 110.6°C, cyclohexane - 81.4°C, and benzene -80.1°C.)

After setting the probe operating resistance, the frequency response of the anemometer was measured using the internal square wave generator. With the fluid flowing at the desired velocity, the square wave voltage was impressed on the probe. The rate of recovery of the anemometer from this disturbance was measured by observing the anemometer output signal on an oscilloscope. This procedure is described in detail in the DISA Instruction Manual. After determining the frequency response, a low pass filter above the maximum desired frequency was switched in to remove high frequency anemometer noise from the output signal. This was particularly important when using the correlator differentiator circuit to measure microscale because high frequency noise has a very strong effect on the rms value of the signal time derivative.

After this preparative procedure, dc bridge voltage and rms bridge voltage were measured for three or more fluid velocities plus the zero velocity values. In practice these values were measured at several radial locations in the pipe, at flow rates for which velocity profiles had been measured. (Some flow rates were used for which velocity profiles were calculated by interpolation of velocity profiles at higher and lower flow rates.)

The calibration of the hot-film probe was done by determining the best least squares fit to the equation:

$$E^2 = A + B (\bar{u})^c$$

The calibration constants A, B, and c are given in Table 10 in Appendix IV. The root-mean-square of the standard deviations of E^2 for all the calibrations made in this study is approximately one per cent of E^2 . This is equivalent to a two per cent rms deviation for \bar{u} . Since the average deviation of the integrated velocity profiles from measured flow rates was 1.5 per cent (33), the precision of the calibrations was about as good as possible.

The rms bridge voltages were used to calculate turbulence intensity after the calibration constants were determined. The calculation of turbulence intensities is discussed in Appendix V.

The radial location of the probe during measurements was measured by the micrometer positioner shown in Figure 11. The point of contact between the probe and the wall was found by connecting an ohmmeter from the positioner to the pipe, since the positioner was insulated from the pipe. This contact point established a reference position which was used to calculate the radial position of the probe.

1.2. Tape recorder frequency response calibration

The frequency response of the Ampex tape recorder was measured by recording an input of known voltage produced by a Heath Signal Generator using frequencies from 10 cps to 10,000 cps. The recorded signals were played back into the rms voltmeter on the DISA correlator to determine the relative response value for each frequency. The measured responses are shown in Table 6.

1.3. Band pass filter frequency response calibration

The characteristic response of each band was measured by using an input of known voltage from the Heath Signal Generator and by measuring the relative output values on the rms voltmeter. This was done for several frequencies covering each band's response range. A typical characteristic response curve for the band centered at 1000 cps is shown in Figure 17. Characteristic curve shapes were similar enough that peak values could be used to obtain the relative gain of the bands. The peak value gain factors are shown in Table 9.

1.4. Flow meter calibration

The flow meter system was calibrated during each run because the Heath frequency meter used as an indicator exhibited tendencies to drift from day to day. The procedure involved diverting the total flow into a weigh tank downstream of the test sections for a known time, usually 30-120 seconds. Since the pressure drop in the test section was much greater than the change in pressure drop in the return line caused by the flow diversion, the flow rate measured was unchanged from the undiverted condition.

2. Energy Spectrum and Autocorrelation Measurements

2.1. Recording

The anemometer output signal was recorded by connecting the output terminal to the recorder using coaxial cables to reduce stray noise pickup. Before the recording was made, the flow conditions were identified by recording the date, flow rate, radial position of probe, and run number using the microphone. At the beginning of the recording an attempt was made to record about the same signal strength on each channel. After initial adjustments the same signal strength was maintained throughout the recording (about ten minutes), so that spectrum measurements would not be biased. A recording ten minutes long was necessary for making energy spectrum and autocorrelation measurements, since continuous loop operation was impossible on the Ampex 601-2 recorder.

2.2. Energy spectrum measurements

The spectra were measured by playing the recorded signal into the input of the band pass filter and measuring the rms output voltage for each band. The Ampex recorder is designed to playback to a load of 600 ohms, so a 600 ohm resistor was connected across the output of each channel. Very close checks were made during the measurements to insure constant total rms voltage of the playback signal. The corrections for the tape recorder response and band gain levels and the calculations of the spectra are discussed in Appendix V.

2.3. Autocorrelation measurements

Autocorrelations were measured using the time delay device constructed by the author shown in Figure 15. The movable playback head allowed the playback of one channel to be delayed as much as 100 milliseconds in reference to the other channel. The delay time calibration was made by playing a recording of a 100 cps signal and measuring the autocorrelation coefficients using the DISA correlator. Enough micrometer positions were used to cover several cycles. The points of zero correlation coefficients were 0.005 seconds apart, giving a time base to determine the delay time for a given micrometer movement. Since autocorrelation functions are symmetrical for stationary signals, the zero delay position was found by determining the peak of the autocorrelation function (theoretically a value of one). The peak values were usually about 0.98 - 0.99 for this instrument.

The reduction of the data to autocorrelation coefficient versus time delay is discussed in Appendix V.

APPENDIX III

TABULATED DATA AND RESULTS

1. <u>Turbulence Intensity Data and Results</u>

The computer printouts showing data and results for Runs 1-23 constitute Table 5.

2. Energy Spectrum Results and Transformations to Autocorrelations

Table 6 shows the numerical results for each energy spectrum measured in Runs 8, 9, 10, 12, 14, 15, 17, 18, 19, 20, and 21. In each run spectra were measured for two or three positions at one or two flow rates for each position. With each spectrum printout is the corresponding autocorrelation obtained by calculating the Fourier transform of the spectrum function.

3. Autocorrelation Results and Transformations to Energy Spectra

Table 7 contains the computer printouts for each autocorrelation function and the corresponding energy spectra obtained by transforming the autocorrelations.

Table 5

Turbulence Intensity Data and Results

The table contains information identified by the following symbols for each turbulence intensity run:

- R/A corresponds to r/a in the text, radial position divided by pipe radius.
 - E hot-film anemometer dc bridge voltage in volts.
 - U corresponds to u in the text, time average velocity in feet per second.
- VRMS hot-film anemometer rms fluctuating bridge voltage in millivolts.

TURB - longitudinal turbulence intensity, $\langle u' \rangle / \overline{u}$.

- MICRO microscale in feet determined using DISA differentiator circuit.
 - Q flow rate in pounds per minute.
 - RE Reynolds number using solution viscosity.
- (Note: The microscale values listed for Runs 2-14 are not valid because of insufficient high frequency noise filtering.)

RUN NO. 2

R /A	E	U	VRMS	TURB	MICRO	Q	RE
80	11.4	.232	200.0	.1226	.00002	22.5	8235.
80	12.2	.366	230.0	.1204	.00005	31.5	11530.
80	14.9	1.167	280.0	.1002	.00020	91.9	33639.
80	18.0	3.036	350.0	.0938	.00060	225.7	82615.
80	19.4	4.336	400.0	.0967	.00088	333.0	121892.
80	20.7	5.860	420.0	.0932	.00128	441.5	161608.
80	21.8	7.422	440.0	.0914	.00157	549.4	201104.
70	11.4	.232	160.0	.0981	.00001	22.5	8235.
70	12.3	.385	180.0	.0925	.00003	31.5	11530.
70	15.1	1.252	230.0	.0805	.00018	91.9	33639.
70	18.2	3.202	300.0	.0792	.00052	225.7	82615.
70	19.7	4.659	350.0	.0829	.00085	333.0	121892.
70	21.1	6.398	380.0	.0823	.00116	441.5	161608.
70	22.1	7.895	390.0	.0796	.00150	549.4	201104.
60	11.7	.278	140.0	.0806	.00002	22.5	8235.
60	12.5	• 426	150.0	.0745	.00003	31.5	11530.
60	15.4	1.389	210.0	.0712	.00016	91.9	33639.
60	18.5	3.463	275.0	.0709	.00051	225.7	82615.
60	19.9	4.884	310.0	.0724	.00079	333.0	121892.
60	21.3	6.679	330.0	.0706	.00106	441.5	161608.
60	22.3	8.223	340.0	.0686	.00141	549.4	201104.

RUN NO. 2

R/A	Е	U	VRMS	TURB	MICRO	Q	RE
50	11.8	•294	125.0	.0705	.00001	22.5	8235.
50	12.7	•470	135.0	.0649	.00003	31.5	11530.
50	15.7	1.535	195.0	.0641	.00016	91.9	33639.
50	18.7	3.645	250.0	•06 3 5	•00050	225.7	82615.
50	20.3	5.356	270.0	.0615	.00077	333.0	121892.
50	21.6	7.118	290.0	•0609	•00104	441.5	161608.
50	22•6	8•732	320.0	.0635	.00129	549.4	201104.
40	11.9	•311	110.0	.0608	•00001	22.5	8235.
40	12.8	•493	125.0	.0591	.00003	31.5	11530.
40	15.8	1.586	175.0	.0570	.00014	91.9	33639.
40	18.8	3.738	230.0	.0580	•00046	225.7	82615.
40	20.4	5.479	250.0	.0565	.00071	333.0	121892.
40	21.7	7.269	260.0	.0543	•00094	441.5	161608.
40	22.8	9.084	280.0	.0550	•00131	549.4	201104.
30	12.2	•366	90.0	.0471	•00001	22.5	8235.
30	12.8	•493	110.0	.0520	•00003	31.5	11530.
30	15.9	1.639	150.0	.0483	.00013	91.9	33639.
30	19.0	3.931	200.0	.0497	•00039	225.7	82615.
30	20.6	5.731	230.0	•0513	.00062	333.0	121892.
30	21.9	7.578	240.0	•0495	.00085	441.5	161608.
-• 30	22.9	9.264	250.0	•0488	.00112	549.4	201104.

RUN	NO.	2

R /A	E	U	VRMS	TURB	MICRO	Q	RE
20	12.3	•374	95.0	•0481	•00001	22.5	8235.
20	13.0	• 523	100.0	•0453	.00002	31.5	11530.
20	16.0	1.620	130.0	.0412	•00011	91.9	33639.
20	19.1	3.839	175.0	.0430	.00033	225.7	82615.
20	20.6	5.453	195.0	•0434	•00047	333.0	121892.
20	22.0	7.352	200.0	.0409	.00066	441.5	161608.
20	23.0	8.973	210.0	•0406	.00085	549.4	201104.
10	12.2	.355	85.0	.0438	.00001	22.5	8235.
10	13.0	• 523	95.0	.0430	.00002	31.5	11530.
10	16.1	1.672	125.0	•0392	.00011	91.9	33639.
10	19.2	3.934	155.0	.0378	.00031	225.7	82615.
10	20.8	5.700	180.0	.0395	•00047	333.0	121892.
10	22.2	7.658	195.0	•0394	.00065	441.5	161608.
10	23.2	9.326	195.0	•0373	.00079	549.4	201104.
0.00	12.3	•374	75.0	.0380	•00001	22.5	8235.
0.00	13.1	• 548	90.0	.0401	.00002	31.5	11530.
0.00	16.1	1.672	117.0	•0367	•00011	91.9	33639.
0.00	19.3	4.031	150.0	.0363	.00030	225.7	82615.
0.00	20.9	5.826	172.0	.0375	•00046	333.0	121892.
0.00	22.3	7.814	180.0	.0362	.00063	441.5	161608.
0.00	23.3	9.506	195.0	•0371	•00077	549.4	201104.

RUN ND. 2

R/A	E	U	VRMS	TURB	MICRO	Q	RE
.10	12.3	• 374	85.0	.0431	.00001	22.5	8235.
. 10	13.0	.523	90.0	.0407	.00002	31.5	11530.
.10	16.0	1.620	125.0	.0396	.00011	91.9	33639.
.10	19.1	3.839	155.0	.0381	.00030	225.7	82615.
.10	20.7	5.575	175.0	.0387	.00046	333.0	121892.
.10	22.1	7.504	190.0	.0386	.00062	441.5	161608.
• 10	23.3	9.506	200.0	.0381	.00082	549.4	201104.
•20	12.2	•355	85.0	.0438	.00001	22.5	8235.
.20	12.9	.500	110.0	.0506	.00002	31.5	11530.
.20	16.0	1.620	130.0	.0412	.00011	91.9	33639.
.20	19.2	3.934	170.0	.0415	.00033	225.7	82615.
.20	20.8	5.700	195.0	.0428	.00051	333.0	121892.
. 20	22.1	7.504	200.0	.0407	.00068	441.5	161608.
• 20	23.2	9.326	210.0	.0402	.00085	549.4	201104.
• 30	12.2	•355	90.0	.0464	.00001	22.5	8235.
.30	12.8	.477	110.0	.0514	.00002	31.5	11530.
• 30	15.9	1.569	155.0	.0496	.00012	91.9	33639.
. 30	19.0	3.745	190.0	.0470	.00034	225.7	82615.
• 30	20.6	5.453	210.0	.0467	.00054	333.0	121892.
.30	21.9	7.203	220.0	.0453	.00072	441.5	161608.
• 30	23.0	8.973	240.0	.0465	.00092	549.4	201104.

RUN	NO.	2

R/A	E	Ŭ	VRMS	TURB	MICRO	Q	RE
•40	12.1	.337	100.0	.0525	.00001	22.5	8235.
.40	12.8	•477	115.0	.0537	.00002	31.5	11530.
•40	15.8	1.519	165.0	•0533	.00013	91.9	33639.
.40	18.9	3.653	220.0	.0549	.00044	225.7	82615.
•40	20.5	5.333	250.0	.0560	.00065	333.0	121892.
•40	21.9	7.203	250.0	.0514	.00091	441.5	161608.
•40	22.9	8.800	270.0	•0526	.00118	549.4	201104.
•50	12.1	.337	130.0	.0683	.00001	22.5	8235.
.50	12.8	•477	140.0	.0654	.00003	31.5	11530.
•50	15.7	1.470	180.0	.0588	.00015	91.9	33639.
.50	18.7	3.474	230.0	.0582	.00046	225.7	82615.
.50	20.4	5.214	270.0	.0608	.00072	333.0	121892.
.50	21.7	6.911	290.0	.0604	.00096	441.5	161608.
•50	22.8	8.630	300.0	.0587	.00125	549.4	201104.
•60	11.8	.287	130.0	.0722	.00002	22.5	8235.
.60	12.7	.455	160.0	.0759	.00003	31.5	11530.
.60	15.6	1.423	210.0	.0693	.00015	91.9	33639.
.60	18.7	3.474	280.0	.0709	.00051	225.7	82615.
.60	20.3	5.097	300.0	.0680	.00077	333.0	121892.
.60	21.7	6.911	325.0	.0677	.00111	441.5	161608.
.60	22.7	8.462	330.0	•0649	.00131	549.4	201104.

RUN NO. 2

*

R/A	E	U	VRMS	TURB	MICRO	Q	RE
.70	11.8	•287	145.0	.0805	.00002	22.5	8235.
.70	12.4	.393	165.0	.0822	.00003	31.5	11530.
.70	15.5	1.377	230.0	.0766	.00019	91.9	33639.
.70	18.6	3.387	310.0	.0790	.00054	225.7	82615.
.70	20.1	4.870	330.0	.0758	.00086	333.0	121892.
•70	21.5	6.627	360.0	.0758	.00119	441.5	161608.
.70	22.4	7.973	380.0	.0760	.00140	549.4	201104.
.80	11.6	•256	190.0	•1098	.00002	22.5	8235.
.80	12.3	.374	200.0	.1014	.00004	31.5	11530.
.80	15.2	1.244	270.0	.0928	.00019	91.9	33639.
.80	18.3	3.135	350.0	.0913	.00056	225.7	82615.
.80	19.8	4.542	370.0	.0867	.00086	333.0	121892.
.80	21.2	6.217	420.0	.0901	.00121	441.5	161608.
.80	22.2	7.658	440.0	.0890	.00151	549.4	201104.
.85	11.4	.228	200.0	.1205	.00002	22.5	8235.
.85	12.2	.355	210.0	.1083	.00004	31.5	11530.
.85	15.1	1.201	280.0	.0973	.00020	91.9	33639.
.85	18.1	2.974	350.0	.0927	.00058	225.7	82615.
.85	19.7	4.436	420.0	.0991	00090	333.0	121892.
.85	21.0	5.954	440.0	.0955	.00122	441.5	161608.
.85	22.0	7.352	450.0	.0921	.00153	549.4	201104.

DIIM	NO.	2
RUN	NUO	5

R/A	E	U	VRMS	TURB	MICRO	Q	RE
60	19.6	7.686	285.0	.0657	.00265	455.0	97004.
60	18.0	5.206	265.0	.0682	.00169	297.0	63319.
60	16.1	3.074	220.0	.0659	.00089	179.0	38162.
60	12.6	.872	170.0	.0748	.00015	52.6	11214.
50	19.7	7.865	250.0	.0572	.00238	455.0	97004.
50	13.0	5.206	230.0	.0591	.00147	297.0	63319.
50	16.1	3.074	200.0	.0599	.00065	179.0	38162.
50	12.7	•911	145.0	.0629	.00013	52.6	11214.
40	19.9	8.231	220.0	.0497	.00180	455.0	97004.
40	18.2	5.479	205.0	.0520	.00112	297.0	63319.
40	16.2	3.167	175.0	.0519	.00060	179.0	38162.
40	12.7	•911	125.0	.0542	•00011	52.6	11214.
30	20.0	8.419	200.0	•0449	.00163	455.0	97004.
30	18.2	5.479	175.0	.0443	.00097	297.0	63319.
30	16.3	3.262	155.0	•0456	.00054	179.0	38162.
30	12.7	•911	120.0	.0520	.00010	52.6	11214.
20	20.0	8.419	170.0	.0382	.00142	455.0	97004.
20	18.3	5.619	160.0	.0402	.00090	297.0	63319.
20	16.3	3.262	135.0	.0397	.00047	179.0	38162.
20	12.7	.911	110.0	•0477	.00010	52.6	11214.
10	20.2	8.804	155.0	•0344	.00135	455.0	97004.
10	18.4	5.762	140.0	.0350	.00083	297.0	63319.
10	16.4	3.359	128.0	.0373	.00045	179.0	38162.
10	12.8	•951	100.0	.0428	.00010	52.6	11214.

RUN NO. 3

R/A	E	U	VRMS	TURB	MICRO	Q	RE
0.00	20.2	8.804	150.0	.0333	.00134	455.0	97004.
0.00	18.4	5.762	133.0	.0332	.00083	297.0	63319.
0.00	16.4	3.359	120.0	.0350	.00042	179.0	38162.
0.00	13.0	1.035	95.0	.0395	.00009	52.6	11214.
.10	20.2	8.804	160.0	.0355	.00136	455.0	97004.
.10	18.4	5.762	140.0	.0350	.00085	297.0	63319.
.10	16.5	3.458	125.0	.0361	•0004 7	179.0	38162.
.10	12.9	•992	100.0	.0422	.00010	52.6	11214.
•20	20.0	8.419	180.0	•0404	.00151	455.0	97004.
. 20	18.4	5.762	165.0	.0412	.00097	297.0	63319.
.20	16.4	3.359	145.0	.0423	.00049	179.0	38162.
• 20	12.7	.911	110.0	.0477	.00010	52.6	11214.
• 30	19.9	8.231	210.0	.0475	.00168	455.0	97004.
.30	18.3	5.619	185.0	.0465	.00109	297.0	63319.
.30	16.2	3.167	160.0	.0475	.00053	179.0	38162.
• 30	12.7	•911	125.0	.0542	.00011	52.6	11214.
•40	19.9	8.231	235.0	.0531	.00249	455.0	97004.
.40	18.1	5.341	220.0	.0562	.00151	297.0	63319.
.40	16.2	3.167	180.0	.0534	.00060	179.0	38162.
•40	12.6	.872	130.0	.0572	.00012	52.6	11214.
•50	19.7	7.865	265.0	.0607	.00255	455.0	97004.
.50	18.1	5.341	240.0	.0613	.00166	297.0	63319.
.50	16.1	3.074	205.0	.0614	.00089	179.0	38162.
.50	12.7	•911	155.0	.0672	.00014	52.6	11214.

RUN	NO.	3

R/A	E	U	VRMS	TURB	MICRO	Q	RE
.60	19.6	7.686	300.0	.0691	.00278	455.0	97004.
.60	18.0	5.206	270.0	.0694	.00184	297.0	63319.
.60	16.0	2.983	235.0	.0710	.00092	179.0	38162.
.60	12.6	.872	170.0	.0748	.00020	52.6	11214.
•70	19.4	7.337	325.0	.0759	.00311	455.0	97004.
.70	17.8	4.943	300.0	.0783	.00184	297.0	63319.
.70	16.0	2.983	260.0	.0785	.00099	179.0	38162.
.70	12.5	.834	200.0	.0892	.00022	52.6	11214.
.80	19.2	7.000	385.0	.0911	.00312	455.0	97004.
.80	17.6	4.690	335.0	.0888	.00196	297.0	63319.
.80	15.7	2.721	300.0	.0931	.00103	179.0	38162.
.80	12.3	.762	225.0	•1034	.00023	52.6	11214.
.85	19.0	6.674	390.0	.0935	.00302	455.0	97004.
.85	17.3	4.327	350.0	.0949	.00189	297.0	63319.
.85	15.5	2.555	315.0	.0996	.00108	179.0	38162.
.85	12.2	•727	250.0	.1166	.00023	52.6	11214.

NO.	4
	NO.

R/A	Е	U	VRMS	TURB	MICRO	Q	RE
70	19.5	8.612	315.0	.0726	.00299	514.5	97721.
70	17.8	5.685	300.0	.0777	.00189	339.5	64482.
70	15.6	3.050	250.0	.0775	.00092	180.6	34302.
70	12.2	.858	190.0	.0868	.00020	54.0	10256.
60	19.6	8.813	285.0	•0653	.00276	514.5	97721.
60	18.0	5.985	265.0	.0676	.00181	339.5	64482.
60	15.8	3.244	230.0	.0700	.00087	180.6	34302.
60	12.3	.897	160.0	.0721	.00019	54.0	10256.
50	19.8	9.224	245.0	.0554	.00260	514.5	97721.
50	18.2	6.297	240.0	.0604	.00172	339.5	64482.
50	15.8	3.244	210.0	.0639	.00078	180.6	34302.
50	12.4	•938	140.0	.0621	.00017	54.0	10256.
40	20.0	9.648	230.0	.0514	.00245	514.5	97721.
40	18.3	6.457	215.0	.0537	.00160	339.5	64482.
40	15.9	3.344	180.0	.0543	.00077	180.6	34302.
40	12.5	•981	130.0	.0569	.00016	54.0	10256.
30	20.1	9.865	205.0	•0455	.00231	514.5	97721.
30	18.3	6.457	180.0	.0450	.00142	339.5	64482.
30	15.9	3.344	160.0	.0482	.00068	180.6	34302.
30	12.4	.938	120.0	.0533	.00010	54.0	10256.
20	20.1	9.865	180.0	.0399	.00163	514.5	97721.
20	18.2	6.297	160.0	.0402	.00096	339.5	64482.
20	16.0	3.446	145.0	•0433	.00050	180.6	34302.
20	12.4	.938	112.0	•0497	.00009	54.0	10256.

RUN	NO.	4

E	U	VRMS	TURB	MICRO	Q	RE
20.0	9.648	165.0	.0368	.00152	514.5	97721.
18.3	6.457	150.0	.0375	.00098	339.5	64482.
16.0	3.446	130.0	.0388	.00047	180.6	34302.
12.4	•938	100.0	•0444	.00009	54.0	10256.
20.0	9.648	175.0	.0391	.00155	514.5	97721.
18.3	6.457	160.0	.0400	.00102	339.5	64482.
15.9	3.344	140.0	.0422	.00048	180.6	34302.
12.4	.938	110.0	•0488	.00009	54.0	10256.
19.9	9.434	190.0	.0427	.00166	514.5	97721.
18.2	6.297	180.0	.0453	.00108	339.5	64482.
15.8	3.244	150.0	.0456	.00049	180.6	.34302.
12.4	•938	115.0	.0510	.00010	54.0	10256.
19.8	9.224	215.0	•0486	.00237	514.5	97721.
18.2	6.297	200.0	.0503	.00154	339.5	64482.
15.9	3.344	165.0	.0498	.00070	180.6	34302.
12.5	.981	125.0	•0547	.00011	54.0	10256.
19.7	9.017	240.0	.0546	.00242	514.5	97721.
18.0	5.985	225.0		.00155	339.5	64482.
						34302.
12.3	.897	140.0	•0630	.00015	54.0	10256.
19.7	9.017	265.0	.0603	.00270	514.5	97721.
18.0	5.985	245.0	.0625	.00169	339.5	64482.
15.8	3.244	210.0	.0639	.00079	180.6	34302.
12.3	•89 7	145.0	.0653	.00017	54.0	10256.
	20.0 18.3 16.0 12.4 20.0 18.3 15.9 12.4 19.9 18.2 15.8 12.4 19.8 18.2 15.9 12.5 19.7 18.0 15.7 12.3 19.7 18.0 15.8	20.0 9.648 18.3 6.457 16.0 3.446 12.4 $.938$ 20.0 9.648 18.3 6.457 15.9 3.344 12.4 $.938$ 19.9 9.434 18.2 6.297 15.8 3.244 12.4 $.938$ 19.8 9.224 18.2 6.297 15.9 3.344 12.5 $.981$ 19.7 9.017 18.0 5.985 15.7 3.146 12.3 $.897$ 19.7 9.017 18.0 5.985 15.8 3.244	20.0 9.648 165.0 18.3 6.457 150.0 16.0 3.446 130.0 12.4 $.938$ 100.0 20.0 9.648 175.0 18.3 6.457 160.0 15.9 3.344 140.0 12.4 $.938$ 110.0 12.4 $.938$ 110.0 19.9 9.434 190.0 18.2 6.297 180.0 15.8 3.244 150.0 12.4 $.938$ 115.0 19.8 9.224 215.0 18.2 6.297 200.0 15.9 3.344 165.0 12.5 $.981$ 125.0 19.7 9.017 240.0 18.0 5.985 225.0 15.7 3.146 190.0 12.3 $.897$ 140.0 19.7 9.017 265.0 18.0 5.985 245.0 15.8 3.244 210.0	20.0 9.648 165.0 $.0368$ 18.3 6.457 150.0 $.0375$ 16.0 3.446 130.0 $.0388$ 12.4 $.938$ 100.0 $.0444$ 20.0 9.648 175.0 $.0391$ 18.3 6.457 160.0 $.0400$ 15.9 3.344 140.0 $.0422$ 12.4 $.938$ 110.0 $.0488$ 19.9 9.434 190.0 $.0427$ 18.2 6.297 180.0 $.0453$ 15.8 3.244 150.0 $.0456$ 12.4 $.938$ 115.0 $.0510$ 19.8 9.224 215.0 $.0486$ 18.2 6.297 200.0 $.0503$ 15.9 3.344 165.0 $.0498$ 12.5 $.981$ 125.0 $.0547$ 19.7 9.017 240.0 $.0546$ 18.0 5.985 225.0 $.0574$ 15.7 3.146 190.0 $.0583$ 12.3 $.897$ 140.0 $.0630$ 19.7 9.017 265.0 $.0603$ 18.0 5.985 245.0 $.0625$ 15.8 3.244 210.0 $.0639$	20.0 9.648 165.0 $.0368$ $.00152$ 18.3 6.457 150.0 $.0375$ $.00098$ 16.0 3.446 130.0 $.0388$ $.00047$ 12.4 $.938$ 100.0 $.0444$ $.00009$ 20.0 9.648 175.0 $.0391$ $.00155$ 18.3 6.457 160.0 $.0400$ $.00102$ 15.9 3.344 140.0 $.0422$ $.00048$ 12.4 $.938$ 110.0 $.0488$ $.00009$ 19.9 9.434 190.0 $.0427$ $.00166$ 18.2 6.297 180.0 $.0453$ $.00108$ 15.8 3.244 150.0 $.0456$ $.00049$ 12.4 $.938$ 115.0 $.0510$ $.00010$ 19.8 9.224 215.0 $.0486$ $.00237$ 18.2 6.297 200.0 $.0503$ $.00154$ 15.9 3.344 165.0 $.0498$ $.00070$ 12.5 $.981$ 125.0 $.0547$ $.00011$ 19.7 9.017 240.0 $.0546$ $.00242$ 18.0 5.985 225.0 $.0574$ $.00155$ 15.7 3.146 190.0 $.0583$ $.00074$ 12.3 $.897$ 140.0 $.0630$ $.00270$ 18.0 5.985 245.0 $.0625$ $.00169$ 15.8 3.244 210.0 $.0639$ $.00079$	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

RUN ND. 4	
KON NO. 4	20 20

E	U	VRMS	TURB	MICRO	Q	RE
19.5	8.612	300.0	.0692	.00280	514.5	97721.
17.9	5.834	265.0	.0681	.00183	339.5	64482.
15.7	3.146	235.0	.0722	.00088	180.6	34302.
12.2	.858	165.0	•0754	.00018	54.0	10256.
19.4	8.415	330.0	.0766	.00309	514.5	97721.
17.7	5.539	295.0	.0770	.00191	339.5	64482.
15.6	3.050	270.0	.0837	.00100	180.6	34302.
12.2	.858	195.0	.0891	.00023	54.0	10256.
19.2	8.031	375.0	.0882	.00516	514.5	97721.
17.5	5.255	345.0	.0914	.00364	339.5	64482.
						34302.
12.0	.781	240.0	.1130	.00038	54.0	10256.
18.9	7.479	405.0	.0971	.00507	514.5	97721.
		380.0	.1022	.00359	339.5	64482.
	2.603	320.0	.1039	.00174	180.6	34302.
11.8	•710	270.0	.1312	.00040	54.0	10256.
				8°		
	19.5 17.9 15.7 12.2 19.4 17.7 15.6 12.2 19.2 17.5 15.3 12.0 18.9 17.3 15.1	19.5 8.612 17.9 5.834 15.7 3.146 12.2 $.858$ 19.4 8.415 17.7 5.539 15.6 3.050 12.2 $.858$ 19.2 8.031 17.5 5.255 15.3 2.776 12.0 $.781$ 18.9 7.479 17.3 4.982 15.1 2.603	19.5 8.612 300.0 17.9 5.834 265.0 15.7 3.146 235.0 12.2 $.858$ 165.0 19.4 8.415 330.0 17.7 5.539 295.0 15.6 3.050 270.0 12.2 $.858$ 195.0 19.2 8.031 375.0 17.5 5.255 345.0 15.3 2.776 300.0 12.0 $.781$ 240.0 18.9 7.479 405.0 17.3 4.982 380.0 15.1 2.603 320.0	19.5 8.612 300.0 $.0692$ 17.9 5.834 265.0 $.0681$ 15.7 3.146 235.0 $.0722$ 12.2 $.858$ 165.0 $.0754$ 19.4 8.415 330.0 $.0766$ 17.7 5.539 295.0 $.0770$ 15.6 3.050 270.0 $.0837$ 12.2 $.858$ 195.0 $.0891$ 19.2 8.031 375.0 $.0882$ 17.5 5.255 345.0 $.0914$ 15.3 2.776 300.0 $.0956$ 12.0 $.781$ 240.0 $.1130$ 18.9 7.479 405.0 $.0971$ 17.3 4.982 380.0 $.1022$ 15.1 2.603 320.0 $.1039$	19.5 8.612 300.0 $.0692$ $.00280$ 17.9 5.834 265.0 $.0681$ $.00183$ 15.7 3.146 235.0 $.0722$ $.00088$ 12.2 $.858$ 165.0 $.0754$ $.00018$ 19.4 8.415 330.0 $.0766$ $.00309$ 17.7 5.539 295.0 $.0770$ $.00191$ 15.6 3.050 270.0 $.0837$ $.00100$ 12.2 $.858$ 195.0 $.0891$ $.00023$ 19.2 8.031 375.0 $.0882$ $.00516$ 17.5 5.255 345.0 $.0914$ $.00364$ 15.3 2.776 300.0 $.0956$ $.00180$ 12.0 $.781$ 240.0 $.1130$ $.00038$ 18.9 7.479 405.0 $.0971$ $.00507$ 17.3 4.982 380.0 $.1022$ $.00359$ 15.1 2.603 320.0 $.1039$ $.00174$	19.5 8.612 300.0 $.0692$ $.00280$ 514.5 17.9 5.834 265.0 $.0681$ $.00183$ 339.5 15.7 3.146 235.0 $.0722$ $.00088$ 180.6 12.2 $.858$ 165.0 $.0754$ $.00018$ 54.0 19.4 8.415 330.0 $.0766$ $.00309$ 514.5 17.7 5.539 295.0 $.0770$ $.00191$ 339.5 15.6 3.050 270.0 $.0837$ $.00100$ 180.6 12.2 $.858$ 195.0 $.0881$ $.00023$ 54.0 19.2 8.031 375.0 $.0882$ $.00516$ 514.5 17.5 5.255 345.0 $.0914$ $.00364$ 339.5 15.3 2.776 300.0 $.0956$ $.00180$ 180.6 12.0 $.781$ 240.0 $.1130$ $.00038$ 54.0 18.9 7.479 405.0 $.0971$ $.00507$ 514.5 17.3 4.982 380.0 $.1022$ $.00359$ 339.5 15.1 2.603 320.0 $.1039$ $.00174$ 180.6

R/A	E	U	VRMS	TURB	MICRO	Q	RE	
0.00	19.8	9.836	150.0	.0343	.00139	520.0	88016.	
0.00	18.2	6.684	140.0	.0357	.00089	350.0	59241.	
0.00	16.1	3.736	130.0	.0392	.00051	180.0	30467.	
0.00	12.8	1.142	106.0	•0459	.00012	54.0	9140.	
• 30	19.6	9.393	190.0	.0440	•00172	520.0	88016.	
.30	18.2	6.684	180.0	.0459	.00121	350.0	59241.	
. 30	16.0	3.624	170.0	.0517	.00061	180.0	30467.	
.30	12.7	1.094	130.0	.0571	.00014	54.0	9140.	
.60	19.2	8.551	270.0	.0642	.00283	520.0	88016.	
.60	17.8	6.027	260.0	.0683	.00192	350.0	59241.	
.60	15.5	3.102	235.0	.0749	.00103	180.0	30467.	
.60	12.4	.956	170.0	.0781	.00022	54.0	9140.	
.80	16.9	7.956	350.0	.0849	•00495	520.0	88016.	
.80	17.3	5.271	325.0	.0887	.00357	350.0	59241.	
.80	15.2	2.815	300.0	.0984	.00183	180.0	30467.	
.80	12.2	.870	245.0	.1160	.00046	54.0	9140.	
.85	18.7	7.577	375.0	.0923	.00487	520.0	88016.	
.85	17.2	5.129	355.0	.0976	.00366	350.0	59241.	
.85	14.9	2.547	320.0	.1082	.00180	180.0	30467.	
.85	12.0	.790	290.0	.1417	•00049	54.0	9140.	

%

RUN	MO	7
NUN	NU.	

R/A	E	U	VRMS	TURB	MICRO	Q	RE
0.00	18.2	9.576	125.0	•0392	.00117	525.0	59489.
0.00	17.2	6.915	115.0	.0388	.00080	360.0	40792.
0.00	15.4	3.591	105.0	.0412	.00038	180.0	20396.
0.00	12.6	1.000	108.0	.0579	.00010	52.0	5892.
0.00	12.0	1.000	100.0	•0017	•00010	52.0	5072.
.10	18.1	9.279	130.0	.0410	.00118	525.0	59489.
.10	17.1	6.684	125.0	.0425	.00085	360.0	40792.
.10	15.2	3.317	110.0	.0440	.00037	180.0	20396.
. 10	12.6	1.000	120.0	.0643	.00011	52.0	5892.
.20	18.2	9.576	150.0	.0470	.00139	525.0	59489.
.20	17.2	6.915	140.0	.0472	.00094	360.0	40792.
. 20	15.4	3.591	125.0	.0491	.00044	180.0	20396.
•20	12.5	•947	120.0	.0652	.00011	52.0	5892.
						505 0	50400
• 30	18.2	9.576	165.0	.0517	.00154	525.0	59489.
• 30	17.1	6.684	155.0	.0527	.00104	360.0	40792.
• 30	15.3	3.452	140.0	.0555	.00048	180.0	20396.
• 30	12.5	•947	140.0	•0761	.00011	52.0	5892.
•40	18.1	9.279	185.0	.0584	.00167	525.0	59489.
•40	17.0	6.460	170.0	.0583	.00114	360.0	40792.
.40	15.2	3.317	155.0	.0620	.00050	180.0	20396.
.40	12.4	.897	150.0	.0826	.00012	52.0	5892.
•40	12.4	• 0 7 1	100.0	.0020	.00012	52.00	5072.
.50	18.1	9.279	210.0	.0663	.00192	525.0	59489.
.50	17.0	6.460	190.0	.0651	.00123	360.0	40792.
.50	15.2	3.317	175.0	.0700	.00058	180.0	20396.
.50	12.3	.848	160.0	• 08 94	.00014	52.0	5892.

RUN	NO.	7

R/A	Ē	U	VRMS	TURB	MICRO	Q	RE
.60	18.0	8.989	240.0	•0764	.0.0249	525.0	59489.
.60	16.9	6.241	218.0	.0753	.00162	360.0	40792.
.60	15.1	3.186	200.0	.0808	.00081	180.0	20396.
.60	12.3	•848	190.0	.1062	.00018	52.0	5892.
.70	17.9	8.706	265.0	.0849	.00270	525.0	59489.
.70	16.3	6.028	240.0	.0836	.00170	360.0	40792.
.70	14.9	2.936	235.0	.0968	.00084	180.0	20396.
•70	12.1	• 757	220.0	.1266	.00019	52.0	5892.
.80	17.7	8.162	295.0	.0959	.00272	525.0	59489.
.80	16.6	5.619	260.0	.0921	.00174	360.0	40792.
.80	14.7	2.702	275.0	.1156	.00091	180.0	20396.
.80	11.8	.635	270.0	.1626	.00019	52.0	5892.
.85	17.4	7.394	310.0	.1031	.00271	525.0	59489.
.85	16.3	5.045	280.0	.1016	.00168	360.0	40792.
.85	14.5	2.482	295.0	.1265	.00091	180.0	20396.
.85	11.6	.561	315.0	.1958	.00021	52.0	5892.

÷

a.

RUN ND. 8

R/A	Е	υ	VRMS	TURB	MICRD	Q	RE
0.00	19.0	9.885	140.0	.0372	0.00000	525.0	59489.
0.00	17.8	7.087	125.0	.0361	0.00000	360.0	40792.
0.00	15.5	3.414	130.0	.0454	0.00000	180.0	20396.
. 30	18.9	9.625	175.0	•0468	0.00000	525.0	59489.
• 30	17.6	6.686	165.0	.0484	0.00000	360.0	40792.
.30	15.5	3.414	160.0	.0559	0.00000	180.0	20396.
•60	18.6	8.875	240.0	.0655	.00266	525.0	59489.
.60	17.2	5.934	230.0	.0696	.00177	360.0	40792.
.60	15.1	2.960	230.0	.0836	.00092	180.0	20396.
.80	18.2	7.944	295.0	.0829	.00466	525.0	59489.
.80	17.0	5.583	295.0	.0907	.00343	360.0	40792.
.80	14.9	2.750	300.0	.1112	.00184	180.0	20396.
.85	18.0	7.506	310.0	.0883	.00456	525.0	59489.
.85	16.8	5.247	320.0	.1000	.00345	360.0	40792.
.85	14.8	2.650	310.0	.1161	.00193	180.0	20396.

3. 16

.

DUM	NO.	0	
NUN	NU .	7	

R/A	E	U	VRMS	TURB	MICRO	Q	RE
70	16.1	8.381	160.0	•0766	.00177	520.0	22404.
50	16.2	8.791	125.0	•0594	.00108	520.0	22404.
30	16.3	9.217	95.0	•0448	.00091	520.0	22404.
10	16.2	8.791	76.0	.0361	.00061	520.0	22404.
0.00	16.3	9.217	78.0	.0367	•00064	520.0	22404.
•10	16.3	9.217	84.0	.0396	.00069	520.0	22404.
• 30	16.2	8.791	105.0	• 0499	•00094	520.0	22404.
•50	16.2	8.791	140.0	.0665	.00124	520.0	22404.
.70	16.1	8.381	180.0	.0862	.00203	520.0	22404.
.80	16.0	7.987	215.0	.1038	.00350	520.0	22404.
.85	15.9	7.609	245.0	•1193	.00392	520.0	22404.
				r			
				943 (443			

•

RUN	NO.	G
11011		

R/A	E	U	VRMS	TURB	MICRO	Q	RE
70	15.6	6.562	195.0	.0974	.00163	360.0	14277.
50	15.7	6.897	145.0	.0718	.00102	360.0	14277.
30	15.8	7.245	110.0	.0540	.00085	360.0	14277.
10	15.7	6.897	90.0	•0445	.00054	360.0	14277.
0.00	15.7	6.897	88.0	.0436	.00057	360.0	14277.
• 10	15.7	6.897	98.0	.0485	.00062	360.0	14277.
• 30	15.7	6.897	120.0	• 0594	.00085	360.0	14277.
•50 .	15.6	6.562	160.0	.0799	.00106	360.0	14277.
.70	15.5	6.241	210.0	.1058	.00173	360.0	14277.
.80	15.4	5.933	250.0	.1271	.00323	360.0	14277.
.85	15.3	5.637	295.0	.1513	.00350	360.0	14277.

R/A	E	U	VRMS	TURB	ri I C R U	Q	RE
70	14.2	3.112	210.0	.1194	.00083	180.0	6093.
50	14.2	3.112	155.0	.0881	.00048	180.0	6093.
30	14.4	3.404	122.0	.0680	.00043	180.0	6093.
10	14.4	3.484	100.0	.0557	.00031	180.0	6093.
0.00	14.4	3.484	97.0	.0541	.00030	180.0	6093.
.10	14.3	3.294	103.0	.0580	.00030	180.0	6093.
• 30	14.2	3.112	130.0	.0739	.00040	180.0	6093.
.50	14.1	2.959	160.0	.0919	.00047	180.0	6093.
.70	14.1	2.939	220.0	.1264	•00087	180.0	6093.
.80	14.0	2.774	325.0	.1887	.00186	180.0	6093.
.85	13.3	2.467	400.0	.2371	.00193	180.0	6093.

RUN NO. 10

R/A	E	U	VRMS	TURB	MICRO	Q	RE
0.00	21.7	9.030	170.0	.0351	.00130	569.0	176687.
0.00	20.2	6.740	165.0	.0367	.00097	411.0	127624.
0.00	17.6	3.340	135.0	.0371	.00041	207.0	64278.
0.00	6.9	0.000	0.0	0.0000	0.00000	0.0	0.
.50	20.5	8.350	275.0	.0611	.00224	569.0	176687.
.50	19.0	6.180	250.0	.0599	.00157	411.0	127624.
.50	16.9	2.990	220.0	.0674	.00051	207.0	64278.
•50	6.9	0.000	0.0	0.0000	0.00000	0.0	0.
.85	19.0	7.090	395.0	.0965	.00170	569.0	176687.
.85	17.7	5.230	365.0	.0967	.00125	411.0	127624.
.85	15.4	2.480	305.0	.1021	.00052	207.0	64278.
.85	6.9	0.000	0.0	0.0000	0.00000	0.0	0.

RUN	NO.	11

R/A	E	U	VRMS	TURB	MICRO	Q	RE
0.00	20.9	8.883	160.0	•0342	.0 0141	546.0	140120.
0.00	19.7	6.807	150.0	.0345	.00103	411.0	105475.
0.00	17.0	3.435	125.0	.0349	.00045	207.0	53122.
0.00	13.2	•957	100.0	.0411	.00009	61.0	15654.
.10	21.0	9.074	175.0	.0372	.00157	546.0	140120.
.10	19.7	6.807	160.0	.0368	.00112	411.0	105475.
.10	17.0	3.435	140.0	.0391	.00050	207.0	53122.
.10	13.1	•919	105.0	.0437	.00010	61.0	15654.
• 20	20.9	8.883	200.0	.0427	.00221	546.0	140120.
.20	19.6	6.651	185.0	.0428	.00159	411.0	105475.
. 20	16.8	3.247	160.0	•0454	.00068	207.0	53122.
.20	13.0	.881	110.0	•0464	.00013	61.0	15654.
•40	20.6	8.326	250.0	•0544	•00259	546.0	140120.
.40	19.4	6.348	235.0	.0551	.00193	411.0	105475.
.40	16.6	3.066	200.0	.0578	.00082	207.0	53122.
•40	12.9	• 844	135.0	.0577	.00016	61.0	15654.
.60	20.4	7.969	330.0	.0727	•00299	546.0	140120.
.60	19.2	6.055	305.0	.0725	.00208	411.0	105475.
.60	16.4	2.892	245.0	.0720	.00090	207.0	53122.
.60	12.7	•774	175.0	.0770	.00017	61.0	15654.
.80	19.8	6.965	390.0	.0892	.00472	546.0	140120.
.80	18.6	5.234	375.0	.0929	.00370	411.0	105475.
.80	16.1	2.645	310.0	.0935	.00177	207.0	53122.
.80	12.5	• 708	220.0	.099 6	.00035	61.0	15654.

RUN ND.11

R/A	E	U	VRMS	TURB	MICRO	Q	RE
•85	19.7	6.807	430.0	•0990	•00495	546.0	140120.
•85	18.5	5.105	390.0	.0973	.00379	411.0	105475.
•85	16.0	2.566	335.0	.1020	.00177	207.0	53122.
. 85	12.5	.7 08	260.0	•1177	.00037	61.0	15654.

•

· ·

.

R/A	E	U	VRMS	TURB	MICRO	Q	RE
0.00	20.7	9.203	153.0	•0330	•00141	546.0	86041.
0.00	19.5	7.032	145.0	. 0337	.00103	411.0	64767.
0.00	16.9	3.619	125.0	.0351	.00201	207.0	32619.
•40	20•4	8.621	245.0	•0539	.00260	546.0	86041.
•40	19.3	6.710	235.0	•0554	.00193	411.0	64767.
•40	16.4	3.135	200.0	•0586	•00081	207.0	32619.
•50	20.2	8.247	275.0	•0612	•0027 7	546.0	86041.
•50	19.1	6.399	265.0	.0633	.00208	411.0	64767.
•50	16.4	3.135	220.0	.0645	.00088	207.0	32619.
•80	19.5	7.032	400.0	•0931	•00497	546.0	86041.
•80	18.2	5.125	360.0	.0916	.00376	411.0	64767.
•80	15.8	2.617	320.0	.0989	.00175	207.0	32619.
.85	19.3	6.710	425.0	.1002	•00488	546.0	86041.
.85	18.1	4.995	400.0	.1025	.00388	411.0	64767.
.85	15.7	2.537	340.0	.1061	.00184	207.0	32619.

.

a de la companya de la compa

R/A	E	U	VRMS	TURB	MICRO	Q	RE
0.00	23.4	9.860	170.0	.0324	.00168	573.0	157702.
0.00	21.7	6.910	160.0	.0338	.00115	399.0	109814.
0.00	18.9	3.720	140.0	.0351	.00056	203.0	55870.
0.00	7.6	0.000	0.0	0.0000	0.00000	0.0	0.
• 20	22.6	9.630	200.0	.0400	.00247	573.0	157702.
•20	20.9	6.770	185.0	.0408	.00168	399.0	109814.
. 20	18.2	3.680	160.0	.0417	.00082	203.0	55870.
• 20	7.6	0.000	0.0	0.0000	0.00000	0.0	0.
.40	22.2	9.300	245.0	.0497	.00281	573.0	157702.
•40	20.7	6.460	230.0	.0522	.00195	399.0	109814.
.40	17.9	3.580	210.0	.0554	.00099	203.0	55870.
•40	7.6	0.000	0.0	0.0000	0.00000	0.0	0.
•60	22.0	8.870	300.0	.0618	.00514	573.0	157702.
.60	20.4	6.130	295.0	.0678	.00381	399.0	109814.
.60	17.7	3.370	250.0	.0672	.00197	203.0	55870.
.60	7.6	0.000	0.0	0.0000	0.00000	0.0	0.
.80	21.6	8.080	395.0	.0838	.00548	573.0	157702.
.80	19.9	5.580	370.0	.0870	.00422	399.0	109814.
.80	17.3	3.080	325.0	.0894	.00224	203.0	55870.
.80	7.6	0.000	0.0	0.0000	0.00000	0.0	0.
.85	21.3	7.710	410.0	.0881	.00545	573.0	157702.
.85	19.8	5.350	410.0	.0983	.00419	399.0	109814.
.85	17.2	3.010	345.0	.0958	.00234	203.0	55870.
.85	7.6	0.000	0.0	0.0000	0.00000	0.0	0.

R /A	E	U	VRMS	TURB	MICRO	Q	RE
0.00	19.4	8.752	112.0	.0299	.00619	511.5	77573.
0.00	18.5	6.830	100.0	.0284	• 0.0492	388.8	58965.
0.00	16.5	3.686	100.0	.0335	.00284	205.5	31165.
•50	19.1	8.072	200.0	.0545	.00936	511.5	77573.
.50	18.3	6.449	190.0	.0549	.00884	388.8	58965.
.50	16.2	3.328	195.0	.0671	.00612	205.5	31165.
.85	18.4	6.637	305.0	.0874	.00788	511.5	77573.
.85	17.6	5.239	300.0	.0915	.00770	388.8	58965.
.85	15.4	2.499	305.0	.1136	.00735	205.5	31165.

RUN	NO.15	

R/A	E	U	VRMS	TURB	MICRO	Q	RE
0.00	23.7	9.873	170.0	.0319	.00775	574.0	210108.
0.00	22.1	7.212	165.0	.0338	.00652	402.0	147149.
0.00	19.2	3.760	140.0	.0345	.00521	217.0	79431.
•40	23.4	9.327	275.0	.0525	•00936	574.0	210108.
.40	21.8	6.778	250.0	.0521	.00920	402.0	147149.
.40	13.9	3.489	215.0	.0542	.00631	217.0	79431.
.80	22.5	7.821	430.0	.0862	.00862	574.0	210108.
.80	21.0	5.712	415.0	.0908	.00832	402.0	147149.
.80	18.2	2.911	330.0	.0877	.00823	217.0	79431.
.85	22.3	7.512	460.0	.0932	.00818	574.0	210108.
.85	20.8	5.466	430.0	.0953	.00788	402.0	147149.
.85	19.0	2.759	360.0	.0972	.00780	217.0	79431.

RIIN	NO.16
V	NO.16

R/A	E	U	VRMS	TURB	MICRO	Q	RE
0.00	23.2	9.888	170.0	.0328	.00790	574.0	163878.
0.00	21.6	7.156	160.0	.0338	.00860	402.0	114772.
0.00	18.8	3.742	140.0	.0356	.00550	217.0	61954.
.40	22.9	9.327	260.0	.0510	.01015	574.0	163878.
.40	21.3	6.713	250.0	.0538	.00949	402.0	114772.
.40	18.6	3.555	210.0	.0542	.00935	217.0	61954.
.80	22.2	8.107	430.0	.0878	.00951	574.0	163878.
.80	20.5	5.626	400.0	.0905	.00883	402.0	114772.
.80	17.7	2.794	325.0	.0901	.00845	217.0	61954.
.85	21.9	7.621	445.0	.0924	.00883	574.0	163878.
.85	20.3	5.375	420.0	.0963	.00836	402.0	114772.
.85	17.6	2.717	370.0	.1034	.00768	217.0	61954.

R/A	E	U	VRMS	TURB	MICRO	4	RE
50	24.1	21.999	210.0	.0552	.00398	335.8	208376.
50	21.0	9.062	235.0	.0734	.00679	129.7	80483.
40	23.9	20.867	195.0	.0517	.00354	335.8	208376.
40	20.6	7.905	225.0	.0720	.00700	129.7	80483.
20	24.2	22.503	160.0	.0418	.00360	335.8	208376.
20	21.1	9.348	150.0	.0465	.00647	129.7	80483.
0.00	24.3	23.100	140.0	.0364	.00327	335.8	208376.
0.00	21.0	9.062	130.0	.0406	.00551	129.7	80483.
.20	24.4	23.790	160.0	.0414	.00380	335.8	208376.
• 20	20.7	8.244	150.0	.0477	.00530	129.7	80483.
.40	24.1	21.999	195.0	.0512	.00373	335.8	208376.
.40	20.5	7.732	200.0	.0644	.00617	129.7	80483.
.50	24.0	21.427	205.0	.0541	.00387	335.8	208376.
.50	20.5	7.732	225.0	.0725	.00634	129.7	80483.

RUN NO.17

RUN NO.19

.

R/A	Ē	U	VRMS	TURB	MICRO	Q	RE
•50	16.1	20.473	123.0	•0387	•00752	322.8	71572.
•50	15.0	14.196	140.0	•0493	•00702	220.0	48779.
•50	13.4	7.631	100.0	•0429	•00561	117.8	26119.

.

RUN	NO.19	
-----	-------	--

R/A	E	U	VRMS	TURB	MICRO	Q	RE
•50	17.3	21.191	185.0	•0739	.00575	322.8	71572.
.50	16.3	13.958	170.0	.0741	.00700	220.0	48779.
•50	14.9	7.259	95.0	•0476	•00482	117.8	26119.

RUN ND. 20

R/A	E	U	VRMS	TURB	MICRO	Q	RE
45	26.0	21.700	305.0	.0512	.00705	335.4	245541.
45	23.8	14.900	270.0	.0500	.00758	230.0	168379.
45	20.5	7.600	240.0	.0536	.00687	117.7	86166.
45	7.4	0.000	0.0	0.0000	0.00000	0.0	0.
25	26.1	22.800	240.0	.0399	.00690	335.4	245541.
25	24.0	15.600	230.0	.0425	•00706	230.0	168379.
25	20.6	7.970	195.0	.0433	.00648	117.7	86166.
25	7•4	0.000	0.0	0.0000	0.00000	0.0	0.
05	25.6	23.400	185.0	.0314	.00642	335.4	245541.
05	23.7	16.100	180.0	.0341	.00628	230.0	168379.
05	20.3	8.200	143.0	.0325	.00591	117.7	86166.
05	7.4	0.000	0.0	0.0000	0.00000	0.0	0.
.05	25.5	23.400	187.0	.0319	.00642	335.4	245541.
.05	23.5	16.100	165.0	.0313	.00628	230.0	168379.
.05	20.1	8.200	140.0	.0318	.00591	117.7	86166.
•05	7.4	0.000	0.0	0.0000	0.00000	0.0	0.
.15	25.6	23.200	210.0	•0356	.00689	335.4	245541.
•15	23.7	15.900	185.0	.0351	.00665	230.0	168379 ·
.15	20.3	8.120	160.0	.0363	.00602	117.7	86166.
•15	7.4	0.000	0.0	0.0000	0.00000	0.0	0.
• 35	25.3	22.600	265.0	.0459	.00735	335.4	245541.
. 35	23.2	15.500	240.0	.0460	.00767	230.0	168379.
• 35	19.9	7.920	202.0	.0465	.00632	117.7	86166.
.35	7.4	0.000	0.0	0.0000	0.00000	0.0	0.

21.010010 T

 \sim

RUN ND. 20

R/A	E	U	VRMS	TURB	MICRO	Q	RE
•55	25.0	21.300	300.0	•0529	•01084	335.4	245541.
•55	22.8	14.600	255.0	•0495	.01362	230.0	168379.
.55	19.6	7.480	0.0	0.0000	0.00000	117.7	86166.
• 55	7.4	0.000	0.0	0.0000	0.00000	0.0	0.
•75	25.1	19.500	430.0	•0750	•00706	335.4	245541.
.75	23.1	13.400	395.0	.0765	.00739	230.0	168379.
•75	19.8	6.830	340.0	•0790	•00714	117.7	86166.
.75	7.4	0.000	0.0	0.0000	0.00000	0.0	0.

RUN
RUN

R/A	E	U	VRMS	TURB	MICRO	Q	RE
45	22.3	21.476	190.0	.0477	.00668	325.2	98639.
45	21.0	15.298	197.0	.0533	.00811	223.8	67882.
45	18.7	7.813	170.0	.0536	.00607	119.2	36155.
25	22.4	22.021	150.0	.0374	.00672	325.2	98639.
25	21.1	15.718	140.0	.0377	.00722	223.8	67882.
25	18.8	8.062	132.0	.0413	.00575	119.2	36155.
05	22.4	22.021	113.0	.0282	.00566	325.2	98639.
05	21.1	15.718	116.0	.0312	.00578	223.8	67882.
05	18.9	8.318	106.0	.0329	.00511	119.2	36155.
.05	22.3	21.476	112.0	.0281	.00558	325.2	98639.
.05	21.1	15.718	117.0	.0315	.00578	223.8	67882.
.05	18.9	8.318	115.0	.0357	.00529	119.2	36155.
. 25	22.3	21.476	138.0	.0346	.00595	325.2	98639.
.25	21.0	15.298	145.0	.0393	.00714	223.8	67882.
. 25	18.9	8.318	140.0	.0435	.00600	119.2	36155.
.45	22.3	21.476	182.0	.0457	.00656	325.2	98639.
.45	21.0	15.298	190.0	.0514	.00757	223.8	67882.
.45	18.8	8.062	175.0	.0548	.00621	119.2	36155.
.65	21.9	19.400	240.0	.0616	.00614	325.2	98639.
.65	20.7	14.093	240.0	.0662	.00747	223.8	67882.
.65	18.6	7.569	230.0	.0731	.00615	119.2	36155.

RUN	NO.	.21

1 - 1 **5** - 1 1 - 1

R/A	E	U	VRMS	TURB	MICRO	Q	RE
•75 •75	21.5 20.1	17.484 11.904	255.0 255.0	•0670 •0731	•00633 •00656	325.2 223.8	98639. 67882.
.75	18.0	6.227	220.0	•0732	.00493	119.2	36155.

S	110	22
RUN	1111	.22

R/A	E	U	VRMS	TURB	MICRO	Q	RE
40	23.7	22.081	260.0	.0475	.00662	300.0	127917.
40	21.2	13.561	230.0	.0479	.00700	200.0	85278.
40	19.2	8.707	210.0	•0494	.00689	119.0	50740.
10	24.3	24.600	170.0	.0301	.00577	300.0	127917.
10	21.9	15.648	152.0	.0304	.00531	200.0	85278.
10	19.6	9.556	140.0	.0321	.00588	119.0	50740.
.10	24.1	23.739	170.0	.0304	.00577	300.0	127917.
. 10	22.0	15.964	155.0	.0309	.00564	200.0	85278.
.10	19.6	9.556	140.0	.0321	.00608	119.0	50740.
• 30	23.7	22.081	220.0	.0401	.00593	300.0	127917.
.30	21.6	14.727	200.0	.0407	.00574	200.0	85278.
• 30	19.3	8.914	180.0	.0421	.00624	119.0	50740.
.50	23.4	20.895	280.0	.0519	.00638	300.0	127917.
.50	21.1	13.280	255.0	.0534	.00657	200.0	85278.
.50	19.1	8.504	230.0	.0545	.00679	119.0	50740.
.75	23.1	19.756	380.0	.0715	.00642	300.0	127917.
.75	20.7	12.200	350.0	.0751	.00647	200.0	85278.
.75	18.6	7.537	305.0	.0748	.00650	119.0	50740.

R/A	E	U	VRMS	TUR3	MICRO	Q	RE
0.00	15.4	37.034	125.0	• 0543	.00848	464.0	50282.
•40	16.1	32.443	220.0	• 0984	.00715	464.0	50282.
.60	16.0	31.016	240.0	.1084	.00658	464.0	50282.
0.00	15.4	23.462	56.0	. 02 68	.00577	239.0	26540.
•40	15.2	21.296	83.0	• 04 06	.00722	289.0	26540.
•60	15.1	20.273	105.0	• 05 19	.00791	289.0	26540.
0.00	14.0	11.359	67.0	• 03 76	• 00385	147.2	10634.
•40	13.9	10.735	108.0	• 06 14	.00721	147.2	10634.
.60	13.7	9.566	135.0	• 07 83	.00778	147.2	10634.

Table 6

Energy Spectrum Results and Transformations to Autocorrelations

The table contains a separate computer printout for each spectrum measurement. The information is identified by the following symbols:

- R/A corresponds to r/a in the text, radial position divided by pipe radius.
 - U corresponds to u in the text, time average velocity in feet per second.
- FREQ frequency in cycles per second.
- F(N) x 10000 normalized spectrum function in seconds times 10,000.
- F(N) x 10000 x N**2 dissipation spectrum function in reciprocal seconds times 10,000 where N is frequency.
- E(N) x 10000- spectrum function in square feet per second times 10,000.
- DELAY autocorrelation delay time in seconds.
 - RU autocorrelation coefficient corresponding to R(τ) in the text.

MACROSCALE and MICROSCALE are in feet.

RUN NO. 8 AT R/A=0.00, U= 7.09

FREQ	F(N)X10000	F(N)X10000XN**2	E(N) X10000	DELAY	RU
10.00	65.72523	6572.5	4.30565	.00001	1.00000
12.60	120.84590	19185.4	7.91660	.00010	.97896
15.90	131.61153	33272.7	8.62185	.00020	.96038
20.00	127.66498	51065.9	8.36331	.00030	•93274
25.10	149.83247	94395.9	9.81550	•00040	•90002
31.60	97.68966	97548.9	6.39963	.00050	.86493
39.80	84.03313	133111.8	5.50500	.0006 0	.82806
50.10	71.62707	179784.6	4.69228	.00100	.68563
63.10	65.28631	259944.6	4.27689	.00150	• 54545
79.40	35.39501	223142.9	2.31872	.00200	.40188
100.00	30.53277	305327.7	2.00019	.00250	.30066
126.00	22.47183	356762.8	1.47212	.00300	.22950
159.00	12.85914	325092.0	.84240	•00350	.18909
200.00	12.64286	505714.5	.82823	.00400	.16375
251.00	6.00839	378534.9	.39360	•00450	.14812
316.00	4.10567	409976.7	.26896	.00500	.12753
398.00	2.24188	355124.2	.14686	.00600	.05360
501.00	1.13044	283741.6	.07405	.00700	01918
631.00	.55580	221298.9	.03641	.01000	11843
794.00	.24639	155337.1	.01614	.01300	12768
1000.00	.10004		.00655	.01600	11142
1260.00	.02517	39972.8	.00164	.01900	11182
1590.00	.00699	17672.1	.00045	.02200	11431
2000.00	.00102	4095.0	.00006	.02500	09678
2510.00	.00010	679.3	0.00000	.02800	06918
				MACROSCALE	
				MICROSCALE	= .0098(CURVE FIT)

225

MICROSCALE = .0093(INTEGRAL)

FREQ	F(N)X10000	F(N)X10000XN**2	E(N) X10000	DELAY	RU
10.00	82.33810	8233.8	12.32328	.00001	1.00000
12.60	128.43926	20391.0	19.22309	.00010	.96429
15.90	172.38191	43579.8	25.79985	.00020	.94937
20.00	172.06987	68827.9	25.75315	.00030	.92731
25.10	125.77265	79238.0	18.82399	•00040	.90097
31.60	117.20701	117038.2	17.54200	.00050	.87235
39.80	99.71046	157945.3	14.92335	.00060	.84203
50.10	69.83817	175294.5	10.45245	.00100	.72293
63.10	60.49494	240867.2	9.05408	.00150	.59835
79.40	39.29881	247753.8	5.88172	.00200	.46277
100.00	27.97724	279772.4	4.18726	.00250	.35709
126.00	18.53205	294214.9	2.77363	.00300	.27807
159.00	10.50630	265609.8	1.57244	.00350	.23138
200.00	10.17171	406868.6	1.52236	.00400	.20432
251.00	5.68522	358174.9	.85088	.00450	.18817
316.00	3.22158	321694.4	•48216	•00500	.16587
398.00	1.79887	284949.5	.26923	.00600	.08275
501.00	1.06987	268540.8	.16012	.00700	.00112
631.00	.41589	165591.9	.06224	.01000	11840
794.00	.18491	116577.1	.02767	.01300	13983
1000.00	.07287	72870.3	.01090	•01600	12785
1260.00	.02250	35723.3	.00336	.01900	12970
1590.00	.00535	13540.3	.00080	.02200	13393
2000.00	.00099	3997.2	.00014	.02500	11703
2510.00	.00009	583.5	.00001	.02800	08665
				MACROSCALE	• 0148

MICROSCALE = .0091(CURVE FIT) MICROSCALE = .0089(INTEGRAL)

RUN NO. 8 AT R/A= .85, U= 5.25

FREQ	F(N)X10000	F(N)X10000XN**2	E(N)X10000	DELAY	RU
10.00	116.57094	11657.0	32.12986	.00001	1.00000
12.60	124.61486	19783.8	34.34697	.00005	.99693
15.90	161.11201	40730.7	44.40649	.00010	.99235
20.00	142.24489	56897.9	39.20624	.00015	.98502
25.10	129.72352	81727.1	35.75504	.00020	.97514
31.60	86.39213	86267.7	23.81183	.00025	.96321
39.80	87.23848	138189.2	24.04510	.00030	.94964
50.10	69.72652	175014.2	19.21837	.00040	.91931
63.10	60.15182	237501.1	16.57934	.00060	.85197
79.40	41.49491	261598.8	11.43703	.00100	.71572
100.00	31.67789	316778.9	8.73122	.00150	.57383
126.00	20.70451	328704.9	5.70668	.00200	.42570
159.00	12.56139	317564.6	3.46223	.00250	.31570
200.00	11.24771	449 90 8 . 4	3.10015	.00300	.23687
251.00	6.00442	378284.5	1.65496	.00400	.16918
316.00	4.00284	399707.7	1.10328	.00500	.14284
398.00	1.99490	316000.6	.54984	.00600	.07025
501.00	1.02912	258311.9	.28365	.00800	02604
631.00	.53525	213117.4	.14752	.01000	09961
794.00	.21873	137896.9	.06028	.01200	10071
1000.00	.08767	87676.7	.02416	.01400	10721
1260.00	.02596	41219.5	.00715	.01600	10580
1590.00	.00720	18223.3	.00198	•01800	10405
2000.00	.00125	5008.8	.00034	.02000	12478
2510.00	.00017	1120.4	.00004	.02200	12628
				MACROSCALE =	•0117

227

MICROSCALE = .0069(CUPVE FIT) MICROSCALE = .0071(INTEGRAL)

FREQ	F(N)X10000	F(N)X10000XN**2	E(N)X10000	DELAY RU
10.00	58.90469	5890.4	5.33115	.00001 1.00000
12.60	77.73997	12341.9	7.03583	.00010 1.00022
15.90	139.95722	35382.5	12.66678	•00020 •99150
20.00	154.21123	61684.4	13.95684	•00030 •97732
25.10	152.39178	96008.3	13.79217	•00040 •95843
31.60	107.96583	107810.3	9.77141	•00050 •93573
39.80	98.61619	156211.9	8.92522	•00060 •91016
50.10	78.59081	197263.7	7.11283	•00100 • 7 9168
63.10	69.82695	278023.6	6.31966	•00150 •63728
79.40	48.00549	302643.9	4.34472	•00200 •49903
100.00	36.77313	367731.3	3.32814	•00250 •36392
126.00	20.06943	318622.3	1.81637	•00300 •23598
159.00	12.95392	327488.2	1.17239	•00350 •13915
200.00	9.29458	371783.5	.84120	•00400 •07973
251.00	4.18523	263674.2	.37878	•00450 •04786
316.00	2.74298	273903.7	•24825	•00500 •03889
398.00	1.11956	177344.1	.10132	•00600 •04609
501.00	•35526	89170.6	.03215	•00700 •00842
631.00	.10021	39 900 • 5	•00906	•01000 -•10021
794.00	•02342	14764.8	.00211	•01300 - •15732
1000.00	.00516	5163.9	.00046	•01600 -•14116
1260.00	.00052	833.1	•00004	•01900 -•10873
1590.00	.00004	109.0	0.00000	•02200 -•10277
				MACROSCALE = $.0151$
				MICROSCALE = $.0134(CURVE FIT)$
				MICROSCALE = .0133(INTEGRAL)

FREQ	F(N)X10000	F(N)X10000XN**2	E(N)X10000	DELAY RU
10.00	116.78969	11678.9	32.08527	.00001 1.00000
12.60	139.80425	22195.3	38.40799	.00005 1.00314
15.90	235.43534	59520.4	64.68042	.00010 1.00169
20.00	164.58533	65834.1	45.21602	.00015 .99819
25.10	149.19674	93995.4	40.98836	.00020 .99339
31.60	109.54938	109391.6	30.09616	.00025 .98735
39.80	103.89236	164569.6	28.54202	•00030 •98018
50.10	81.68810	205037.9	22.44192	.00040 .96274
63.10	65.22222	259689.4	17.91830	•00060 •91857
79.40	34.64870	218437.9	9.51893	.00100 .81107
100.00	26.62234	266223.4	7.31387	.00150 .68084
126.00	17.40023	276246.0	4.78031	•00200 •56819
159.00	10.55669	266883.7	2.90020	•00250 •47669
200.00	8.76945	350778.0	2.40920	.00300 .41209
251.00	4.16880	262638.8	1.14528	•00400 •29113
316.00	2.01023	200734.3	.55226	•00500 •16596
398.00	.99283	157268.5	.27275	.00600 .08622
501.00	.37915	95169.3	.10416	•00800 - •02053
631.00	.10386	41356.9	.02853	.0100009016
794.00	.02884	18185.7	.00792	.0120013114
1000.00	.00514	5149.8	.00141	.0140013548
1260.00	.00089	1424.3	.00024	.0160013245
1590.00	.00007	186.4	.00002	.0180014163
2000.00	0.00000	17.6	0.00000	.0200015159
				MACROSCALE = .0183

MICROSCALE = .0132(CURVE FIT) MICROSCALE = .0134(INTEGRAL)

FREQ	F(N)X10000	F(N)X10000XN**2	E(N) X10000	DELAY	RU
10.00	204.35211	20435.2	148.80419	.00001	1.00000
12.60	215.60705	34229.7	156.99977	.00010	1.00189
15.90	236.66272	59830.7	172.33199	.00020	•99487
20.00	195.12206	78048.8	142.08310	.00030	.98366
25.10	165.44198	104230.1	120.47079	.00040	.96871
31.60	102.95876	102810.4	74.97204	.00050	.95075
39.80	86.77272	137451.4	63.18577	.00060	•93039
50.10	67.67455	169863.8	49.27895	.00100	.83307
63.10	55.79406	222150.1	40.62786	.00150	.70243
79.40	34.82933	219576.6	25.36186	.00200	.57325
100.00	27.11050	271105.0	19.74120	.00250	•45747
126.00	16.99906	269877.1	12.37830	.00300	.37553
159.00	9.05683	228965.7	6.59496	.00350	.32608
200.00	8.06290	322516.2	5.87121	•00400	.29972
251.00	3.77583	237881.3	2.74946	•00450	.28403
316.00	1.79856	179597.5	1.30967	.00500	.26006
398.00	.78293	124020.1	.57011	.00600	.17091
501.00	.28865	72452.4	.21019	.00700	.08384
631.00	.08603	34257.6	.06265	.01000	06004
794.00	.02218	13984.8	.01615	.01300	11202
1000.00	.00517	5172.5	.00376	.01600	12975
1260.00	.00073	1166.5	.00053	.01900	15849
1590.00	.00007	185.4	.00005	.02200	18616
2000.00	0.00000	13.0	0.00000	.02500	18726
				MACROSCALE	= .0172
				MICROSCALE	= .0124(CURVE FIT)

MICROSCALE = .0122(INTEGRAL)

RUN NO. 9 AT R/A= .85, U= 2.47

FREQ	F(N)X10000	F(N)X10000XN**2	E(N) X10000	DELAY	RU	
10.00	400.57208	40057.2	137.38448	.00001	1.00000	
12.60	685.19136	108780.9	235.00055	.00040	.99695	
15.90	502.36885	127003.8	172.29779	.00080	.98796	
20.00	290.69429	116277.7	99.69962	.00120	.97343	
25.10	202.83618	127788.8	69.56686	.00200	.93030	
31.60	94.32283	94187.0	32.34996	.00250	.89596	
39.80	72.41242	114704.1	24.83534	.00300	.85768	
50.10	39.41597	98934.4	13.51852	.00350	.81672	
63.10	25.71582	102390.3	8.81977	.00400	.77416	
79.40	11.79938	74387.5	4.04684	.00500	.68737	
100.00	5.11159	51115.9	1.75312	.00600	.60183	
126.00	1.83076	29065.2	.62789	.00700	• 52004	
159.00	.60305	15245.7	.20682	.01000	.30402	
200.00	.16712	6684.9	.05731	.01300	.12510	
251.00	.03125	1968.7	.01071	.01600	02710	
316.00	.00494	493.6	.00169	.01900	15457	
398.00	.00109	172.6	.00037	.02200	25854	
501.00	.00001	4.2	0.00000	.02500	32766	
				MACROSCALE	= .0184	
				HICDOCCAL F	0.000/010005	

MICROSCALE = .0200(CURVE FIT) MICROSCALE = .0165(INTEGRAL)

FREQ	F(N)X10000	F(N)X10000XN**2	E(N)X10000	DELAY	RU
10.00	192.85883	19285.8	11.80025	.00001	1.00000
12.60	198.34345	31489.0	12.13583	.00005	.99280
15.90	249.45677	63065.1	15.26325	.00010	.99040
20.00	176.48954	70595.8	10.79868	.00015	.98649
25.10	152.70014	96202.6	9.34310	.00020	.98122
31.60	93.01904	92885.0	5.69146	.00025	.97439
39.80	86.44128	136926.4	5.28899	.00030	.96608
50.10	64.67586	162337.0	3.95725	.00040	.94437
63.10	54.01849	215080.5	3.30517	.00060	.87521
79.40	33.50750	211243.3	2.05018	.00100	.65 89 1
100.00	25.90922	259092.2	1.58528	.00150	.49490
126.00	16.53144	262453.1	1.01149	.00200	.53975
159.00	9.31428	235474.4	.56990	.00250	• 44988
200.00	8.73686	349474.4	.53457	.00300	.40251
251.00	4.19523	264303.7	.25668	•00400	.29652
316.00	2.78483	278082.8	.17039	.00500	.21687
398.00	1.62863	257982.8	.09964	.00600	.14106
501.00	.88554	222271.4	.05418	.00800	00037
631.00	. 42854	170628.8	.02622	.01000	03882
794.00	.20241	127609.3	.01238	.01200	05809
1000.00	.06759	67595.7	.00413	.01400	08992
1260.00	.02043	32435.1	.00125	•01600	12216
1590.00	.00556	14067.9	.00034	.01800	16514
2000.00	.00109	4383.0	.00006	•02000	17246
2510.00	.00031	1953.1	.00001		17404
3160.00	.00003	358.0	0.00000		11886
				MACROSCALE =	.0179

MICROSCALE = .0106(CURVE FIT)

MICROSCALE = .0102(INTEGRAL)

FREQ	F(N)X10000	F(N)X10000XN**2	E(N) X10000	DELAY	RU
10.00	181.96004	18196.0	42.49358	.00001	1.00000
12.60	200.98446	31908.2	46.93640	.00010	1.02427
15.90	263.64932	66653.1	61.57068	.00020	1.01382
20.00	157.65823	63063.2	36.81831	.00030	.99661
25.10	161.38784	101675.9	37.68930	.00040	.97240
31.60	98.31125	98169.6	22.95887	.00050	.93988
39.80	57.04029	137875.3	20.32673	.00060	.89839
50.10	65.12404	163461.9	15.20857	.00100	.67863
63.10	51.99698	207031.6	12.14298	.00150	.51537
79.40	30.62330	193060.3	7.15153	.00200	.55961
100.00	26.08876	260887.6	6.09257	.00250	.46798
126.00	15.42074	244819.7	3.60124	.00300	.42073
159.00	9.84421	248871.4	2.29894	.00350	.40642
200.00	8.07365	322946.2	1.88546	.00400	.31274
251.00	4.43391	279340.9	1.03546	.00450	.28944
316.00	2.94327	293904.0	.68735	.00500	.23060
398.00	1.87221	296566.9	.43722	.00600	.15192
501.00	.98776	247929.7	.23067	.00700	.06993
631.00	.47185	187875.9	.11019	.01000	04082
794.00	.23549	148461.6	.05499	.01300	08184
1000.00	.06569	65690.2	.01534	.01600	12894
1260.00	.01989	31592.9	.00464	.01900	18142
1590.00	.00634	16033.9	.00148	.02200	1835R
2000.00	.00111	4442.7	.00025	.02500	17087
2510.00	.00022	1447.9	.00005	.02800	16132
3160.00	.00002	281.2	0.0000	.03100	12390
				MACROSCALE	= .0152
				HICDOCCALE	- 0105/0000

- MICROSCALE = .0105(CHRVE FIT) MICROSCALE = .0077(INTEGRAL)

FREQ	F(N)X10000	F(N)X10000XN**2	E(N) X10000	DELAY	RU
10.00	198.16807	19816.8	12.70540	.00001	1.00000
12.00	291.40051	41961.6	18.68293	.00010	.97262
15.90	297.72932	75268.9	19.08870	.00020	.96671
20.00	182.39575	72958.3	11.69417	.00030	.95766
25.10	168.22319	105982.2	10.78551	.00040	•94565
31.60	107.73310	107627.8	6.91043	.00050	.93137
39.80	93.97873	148866.0	6.02537	.00060	•91568
50.10	70.31542	176492.4	4.50822	.00100	•84442
63.10	52.24253	208009.4	3.34949	.00150	•73829
79.40	34.74684	219056.6	2.22776	.00200	.63774
100.00	23.13816	231381.6	1.48348	.00250	• 54743
126.00	14.35153	227845.0	.92013	.00300	•46273
159.00	7.37645	186484.0	.47293	.00350	.38426
200.00	6.33760	253504.3	.40633	.00400	.31846
251.00	2.42568	152820.5	.15552	.00450	.26834
316.00	1.20765	120591.2	.07742	.00500	.23000
398.00	.48057	76125.0	.03081	.00600	•1725 7
501.00	.19904	41960.2	.01276	.00700	.13536
631.00	.06659	26515.3	.00426	.01000	01404
794.00	.01735	10942.1	.00111	.01300	09525
1000.00	.00447	4474.1	.00028	.01600	15696
1590.00	.00006	168.7	0.00000	•01900	16319
				MACROSCALE	= .0079
				MICROSCALE	= .0052(CURVE FIT)

MICROSCALE = .0061(INTEGRAL)

FREQ	F(N)X10000	F(N)X10000XN**2	E(N)X10000	DELAY	RU
10.00	120.70976	12070.9	6.73656	.00001	1.00000
12.60	143.21526	22736.8	7.99254	.00010	•99641
15.90	174.53712	44124.7	9.74055	•00020	.98316
20.00	157.83568	63134.2	8.80848	.00030	.96272
25.10	177.51851	111838.4	9.90693	.00040	.93735
31.60	93.68464	93549.7	5.22834	.00050	.90882
39.80	97.89790	155074.1	5.46347	.00060	.87815
50.10	65.09316	163384.5	3.63271	.00100	.75646
63.10	62.28749	248004.5	3.47613	.00150	.62791
79.40	36.19589	228191.9	2.02001	.00200	•49155
100.00	27.68567	276856.7	1.54507	.00250	.38692
126.00	18.09521	287279.6	1.00985	.00300	.30 897
159.00	10.97834	277543.4	.61267	.00350	.26163
200.00	10.03707	401483.1	.56014	.00400	.23254
251.00	5.14845	324357.6	.28732	•00450	.21404
316.00	3.21323	320861.2	.17932	.00500	.19003
398.00	1.74096	275775.9	.09715	.00600	.10437
501.00	.80630	202384.2	.04499	.00700	.01919
631.00	.35816	142605.7	.01998	.01000	11040
794.00	.16723	105427.8	.00933	.01300	13986
1000.00	.03989	39896.3	.00222	.01600	13377
1260.00	.01116	17726.6	.00062	.01900	13991
1590.00	.00243	6161.7	.00013	.02200	14676
2000.00	.00041	1659.5	.00002	.02500	13056
2510.00	.00003	198.3	0.00000	.02800	09925
				MACROSCALE	= .0182

MICROSCALE = .0115(CURVE FIT) MICROSCALE = .0109(INTEGRAL)

FREQ	F(N)X10000	F(N)X10000XN**2	E(N) X10000	DELAY	RU
10.00	169.09155	16909.1	76.66477	.00001	1.00000
12.60	151.60946	24069.5	68.73853	•00005	1.00715
15.90	204.95763	51815.3	92.92617	.00010	1.00116
20.00	132.35708	52942.8	60.00965	.00015	• 991 23
25.10	166.46494	104874.5	75.47389	.00020	•97 88 5
31.60	78.49571	78382.6	35.58934	•00025	.96494
39.80	81.58184	129228.9	36.98856	.00030	.95013
50.10	64.80703	162666.3	29.38300	•00050	. 88 3 9 7
63.10	52.24901	208035.2	23.68929	•00080	.78969
79.40	37.94375	239211.1	17.20340	.00100	.72206
100.00	27.51602	275160.2	12.47555	.00120	.64624
126.00	17.98433	285519.3	8.15395	•00150	• 54189
159.00	10.29475	260261.5	4.66755	.00180	.45781
200.00	10.15293	406117.2	4.60325	.00200	•41658
251.00	5.60227	352949.1	2.54002	.00220	•39131
316.00	3.94026	393459.1	1.78648	.00250	.37347
398.00	2.19196	347216.3	.99382	.00300	.36812
501.00	1.29075	323981.8	.58522	•00350	• 32994
631.00	.68938	274487.1	.31256	•00500	.17802
794.00	.37201	234533.8	.16867	•00650	•04799
1000.00	.18182	181823.5	.08243	.00800	01671
1260.00	.08168	129681.8	.03703	.00950	04230
1590.00	.03261	82462.4	.01478	.01100	06055
2000.00	.01029	41160.7	.00466	.01250	07604
2510.00	.00357	22502.8	.00161	•01400	08777
3160.00	.00072	7287.0	.00033	.01550	10580
3980.00	.00011	1856.1	.00005	.01700	13315
				MACROSCALE	= .0170
				MICROSCALE	= .0084(CURVE FIT)
398.00 501.00 631.00 794.00 1000.00 1260.00 1590.00 2000.00 2510.00 3160.00	2.19196 1.29075 .68938 .37201 .18182 .08168 .03261 .01029 .00357 .00072	347216.3 323981.8 274487.1 234533.8 181823.5 129681.8 82462.4 41160.7 22502.8 7287.0	.99382 .58522 .31256 .16867 .08243 .03703 .01478 .00466 .00161 .00033	.00300 .00350 .00500 .00650 .00800 .00950 .01100 .01250 .01400 .01550 .01700 MACROSCALE	• 36 81 2 • 32994 • 17 80 2 • 04 799 • 016 71 • 04 2 30 • 06 05 5 • 076 04 • 08 777 • 105 80 • 1331 5 = • 01 70

MICROSCALE = .0074(INTEGRAL)

FREQ	F(N)X10000	F(N)X10000XN**2	E(N)X10000	DELAY	RU
10.00	229.99944	22999.9	15.46733	.00001	1.00000
12.60	243.27545	38622.4	16.36014	.00020	.99692
15.90	299.49244	75714.6	20.14070	•00040	•93043
20.00	209.69045	83876.1	14.10156	•00060	.95503
25.10	172.70097	108803.3	11.61404	.00080	.92344
31.60	112.92235	112759.7	7.59396	.00100	.88782
39.80	95.77122	151705.4	6.44056	•00120	.84920
50.10	71.65657	179858.7	4.81886	.00140	.80840
63.10	57.34653	228331.5	3.85652	•00200	.68696
79.40	33.61245	211 90 4 . 9	2.26041	.00250	•59285
100.00	24.44882	244488.2	1.64416	•00300	.50568
126.00	12.61708	200308.8	.84849	.00350	.42720
159.00	6.72501	170014.9	•45225	.00400	.36325
200.00	4.66581	186632.4	•31377	.00450	•31474
251.00	1.82973	115275.3	.12304	.00500	.27516
316.00	.89065	88936.7	.05989	.00600	.19772
398.00	.33910	53715.7	.02280	.00700	.11548
501.00	.09864	24759.1	.00663		03049
631.00	.02505	∂977.1	.00168		09867
794.00	.00479	3022.3	.00032		15554
1000.00	.00060	603.8	.00004		19379
1260.00	.00003	53.7	0.00000		20601
				MACROSCALE =	.0087

MACROSCALE = .0087 MICRUSCALE = .0080(CURVE FIT) MICRUSCALE = .0071(INTEGRAL)

FREQ	F(N)X10000	F(N)X1000)XN##2	E(M) X10000	DELAY	RU
10.00	91.71143	9171.1	3.45065	.00001	1.00000
12.60	141.94384	22535.0	5.34065	.00010	1.00927
15.90	225.15076	56 420 . 3	8.47132	.00020	.99184
20.00	142.40175	56960.7	5.35788	.00030	.96625
25.10	132.65054	83571.1	4.99099	.00040	.93587
31.60	92.37172	92238.7	3.47549	.00050	.90307
39.80	97.45910	154379.1	3.66691	.00060	.86846
50.10	62.39087	156601.7	2.34746	.00100	.73532
63.10	53.94545	222752.9	2.10495	.00150	.60404
79.40	37.28147	235035.8	1.40272	.00200	.46866
100.00	29.08469	290846.9	1.09431	.00250	.37093
126.00	17.52937	278296.3	.65954	.00300	.29923
159.00	10.90278	275633.3	.41021	.00350	.25559
200.00	12.25905	490362.0	.46124	•00 4 00	.22725
251.00	5.51593	347509.7	.20753	•00450	.21003
316.00	4.22337	421729.3	.15890	.00500	.13911
398.00	2.10947	334149.8	.07936	.00600	.11189
501.00	1.01940	255672.7	.03835	•00 70 0	.03048
631.00	•57579	229257.8	.02166	•01000	09276
794.00	.21809	137496.1	.00820	.01300	12659
1000.00	.08415	84156.2	.00316	• 0 16 0 0	12748
1260.00	.02510	37858.8	.00094	•01900	13939
1590.00	.00901	22793.8	.00033	.02200	15320
2000.00	.00186	7451.1	.00007	.02500	14507
2510.00	.00041	2597.5	.00001	.02800	11797
				MACROSCALE	= .0174

MICROSCALE = .0105(CURVE FIT) MICROSCALE = .0092(INTEGRAL)

FREQ	E(1.)X10000	F(M)X10000XM**2	E(N)X10000	DELAY	RU	
10.00	225.40401	22540.4	8.48085	•00001	1.00000	
12.60	243.66306	39478.5	9.35616	.00010	.98924	
15.90	154.61885		5.81755	.00020	.97554	
20.00	147.52573	59010.2	5.55067	.00030	.95517	
25.10	170.33439		6.41073	.00040	•93094	
31.60	117.96456	117794.6	4.43843	.00050	.90534	
38.90	99.24091	150172.3	3.73395	.00050	.87941	
50.10	99.84965	142093.2	2.13897	.00100	.76941	
63.10	49.64309		1.86782	.00150	.64751	
79.40	35.69244		1.38055	.00200	.53012	
100.00	24.42980	244298.0	.91917	.00250	•42120	
126.00	15.96719	253495.1	.60076	.00300	.34436	
159.00	9.68727	244903.9	.36448	.00350	.29484	
200.00	3.26234	330493.9	.31087	.00400	.26726	
251.00	4.47909	282187.7	.16852	.00450	.25154	
316.00	2.93806	293383.4	.11054	.00500	.22855	
398.00	1.61938	256517.5	.06092	.00600	.14279	
501.00	•34868	213021.5	.03193	.00700	.05542	
631.00	•43136	171951.1	.01624	.01000	08731	
794.00	.17049	107489.2	.00641	.01300	13000	
1000.00	.07792	77924.1	.00293	.01600	12425	
1260.00	•02191	34793.7	.00082	•01900	12532	
1590.00	.00619	15660.9	.00023	.02200	13652	
2000.00	.00162	6483.4	.00006	.02500	13518	
				MACROSCALE	• 0191	

MICROSCALE = .0112(CURVE FIT)
MICROSCALE = .0104(INTEGRAL)

FREQ	F(N)X10000	F(N)X10000XN**2	E(N) X10000	DELAY	RU
10.00	172.59107	17259.1	58.12692	.00001	1.00000
12.60	206.60184	32800.1	69.58140	.00010	.97082
15.90	247.01356	62447.4	83.19166	.00020	.96194
20.00	158.67075	63468.3	53.43870	.00030	.94780
25.10	167.57214	105572.1	56.43659	.00040	.92987
31.60	95.56022	95422.6	32.18371	•00050	.90944
39.80	83.77723	132706.4	28.21532	.00060	.88732
50.10	68.79451	172674.9	23.16929	.00100	.78658
63.10	59.71022	237742.8	20.10979	.00150	•65979
79.80	37.15600	236610.9	12.51376	•00200	.53372
100.00	30.12147	301214.7	10.14460	.00250	.41733
126.00	16.41224	260560.7	5.52747	.00300	.33426
159.00	9.95728	251729.9	3.35351	•00350	.28377
200.00	7.43547	297418.9	2.50419	•00400	.25904
251.00	3.81397	240284.3	1.28450	.00450	•24777
316.00	2.29938	229607.0	.77440	.00500	.22876
398.00	1.15194	182472.5	.38796	.00600	.14619
501.00	• 46950	117846.8	.15812	.00700	.06369
631.00	.19566	77906.7	.06589	.01000	05835
798.00	.07942		.02675	.01300	09742
1000.00	.02147	21479.8	.00723	.01600	11458
1260.00	.00615		.00207	.01900	14726
1590.00	.00202		.00068	.02200	17507
2000.00	.00024	980.6	.00008	.02500	17400
				MACROSCALE	= .0186

•02500 -•17400 MACROSCALE = •0186 MICROSCALE = •0118(CURVE FIT) MICROSCALE = •0124(INTEGRAL)

RUN NO. 14 AT R/A= .85, U= 2.50

FREQ	E(N)X10000	F(N)X10000XN**2	E(N) X10000	DELAY	RU	
10.00	253.47559	25347.5	20.44432			
		한다. 것 같은 것 같아요.	2003년 2016년 - 11 - 21 (2016년 1986) - 11 - 12 (2016년 1986)	.00001	1.00000	
12.60	176.93966	28090.9	14.27124	•00020	1.02526	
15.90	313.81220	79 334 . 8	25.31083	•00040	1.00248	
20.00	200.69613	80278.4	16.18734	.00060	.96830	
25.10	215.53236	135787.5	17.38397	.00080	.92626	
31.60	109.63284	109474.9	8.84254	.00100	.87885	
50.10	95.01932	238499.4	7.66387	.00120	.82785	
63.10	86.56392	344663.7	6.98189	.00140	.77507	
79.40	57.87407	364858.9	4.66789	.00200	.62019	
100.00	32.75049	327504.9	2.64152	.00250	.50173	
126.00	20.32737	322717.3	1.63952	.00300	.40401	
159.00	12.22344	309020.8	.98589	.00350	.33758	
200.00	5.37143	214857.5	•43323	•00400	.29567	
251.00	3.83326	241499.4	.30917	.00450	.25882	64.1
316.00	1.55357	155134.0	.12530	.00500	.21503	
398.00	.50668	80261.2	.04086	.00600	.10660	
501.00	.20724	52018.8	.01671	.00700	.02277	
631.00	.07397	29454.2	.00596	.01000	06017	
798.00	.03146	20038.1	.00253	.01300	07103	
1000.00	.00897	8975.6	.00072	.01600	12571	
1260.00	.00122	1943.0	.00009	.01900	17759	
				MACROSCALE		

241

MICROSCALE = .0070(CURVE FIT) MICROSCALE = .0054(INTEGRAL)

RUN NO. 15 AT R/A=0.00, U= 7.21

	FREQ	F(N)X10000	F(N)X10000XN**2	E(N)X10000	DELAY	RU
	10.00	22.88963	2288.9	1.35938	.00001	1.00000
	12.60	65.52540	10402.8	3.89146	.00010	1.04120
	15.90	284.48134	71919.7	16.89498	.00020	1.01689
	20.00	158.87590	63550.3	9.43543	.00030	.98598
	25.10	150.67520	94926.8	8.94840	.00040	.95172
	31.60	116.71303	116544.9	6.93143	.00050	.91597
	39.80	100.31339	158900.4	5.95748	.00060	. 88 3 2 1
4)	50.10	66.50851	166937.0	3.94985	.00100	.76311
*	63.10	52.51848	209108.1	3.11900	.00150	• 59874
	79.40	34.99777	220638.5	2.07847	.00200	.48487
	100.00	23.99686	239968.6	1.42514	.00250	.43941
	126.00	15.38099	244188.5	.91345	.00300	.42326
	159.00	9.90306	250359.3	.58813	•00350	.37757
	200.00	9.32157	372863.0	.55359	.00400	.30030
	251.00	5.50674	346930.3	.32703	•00450	.23968
	316.00	3.85766	385211.1	.22910	.00500	.20584
	398.00	2.43370		.14453	.00600	.10001
	501.00	1.34275	337034.0	.07974	.00700	.02522
	631.00	.82775	329580.8	.04915	.01000	10188
	798.00	.42675	271760.7	.02534	.01300	12492
	1000.00	.21168	211680.3	.01257	.01600	16408
	1260.00	.07089	112553.1	.00421	•01900	19856
	1590.00	.03338	84405.8	.00198	.02200	19350
	2000.00	.01059	42387.7	.00062	.02500	16508
	2510.00	.00283	17868.6	.00016	.02800	13683
	3160.00	.00075	7493.5	.00004	.03400	05318
	3980.00	.00016	2570.8	0.00000	.03700	01996
					MACROSCALE	= .0201

242

MICROSCALE = .0110(CURVE FIT) MICROSCALE = .0078(INTEGRAL)

FREQ	F(N)X10000	F(N)X10000XN**2	E(N)X10000	DELAY	RU
10.00	22.91575	2291.5	11.22653	.00001	1.00000
12.60	51.07280	8108.3	25.02081	.00010	.95719
15.90	254.03991	64223.8	124.45537	.00020	.92047
20.00	134.30980	53723.9	65.79901	.00030	.87760
25.10	126.75351	79855.9	62.09715	.00040	.83373
31.60	108.35122	108195.1	53.08178	.00050	•79448
39.80	88.62367	140383.4	43.41716	.00060	.76035
50.10	62.35793	156519.0	30.54945	.00100	.60561
63.10	55.91592	222635.3	27.39347	.00150	•45654
79.40	35.03771	220890.3	17.16514	.00200	•40068
100.00	24.02424	240242.4	11.76959	.00250	.38186
126.00	16.44222	261036.7	8.05512	.00300	.31636
159.00	10.56431	267076.4	5.17550	•00350	.24203
200.00	11.81108	472443.2	5.78630	.00400	.20555
251.00	6.39380	402816.2	3.13235	.00450	.15426
316.00	4.22114	421506.6	2.06795	.00500	.09126
398.00	2.78831	441679.8	1.36600	.00600	.02863
501.00	1.86061	467015.3	•91152	.00700	02994
631.00	1.19333	475138.0	•58461	.01000	07882
794.00	• 66756	420859.6	.32704	.01300	11765
1000.00	• 41536	415366.9	.20349	.01600	14830
1260.00	•18664	296313.9	.09143	.01900	13390
1590.00	.10012	253131.3	.04905	.02200	11678
2000.00	•04243	169744.2	.02078	.02500	09442
2510.00	•01741	109687.2	.00852	.02800	06962
3160.00	.00676	67519.1	.00331	.03100	05636
3980.00	.00186	29484.8	.00091	•03400	04108
5010.00	.00050	12758.8	.00024	.03700	02532
6310.00	.00012	4814.7	.00005	•04000	01031
				MACROSCALE	• 0157
				HICDOCCAL F	- 000//010

MICROSCALE = .0084(CURVE FIT)

MICROSCALE = .0057(INTEGRAL)

RUN NO. 15 AT R/A= .85, U= 2.76

FREQ	F(N)X10000	F(N)X10000XN**2	E(N)X10000	DELAY	RU .
10.00	26.20263	2620.2	1.88579	•00001	1.00000
12.60	78.73141	12499.4	5.66628	.00010	.96097
15.90	304.89127	77079.5	21.94298	.00020	.95318
20.00	196.91652	78766.6	14.17205	.00030	.94119
25.10	170.09635	107162.4	12.24181	.00040	.92589
31.60	120.73603	120562.1	8.68935	.00050	.90805
39.80	102.42782	162249.7	7.37171	.00060	. 88 834
50.10	81.54906	204688.9	5.86907	.00100	.79684
63.10	57.02943	227068.9	4.10440	.00150	.67632
79.40	38.00382	239589.8	2.73513	.00200	.55296
100.00	27.92986	279298.6	2.01010	.00250	.43760
126.00	15.79771	250804.4	1.13695	.00300	.35249
159.00	8.92108	225533.9	.64204	.00350	.29862
200.00	8.23477	329390.8	.59265	.00400	.26918
251.00	3.13427	197462.4	.22557	.00600	.13192
316.00	1.96267	195984.8	.14125	.00800	00429
398.00	.92296	146201.9	.06642	.01000	11028
501.00	•44691	112177.2	.03216	.01400	15220
631.00	.14951	59529.9	.01076	.01800	15623
794.00	.05235	33009.1	.00376	.02200	18659
1000.00	.01484	14843.5	.00106	.02600	17618
1260.00	.00318	5061.3	.00022	.03000	12727
1590.00	.00076	1921.6	.00005	.03400	08004
2000.00	.00011	476.5	0.00000	.03800	03134
				MACROSCALE	= .0074

MICROSCALE = .0055(INTEGRAL)

MICROSCALE = .0050(CURVE FIT)

FREQ	F(N)X10000	F(🖂)X1000)X**2	E(N) X10000		DELAY	RU	
10.00	352.31104	35281.1	95.52416		.00001	1.00000	
12.60	241.27367	38304.6	65.32523		.00010	1.01154	
15.90	178.72518	45183.5	48.39013		.00020	.99135	
20.00	170.90156	68360.6	46.27187		.00030	.96353	
25.10	152.07121	95806.3	41.17352		.00040	.93363	
31.60	107.12952	106975.2	29.00549		.00050	.90398	
39.80	78.54662	124420.9	21.26662		.00060	.87398	
50.10	63.20320	158640.6	17.11236		.00100	.76279	
63.10	38.13117	151823.4	10.32407		.00150	.65591	
79.40	29.35737	185079.4	7.94855		.00200	.54033	
100.00	21.32357	218235.7	5.90876	2	.00250	.45409	
126.00	12.93766	205398.4	3.50289	365	.00300	.38894	
159.00	12.93449	326996.9	3.50203		.00350	.34860	
200.00	8.02485	320994.0	2.17274		.00400	.32093	
251.00	4.46557	281335.4	1.20906		.00450	.30128	
316.00	3.20838	320376.3	.86867		.00500	.27657	
398.00	1.86577	295546.6	.50516		.00600	.19687	
501.00	1.14513	287430.7	.31004		.00700	.11566	
631.00	. 65068	263058.9	.17888	÷.	.01000	03332	
794.00	.31061	195824.0	•08410		.01300	09893	
1000.00	.15301	153011.0	.04142		.01600	12277	
1260.00	•05184	82304.2	.01403		.01900	14536	
1590.00	• 02066	52255.6	.00559		.02200	16484	
2000.00	.00607	24290.6	.00164		.02500	16354	
2500.00	.00177	11123.6	.00048		.02800	14388	
					MACROSCALE		

.02000		• 14500
MACROSCALE	=	•0166
MICROSCALE	=	.0084(CURVE FIT)
HICROSCALE	=	.0068(IMTEGRAL)

FREQ	F(N)X10000	F(N)X1000)XN**2	E(N) X10000	DELAY	RU	
10.00	449.82068	44982.0	32.37353	.00001	1.00000	
12.60	310.12080	47234.7	22.31935	.00010	•99462	
15.90	144.93656	36641.4	10.43106	.00020	.98 863	
20.00	198.73486	79493.9	14.30292	.00030	.97808	
25.10	179.32843	112978.7	12.90624	.00040	.96424	
31.60	104.78571	104634.8	7.54141	.00050	.94758	
39.80	84.91000	134500.8	6.11096	.00060	.92888	
50.10	64.02359	160700.1	4.50777	.00100	.84416	
63.10	41.22034	164123.3	2.96662	.00150	.73536	
79.40	32.56919	205327.9	2.34400	.00200	.63319	
100.00	24.05969	240596.9	1.73157	.00250	•54575	
126.00	13.27863	210811.5	.95566	.00300	•46398	
159.00	11.19286	282966.7	.80554	.00350	.38949	
200.00	5.38817	215527.0	.38778	.00400	.32816	
251.00	2.81938	177623.8	.20291	.00450	.28381	
316.00	1.58269	158041.7	.11390	.00500	.25071	
398.00	.68785	108958.5	.04950	.00600	.19860	
501.00	.29786	74763.8	.02143	.00700	. 15770	
631.00	.09872	39307.1	.00710	.01000	00096	
794.00	.03040	19168.3	.00218	.01300	−. 08863	
1000.00	.00869	8694.4	.00062	.01600	14297	
				MACROSCALE	= .0090	
				MICDOSCALE	- 0041/CUDVE EIT)	

MICROSCALE = .0061(CURVE FIT) MICROSCALE = .0063(INTEGRAL)

FREQ	F(N)X10000	F(N)X10007XN**2	E(N) X10000	DELAY	RU
10.00	60.85260	6085.2	8.23355	.00001	1.00000
12.60	62.43830	9912.7	8.44810	.00005	.99151
15.90	130.27763	32935.4	17.62699	.00010	.97213
20.00	75.84274	30337.0	10.26177	.00015	.94546
25.10	83.63168	52688.7	11.31564	.00020	.91560
31.60	65.49854	65404.2	8.86217	.00025	.88435
39.80	59.11614	93642.3	7.99861	.00030	.85160
50.10	53.87980	135238.8	7.29011	.00050	.72765
63.10	52.54750	209223.6	7.10985	.00080	.57577
79.40	39.34590	248050.7	5.32363	.00100	.46900
100.00	33.29529	332952.9	4.50496	.00120	.39627
126.00	25.48235	404557.8	3.44784	.00150	.34215
159.00	14.83234	374976.5	2.00686	.00180	.32646
200.00	13.96706	558682.4	1.88978	.00200	.30502
251.00	8.52612	537154.1	1.15361	.00220	.27024
316.00	6.35352	634438.0	.85965	.00250	.20453
398.00	4.17589	661478.8	•56501	.00300	.13728
501.00	2.51878	632217.4	.34079	.00350	.09114
631.00	1.70669	679538.1	.23092	.00500	00490
794.00	1.06920	674063.5	.14466	.00650	03122
1000.00	.62784	627848.0	.08494	.00800	05058
1260.00	.28224	448099.5	.03818	.00950	05453
1590.00	•14449	365291.9	.01955	.01100	04731
2000.00	.05782	231286.6	.00782	.01250	05645
2510.00	.02468	155545.1	.00334	.01400	07252
3160.00	.00857	85629.1	.00116	.01550	07412
3980.00	.00426	67497.1	.00057	.01700	07016
5010.00	.00243	61099.8	.00032	.01850	07026
				MACROSCALE	= .0123

MICROSCALE = .0057(INTEGRAL)

FREQ	F(N)X10000	F(N)X10000XN**2	E(N)X10000	DELAY	RU
10.00	35.94802	3594.8	13.30180	.00001	1.00000
12.60	33.42881	5307.1	12.36962	•00005	.95912
15.90	82.21873	20785.7	30.42330	.00010	.88242
20.00	43.83109	17532.4	16.21877	.00015	.83000
25.10	48.92371	30822.4	18.10318	.00020	.78355
31.60	33.09201	33044.3	12.24500	.00025	.72751
39.80	34.49374	54639.4	12.76368	.00030	.68147
50.10	37.03048	92946.8	13.70235	.00050	.55471
63.10	33.57490	133682.1	12.42368	.00080	.35468
79.40	31.87804	200 970.6	11.79579	.00100	.24186
100.00	27.43578	274357.8	10.15203	.00120	.15626
126.00	21.60817	343051.4	7.99565	.00150	.11643
159.00	14.69958	371620.1	5.43927	.00180	.13971
200.00	16.19976	647990.6	5.99438	.00200	.15026
251.00	10.93325	688805.9	4.04562	.00220	.13786
316.00	8.30471	829275.9	3.07298	.00250	.08587
398.00	6.09996	966258.3	2.25716	.00300	.05993
501.00	3.91238	982012.2	1.44769	.00350	.05418
631.00	2.53818	1010604.3	.93919	.00500	02271
798.00	1.82538	1162410.2	.67544	.00650	05112
1000.00	1.36974	1369743.7	.50684	.00800	03936
1260.00	.87904	1395575.9	.32527	.00950	02012
1590.00	• 57540	1454678.8	.21291	.01100	01904
2000.00	.35815	1432602.7	.13252	.01250	03314
2510.00	.22021	1387376.0	.08148	.01400	04396
3160.00	.11181	1116547.9	.04137	.01550	04095
3980.00	.07773	1231290.6	.02876	.01700	03192
5010.00	.09724	2440753.7	.03598	.01850	02971
6310.00	•01058	421502.0	.00391	.02000	03682
7940.00	.00185	116639.5	.00068	.02150	04367
				MACROSCALE	= .0132

MICROSCALE = .0132 MICROSCALE = .0076(CUPVE FIT) MICROSCALE = .0037(INTEGRAL)

FREQ	F(N)X10000	F(N)X10000XN**2	E(N)X10000	DELAY	RU
10.00	2.08882	208.8	1.51543	.00001	1.00000
12.60	5.46363	867.4	3.96384	.00005	.88661
15.90	24.53849	6203.5	17.80255	.00010	.67032
20.00	26.47631	10590.5	19.20843	.00015	.56775
25.10	25.21442	15885.3	18.29294	.00020	.52742
31.60	23.37625	23342.5	16.95935	.00025	•44919
39.80	21.01522	33288.9	15.24644	.00030	•40369
50.10	20.88106	52411.5	15.14910	.00050	.31202
63.10	21.32469	84 90 6 . 6	15.47096	.00080	.17099
79.40	18.01485	113572.1	13.06968	•00100	.10814
100.00	17.57975	175797.5	12.75402	.00120	.05903
126.00	14.82566	235372.1	10.75594	.00150	.03645
159.00	10.36782	262109.0	7.52180	.00180	.04944
200.00	13.61044	544417.8	9.87431	.00200	.05794
251.00	8.19577	516341.7	5.94599	.00220	.05190
316.00	7.64170	763069.7	5.54401	.00250	.02445
398.00	5.81351	920884.2	4.21767	•00300	.01232
501.00	4.23997	1064238.3	3.07608	.00350	.01093
631.00	3.70136	1473740.9	2.68532	.00500	02393
794.00	2.62774	1656526.3	1.90641	.00650	03643
1000.00	2.33737	2337377.8	1.69575	.00800	03077
1260.00	1.56247	2480579.1	1.13356	•00950	02139
1590.00	1.36338	3446783.4	.98913	•01100	01986
2000.00	1.06001	4240056.0	.76903	.01250	02527
2510.00	.81029	5104969.0	.58786	.01400	02955
3160.00	• 52431	5235618.5	.38038	•01550	02729
3980.00	•31637	5011509.4	.22952	.01700	02142
5010.00	.13179	3308073.9	.09561	•01850	01796
6310.00	.04129	1644155.6	.02995	.02000	01908
7940.00	.01600	1008713.8	•01150	.02150	02088
				MACROSCALE	= .0104
				MICROSCALE	= 0077(CUP

MICROSCALF = .0077(CURVE FIT)MICROSCALE = .0034(INTEGRAL)

FREQ	E(N) Y 10000	F(N)X10000XN**2	E(N) VI 0000	DELAV	DII
				DELAY	RU
10.00	51.94576	5194.5	0.00000	.00001	1.00000
12.60	77.89236	12366.1	0.00000	.00005	.95207
15.90	253.94148	64198.9	0.00000	.00010	.87770
20.00	134.70107	53880.4	0.00000	.00015	.83237
25.10	87.27894	54986.6	0.00000	.00020	• 79985
31.60	58.17053	58086.7	0.00000	.00025	•75655
39.80	43.63783	67124.0	0.00000	.00030	.72367
50.10	40.46120	101558.0	0.00000	.00050	.63509
63.10	33.69204	134148.5	0.00000	.00080	.48696
79.40	22.50233	141862.8	0.00000	.00100	.40333
100.00	17.97792	179779.2	0.00000	.00120	.34029
126.00	14.89568	236483.8	0.00000	.00150	.31022
159.00	11.07954	280101.9	0.00000	.00180	.32309
200.00	11.55627	462251.0	0.00000	.00200	.32622
251.00	7.69737	484942.1	0.00000	.00220	.31261
316.00	6.67904	666943.0	0.00000	.00250	.27117
398.00	4.38984	695369.3	0.00000	.00300	.24222
501.00	3.20292	803937.2	0.00000	.00350	.22303
631.00	2.08498	830161.0	0.00000	.00500	.12370
794.00	1.17232	739072.7	0.00000	.00650	.05358
1000.00	1.10702	1107028.4	0.00000	.00800	.01807
1260.00	.67043	1064374.9	0.00000	.00950	.00023
1590.00	• 55922	1413780.3	0.00000	.01100	02028
2000.00	.36904	1476192.4	0.00000	.01250	05031
2510.00	.23978	1510651.6	0.00000	.01400	08220
3160.00	.12432	1241488.6	0.00000	.01550	10531
3980.00	.10457	1656575.8	0.00000	.01700	11682
5010.00	.07416	1861509.1	0.00000	.01850	12170
6310.00	.01021	406548.1	0.00000	.02000	12529
7940.00	.00118	74909.7	0.00000	.02150	12758
				MACROSCALE	= .0390
				MICROSCALE	= .0111(CUR

MICROSCALE = .0111(CURVE FIT) MICROSCALE = .0052(INTEGRAL)

FREQ	F(N)X10000	F(N)X10000XN**2	E(N) X10000	DELAY	RU
10.00	55.25930	5525.9	0.00000	.00001	1.00000
12.60	86.67020	13759.7	0.00000	.00005	.98073
15.90	180.83752	45717.5	0.00000	.00010	.92318
20.00	125.28810	50115.2	0.00000	.00015	.88463
25.10	84.59757	53297.3	0.00000	.00020	.85250
31.60	61.88113	61792.0	0.00000	.00025	.81003
39.80	43.32130	69414.6	0.00000	.00030	•77299
50.10	39.21817	98437.9	0.00000	.00050	.64965
63.10	34.84566	138741.8	0.00000	.00080	•46653
79.40	24.27368	153030.0	0.00000	.00100	.37562
100.00	20.00389	200038.9	0.00000	.00120	•31411
126.00	15.16439	240749.9	0.00000	.00150	.28553
159.00	11.95170	302151.1	0.00000	.00180	.29602
200.00	14.97241	598896.6	0.00000	.00200	.29928
251.00	9.35115	589132.0	0.00000	.00220	.28710
316.00	7.75133	774016.9	0.00000	.00250	.24621
398.00	4.59788	728323.7	0.00000	.00230	.21684
501.00	3.77042	946381.0	0.00000	.00350	.20086
631.00	2.57058	1023505.2	0.00000	.00500	.10448
794.00	1.36304	859315.6	0.00000	.00650	.03791
1000.00	.88101	881010.3	0.00000	.00800	.00510
1260.00	.47742	757965.6	0.00000	.00950	00970
1590.00	•34350	881068.0	0.00000	.01100	02728
2000.00	.23915	956636.0	0.00000	.01250	05397
2510.00	.17075	1075769.4	0.00000	.01400	08256
3160.00	.10497	1048249.7	0.00000	.01550	10237
3980.00	.04985	789706.8	0.00000	.01700	11101
5010.00	.05596	1404747.6	0.00000	.01850	11334
6310.00	.01047	416897.5	0.00000	.02000	11487
7940.00	.00139	88182.4	0.00000	.02150	11545
				MACROSCALE	

MACROSCALE = .0360 MICROSCALE = .0124(CURVE FIT)

MICROSCALE = .0060(INTEGRAL)

F(N)X10000	F(N)X10000XN**2	E(N)X10000	DELAY	RU
36.15089	3615.0	0.00000	.00001	1.00000
38.59147	6126.7	0.00000		.95235
91.61521	23161.2	0.00000		.84967
44.07845	17631.3	0.00000		.76270
57.74144	36377.6	0.00000	.00020	.68589
40.43293	40424.6	0.00000	.00025	.59483
34.68840	54947.8	0.00000	.00030	.52017
25.41294	63786.7	0.00000	.00050	.37447
26.42212	105202.5	0.00000	.00080	.23774
19.21475	121136.7	0.00000	.00100	.19319
15.83483	158348.3	0.00000	.00120	.15480
13.34918	211931.6	0.00000	.00150	.13855
10.06136	254361.3	0.00000	.00180	.13966
12.68345	507338.0	0.00000	.00200	.14220
9.36848	590223.7	0.00000	.00220	.13807
8.83563	882291.2	0.00000	.00250	.10861
5.80727	919896.1	0.00000	.00300	.09473
5.60487	1406827.9	0.00000	.00350	.08450
4.21944	1680018.6	0.00000	.00500	.02982
3.10230	1955804.1	0.00000	.00650	00489
2.64083	2640837.2	0.00000	.00800	01780
1.42409	2260885.9	0.00000	.00950	02033
.82008	2073254.2	0.00000	.01100	02577
.39708	1588357.8	0.00000	.01250	03645
.28028	1765806.9	0.00000	.01400	04688
.11642	1162592.8	0.00000	.01550	05141
.08233	1304267.4	0.00000	.01700	05075
.06379	1601252.7	0.00000	.01850	04847
.00413	154800.1	0.00000	.02000	04735
.00186	117297.7	0.00000	.02150	04649
			MACROSCALE	= .0179
	36.15089 38.59147 91.61521 44.07845 57.74144 40.43293 34.68840 25.41294 26.42212 19.21475 15.83483 13.34918 10.06136 12.68345 9.36848 8.83563 5.80727 5.60487 4.21944 3.10230 2.64083 1.42409 .82008 .39708 .28028 .11642 .08233 .06379 .00413	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	38.59147 6126.7 0.00000 91.61521 23161.2 0.00000 44.07845 17631.3 0.00000 57.74144 36377.6 0.00000 40.43293 40424.6 0.00000 34.63840 54947.8 0.00000 25.41294 63786.7 0.00000 26.42212 105202.5 0.00000 19.21475 121136.7 0.00000 15.83483 158348.3 0.00000 13.34918 211931.6 0.00000 10.06136 254361.3 0.00000 12.68345 507338.0 0.00000 9.36848 590223.7 0.00000 8.83563 882291.2 0.00000 5.60487 1406827.9 0.00000 5.60487 1406827.9 0.00000 2.64083 2640837.2 0.00000 1.42409 2260885.9 0.00000 82008 2073254.2 0.00000 $.39708$ 1588357.8 0.00000 $.28028$ 1765806.9 0.00000 $.28028$ 1765806.9 0.00000 $.08233$ 1304267.4 0.00000 $.06379$ 1601252.7 0.00000	$\begin{array}{cccccccccccccccccccccccccccccccccccc$

• U I I MICROSCALE = .0083(CURVE FIT) MICROSCALE = .0050(INTEGRAL)

FREQ	F(N)X10000	F(N)X10000XN**2	E(N) X10000	DELAY	RU
10.00	33.45995	3345.9	21.05983	.00001	1.00000
12.60	28.47485	4520.6	17.92219	.00005	.97171
15.90	89.39916	22601.0	56.26820	.00010	.91614
20.00	66.04292	26417.1	41.56769	.00015	.86607
25.10	55.21975	34788.9	34.75554	.00020	.81609
31.60	44.94643	44881.7	28.28947	.00025	.75695
39.80	44.31260	70192.9	27.89054	.00030	.70315
50.10	35.11273	88133.3	22.10010	.00050	.54703
63.10	37.73828	150259.1	23.75263	.00080	.34409
79.80	28.45380	181194.9	17.90894	.00100	.25183
100.00	22.90022	229002.2	14.41349	.00120	.18942
126.00	16.91204	268495.5	10.64451	.00150	.16328
159.00	13.19789	333655.9	8.30680	.00180	.17344
200.00	15.01524	600609.6	9.45065	.00200	.17708
251.00	11.78230	742296.8	7.41583	.00220	.16653
316.00	10.64433	1062901.0	6.69959	.00250	.12556
398.00	7.93834	1257465.6	4.99642	.00300	.10113
501.00	3.91504	982681.2	2.46414	.00350	.08929
631.00	2.77701	1105699.5	1.74786	.00500	.01104
794.00	1.95042	1229621.0	1.22760	.00650	03179
1000.00	1.35316	1353160.5	.85168	.00800	03995
1260.00	.70340	1116730.7	.44272	.00950	03327
1590.00	.38726	979045.1	.24374	.01100	03334
2000.00	.20579	823199.9	.12953	.01250	04399
2510.00	.12510	788178.2	.07874	•01400	05616
3160.00	.06642	663257.5	.04180	.01550	06039
3980.00	.04349	689025.7	.02737	.01700	05753
5010.00	•03458	868033.3	.02176	.01850	05405
6310.00	.00611	243499.7	.00384	.02000	05429
7940.00	.00087	55391.0	.00055	.02150	05568
				MACROSCALE	= .0206

MACRUSCALE 206 • 0 MICROSCALE = .0104(CURVE FIT) MICROSCALE = .0063(INTEGRAL)

FREQ	F(N)X10000	F(N)X10000XN**2	E(N)X10000	DELAY	RU
10.00	14.26673	1426.6	13.81385	.00001	1.00000
12.60	18.80233	2985.0	18.20547	.00005	.96171
15.90	44.63629	11284.5	43.21935	.00010	.88725
20.00	33.55574	13422.2	32.49055	.00015	.82312
25.10	37.45449	23596.7	36.26553	.00020	.76018
31.60	31.64587	31600.3	30.64131	.00025	.68544
39.80	29.26022	46349.3	28.33139	.00030	.61869
50.10	28.34940	71157.2	27.44948	.00050	.43634
63.10	27.71916	110366.8	26.83924	•00080	.21754
79.40	21.35742	134644.8	20.67945	.00100	.13035
100.00	21.00399	210039.9	20.33724	.00120	.07802
126.00	17.44883	277017.7	16.89493	.00150	.06835
159.00	13.00488	328776.4	12.59205	.00180	.07985
200.00	15.49182	619673.1	15.00005	.00200	.08055
251.00	13.21286	832423.7	12.79343	.00220	.07104
316.00	11.46486	1144835.9	11.10092	.00250	.04081
398.00	9.94708	1575657.6	9.63132	.00300	.03418
501.00	6.03403	1514549.5	5.84249	•00350	.02589
631.00	3.76981	1500993.6	3.65014	.00500	01567
794.00	2.12568	1340109.0	2.05820	.00650	03605
1000.00	1.79322	1793226.0	1.73630	•00800	03690
1260.00	•95669	1518849.3	•92632	.00950	03033
1590.00	• 52841	1335883.9	•51164	.01100	02826
2000.00	.26873	1074931.4	.26020	.01250	03197
2510.00	.16858	1062132.5	.16323	.01400	03586
3160.00	.10127		.09806	.01550	03516
3980.00	.06268	992903.8	.06069	.01700	03126
5010.00	.05825	1462236.0	.05640	.01850	02795
6310.00	.00630	251228.5	.00610	•02000	02723
7940.00	.00072	45559.0	.00069	•02150	02726
				MACROSCALE	= .0127
				HICDOCCALC	0001/000

.

MICROSCALE = .0091(CURVE FIT) MICRUSCALE = .0054(INTEGRAL)

FREQ	F(N)X10000	F(N)X1000)XN**2	E(N) X10000	DELAY	RU
10.00	5.78118	578.1	13.92229	.00001	1.00000
12.60	7.34457	1166.0	17.68725	.00005	.93978
15.90	15.32446	3874.1	36.90448	.00010	.81773
20.00	11.01398	4405.5	26.52395	.00015	.71996
25.10	12.29366	7745.1	29.60569	.00020	.62837
31.60	12.03835	12021.0	28.99084	.00025	.52392
39.80	12.20430	19332.1	29.39050	.00030	.43869
50.10	13.08346	32839.6	31.50770	.00050	.26221
63.10	18.19463	72443.9	43.81644	.00080	.08507
79.40	15.87184	100061.8	38.22269	.00100	.02865
100.00	17.60038	176003.8	42.38537	.00120	01360
126.00	16.99246	269772.3	40.92137	.00150	02807
159.00	12.82889	324327.3	30.89464	.00180	01990
200.00	15.93642	637457.1	38.37822	.00200	01098
251.00	12.63492	796012.6	30.42750	.00220	00864
316.00	9.93399	991969.2	23.92312	.00250	03256
398.00	7.49523	1197275.2	18.05008	.00300	03559
501.00	5.68439	1426914.2	13.69040	• 00 3 5 0	02470
631.00	5.69060	2265778.2	13.70416	.00500	03323
794.00	3.88117	2447209.8	9.34811	.00650	02837
1000.00	2.82941	2829417.0	6.81382	.00800	01654
1260.00	1.64297	2608390.4	3.95662	.00950	00667
1590.00	1.10986	2805854.0	2.67278	.01100	00627
2000.00	.54221	2168852.0	1.30576	.01250	01072
2510.00	.29157	1836934.1	.70216	.01400	01286
3160.00	.15234	1521283.0	.36684	.01550	00941
3980.00	.13039	2055463.4	.31401	.01700	00517
5010.00	.11483	2882287.1	.27653	.01850	00462
6310.00	.00684	272596.9	.01648	.02000	00809
7940.00	.00242	153126.9	.00584	.02200	01091
				MACROSCALE	= .0072

MICROSCALE = .0076(CURVE FIT) MICROSCALE = .0042(INTEGRAL)

FREQ	F(N)X10000	F(N)X10000XN**2	E(N) X10000	DELAY	RU
10.00	4.70954	470.9	2.47818	.00001	1.00000
12.60	10.28738	1633.2	5.41327	.00005	.95664
15.90	50.50350	12767.7	26.57520	.00010	.86660
20.00	31.08334	12433.3	16.35621	.00015	.80176
25.10	37.51175	23632.7	19.73887	.00020	.74444
31.60	35.87235	35820.7	18.87621	.00025	.67544
39.80	33.11493	52455.3	17.42524	.00030	.61871
50.10	33.35683	83725.9	17.55253	.00050	.47353
63.10	37.23277	148246.3	19.59207	.00080	.27753
79.40	26.68345	168222.1	14.04097	.00100	.18541
100.00	25.51648	255164.8	13.42690	.00120	.11976
126.00	17.42718	276674.0	9.17027	.00150	.09306
159.00	13.29954	336225.7	6.99828	.00180	.10683
200.00	16.50259	660103.9	8.68375	.00200	.11136
251.00	11.10547	699656.0	5.84375	.00220	.10022
316.00	9.72301	970901.3	5.11630	.00250	.05902
398.00	6.42261	1017368.4	3.37961	.00300	.03834
501.00	5.03864	1264705.2	2.65136	.00350	.02744
631.00	3.52070	1401807.7	1.85261	.00500	03900
794.00	2.08369	1313635.2	1.09645	.00650	06672
1000.00	1.77280	1772809.5	.93286	.00800	05929
1260.00	•93986	1492132.6	•49456	• 00950	04025
1590.00	•70823	1790497.2	•37267	.01100	03100
2000.00	• 40777	1631088.8	•21457	.01250	03380
2510.00	•25618	1613986.3	.13480	.01400	03790
3160.00	•14647	1462616.3	.07707	•01550	03458
3980.00	.08607	1363409.5	.04529	.01700	02648
5010.00	.04889	1227161.6	.02572	•01850	02136
6310.00	.02583	1028600.2	.01359	.02000	02267
7940.00	.01163	733739.3	.00612	.02150	02599
				MACROSCALE	= .0164

MACROSCALE = .0164 MICROSCALE = .0103(CURVE FIT) MICROSCALE = .0052(INTEGRAL)

	FREQ	F(N)X10000	F(N)X10000XN**2	E(N) X10000	DELAY RU
	10.00	9.99797	999.7	21.38473	.00001 1.00000
	12.60	33.28650	5284.5	71.19670	.00005 .96916
	15.90	139.42215	35247.3	298.21090	.00010 .91424
	20.00	85.48834	34195.3	182.85155	.00015 .87207
	25.10	84.11995	52996.4	179.92469	.00020 .83519
	31.60	86.64642	86521.6	185.32856	.00025 .79042
	39.80	67.85524	107485.4	145.13601	.00030 .75264
	50.10	47.40429	118985.2	101.39334	•00050 •64598
~	63.10	40.52701	161362.7	86.68348	.00080 .47839
	79.40	28.90142	182205.0	61.81744	.00100 .38513
	100.00	25.65358	256535.8	54.87062	.00120 .31411
	126.00	17.48662	277617.6	37.40224	•00150 •27610
	159.00	12.20222	308484.5	26.09941	•00180 •28575
	200.00	12.78789	511515.8	27.35211	•00200 •28821
	251.00	8.08446	509329.2	17.29190	•00220 •27264
	316.00	6.73997	673026.6	14.41616	•00250 •22240
	398.00	4.75390	753036.9	10.16814	•00300 •18228
	501.00	3.42257	859069.3	7.32056	•00350 •15850
	631.00	2.33670	930384.5	4.99799	.00500 .03868
	794.00	1.38295	871864.1	2.95800	•00650 -•03329
	1000.00	1.05213	1052137.4	2.25042	•00800 -•05622
	1260.00	• 61582	977677.6	1.31718	.0095005761
	1590.00	• 44567	1126714.9	•95326	•01100 -•06540
	2000.00	.24091	963641.4	•51528	•01250 -•08454
	2510.00	.15858	999126.8	•33920	•01400 -•10198
	3160.00	.08275	826322.0	.17699	•01550 -•10529
	3980.00	•04447	704434.3	.09511	•01700 -•09615
	5010.00	.02507	629400.3	.05363	•01850 -•08495
	6310.00	.01339	533139.1	.02864	.0200007871
	7940.00	.00544	343333.2	.01164	•02150 - •07484
					MACROSCALE = $.0275$
					MICROSCALE = .0108(CURVE FIT)
					MICROSCALE = .0058(INTEGRAL)

RUN NO. 20 AT R/A= .75, U= 6.83

FREQ	F(N)X10000	F(N)X10000XN**2	E(N) X10000	DELAY RU
10.00	22.17544	2217.5	6.45606	.00001 1.00000
12.60	54.24187	8611.4	15.79175	.00005 1.00476
15.90	182.98066	46259.3	53.27221	.00010 .99097
20.00	142.64373	57057.4	41.52869	•00015 •97141
25.10	116.88730	73640.1	34.03007	.00020 .95006
31.60	94.00866	93873.2	27.36928	.00025 .92689
39.80	71.40011	113100.6	20.78712	.00030 .90078
50.10	61.88568	155333.6	18.01713	•00050 •80168
63.10	55.84091	222336.7	16.25728	.00080 .66473
79.40	37.21180	234596.6	10.83368	.00100 .57030
100.00	29.03034	290303.4	8.45177	•00120 •50394
126.00	19.78836	314160.0	5.76110	•00150 •45375
159.00	11.93202	301653.6	3.47384	.00180 .43770
200.00	12.54395	501758.3	3.65199	•00200 •41783
251.00	6.79054	427811.0	1.97697	•00220 •38485
316.00	5.29663	528900.2	1.54203	•00250 •32194
398.00	3.49873	554213.2	1.01860	.00300 .25315
501.00	2.07610	521103.3	.60442	•00350 •20079
631.00	1.26737	504620.3	.36897	•00500 •06635
794.00	.66905		.19478	•00650 - •00823
1000.00	•44114		.12843	.0080005652
1260.00	.20825		.06063	•00950 - •07180
1590.00	.10633		.03095	.0110007390
2000.00	.03805	152227.9	.01107	.0125009498
2510.00	.01384		.00403	.0140012294
3160.00	.00403		.00117	.0155013479
3980.00	.00104	16562.9	.00030	.0170013639
5010.00	.00029	7287.1	.00008	•01850 -•13445
6310.00	.00007	2942.8	•00002	.0200012620
				MACROSCALE = $.0130$
				MICROSCALE = $.0075(CURVE FIT)$
				MICROSCALE = .0052(INTEGRAL)

FREQ	F(N)X10000	F(N)X10000XN**2	E(N) X10000	DELAY	RU
10.00	8.35997	835.9	2.04467	.00001	1.00000
12.60	19.20974	3049.7	4.69831	•00005	.98784
15.90	74.39066	18806.7	18.19444	.00010	.94720
20.00	48.55558	19422.2	11.87570	.00015	.90039
25.10	49.86679	31416.5	12.19640	.00020	.85096
31.60	45.59155	45525.8	11.15076	.00025	.79446
39.80	48.77763	77265.7	11.93001	.00030	.74148
50.10	38.29430	96119.0	9.36600	.00050	.57972
63.10	37.67286	149998.6	9.21401	.00080	.35476
79.40	34.35488	216585.5	8.40250	.00100	.24765
100.00	28.55857	285585.7	6.98484	.00120	.17593
126.00	19.46678	309054.6	4.76118	.00150	.14545
159.00	14.75618	373051.2	3.60906	.00180	.15739
200.00	17.33370	693348.1	4.23947	.00200	.16060
251.00	11.04276	695705.0	2.70083	.00220	.14741
316.00	9.63744	962356.3	2.35712	.00250	.10123
398.00	6.74607	1068605.2	1.64995	.00300	.07158
501.00	4.97651	1249109.3	1.21715	.00350	.05814
631.00	3.34880	1333362.2	.81904	.00500	02663
794.00	1.78552	1125658.1	.43670	.00650	06363
1000.00	1.12090	1120908.4	.27415	.00800	05955
1260.00	.62597	993792.9	.15310	.00950	04307
1590.00	•36451	921528.4	.08915	.01100	03964
2000.00	•14975	599016.5	.03662	.01250	04947
2510.00	.07136	449628.0	.01745	.01400	05805
3160.00	.02984	298067.3	.00730	.01550	05478
3980.00	.01544	244661.8	.00377	.01700	04443
5010.00	.00619	155612.5	.00151	.01850	03759
6310.00	.00234	93460.4	.00057	.02000	03851
7940.00	.00053	33487.8	.00012	.02150	04115
				MACROSCALE	= . 0141
				MICROSCALE	= .0086(CURVE FIT)

MICRUSCALE = .0063(INTEGRAL)

FREQ	F(N)X10000	F(N)X10000XN**2	E(N)X10000	DELAY	RU
10.00	12.80912	1280.9	17.40874	•00001	1.00000
12.60	34.54301	5484•0	46.94705	•00005	.94495
15.90	152.20001	38477.6	206.85345	•00010	•90506
20.00	109.52519	43810.0	148.85454	.00015	.86491
25.10	96.43591	60755.5	131.06504	•00020	.82488
31.60	77.08950	76978.4	104.77154	.00025	.77871
39. 80	69 . 303 39	109779.3	94.18952	•00030	•73689
50. 10	52.06876	130693.1	70.76612	.00050	.61986
63.10	38.58653	153636.5	52.44255	•00080	•46156
79.40	27.81189	175336.1	37.79885	•00100	•38484
100.00	21.69711	216971.1	29.48832	•00120	.32957
126.00	14.99728	238096.9	20.38265	•00150	.30133
159.00	10.79527	272915.2	14.67174	•00180	.30413
200.00	13.16912	526765.0	17.89802	•00200	.30255
251.00	8.53366	537629.4	11.59801	•00220	• 28 82 7
316.00	6.99439	698432•4	9.50601	•00250	.24548
398. 00	5.14782	815435.7	6.99635	• 00 3 00	.20931
501.00	3.78085	948999•4	5.13852	•00350	. 18196
631.00	2.76786	1102054.1	3.76177	•00500	.06388
794.00	1.50970	951769.2	2.05181	.00650	01604
1000.00	1.12373	1123731.3	1.52725	•00800	05089
1260.00	•56260	893192.2	•76463	• 0095 0	05960
1590.00	• 34340	868152.7	•46671	•01100	06745
2000.00	•16731	669251.5	•22739	•01250	08406
2510.00	•09030	568912.1	.12272	•01400	10271
3160.00	•04218	421208.8	•05732	•01550	11210
3980.00	•02075	328814.7	.02821	•01700	10941
5010.00	.01147		.01559	•01850	10035
6310.00	•00499	198941.0	•00679	•02000	09206
7940.00	.00203	128265.6	.00276	•02150	08592
				MACROSCALE	= .0258

MICROSCALE = .0066(INTEGRAL)

RUN NO. 21 AT R/A= .75, U= 6.23

FREQ	F(N)X10000	F(N)X10000XN**2	E(N) X10000	DELAY	RU
10.00	11.93109	1193.1	2.48129	.00001	1.00000
12.60	43.79402	6952.7	9.10779	.00005	.98987
15.90	169.59451	42875.1	35.27037	.00010	.98208
20.00	102.93047	41172.1	21.40632	.00015	.96506
25.10	124.77040	78606.5	25.94835	.00020	.94359
31.60	102.59331	102445.5	21.33621	.00025	.91974
39.80	68.65045	108745.0	14.27715	.00030	.89452
50.10	47.89526	120217.5	9.96072	.00050	.78792
63.10	55.04109	219152.1	11.44683	.00080	.66159
79.40	36.67881	231236.4	7.62804	.00100	.58286
100.00	30.37502	303750.2	6.31705	.00120	• 49585
126.00	21.82698	346525.1	4.53933	.00150	.38878
159.00	12.44025	314501.9	2.58718	.00180	•31051
200.00	14.35344	574137.9	2.98506	.00200	.27287
251.00	8.74224	550770.1	1.81811	.00220	.25280
316.00	5.94007		1.23534	.00250	.23888
398.00	3.92376	621539.7	.81602	.00300	.24116
501.00	2.38021	597437.4	•49501	•00350	.21318
631.00	1.45019		.30159	.00500	.09540
794.00	.65712		.13666	.00650	00384
1000.00	.38583	385838.1	.08024	•00800	04683
1260.00	.15158	240654.6	.03152	.00950	06130
1590.00	.05793		.01204	.01100	07509
2000.00	•01984		.00412	.01250	08939
2510.00	.00570		.00118	.01400	09950
3160.00	.00131	· · · · · · · · · · · · · · · · · · ·	.00027	.01550	11184
3980.00	.00024	3837.8	.00005	.01700	12993
				MACROSCALE	
				MICROSCALE	= .0055(CURVE FIT)

261

MICROSCALE = .0052(INTEGRAL)

Table 7

Autocorrelation Results and Transformations to Energy Spectra

The table contains a separate computer printout for each autocorrelation measurement. The information is identified by the following symbols:

- R/A corresponds to r/a in the text, radial position divided by pipe radius.
 - U corresponds to u in the text, time average velocity in feet per second.
- DELAY autocorrelation delay time in seconds.
 - RU autocorrelation coefficient corresponding to $R(\tau)$ in the text.
 - FREQ frequency in cycles per second.
 - F(N) x 10000 normalized spectrum function in seconds times
 10,000.

.01186

DELAY	RU	
0.0000	1.00000	
.0001	. 94 7	
.0002	.98461	
.0003	.97435	
.0004	.94358	
.00056	.93333	
.0006	.90256	
.00078	.81025	
.00090	.76923	
.00146	.56410	
.00202	.41025	
.00140	.27692	
.00315	.20512	*
.0037	.12307	
.0042	.02051	
.0046	0.00000	
.00540	004102	
.0065		
.0076	511282	
.0087	12307	<u>ي</u>
.00990		
.01103		
.01210		
.01328	Sector Contraction and Contrac	
.0144		
.01554		
.01666		
.01779		
.0189		
.02004		entrestate concentres ar an and
SCALE=	•01134	MICROSCALE=

FREQ	F(N)X10000
3.18	22.81768
6.36	27.65778
15.92	56.18201
31.84	102.52800
63.69	63.27113
111.46	31.40732
159.23	16.71740
238.85	9.18042
318.47	7.31705
477.70	82315
636.94	92925
1114.64	62786
1592.35	.68456

263

RUN MO. 8 AT R/A= .85, U= 5.24

DELAY 0.00000 .00011 .00022 .00033 .00045 .00056 .00056 .00067 .00078 .00090 .00101 .00112	.99487 .98461 .97435 .94358 .92307 .88205 .81025 .77948 .74871 .70769				FREQ 3.18 6.36 15.92 31.84 63.69 111.46 159.23 238.85 318.47 477.70 636.94	37.67717 62.64044 100.67005 67.19976 33.96793 14.58581 7.33656 2.70840 1.13075 .35402	
.00123					1114.64		
.00180					1592.35	.06431	s
•00236 •00292				22			
.00292			2, 0		PS 8 959		(34) K
•00349							
.00461							
.00472							
.00518							
.00574				20			
.00686							
.00799							
.00912							
.01024							
.01137							
.01250							
.01362							
.01475							
.01587							
.01700							
.01813							
.01925							
.02038							
.02150							
	.01060	HICROSCALE=	.01041				

DELAY	RU		
0.00000	1.00000		
.00011	.98979		
.00022	•96938		
.00033	.94387		
.000 45	.89795		
.00056	.83673		
.00078	.78571		
.00135	. 57142		
00191	•40816		
.00247	•23469		
.00304	.13265		
.00360			
.00416	.01020		
.00427	0.00000		
.00529	07142		
.00698	13265		
•00810	15306		
•01036			
•01148	15306		
.01373	12244	16	
.01599	And the second		
.01711	04081		
.01936	02040		
.02162	0.00000		
SCALE=	•01194	MICROSCALE=	.00986

FREQ F(N)X10000 3.18 7.57120 6.36 12.37380 15.92 41.23183 31.84 94.00151 63.69 69.19437 111.46 36.40084 159.23 19.37071 238.85 7.93749 318.47 2.91388 477.70 1.31898 636.94 .75748 1114.64 .14621 1592.35 -.07332

.

8

DELAY	20		
0.00000			
.00011	.98984		
•00022	.98984		
•00033	.97461		
.00045	.95431		
•00056	.91370		
.00067	.86294		
•00078	.52233		
•00090	.80203		
.00101	.76142		
.00112	•74111		
.00123	.70050		
.00180	•54822	2	
.00236	.38578		
00292	.26395		
•00349	.14213		
•00405	.07106		
.00461	.01015		
•00472			
.00518	03045		
.00630	10152		
.00743	12182		
.00855	15228		
.01081	15228		
.01418	11167		
•01644	04060		
.01981	0.00000		
SCALE=	•01366	MICROSCALE=	.01297

			FREQ	F(N)X10000	
			3.18	28.25462	а
			6.36	32.56619	
			15.92	58.47484	
			31.84	105.34320	
			63.69	73.19704	
			111.46	34.60122	
			159.23	16.30173	
			238.85	4.71520	
			318,47	2.67220	
			477.70	.71172	21
		ł.	636.94	.23742	
	2423		1114.64	10598	
			1592.35	14010	

DELAY	RU		
0.00000	1.00000		
.00011	.98984		
.00022	.97969		
.00033	.96954		
.000 45	.92893		
.00056	.91370		
.00112	.76142		
.00168	.58833		
00225	.45685		
.00281	.29441		
.00337	.23350		
.00394	.12182		
•00450	.04060		
.00484	0.00000		
•00596	08121		
.00765	12182		
·00878	15228		
.01103	13197		
.01328	13197		
.01610	09137		
.01891	06091		
.02173	01015		
•01328	0.00000		
SCALE=	01242	MICROSCALE=	.01072

FREQ	F(N)X10000
3.18	47.86440
6.36	50.01080
15.92	63.63255
31.84	94.98555
63.69	87.49672
111.46	30.79003
159.23	9.60233
238.85	2.76928
318.47	.10869
477.70	-1.18262
636.94	15387
1114.64	.77276
1592.35	43834
1992.35	43834

DELAY	RU			FREQ	F(N)X10000	
0.00000				3.18	15.75390	
.00011	l 1.00000			6.36	46.67622	
. 00033	.99487			15.92	193.03502	
.00056	.98974			 31.84	237.79104	5.E
.00078	.98461			63.69	50.85975	
.00112	.97435			111.46	5.53605	
.00135	.94358			159.23	-1.68314	
.00168	.92307			238.85	•45721	
.00225			•	318.47	10299	
.00281				477.70	•11877	24
.00337	.69743			636.94	10215	
.00394				1114.64	•01324	
.00450	.48205	240 21		1592.35	01429	
.00506	.38974	36		1772033	-01423	
.00619	.20512					
.0073	.06153			89 80 DO	414 I	
.00788	B 0.00000					
.00822	203076					
.00878	B03205					
.00934	413333					
.01047	721538					
.01159	924615					
.01272	233846					
.01385	530769					
.01666	5 27692					
.01948	B26666					
.02229	918461					
.02511	11282					201 (A)
.02792	205128					
.03074						
.03355		to.				
SCALE=	•01091	HICROSCALE=	.01492			

RUN NO. 10 AT R/A=0.00, U= 6.74

×

RU		
1.00000		
1.00000		
.98974		
.92307		
.88205		
.84102		
.81025		
.57692		
.51282		
.37948		
.25641		
.20512		
.14358		
.09230		
.04102	2	
.01025		
0.00000		
03076		
09230		
12307		
14358		
13333		
11282		
07179		
02051		
301	MICROSCALE=	.00831
	1.00000 1.00000 .98974 .92307 .88205 .84102 .81025 .51282 .37948 .25641 .20512 .14358 .09230 .04102 .01025 0.00000 03076 09230 12307 14358 13333 11282 07179 04102	1.00000 1.00000 .98974 .92307 .88205 .84102 .81025 .67692 .51282 .37948 .25641 .20512 .14358 .09230 .04102 .01025 0.00000 03076 09230 12307 14358 13333 11282 07179 .04102 02051 0.00000

FREQ	F(N)X10000
3.18	19.66430
6.36	25.65000
15.92	59.53093
31.84	105.29313
63.69	61.58561
111.46	25.65636
159.23	17.91933
238.85	8.82299
318.47	4.05303
477.70	1.89653
636.94	.87246
1114.64	.26748
1592.35	.06286

129

0.000 I

0.51	127324					
DELAY	RU				FREQ	F(N)X10000
0.00000					3.18	24.49020
.00005					6.36	28.33410
.00011					15.92	50.97548
.00022					31.84	88.42736
.00033					63.69	58.82678
•000 45	.83248				111.46	27.53574
.00056	•76142				159.23	15.43766
.00112	. 57868				238.85	9.61485
.00168	.37563				318.47	7.24590
.00225	.30456				477.70	
.00281	.24365				636.94	1.66635
.00337	.17258				114.64	1.39469
.00394		,			592.35	•35995
•00450	.03045			1	2920 22	02993
.00495						8
.00506	그는 그는 것이 아파가 많은 것이 잘 많이 안 가지 않는다.				5 - 19	
.00563						
.00675						
.00788						
.01013						
.01238						
.01351						
.01576						
.01801	1 전화 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1					
.01914						
.02139						
.02252				27		
SCALE=	.00910	MICROSCALE=	.00601	9.00		
	것 이 작가 있었다.	SHOUGHLE-	-00001			

×

DELAY	RU		
0.00000	1.00000		
.00011	.99489		
.00022	.97959		
.00033	.95918		
.00045	.91336		
.00056	.88775		
.00067	.84693		
.00123	.60204		
.00180	.42857		
.00236	.30612		
.00292	.22448		
.00349	.13265		
.00405	.07142		
.00461	.05102		
.00518	0.00000		
.00574	04081		
.00686	07142		
•00 7 99	09183		
.00912	10204		
.01024			
.01137	10204		
.01362	10204		
.01475	06122		
.01587	03061		
.01700	1 - · · · · · · · · · · · · · · · · · ·		
.01813			
.01925			
SCALE=	.01331	MICROSCALE=	.01200

¥2

FREQ	F(N)X10000	
11.14	48.45026	
15.92	57.88931	
31.84	89.21534	
63.69	65.37825	
111.46	35.24638	
159.23	17.14400	
238.85	9.38327	
318.47	4.34227	
477.70	1.19365	
636.94	.36982	
1114.64	05836	
1592.35	.06329	
2388.53	•00389	

 \sim

RUN NO. 12 AT R/A= .85, U= 5.00

	*		
DELAY	RU		
0.00000	1.00000		
.00011	.97938		
.00022	.94329	12	
.00033	.82474		
.00090	.50824		
.00146	.43298		
.00202	.27835		
.00259	.17525		
• 00315	.10309		
.00371	.04123		
•00427	0.00000		
.00484	02061		
•00540	06185	182	
.00653	06185		
.00765	07216		
•00990	09278		
.01216	10309	3	
•01441	03247		
•01666	03092		
.01891	02061	40	
.02117	0.00000		
SCALE= .	00737	MICROSCALE=	•00407

FREQ	F(N)X10000
11.14	30.23681
15.92	41.19511
31.84	74.57083
63.69	52.29754
111.46	33.51682
159.23	17.06900
238.85	8.21281
318.47	4.23612
477.70	1.65668
636.94	.99072
1114.64	17233
1592.35	57261
2388.53	53163
	지지 정 전 같은

272

t:

APPENDIX IV

CALIBRATION FACTORS

1. Frequency Response of Ampex 601-2 Recorder

Table 8 shows the three frequency response determinations for three different adjustments of the recorder equalization circuits.

2. Peak Gain Factors for Band Pass Filter

Table 9 shows the peak gain factor for each band corresponding to the band center frequency.

3. Hot-Film Probe Calibration Coefficients

The coefficients A, B, and c of equation 96 are shown in Table 10. The standard deviation of E^2 about the least square best fit is shown for each run.

Ampex 601-2 Recorder Frequency Response

The responses below are overall playback to input ratios:

Frequency	Runs 8,	9,10,12,14	Runs 17,18,19	Runs 15,20,21
cp s	Channel I	Channel II	Channel I	Channel I
			· · · · · · · · · · · · · · · · · · ·	
10	0.056	0.021	0.055	0.16
15	0.277	0.238	0.215	0.28
20	0.624	0.434	0.492	0.63
30	0.827	0.842	0.659	0.76
40	0.900	0.921	0.790	0.85
50	0.967	0.895	0.856	0.91
60	0.935	0.895	0.856	0.89
70	0.967	0.947		
80	1.000	1.000	0.905	0.94
90	1.000	1.000		
100	1.000	1.000	0.935	0.96
200	1.000	0.975	0.988	0.97
300	1.000	1.000	0.996	0.97
400	1.000	0.975	1.000	0.97
600	1.032	0.975	1.000	0.99
800	1.032	0.947	1.032	1.05
1000	1.068	0.921	1.028	1.06
1500	1.068	0.816	1.032	1.12
2000	1.100	0.711	1.022	1.16
3000	1.032	0.487	0.878	1.19
4000	0.900	0.238	0.593	1.17
6000	0.677	0.164	0.300	1.12
8000	0.434		0.254	1.08
10000			0.246	0.88

Band	Band	Band	Width
Center	Gain	Low	High
Frequency	Ratio	Frequency	Frequency
cps		cps	cps
10.0	2.70	8.91	11.2
12.6	3.22	11.2	14.1
15.9	2.82	14.1	17.8
20.0	3.42	17.8	22.4
25.1	3.32	22.4	28.2
31.6	3.82	28.2	35.5
39.8	3.98	35.5	44.8
50.1	4.26	44.8	56.2
63.1	4.23	56.2	70.8
79.4	4.41	70.8	89.1
100	3.80	89.1	112
126	4.35	112	141
159	4.78	141	178
200	3.72	178	224
251	4.53	224	282
316	4.10	282	355
398	4.51	355	448
501	4.26	448	562
631	4.02	562	708
794	4.37	708	891
1000	4.00	891	1120
1260	4.31	1120	1410
1590	3.80	1410	1780
2000	4.16	1780	2240
2510	4.00	2240	2820
3160	4.07	2820	3550
3980	4.05	3550	4480
5010	3.90	4480	5620
6310	3.53	5620	7080
7940	4.19	7080	8910
10000	3.40	8910	11200
12600	3.62	11200	14100
15900	2.76	14100	17800
20000	3.10	17800	22400

Peak Gain Factors for the Band Pass Filter*

* Measurements of T. B. Watson (97), who designed and built the instrument.

Hot-Film Probe Calibrations

The best fit to the equation $E^2 = A+B(\overline{u})^c$, is given for each run. Runs 13 and 20 are not included because a different calibration was used at each radial position.

Run No.	Data Points	A	В	с	Std. Dey. about E ²
		-		-	
1	90	48.63	161.08	0.50	3.8
2*	48	55.62	154.02	0.50	5.0
	96	54.29	158.47	0.50	4.6
3	90	45.30	121.93	0.50	1.7
4	80	42.11	115.22	0.50	3.4
6	25	44.60	110.72	0.50	3.1
7	50	43.22	116.63	0.40	2.9
8	20	43.42	113.27	0.45	3.0
8 9	44	35.26	118.34	0.30	3.0
10	12	47.81	130.09	0.50	2.0
11	35	48.32	130.37	0.50	2.5
12	20	45.30	126.30	0.50	3.4
14	12	53.41	121.66	0.45	3.0
15	16	57.40	160.49	0.50	6.7
16	16	58.00	152.72	0.50	2.9
17	21	56.90	177.59	0.35	5.4
19**(fresh) 4	54.70	45.20	0.50	0.9
19 (degrade		52.13	84.88	0.35	1.5
21	32	53.60	130.10	0.40	5.4
22	24	42.79	110.43	0.50	6.6

* The calibration for the first six points is different from the calibration for the last twelve.

** The calibrations were different for fresh and degraded solutions.

APPENDIX V

CALCULATION PROCEDURES

1. Turbulence Intensity

1.1. Longitudinal intensity

The calibration of the hot-film probe has been described in Appendix II. The least squares regression involved was straight-forward. The calculation of turbulence intensity was simply an arithmetic computation following equation 79. Since many measurements were made, the repetitive calculations were done using the IBM 1620-II computer.

1.2. Radial and tangential intensity and Reynolds stress

The calculation of radial and tangential turbulence intensities and Reynolds stresses from the V-probe measurements were complicated by the large distance (0.06 inches) between centers of the two films of the V. It was necessary to plot rms voltage versus r/a using radial positions at the center of each film. From these plots, readings corresponding to the same position were determined for each section of the V-probe. The dc voltage for a film at an angle θ to a steady velocity, \bar{u} , is:

$$E^{2} = A + B (\bar{u} \sin \theta)^{c}$$

or $E^{2} = A + B' (\bar{u})^{c}$

The instantaneous voltage (dc plus fluctuating) for a film at an angle θ of 45° to the flow is:

$$(E')^2 = A + B' (\bar{u} + u' + v')^c$$

where u' and v' are longitudinal and transverse fluctuating velocity components, respectively. Analogous to equation 79, the rms voltage may be approximately linearly related to the root-mean-square of the sum of u' and v':

$$\langle E' \rangle_{+}^{2} = \left(\frac{\partial E}{\partial u}\right)_{+}^{2} \left(\left(\frac{u'}{u'}\right)^{2} + \left(\frac{v'}{v'}\right)^{2} + 2\overline{u'v'}\right)$$

For a film at an angle of -45° to the flow:

$$(E')^{2} = A + B' (\overline{u} + u' - v')^{c}$$

$$\langle E' \rangle^{2} = (\frac{\partial E}{\partial \overline{u}})^{2} ((u')^{2} + (v')^{2} - 2 \overline{u'v'})$$

Subtracting, the relation used to calculate the Reynolds stress u'v' was obtained:

$$\overline{\mathbf{u'v'}} = \frac{1}{4} \langle \mathbf{E'} \rangle_{+}^{2} / \left(\frac{\partial \mathbf{E}}{\partial \mathbf{u}}\right)_{+}^{2} - \frac{1}{4} \langle \mathbf{E'} \rangle_{-}^{2} / \left(\frac{\partial \mathbf{E}}{\partial \mathbf{u}}\right)_{-}^{2}$$

Using values for $\langle u' \rangle$ determined with a standard film probe, the values of $\langle v' \rangle$ were then calculated:

$$\langle \mathbf{v'} \rangle = (\langle \mathbf{E'} \rangle_{+}^{2} / (\frac{\partial \mathbf{E}}{\partial \mathbf{u}})_{+}^{2} - \overline{(\mathbf{u'})^{2}} - 2 \overline{\mathbf{u'v'}})^{1/2}$$

2. Velocity Profiles

The calculation of velocity profiles from impact tube data has been described by Hershey (33).

3. Energy Spectra

The reduction of the band pass filter data to energy spectra was done as follows:

- rms voltages obtained from each band were divided by the recorder frequency response factor and the band gain factor.
- (2) Each corrected value was then squared and the sum of these squares was obtained.
- (3) Each corrected value from (1) was divided by the band frequency width and by the sum of the squares to yield the value of F(n) for the band center frequency, n.

4. Autocorrelation and Macroscale

The autocorrelation calculations were as follows:

- (1) Each delay time was found by dividing the micrometer movement by the factor, 8.88 inches per second, obtained from the calibration with a 100 cps signal.
- (2) Each value of autocorrelation measured by the DISA correlator was normalized by dividing by the peak value at a time delay of zero. This peak value was usually about 0.98 - 0.99.
- (3) The calculation of macroscale was simply a numerical integration of the autocorrelation function up to the first zero correlation coefficient using the trapezoidal rule.

5. Dissipation Spectra and Microscale

The dissipation spectra were determined by multiplying each spectrum value by the corresponding frequency squared. The value of the microscale was determined using equation 64. The numerical integration of the dissipation spectrum was done using the trapezoidal rule since the points were so close together. Some of the dissipation spectra levels were not insignificant at the highest measured frequency, but the errors introduced are less than 10 per cent for the l-inch pipe data and negligible for the 2-inch pipe data.

6. Fourier Transformations

The Fourier transformations of energy spectra to autocorrelations and vice-versa were both done in the same manner. Equations 61 were used for the calculation, involving a numerical integration of the function times a cosine function. The greatest difficulties were experienced in obtaining from the spectra autocorrelations which did not oscillate at long delay times and in obtaining from the autocorrelations energy spectra that did not oscillate at high frequencies. The best results were obtained by least square fitting of short intervals of the function to be integrated with a second degree power series, then integrating analytically. This eliminated the oscillation in the autocorrelations transformed from energy spectra and extended the transformed spectra to higher frequencies. The smoothing introduced by using least square fits for sections of the functions apparently eliminated noise caused by random errors in the individual points.

APPENDIX VI

MATERIALS

The solvents and polymers used in this investigation, their properties, and suppliers are as follows:

<u>Benzene</u>. Specific gravity range 0.882 - 0.886; maximum boiling range l°C, including 80.1° C; acid wash color-0-1; acidity-negative; doctor test-sweet; corrosion - 16 maximum; sulfur as H_2S/SO_2 negative; thiophene free; solidification point - 4.85°C maximum; purchased from Independent Petrochemical Corp., St. Louis, Missouri.

<u>Cyclohexane</u>. Purity (wt.per cent cyclohexane) 99.0 per cent minimum; impurities-non-volatiles, water, benzene 0.1 per cent maximum; maximum boiling range 0.4°C, including 80.7°C; specific gravity range 0.780-0.784 at 15.5°C; purchased from G.S. Robins Co., St. Louis, Missouri.

<u>Toluene</u>. Purity (wt per cent toluene) 99.5 per cent minimum; impurities-heptane isomers 0.5 per cent maximum; maximum boiling range 1°C, including 110.6°C, specific gravity between 0.869 and 0.873 at 15.5°C; nitration grade; purchased from G.S. Robins Co., St. Louis, Missouri.

<u>Polyisobutylene (PIB) L-80</u>. Enjay MM Vistanex; grade L-80; lot B40828; code 230; molecular weight approximately 720,000, distribution unknown; produced by a low temperature Friedel-Craft reaction; catalyst-free with trace amounts of butylated hydroxytoluene and sodium stearate; color, slightly yellow; donated by Humble Oil and Refining Co., Baton Rouge, Louisiana.

<u>Polyisobutylene (PIB) L-200</u>. Enjay HM Vistanex; grade L-200; lot B31006; code 054; viscosity average molecular weight 4,000,000-4,700,000; distribution unknown; exact production method and catalyst content unknown to author; color, white; donated by Humble Oil and Refining Co., Baton Rouge, Louisiana.

<u>Polymethylmethacrylate (PMMA)</u> G. Procured in the form of 1/4-inch plexiglas sheet with molecular weight approximately 1,500,000, distribution unknown; donated by Rohm and Haas Co., Philadelphia, Pennsylvania.

<u>Polymethylmethacrylate</u> (PMMA) V-100. Rohm and Haas Plexiglas V-100 molding powder; molecular weight approximately 110,000; donated by Rohm and Haas Co., Philadelphia, Pennsylvania.

Table 11 shows the solutions made from these materials and their properties.

Solution Compositions and Properties

Run No.	Solvent	Solute	Per Cent Solute by Weight	Fluid Temp. °C	Density g/cc	Viscosity cp
			Part and a space			
1; 2; 15; 20	toluene	none		30	0.856	0.518
3; 22	cyclohexane	none		25	0.775	0.889
4	cyclohexane	PIB L-80	0.05	25	0.775	0.998
	cyclohexane	PIB L-80	0.1	25	0.775	1.120
6 7; 8	cyclohexane	PIB L-80	0.3	25	0.775	1.673
9	cyclohexane	PIB L-80	1.0	25	0.775	See below*
10	benzene	none		24	0.874	0.610
11	benzene	PIB L-80	0.25	24	0.874	0.739
12	benzene	PIB L-80	0.85	24	0.874	1.203
13	toluene	PMMA-G	0.25	30	0.856	0.689
14	toluene	PMMA-G	0.9	30	0.856	1.313
16	toluene	PMMA V-100	0.95	30	0.856	0.664
17	toluene	PIB L-200	0.05	30	0.856	0.611
18	toluene	PIB L-200	0.1	30	0.856	0.658
19	toluene	PIB L-200	0.42	30	0.856	See below**
21	toluene	PMMA-G	0.82	30	0.856	1.33
23	cyclohexane	PIB L-200	0.38	25	0.775	See below***

* 1.0 per cent PIB L-80 in cyclohexane was non-Newtonian. Its flow equation was:

$$D \Delta P/4L = 0.122 (8V/D)^{0.8882}$$
 in dynes/cm².

** 0.42 per cent PIB L-200 in toluene:

142

 \mathbf{z}_{i}^{i}

$$D\Delta P/4L = 0.024 (8V/D)^{0.956}$$
 in dynes/cm².

***0.38 per cent PIB L-200 in cyclohexane:

$$D \Delta P/4L = 0.083 (8V/D)^{0.884}$$
 in dynes/cm².

283

APPENDIX VII

NON-NEWTONIAN TECHNOLOGY

A short summary of non-Newtonian rheological relationships is included to supplement the discussion in the literature review of previous investigations of drag reduction, most of which used non-Newtonian polymer solutions. Any fluid is non-Newtonian if its behavior deviates from the constant viscosity laminar flow equation:

$$\tau = \mu(\frac{du}{dr})$$

For laminar flow in circular ducts, this equation becomes:

$$(D \triangle P/4L) = \mu(8U/D)$$

The non-Newtonian deviations from these equations are of many different types, but the most widely used model to describe non-Newtonian behavior is the Ostwald-deWaele or power law equation:

$$\tau = K(\frac{du}{dr})^n$$

Even more general is the equation of Rabinowitsch (75) and Mooney (64) for laminar flow through round tubes:

$$\tau_{w} = (D \triangle P/4L) = K'(8U/D)^{n'}$$

where $\mathbf{T}_{\mathbf{W}}$ is the shear stress at the wall, D the tube diameter, $\Delta \mathbf{P}/\mathbf{L}$ the pressure gradient, U the space average velocity, and K^I and n^I rheological parameters.

The Rabinowitsch and Mooney equation is a rigorous mathematical relation independent of any assumptions about fluid behavior and constancy of K¹ or n¹. The only assumptions in the derivation were no slip at the tube wall and purely viscous behavior. For the special case of a power law fluid K and K' are simply related:

$$K^{\dagger} = ((3n^{\dagger} + 1)/4n^{\dagger})^{n^{\dagger}}K$$

where $n^{\dagger} = d(\log \tau_{u})/d(\log 8U/D)$

For a power law fluid, n' = n.

By assuming the same form as equation 16, a "power law" Reynolds number may be defined for power law fluids:

let
$$f = \frac{16}{Re^{\circ}} = \frac{(D \triangle P/4L)}{(\rho U^2/2gc)}$$

By substituting the power law relation for $D \triangle P/4L = K((3n + 1)/4n)^n (8U/D)^n$, the following form of the Reynolds number is derived:

$$Re^{\circ} = 8D^{n}U^{2-n}\rho/K(6 + 2/n)^{n}$$

The Metzner and Reed (61) Reynolds number is a generalization of the power law Reynolds number using the Rabinowitsch and Mooney relation:

$$Re' = D^{n'} U^{2-n'} \rho / g_c K' 8^{n'-1}$$

The relation between u^+ and the power law y^+ (equation 13) used by Wells (98) to correlate turbulent velocity profiles may be derived from the universal velocity profile (equation 8) as follows:

$$u^+ = u/u^* = A + B \ln(y\rho u^*/\mu_w)$$

where μ_{w} is the apparent wall viscosity. For a boundary layer thickness of δ :

$$\tau_{\mathbf{w}} = K(u_{\delta}/\delta)^{n}$$

o $\mu_{\mathbf{w}} = \tau_{\mathbf{w}}(\delta/u_{\delta}) = \tau_{\mathbf{w}}^{(n-1)/n}K^{1/n}$

Since $u^* = \sqrt{\tau_w/\rho}$, the velocity profile equation becomes:

S

$$u^+ = A + (B/n) \ln(y^n \rho(u^*)^{2-n}/K)$$

In Wells derivation, A included the terms $2/k - (1/k) \ln(4.6/k)$ and B was 1/k, where k was the mixing length constant.

The derivation of the friction factor correlation (equation 22) used by Clapp (9) involved the integration of the power law universal velocity profile. From the relations above, it is evident that the generalized Reynolds number of Metzner and Reed could be used in place of the power law Reynolds number in Clapp's friction factor equation.

ABBREVIATIONS AND NOMENCLATURE

Symbol	Explanation
a	radial tube dimension
a'	constant used in Gill and Scher velocity profile equation
a ⁺	dimensionless tube radius, au $^*/ u$
А	constant in universal velocity profile equation and in King's Law equation
b	constant in von Karman velocity profile equation
В	constant in King's Law equation
c	variable used in Gill and Scher velocity profile equation or exponent in King's Law equation
cc	cubic centimeters
cm	centimeters
cp	centipoise
d	variable used in Gill and Scher equation
d1	deciliter
D	tube diameter
exp	a power of e
E	anemometer bridge voltage
EI	fluctuating anemometer bridge voltage
<e '=""></e>	root-mean-square fluctuating bridge voltage
E _x (k)	one-dimensional energy spectrum function
f	Fanning friction factor
fps	feet per second
ft	feet
f(δ)	axial space correlation function
f ₁	friction factor on extension of laminar line

Explanation

fpv	friction factor for purely viscous fluid
f _o ^{II} ,g _o ^{II}	second derivative of correlation function at δ = 0
F _x (k)	normalized one-dimensional energy spectrum
g	grams
g _c	gravitational constant
gpm	gallons per minute
g(δ)	transverse space correlation function
G	correction function in Bogue's velocity profile equation and shear rigidity modulus
h(δ),k(δ),q(δ)	triple correlation functions (page 35)
i	anemometer probe current
k	mixing length constant or wave number or triple correlation
k _k	Kolmogoroff characteristic wave number
ĸ	constant in power law equation
К'	constant in Rabinowitsch equation
Ł	Prandtl mixing length or liters
log	base ten logarithm
ln	natural logarithm
L	tube length or macroscale
Ly	transverse macroscale of turbulence
mm	millimeters
mps	meters per second
n	exponent in power law equation or an adjustable constant in Pai velocity profile equation or frequency in energy spectrum
n'	exponent in Rabinowitsch equation
Nu	Nusselt number
p'	fluctuating pressure
P	time average pressure

Symbol

Explanation

P	isotropic pressure
PIB	polyisobutylene
PMMA	polymethyl methacrylate
ppm	pounds per minute
P _{ii}	deviatoric normal stress in i direction
q	turbulent kinetic energy
Q	flow rate
r	distance from tube center
rms	root-mean-square
R	anemometer probe resistance
R _o	anemometer probe resistance at fluid temperature
Re	Reynolds number
Re '	generalized Reynolds number
Re ^o	power law Reynolds number
ReL	macroscale Reynolds number
Rea	microscale Reynolds number
R _{ij}	double correlation tensor
R(τ)	autocorrelation function
S	shear as dz'/dr
sg	recoverable or elastic shear
s _µ	non-recoverable or viscous shear
t	time
^T ijk	triple correlation tensor
T (k)	spectral energy transfer function
^u i	velocity in i direction
ū	time average velocity in the axial direction
ū	average velocity at tube center
7.	

-	
u max	maximum average velocity
u _ð	average velocity at δ distance from wall
u [*]	friction velocity, $\sqrt{ au_w/ ho}$
u ⁺	dimensionless velocity, u/u^*
u ¹	fluctuating velocity in axial direction
v	time average radial velocity
v ¹	fluctuating velocity in the radial or transverse direction
w	time average tangential veloctiy
w ¹	fluctuating tangential velocity
<u'>,<v'>,<w'></w'></v'></u'>	rms fluctuating velocities
W	rate of turbulent energy dissipation
W _s	solvent energy dissipation rate
у	distance from tube wall or coordinate transverse to flow direction
y ⁺	dimensionless distance from tube wall, y u $^{*}/\nu$
z	distance in axial direction
z 1	deformation in z direction
α	constant in Pao energy transfer function
β	ratio of Eulerian and Lagrangian length scales
δ	laminar boundary layer thickness or space correlation distance
Δ	increment operator
γ	exponent in Shaver friction factor correlation
θ	tangential angle
λ_{f} or λ	axial microscale
λ_{g}	transverse microscale
μ	viscosity
μ _o	zero shear rate viscosity

Symbol	Explanation
μs	solvent viscosity
μ _w	apparent wall viscosity
ν	kinematic viscosity
ρ	fluid density
ρ'	fluctuating density
ē	time average density
τ	autocorrelation delay time or shear stress
τ _w	wall shear stress
τ_{ij}	shear stress on the i surface in the j direction
$\tau_{1/2}$	wall shear stress where $\mu = \mu_0/2$
φ	variable in Gill and Scher velocity profile equation
ω	frequency in radians/second

ACKNOWLEDGEMENTS

The author wishes to thank Dr. Jaques L. Zakin, who conceived the investigation of turbulence in polymer solutions using hot-film anemometry, for his guidance, help, and inspiration during this investigation.

He is grateful for the financial support of the National Science Foundation.

Professor A. V. Kilpatrick and Shop Instructor L. N. Anderson of the Mechanical Engineering Department are thanked for their help and advice during the construction of the apparatus.

The other students involved in the experimental work are thanked for their cooperation and assistance. Dr. H. C. Hershey, who carried the burden of design and construction of the pipe flow unit and made a comprehensive study of the polymer-solvent properties affecting drag reduction, was a partner in this project and contributed his special abilities in many areas of this investigation. Mr. J. M. Rodriguez spent many hours helping the author obtain hot-film anemometry data, friction factor data, velocity profiles, viscometry and normal stress data. Miss L. Y. Chou made the viscosity and intrinsic viscosity measurements using the Ubbelohde viscometer. The normal stress apparatus was constructed by Mr. C. D. Green, and he obtained some of the data used in this thesis.

The financial support for the experimental work involved was contributed by the Petroleum Research Fund, administered by the American Chemical Society; National Science Foundation; Socony Mobil Company; and the National Aeronautics and Space Administration. Materials and equipment were contributed by the Humble Oil and Refining Company, Dow Chemical Company, and Rohm and Haas Company.

The University of Missouri at Rolla provided an explosion-proof laboratory equipped with utilities for this investigation. Gary Kent Patterson, son of Efton William and Freda Patterson, was born on December 10, 1939, in Springfield, Missouri.

He attended elementary schools in Carthage, Ozark, Doolittle, and Rolla, Missouri. He graduated from Rolla High School in June, 1956. He received the Bachelor of Science in Chemical Engineering from the University of Missouri School of Mines and Metallurgy in June, 1960, and the Master of Science in Engineering from the University of Michigan in June, 1961.

He was employed the summer of 1959 by the Procter and Gamble Manufacturing Company as a Trainee; the summer of 1960 by the Columbia-Southern Chemical Company as a Development Engineer; and from October, 1961, to August, 1963, by the Esso Research Laboratories, Humble Oil and Refining Company, as a Research Engineer.

On June 3, 1960, he married Miss Barbara Ruth Lay of Rolla, Missouri. A son was born on August 7, 1965.

In September, 1963, he entered the Graduate School of the University of Missouri at Rolla, doing graduate work to the present time as a National Science Foundation Fellow. He was a half-time Assistant Instructor of Physical Chemistry during the academic year 1964-65.

294

VITA

BIBLIOGRAPHY

- Astarita, G., I/EC Fund., <u>4</u>, 354, August 1965.
- 1a. Baker, W. O., and Heiss, T. H., Bell Telephone Tech. J., <u>31</u>, 306 (1952).
- 2. Baldwin, L. V., and Walsh, T. J., A.I.Ch.E. J., 7, 53 (1961).
- 3. Betchov, R., J. of Fluid Mech., 3, 205 (1958).
- 4. Bogue, D. C., Ph.D. Thesis, University of Delaware, Newark, 1961.
- Brodnyan, J. G., Gaskins, F. H., and Philippoff, W., Trans. Soc. Rheol., <u>1</u>, 109 (1957).
- Bull, M. K., A. A. S. U. Report 234, University of Southampton, Hamshire, England (1963).
- 7. Bunch, D., Ph.D. Thesis, University of Missouri at Rolla, 1964.
- 8. Chang, I. C., M.S. Thesis, University of Missouri at Rolla, 1965.
- Clapp, R. M., <u>Intern. Devel. in Heat Transfer</u>, III, A.S.M.E., New York, 652 (1961).
- Corcoran, W. H., Opfell, J. B. and Sage, B. H., <u>Momentum Transfer</u> <u>in Fluids</u>, 83, Acad. Press, New York, (1956).
- 10a. Corino, E. R., and Brodkey, R. S., Ohio State University Res. Four Report, Project 1191, Report 3, N.S.F. Grant G-14807, March 1965.
- 11. Corrsin, S., and Uberoi, M. S., N.A.C.A. T.N. 1865 (1949).
- 12. Deissler, R. G., Trans. A.S.M.E., 73, 101 (1957).
- Dexter, F. D., Miller, J. C., Philippoff, W., Trans. Soc. Rheol.,
 <u>5</u>, 193 (1961).
- 14. Dodge, D. W., Ph.D. Thesis, University of Delaware, Newark, 1957.
- Eagleson, P. S., Huval, D. J., and Perkins, F. E., M.I.T. Hydro. Lab. Tech. Report No. 46 (1961).

- 16. Eagleson, P. S., and Perkins, F. E., I.A.H.R. 9th Convention, Belgrade (1961).
- 17. Eissenberg, D. M., A.I.Ch.E. J., <u>10</u>, 403 (1964).
- Ernst, W. D., Ling-Tempco-Vought Research Center Report No. 0-7100/5R-14 (1965).
- Fabula, A. G., 4th Intern. Congr. on Rheol., Brown University, Prov., R. I., August 1963.
- 20. Favre, A., Gaviglio, J., Dumas, R., Translation in N.A.C.A. T.M. 1370 (1955).
- 21. Flory, P. J , <u>Principles of Polymer Chemistry</u>, Cornell University Press, Ithaca, N. Y. (1953).
- 22. Gardner, S., Report submitted to Office of Naval Research by T.R.G., Inc., on Contract Nonr-3208(00) (1963).
- 23. Gibson, A. H , Phil. Mag., 15, 637 (1933).
- 24. Gibson, M. M., J. of Fluid Mech., 15, 161 (1963).
- 25. Gibson, C. H. and Schwarz, W. H., J. Fluid Mech., 16, 365 (1963).
- 26. Gill, W. N., and Scher, M., A.I.Ch.E. J. 7, 61 (1961).
- 27. Goldstein, S., Proc. Roy. Soc., <u>A159</u>, 473 (1937).
- Goldstein, S., <u>Modern Development in Fluid Dynamics</u>, <u>2</u>, 355,
 Oxford University Press, New York, (1938).
- 29. Grant, H. P., and Kronauer, R. E., Review Paper in <u>Symp. on</u> <u>Measurement in Unsteady Flow</u>, A.S.M.E. Hyd. Div. Conf., Worcester, Mass., May 1962.
- 30. Grant, H. L., Stewart, R. W. Moilliet, A., J. of Fluid Mech., <u>12</u>, 241 (1962).
- 31. Green, C. D., M.S. Thesis, University of Missouri at Rolla, 1965.
 32. Heisenberg, W., Z. Physik, <u>124</u>, 628 (1948).

- 33. Hershey, H. C., Ph.D. Thesis, University of Missouri at Rolla, 1965.
- 34. Hinze, J. O., <u>Turbulence</u>, McGraw-Hill, New York (1959).
- 35. Houghton, W. T., M.S. Thesis, University of Delaware, Newark, 1961.
- 36. Hoyt, J. W., and Fabula, A. G., ONR-Skipsmodelltanken, Fifth Sym. on Naval Hydrodynamics, Bergen, Norway, September 1964.
- 37. Karman, T. von, N.A.C.A. T.M. 611 (1931).
- Karman, T. von, and Howarth, L., Proc. of Royal Society, <u>A164</u>, 192 (1938).
- 39. Kim, W. J , and Manning, F. S., A.I.Ch.E. J., 10, 747 (1964).
- Knudsen, J. G., and Katz, D. L., <u>Fluid Dynamics and Heat Transfer</u>, 156, McGraw-Hill, New York (1958).
- 41. ibid., 159.
- 42. ibid., 172.
- 43. Kolmogoroff, A. N., Comptes rendus (Doklady) de l' Academiedes sciences de l' U. R. S. S., <u>30</u>, 301 (1941) as translated in Friedlander, S. K., and Topper, L., <u>Turbulence</u>, Interscience, London (1961).
- Kotaka, T., Kurata, M., and Tamura, M., J. Appl. Phys., <u>30</u>, 1705 (1959).
- 45. Kovasznay, L. S. G., J. Aeronaut. Sci., 15, 745 (1948).
- 46. Laufer, J., N.A.C.A. T.R. 1053 (1951).
- 47. Laufer, J., N.A.C.A. T.R. 1174 (1953).
- 48. Lawrence, J. C., I.S.A. J., December 1953.
- 49. Lawrence, J. C., and Landes, L. G., N.A.C.A. T.N. 2843 (1952).
- 50. Lee, J., and Brodkey, R. S., A.I.Ch.E. J., 10, 187 (1964).
- Levick, V. G., <u>Physico-Chemical Hydrodynamics</u>, Prentice-Hall, Englewood Cliffs, N. J. (1962).

- Lin, C. C., Statistical Theories of Turbulence, Princeton University Press, 1961.
- 53. Lin, C. C., Quart. of Applied Math., 10, 295 (1963).
- Lindgren, E. R., Tech. Report No. 1, Bureau of Ships Gen. Hydro. Res. Prog. S-R009 01 01, Res. Contr. Nonr 2595(05), 1965.
- Lindgren, E. R., Tech. Report No. 2, Bureau of Ships Gen. Hydro. Res. Prog. S-R009 01 01, Res. Contr. Nonr 2595(05), 1965.
- 56. Ling, S. C., Ph.D. Thesis, Iowa State University, Ames, 1955.
- 57. Ling, S. C., Trans. A.S.M.E., D, J. Basic Engr., 629, September 1960.
- 58. Martin, G. Q., and Johanson, L. N., A.I.Ch.E. J., 11, 30 (1965).
- 59. Meter, D. M., Ph.D. Thesis, University of Wisconsin, Madison, 1963.
- 60. Meter, D. M., A.I.Ch.E. J., 10, 879 (1964).
- 61. Metzner, A. B., and Reed, J. C., A.I.Ch.E. J., 1, 434 (1955).
- Metzner, A. B., Houghton, W. T., Sailor, R. A., and White, J. L., Trans. Soc. Rheol., <u>5</u>, 133 (1961).
- 63. Mickelson, W. R., N.A.C.A. T.N. 3570 (1955).
- 64. Mooney, M., J. Rheol., 2, 210 (1931).
- 65. Nikuradse, J., N.A.C.A. T.M. 1292 (1950).
- 66. Obukhoff, A. M, Review by Lin, C. C., and Reid, W. H., in Handbuch der Physik, VIII/2, 471 (1963).
- 67. Ossofsky, E., Rev. Sci. Inst., 19, 881 (1948).
- 68. Pai, S. J , J. Appl. Mech., 20, 109 (1953).
- 69. Pao, Y. H., Boeing Flight Sciences Lab. Report No. 90, August 1964.
- 70. Park, M. G., M. Ch. E. Thesis, University of Delaware, Newark, 1964.
- 71. Philippoff, W., Trans. Soc. Rheol., 1, 95 (1957).
- 71a. Philippoff, W., Trans. Soc. Rheol., V, 163 (1961).
- 72. Philippoff, W., Brodnyan, J. G., and Gaskins, F. H., J. Appl. Phys., <u>28</u>, 1118 (1957).

- 73. Prandtl, L., N.A.C.A. T.M. 720 (1933).
- 74. Prandtl, L., N.A.C.A. T.M. 1231 (1949).
- 75. Rabinowitsch, B. Z., Z. Physik. Chem., A145, 1 (1929).
- 75a. Reid, W. H., and Lin, C. C., Handbuch der Physic, VIII/2, 471 (1963).
- 76. Reynolds, O., Trans. Roy. Soc. (London), 174A, 935 (1883).
- 77. Ripken, J. F., and Pilch, M., Tech. Paper No. 42, Series B, University of Minnesota, St. Anthony Falls Hyd. Lab., Office of Naval Res. Contract Nonr 710 (49), April 1963.
- Rodriguez, J. M., M.S. Thesis, University of Missouri at Rolla, 1966.
- 79. Rosler, R. S., and Bankoff, S. G., A.I.Ch.E. J., 9, 672 (1963).
- Ross, D., N.O.R.D. Report No. 7958246, Penn. St. University, College Park (1952).
- 80a. Rouse, P. E., and Sittel, K., J. Applied Physics, 24, 690 (1953).
- 81. Sandborn, V. A., N.A.C.A. T.N. 3266 (1955).
- 82. Savins, J. G., J. of the Inst. of Pet., 47, 329 (1961).
- Savins, G., Presented at A.I.Ch.E. National Meeting, Houston, Texas, December 1963, and Soc. Pet. Eng. J., <u>4</u>, 203 (1964)
- 84. Savins, J. G., A.I.Ch.E. J., <u>11</u>, 673 (1965).
- 85. Shaver, R. G., Sc.D. Thesis, M.I.T., Cambridge, Mass., 1957.
- 86. Shertzer, C. R., and Metzner, A. B., Conf. on Advances in Polymer Science and Tech., May 1963.
- 87. Shertzer, C. R., M. Ch. E. Thesis, University of Delaware, Newark, 1964.
- Stanton, T. E. and Pannell, J. R., Trans. Roy. Soc., London, <u>214A</u>, 199 (1914).
- Stewart, R. W., and Townsend, A. A., Phil. Trans. Royal Soc., London, <u>A243</u>, 359 (1951).

- 90. Tanenbaum, B. S., Physics of Fluids, 3, 529 (1960).
- 91. Tao, F., Ph.D. Thesis, University of Missouri at Rolla, 1964.
- 92. Taylor, G. I., Proc. Royal Soc., A157, 421 (1935).
- 93. Taylor, G. I., Proc. Royal Soc., A159, 496 (1937).
- 94. Taylor, G. I., Proc. Royal Soc., A164, 476 (1938).
- 95. Toms, B. A., <u>Proceedings Intern. Rheol. Congr.</u>, <u>Holland</u> (1948), North Holland Publishing Co., Amsterdam (1949).
- 96. Uberoi, M. S., and Corrsin, S., N.A.C.A. T.R. 1142 (1953).
- 97. Watson, T. B., M.S. Thesis, University of Missouri at Rolla, 1965.
- 98. Wells, C. S., Jr., "On the Turbulent Shear Flow of an Elastico-Viscous Fluid", Preprint of paper presented to A.I.A.A. Aerospace Sciences Meeting, New York, January 1964.
- 99. Weske, J. R., N.A.C.A. T.N. 881 (1943).
- 100. Willmarth, W. W., and Wooldridge, C. E., J. Fluid Mech., <u>14</u>, 187 (1962).
- 101. Willmarth, W. W., and Wooldridge, C. E., AGARD Rep., 456 (1963).
- 102. Zimm, B. H., J. Chem. Phys., 24, 269 (1956).