Stresses in suspension bridges

William M. Claypool

Follow this and additional works at: https://scholarsmine.mst.edu/professional_theses
Part of the Civil Engineering Commons
Department:

Recommended Citation

Claypool, William M., "Stresses in suspension bridges" (1884). Professional Degree Theses. 133.
https://scholarsmine.mst.edu/professional_theses/133

This Thesis - Open Access is brought to you for free and open access by Scholars' Mine. It has been accepted for inclusion in Professional Degree Theses by an authorized administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

Stresses in Suspension Bridges.

W. M. CLAYPOOL.

$\underline{\text { Stresses }}$
--in --
Suspension Bridges

used. The particular kind or form of towers will depend to some extent upon the locality and character of surroundings.
Their dimensions will depend upon their height and the amount of strains they will haves to resist.
Where the cables pass over the towers are saddles. Our construction of saddles in which the cable passed our friction rollers rigidly attached to the top of the pier, allows the cable to slip backwards and forwards over it with comparatively little friction, so that the stress on the cable may be taken as equal on both sides of the saddle.
In another construction the chain is secured to its saddle, which, however, is free to move horizontally on the top of the piers.
In the first form of saddles the resultant pressure on the pier will not be vertical unless the chain

leaves the pier at an equal inclination on each side, and even when the bridge is designed with an equal slope of chain on both sides of the pier, a change in the distribution of weight due to any passing load, will cause some departure from the equal slope of the chains, and therefore from the truly vertical pressure of the piers. This departure is easily allowed for in the design of the bridge piers. The friction on the saddle renders the assumption of equal stresses on each side slightly incorrect, and with this type of saddle, care must be taken to provide against the wear produced by the motion of the chain.
In the second type, the use of rollers under the solid saddle leaves the motion of the saddle very free; its resultant pressure on the tower is always vertical, and the chains may
lever the true at any angl, eq cal The chain must in no case bu rigidly areached to the pion, coles its fir, on active outport in chic instance, in from to rock on its base, an for example, culm the fever of the fries is take ha inn struts working me a larizantal axis.
Anchorageof rock, a metical passage planed b uxconated and a shang inn plate placed in th biverm and firmly, invaded in the side of the passage. careen an paid and seamed on th under aide.
After the culex an put in prove, the paragon slaved lu fiend mitt concorde of th hark in not suitater four ch
leave the tower at any angle, equal or unequal.
The chain must in no case be rigidly attached to the pier, unless the pier, or rather support in this instance, is free to rock on its base, or for example, when the place of the pier is taken by iron struts working on a horizontal axis.
Anchorage
If the shore or bank be of rock, a vertical passage should be excavated and a strong iron plate placed in the bottom and firmly imbedded in the side of the passage. Through this plate the ends of the cables are passed and secured on the under side.
After the cables are put in place, the passage should be filled with concrete and masonry.
If the bank is not suitable for the

anchorage, a heavy mass of masonry should be built of large blocks of cutstone well bonded together for this purpose. In this case it is well to construct a passage way so that the chains and fastenings may at any time be examined. The mass of masonry or the natural rock to which the ends of the cables are fastened is frequently called the abutment.
Its stability must be greater than the tension of the cables. Its weight and thickness must be sufficient to prevent its being over turned, and its center of resistance must be in safe limits. The calculations in regard to the anchorage, when it is artificial, properly belong with the suspension bridge, but I have left them out, since they can be very appropriately included in masonry.

Cables

These may be made of iron bars connected by eye bar and pin joints, of iron links \&c, but the custom now is to use wire ropes or cables. The smallest number of cables is two, one to support each side of the roadway. Generally more than two are used, since, for the same amount of material, they offer at least the same resistance, are more accurately manufactured, are liable to less danger of accident, and can be more easily put in place and replaced than a single cable of an equal amount of material.
Great care is taken to give each wire the same degree of tension. To ensure this, it used to be thought necessary to strain each wire separately over the actual piers, or piers similarly placed, and bind them together when hanging, strained by their own weight with the dip proposed for the bridge. It was also thought essential that each rope

should be an aggregate of parallel wires, not spun, as in a rope. Experiment, however, has shown that wire ropes spun with a machine which does not put a twist in each wire, but lays it helically and untwisted, and with no straight central wire, are as strong as wire ropes of equal weight made with straight wires.
It is the custom now to make the cable of wire $1 / 6^{\prime \prime}$ to $1 / 5^{\prime \prime}$ in diameter, and bring them to a cylindrical shape by a spiral wrapping of wire. The wires are coated with varnish before being bound up, and the cable itself is suitably protected from atmospheric influences.

Suspension Rods

When the cable is composed of links or bars, they are attached directly to them. If of rope, the suspension rod is attached to a collar of iron of suitable shape bent around the cable, or to a saddle piece resting on it. When there are two cables,

care must be taken to distribute the load upon the cables according to their degree of strength.

Roadway

The roadway bearers are supported by the suspension rods. On the bearers are laid longitudinal joists, and on them the planking, or the planking is laid directly on the roadway bearers. The latter are stiffened by diagonal ties of iron placed horizontally between each pair of roadway bearers.
General Principles
The great merit of a suspension bridge is its cheapness, arising from the comparatively small quantity of material required to carry a given passing load across a given span. This cheapness may be seen more clearly by considering an example. A man might cross a chasm of 100' by hanging to a steel wire $.21^{\prime \prime}$ in diameter, dipping 10^{\prime};

The wright of the inn waned bin 12.75 lbs. a unsought iron bran of rectangular crass auction thu times an dup an it is hoad, used hour to be about $27^{\prime \prime}$ dup and $q^{\prime \prime}$ broad t_{0} carry him and it our wright. It waned to wiegh 87,500 lbs. An ism I ham of bot coustunction 10° dup coned weigh about 120 lln . In each case 4' lave ben accused for braninge at ate under of the pane. The enornaundifferman maned nod exist if the ban and win had only to carry the man, Even. then then unwed be a great diffumen in bauer of the miser. T he main differman arise from th fact that th bide huecto carry its vane wight. The chis-nerit of a suspusion bid: dow not, cherefore, came into play: until the uriglt of the rope or bum is comsiduabee when campand wits the platform and acing load; fur acchauph
the weight of the iron would be 12.75 lbs . A wrought iron beam of rectangular cross-section three times as deep as it is broad, would have to be about 27 " deep and 9" broad to carry him and its own weight. It would be weigh $87,500 \mathrm{lbs}$. An iron I beam of best construction 10' deep would weigh about 120 lbs . In each case 4 ' have been allowed for bearings at the end of the spans. The enormous differences would not exist if the beam and wire had only to carry the man, even then there would be a great difference in favor of the wire. The main difference arises from the fact that the bridge has to carry its own weight.
The chief merit of a suspension bridge does not, therefore, come into play, until the weight of the rope or beam is considerable when compared with the platform and rolling load; for although the chain will for any given load be

lighter than a beam, the saving in this respect will, for small spans, be more than compensated by the expense of the anchorages.
The disadvantages of the suspension bridge are numerous. A change in the distribution of the load causes a very sensible deformation of the structure, for the cable of the suspension bridge must adapt is form to the new position of the load, whereas in the beam the deformation is hardly sensible, equilibrium being attained by a new distribution of the stresses through the material. This flexibility of the suspension bridge renders it unsuitable for the passage of a railway train at any considerable speed. The platform rises up as a wave in front of any rapidly advancing load, and the masses in motion produce stresses much greater than those which would result from

the same weights when at rest. The kinetic effect of the oscillations produced by bodies of men marching, or by impulses due to wind, give rise to strains which cannot be foreseen.

Let EH'C be cable of a suspension bridge carrying a load which extends over the whole span. In practice the load carried by a suspension bridge cable is uniform in intensity in reference to a horizontal line. Theoretically this assumption would not do, but the load is so nearly uniform per foot of span that it is taken to be exactly so.
Let
$E D+B C=1=$ span
$B H^{\prime}=\mathrm{L}_{1}=$ height of highest tower

$$
\mathrm{DH}^{\prime}=\mathrm{L}_{2}=\text { " " lower tower }
$$

$\mathrm{w}=$ load for horizontal foot
$\mathrm{x}=$ distance measured horizontally from H^{\prime}, the lowest point in the cable.

The ordinate of any point P is x, then the load on H'M is

> W = wx, since the total load is equal to the number of units of length into the load on one unit of length. Draw PK tangent to the curve at P , then, since the resultant of the load between P and H^{\prime} acts through the point of intersection of the tangents at P and H^{\prime}, and the load and tensions on the chain at P and H^{\prime} are respectively proportional to the sides of a triangle parallel to their directions, the cable tension at P and H^{\prime} and the direction of W must intersect in one point. Since w is uniform along x, the resultant direction of W passes through N , half way between H^{\prime} and M . Therefore $\mathrm{FH}^{\prime}=\mathrm{H}^{\prime} \mathrm{K}$, or, since H'K is the sub-tangent, the abscissa, FH^{\prime}, of the curve is equal to the sub-tangent, hence, the curve is the

ordinary parabola.
Also -
It is known that the horizontal component of the tension of a cable wire be a constant quantity if--the loading, as is assumed in this case, be vertical; let that component be denoted by H .
Let the right triangle GNP be taken for the triangle of forces at P, in which NP represents the cable tension at P, GN the load $\mathrm{W}=\mathrm{wx}$, and GP the constant horizontal component H .
PH being normal to the curve at P, the Δ 's HPF and GNP will be similar, and we have the proportion:
$\frac{H F}{G P}=\frac{F P}{G N}=\frac{x}{w x}=\frac{1}{w}=a$ constant HF is the sub-normal of the curve of the cable, and since it is constant, the curve must be the common parabola. If the load placed on a cable be a

direct function of its length, the curve assumed by the mean fibre of the cable will be a catenary. If it be a direct function of its span it will be a parabola. But the weight resting on the main chains is neither a direct function of the length of the cable nor of the span, but a function of both. The curve is, therefore, neither a catenary nor a parabola. But since the roadway, which forms the principal part of the load, is distributed very nearly uniformly over the span, the curve approaches nearer the parabola, and in practice, is usually regarded as such a curve.
Now if any two points, P and Q , be considered fixed, and the portion PQ of the cable carries the same intensity of load as before, we have - a cable carrying a load whose intensity along a straight line and direction are uniform.
Hence - if - a perfectly flexible cable
carry a land uniform in dissection and interiily in reformat to a straight lime, the cable wire assume at farm of an ordinary parabola whose axis wien br parcel to the trading.
Quramitir of Chur -
7 ram fig. 1
hour the equation of the cur -
$x^{2}=2 k y_{1}(1)$ in which $2 k$ in the franameter.
Let $B C=x_{1}, E D=x_{2}$, then

$$
\begin{aligned}
& x_{1}^{2}=2 k h_{1}\left(h_{1}=A^{\prime} B\right)_{1}, \therefore x_{1}=\sqrt{2 p h_{1}} \\
& x_{2}^{2}=2 k h_{2}\left(h_{2}=D f^{\prime}\right){ }_{1}, \therefore x_{2}=\sqrt{2 k h_{2}}
\end{aligned}
$$

Thew, multiplying toquther equations (2) and (3),

$$
\begin{aligned}
& x_{1} x_{2}=2 k \sqrt{h_{1} h_{2}} \text {, and } 2 x_{1} x_{2}=4 k \sqrt{h_{1} h_{2}} \text {. (4) } \\
& \text { acer- }\left(x_{1}+x_{2}\right)^{2}=x_{1}^{2}+2 x_{1} x_{2}+x_{2}^{2}=l^{2}=2 k\left(\sqrt{h_{1}}+\sqrt{h_{2}}\right)^{2} \\
& =2 k\left(h_{1}+2 \sqrt{h_{1} h_{2}}+h_{2}\right) \cdot(b) \text {. } \\
& l^{2}=2 k\left(h_{1}+2 \sqrt{h_{1} h_{2}}+h_{2}\right) \\
& \therefore \phi=\frac{l^{2}}{2\left(\sqrt{h_{1}}+\sqrt{h_{2}}\right)^{2}}=\frac{l^{2}}{2\left(h_{1}+2 \sqrt{h_{1} h_{2}}+h_{2}\right.}
\end{aligned}
$$

carry a load uniform in direction and intensity in reference to a straight line, the cable will assume the form of an ordinary parabola whose axis will be parallel to the loading.

Parameter of Curve
From Eg. 1 we have the equation of the curve $x^{2}=2 p y,(1)$ in which 2 p is the parameter.

Let $\mathrm{BC}=\mathrm{x}_{1}, \mathrm{ED}=\mathrm{X}_{2}$, then $x_{1}^{2}=2 p h_{1}\left(\mathrm{~h}_{1}=\mathrm{H}^{\prime} \mathrm{B}\right)$, therefore $x_{1}=\sqrt{2 p h_{1}}$ (2) $x_{2}^{2}=2 p h_{2}\left(\mathrm{~h}_{2}=\mathrm{DH} \mathrm{H}^{\prime}\right)$, therefore $x_{2}=\sqrt{2 p h_{2}}$ (3) Then, multiplying together equations (2) and (3),
Hence ${ }^{x_{2} x_{1}=2 p \sqrt{h_{1} h_{2}}=\text { and } 2 x_{2} x_{1}=4 p\left(\sqrt{h_{1}}+\sqrt{h_{2}}\right)^{2}}$

$$
\begin{array}{ll}
& \left(x_{1}+x_{2}\right)^{2}=x_{1}^{2}+2 x_{1} x_{2}+x_{2}^{2}=l^{2}=2 p\left(\sqrt{h_{1}}+\sqrt{h_{2}}\right)^{2}(5) \tag{4}\\
& l^{2}=2 p\left(h_{1}+2 \sqrt{h_{1} h_{2}}+h_{2}(6)\right. \\
\therefore \quad & p=\frac{l^{2}}{2\left(\sqrt{h_{1}}+\sqrt{h_{2}}\right)^{2}}=\frac{l^{2}}{2\left(h_{1}+2 \sqrt{h_{1} h_{2}}+h_{2}\right.}(6)
\end{array}
$$

If the tours on of th same hinge, Them $h_{1}=h_{2}=h$, and equation (b) frcanner -

$$
\begin{equation*}
\phi=\frac{l^{2}}{8 h} \tag{7}
\end{equation*}
$$

Hangaital ditanes frow lout paint of curs to paints of support.
distaver frow th lamest paint of the caber to the high at tour in, Fig 1, $B C=x$, so also $6 D_{1}$ th bour town $1=X_{2}$

$$
x_{1}=\sqrt{2 p h_{1}} \ldots(2)
$$

But $\phi=\frac{l^{2}}{\left(\sqrt{k_{1}}+\sqrt{k_{2}}\right)^{2}}$ (6). Sulichtuting thin value of p^{2}
(2) whore-

$$
x_{1}=\sqrt{2 p h_{1}}=\left[2 h_{12} \frac{l^{2}\left(\sqrt{k_{1}}+\sqrt{n_{2}}\right)^{2}}{]^{1 / 2}}=\left[\frac{l^{2} h_{1}}{\left(\sqrt{k_{1}}+\sqrt{\left.k_{2}\right)^{2}}\right.}\right]^{1 / 2}\right.
$$

$$
\begin{equation*}
=\frac{e \sqrt{m_{1}}}{\sqrt{n_{1}}+\sqrt{h_{2}}} \tag{8}
\end{equation*}
$$

In a similar, un kain from (3) -

$$
x_{2}=\frac{l \sqrt{h_{2}}}{\sqrt{h_{1}}+\sqrt{h_{2}}} \cdots(q)
$$

If the towers* of the same height, the $h_{1}=h_{2}=h$, and equation (6) becomes:

$$
p=\frac{l^{2}}{8 h}(7)
$$

Horizontal distances from lowest point of curve to points of support.

The horizontal distance from the lowest point of the cable to the highest tower is, Fig. 1, $\mathrm{BC}=\mathrm{x}_{1}$ so also ED, the lower tower, $=x_{2}$

$$
x_{1}=\sqrt{2 p h_{1}}--(2)
$$

But $p=\frac{l^{2}}{2\left(\sqrt{h_{1}}+\sqrt{h_{2}}\right)^{2}}(6)$. Substituting this value of p in (2) above--

$$
\begin{aligned}
x_{1} & =\sqrt{2 p h_{1}}=\sqrt{\frac{2 h_{1} l^{2}}{2\left(h_{1}+h_{2}\right)^{2}}}=\sqrt{\frac{l^{2} h_{1}}{\left(h_{1}+h_{2}\right)^{2}}} \\
& =\frac{l \sqrt{h_{1}}}{\sqrt{h_{1}}+\sqrt{h_{2}}}---(8)
\end{aligned}
$$

In a similar, we have from (3):

$$
x_{2}=\frac{l \sqrt{h_{2}}}{\sqrt{h_{1}}+\sqrt{h_{2}}}--(9)
$$

If $h_{1}=h_{2} ; x_{1}=x_{2}=\frac{l}{2}$
Suchimation of corer at any point -
$x f^{\prime}=f^{\prime \prime} F=4$. if i is the inclination to a horizontal line of the curve at mu y paint ρ, them wo hour frow the $\Delta F P K$, $(F K=2 y)$,

$$
x \lim i=2 y_{2}
$$

$$
\begin{equation*}
\operatorname{Lam} i=\frac{1_{2} i}{x}, \quad \therefore \sec i=\sqrt{1+\frac{4 y^{2}}{x^{2}}} \tag{11}
\end{equation*}
$$

at sh tops of the tours
$\tan i_{1}=\frac{2 h_{1}}{x_{1}}-(12) . \tan i_{2}=\frac{2 h_{2}}{x_{2}}$

$$
\begin{equation*}
\text { If } w_{1}=L_{2}, \tan i_{1}=\tan i_{2}=\frac{4 h}{l} \tag{13}
\end{equation*}
$$

Rusubeinh linsion at any point of cable rIt has
been stour that if -the loading on a cable is uniform in direction, the component of caber trier ronal to That direction wire br constant at are paines of the caber. Lit the rusutcant tension at the lowest parent of the caber bu this comitach camponut, deviobd by't.

If $h_{1}=h_{2} ; x_{1}=x_{2}=\frac{l}{2}$
Inclination of cable at any point
Since
$K H^{\prime}=H^{\prime} F=y$, if i is the inclination to a horizontal line of the curve at any point P, then we have from the $\triangle F P K,(F K=2 y)$,

$$
\begin{align*}
& x \tan (i)=2 y \\
& \tan (i)=\frac{2 y}{x} \text { therefore } \sec (i)=\sqrt{1+\frac{4 y^{2}}{x^{2}}} \tag{11}
\end{align*}
$$

At the tops of the towers

$$
\begin{equation*}
\tan \left(i_{1}\right)=\frac{2 h_{1}}{x_{1}}--(12) . \quad \tan \left(i_{2}\right)=\frac{2 h_{2}}{x_{2}}-- \tag{13}
\end{equation*}
$$

If $h_{1}=h_{2}, \tan \left(i_{1}\right)=\tan \left(i_{2}\right)=\frac{4 h}{l}--(14)$
Resultant tension at any point of cable It has
been shown that if the loading on a cable is uniform in direction, the component of cable tension normal to that direction will be constant at all points of the cable. Let the resultant tension at the lowest point of the cable be this constant component, denoted by H .

We haver rum that $\mathcal{H}=m$ Hf. But $A T$ in the subinomial of the cuman, aid we know-fram escurial geometry, that te cuhnornal to it parabola is equal to one luef te p-aramier $2 p$, or equal to p. Homer, $A=\omega p \cdots(15)$

Substituting in the ahoors the value of p as found in equation (6), we have-

$$
\begin{equation*}
A\left(=\frac{w l^{2}}{2\left(\sqrt{\left.n_{1}+\sqrt{n_{L}}\right)^{2}}\right.}=\frac{w l^{2}}{2\left(w_{1}+2 \sqrt{\left.n_{1} w_{2}+w_{2}\right)}\right.}\right. \tag{16}
\end{equation*}
$$

of R represent its resultant basion at any paint, itu fourth triouple of forces, Is $x \mathcal{J}^{2}$.

$$
\begin{aligned}
& P n=\text { y } \mathcal{P} \text { re i } i \text {, on } \\
& T=H_{\text {sec } i}=H \sqrt{1+\frac{4 y^{2}}{x^{2}}} \cdots(17) \text { lay }
\end{aligned}
$$

Rututitutiup the value of see i in (II). at it taps of the townes te tension e an

$$
\begin{aligned}
& \left.R_{1}=A \sqrt{1+\frac{4 L_{1} 2^{2}}{x_{1}}} \cdots(18)^{2}\right) \\
& R_{2}=A \sqrt{1+\frac{4 h_{2}^{2}}{x_{2}^{2}}} \cdots(19)
\end{aligned}
$$

We have seen that $\mathrm{H}=\mathrm{wAF}$. But AF is the sub-normal of the curve, and we know from General geometry, that the subnormal to the parabola is equal to one half the parmeter $2 p$, or equals to p. Hence, $\mathrm{H}=\mathrm{wp}$-----(15)
Substituting in the above the value of p as found in equation (6), we have:

$$
\begin{equation*}
H=\frac{w l^{2}}{2\left(h_{1}+h_{2}\right)^{2}}=\frac{w l^{2}}{2\left(h_{1}+2 \sqrt{h_{1} h_{2}}+h_{2}\right)}-\cdots-(\tag{16}
\end{equation*}
$$

Let R represent the resultant tension at any point, then from the triangle of forces, GNP,

$$
\begin{gathered}
\mathrm{PN}=\mathrm{GPsec}(\mathrm{i}), \text { or } \\
R=H \sec (i)=H \sqrt{1+\frac{4 y^{2}}{x^{2}}}---(17) \text { but }
\end{gathered}
$$

substituting the value of $\sec (\mathrm{i})$ in (11). At the tops of the towers the tensions are:

$$
\begin{align*}
& R_{1}=H \sqrt{1+\frac{4 h_{1}^{2}}{x_{1}^{2}}} \tag{18}\\
& R_{2}=H \sqrt{1+\frac{4 h_{2}^{2}}{x_{2}^{2}}} \tag{19}
\end{align*}
$$

$$
\text { If } L_{1}=L_{2} \text {, ichor } x_{1}=x_{2}=\frac{l}{2} \text {, and from }
$$

Equation (16) -

$$
I^{\prime}=\frac{w l^{2}}{8 h} \cdots(20)
$$

$$
\begin{equation*}
\text { Also } R_{1}=R_{2}=t \sqrt{1+\frac{16 h^{2}}{l^{2}}} \tag{21}
\end{equation*}
$$

Lurch of caber brturen a Rumen paint
and th vitux, on brturun vertex and a point ot which the inclination to a Torizaital line is is.

calculus war haver the farmed for
th rielification of plan curves

$$
d z=\sqrt{d x^{2}+d y^{2}} \text {, in which } z \text { repmonth }
$$

$$
\text { the length of curve, and } x \text { and } y \text { its }
$$

guenal coir dinatre.
Frow the equation of the curs

$$
\begin{aligned}
& x^{2}=2 \beta y^{2} d x^{2} \text {, have } \\
& d y^{2} \text {, and } \\
& d z=\frac{1}{\phi}\left(k^{2}+x^{2}\right)^{1 / 2} d x
\end{aligned}
$$

Io integrate thin exprusions, apply

If $L_{1}=L_{2}$, then $x_{1}=x_{2}=\frac{l}{2}$, and from Equation (16)

$$
H=\frac{w l^{2}}{8 h}---(20)
$$

Also, $R_{1}=R_{2}=H \sqrt{1+[\text { illegible })}$

Length of cables between a known point

 and the vertex, or between vertex and a point at which the inclination to a horizontal line in " i ".
From the

calculus we have the formula for the rectification of plane curves

$$
\mathrm{d} z=\sqrt{d x^{2}+d y^{2}} \text {, in which } \mathrm{z} \text { represents }
$$

the length of the curve, and x and y the general coordinates.
From the equation of the curve

$$
\begin{aligned}
& x^{2}=2 p y, \text { we have } \\
& \qquad d y^{2}=\frac{x^{2} d x^{2}}{p z}, \text { and } \\
& \qquad d z=\frac{1}{p} \sqrt{p^{2}+x^{2}} d x
\end{aligned}
$$

To integrate this expression, apply formula C of reduction.

$$
\begin{align*}
& y=\int x^{m}\left(a+b x^{u}\right)^{p} d x=\frac{x^{m+1}\left(a+b x^{n}\right)^{p}+a x p \int x^{m}\left(a+b x^{n}\right)^{p-1} d x}{n k+m+1} \tag{c}\\
& \text { and un have } \\
& z=\frac{x \sqrt{x^{2}+p^{2}}}{2 k}+\frac{p}{2} \int \frac{d x}{\sqrt{p^{2}+x^{2}}} \cdots(22)
\end{align*}
$$

T. integrate $\frac{d x}{\sqrt{p^{2}+x^{2}}}$, put $z=x+\sqrt{p^{2}+x^{2}}$. (23)

$$
\text { Thun } d z=d x+\frac{x d x}{\sqrt{p^{2}+x^{2}}}=d x\left(1+\frac{x}{\sqrt{p^{2}+x^{2}}}\right)
$$

them -

$$
d z=\frac{x+\sqrt{p^{2}+x^{2}}}{\sqrt{p^{2}+x^{2}}} d x
$$

How auer have -

$$
\frac{d z}{z}=\frac{\frac{x+\sqrt{p^{2}+x^{2}}}{\sqrt{p^{2}+x^{2}}} d x}{x+\sqrt{p^{2}+x^{2}}}=\frac{d x}{\sqrt{p^{2}+x^{2}}}-(24)
$$

$\int_{0} \frac{d z}{z}=\int \frac{d x}{\sqrt{p^{2}+x^{2}}}=\log z$. Destining th value of $z-d$

$$
\int \frac{d x}{\sqrt{p^{2}+x^{2}}}=\log \left(x+\sqrt{p^{2}+x^{2}}\right) \cdots(25)
$$

Therefor -

$$
z=\frac{x \sqrt{p^{2}+x^{2}}}{2 p}+\frac{p}{2} \log \left(x+\sqrt{p^{2}+x^{2}}\right)+C
$$

Estimating th arc frow th vortex, it bring the oingin, $C=-\frac{p}{2} \log p$

$$
\begin{equation*}
y=\int \quad x^{m}\left(a+b x^{n}\right)^{p} d x=\frac{x^{m+1}\left(a+b x^{n}\right)^{p}+a n p \int x^{m}\left(a+b x^{n}\right)^{p-1} d x}{n p+m+1} \tag{C}
\end{equation*}
$$

and we have

$$
\begin{equation*}
z=\frac{x \sqrt{x^{2}+p^{2}}}{2 p}+\frac{p}{2} \int \frac{d x}{\sqrt{p^{2}+x^{2}}}- \tag{22}
\end{equation*}
$$

To integrate $\frac{d x}{\sqrt{p^{2}+x^{2}}}$, put $z=x+\sqrt{p^{2}+x^{2}}$ then $d z=\frac{x+\sqrt{p^{2}+x^{2}}}{\sqrt{p^{2}+x^{2}}} d x$

Now we have

$$
\begin{equation*}
\frac{d z}{z}=\frac{\frac{x+\sqrt{p^{2}+x^{2}}}{\sqrt{p^{2}+x^{2}}}}{x+\sqrt{p^{2}+x^{2}}}=\frac{d x}{\sqrt{p^{2}+x^{2}}}- \tag{24}
\end{equation*}
$$

$\int \frac{d z}{z}=\int \quad \frac{d x}{\sqrt{p^{2}+x^{2}}}=\log (z)$ Restoring the value
of z :

$$
\begin{equation*}
\int \quad \frac{d x}{\sqrt{p^{2}+x^{2}}}=\log \left(x+\sqrt{p^{2}+x^{2}}\right. \tag{25}
\end{equation*}
$$

Therefore

$$
z=\frac{x \sqrt{p^{2}+x^{2}}}{2 p}+\frac{p}{2} \log \left(x+\sqrt{p^{2}+x^{2}}+C\right.
$$

Estimating the arc from the vertex, it being the origin $C=-\frac{P}{2} \log p$

22

Thus the corrected integral is
$z=\frac{x \sqrt{p^{2}+x^{2}}}{2 p}+\frac{p}{2} \log \left(\frac{x+\sqrt{p^{2}+x^{2}}}{p}\right)$
Now by substituting in the above for p its value $\frac{x^{2}}{2 y}$, the equation can be put in the form--
$z=\frac{x^{2}}{4 y}\left(\frac{2 y}{x} \sqrt{1+\frac{4 y^{2}}{x^{2}}}+\log \left[\frac{2 y}{x}+\sqrt{1+\frac{4 y^{2}}{x^{2}}}\right]\right)$
Now we have seen that $\frac{x^{2}}{4 y}=\frac{p}{2} ; \frac{2 y}{x}=\tan (i)$;
$\sqrt{1+\frac{4 y^{2}}{x^{2}}}=\sec (i)$, and by substituting these values, eq. (27) becomes

$$
z=\frac{p}{2}[\tan (i) \sec (i)+\log (\tan (i)+\sec (i))]---(28)
$$

In the above formulas, the Naperian logarith is used, since the modulus is 1. Since the above formulae were deduced for the distance from the vertex to any particular point, the total length of cable will be found by substituting for $y_{1} h_{1}$; and for x, x_{1} in equation (27); or i_{1} for i in Eq. (28); then x_{2} and h_{2} for x and y in (27), or i_{2} for i in (28) and adding the results. Denoting these

results by l_{1} and l_{2}, then total length will be:

$$
l_{1}+l_{2}---(29)
$$

A formula, which is close enough for practical purposes, and which is frequently used, is deduced as follows.
In fig. 1 suppose H'P is an arc of a circle whose radius is R. The coordinates x and y are the same as before. The expression for a circular arc in the integral calculus is:

$$
\int \quad \frac{d x}{\sqrt{1-\frac{x^{2}}{R^{2}}}}=\int \quad \frac{d x}{1-\frac{x^{2}}{2 R^{2}}}, \text { approximately, }
$$

considering R very large as compared with x .

Let the adivate $A D=x$ he measund from It toward B, and $D C=4$ pupendiculau to it. Let A $B=x_{1}$ = the half pan. It curer of
the calve is the fanaluear as before.

$$
x^{2}=2 k
$$

$$
y=\frac{4 h x^{2}}{l^{2}}=\frac{4 h^{1} x^{2}}{4 x_{1}^{2}}=h \frac{x^{2}}{x_{1}^{2}}
$$

 the general equation - $y^{\prime}=y_{1} \cdot \frac{x^{2}}{x_{1}^{2}} \cdots(33)$

Figure 2.

Let the ordinate $A D=x$ be measured from A towards B, and $D C=y$ perpendicular to it. Let $\mathrm{AB}=x_{1}=$ the half span. The curve of the cables is the parabola as before.

$$
x^{2}=2 p y \text {, }
$$

$$
y=\frac{x^{2}}{2 p}
$$

From Eq. (1) $p=\frac{l^{2}}{8 h}$. substituting:

$$
\begin{gathered}
y=\frac{4 h x^{2}}{l^{2}} \\
A B=x_{1}=\frac{1}{2} l, \therefore l=2 \mathrm{x}, \text { and we have } \\
y=\frac{4 h x^{2}}{l^{2}}=\frac{4 h x^{2}}{4 x_{1}^{2}}=L \frac{x^{2}}{x_{1}^{2}}
\end{gathered}
$$

Now $\mathrm{L}=\mathrm{y}$, in Fig II, or calling y , the ordinate and x the abscissa of any point in the curve above $A B$, we have the general equation:

$$
y^{\prime}=y_{1} \frac{x^{2}}{x_{1}^{2}}---(33)
$$

In the a ane manner for te lour w curs or the camber

$$
y^{\prime \prime}=z \frac{x^{2}}{x_{1} 2^{2}}-(34) \text {, in which }
$$ I' B^{\prime} ' is tatum us tu axis of abserisar and z is the ordinate

Reprinting th lingich of any suspender
as Ce' by h, ur have-

$$
L=C C^{\prime}=C D+D D^{\prime}+D^{\prime} C^{\prime} \cdots\left(3 b^{\prime}\right)
$$

You $D D^{\prime}=h_{0}=c$, and taking the value n y
$C D$ and $D^{\prime} C^{\prime}$ as given in agR. (33) and $C D$ and $D^{\prime} C^{\prime}$ as gimme in app. (33) and (34), $\quad h=y^{\prime}+y^{\prime \prime}+c \cdots(36)$

From chin us an chat cool suspender is compared of the constant length c and the tho variable ans y^{\prime} and $y^{\prime \prime}$;
Adding equation e (33) and (34), and upresusting the sum of the variable legate by y-

$$
\begin{equation*}
y=\left(y^{\prime}+y^{\prime \prime}\right)=\left(y_{1}+2\right) \frac{x^{2}}{x_{1}^{2}} \tag{37}
\end{equation*}
$$

Now let the suspudin au e br th sane distance aport, and represul this constant distance by d, then

In the same manner for the lower curve or the camber

$$
y^{\prime \prime}=z \frac{x^{2}}{x_{1}^{2}}--(34) \text { in which }
$$

$A^{\prime} B^{\prime}$ is taken as the axis of abscissas and z is the ordinate Representing the length of any suspender as CC' by L, we have -

$$
L=C C^{\prime}=C^{\prime} D+D D^{\prime}+D^{\prime} C^{\prime}---(35)
$$

Now DD' $=h_{o}=C$, and taking the value of CD and D'C' as given in Eqs. (33) and (34), h = y' $+{ }^{\prime \prime}+\mathrm{C}---(36)$

From this we see that each suspender is composed of the constant length c and the two variable ones y^{\prime} and $y^{\prime \prime}$. Adding equations (33) and (34), and representing the sum of the variable lengths by y --

$$
\begin{equation*}
y=\left(y^{\prime}+y^{\prime \prime}\right)=\left(y_{1}+2\right) \frac{x^{2}}{x_{1}^{2}} \tag{37}
\end{equation*}
$$

Now let the suspenders all be the same distance apart, and represent this constant distance by d, then

$$
\begin{aligned}
& h_{2}=c+\frac{4 d^{2}}{x_{1}^{2}}\left(y_{1}+z\right) \\
& h_{3}=c+\frac{9 d^{2}}{x_{1}^{2}}\left(y_{1}+z\right) \\
& h_{x-1}=c+\frac{(x-1)^{2}}{x_{1}^{2}}\left(y_{1}+z\right) \\
& h_{x}=c+\left(\frac{x^{2} d^{2}}{x_{1}^{2}}=1\right)\left(y_{1}+z\right)=c+y_{1}+z \cdots(38)
\end{aligned}
$$

Sine h_{1} was assumed equal to h_{2} in the stour calcutations, on the tours of the eave height and equal to h, the length of ate Rupheuden on each side of it burst paint in the cable uric be equal, and having emptied one sinker The vitical load which any nad canner motiplid by the react it in inclination to a vitieal line gives itch ctr ow such nod.

$$
\begin{align*}
& h_{2}=c+\frac{4 d^{2}}{x_{1}^{2}}\left(y_{1}+z\right) \\
& h_{3}=c+\frac{9 d^{2}}{x_{1}^{2}}\left(y_{1}+z\right) \\
& h_{n-1}=c+\frac{(n-1)^{2}}{x_{1}^{2}}\left(y_{1}+z\right) \\
& h_{n}=c+\left(\frac{n^{2} d^{2}}{x_{1}^{2}}\right)\left(y_{1}+z\right)=c+y_{1}+z-\cdots- \tag{38}
\end{align*}
$$

Since h_{1} was assumed equal to h_{2} in the above calculations, or the towers of the same height and equal to h, the lengths of the suspenders on each side of the lowest point in the cable will be equal, and having computed one side we use these values for the other. The vertical load which any rod carries multiplied by the secant of its inclination to a vertical line gives the stress on such rod.

Deflection of cable for change in leuqch, the fou remaining it caine.
$x\left(1+2 y^{2}\right)$ in eq.(3) $x \cdot\left(1+\frac{2 y^{2}}{3 x^{2}}\right)$, Robititule x, for x and h_{1} for 4 and ur haver -

$$
x_{1}\left(1+\frac{h_{1}^{2}}{3 x_{1}^{2}}\right) \cdots(3 q)
$$

Also putilituting x_{2} and h_{2} for x and h in the semen equation, it becomes

$$
\begin{equation*}
x_{2}\left(1+\frac{2 h_{2}^{2}}{3 x_{2}^{2}}\right) \tag{40}
\end{equation*}
$$

Adding the arbour equations and deviling the Two segments of the parabola by c, and c_{2}, wo hour th total length of caber -

$$
\begin{equation*}
c_{1}+c_{2}=x_{1}+x_{2}+\frac{2}{3}\left(\frac{h_{1}^{2}}{x_{1}}+\frac{h_{2}^{2}}{x_{2}}\right) \tag{41}
\end{equation*}
$$

Differnciating -

$$
l\left(c_{1}+c_{2}\right)=\frac{4}{3}\left(\frac{h_{1}}{x_{1}}+\frac{h_{2}}{x_{2}}\right) d x \cdots\left(4^{2}\right)
$$

hour $W_{1}-L_{2}$ bini equal to a constant,

$$
\begin{aligned}
& d h_{1}=d L_{2}=d h^{2} \\
\therefore d= & \frac{3 d\left(c_{1}+c_{2}\right)}{4\left(\frac{h_{1}}{x_{1}}+\frac{h_{2}}{x_{2}}\right)}-(43)
\end{aligned}
$$

Deflection of a cable for change in length, the span remaining the same

In Eq. (3)
$x\left(1+\frac{2 y^{2}}{3 x^{2}}\right)$, substitute x_{1} for x and h_{1} for y, and we have

$$
\begin{equation*}
x_{1}\left(1+\frac{h_{1}^{2}}{3 x_{1}^{2}}\right)-\cdots \tag{39}
\end{equation*}
$$

Also substituting x_{2} and h_{2} for x and h in the same equation, it becomes

$$
x_{2}\left(1+\frac{h_{2}^{2}}{3 x_{2}^{2}}\right)-\cdots--(40)
$$

Adding the above equations and denoting the two segments of the parabola by c_{1} and c_{2}, we have the total length of cable --

$$
\begin{equation*}
c_{1}+c_{2}=x_{1}+x_{2}+\frac{2}{3}\left(\frac{h_{1}^{2}}{x_{1}}+\frac{h_{2}^{2}}{x_{2}}\right) \tag{41}
\end{equation*}
$$

Differentiating:

$$
\begin{equation*}
d\left(c_{1}+c_{2}\right)=\frac{4}{3}\left(\frac{h_{1}}{x_{1}}+\frac{h_{2}}{x_{2}}\right) d x \tag{42}
\end{equation*}
$$

Now $h_{1}-h_{2}$ being equal to a constant,

$$
\begin{equation*}
\therefore d h=\frac{3 d\left(c_{1}+c_{2}\right)}{4\left(\frac{h_{1}}{x_{1}}+\frac{h_{2}}{x_{2}}\right)}---(4 \tag{43}
\end{equation*}
$$

$$
d h_{1}=d h_{2}=d h
$$

Frow whatever cause te caber may vary in hemet, thin variation in to be fut for $d\left(c_{1}+c_{2}\right)$ in equation (42) and (43), and tm dh wine le te comspanding defection of th lours paint of th caber. If the lours an of the sumer height -

$$
c_{1}=c_{2}, h_{1}=h_{2}, x_{1}=x_{2}=\frac{l}{2}
$$

Len wo haver from (42)-

$$
\begin{aligned}
& 2 d c_{1}=\frac{16}{3} \frac{h_{1}}{l} \cdots(44) \\
& d h=\frac{3 h_{1}}{16 l} 2 d c_{1} \ldots(45)
\end{aligned}
$$

Lu equaticine (42) and (43) the assumption, though wal atructy hue, is chat she lourat paint of th caber remain at te same harigant af distance from the hours.

From whatever cause the cable may vary in length, this variation is to be put for $d\left(c_{1}+c_{2}\right)$ in equations (42) and (43), and then $d h$ will be the corresponding deflection of the lowest point of the cable.
If the towers are of the same height-

$$
c_{1}=c_{2}, h_{1}=h_{2}, x_{1}=x_{2}=\frac{l}{2}
$$

Then we have from (42)-

$$
\begin{aligned}
& 2 d c_{1}=\frac{16}{3} \frac{h_{1}}{l}-\cdots--(44) \\
& d h=\frac{3 h_{1}}{16 l} 2 d c_{1}-\cdots--(45)
\end{aligned}
$$

In equations (42) and (43) the assumption, though not strictly true, is that the lowest point of the cable remains at the same horizontal distance from the towers.

since the shover relation urn deduced
 length of che cure. henge of enc bufare variation lake
place i let h_{1} and h_{2}, x_{1} and x_{2} bo th airprial hiepter of taurus sees requester

cable be referusented lug Ihum $r=-\left(c_{1}+c_{2}\right)+\left(c_{1}+c_{2}+v\right) \cdots(46)$ $V=\frac{x_{1}^{2}}{4 y_{1}}\left[\frac{2 y_{1}}{x_{1}} \sqrt{1+\frac{4 y_{1}^{2}}{x_{1}^{2}}}+\log \left(\frac{2 y_{1}}{x_{1}}+\sqrt{1+\frac{4 y_{1}^{2}}{x_{1}^{2}}}\right)\right]$
$+\frac{x_{2}^{2}}{4 y_{2}^{2}}\left[\frac{2 y_{2}}{x_{2}} \sqrt{1+\frac{4 y_{2}^{2}}{x_{2}^{2}}}+\log \left(\frac{2 y_{2}}{x_{2}}+\sqrt{1+\frac{4 y_{2}^{2}}{x_{2}^{2}}}\right)\right]-\left(e_{1}+e_{2}\right) \cdots(47)$

To obtain the true length of the curve since the above relations were deduced from the approximate formula (), we must take the true equation for the length of the curve.
As before, let $\left(c_{1}+c_{2}\right)$ be the known length of curve before variation takes places; let h_{1} and h_{2}, x_{1} and x_{2} be the original heights of the towers also segments of span also known.
Let y_{1} and y_{2} be the heights of the towers above the lowest point in the cable, after variation in its length has taken place. x_{1} and x_{2} are still constants. Let the variation in length of the cable be represented by v .

$$
\text { Thus } v=-\left(c_{1}+c_{2}\right)+\left(c_{1}+c_{2}+v\right)---(46)
$$

$v=\frac{x_{1}^{2}}{4 y_{1}}\left[\frac{2 y_{1}}{x_{1}} \sqrt{1+\frac{4 y_{1}^{2}}{x_{1}^{2}}}+\log \left(\frac{2 y_{1}}{x_{1}}+\sqrt{1+\frac{4 y_{1}^{2}}{x_{1}^{2}}}\right)\right]$
$+\frac{x_{2}^{2}}{4 y_{2}^{2}}\left[\frac{2 y_{2}}{x_{2}} \sqrt{1+\frac{4 y_{2}^{2}}{x_{2}^{2}}}+\log \left(\frac{2 y_{2}}{x_{2}}+\sqrt{1+\frac{4 y_{2}^{2}}{x_{2}^{2}}}\right)\right]-\left(c_{1}+c_{2}\right)---(47)$

But since $y_{1}-y_{2}=h_{1}-h_{2}=a$ constant, wo cav talk the value of y, or y_{2} and sultititute in Equation (47), and us min atm have orly our unfleions quantity in the right number, and this surkurine is dolumind by trial.
(y_{1} ir y_{2}, h_{1} in h_{2} may lu v take as tithes) The firs value of y_{1} or y_{2} tether may $h h_{1} w_{2} h_{2}$ meriared or deceased, as ch can may h, by $d L$.
kl in tatum from kg . (45)
$y_{1}-h_{1}=y_{2}-h_{2}$ is th deflection taught.
Th variation of light can ha ablamil at one from equation (47) whew the new hight y, and y_{2} an given. cereus ste tours an of et same hight,

$$
x_{1}=x_{2}=\frac{l}{2}, c_{1}=e_{2} \text {, and } y_{1}=y_{2}=n
$$

muting publitilutione of the value n n equation (47), then rets, offer adding

But since $y_{1}-y_{2}=h_{1}-h_{2}=a$ constant, we can take the value of y_{1} or y_{2} and substitute in equation (47), and we will then have only one unknown quantity in the right member, and this unknown is determined by trial (y_{1} or y_{2}, h_{1} or h_{2} may be taken as the). The first value of y_{1} or y_{2} taken may be h_{1} or h_{2} increased or decreased, as the case* may be, by $d h$. $d h$ is taken from Eq. (45).
$y_{1}-h_{1}=y_{2}-h_{2}$ is the deflection
sought.
The variation of length can be obtained at once from equation (47) where the new heights y_{1} and y_{2} are given.
When the towers are of the same height,

$$
x_{1}=x_{2}=\frac{l}{2}, c_{1}=c_{2}, y_{1}=y_{2}=h
$$

Making substitutions of the values in equation (47), then results, after adding,

$$
v=\frac{2 l^{2}}{16 h}\left[\frac{4 h}{l} \sqrt{1+\frac{16 h^{2}}{l^{2}}}+\log \left(\frac{4 h}{l}+\sqrt{1+\frac{16 h^{2}}{l^{2}}}\right)\right]-29(48)
$$

If h is known, wo can find r form th above equation. If v is Known, h is fond los trial, and on then reverts. $h-h_{1}=$ deflection of et nide paint of the truss.

$$
\begin{equation*}
v=\frac{2 l^{l^{2}}}{16 h}\left[\frac{4 h}{l} \sqrt{1+\frac{16 h^{2}}{l^{2}}}+\log \left(\frac{4 h}{l}+\sqrt{1+\frac{16 h^{2}}{l^{2}}}\right)\right]-2 c- \tag{48}
\end{equation*}
$$

If h is known, we can find v from the above equation. If v is known, h is found by trial, and v then results. $h-h_{1}=$ deflection of the middle point of the truss.

Let $P_{L}=$ The metical cornkenent of posseme ow tower head
" $P_{l}={ }^{P_{2}}$ horigomal
TJ and $\hat{J}_{p}^{\prime}=$ tension of cater ow diffund ide: ""
" x, α^{\prime} and θ represent inctualime to a vitical as shows
Why nv amin er frichion ow the lade -
$P_{n}=J_{p} \cos \alpha+J_{p}^{\prime} \cos \alpha^{\prime} ;(49)$
$R=P_{h}=\Gamma_{R} \alpha i \alpha-\hat{P}_{p}^{2} \alpha i \alpha_{1}^{\prime} ;\left(5{ }^{5}{ }^{\circ}\right)$
Chum friction is not coniedue -
$T_{p}=J_{k}, \therefore \rho_{v}=T_{p}(\cos \alpha+\cos \dot{\alpha}) ;$
$T_{h}=T_{p}\left(\sin ^{2} \alpha-\alpha i \alpha\right)$

If $\alpha=\alpha^{\prime}, P_{L}=2 W, P_{h}=0, \quad R=2 W=\rho_{V}$
$\theta=0$, W mprounts on lay the wright of

Pressure on Tower

Fig. 3

Let $\quad \mathrm{PL}=$ the vertical component of pressure on tower head
" $\mathrm{Ph}_{\mathrm{h}}=$ " horizontal
" $\mathrm{R}=$ " resultant
" $\quad T_{p}$ and $T_{p} p$ tension of cable on different* sides "
" $\mathrm{x}, \mathrm{x}^{\prime}$ and θ represent inclinations to a vertical as shown.
When we consider friction on the saddle

$$
P_{L}=T_{P} \cos (\alpha)+T_{p}^{\prime}{ }_{p} \cos \left(\alpha^{\prime}\right) ;(49)
$$

$$
P_{h}=T_{p} \sin (\alpha)-T^{\prime}{ }_{p} \sin \left(\alpha^{\prime}\right) ;(50)
$$

$$
R=\sqrt{P_{L}^{2}+P_{h}^{2}} ;(51)
$$

$$
\cos (\theta)=\frac{P_{L}}{R} ;(52)
$$

When friction is not considered

$$
T_{p}=T_{p}^{\prime} \therefore P_{L}=T_{p}\left(\cos (\alpha)+\cos \left(\alpha^{\prime}\right)\right)
$$

$P_{h}=T_{p}\left(\sin (\alpha)-\sin \left(\alpha^{\prime}\right)\right)$

$$
\begin{aligned}
& R=\sqrt{P_{L}^{2}+P_{h}^{2}} \\
& \cos (\theta)=\frac{P_{L}}{R}
\end{aligned}
$$

If $\alpha=\alpha^{\prime}, P_{L}=2 W, P_{h}=0, R=2 W=P_{L}$,
$\theta=0$, then W represents one half the weight of the load and structure.

By preventing a change in the form of the cable, which is accomplished by the stiffening truss, we not only prevent very injurious undulations, but also lessen the work of computing stresses, which would be very difficult if the cable did not retain the same form. The cable will assume the same parabolic curve only when there is a uniform pull on the suspension rods from end to end.
Let T be the uniform pull on any suspension rod, and t its intensity per unit of span. Now if p represents one panel length in the russ, $T=p t$
Let w be the fixed load per unit of span sustained by the cables, and w' the moving load sustained by them;
Let ℓ be the span; R the reaction at B (fig.); R ' the reaction A. Suppose the moving load to pass on from B.
Let x_{1} be the distance from B to the front of the moving load. The load is supposed continuous.

37

is impossible to ascertain how much the truss will carry, either in connection with the cable, or alone. Assuming a value for t, R, or R^{\prime}, makes the stiffening truss act altogether in connection with the cable, and carry no load as an ordinary truss.
From the above it is seen that the sum of all the loads w, w^{\prime}, and c^{*}, must be equal to the sum of all the uniform upward forces, $T=p t$.
The resultant of the two forces act in different lines, and the truss is then subjected to the action of a couple, which must be counteracted another couple of equal moment but opposite lines of action. These couples must act at the extremities A and B. They are the reactions R and R^{\prime}.
Therefore-

$$
R=-R^{\prime \prime}
$$

Substituting this value in Equation (53),
and salving for t,

$$
\begin{equation*}
z=w+w^{\prime} \frac{X_{1}}{l} \tag{55}
\end{equation*}
$$

7 row entibtituing the same in $\left(5 H_{1}\right)$
In (56), if $x_{1}=l$, on $w^{\prime}=0$, bart reaction e hucour gers, $R=-R^{\prime}=0$
It is also' Rem that $R \frac{1}{}$ and R^{\prime} ar n numerically iq wal, hut hue opposite dincturs.
P' is a doummand reaction vul wire sher th mount of anchorage required. Differentiating (56) and fridueq value of

$$
\frac{d R}{d x_{1}}=\frac{w^{\prime}}{2}-\frac{w^{\prime} x_{1}}{2 l}-\frac{w^{\prime} x_{1}}{2 l} \text {, and } x_{1}=\frac{l}{2}
$$

now Rupatiluting $x_{1}=\frac{l}{2}$ in equation (56)

$$
R=\frac{w^{\prime} l}{8} \cdots(57)
$$

E, nabivir chorus site greatest shear to b provided for ot cither end of the truss aud also th maximum meant of
and solving for z,

$$
z=w+w^{\prime} \frac{x_{1}}{l}---(55)
$$

From substituting the same in (54),

$$
R=-R^{\prime}=\frac{w^{\prime} x_{1}}{2}\left(1-\frac{x_{1}}{l}\right)---(56)
$$

In (56), if $x_{1}=l$, or $w^{\prime}=0$, both reactions become zero, $R=-R^{\prime}=0$
It is also seen that R and R^{\prime} are numerically equal, but have opposite directions.
R^{\prime} is a downward reaction and will show the amount of anchorage required. Differentiating (56) and finding value of \qquad

$$
\frac{d R}{d x_{1}}=\frac{w \prime}{2}-\frac{w \prime x_{1}}{2 l}-\frac{w \prime x_{1}}{2 l}, \text { and } x_{1}=\frac{l}{2}
$$

Now substituting $x_{1}=\frac{l}{2}$ in equation (56)

$$
R=\frac{w r l}{8}-\cdots-(57)
$$

Equation shows the greatest shear to be provided for at either end of the truss, and also the maximum amount of anchorage to be provided for.
\qquad proper of porer.

Rucea, moo, furn Y", 1884.

The matter on stresses proper is very limited, on account of space.

Respectfully Submitted W. M. Claypool

Kola, Mo., June 7th 1884.

