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ABSTRACT

A theoretical and experimental investigation of the 
causes of the reduction of the contrast in the shadow of a 
grating has been made. The variation of the shadow con
trast is shown to be different for the two causes--diffrac
tion and divergence. The conditions which determine the 
dominant effect are presented. Also, the contrast pattern 
due to diffraction is shown to have a squared scaling law 
while the divergence pattern is shown to scale linearly. 
This understanding of the shadow contrast increases the 
versatility and usefulness of the shadow moire technique, 
an optical method for determining the topography of sur
faces .
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LIST OF SYMBOLS

A = intensity amplitude factor 
C = constant

C.R. = contrast ratio = maximum intensity divided by
minimum intensity

D = distance from the grating to the observation 
plane

D* = distance from the source to the grating 
E = fraction of energy within an angular width 
G = product of the incident field and the grating 

transmittance function 
g = grating transmittance function 
h = impulse response 
I = intensity 
j =
k = 2 it/A = wave number
L = length of impulse response in the observation 

plane
L' = length of effective line source 
m = general variable 
N = scaling factor 
n = general integer 
p = grating period
R = aperture perimeter-to-area ratio
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rect(t )
' 1
<

| T | < 1/2

0 otherwise 
U = complex field

x,y, and z = rectangular coordinates
z = distance from the grating to the observation 

plane
F{ = one-dimensional Fourier transform in f

F{  ̂ = two-dimensional Fourier transform in f1 and ffl'f2 1
3 and x = dummy variables

6 = Dirac delta function 
A = wavelength
7T = 3.14159

(j) = angular half-width
= first order diffraction angle 

0 ̂  = divergence angle
v r = angle between the vector to (x, y, z) and the

z-axis
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I. INTRODUCTION

The contrast in the shadow of a grating is observed to 
become weaker and eventually disappear as the distance 
between the grating and the surface on which the shadow 
appears is increased. This contrast reduction is a primary 
limitation of the shadow moire technique, a method used to 
measure extremely small variations or deformations in 
surfaces.

The contrast reduction is caused by the diffraction 
effect and the divergence effect. Diffraction is related 
to the interaction of light waves with the grating. 
Divergence is associated with the degree of collimation in 
the light beam.

The purpose of this thesis is to analyze the effect of 
diffraction and divergence on shadow contrast. In particu
lar, the intensity patterns associated with each effect 
will be derived. The behavior of the contrast will be 
discussed. Also, the relationship between diffraction and 
divergence is presented. This knowledge will improve the 
versatility and usefulness of the shadow moire technique.
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II. SHADOW MOIRE TECHNIQUE

The shadow moire technique is a current application of 
the phenomenon of moire fringes. Historically, the practi
cal application of moire fringes began with Lord Rayleigh 
[1] who suggested in 1874 that this phenomenon could be 
used to judge the quality of gratings. In 1956, Guild [2] 
described the theory of moire fringes in detail and also 
discussed the use of moire patterns as a test of grating 
quality. More recently, the most important applications of 
grating moire patterns involve the use of shadow moire 
[3-5]. For a range of depth that is not too great, the 
shadow moire is ideal for measuring very small changes in 
the contours of surfaces such as deformations due to stress 
and strain. The applications involving contour measure
ments are a key interest in this study.

The contour measurements are made using the shadow 
moire technique. This technique produces a moire, or 
interference, pattern between a grating and the shadow of 
the grating as observed through the grating upon the 
surface of interest. The moire pattern identifies eleva
tion contours along the surface. The technique has a 
limited range because the contrast of the shadow decreases 
with distance making the more distant contours difficult to 
observe.

The shadow moire technique is illustrated in Figure 1. 
A grating is placed above the surface of interest.
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FIGURE 1. Shadow Moire Technique

The dashed lines represent the moire pattern between 
the grating and its shadow. These lines follow the con
tours of the surface.
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Collimated light passes through the grating at a small 
angle with respect to the normal of the grating plane. A 
shadow of the grating is cast on the surface, but it is 
distorted due to the variations in the surface. When the 
surface is observed normally as shown, the interference 
pattern between the grating and the distorted shadow 
determines a contour map of the surface. In a typical 
stress measurement, the contours are compared for the 
surface under different levels of stress to measure the 
deformations.

An example of the results of the moire technique is 
shown in Figure 2. The contour fringes are used to deter
mine the shape of a thermal contact switch. (The actual 
length of the switch is approximately one-half inch.) The 
grating lines and the interference pattern are clearly 
visible. Each contour line corresponds to a surface 
displacement of about three-thousandths of an inch with 
respect to the plane of the grating.

A point of interest in Figure 2 is the variation in 
shadow contrast. When the shadow contrast is low, the 
resulting moire pattern also has low contrast. The shadow 
contrast decreases as the distance between the grating and 
the surface is increased. The contrast of the moire 
pattern is lower at the bottom of the figure where the 
switch surface is farther from the grating.

The purpose of this thesis is to give a quantitative 
explanation for these contrast variations. Part of the
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FIGURE 2. Example of a Shadow Moire

The contour lines of a thermal contact switch are 
obtained using the shadow moire technique.



explanation results from diffraction, that is the interac
tion of light waves with the grating. The explanation also 
must include divergence effects which depend on the colli- 
mation of the incident light. In both cases, a mathemati
cal description predicts the contrast variation with 
distance and shows how the phenomenon scales with grating
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III. DIFFRACTION

As previously discussed, the reduction of contrast in 
the intensity pattern behind a grating is caused in part by 
diffraction effects, i.e. the wave nature of light. In 
order to predict the diffraction effect, the Huygens- 
Fresnel principle can be used [6,7]. This principle states 
that each point on a wave front can be considered a point 
source. The propagation of the wave is found from the 
superposition of the waves from each of the point sources. 
This approach is valid to the extent that the vector nature 
of light can be ignored [8]. If a light wave is incident 
on an aperture, the illumination behind the aperture is 
found by considering the contributions from the point 
sources in the aperture. Thus, the light spreads out and 
"smears" the aperture shadow. Hence, the contrast of the 
shadow is reduced. In what follows, the field behind a 
grating, i.e. the aperture, will be mathematically calcu
lated using the Huygens-Fresnel principle. The contrast of 
the shadow will be discussed and a scaling law will be 
derived.

A. INTENSITY
The intensity pattern to be found is for the binary 

grating shown in Figure 3. The shaded region has zero 
transmittance (i.e. it is completely opaque) and the 
unshaded slits have a transmittance of one (i.e. the slits



FIGURE 3. Binary Grating

A binary grating has a transmittance that is either 
one or zero which is indicated by the unshaded and 
shaded regions, respectively.
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are transparent lossless regions). For the purposes of 
this analysis, the widths of the transparent and opaque 
strips are equal. The illumination will be a unit ampli
tude plane wave parallel to the plane of the grating.

The fields, or waves, in this section are mathemati
cally expressed as complex-valued scalars (often called 
phasors) which denote the amplitude and phase of the waves. 
In the case of a linearly polarized wave, the field may be 
regarded as either the electric or the magnetic field 
strength. This convention is implicit in scalar diffrac
tion theory.

The field behind the grating, U, is found by the 
mathematical statement of the Huygens-Fresnel principle:

where G(x,y) = product of the incident field and the

h(x,yl = field from the heuristic point sources.
The plane of the grating is assumed to be the z = 0 plane. 
Also, the field h(x,y) is given explicitly by

where cos vr = directivity factor
vr = angle between the vector to the point 

(x,y,z) and the z-axis

(1 )

grating transmittance function

h(x,y) = T^- exp(jkr)cos(vr)J Ai
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Since field quantities are used, the convolution in Equa
tion (1) accounts for the interference that occurs between 
the various point sources.

In the region of Fresnel diffraction, the equation 
becomes

U(x,y) = exp(jkz) \ \ G(x,3)

• exp{j ~  [(x-T)2+(y-$)2]}dxd$ (2)

where A = wavelength
k = = wave number.

The assumptions to this point are that the grating period 
is much greater than A , that z is much greater than the 
grating period, and that the Fresnel approximation holds. 
Equation (2) can be expressed as

U(x,y) = exp(jkz)exp[j ^  (x2+y2 )]

• F {G( x , 3 )exp[ j ~  (t 2+$2 ) ] }_x_ _y_ (3)
Az'Az

where F{ },. ^ represents the two-dimensional Fourierfl'f2
transform in the variables f^ and f T h e  detailed devel
opment of Equation (3) from the Huygens-Fresnel principle 
is given by Goodman [9].

The function G becomes the grating transmittance 
function g if the illumination is a unit-amplitude, nor
mally incident plane wave. The function g is mathemati
cally a pulse train in the x-direction and unity in the
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y-direction. Representing the pulse train by its Fourier 
series,

1 2 TT* ( — 1)g(x,y) = 2 + ? X. ( 2 n - l j  ~ cos t 27TX< 2n_1) /P] <4 )n=l
where p is the grating period.

The substitution of Equation (4) into Equation (3) 
requires the solution of

F{m cos ( 2Trf x ) exp[ j (x^+B^)]} x y
Xz'Xz

k 2= F{m cos( 27rf t )exp( j t ) } x F {exp( j
Xz

= F{m cos(27Tfx)}x *F{exp(j x2))x
Xz Xz

• F{exp( j 62)}^
Xz

Evaluating the transforms give

{™[6(X -fj+af* +f) ] * [ j A z e x p ( - j i x 2)]}exp(-jiy2)Z X2 AZ AZ A z

= (jAzm/2){exp[-j JL (x2+y2)]+exp[-j -2-(x+fAz)2]}X Z A Z
/ • 7T 2 i• exp ( - j  J -y )A Z

= ( j Xzm) exp[ - j (x2+y2 ) ] [ cos ( 27rxf)x z

. exp( - jfTXzf 2) ]. ( 5 )

X Z

The following transform is also required.

F(m e x p [ j l ( TV ) l  = ( jxzm)exp[-j JL (x2+y2) ] . (6)2 z x y z z
Xz' Xz
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The diffracted field is found by substitution of 
Equation (4) into Equation (3). Since the transform of the 
sum of the terms is the sum of the transforms of the terms,

u(x,y) = exp(jkz)e x p [ j ( x 2+y2)]{ j exp[-j ̂

•(x2+y2)]+f t ^(jxz)- ^ 2 — - exp[-j^ (x2+y2)] 
n=l

• exp[ - j 7t X z ( 2n-l) 2/p2 ]cos [ 2ttx( 2n-l/p] }

= j exp( jkz){1+ ̂  ^ - ^ ^ - Iyexp[-jTrXz(2n-l) /p ]

• cos[ 2ttx( 2 n - l ) /p]

, . “ , , > n+1 ~

= ^  exp( j k z ) {1+ ^ Y. ^7^T2j-cos[TTXz(2n-l)z /pz ]
n=l

4 Vs ( - l ) n+1• cos [ 2ttx( 2 n - l ) / p ]+ j^  2_ (2 n - l )
n=l

• sintirAz ( 2 n - l ) 2/p2 ] c o s [ 2ttx( 2 n - l ) / p ] . (7 )

Note that z is the distance behind the grating. Also, the 
grating is assumed to be infinite. The effects of a finite 
aperture are negligible if the grating size is very much 
larger than the grating period.

The intensity is
n+1

X (x,y) = CIUI 2 = C{| +| £  ((2n-ir cost z(2n-l) 2/p2 ]n=l v
• cos[ 2ttx( 2n-l) /p] }Z+C{^- £  (2n_r

sin [ it A z ( 2n-l) 2/p2 ]

cos [ 2ttx( 2n-l) /p] } 2. (8)
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where C is a constant. The constant C will be dropped in
what follows since the relative intensity distribution is
of interest rather than the absolute value.

The Fresnel intensity pattern has the property that it
2is periodic in z with a period 2p /A. Hence, the grating

2is imaged for z = 2mp /A where m = 1,2,3,... (In a physi
cal situation, the absolute intensity will decrease for 
increasing z.) This self-imaging property of gratings is 
known as the Talbot effect and has been observed by Lord 
Rayleigh [10] and Montgomery [11]. In fact, a real-time 
range measurement technique is based on the Talbot effect 
[12]. The Fresnel pattern also has been verified between 
the self-imaging planes [13].

The intensity pattern is shown in Figure 4 for the 
three different cases. The transmittance function of the 
grating is

i o ^  ,*n+l
g(x,y) = j + 7 L  (2n-i) cos [ 2irx( 2n-l)/p] (9)

n=l
The first curve displays the intensity directly behind the 
grating which is

I(x,y) = g2(x,y) (10)

Recall that a unit amplitude plane wave is the incident 
field and the C has been dropped. Note that the contrast 
ratio, or the ratio of the maximum intensity to the minimum 
intensity, is infinity. The second curve is obtained from 
Equation (8) when z equals p2/4A. The intensity becomes



FIGURE 4. Diffraction Intensity Patterns
The intensity pattern as a function of x is shown (a) directly behind the 

grating (i.e. z = 0+), (b) at a distance z = p2/4A, and (c) at a distance z = p2/2A.
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2

r 0.8536 g(x,y) = 1
(ID

0.1464 g(x,y) = 0

The contrast ratio is 5.8287. The last curve displays the

The contrast ratio is unity. Note the phase of the wave- 
front varies in the observation plane, but the intensity is 
constant.

The curves in Figure 4 are intended to show when the 
shadow completely disappears and roughly how the contrast 
decreases. The choices of z in Figure 4(b) and (c) greatly 
simplify the shape of the curves. In general, the inten
sity will vary rapidly as a function of x.

The contrast ratio is emphasized above because it is a 
useful measure of how well the shadow can be observed. The 
difference between maximum intensity and minimum intensity 
will vary with the amplitude of the incident wave. The

2intensity when z equals p /2A. Equation (8) gives

= 0.50 everywhere. (12)
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relative intensities in the pattern are independent of the 
amplitude.

The previous analysis is done for light of a single 
wavelength. The results can be extended to the situation 
in which the illumination is incoherent and consists of 
many frequencies. The incoherence eliminates the effects 
of interference between the light of different wavelengths. 
Thus, the resulting intensity is the summation of the 
intensities associated with each wavelength.

B. SCALING LAW
The intensity pattern due to diffraction has a squared

scaling law. Consider the intensity pattern at a specified
2distance from a grating. A similar pattern occurs at N 

the original distance, if the grating size is increased by 
the factor N. Therefore, the diffraction pattern is known 
in general if it is known for a single grating. This 
scaling law was demonstrated by Arkadiew [14] and is more 
recently described by Sommerfeld [15].

The scaling law is apparent from Equation (8) which is

I (x,y) = + - Z  r2n~lT~CQs[TrAz(2n“1) /p ]n=l
9 9 “ / n n+l

•cos[2Trx(2n-l)/p]} +{- 2_. / 2n-i)~n=l
• sin[iTAz( 2n-l) 2/p2 ]cos[ 2trx( 2n-l)/p] }2.

Let the grating size be increased by the factor N (i.e. 
replace p with Np). The x and y coordinates must also be
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increased by N since the scaled pattern will increase by
the factor N. The arguments of the second and third cosine
factors include the ratio x/p. Thus, the arguments are
unchanged. The arguments of the remaining sinusoidal terms

2include the ratio z/p . Therefore, the distance z must be
2increased by N to maintain the same argument and a similar 

intensity pattern.
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IV. DIVERGENCE

The reduction of contrast in the intensity pattern 
behind a grating can be caused by the divergence of the 
illuminating light. A light beam is said to diverge if its 
rays are not parallel. The extent of the beam divergence 
is specified by the divergence angle 0^. This angle is 
ideally the maximum angle a light ray in the beam can have 
with respect to the beam axis. The model of the beam thus 
consists of rays which have angles uniformly ranging from 
zero to the divergence angle. Geometrical optics predicts 
the effect of such a beam normally incident on a grating.
A geometrical approach is used since the ray behavior of 
light is of interest here. The portion of the beam that is 
allowed through the grating still contains rays of every 
angle up to the divergence angle. Light then propagates 
behind the opaque sections of the grating. Hence, the 
contrast behind the grating is progressively reduced. This 
geometrical approach coupled with a convolution technique 
gives a quantitative description of the intensity pattern. 
An explicit measure of the contrast is derived. Also, the 
scaling law that is associated with the effect is shown.

A. INTENSITY
The intensity pattern is found using the model shown 

in Figure 5. The model consists of a light source, a 
binary grating, and an observation plane, proceeding from
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FIGURE 5. Illustration of the Divergence Effect

The impulse response of a point in the aperture is
shown for the divergence effect.
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left to right. Since the transmittance of the grating only 
varies in one direction (i.e. the x-direction), the analy
sis only needs to be carried out in the xz-plane. Note 
that the z-direction is the direction of propagation. The 
analysis will be confined to the region about the axis of 
propagation. Therefore, the effect of the finite size of 
the grating can be neglected.

The source produces white light which will be charac
terized by a small divergence angle

ed < < i. (i)

Since the light is incoherent, the analysis can be carried 
out for each frequency separately. The total intensity in 
the observation plane will be the summation of the intensi
ties due to each frequency.

The effect of diffraction will be assumed negligible.
A later section will discuss what relationship must exist 
between the divergence angle, the wavelength of light, and 
the grating period for this assumption to be valid.

The grating is perpendicular to the axis of propaga
tion and is a distance D' from the source. Once again for 
mathematical simplicity, the widths of the opaque and 
transparent strips will be assumed equal. The grating 
period will be given by p.

The observation plane is a distance D behind the 
grating and is parallel to the plane of the grating.
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The convolution approach is a consequence of the 
following treatment. Select a point in one of the trans
parent strips near the axis. From the definition of the 
divergence angle, all of the light rays passing through 
that point must come from a circle of diameter L ’ centered 
directly in front of the point. As previously discussed, 
the analysis only needs to be carried out in the xz-plane. 
Hence, the rays passing through the selected point comes 
from a length L* of a line source. By the geometry shown 
in Figure 5,

L* = 2D’ tan 6d * 2D'ed for 0^ << 1* (2)

If the source length is smaller than this L*, then the 
source width determines an effective divergence angle ed ' .

0^ = tan (source length)/2D']

The former case will be assumed in the following treatment. 
(If the latter case occurs, the source length should be 
substituted for L' and 0d ' for 0d .)

The rays going through the selected point illuminate a 
length L in the observation plane. (Recall that only the 
x-coordinate is of interest in the observation plane.) As 
in Equation (2),

L = 2D tan ©d ~ 2Ded - (3)

Combining Equations (2) and (3) gives

L = D(L1/D' ) . (4)
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Thus, L depends linearly on the distance to the observation 
plane.

The illumination of length L in the observation plane 
will be henceforth referred to as the spot. Also, for 
mathematical simplicity the intensity everywhere in this 
spot will be considered uniform.

The spot is the impulse response of the grating. Each 
point of the grating which has a transmittance of unity 
produces such a spot in the observation plane. The final 
intensity pattern is the summation of these spots, that is 
the convolution of the impulse response with the grating 
transmittance function [16].

Mathematically, the grating is represented by a pulse 
train (i.e. the spatial transmittance function)

g(x) = 1  rect [ (Xp~/n2P) ] • (5)

The impulse response of the grating is a single pulse

h(x) = A rect(^). (6)

The amplitude of the impulse response A (i.e. the intensity 
of the spot) depends on the source and the distance D. If 
the amplitude is Aq at a distance Dq behind the grating, 
the amplitude elsewhere is given by

A = A D /D. o o (7)
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The intensity of a single spot is inversely proportional to 
D because a constant energy per unit length in the y- 
direction is distributed over L. Recall that L is propor
tional to D by Equation (4). Note that the stated condi
tions allow the source and grating to be considered infi
nite in the y-direction. The intensity is

The conditions of operating near the axis and using inco
herent light are necessary so that the system can be 
considered linear and spatially-invariant. Linearity 
allows the ’’summation of spots" (i.e. superposition); 
invariance means that h(x) does not change for different 
points in the grating aperture.

The result of the convolution is shown in Figure 6 for 
three different cases. The first curve is valid when the 
spot length, L, is less than the width of the transparent 
strips, ~ p. That is,

Note that the contrast ratio or the ratio of maximum 
intensity to minimum intensity is infinity. The shadow can 
easily be seen. The second curve is valid when

Here the contrast ratio is finite except when L equals j P 
(i.e. m = 1). The shadow becomes progressively harder to

(8 )

L = m( j  p) for 0 < m _< 1. (9)

L = m( jp) for 1 <. m < 2. (10)

1



The intensity pattern as a function of x is shown (a) where L = m(^p) , 
0<m£l; (b) where L = m(^p) , and (c) where L = ^p.
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detect. The final curve is valid when L precisely equals 
the grating spacing. There is no variation in the inten
sity and the contrast ratio is unity. The shadow structure 
has disappeared.

B . CONTRAST
The presence of a shadow from the grating is detected 

by the contrast in the intensity pattern. The contrast 
ratio, C.R., has a closed form for the divergence effect.
In the previous section, the contrast ratio was shown to be 
finite only when (see Equation (10))

The curve in Figure 6(b) corresponds to this condition. 
Here the maximum intensity is

Jmax = A(I p)’

The minimum intensity is

L = m(̂ - p) for 1 < m _< 2.

= A[(m-l)(i p)] = A[L - (i p)].

The contrast ratio is

C.R. (| P)/[L - (| p)]
= 1/(2L/p - 1). (ID

Using Equation (3), the contrast ratio can be expressed in 
terms of measurable quantities--the divergence angle, the 
distance D, and the grating period.
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C.R. = l/(40dD/p - 1). (12)

This equation is valid for 

1 < C.R. < °°.

The curves in Figure 7 are an example. The calcula
tions were done for divergence angles of 0.0072 radians, 
0.0060 radians, 0.0048 radians, and 0.0036 radians. For 
the curve with 0^ equal to 0.0048 radians, the contrast 
ratio approaches infinity as the ratio D/p approaches 52.1. 
When D/p equals 104.2, the contrast ratio is unity.

C. SCALING LAW
The divergence effect scales linearly, whereas the 

diffraction effect was shown to have a squared scaling law. 
If the size of the grating is changed by a factor, a 
similar intensity pattern will result for the distance D 
changed by the same factor.

This property can be seen through the convolution 
results in Figure 6. The curves are derived for (Equations 
(9) and (10))

L = m(i p).

If the size of the grating is increased by N, similar 
patterns occur for

NL = m(i Np).
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The contrast ratio as a function of the ratio D/p is shown for divergence 
angles of 0.0072 radians, 0.0060 radians, 0.0048 radians and 0.0036 radians.
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But L is proportional to D by Equation (4). Thus, the new 
distance is ND.

The scaling law can also be seen from the contrast 
ratio formula, Equation (12),

C.R. = l/(40dD/p - 1).

The contrast ratio is identical if the ratio D/p is a 
constant.
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V. EXPERIMENT

An experimental investigation of the effect of the 
divergence is presented. The importance of diffraction is 
widely appreciated for optical gratings, but the signifi
cance of divergence is not widely appreciated. Thus, the 
previous theoretical results for divergence are experimen
tally verified in regard to the contrast ratio and the 
linear scaling law.

A. PROCEDURE
The experiment was set up according to the model 

discussed in Section IV. A white light source illuminated 
a grating normally. The resulting intensity pattern was 
measured in various planes behind the grating. An incan
descent lamp was used as the source. The light was colli
mated to a divergence angle of not more than 0.0090 ra
dians. Note that 0.0090 is much less than one as desired. 
The distance to the grating was such that the width of the 
beam did not effect the data.

Four different gratings were used. The spatial 
periods are one-half inch per line, three-eighths inch per 
line, one-fourth inch per line, and one-eighth inch per 
line. The opaque and transparent strips are equal in 
width.

For each grating, the maximum intensity and minimum 
intensity were measured in a series of planes behind the
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grating. The average maximum intensity and average minimum 
intensity were determined for each plane close to the axis 
of the system. This data was combined to form the contrast 
ratio.

The experiment was designed so that the diffraction 
effects were negligible. A measure of how fast the light 
spreads behind the grating in the divergence case is the 
divergence angle. This angle was on the order of 0.0090 
radians. In the diffraction case, the comparable measure 
is the first order diffraction angle which equals the 
wavelength divided by the grating period. The largest 
first order diffraction angle was 0.22 milliradians. Since 
the divergence angle is more than an order of magnitude 
greater than the first order diffraction angle, divergence 
is the dominant effect. A more complete discussion of 
these quantities will be given in Section VI.

B. DATA ANALYSIS
The contrast ratio data is given in Figure 8. A curve 

is shown for each of the gratings used. As expected, the 
contrast ratio is initially infinite. It smoothly de
creases to one as the observation distance is increased. 
Recall that the intensity is uniform (i.e. no shadow) when 
this ratio is unity.

A ready verification of the effect producing the 
variation in contrast is found in the scaling relationship 
which holds. The divergence effect obeys a linear scaling



FIGURE 8. Contrast Ratio vs. Distance
The contrast ratio as determined by experiment is shown as a function of 

distance for various sizes of gratings.
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law. The diffraction effect obeys a squared scaling law. 
Figure 9 shows the same data linearly scaled. The data 
points closely agree as a function of the distance divided 
by the grating period. This agreement clearly shows that 
divergence is the dominant effect.

The scaled data is also compared to the theoretical 
contrast ratio in Figure 9. The contrast ratio is given by 
the Equation (12) in Section IV.

C.R. = l/(40dD/p-l) (1)

The given curve is calculated for a divergence angle of 
0.0048 radians. This particular divergence angle is used 
since it most closely matches the experimental data. The 
data approaches infinity when D/p is on the order of 45.
The formula goes to infinity as D/p approaches 52.1. The 
data is approximately one when D/p roughly equals 110. The 
formula is unity when D/p equals 104.2.

The experimental divergence angle of 0.0048 radians is 
also of the same order of magnitude as the estimated 
divergence angle of 0.0090 radians.

The data and the theoretical formula coincide even 
more closely if background light is taken into account. 
Unfortunately, the background light could not be eliminated 
during the experiment. To approximate this factor, assume 
that the background intensity was equal to ten percent of 
the actual maximum intensity when D/p was equal to 75.
From Figure 6 and Equation (7) in Section IV,
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The contrast ratio is shown as a function of the ratio D/p for various gratings 
and is compared to the theoretical result.
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Imax = (75Aop/D)(| p)

and

^ i n  = (75A0p/D)[L-(|p)]

where DQ/p is set equal to 75. The measured intensities 
are then

1 'max = <75Aop/D)(i p)+(0.1)(75AQp/D)(| p)

and

I'min = (75AQp/D)[L-(i p)]+(0.1)(75AqP/D)(| p). 

The contrast ratio becomes

C-R* = 1 'max^1 min = 11+0.1 (75)^D/p]/{[ 46d
+ 0.1(75)-1]D/p-l} (2)

Figure 10 shows the resulting curve for 0^ equal to 0.0048 
radians. Note that the curve fits the data better for low 
values of D/p. Equation (2) approaches infinity as D/p 
approaches 48.7 whereas Equation (1) does so as D/p ap
proaches 52.1. Both equations equal unity at 104.2.

The agreement of the data to the contrast ratio 
formula and the estimated divergence angle serve as addi
tional verification of the dominance of the divergence
effect.
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The scaled contrast ratio as determined experimentally is compared to the 
theoretical result with the effect of background illumination included.
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VI. PRINCIPLE EFFECT

The principle effect in a physical situation depends 
on the relationships between the divergence angle, the 
wavelength of light, and the grating period. The behavior 
of the system differs for the divergence effect and the 
diffraction effect. When the divergence effect is domi
nant, the intensity obeys the convolution formula given by 
Equation (8), Section IV and has a linear scaling law.
When the diffraction effect is dominant, the intensity 
obeys Equation (8) in Section III and has a squared scaling 
law.

The divergence angle is a measure of how rapidly the 
light spreads behind the grating. In terms of the mathe
matical description given, the size of the impulse function 
is proportional to the divergence angle (see Equation (3), 
Section IV).

The first order diffraction angle, (f>̂, is the compara
ble measure for the diffraction case. This angle is 
defined as follows.

<J>d = A/P ( D

When this angle is small, it approximates the angular half 
width at which the intensity from a single slit is down by 
a factor of one half. This slit has a width of ip. The 
derivation is given by Crawford [17] and many other elemen
tary physics and optics books. The percentage of energy
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which falls within an angular width can be found using the 
following approximation [18].

E = 1 - AR/2tt2cJ> (2)

where E = fraction of energy within angular width 
A = wavelength 
$ = angular half width 
R = aperture perimeter-to-area ratio.

The perimeter-to-area ratio, R, for each slit of the 
infinite grating is 4/p. The fraction of energy within the 
first order diffraction angle is

E = l-XR/2n2<{»d = 1-A( |) = 1 =  0.80.
^ 2 tr tt

Therefore, eighty percent of the energy from each slit is 
within the angular half-width <J>̂.

The principle effect is then determined from the size 
of the associated angles. The divergence effect dominates 
if

ed > <)>d = A/p.

The diffraction effect dominates if

ed < 4>d =

If the angles are roughly equal, both effects will be
observable.
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The contrast in the shadow of a grating decreases and 
is eventually eliminated as the distance behind the grating 
is increased. This phenomenon severely limits the range of 
the shadow moire technique which relies on the contrast of 
the shadow.

A cause of the contrast reduction is diffraction by 
the grating. The intensity pattern in the Fresnel region 
is given explicitly in Section III by Equation (8). In 
general, this pattern is very complicated. It follows a 
squared scaling law.

The other cause of the contrast reduction is diver
gence in the incident illumination. The intensity pattern 
due to this effect is relatively simple. It is given 
explicitly in Section IV by Equation (8) and is clearly 
shown in Figure 6. The contrast ratio takes on the closed 
form

C.R. = l/(46dD/p - 1). (1)

This relationship was experimentally verified. The scaling 
law for this effect is linear.

In a physical situation, both diffraction and diver
gence occur. For a single slit in the grating, the angular 
half-width of the diffracted light is the first order 
diffraction angle which is

VII. CONCLUSION

<t>d = A/p. (2 )
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The angular half-width for the divergence effect is the 
divergence angle, 6 ,̂ which depends on the light source.
The principle effect in a given situation is determined by 
which angle, ^  or e^, is largest.

The shadow can be observed for distances less than the 
distance at which the contrast ratio is unity. When 
diffraction is dominant, this distance is

These results are derived for a binary grating, but 
give insight into the behavior for apertures of similar 
structure. The methods employed here can be used to 
determine the properties of more general apertures.

The analysis in this thesis is done for monochromatic 
light and produces the explicit results that have been 
described. For incoherent light the analysis is more 
complicated. The intensities calculated separately for 
each wavelength present must be added to obtain the total 
intensity. For the divergence case, the intensity distri
bution is unchanged because each wavelength has a similar 
pattern. For the diffraction case, the distributions due 
to each wavelength is different. Thus, the total intensity 
distribution is very complicated. The distance at which

P2/2X = p/26d. (3)

When divergence is dominant, the distance is

(4)
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the contrast ratio is unity can no longer be easily pre
dicted.

The scaling laws derived for diffraction and diver
gence have great value. These laws allow tests to be 
conducted on conveniently sized gratings and the results to 
be applied to other gratings. The only restriction is that 
the same effect dominates for both sets of gratings.

The versatility and usefulness of the shadow moire 
technique can be improved through an understanding of the 
shadow contrast. The characteristics of the grating and 
the source can be manipulated to obtain a desired range or 
a desired scaling law. The fundamental limit of the range 
can be calculated when diffraction dominates (and monochro
matic light is used) and when divergence dominates.

This study does not address the situation in which the 
diffraction effects and the divergence effects are compara
ble. An application in which both effects are significant 
can easily occur. A general understanding of the contrast 
variation behind gratings requires further study in this 
area.

The results in this thesis can be improved by applying 
more general conditions. For instance, diffraction effects 
due to incoherent illumination should be studied. Also, 
the divergence results can be extended by using a more 
accurate impulse response function (e.g. a cosinusoidal 
pulse rather than a rectangular pulse).
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