

Scholars' Mine

Bachelors Theses

Student Theses and Dissertations

1910

A study of some problems in cyaniding

Sidney S. Schmidt

Russell B. Caples

Follow this and additional works at: https://scholarsmine.mst.edu/bachelors_theses

Part of the Physical Sciences and Mathematics Commons Department:

Recommended Citation

Schmidt, Sidney S. and Caples, Russell B., "A study of some problems in cyaniding" (1910). *Bachelors Theses*. 8. https://scholarsmine.mst.edu/bachelors_theses/8

This Thesis - Open Access is brought to you for free and open access by Scholars' Mine. It has been accepted for inclusion in Bachelors Theses by an authorized administrator of Scholars' Mine. This work is protected by U. S. Copyright Law. Unauthorized use including reproduction for redistribution requires the permission of the copyright holder. For more information, please contact scholarsmine@mst.edu.

THESIS

for the Degree of

Bachelor of Science.

1910. T212

A STUDY OF SOME PROBLEMS IN CYANIDING.

by

Sidney S. Schmidt. Russell B. Caples, Jr.

10915

PART 1.

THE DETERMINATION OF THE LOSS OF POTASSIUM CYANIDE AND OF SODIUM CYANIDE IN DILUTE SOLUTION, BY AGITATION WITH COMPRESSED AIR, AND BY AGITATION WITH COMPRESSED AIR IN THE PRESENCE OF IRON PYRITE AND OF IRON FILINGS.

PART 2.

THE DETERMINATION OF RATES OF PERCOLATION OF WATER THROUGH PURE QUARTZ OF VARIOUS SIZES AND VARIOUS MIXTURES OF SIZES.

BY

SIDNEY S.SCHMIDT AND RUSSELL B.CAPLES.JR.

Approved Downed Capeland.

TABLE OF CONTENTS.

SUBJECT.	PAGES.
Part 1.	1-14.
Bibliography.	2.
Method of Procedure.	3-6.
Test Number One;-	
The determination of the loss of KCN	
and NaCN when agitated in dilute	
sclution by compressed air.	6-8.
Test Number Two;-	
The determination of the loss of KCN	
and NaCN when agitated in dilute	
solution by compressed air in the	
presence of iron filings.	8-10.
Test Number Three;-	
The determination of the loss of KCN	
and NaCN when agitated in dilute	
solution by compressed air in the	
presence of pure iron pyrite.	10-12.

TABLE OF CONTENTS. (cont'd)

SUBJECT. PAGES. Part 1. Test Number Four;-The determination of the loss of KCN and NaCN when agitated in dilute solution by compressed air in the presence of iron pyrite and one half of one percent of iron filings. 12-14. Part 2. 14-20. Bibliography. 17-19. Series One:-A study of the rate of the downward percolation of water through sized 14-17. quartz. Series Two:-A study of the rate of the downward percolation of water through mixed sizes of quartz. 14-17. Conclusion. 19-20.

PART ONE.

The object of the following tests was rather to determine quanitatively the consumption of Potassium Cyanide and of Sodium Cyanide when agitated by compressed air, and when agitated by compressed air in the presence of iron pyrite and in the presence of iron filings, than to explain chemically the causes for this consumption.

We have attempted to determine the amounts of cyanide consumed by the various substances, compressed air, iron pyrite and iron filings, and also to find out under what conditions the consumption was greatest. Such The literature, containing, information on cyaniding, is exceedingly meagre.

BIBLIOGRAPHY.

The following references constitute practically the whole bibliography:

Julian and Smart.

Cyanidation of Concentrates. (Very little is given on this subject by these authors, and no definite conclusions are drawn, neither is any reliable data given).

Julian and Smart.

Solubility of Pyrite and Cast iron in KCN. Both pyrite and cast iron are slightly soluble in KCN solution, the degree of solubility increasing with the strength of KCN solution used.

In our tests we did not find this to be the case. The solutions were tested with K Fe CN and 4 6 KCNS, but no trace of iron was indicated.

METHOD OF PROCEDURE.

We attempted to conduct all of the tests under as nearly similar conditions as possible. In order that no outside chemical agents should be present to affect the results all of the apparatus used in the tests was of glass. The tanks were conical in shape and had a capacity of about ten litres each. In order to insure a perfect agitation and a thorough aeriation of the solution various schemes were tried. The one finally adopted was that of installing a miniature air pump as shown in the accompanying illustration. The central glass tube is one half inch in diameter, and held in position by being passed through a glass ring which holds it in a vertical position. Compressed air is supplied by a one eighth inch glass tube, which conducts the air to the bottom of the central tube. The agitating apparatus is really a small Brown or Pachuca tank. This method furnishes good agitation and aeriation. In order that the amount of air supplied to each tank should be the same, a T joint was inserted in the hose carrying the air, and the tanks connected

-3-

to this T joint and the air was admitted under the same head of water. The air supply in the hose was controlled by a needle valve which enabled us to easily regulate the air supply.

All of the tests were run at a constant temperature. Each test was run for ten hours.

The cyanide salts used were; chemically pure potassium cyanide and chemically pure sodium cyanide.

During the course of the tests, samples were taken at the end of each hour, by means of a graduated pipette. Each of the samples from all of the tests was titrated against the same solution of silver nitrate which contained 6.538 grams of chemically pure silver nitrate per litre. One c.c. of the silver nitrate solution equals 0.00500 grams KCN and 0.00377 grams NaCN according to the reactions:

> AgNO₃+2KCN=KAgCN₂+KNO₃ AgNO₃+2NaCN=NaAgCN₂+NaNO₃

But as all of the samples were titrated against the same solutions the results are comparative anyway, so the above precautions are somewhat unnecessary. Adsorption looses by filter paper in filtering, were

-4-

undetectable, experiments with solutions of KCN and NaCN of known strength, after passing one, two and three filters, showing no discernable loss.

Evaporation losses were corrected for by adding distilled water before taking the hourly sample; the amount to be added being shown by a scale pasted on the outside of the glass, the height of the solution being marked at the beginning of each hour and the tank filled to this mark before taking the samples at the end of the hour.

TEST NUMBER ONE.

This test was run to determine the losses of potassium cyanide and sodium cyanide, when agitated by compressed air. No solids were present. In one tank was placed five thousand c.c. of potassium cyanide solution, which contained 22.75 grams KCN or 0.455%, and into the other, five thousand c.c. of sodium cyanide, which contained 22.05 grams of NaCN or 0.441%. The amounts of KCN and NaCN were determined by analysis of the solutions, and not by considering the cyanide salts used pure KCN and pure NaCN. Agitation was started at 1:10 P.M. and continued for ten hours. Fift y a c.c. samples were removed at the end of each hour and titrated to determine the loss of cyanide.

The full results of this test are contained in tables 1 and 2. From these tables and the curves, it will be seen that the greatest loss took place during the first hour of the test. Also that the percentage consumption of KCN was nearly twice that of the NaCN. Although a variation of the losses during the last nine hours is shown, they are not enough to materially

-6-

affect the value of the experiments and can probabby best be accounted for by the variable evaporation losses, for which we corrected by adding distilled water and then agitating for a minute to insure a good mixture.

The average loss per hour of KCN during the last nine hours is 0.191 grams. The loss during the ninth hour at a variance with the general trend of losses.

In conclusion; the results show that the maximum loss occurs during the first hour, and that from then on the hourly loss diminishes. From this test it would seem that losses due to agitation by compressed air, are greater for KCN than for NaCN.

e Acid.	ou or Free	rt. No h	c. Each. 5000 c.c. of Solution at Sta	0/e5=25e.	Sam
5.30 "		1.175	4775×10,00419-0.004171=0.095 "	0.417	11:10
4.90 "	4	1.079	4800×(0.00422-0.00419)=0.1941	0.419	10:10
7.20 "	-	0.935	4825x(0,00474-0,00422)=0.096 "	0.422	9:10
3:80 "		0.839	4850×(0,00127-0,00424)=0.145 "	0.424	8:10
3:10 "	2	0.693	4875x (0,00428-0,00427)=0,048 "	0.427	7:10
2.90 "	a	0.614	4900×10.00430-0.00128)=0.098 "	0.128	6:10
2.40 "	n	0.546	4925X(0.00433-0.00430)=0.147 "	0.430	5:10
1.80 "		0.399	4950 X (0.00935-0.00933) = 0.099 "	0.433	4:10
1.30 "	n	0.299	4975x(0.00437-0.00435)=0.099 11	0,435	3:10
0.90 %	rams	0.200 g	5000 x (0,00991 - 0.00934) - 0.200 grams.	0.437	2:10
			Jooo x 0. 00 991 = 22. 05 grams NacNal Start	0.441	tar /-1:10
0/02.035	ss inGrams	Total Los	Galculation of Loss in Grams per Hour	% Na CA	Time
			NaCN Blank.	e No. 2	Ta b
ree Acid.	Ironer F	tart. No 1	c. Each. 5000c.c. of Solution at St	les=25c.	Samp
9.50 "	11	2.161	4775x(0.00414-0.004111=0.143 11	0,411	11:10
9.00	11	2.017	1500 X (0.004/8-0.004/1)= 0. 192 11	0.414	10:10
8.00 "	11	1.825	4825 x (0 00 121-0.00418) = 0.144 "	0.418	3:10
7,40 "	11	1.681	4850x (0.00424 - 0.004211 - 0. 145 "	0.421	8:10
6.70 "	11	1.535	4875 x (0, 00927 - 0.00929) = 0.146 11	0,424	7:10
6.10 "	11	1.389	7900x 10.00430 - 0.004271 = 0. 14 71 "	0.427	6:10
5.40 -	п	1.242	4925×10.00435-0.00430/ 0.296 "	0. 430	5:10
4.30		0.996	49.50x(c.co++c-0.00935) = 0.247 "	0.435	4:10
3.30 "	ss. n	0.748	4975×10.00446-0.00940 = 0.298 "	0.440	3:10
2.00 0/0	grams	0.450	5000x 10.00 455 - 0.004 4 (0. 450 grams	0.496	2:10
			5000 x 0.455% = 22.75 grams KCN at Start.	0.455	itert- 1:10
% Loss.	in Grams	Total Loss	Culculation of Loss in Grams per Hours	% KCN	Time
			KCN Blank	o No 1	

CN determined by titration with agNos solution

TEST NUMBER TWO.

In this test, the conditions as to the amount of air supplied, temperature, and strength of solutions, were practically the same as for test number one.

Five thousand c.c. of solution, assaying 0.500% KCN, were placed in one tank, and five thousand c.c. of solution, assaying 0.509% NaCN, in the other. Agitation was started and then 500 grams of clean iron filings, that had been passed through an 80 mesh, were added to each tank. Fifty c.c. samples were taken at the end of each hour and assayed. The results of these tests are given in tables 3,4,9and 10, and in the accompanying curves. The greatest loss of cyanide occurred during the first hour, and from then on diminishes.

No soluble iron was found to be present. Tests for acidity were made but no acid was found. The total losses for these tests were not much greater than in test number 1. In this test, as in the preceding one, the loss of KCN exceeded the loss of NaCN. The net losses by iron filings are shown in tables 9 and 10.

-8-

The losses by aeriation in test 1, are subtracted from the losses in test 2. The presence of 500 grams of filings, caused a total loss in ten hours, of The 1.098 grams or 4.4%, of total potassium cyanide, and of 1.754 grams or 6.8%, of the total sodium cyanide.

The loss of sodium cyanide, although leas both in the presence and absence of iron filings, than the loss of potassium cyanide, is greater due to the action of iron filings alone.

Table No. 3	IRON FILING	-S	Soograms Ki	GN.
Time. % KCN.	Calculation of Loss in grams p	er hour.	Total Loss in grams	% Loss
3.10 AM. 0.500	5000 × 0.500 = Start	0.000	0.000	0.00
0.10 11 0.485	5000 × 0.015 =	0.750	0.750	3.00
1.10 II 0.480	4950 x 0.005 =	0.247	0,997	3.90
12.10 P.M. 0 4 73	4900 X 0.001 =	0.343	1,340	5.30
1-10 " 0.465	4850 X 0.008 =	0.388	1. 728	6.90
2 10 11 0 460	4 800 X 0.005 =	0,240	1.968	7. 80
3. 10 // 0. 4 50	4750 X 0.010 =	0.475	2,443	9.80
4 10 11 0 4 4 3	4700 X 0.007 =	0.310	2.753	11.00
5.10 1 0 4 39	4650 X 0.004 =	0,186	2.939	11.70
6 10 11 0 4 36	4600 X 0.003 =	0.138	3.077	12.30
7.10 11 0.4 33	4550 X 0.004 =	0.182	3,259	13.00
Table No. 4	IRON FILING	obtained by: S.	Fitration against A Socgrams Na	CN.
Time 2 No CN	Calculation of Loss in grams p	er hour.	Total Loss in grams	% Loss.
9. 10 A.M. 0. 509	5000 × 0.509 = Start	0 00 0	0.000	0.00
0.10 11 0.4-99	5000 X 0.010 =	0.500	0.500	0 5 1
11 10 11 0.494	4950 X 0.005=	0.247	0.747	2.90
12.10 PM. 0.490	4900 X 0.004 -	9 6 1 .0	0.943	3.70
1.10 11 0.479	485 o X 0.011 =	0.535	1.476	5.70
2.10 1 0.471	4800 X 0.008 =	0.384	1.866	730
3 10 11 0.4.65	4750 × 0.006=	0.285	2.145	8.4°o
4 0 1 0 4 6 3	4700 X 0.002 =	0.094	2.231	8.80
5.10 10 + 58	4650 X 0.005=	0.232	2.471	9.7
6 10 1 0 + 52	4600 X 0,006=	0.276	2.747	10.8
7 10 1 0.448	4550 X 0.004=	0.182	2.929	11.5
.No Fre	e Acid Samples + Socc each	Column	Two obtained by T	Tration

TEST NUMBER THREE.

The conditions as to amount of air supplied, temperature and strength of solutions, were practically the same for this test as for the preceding ones. Five thousand c.c. of solution, assaying 0.485% potassium cyanide, and five thousand c.c. of solution, assaying 0.462% sodium cyanide, were used. Samples were taken as before.

Agitation was started, and to each tank was added 1500 grams of iron pyrite, which had been passed through a 100 mesh screen. The purite was unsized but was all_through 100 mesh, and contained about one half of one percent metallic iron, derived from the mill used in grinding. Some trouble was encountered in filtering, as the finely divided pyrite persisted in coming thru the filters, although "White Ribbon" filters were used. The cloudiness of the filtrate was removed by diluting the sample to be titrated, to one hundred and fifty c.c. before titration, thus allowing the end point to be easily detected.

The results of this test are given in tables 5,6,9,10 and in the accompanying curves.

Tests for acidity were made, and showed no free

-10-

acid at any time during the test, or at its conclusion.

The consumption of potassium cyanide was greater than for the sodium cyanide, as in the previous tests.

80.34	18-559	0.227	4550 (0.092-0.087)=	0.087	7 20 "
7934	18:332	0.282	4600 (0.097-0.092)=	2.092	6.20 "
7814	18.050	0279	4650 (0.105- 0.097)=	0 097	520 "
76.93	11 6 41	0.282	4700 (0,111 - 0 105)=	0.105	4.20 11
15.71	17.487	0 4 2 7	4750 (0.120 - 0 111)=	0.111	3.20 11
73.86	17 062	0.336	4800 (0, 127 - 0, 120)=	0.120	2.20 .
72 40	16.726	0.340	4850 (0.134-0.127)=	0 127	-20 "
70 93	16.386	0 392	4900 (0.142 - 0.134)=	0-134	2.20 PM
6923	15.994	0.594	4.950 (0.154 - 0.142)=	0.142	1 20 11
66.66	15.400	15.400	5000 (0.462 - 8.154) =	0.154	0.20 11
0.000	0 0 0 0	0.000	Soop X 0.462 = 23 is yms Na CN at Start.	0 462	2 Zo AN
70 Loss.	Total Loss in grams.	hour.	Calculation of Loss in grams per	% Na CN	ime
Na C N.	ill grinder.	om Coffee m	Pyrite with particles of iron abraded fr	e No. 6	م٥
	1500 grams.			-	+
NOS	ating against Ag	ned by Titro	Imples = Soec. Column Two obtai	cid Sa	No a
82.37	19 974	0.136	4550 (0.085 - 0.082)=	0.082	7.201
81.80	\$ 5 8 61	0.276	4600 (0.091 - 0.085)=	0.085	6.201
20 GG	19.562	0 279	4650 (0.097 - 0.091) =	1600	5-2011
79.52	19283	0.611	4700 (0.110 - 0.097) =	0.097	4.20 1
77.00	18 672	0 9 75	4750 (0,120 - 0,110) =	0.110	3.20 11
75 04	18 197	0.480	4800 (0. 30 - 0. 120) =	0.120	2.20 11
73.0%	L14 L1	0.485	* 850 (0. 140 - 0. 130) =	0.130	1.20 11
71.06	17232	0784	4900 (0.156 - 0.140) =	0.140	2.20PM
67.82	6.448	8 61 0	4950 (0.160 - 0.156) =	0.156	1.20 11
67.01	16.250	16.250	5000 (0.485-0.160) =	0.160	9.20 11
0.000	o o o o o	0.000	Sooo X o 485 = 24.25 gms KCNat Start	0.485	9 20 A M
	omill grinder.	d from Cotte	I VILLE WILL PORTICLES of Iron obrade	% KCN	1 4 9
なつと	c much oper			N, л	,

TEST NUMBER FOUR.

In this test, the conditions as to amount of air supplied, temperature, and strength of solutions were practically the same as in the previous tests. Five thousand c.c. of solution, assaying 0.468 % potassium cyanide, was placed in one tank, and five thousand c.c. of solution, assaying 0.435% sodium cyanide in the other. Agitation was started and then one thousand grams of iron pyrite added, from which the iron filings, derived in grinding, had been removed by means of a strong magnet. The pyrite was unsized, but all passed aⁿone-hundred-mesh screen.

The greatest loss occurred during the first hour. The potassium cyanide again suffered the greater loss. In the potassium cyanide solution the total loss due to pyrite when using fifteen hundred grams of pyrite, under our conditions, is 12.724 grams of KCN, which is nearly a gram more than two-thirds of 17.802, ot Table 9. The loss is then, somewhat proportional to the amount of pyrite used.

In conclusion: Agitation by compressed air, results in a consumption of cyanide, the loss being

-12-

greatest during the first hour, and then gradually (hourly) diminishing to a nearly constant loss. Potassium cyanide suffers a greater loss than does sodium cyanide. Losses due to the presence of finely divided particles of metallic iron, are very small, and practically negligable. Losses due to the presence of iron pyrite, are large, the greatest loss occurring in the first hour.

More experiments along this line are greatly needed, but lack of time has prevented our taking them up.

Table	Nº 7.	PURE CLEAN PY	RITE	1000 grams	KCN
ime	% KCN	Calculation of Loss ingrams pe	r hour.	lotal Loss in grams	% Loss.
2.20 AM	0.465	5000 × 0. 965 = 23.25 gms at Star.	0000	0 000	0.000
020	0.200	Sobb (D. 465 - 0.200) -	13.250	13.250	57.000
1.20 "	0,197	4950 (0.200 - 0.197) =	0.148	13.398	57.62
2 20PM	0,188	4900 (0.197 - 0.188) =	0,401	13.799	59.35
1.20 "	0.184	4850 (0. 188 - 0. 184) =	0.194	13 993	60.18
2.20 "	0.180	4800 (0.184-0.180) =	0.192	14.185	61.01
3.20 "	0.177	4750 (0.180 - 0.177) =	0.142	1 4-, 3 2 7	61.62
4 20 "	0.172	4 700 (0.177 - 0.172) =	0.235	14 562	62.63
520"	0.168	4650 (0172-0168) =	0.186	14-7-8	63.43
6.20 -	0.166	4.500 (0,161 - 0,166) =	0.092	14.840	63.83
720-	0.165	4550 0.166 - 0.165	0.045	14.885	64.02
Vo Acid	Sample	es socc. Column Two obtained	by Titration	a gainst agnos	
Table	Nº 8	PURE CLEAN PYRI	TE	000 grams	NaCN
ime	% N₄CN	Calculation of Loss in grams p	er hour.	Total Loss in grams.	370 4055
7. KOAM	0.435	5000 x 0. 435 = 21.75 gm s at Start.	0.000	0.000	0.000
0.20 "	0 1 6 9	5000 (0.435 - 0.169) =	13.300	13.300	62 59
1.20	0.103	4950 (0.169 - 0.103) =	3.270	16.57	7618
2 20 PM	0.100	4900 (0.103 - 0.100) =	0.150	16.72	7687
1.20 "	100	4850 (0.100 - 0.097)=	0.140	16,86	7 7. 51
2 20 "	0 0 75	4800 (0.097 - 0.095)=	0.100	96.91	77 97
3.2	0.094	4 750 (0.095 - 0.094) =	0.050	17.61	7820
4.20 -	0.091	4700 (0 094-0 091)=	0.140	51 41	78 85
5 2 0 "	0.089	4650 (0.091 - 0 089) =	0.090	17 24	79.26
6.20-	88 0.0	4600089-0.088)=	0.050	1729	79.50
7 20 "	0.086	4550 0.088 - 0.086)=	0.090	17.38	80.00
Vo Acid.	Somples	s = Socc Column Two obtained by t	iration age	inst do NO3	

PART TWO.

The following tests were made to study the rate of percolation of water, under certain conditions, through pure quartz. The information sought is of importance in the cyanide process. By "rate of percolation" we mean the distance travelled in a unit time, by water or other ore through a bed of quartz. In all of our experiments no suction was used.

The data obtained is given in the accompanying tables. The curves are plotted from these tables. All time was taken with a stop watch. The glass tubing was three inches inside diameter, and in seven feet lengths. All the quartz was carefully sized and quite free from dust. In order to better follow the liquid through the quartz, the water was colored with potassium permanganate or with ordinary washing bluing. Neither coloring agent was at all satisfactory, as the solution lost its color rapidly, in passing through the column of quartz. The quartz particles seemed to extract the coloring salt from the liquid. In the case of the permanganate, the first coloring agent used, we decided

-14-

that the loss of color was due to ferrous iron dissolved from the quartz, but when the bluing solution also lost its color, we decided that probably adsorption played an important part.

Drainage was never complete, the last six inches of ore never draining dry. The head was kept constant at six inches above the top of the ore until the water came through the screen at the bottom, when this head was allowed to subside. The time of drainage includes time of subsidence of the head. The water came down very evenly, the center travelling equally as fast as the outside, as was ascertained by glass tubes at the bottom.

It will be noticed that the percolation through the dry quartz was uniformly faster than through the wet quartz, and that the percolation uniformly became slower with the number of times the test was run on the wet quartz. All of the tests numbered 2 on the wet quartz, show a slower rate than the first test, and all tests numbered three, show a slower rate than those numbered 2. A curve of the average of the three wet tests was plotted, but we believe that the results

-15-

of number three are more valuable, as they would more nearly represent the conditions in actual practice, where the ore had been crushed wet.

It was noticed that, in the tests on the wet ore, air was forced out of the bottom under considerable pressure, as the water percolated downward.

The following references constitute practically the whole bibliography: Julian and Smart. Percolation is affected by; 1.Volume and uniformity of interstices. size and The greater the percentage of interstices and the more uniform the interstices, the faster the percolation. 2.Depth of ore. The shorter the column, the faster will be the average ral of percolation. 3.Pressure. An increase in head gives an increase in the rate of percolation, but this increase in rate of percolation is small in comparison to the increase in head required to produce it. 4.Temperature. The rate of percolation increases with the temperature of the solution. 5. Direction.

Upward percolation is faster than downward percolation. This applies especially for a short column of ore.

No definite reasons were given for these they conclusions, being largely taken from data obtained from experiments.

Va Siz	0			11-1-12	flate of t	ercolotio	17-Seconds p	er toor or quart			D. L. AF. T	
T They	0n	Condition	3 5	Water	1st foot.	2nd foot	34 foot	4th foot	5th foot	6 toot	sidence of Key	Rate of Druinope
00% 10	1	Dry - 15*	0	Ginches	6/	15	16	4.1	/8	19	17 Sec 5.	350 seconds
		Wet	is I	a .	15	16	16	77	17	19	17 1	355 *
		11	=	*	/5	16	17	/8	18	19	19 1	365 .
		1 - 1	:	**************************************	16	16	8/	/8	19	20	20 "	378 "
π												
00% 14	20	Dry- 15.	C	Ginches	17	8/	19	20	20	21	25 secs	380 Secs.
		Wet- "	÷		8/	19	19	20	21	21	32 3	390 -
		11 - v	:		20	20	21	22	21	21	37:	395 .
-		1 m 10	٠	1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 - 1990 -	19	20	22	22	21	21	38 :	400 .
111 20	30	Dry 15'	0	6 inches	18	25	29	30	39	39	98secs	440 Secs
		Wet- "	1	•	28	33	36	36	39	39	72 "	455 "
	Π		i.	*	28	34	34	36	40	40	77	470 "
V		2	e	1 1	30	3 J	34	38	40		79 .	¥75 "
001 30	40	Dry - 15	0.0	6 inches	32	57	70	82	88	99	12B Secs.	745 secs
		Wet - n	1 23	11 N	56	67	$p \phi$	83	85	101	165 .	899 "
		30 E 4	÷		65	11	69	84	8 7	96	168	960 "
4				а) С	66	72	80	83	8 7	100	170 .	1050 "
00% 40	60	Dry - 15	C	Ginches	63	92	112	130	141	162	30 Secs.	1650 SECS
		Wet "	-	2	132	/ 3 8	146	183	195	200	387 "	1800
			4	11 II	188	3	150	200	204	213	392 "	2070 "
		2	5		193	161	160	212	2/8	226	411 11	2195 .
ZI I												
00 60	9.0	Dry 15	с.	6 inches	300	720	880	1010	1170	1280	1380 Secs	1
		Wet - "	e								1	1
		10 E	e	a		Owing to	rapi1 105	sof Color	ofind	cators	used and	Very Slow
		•	-	а У т		rateofpe	reolation	no further	data co	uld be a	btainey.	J
		Allresult	ts ar	e for ca	refully :	sized quar	42 do.	war y per	Colorion			

		and the second se				
hew On Conditions Wate	er 18 foot	2rd foot	3ª foot	All Foot	ence of Head	Rate of Drainage.
0 14 Dry - 20' 6 incl	hes 8	9	11	11	21 Second	120Seconds
4 20 W 7	8	11	12	12	24 =	132
	. 10	12	12	13	26 "	1 40 11
	- 10	12	12	٤ /	24 "	145
10 14 Dry 20°C 6110	hes 9	01	11	14-	23 second.	125 seconds
4 20 Wet	10	11	/ 3	14	33 "	145 "
	10	11	8	1.4	36 .	150 "
	10	2012	5 /	15	* 0	157 "
10 14 Dry - 20°C 6 mc	165 9		11	01	CHARTER 1010	140 Seconds
14 20 Wet " "	10	12	/3	16	1. 6%	155 .
A 40 A 40	- n	12	/ 3	1 10	37 "	/62 #
	II.	51	1.4	16	40 .	169 -
10 1+ Dry ED'C Gine	hes 10	12	13	16	26 second	53 Seconds
+ 20 Wet- " " "	10	57	3	17	3.2 11	167 "
	11	13	14	17	# 3 11	130 1
а — а ас а	12	141	14	i B	50 1	165 "
10 14 Dry-20°C Ginc	hes 11	12	2.4	17	28seconds	148 seconds
+ 20 Wet-20°C .	11	6 /	1 5	17	35 "	185 "
	11	1.4	15	18	48 "	197 "
	12	14	15	/8	57	206 "
	8					
0 14 Dry-200 6 100	105 9	10	12	12	24 seconds,	127 Seconds
4 20 Wet- " " "	9	11	/ 3	E. 1	29 .	143 "
o 30 // // //	10	101	13	1.5	38 "	150 11
	. II	12	14	1.5	45 1	156 "
					8	
the results are to	- downwar	apercol	attant The	u mixed	sizes of quarts	the percentog

8 Seconds per foor ofquortz 22 Uh, 0 0 0-0-Q 70 0000 Test" & wet 100 Breat All tesis on infred sizes of Feer of quarres et-ac 0 4 40 6 M. M. ~3

THE R. D. LEWIS

No	Sic	e		Head of	Rate of Pe	rcolation-se	ronds pert	got of quarts	Rate of subsid-	
Ì	Incu	9n	Conditions.	water	14 toot.	2 Tool.	37 teot	4 Toot	ence of Head.	liate of Urainage
70.3	10	14	Dry - 20°C	C inches	10	12	د /	51	J/ seconds.	155 Seconds.
204	14	20	Wet 20c	11 (1)	11	13	14	16	36 "	162
(C%	20	30	7 	33 23	12	14	14	16	39 "	1 4 1 10
			1 - 1 - 1	2 2	12	14	15	16	40 "	175
4										
40%	10	14	Dry - 200	Ginches	12	15 '	17	19	34 -	160 "
30%	14	20	Wet- 20°C	7 H	13	15	/8/	20	4 3 "	/ 60 //
302	20	30	H - H - H		13	16	19	20	50 .	" 96 I
				2	14	17	19	21	53 .	203 "
5										
30%	10	4	Dry-20°C	6 inches	12	17	20	21	39 1	171
402	/4	20	Wet a "	6 "	14	19	20	22	49 "	186 "
di la	20	30	11 - 11 11	11 . 11	14	20	21	2 2	57	201 -
			11 11 11	10 . 16	15	20	22	2-1	63 "	216 .
6										
20%	10	14	Dry-20°C	6 inches	14	7.7	21	23	42 "	180 "
40%	14	20	Wet a d	4 4	14	\$1	22	23	53 "	" 8.67
40%	20	30	10 - 10 M	10. U	15	87	23	24	64 "	221 "
			1. 1	0 11	15	19	2 З	25	72 "	239 "
17										
10.	10	14	Dry 20'C	6 inches	14	18	21	23	14 h	184 "
25%	14	20	Wet an	5	15	8/	23	24	54 "	212 *
252	20	30	n - n n		16	67	23	2.4	65 "	240 "
10%	30	40	H H	-44 -	16	20	24	26	74 "	270 "
6										
20:	10	14	Dry-20t	Ginches	16	21	25	29	49 "	192 1
207	14	20	Wet- h .	n 1	16	23	26	29	63 *	225 "
302	20	30	11 - 11 H		17	24	28	30	75	257
303	30	40		т 1	8/	25	30	3/	4 98	280 "
	All	the t	ests au	e for	downwa	rdperc	olation	thru mi	xed sizes c	fquartz. The
0	eo	ch s	ize use	disa	iven in t	the lirst	colum	â		
				c						
	f									

	I A C			Plate of Pe	rcolation	Seconds per	tost of quarts		
11 6	ru 0)	n Condition	nead of	1ª sot	2nd fact	34 Foot.	4th foot	ence of Heud	Orainuge Rote
6.1	14	E Dry = Zo	C Ginches	28	39	56	60	85 Seconds	460 seconds
4-210	1 2	o Wet "		32	42	59	67	120 "	555 "
30 2	0 30	0 N - 10		37	44	64	7/	140 "	695 "
81 3	0 4	C		+1	45	66	75	146 "	730 "
1% 4	0 6	0							
õ									
50. 1	0 1.	+ Dry-20	1°C Ginches	3 2	50	64	83	140 seconds	550 Second
5.00	+ 2	o Wet-	+	36	54	73	97	192 "	685 "
0.2	0 3		24 2442 2442	42	6 7	89	112	209 "	795 "
5-20	0 7	0 	10 m 10	+6		97	128	231	890 "
2% 7	0	0							
20 6	0 8	.0							
-									
22. 14	1	4 Dry-15	C 6 inches	1020	1570	2290	2790	3840 Second	
12 10	4 2	O Wet- n	n n	1155	ļ	T	1		1
30. 2	0 30	0 4 1	4 4 A					1	
÷ 3	0 4	o 	4 10 10	4			l.		
3% 4	0 6	0							
3% 6	0	0							
0. 8	0 /0	ŏ		Owing to fi	he extrem	ely Slow Y	ate of pe	ccelation and	difficulties aris
10	0 15	0		ing from	the loss	of Color	of indici	itors used, tu	their duto on this
2	0 2	0		test was	impossil	ble.			
N	00	a							
+	4	ll results a	he for doy	vitward pe	rcolario	a thru m	ined Sic	es or quartz.	Percentual of Each

Size used is given infirst column.

CONCLUSIONS.

The conclusions we arrived at from the study of percolation, under the various conditions stated, are as follows.

The rate of percolation of water through quartz is dependent upon the space in the quartz column that is occupied by air. therefore the rate of percolation is dependent upon the fineness of grinding. for the percentage of interstices decreases with the fineness of grinding. In the tests on coarse grinding, or coarser sizes of quartz, the time of subsidence of the six inch head of water, was nearly the same for the time of passage of the solution through a foot of quarts, showing the space occupied by air to be approximately equal to the space occupied by quartz. In the tests on finer sizes of quartz the time of subsidence of the six inch head increased with the fineness of the quartz particles, showing that the percentage of the interstices decreased with the fineness of the quartz particles. By refering to the tabulated data, the percentage of interstices for any test can be obtained by dividing the average time

of percolation, of the solution through a foot of quartz by twice the time required for the subsidence of the six inch head.

It is our opinion that a considerable percentage of the loss of KCN in cyanidation of siliceous ores, is due to adsorption. Potassium permanganate solution and washing bluing solution loose their color, due to adsorption, in passing through pure quartz, so it seems reasonable to believe that KCN solution, would loose a part, at least, of its solid material in passing through a similar column of quartz. We believe that a series of experiments along this line would account for a large part of the losses of KCN, in cyanidation by percolation.