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ABSTRACT 

The thesis describes some experimentally observed data 

and analytical approaches to the study of a relay servomech-

anism. The experimental data were secured from an analog 

simulation of a relay servo system. The results of this data 

were compared to the transient approach by use of the phase­

plane method. The stability of the system was determined 

using a describing-function. The analytical approaches are 

described in the presentation. 

A study of the effects of viscous friction is described, 

and the characteristic of the relay used in the system is 

given special attention. The response to input driving func-

tion was considered, and rise time, overshoot, settling time 

and steady state errors were considered as important criter­

ia for determining the over-all performance. 

Finally, a recommendation is given as to the approach to 

the synthesis and analysis of a relay servomechanism. 
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IC> INTRODUCTION 

Definition of a feedback control system could be ex­

pressed as follows: 

A feedback control system is one in which a command 

signal is compared to a signal from a controlled mechanism. 

The difference between the two signals, called the error. 

signal, is used to operate a power element which changes 

the controlled variable in such a manner as to reduce the 

error signal to zero, or nearly zero. 

Feedback control systems, as known today, have been 

divided into two distinct groups based on their inherent op­

erating characteristics. These two groups have become 

known as the linear and the nonlinear feedback control sys­

tems. The former systems are given a great deal of at­

tention and investigation in most undergraduate and also in 

the first graduate level electrical engineering curricula. A 

brief introduction to nonlinear systems is generally included 

in this sequence. It is unfortunate, however, that most 

programs end at this level, because it has been estimated 

that seventy per cent of the control systems in operation 

today are nonlinear systems. 

11 
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Linear systems are few because of the introduction of 

nonlinear components into physical systems. Some of these 

components include backlash in gearing, ampl'ifier saturation, 

torque saturation in servo motors and other such nonlinear­

ities. It is also known that direct introduction of nonlinear 

elements has been advantageous in compensation, hence, some 

systems are deliberately made nonlinear. 

If these nonlinearities are small, then the system can 

be analyzed using linear methods. If not, nonlinear methods 

must be used. Nonlinear analysis is not as well defined as 

linear methods and various techniques are available to :.analyze 

and synthesize nonlinear systems. 

Feedback control systems can also be classified accord­

ing to the type of correction used in reducing the error be-

tween command signal and the controlled variable. The con-

tinuous type system is one in which there is always a correc­

tion, when an error exists between command· signal and the 

controlled variable. This would indicate, that as the error 

reduces, the amount of correction also reduces. This type 

of system can be made to have a fast response, gocid stabil­

ity and opera ting characteristics, if enough gain is supplied 

and enough compensation is introduced. This, then, leads to 

a large system, expressed in weight, cost and size. 
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The discontinuous system can be made to have the . de­

sirable characteristics of this foregoing linear system with 

less components. The system is characterized by supplying 

a large correction signal if the error is above a certain value, 

as specified by the system,' otherwise there is no correction 

at all . The relay type servo system operates with this type 

of control. This means that a relay servo , utilizing a servo 

motor, produces rated torque output in the proper direction 

to reduce the error. Systems of this sort have a tendency 

to oscillate at small amplitudes but can be stabilized by use 

of damping and compensation networks. 

A simple relay regulator servo, for example, has been 

in use for years in home heating control, ( the·· ·.thermostat 

in combination with a heat source ) . The thermostat, acting 

as the relay in · this case, controls a large source of heat. 

Being an on-off system, the thermostat demands full heat 

or nothing at all. Depending on the temper�ture differen-

tial of the thermostat, the room temperature oscillates about 

a pre-selected temperature. Much has been done to re-design 

the system to compensate for such conditions as ; sudden 

changes in outside temperature or wind velocities. In this 

manner the heat control system can anticipate these changes 

and take corrective action so that the temperature variation 

can be kept to a minimum. 
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Other examples of a simple nature could be remote 

steering devices for ships, liquid level regulation, voltage 

regulation systems and speed regulation. The major difficul-

ties with these systems which use on-off control arises when 

high accuracy must be combined with stability. 

This thesis considers the operation of a second-order 

type 1, position control relay servo system when such var-

iables as relay contact spacing are considered and methods 

by which system performance can be improved. The aspect 

of using viscous friction as a stabilizing element is considered ; 

and the relay characteristic is studied from the standpoint 

of stability, rise time and overshoot. The advantages and 

disadvantages of the relay servo can then be determined in 

comparison to an equivalent linear servo. 

The Royal McBee LPG 30 Digital Computer, located at 

the Missouri School of Mines Computing Center was used 

for the following purposes : 

1. Obtaining data for isoclines on the phase-plane plots. 

2. Securing data for the Bode plots of the servo motor 
and load. 

3. Data for plotting the describing-function loci. 

The entire relay system was simulated on the Electrical 

Engineering Department9s analog computer, from which ex-
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perimental data was secured to enable a comparison between 

the theoretical results and the actual test results • 



16 

II . REVIEW OF LI TERATURE 

The relay type servomechanism is not a recent devel­

opment , for these systems have been in existence in the 

form of regulator controls for some time. Nearly all the 

literature , however , is restricted to periodicals within the 

last ten years. One of the earliest contributions was a 

paper by Weiss ( 1) * in 1946 on a simple servo relay system. 

Weiss applied the methods , which Minorsky ( 2 )  ·previously 

used for the graphical representation of displacement and 

velocity in the field of nonlinear mechanics , to the relay 

servo . The representation of position and velocity of the 

servo in two dimensions is called the position-velocity plane 

or more commonly called the phase plane. I n  this plane the 

discontinuous nature of the driving torques divide the phase 

plane into regions where , within each region , motion can be 

represented by a simple differential equation. The two res­

ponse relationships of position and its first derivative are ex­

pressed. Time is eliminated as a variable and made a para.;._ , 

meter. These quantitie s ,  when plotted , form a graphical rep­

resentation in two dimensions , called the phase-plane. By form­

ing the trajectory paths for step inputs in velocity or position , 

or both , the output can be graphically expressed. 

* All references appear in the Bibliography. 
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I n  1949 Kahn (3 ) applied Laplace Transform methods 

to a nonlinear system by subdividing the discontinuous regions 

into as many piece-wise linear regions as necessary. Each 

region was analyzed individually and when appropriate boundary 

conditions were applied, a solution was obtained in the time 

domain. The difficulty which arises is that synthesis of a 

system by this method becomes extremely difficult . 

In 1950, Kochenberger (4 J , seeking to solidify all prev­

ious contributions to relay servos., presented a method to 

synthesize a system using a describing-function approach. 

This is a so-called frequency response method whereby the 

nonlinearities which are periodic can be represented as terms 

of a Fourier series. By considering only the first term of 

such a series, a linear approach can be approximated. Syn­

thesis of a system by the means of frequency response gives 

insight as to the selection of compensating networks more 

readily than the cut and try methods of the · phase-plane , or 

the differen�ial equation approach . Nyquist's stability criter-

ion, therefore, applies so that stability can be studied in the 

polar plane • 

The aircraft industry, interested in rugged servo con­

trols which were reliable and simple, promoted the use of the 

on-off type of systems. Parziale and Tilton ( 5 )  , in 1950 ; 
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and Stuelpnagle and Dallas ( 6 ) ,  in 1953, introduced on-off 

magnetic clutch type servos. The clutch servo incorporates 

a driver which operates at a constant velocity and through 

the use of clutches, either positive or negative torques are 

applied to the controlled variable. These torques are max-

imum restoring torques and produce characteristics similar 

to relay servomechanisms. 

Johnson ( 7 )  presented more comprehensive methods 

when analyzing nonlinearities in feedback control systems. 

He also introduced an insight as to the magnitude of the 

errors involved ·by using describing -function methods. Kazda 

( 8) elaborated on the errors involved in relay servos under 

certain conditions of operation . 

It is interesting to note that the authors of papers 

mentioned, prescribe analysis and synthesis for specified 

input functions. The driving function has a very decided 

effect on the response of the system and iri general, for 

this reason, a system which produces a desirable response 

to one input may produce an unsuitable response for another 

form of input. 

The phase-plane method, as a graphical method, is 

the two dimensional analysis of the more general phase­

space method. Second order systems can be completely 



represented in two dimensions. Bogner and Kazda ( 9 )  ; 

Kuba and Kazda ( 10 )  have investigated switching and syn­

thesis of nonlinear systems by phase-space methods for 

19  

higher order systems with inputs limited to step functions. 

The systems involved must be des cribable o:ver every inter­

val of its operation by a linea� differential equation. · A con­

siderable amount of the· data these authors obtained was from 

analog computer studies of the systems considered. 

Hart ( 11 )  contributed a paper on an analytical design 

of a relay servomechanism when investigating ''dead beat" 

systems. "Dead beat" systems are systems where one ap­

plication of restoring torque is sufficient to cause the error 

and all derivatives of the error to become zero simultaneous­

ly. Conclusions reached were that for the higher order sys­

tems, solutions · of simultaneous tra�ndental equations were 

required. As a practical design approach, it was further 

suggested that approximate or empirical methods be used. 

Chao (12 ) elaborated on the describing-function methods 

of Kochenburger and supported his conclusions by means of 

analog computer studies. It was found that in  the systems 

studied, an accuracy of about 7 per cent can be expected 

when analysis is  made by describing -function methods on simple 

systems. 



In the last three years more attention has been 

given to compensation methods by linear and nonlinear 

circuits. It is a known fact that if fair static accur­

acy of relay systems is to be accomplished, compensation 

m ust be included. The nonlinear circuits, as proposed 

by McDonald ( 13 ) are being expounded to provide good 

static accuracy, excellent rise time and small overshoot. 

Embler and Weaver (14 } ; Harris, McDonald, Thaler ( 15 ) ; 

McDonald, Thaler ( 16 )  are chiefly responsible for the 

literature in this field. 

In the last two years, Buland and Furumoto ( 17 ) 

have promoted use of dual mode systems. By the addi-

tion of high speed switching relays t.o relay servos, opti­

m um response can be obtained by switching from nonlin­

ear m odes of operation to linear modes of operation at 

the proper time. 

20 



III. THE BAS'.I C SYSTEM 

The basic system which was chosen for study was to 

lend itself to answering the following questions : 

21 

1. The effects of viscous friction were to be studied 

on the relay servo system response. Viscous friction is 

known to have a stabilizing affect on systems , but how much 

is desirable? If a desirable value is inserted into the relay 

system , how then does it compare to an equivalent linear 

servo without a relay? 

2. In addition to viscous friction , what effect does 

the relay characteristic itself play in a successful system? 

Is an ideal relay desirable? -what effect does the relay char­

acteristics of a typical manufactured relay have on a relay 

system? Does -the fact that this relay has a different "pull 

in" and " drop out" voltage affect the relay servo? 

3 . What effect do compensation circuits have on a relay 

servo'? 

To study these effects , a simple relay system was 

chosen which consisted of a controller , relay , motor and 

load. The motor-load combination selected was a type 1 

second order system . 

ed in Fig .  1 

The system is schematically represent-
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The error signal, which is a function of the position-

al error b etween 0i and 80 is applied to a r elay. Here the 

23 

error signal is e = Si - 8 0 • The relay is polarized so that 

it is both sensitive to the magnitude '.i�j{d\ polarity of : the er-

ror signal. The r�elay, the ref ore, has. <?Ontrol of .the di rec-

tion of rotation of the reversible motor . · The relay operat-
· .. . 

_ \, 

ing characteristic can take three form s . - These·' are repre-

sented in figure 2 and the relay analog computer simulation 

for each is also shown. The analog computer circuit for 

simulation of the relay appears in Appendix II. 

The motor-load differential equation for th� system 

under consideration is derived · in Appendix II. Rewritten 

here, it i s : 

J eL 
d 89- ' ( 1 ) 
dt 

The viscous friction term appears · as the coefficient 

of the first derivative of 80 • The damping effect was ob-

served with regard to system, stability and response·.. How-

ever, other than the stability produced by viscous friction , 

its occurance is objectionable as it increases the response 

time of a system by reducing the runaway v elocity. By 

proper use of linear compensation and proper addition of vis-

cous friction, desirable relay servo systems can be obtained. 
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IV . ANAL YTI CAL METHODS 
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Before proceeding, it will be necessary to briefly men­

tion the techniques used in the course of this investigation . 

For more detailed analysis references, ( 4 )  , ( 9 )  , ( 10) , ( 18 )  

and ( 19 )  are suggested. 

(A) TH E PHASE-PLANE 

The phase-space method, as applied to the study of 

ordinary nonlinear differential equations, is a graphical method 

in which a variable and its time derivatives are plotted. The 

space dimension required is determined by the number of de­

grees of freedom of the particular equation. vvhen a dynamic 

system, having only one degree of freedom is studied, a two 

dimensional phas_e-space results, commonly called the phase ­

plane. 

F or the second-order positional relay servo to be studied 

here ; the dependent variable and the time rate of change of 

this variable was plotted in the phase-plane. A trajectory in 

the phase ..plane is a locus of the path that a dynamic system 

follows when given some initial starting point. Moreover, 

there will be one and only one trajectory through each point 

of the phase-plane. 
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Phase-plane analysis in general is not applicable to 

system s subjected to external driving functions. The phase-

plane method can, therefore, be used to predict transient 

response limited to system s when subjected to some initial 

condition of step driving functions. 

The trajectories can be plotted for a system by any 

of the following methods : 

Consider a second order differential equation of the 

form : 

Ad2 x 
dt2 + B � + Cx 

dt 
D (2 } 

( a )  
• 

By integration, a time solution of x = f (x, t) 

and x = g {t) can be obtained. By elimination of time be-

• 
tween these equations, a relation of x = h (x ) could be ob-

tained and x versus x could be plotted. In general, how-

ever, if x can be found as a function of time, the transient 

performance is already defined and there is rio reason to re-

sort to phase-plane methods. 

(b ) An alternative to the solution above i s  to change 

the equation ( 2 )  into another form by substitution : 

By letting 

dx 
dt 

x p Q x 



We obtain : 

Ap + Bp + CQ = D 

By forming: 

p . ...  dp?t = .!!E. 
p dx dt dx 

( 3 ) 

(4 ) 

• 
Then by solving (3 )  for P and substituting into (4 }  yields : 

D - ( Bp + CQ) 
A 

dx - pdp = 0 ( 5 )  

I ntegration of ( 5 )  yields a solution for the trajectories. 

It may be that this solutio n  is difficult, if not impossible. 
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Therefore, the more general procedure is to graphically find 

the solution of ( 5 )  • 

By re�ting ( 5) in the form I 

..2£.. = D - ( Bp + CQ) 
dx p 

dx 
= - = k 

dx ( 6 ) 

where k = the slope in the phase plane. 

By assigning values for k an equation of a family of iso-

clines is obtained. An isocline ls a locus of points where the 

phase trajectories in the phase have a constant slope k. That 

is, if the trajectories cross the iso cline, they must cross at 

a slope equal to k. The latter graphical method is the method 

used in the course of this study. 
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( B) DESCRI BIN G -FUN CTION 

The describing -function method is based o n  the premise 

that if the input to a nonlinear element is sinusoidal , then 

the output, if periodic , can be represented as the fundam en-

tal component of a Fourier series . T he assumption made in 

the analysis is that the higher frequency components are neg­

ligible .  In most control systems this assumption  is justified 

because most of the com ponents used in systems have time 

constants which appear in the denominator of their transfe r  

functions . For this reason the system transfer functions 

are fundamentally low pass filters and , therefore , produce 

larger attenuation for the higher frequencies than for the 

fundamental frequency . Most servo ·components are low pass 

d evices. For this reason , the more complex the system , the 

greater the high frequency attenuation. D escribing-functions 

are , therefore ,  very applicable to higher ord er systems. 

Figure ( 3 } represents a block diagram of a typical non­

linear system . Represented are a d escribing -function , Gd , 

which is a function of the magnitude of the error signal and 

can be a function of the frequency of the error signal . The 

transfer function of the linear components of the syste m  G ,  

is a function of the :flrequency and independent of signal ampli­

tud e . 
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The describing-function is analogous to the transfer 

function of a linear system. By assuming various amplitudes 

of error signal, the coefficient of the fundamental compon--

ent of the output becomes Gd. 

Stated mathematically this is : 

= -
E / �  ( 7 )  

where 't is the phase shift between input and output and 

D1 is the magnitude ratio of output to input. 

The system under analysis is thus linearized to the ex-

tent that the open loop frequency response methods can be 

applied. Nyquist's stability criterion gives insight to the ab-

solute stability and an indication of the relative stability of 

the system. 

Consider the system given in Figure ( 3 } • The closed 

loop transfer function of which is : 

so GGd 
K G

1 
= = I + GGd ( 8 ) e .  

The characteristic equation of this transfer function is : 

1 + G Gd = 0 

The critical point will occur when : 

G Gd = -1 + jo ( 9 ) 
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For a large num ber of nonlinear syst e ms ,  Gd will be 

only a function of signal amplitude and not of the frequency. 

It is , their"efore, possible to inve stigate on a polar plot , 

critical f requencies and signal amplitudes where instability 

might re sult . 

Ordinarily, it is easier to plot -Gd and G-l separately 

on the polar plot and investigate possible intersections of the 

loci. 

Then, on rearranging , e quation ( 9 )  become s :  

1 
G ( 10 ) 

The rules for determination of Nyquist's  stability cri-

t erion are as follows : 

{ a) That portion of the describing-f11:nction locus , -Gd , 

that lies to the right of the G-1 locus when the locus is 

traversed in a direction of incr easing frequency represents 

a region of instability. 

{ b ) The point where the two loci intersect ( not a ne e-

e ssary con dition ) repre sents an equilibrium point. 

In addition to polar plots, the Bode diagrams and root 

locus plot s can be for med. The root locus , Bode, and polar 

plots , however , are re stricted to describing-functions which 

are independent of frequency. 
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"'When this is t rue , a gain factor is involved in the root 

locus diagram and a change in location of the roots on the 

root locus plot occurs. If  the describing -function is a func-

tion of frequency , a root locus plot would be required for 

every magnitude of gain and ,  hence would not be a productive 

method. 

In  Figure 4 ,  three examples are shown using the rule s 

stated . · Sketch ( a ) repre s ent s a system absolutely stable 

for any amplitude of input signal , the final operation ending 

in the dead zone of the relay. Sketch ( b )  indicates a system 

which is unstable for any amplitude of  signal input. Sketch 

( c J represents an equilibrium point with a steady stat e  oscil-

lation resulting. The magnitude of the oscillation is 

and the frequency of oscillation is w, For error signal 

amplitudes greater than I G
d.,

I , operation is confined to the 

stable region and hence error amplitude must decrease , fore-

lng operation t o  the intersection of the loci. For error sig-

nals smaller than I Gd \ , operation is confined to an un stable • 
region and ,  hence error signal amplitudes increase again to 

the intersection of the loci. 

C .  T H E  D ES CRIBING-FUNCTION FOR A RELAY 

The describing .-.function for the relay under con sideration 



_, 
( �  

(C) 

(B) 

IM�� ­

Ax.1 � 

REAL 
A�IS 

· FIGURE FIGURES ILLUSTRATING :D�RI BING-
4 FUNCTION TECHNI QUES FOR "DETERMI N­

I NG STABILI T Y •  

33 



is obtained as follows , with the aid of Figure ( 5 )  • The 

correction signal can be sum marized over a cycle as fol-

lows : 

Correction signal (ea) = 0 for o =  U)t � o( 

H " 11 +200 '' "- � wt � f3 

" 11 " 0 " (3 � wt � OC:+lT 

11 " 1t -200 " o(tTT := wl � �+Tr 

" 11 " = 0 11 @ tlT � wt � air 
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To determine the describing-function , the fundamental com-

ponents of the Fourier series must be found. This is : 

A1 = 2 Jf: cos w t  duit = 2;a .E:s w t &.it = z_;a [sin f -sin ol] 

Where : sin o( = L sin (3 = ...Q_ 
em \ em 

� 
B1 = 2·frf a sin W t d,wt = 2;a [-cos � + cos � 

o( _ f 2 2 
I 

-
' , ... e_m

_2 __
_ 

D
_2

...,.' 

Where : coso( = Jem -P ; cos � = V 
em 

By letting : R = .f?_ and T = 
em em 

TJ [il - R2��1 - T� Al = 2 ea [R - Bl = 2 ea 
1T 



The describing-function is then : 

Gd = _l_)JA1
2 

+ B1
2

\ / tan-l 
A1/B1 

e�V 

R - T 

In addition to the d escribing-function of the general relay 

which has been derived, t wo special cases were studied. 

1 .  Ideal relay · ( i.e. a relay with no dead zone (A) 

and no· hysteresis zone (h) • Physically this describes a 

relay which operates for any amount of applied signal and 

3 5  

hence has a "pull in" and "drop out" voltage of zero. The 

describing-function for this case is: 

Wh�n P = D = 0 ( 2 )  

2. The relay with dead zone (6 ) .  The hysteresis 

zone (h) is .zero and the relay operation represents a re-

lay having equal "pull in" and ttdrop out" voltages. The 

describing-function for this case is: 

When P = D ( 3 ) 
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V o  STUDY OF TH E RELAY CHARACTERIS TIC 
WI TH VARIABLE VISCOUS FRICTION 
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The study of the relay has been divided into three sec-

tions. These sections are concerned with the ideal relay, 

the relay with dead zone and the relay with hysteresis and 

dead zone. 

In the course of the study of each of these foregoing 

sections, the viscous friction was varied on the motor load 

com bination of the servo system .  Three parti cular values 

were chosen upon which to make recordings and for making 

basic analytical calculations . In this manner it was :possible 

to make comparisons and better exhibit the conclusions of 

the study. The three particular values of viscous friction 

chosen appear in Appendix II and are ;represented by motor-

load time constants of .10 7-, . 1552 and • 222. 

The compensation network used was a simple phase 

lead circuit whi ch appears in figure 14. Capacitan ces C1 and 

C2 were varied with R1 and R2 fixed in magnitude. All Brush 

oscillograph recordings, using compensation, show the values 

of these capacitances. 
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A .  THE BASIC SY STEM WI TH STEP INPUT OF 
POSI TION USING AN IDEAL R.ELAY 

The block diagram of the system is shown in Figure 

38 

6 .  The describing-function for an ideal relay i s  independ-

ent of the frequency of the error signal and re�itten from 

Chapter IV is : 

( 1 )  

where : 

em is the maximum value of the sinusoidal error 

signal . 

ea is the magnitude of the relay output voltage . 

The value of ea chosen was the rated voltage of the motor 

under consideration which was ± 20 0 volts. 

Equation ( 1 ) then becomes : 

( 2 )  

The polar plot of the function ( -Gd ) is shown in Figure 

7 for values of em . T he transfer function of the motor­

load ( G-1 ) is  also plotted for three cases of variable amounts 

of viscous damping .  The B)de plots o f  the open loop response 

of the motor and load ; derivation of the motor load transfer 

functions for the three cases of viscous friction , and the 
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selection of the parameters of the system appear in Appen-

dix I and I I .  

Interpretation o f  the polar locus of Figure 7 indicates 

that the system has absolute stability. The plot also shows 

the system should oscillate at infinite frequency with zero 

amplitude for any magnitude of error sign.al input. 

The phase-plane trajectories for the system unde r  con-

side ration were formed by the phase-plane methods de scribed 

in Chapter I I I. Rewriting equation ( 7 )  of Appendix I for 

the motor with load : 

ea K t N d2e K e K t N 2 d SL 
L 

+ feL + - = J el. d t2 Ra d t 
Ra 

where feL = fm N2 + fL and JeL = Jm N2 + J l. 

( 7 ) Appendix I .  

or : 
d&o 

+ B ­
dt 

vvhere the constants A and E are : 

A = B = 
fel. Ra + Ke Kt N 2 

Ra JeL 

The error signal when ref erring to Figure I is : 

( 1 )  



for a step input at t = o+ 

�d.e de, 
d - = - -r an 

dt dt ( 2 )  

Substitution of equation ( 2 )  into equation ( 1 )  introduces 

the error signal . The result is : 

by letting : 

then : 

+B aJ ( 3 ) 
dtJ 

de 
7t = e 

de = -
dt 

( 4 ) 

( 5 )  
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Introducing these quantities into equation ( 3 ) and rearrang-

ing yields : 

( 6 ) 

Dividing both sides of the equation by equation ( 4 )  gives 

the final for m : 

Aea - Be de 
= 

de ( 7 )  

The constant A is independent of the coefficient of vis cous 

friction while B is dependent on amount of friction present . 

Introducing this factor into ( 7 ) yields : 



de = 

de 

For the ideal relay with no dead zone: 

e a 

= 20 0 for e > 0 

= -200  for e ( 0 
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(8 } 

Equation ( 8 ) becomes the equation of a system of straight 

lines having zero slope. These lines are the isoclines for 

de 
the phase-plane plot when de° is set equal to a constant. 

The curves have the property that all trajectories, if they 

cross the curve, must cross at the slope assigned. 

Phase-plane trajectories for the three variable amounts 

of viscous damping appear in Figures 8, 9 and 10.  The initial 

error corresponds to 5 radians. These trajectories corres-

pond to the describing-function loci that appear in Figure 7. 

In all cases, a stable condition results, in that the oscilla-

tory motion of the servo comes to rest in approximately five 

relay cycles. The first overshoot is roughly 8 per cent, in-

di ca ting a dam ping ratio of about • 5 by linear standards. 

The relative stability of the system can be determined 

by the relative proximity of the describing-function locus 

(-Gd ) and the transfer function locus (G-1 ) .  The further 
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the two loci are displaced, the greater will be the stability. 

The peak value of the output to input ratio of the servo is 

called Mp. Expressed thus : 

(maximum ) 

The value of MP 
is determined by the shortest distance 

on the polar plot between any given input · on the describing-

-1 function locus to the transfer function locus, G • I f  great-

er stability with less oscillatory output is to be obtained, it 

is apparent that Mp will have to be increased . One apparent 

way to increase M
P 

is to reduce the runaway velocity . How-

ever, this decreases the speed of response and hence is not 

as desirable as using compensation. Linear theory suggests 

the use of lead networks for compensation. This matter is 

next considered. 

The phase-plane of the relay servo indicates that . per-

f ormance could be improved if the output torque of the motor 

could be reversed before the error becomes zero.  That is, 

for some given input driving function, some combination of 

error and error rate could be chosen as the point where the 

motor excitation reversal could take place. 

Expressed thus : Ke + Be � 0 

or 

Be = C - Ke 

• _ C K e - - - - e 
B B 

( 9 )  

( 10 ) 
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A simple lead network ahead .of the relay performs such a 

task by causing the output to lead the input voltage to the 

net work. Equa ti.ans ( 9 )  and ( 10 )  describe the new boundar-

ies in the phase-plane as straight lines having a . negative 

slope which pass through the origin. A simple linear lead net-

work is shown in Figure 14 ? . The transfer function of which 

is: 

= t,(. • >- S+l 
"'.> S+l 

where 

)-- = RC ( 11 ) 

The effect of the addition of compensation is to re­

locate the G-1 locus on the polar plot. The additional lead 

angle gain increases the distance between the loci and hence 

increases the relative stability. One such plot is made of 

)" = .f55Z and is shown in Figure n:._ 

The phase-plane plot for the same value of ')- = . 1552 

is shown in Figure 12 and shows how the torque reversal 

region has been shifted . 

In general, a time constant in the numerator of a 

transfer function shifts . the torque reversal region clock-

wise (i. e .  a phase lag condition) . A time constant in the 
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denominator of the transfer function produces a counter 

clockwise rotation to the torque reversal region (i. e. a 

phase lead condition ) . . The location of the torque · reversal 

region for the phase lead network is approximated by con-

sidering a power series expansion of the phase lead t rans-

fer function. The transfer function of the phase lead net-

work is : 

by neglecting higher power terms in S 

Again neglecting higher power terms in S this becomes : 

where E
0 

= input to relay or 
output of" phase lead 
network. 

Ei = error signal or  input 
to phase lead network. 

The condition for torque reversal occurs when E = -o . 
0 

T he equation of t he torque division line results which is a 

straight line passing through the origin. 
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Figure 13 indicates the analog used to simulate the 

contactor servo with variable danping . The compensating 

network is a linear lead network which is depicted in Figure 

14. By experimenting with values of c1 and c
2

, various 

lead angles are introduced into the circuit. c1 and c
2 

have 

no effect on the attentuation factor so that through the 

course of the experimentation the gain remained constant. 

A Brush recorder was used in recording the response of 

the . system. Figure 15 illustrates several responses with the 

relay circuit, having no dead zone, no hysteresis or compen­

sating network and also shows the results of compensation 

with a lead network. To compare the relay servo operation 

with a linear servo ( no relay ) , Figure 15 also shows the same 

motor-load and viscous frictional constant. The gain of the 

system is 200 to correspond with the relay servo. 

The experimental results fo.r the relay servo with ideal · 

relay do not verify the analytical results completely. Anal­

ytically we expect oscillation at infinite frequency and zero 

amplitude without compensation but the simulation of the sys­

tem results in a limit cycle or continuous oscillation. 

The diode relay simulation is not a perfect simulation. 

The largest source of error originating in generating a hys­

teresis loop originates in the loop itself. This loop is used 
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as a triggering circuit for the c;liodes. The loop is somewhat 

frequency sensitive which affects the initial transient. The 

steady state oscillation ( limit cycle ) ls the result of ragged 

diode cut-off which appears to the relay servo as a time 

lag ( i. e. different "pull in and "'drop out" voltages) • -when 

the other relay characteristics are simulated ,  those having 

dead zone and contact hysteresis , this problem of time lag 

can be accounted for by adjustment of circuit parameters 

and is not detrimental to the simulation. 

Figure 16 · shows the relationship between the error sig­

nal and the output voltage of the relay. T he phase-plane 

photographs indicate the limit cycles of the relay servo with 

no external vis cous friction . Note the reduced amplitude of 

the error and error rate with phase · lead com pensation. This 

figure is interesting in that it verifies that the error. sig-

nal is a sinusoidal voltage. The describing-function for the 

relay was derived on the assumption that the input was sin­

usoidal in nature and the figure substantiates this fact . 
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B .  THE BASIC S YS T EM WITH STEP INPUT OF 

POSITION USING A RELAY WITH rEAD ZONE 
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"When a relay with dead zone is introduced into the sysc::, 

tern , the relationship defining the error signal to relay out­

put is : 

e = 200  for e.?.a a 

ea 
= -20 0  for e�P 

ea = 0 for a)e') b 

-when a = b a sym metri cally operating relay is produced and 

is the type considered here. 

In general , a dead zone has a stabilizing affect on the 

transient response. The disadvantage , however , is the loss 

in stati c ac curacy. The l�rger the dead zone , the greater 

will be the chances of positional static error. O ne considerc=e 

ation which must be taken into account when choosing a relay 

for a system , is the m agnitude of the dead zone , as this will 

determine the resulting steady state error. Figure 2b pic­

tures the relay operation depicted in this sectio n .  

The des cribing-function for the relay with dead zone is 

determined with a sinusoidal input . For sym metri cal oper­

tion the des cribing-function derived in Chapter IV is : 
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( 1 )  

where : fl. is  the dead zone width . 

em is · the maximum value of the sinusoidal error 

signal. 

As before , the function Gd is independent of the fre-

quency but is  a function of the maximum value of the error 

signal. The des cribing-function locus for Gd is shown in 

Table 1 for param eters of dead zone width ( 6 ) • Included 

also are values of the describing-fun ction for an ideal relay. 

This data appears graphically in Figure 17 . It is noticed 

that the only perceptible change in values of Gd , when com-

pared to the ideal relay ,  occurs for small input signal , which 

are of about the same amplitude a s  the dead zone width. 

This is reasonable, for if large sinusoidal errors are involved 

and the dead zone width is ·  small , the relay is operating nearly 

a s  an ideal relay. 

The dead zone a ffect then tends to crowd the des crib-

ing-function locus into the origin for the s mall magnitude of 

error signal. This would indicate an in crease in the relative 

stability of the system. In general , it will suffice to say 
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44 l 0 
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1 1 1 . l 
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AcnotJ 
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1f eM 
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5 50.93 50,82 so.7 49. 9 44.l  = 4ea..'{ 1 - (.A.f ir eM 2e,,. 

7 3,. 38 3G:, .3 3b . 2" 3" 3q..2 

1 0  25 .4'-, 25 .4 2 5 . 18 25 .35  2.4 .1 

20 1 2. 13 1 2. 13 1 2 .10 I 2. lo 7 1 2 . (o2. 

TABLE 1 .  IESCR.I BI NG-FUNCTION VALUES FOR IIEAL REL Y AND A 
RELAY WITH .IEAD ZONE .  
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that increasing the dead zone will make a relay system stable, 

provided some damping is present. The term, stable, m ean­

ing that no lim it cycle in the output will result . 

From a - dynamic point of vi�w , the phase portrait of 

the system is more enlightening than the polar locus plot. 

A phase portrait of the system is shown· in Figure 18 . The 

drive m oto r , when operating in the dead zone , has no applied 

voltage to the armature and , therefore , loses its counter 

emf. The counter emf is a viscous dam ping term, so unless 

some additional damping is present , a continuous oscillation 

in the output will result . T he trajectories would then be 

horizontal lines in the dead zone. T he greater the negative 

slope of the trajectories in the dead zone, the faster the 

oscillations in the output disappear. Some damping is then 

desirable to produce stability . 

Several degrees of output damping and dead zone widths 

were studied on the analog computer. T hese studies appear 

in F igures 19 through 25 . Figure 19 represents t he response 

of a system with substantial output damping and a 5 volt step 

input signal with a dead zone width of 1 volt . Phase lead com-

pensation can be noted to have desirable effects when various 

lead networks are introduced . Figures 20 and 21 represent 

the same dead z one width and same step input signal as in 
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Figure 19 but with two lesser degrees of viscous damping. 

Note that the resulting steady state response output is 

within ± • 5 volts of the actual desired output, which is con­

sistent with the limits established on the dead zone of the 

relay . ·� As the viscous damping decreases, the phase lead com­

pensation becomes less effective in improving system perform-

ance. 

Figures 22, 23 and 24 compare an uncompensated and a 

compensated relay servo when the dead zone width is varied. 

Each figure also represents a different degree of damping. 

The tendency toward oscillation is apparent and is directly 

related to decreasing dead zone width and decreased output 

damping. Figure 25 is the phase...;plane portraits for three 

values of the output damping of a relay servo with the same 

dead zone width . The increasing number of oscillations is 

apparent as the damping is decreased. 
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In figure 2C a practical relay is illustrated . The relay 

will initiate either a positive or negative torque correction de-

pending on the sign of the error signal. The hysteresis zone 

indicates a range where a greater erro r ·  signal is necessary to 

produce a correction torque than to cease restoring action . 

I n  practice, a practical limit must be specified for the 

relay, as the over-all system performance is directly concerned 

with the relay characteristic. Performance requirements must 

be met by specification of the dead zone and the speed of res-

ponse o f  the system which is determined by specifying the run-

a way velocity. 

The describing-funct�on for the relay under consideration 

here is from Chapter IV. 

2 ea 
� Gd = 2 ( 1  - S T) + 2 ,I (1 n em ' 

s - T 
l 'fi - s 2'+1} 1 - T� 

The phase shift is a function of the error signal amplitude, 

the dead zone width and the hysteresis zone. The phase re-

lation and describing-function magnitude have been plotted in 
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Figure 26 , with dead zone width of 1 volt and hysteresis 

zone width ± . 2  volts. The describing function , as in the 

two previously considered cases , is independent of the fre­

quen cy. 

"When the hysteresis zone is · zero , the phase angle be­

comes zero , which is the condition des cribed in Chapter V ,  

Se ction B .  When the input be co m es less than P there is no 

relay operation, hen ce Gd = O .  In general , the hysteresis 

action is detrimental to the opera�ion of the relay servo. 

It is evident from Figure 5 that the phase shift is de­

pendent on the "pull intt and " drop out" voltages of the relay. 

T hat is , the fundamental component of this Fourier series 

will undergo a phase shift in relation to the error signal as 

the corre ction pulse shifts . 

The phase-plane port·rait of a damped relay servo , with 

a motor-load time constant equal to . 10 7 , appears in Figure 

27. It is apparent that o s cillations in the output result and 

a limit cycle is reached. Figures 28 through 30 show the ef­

fe ct of variable hysteresis zone width { h }  and variable dead 

zone {6) . The stati c positional error is , however , noticeable 

as the dead zone width is increased . The three figures re·p-

resent the three conditions of damping presented throughout 
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the thesis and it is apparent that damping is necessary in 

relay servos . Figure 31 shows the results of linear lead 
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compensation of the systems in Figures 28 through 3 0  1 For 

comparison of data, the following chart is included. 

Figure 31 Corresponding for identical damping, 
dead zone and hysteresis zone. 

Column 1 Figure _ 28 Column A 

Column 2 Figure 29 Column F 

Column 3 Figure 3 0  Column D 

To make the results -more evident , the responses of 

Figure 31 Column ( 2 ) , for a motor-load time constant . 1552, 

have been reproduced with the results of Figure 29, Column 

F. These results appear in Figure 32. 
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The role of the analog computer in the analysis and syn­

thesis of nonlinear system s cannot be overemphasized. -when 

parameter variation s  are considered from an engineering point 

of view, the study of nonlinear system� by analytical methods 

become s so extensive and_ tedious as to be almost insurmount­

able. A major portion of this problem was solved by using the 

analog computer to simulate results, which otherwise could not 

have been done economically and efficiently. The �pproach for 

synthe sis of relay servos found most desirable was : 

1. Use describing functions to determine the relative sta-

bility of the basic system . The frequency re sponse approach 

here is desirable to determine the relative stability and indicate 

if the use of compensation networks is necessary. 

2 o  Predict the dynamic transient re sponse by phase plane 

me thods. This is  limited to second order systems, however, it 

is sometimes possible to approximate higher order systems by 

second order systems . The maximum overshoot, number of 

transient oscillations and maximum velocity are readily obtained. 

3. Perform actual test runs, either on actual equipment 

or by computer simulation for improving system performance 
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and studying different form s  of driving function s. Com pen-

sation methods are best studied by using the computer or 

actual test runs. 

A .  VI SCOUS FRICTI O N  

Greater amounts of viscous damping in relay servos can 

be tolerated than in linear systems. Viscous friction was 

found to be very desirable as a stabilizing factor with very 

little sacrifice of performance for a compensated system . 

The reason is that the runaway velocity usually is  never reached 

unles s  large errors occur and, therefore, the response time 

is not significantly affected. For the motor in question in 

this thesis, it was found that before velocity saturation was 

reached, the viscous friction on the output shaft had to be in­

creased 100 per cent over the rated viscous friction parameter 

of 3 lb. ft. /rad/ sec. with a 5 volt step input . 

It was found that 120 per cent more viscous friction could 

be tolerated in the system studied when compared to an equiv­

alent system operating as a linear servo. The rise time for 

instance, in the case of the relay servo, was on an average 

of 25 per cent better than the linear servo. The overshoot, 

however, of the relay system was, in general, about 10 per cent 

larger without compensation. -when the gain of the linear system 
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( without compensation ) was increased to give the same rise 

time as the relay system , the overshoot of the linear system 

was 5 per cent larger than the relay servo. 

The settling time of the relay servo was , in general, 

longer than that of the linear system even with phase lead 

compensation. This is apparent because· of the large correc­

tive torque used in the relay system and the tendency toward 

oscillation is invited. However , the settling tim e  can be im­

proved considerably by phase lead compensation. 

B. RELAY CHAR.ACTER.I STI C 

The relay used in the relay servo is the predominate ele­

ment in the system , affecting the position error , settling 

time and stability. 

1. I DEAL RELAY 

The ideal relay , with no dead zone , theoretically pro­

duces oscillation at zero amplitude and infinite frequency · with 

viscous friction. Alt hough this was not consistent with ex­

perimental results , the theoretical result seems to be consis-

tent with the dynamics of the physical system. The settling 

time of the oscillation is determined by the degree of damping. 
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2. RELAY WITH D EAD ZONE 

The dead zone width is mo st effective in determining 

whether the system o scillates in a limit cycle or reduces 

to a steady state error . Only a small dead zone, with a 

reasonable amount of viscous damping is sufficient to remove 

the tendency towa�d. con:ti!1;uous o scillation. The larger the 

dead zone, the greater the stability . However, the po s sibil-

ity of steady state error in output po sition increase s. 

error can be any value within the dead zone range. 

3 .  RELAY WITH IEAD ZONE AND HYSTERESIS 

This 

The hysteresi s zone has a detrimental affect on any re-

lay servo. The delay in the 11drop out" point introduces a 

lag in the system which produces les s  stability. The larger 

the hysteresis zone, the less  stable the relay servo becomes. 

Experimentally, it was found that a ratio of "pull in" to "drop 

out" voltage greater than 2 produces unstable operation so that 

it is impos sible to compensate satisfactorily by phase lead net-

works. 

C. LI NEAR. PHASE LEAD COMP-ENSATI ON -------------------------------------------------------
There i s  no doubt that phase lead compensation is  desir-

able in the operation of a relay servo. I mprovement in stabil-

ity and settling time can be accomplished and the rise time in 



general is not affected. The phase lead network used to 

satisfactorily compensate a system for one magnitude of 

input signal may not be the most desirable network when 

the input signal is changed. No correlation between the 
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signal amplitude and phase lead compensation was observed. 

D. FU TURE CO NSI IERATI ONS 

1. A practical design technique for higher order non-

linear systems is not at all w�ll defined .. For instance, 

reasonable approximations for the study of the higher order 

systems in the phase-plane instead of phase space do not 

exist. There are no analytical or empirical rules for deter-

mining the limits of good approximations. 

2. Further analytical work for the study in technique 

of how a change in input signal changes the response of a 

nonlinear system should be studied. T his area is large and 

extensive and provides a stimulus for a considerable amount 

of further research. Figure 32 illustrates, for example, 

how a change in input affects the response of a relay sys-

tern .  I n  the figure, three responses are shown with and 

without compensation. The inputs in each case are steps of 

magnitudes 2, 5 and 10. A suitable response by compensation 

was secured for the · 10 volt step and the same compensation 
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network was used as the compensation circuit for the other 

two inputs. These results are sum marized below : 

U NCOMP.ENSAT ED COMPEN SATED 
I I 

Magnitude Steady Steady 
of step Over- Settling State Over- Settling State 

input shoot tim e  Error shoot Time ·Error 

2 5 0% 3 1/2 10% 8 0% 2 1/2 8% 
cycles cvcles 

5 25 %  3 1/2 10% 20 % 2 1/2 2% 
cycles cycles 

13% 
10 25 %  4 5% under- 2 0% 

cycles shoot cycles 
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FIGURE 33 . ANALOG COMPUTER SH OWI NG TH E 
RESULT O F  [RIVI N G-FUNCTI O N  ON A RELAY SERVO 
WI T H  AND WI T HOUT COMPENSt\.TION . 



APP ENDIX I 

TH E T RANSF.ER EU N CT I ON O F  SERVO-MO T O R  

AND LOAD 

The schematic diagram of a de  servo-motor and load 

is shown in Fig. A-1. The symbols used for this deriv-

ation are as fallows : 

f ·  m 

N 

i a 

Motor shaft position in radians. 

Load shaft position in radians . 

Polar moment of inertia of load in slug-ft. 2 

Viscous friction· of load in lb . -ft . / rad. / sec . 

Polar moment of inertia of motor in slug-ft2 

Viscous friction of motor in lb. =>ft. /rad . /sec . 

Motor torque constant lb . """ft. /amp. · 

Counter emf of � motor in · volts/ rad . / sec . 

Resistance of m otor armature in ohms. 

Ratio of gear reduction between motor and 
load shafts. 

Applied emf to armature circuit. 

Resulting armature current with ea applied . 

8 9  
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E X CI TAT I O N . 
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With negligible armature inductance and constant field 

excitation, the equatio n  relating the applied emf and the 

m otor armature circuit is : 

(1 )  

this can be related to output shaft position as : 

( 2 ) 

Solving ( 2 ) in terms of ia yields : 

( 3 ) 

The differential equatio n  relating the torque-equilibrium 

conditions for the electro-mechanical system is : 

d2 em + fm d8m 
dt2 dt 

( 4 )  

91 

By considering the relationship between output and load shift 

position, equation ( 4 }  becomes: 

2 
iaKtN = ( N 2J + J L ) d 8l. + ( N 2f m + fl) m 

dt2 

Let: JeL = N2
J m + J L and feL = N2fm + fL 

Then : iaKtN = J el. d2Si. + f el. d81. 
dt2 dt 

( 5 }  

( 6 )  



92 

By introducing equation ( 3) into equation ( 6) t he forcing 

function becomes : 

KtN \ 
KeKtN 2 

+ fel + . R. 
a ) 

( 7 )  

Solving by Laplace transformation methods and simplifying, 

establishes the output-input relation : 

Where : ( 8 )  

Simplification can be accomplished by the following substitu-

tions which yield the transfer function of the motor and 

load with a viscous damp�d load and neglrgible armature in -

ductance. 

KtN Ra Jel 
K1 Rafel. + N2KeKt 

and 
Rafel +  N2K eKt 

then : 

� �S ) = K1 
ea S <>'1 S + 1) ( 9 ) 

'Where K1 is the gain constant and '>- 1 is the time constant 

of the system 
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Equation ( 8 )  , when rewritten in terms of the viscous 

friction is : 

( 10 ) 

T wo special cases of this differential equation are: 

{ 11 ) 

1/K eN 

s + � 

( 12 ) 
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A PPENDIX II  

SELECTI O N  OF MOTOR AND LOAD 

FOR T H E  BASI C SYSTEM 

As a basic system, a General Ele ctric servo-motor 

type BBY29YA was sele cted which has the following para-

meters : 

Comm ercial rating : 1 horse power , 200 volts. 

� -
fm -

Ra -

Kt -

K e -

Polar moment of inertia of moto r  - • 0388 
slug-ft. 2 

Viscous friction of motor - . 02 lb. ft. /rad/se c. 

Armature resistance - 3 ohms. 

Motor torque constant 0 . 31 lb . ft. /amp. 

Counte r  emf constant of motor - 0. 45 volt/rad/se c. 

Constants sele cted for the load were : 

N Gear reduction ratio - 10 

Viscous friction of load - 3 lb . ft. /rad. /s e c. 

Polar m oment of inertia of load - • 645 slug-ft2. 
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The typical values when used to evaluate the motor 

load constants of Appendix I with viscous friction are : 

Kt N 
= 0. 107 rad. /sec. 

where 
Ra J el. 0. 107 · sec. = Ra fel. + 

NZ Ke Kt 
= 

and 

J el N2 
Jm + J L = 1 .  033 slug - ft . 2 

f el 
= N2 fm + fL = 5 lb. ft. /rad/sec. 

whence the transfer function of the motor and load with 

viscous friction is: 

K l 0. 107 
= S ( . 10 75+1 ) 

( 13 )  

The transfer function of the motor and load with no viscous 

friction in load when computed from equation 12 of the Appen--

dix I is: 

- Kt 
91.(S) = Fl (Ra tro 

+ Ke Kt ) = K 2 = . 1552 

ea 

[N2 

s C J,  s+ 1 )  S [- 15525+1] 
s Jel Ra s

+ j ( Ra f m + Ke K t 
( 14 ) 

where : 

K
2 

= >- 2 = . 1552 
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The transfer function of the motor and load with the viscous 

friction of both motor and load equal to zero is t 

e .. t�) = 1/Ke N = K 3 = . 222 
ea Jel. Ra s + � 

S ( r3 S+l S ( .  222 B+I) s 
N2K eKt 

where K 3 = l" 3 = • 222 ( 15 )  
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