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Abstract: Lajos Pósa (pronounced Posha) is one of the most prominent mathematics educators in Hungary.
The authors introduce readers to the Pósa method for teaching mathematics, an approach consistent with
exploratory methods promoted in the United States. The authors present two scenarios (with extensions)
that were posed during the workshop, both with different strategies and goals.
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1 Introduction

In the summer of 2018, I had the most incredible opportunity to study abroad as a student in the
Budapest Semesters in Mathematics Education (BSME) program. I am a secondary mathematics
education major at Indiana University of Pennsylvania and was encouraged to apply for this
program during my junior year. Because I hope to create future classroom experiences which allow
students to learn and discover mathematics in interesting and enjoyable ways, I was excited about
this opportunity.

1.1 What is Budapest Semesters in Mathematics Education?

Budapest Semesters in Mathematics Education (BSME) is a study abroad program for undergraduate
students and recent graduates who desire to learn more about teaching mathematics (for more
information, see page 63). Sixteen applicants were chosen from all over the United States and
Canada to attend this 6-week seminar. We spent the first five weeks attending classes in the center
of Budapest, which included a crash course in Hungarian, technology in secondary math education,
games and manipulatives, and problem-solving using the Pósa method. In the final week of the
program, we moved from a dormitory in the city to a home in the mountains of Mátrafüred to join
approximately 100 Hungarian children at a summer camp for gifted students from grades 5–9. At
the camp, we observed and participated in lessons and activities designed to engage gifted middle
and high school mathematicians as we observed teaching methods inspired by Lajos Pósa.

1.2 Who is Lajos Pósa?

Lajos Pósa (pronounced Posha) is one of the most prominent mathematics educators in Hungary.
His methods were originally developed for gifted students to discover concepts through individual
exploration, but were soon used successfully with many different levels of students. One of the
main aspects of his method is to have students experience how professional mathematicians engage
with mathematics. Figure 1 shows the 2018 BSME scholars with Lajos Pósa (center). I am the third
scholar from the right in the back row.
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Fig. 1: Lajos Pósa with the 2018 BSME scholars.

The purpose of this paper is to introduce readers to the Pósa method for teaching mathematics.
Pósa’s vision for how and what mathematics should be taught is valuable for teachers in the
United States since it encourages the exploratory methods that support deep student learning
consistent with recommendations set forth by the Common Core (2010). In this paper, we present
two scenarios posed during the workshop that use a strategy that requires students to follow a
sequence of questions to find a solution.

2 Scenario #1: Regions with pie cutting

The first scenario is posed to students as:

With one straight cut you can slice a pie into two pieces. How many pieces of pie can be
created from three cuts? (a cut must be a chord of the circle)

The structure of Pósa’s strategy is to engage students in a progression of questions that build upon
students’ previous knowledge to enable them to develop a general solution.

The most common question from students at the start of this problem, and a logical one after
some thought, is: “Do all the pieces have to be the same shape?” If the student does not pose
this question, then the teacher can step in to offer it. The goal of the teacher’s line of questioning
is to create an internal monologue in the student that mimics the teacher. Teachers encourage
this gradual trade-off to student questioning by asking, “What do you think I will ask you next?”
This anticipation of future questions becomes embedded in the discovery process, with students
ultimately developing their own sequence of questions without the aid of the teacher. Many times,
students start out with a solution similar to that shown in Figure 2, with all lines intersecting at the
center of the circle.
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Fig. 2: A common student solution.

Although the pie-cutting scenario has one specific answer, it is meant to be the springboard for a
sequence of follow-up questions. For example, once students have offered an initial answer, the
teacher may ask, “Is this the greatest number of pieces that can be created from three cuts? How do
you know?” Students then must develop a logical defense for their claim. The advantage of posing
such a problem to a class of students is that there will likely be one or more students who discover
that a pie can be cut into seven pieces. If students do not reach this conclusion on their own, offer
gentle hints like “Try to see if you can cut it so that there is one more piece.” This same question can
be offered even after they have shown a pie can be cut into seven pieces. Students must then prove
that no more than seven pieces can be created, which leads into the next question of how many
pieces can be shown with four cuts.

Explanation: With three straight cuts through the center of the circle, a pie can be cut into six
equal slices. Since the slices do not necessarily need to be equal, the pie can actually be cut into
more. One cut divides the pie into two regions. The second cut makes at most two additional
regions, splitting the pie into at most four regions. The third cut divides the pie into at most three
more regions. Therefore, the greatest number of regions made by three cuts is 2 + 2 + 3 = 7 regions.
A line can divide a plane into at most two half-planes. To create the maximum number of regions
with each line in the circle, each line must divide as many regions as possible into half-planes. This
is achieved by drawing each new line to intersect all previously drawn lines. The result is a series
of cuts similar to those shown in Figure 3.

Fig. 3: One possible diagram of a pie cut into seven pieces.

Once students understand the first scenario, they are then asked, “How many regions can be created
from four cuts, five cuts, six cuts?” These scenarios are significantly more difficult to draw and
encourage different problem-solving strategies including the use of non-pictorial representations. If
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students are not already doing so, the teacher may suggest the use of a table consisting of number
of cuts and corresponding numbers of regions. Once the table is complete, it is relatively easy for
students to recognize that the pieces of pie are increasing in a pattern as suggested in Figure 4.

Fig. 4: Maximum number of regions created by n cuts.

Ask students to continue this table a few more rows and ask them about what patterns they see.
Teachers may wish to encourage students to create an equation which describes the maximum
number of regions created as a function of the number of possible cuts. If students have not had
experience before with recursive sequences, this would be an optimal time to introduce them to
terminology and notation. One form of this recursive sequence is:

pn = pn−1 + n, with pn the maximum number of regions made with n cuts (with p0 = 1).

Ask students to relate this equation to the context of the original problem. One possible response is,
“To find the number of regions that can be made from n cuts, add together the number of regions
from the previous cut (pn−1) and the number of cuts to be made, n.” Therefore six cuts can make:

p6 = p6−1 + 6 = p5 + 6 = 16 + 5 = 22 regions.

Fig. 5: One possible diagram of a pie with six cuts (22 regions).

In order to differentiate for more advanced or more curious students, the teacher can ask “How
many regions can be created from thirty cuts?” Students quickly realize that a recursive sequence
isn’t an efficient tool to answer such a question. The question prompts them to search for an explicit
equation for the relationship (pn =

(
1
2

) (
n2 + n+ 2

)
which yields 466 pieces for 30 cuts). The proof
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of this equation lies in identifying and using series, which are not taught until higher-level calculus
courses, however a teacher might want to challenge certain students to try to prove it. The proof
can be found at: http://mathworld.wolfram.com/CircleDivisionbyLines.html

A key component of the Pósa method is not for students to prove concepts, but for students
to have an experience before formality; time to develop personal connections with the mathematics
before defining them in a more mathematical context. The value of this activity is that it encourages
students to use their own problem-solving abilities to pose questions and answer them. Modeling
problem solving through a sequence of questions, students are led gradually from concrete to
abstract reasoning.

3 Scenario #2: Regions with overlapping circles

A second scenario and a challenging extension question for students is: “Can this formula, or an
adaptation of it, be used to describe the number of regions created from overlapping circles rather
than cuts?” An identical questioning process to that presented with linear cuts is presented. For
example, how many regions are formed from three intersecting circles?

Fig. 6: A diagram of regions formed from three overlapping circles.

Explanation: Consider the table in Figure 7 which displays the relationship between the number
of circles and the maximum number of regions created including the space outside of the circles.
Similar to our last scenario, the maximum number of regions is created by forcing each new circle
to intersect all previous circles at two points (instead of one, which is the maximum for a line
intersecting another line).

Ask students to compare this table to that of the first scenario. How is this table the same as
the table in Figure 4? How is this table different from the table in the original question? Students
might notice that both tables start out the same on the first three rows, but then the values begin to
differ. They might also notice that the values for the change in the number of regions from the last
cut of the pie increase by one, where that same value with the circles increases by two (after the first
three rows).

Ask students to speculate why this might be. Students may suggest that it is because a line
can only intersect another line once, yet a circle intersects another circle at most two times.
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Fig. 7: Maximum number of regions created by n overlapping circles.

It is also possible to determine recursive and explicit functions for this scenario. The recursive
equation is rn = rn−1 + 2n (with r0 = 1) and the explicit equation is rn = n(n − 1) + 2, where n
represents the number of circles and rn represents the maximum number of regions formed by these
circles. The explicit formula can be used to determine the maximum number of regions created by
n overlapping circles. Again, a proof of this can be used to challenge gifted or curious students and
be found at: http://www.90thkilmacudscouts.com/maths/circles_lines_soln.html

Have students compare the original recursive and explicit equations for both scenarios as in
Figure 8. How are they different? How are they the same? Speculate as to why you think these
differences/similarities happen.

Fig. 8: Recursive and explicit equations for each scenario.

Both scenarios use a sequence of questions to help students solve problems. Pósa’s question posing
method encourages students to explore a problem using a progression of questions posed by the
teacher. Students use previous knowledge to determine a general solution.

4 Conclusion

Pósa’s strategy of using a sequence of questions is useful for many problem-solving situations and
is designed as a typical strategy that mathematicians might use in their careers. Although I only
presented two scenarios in this paper, this strategy can be used with many other scenarios. There
are also other strategies that we learned at BSME which I hope to present in the future.

Experiencing Pósa’s methods in the BSME program for engaging students in mathematical learning
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and helping them to feel the excitement of discovery was an invaluable experience for me. I am
very fortunate to have been able to study these strategies, especially with Pósa himself. I believe
this experience will make me a better teacher, and I am excited to try the strategies soon in my own
classroom as well as find new, creative methods that present concepts and structure activities which
make discovery natural and memorable.
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More information about the BSME Program

The Budapest Semesters in Mathematics Education (BSME) program takes place in Budapest,
Hungary, and is available to students for the Fall, Spring, and Summer semesters. In this
program, students earn college credits through a variety of classes that focus on teaching
mathematics “the Hungarian way.” The deadline of the application for the Fall semester is
by June 1 of the same calendar year, the Spring semester deadline is by November 1 of the
previous calendar year, and the Summer semester deadline is by April 1 of the same calendar
year.

The cost of tuition for the Fall 2019/Spring 2020 is $9,995, and the Summer 2020
semester is $4,995. The tuition does not include the costs associated with living in Budapest
during the program or transportation to Hungary. Although BSME does not offer financial
aid or scholarships, it is often possible for students to receive some or all of the aid
granted through their home institution. More information can be found on their website,
https://bsmeducation.com/.
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