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Columbus, Ohio, April, 1882.




Imaginary Functions.
Floyd Davis.




To
Professor Robert White McFarland,
an
Able Instructor,
and a man who has instilled

the Germ of Investigation in the author’s mind,
These few pages are inscribed,
with feelings
of
Thorough Respect and Esteem.
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Introduction

The imaginary expression which occurs in common
Algebra, and in all the higher departments of
mathematical science, has been one of the most
perplexing problems which the human mind has
encountered in any age. It was studied by

the early mathematicians and became a field

of speculation, but developed no marked results,
for it was generally considered algebraically,

and in that interpretation is a symbol of

an impossible operation. But many of the

problems arising from algebraic-geometrical analysis
involving imaginaries were of such importance

to mathematical and physical science that

great attempts were made to establish their
solution. It was known that the imaginary

occurred in mathematical functions having

real values, and so was supposed to have

some real meaning.
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Thus in DeMoivre’s, Euler's and many other

theorems, the relations established involving the
imaginary lie at the formation of much
mathematical science: and the value of these
theorems was known to be actually real, though
the imaginary could not be interpreted.

This great problem first had the germ

of its solution with Dr.Walllis, of Oxford,

and afterwards was solved by Messrs. Buee,
Argand, Mourey, Gauss, and others, but the
broadest interpretation remained to be
discovered by Sir William Rowan Hamilton.
Mourey laid the foundation on which Hamilton
erected the Modern Theory of Quaternions.
Although the square root of a negative

quantity is a symbol of an impossible
arithmetical operation, yet it is of very

great importance in mathematical conventions.
By the rule of signs, we learn that the
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square of a negative is positive, and hence
we have no means of determining the sign
of the square root of such an expression.
The square root of a? is either +a or -a, but
what is the square root of -a*?
The arithmetical result cannot be determined,
and so we only indicate the operation, as,

+ a/—1

By means of the above conventions and such

expressions as a + p+/—1, we may develop other
expressions, subject to the rules of algebraic

and quaternion transformation.

But these imaginary expressions are not
quantities, only symbols, which have the germ

of their geometrical solution in the early

part of the present century. The imaginary

had been previously considered an undetermined
symbol, appearing in problems that could

not be interpreted. And there was no attempt
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made to give any geometrical interpretation
to these symboils till Dr.Wallis published

his “Treatise of Algebra,” in 1685. Therein he
proposed to establish the meaning of these
functions by measuring them on line, out

of which all real quantities are measured.

But from the time of Wallis till

the beginning of the present century, there
remained a comparative quiescence in this
field of investigation.

In the year 1805 Monsieur Buée prepared

an article entitled: “Memoire sur les
Quantités Imaginaires,” maintaining that v/—1
IS a symbol of perpendicularity to a given
direction line to which it is referred.

But however, he excluded all interpretations

of it as being produced by processes of multiplication,

and consequently his method has
never developed any system like that produced
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11.

()
by the product of vector lines.

Almost in connection with Buée’s, another

pamphlet was written by Monsieur Argand entitled:

“Essai sur une Maniere de Representer
les Quantités Imaginaires dans les Constructions
Géometriques” but was not published till

1806. This theory did not meet with ready
recognition until 1814, when Argand added
more convincing proof to establish the
principles which he had previously laid

down.

Argand was, no doubt, the first to interpret

the imaginary by referring it to the multiplication
of direction lines.

This same theory was again independently
reproduced by Mr.Warren, of England, in 1828;
and shortly afterwards by Monsieur Mourey, in
a work entitled: “La vraie Théorie des Quantitiés
Négatives et des Quantités désigné imaginaires.”
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They both showed that V-1 is a vector

perpendicular to the initial direction vector line.

But Servois was the first, no doubt, who

speculated in fields of research in which

the slightest early anticipation of Quaternions

Is at present found. He endeavored to

represent any point in space by an expression

similar to & + B v—1, thus generalizing the principles

of geometry of two dimensions.

Through this induction, he reasoned by analogy

and produced the expression
p'Cos.a+p”’cos.f+p'cos.y

to represent a point in space, in which «, B,

and y are the inclinations of the three axes.

He could not assign true values to p’, p”, and p’”,

and this was his field of inquiry. It is

now known they are the i, j, k of Quaternions.

By this interpretation every idea of
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Impossibility vanishes from the mind, and

the imaginary becomes as clear as the subject
of ordinary Symbolic Algebra. This theory was
developed into a true system, and many
relations of lines in space were deciphered,
thus forming a forerunner to the Quaternion
Analysis, which was soon destined to follow.
Through this interpretation of imaginaries the
Quaternions have been largely developed.

At the outset, Hamilton sought to establish

a system, in which he could interpret the
Imaginary by excluding all angular functions.
By this means he established a new system

of mathematics combining simplicity, elegance
and power. This new and comprehensive view
of mathematical science has given the present
century the greatest mathematical impetus,
the broad fields of science have ever received.
His discovery was the geometrical interpretation
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of vV—1, showing that it applied to any direction
In space, and is limited by no particular
direction-line, which he developed into a
singularly powerful system, known as Calculus
of Quaternions.

Hamilton, in a letter published by the
North British Review, 1866, explains the origin
of his Quaternions as follows:

“Oct. 15, ’58.

To-morrow will be the fifteenth birthday
of the Quaternions. They started into life, or
light full grown, on the 16th of Oct., 1843,
as | was walking with Lady Hamilton to
Dublin, and came up to Brougham Bridge,
which my boys have since called the
Quaternion Bridge. That is to say, | then and
there felt the galvanic circuit of thought to
close; and the sparks which fell from it
were the fundamental equations between i, j, k,
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exactly such as | have used them ever since.
| pulled out on the spot, a pocket-book, which
still exists, and made an entry, on which

at the very moment, | felt that it might

be worth my while to expand the labor

of at least ten (or it might be fifteen) years

to come. But then it is fair to say that

this was because | felt a problem to have
been, at that very moment, solved -- an
intellectual want relieved -- which had
haunted me for at least fifteen years

before. Less than an hour elapsed before

| had asked and obtained leave of the
Council of the Royal Irish Academy, of which
Society | was at that time President, to read,
at the next general meeting, a paper, on

Quaternions, which | accordingly did Nov. 13, 1843.”
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ALGEBRAIC IMAGINARIES.

Every imaginary expression can be reduced to

the general form, a + fv/—1, in which « and g are
real quantities.

This is evident, in as much as all the real terms
can be combined into one polynomial, which may
be represented by «; and all the truly imaginary
terms can be combined into another polynomial,
which, when factored consists of a real quantity,

and v—1. The real polynomial factor
may be represented by S, and hence the whole
imaginary expression reduces to the general form

a+ V-1
But if we have an imaginary expression
of the general form, we may consider a a

real quantity, and gv/—1, imaginary. The two

taken together, as a + fv/—1, are generally
considered imaginary. If a = O, the expression
becomes truly imaginary, and equals gv—1, ; if § =0,
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the expression becomes real, and equals «.
Every monomial imaginary can be reduced
to the general form,
¥ 281,
iIn which y is a real quantity and é is any
whole number.
Let us suppose that A ™- 8 is a monomial imaginary,
n being even. This can be reduced to the
form A ™ B ™-1, butas 1™ B is a real factor it
may be denoted by y, and the expression
then equals y3/ — 1.
But as an imaginary is an indicator even root
of a negative quantity, or may, in place of n,
substitute a quantity, 26 , which will indicate this result.

Hence the form y*3/ — 1.

When § =1, the expression becomes y+v—1, which
Is called an imaginary of the second degree.
If the monomial is of the form
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y * -1,y °J-1, ¥ 2/ -1, etc,, it is of the fourth, sixth,
eight, degree, etc.

Imaginaries are conjugate when they only

differ in the sign of the coefficients of V-1

thus a + fv—1 and a — fv—1 are said to be
conjugate imaginaries.

Hence we see that the sum and product
of two conjugate imaginaries are always real.

The square root of the product of two
conjugate imaginaries, taken with the positive
sign, is called the modulus of each expression,
and is of the form

J@Z+B7?)
Thus from the conjugate imaginaries,
a + BV—1 and a — BV/—1, we infer that the modulus
of a real quantity is the positive, numerical
value of that quantity. But in order
that the modulus, V(a>+p?), vanishes, a and 8
must each equal zero, and in this case
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both imaginary expressions vanish.
From this we see that when two imaginaries
are equal their moduli are also equal.

If two imaginary expressions are equal,
the real parts must be equal and also

the coefficients of v-1.
For suppose

a+pV-1=y+ V-1
Then by transposition and factoring, we get
a—y+ (B — 8§)V—1=0.
By theory of undetermined (no variable) Coefficients
a=vy, and f = 6.
Then the general equation a + fvV—1 =y + 6v—1 may
be considered a symbolic representation, in
one statement of the equation
a=vy, and § = 6.
Take two imaginary expressions,
a+ BV—1, and y + 6vV—1,

and let us find their sum, difference,
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product, and quotient.
Their sum is
a+y+(B+8V-1.
Their difference is
a—vy+ (B —8)V-1.

Their product is

(a+pV —1)(y+6vV —1) =ay — B + (ad + yp)V-1.
The quotient obtained by dividing the first
by the second is

(at+BV-1)

(y+év -1)
Multiply both numerator and denominator by

(v — 8V — 1); the expression becomes

(ay+8B) | (YB—xb6)\
Y2 +82 + Y2 +82 )J 1.

The modulus of the product or

quotient of two imaginaries equals the
product or quotient of their respective
moduli; and the two imaginary expressions
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will not vanish as long as neither factor
vanishes.
For, the modulus of the product of

a+pvV-1, andy + V-1,
by definition and Art. 24 equals

Viay —p8)?+(@s+yp)? = J(@?+ B2y *+68?) =
J@?+p%) x?+62) (1)

Again, the modulus of the quotient of
a+Bv-1, and Y+8v-1,
according to Art. 24 equals

)2+ Y- a8 _ J@2+82)(y2+62) (a2+ﬁ )
(yZ+62 (yz+82 (¥ 2+6 2)+ /(1248 2) J(TZT?Z—) '

But /(@2 + B 2)and /(¥ 2 + & 2) are modulli.

Equations (1) and (2) equal the product
and quotient respectively of the modulus

of a+pV/—1landy+é6V—1.

Hence the theorem.
The even roots of imaginary expressions
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Are of the same general form as the
expressions themselves.

Let us extract an even root of the
imaginary, a + 8 v-1; and suppose that

(aiﬁ\/—_l)% =x+yJ-1

Then
(a £pV=T) = (x2yy=1) "
If m=1, the expression
(@t pV-1) = (x? —y?2 +2xyJ-1). (4).
Hence by the theory of Undetermined Coefficients
a=x%—y?2 4).
And
B = t2xy.
Then by squaring and adding the last two
equations, we get
(x2+y®2=a?+B2% or
x2+y?=2J(@?+p?).
By combining equations (4’) and (5) we get

n ((a 248 2) +a:)_

X =
- 2
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= i\/(W‘“).

But by supposition x and y are real,
and so the sum of their squares is positive,

and consequently we use the +

sign before /(a2 + 3 2).

The-sign-+ before-2xy-shows-thatf will

(a + BV—-1) /2" = x + y\/—1.

As may find the square room of +v—1, by
making ¢ = 0, and § = 1, in equations (6)
and (7), and then substitute their values

In equation (8).
The results are

iD=+

1+/-1
5

. and

(7).

(8).
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Je D=

Suppose we have the equation

%= —1,

a?= +J/=1,andx = +/+vV—1.
But since x4 = —1, x = +v-1.
This shows there are four, fourth roots

In this equation, all of of the general (?)
form of -1; and they are indicated In

the expression ++/+v—1, and in the general

1+v/-1
5

Then

form +

Every quantity has n, nth roots, and no

more, and if n be even, two of these roots

are real and the other n-2, imaginary. If n

be odd, one root is real and the other

n-1, imaginary.

et the general equation
n=pn,orxn_pn =0,

Equal the quantity.
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In this problem then are two cases; one when
n is even, the other when n is odd.
First, let n be even; the equation when
factored is
(xZ _pZ)(x‘n—Z +xn—4p2 +xn—6p4+““p'n—2) — 0.
But either factor in this equation equals 0.
Hence
x2—p?=0, or x= +p and -p.
Also
(x "2 9 2 L84 .. 0" 2) =0,
But there can be no real root that will
satisfy this equation, for the coefficients
of x are all positive and all powers of x are
even; hence the n-2 roots which it
contains must all be imaginary.
Next, let n be odd: then the equation
when factored is
x—p)E™"1+x"2%p +x"3p2+....p" ) =0.
But in this equation also, either factor equals 0.




Hence

x—p=0, or X =p.
Also,

(x™1+x™2p +x"3p2+...p"H) =0
In this, as in the preceding case, there
can be no real root that will satisfy this
equation, for the coefficients of x are even;
hence the n-1 roots which it contains
must all be imaginary.

Hence the theorem.
Imaginary roots do not change the identity
of any algebraic expression.
From the Theory of Equations we know that a
quadratic expression of the form

ax ? + bx + ¢ equals

a(x —p)(x —q), when p and q are
roots of the equation

ax?+bx+c =0.
But if the roots are imaginary, they will
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be of the form a + 8+/—1, and the expression will
become
a[x — (a + BV=D)][x — (@ — BV—1)].
This reduces to
af[x—a)?+p?*|=a(x?—-2xa+a?+p2)
which is identical with the original expression
when

—2a=2anda?2+p2=5
a a

If there be an imaginary root in an equation
having only real coefficients, there must also

be another root forming the conjugate imaginary.
Let us assume

QX)) =x—a)@—-F)Ex—-v1)

having all the coefficients real.
If one of the roots be a + fv/—1, the other
must be « — /=1, in order that the expression

be rational. The imaginary roots, if any,
must occur as

[x—(a+pV-D]x—(@—pV-1] =x2—-2xa+a?+p?>
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(22)
which is real.
Hence the Theorem.

But as imaginary roots may be found in
Q(x), all roots of it must satisfy the functional

equation
Q(x) =0.

Let this equation equal

2—px+c¢c=0.

The roots of this equation are
B
2 4

If we assume

Cepgte=0=9
the preceding roots will be beautifully illustrated
as a pair of conjugate imaginaries in
the Loci of Equations.
By assigning proper values to p and ¢, we
are enabled to trace out the curve
represented by the given function.
Let p = 3, and ¢ = -3, then we will have
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two real and equal, or two real and unequal
roots, and one can change into the other by
varying the values of p and c.

2
|f pT < ¢, the roots at once become imaginary

and form a pair of conjugates.

But the locus of the curve does not meet

the axis of abscissas as long as the roots

are real.

When the curve passes below the axis of abscissas,
the roots representing the points of the

curve below the axis become imaginary.

It is shown in geometry that if a straight

line intersect any curve, the number of
intersections is indicated by the degree of
the equation representing the curve.

If the straight line revolve so as to leave

a less number of points of intersection with
the curve, it is always found that two
intersections first run to-gether, compounding
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to a change of two unequal to two equal
roots, and these intersections then disappear,
showing that the equal roots are converted
into a pair of conjugate imaginaries.




TRIGONOMETRICAL IMAGINARIES.

De Moivre’s Theorem: If n be any whole
number, then

r
(cos. atsinay-1)e= cos.%(ZnH +a) & sin.%(ZnH + a)V-1.

Multiply
cos.a + sin.av/—1 by cos. + sin. pv/—1.

The product is

cos. & cos 8 - sin. & sin. f + (sin. & cos.  + cos. a sin. f)vV—1 =
cos. (a + B) + sin. (a + p)V-1.

Multiply the last expression by
cos.y + sin.yvV—1.

The product is

cos. (a + B) cosy — sin. (a + ) sin. y + [sin. (@ + ) cos.y + cos. (a + ) sin.y]V/—1 =
cos.(a+ B +7y).(a+ B +y)V-1.

Continue this operation m-1 times, then make

a = f =y = II, and the angular functions become,

cos.ma, and sin. ma. But we have

only expressed the side of the equation

involving factoral angles; the other side is
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exponential.

The expression results in the following equation:
cos.ma + sin.mav—1 = (cos. a+ sin.av—1)™, (9).

But this analysis only shows equation (9) to be

true when m is a positive integer.

Let us now suppose m negative, and equal to - e
Then
1

(cos.a + sin.av—1) ¢ B
1

(cos.ea + sin. ear/-1 °

(cos.a £ sin.avV—1)™ =

Multiply both numerator and denominator by

cos.ea + sinea—1.
The result is

cos.ea + sin.ea\—1
c0s. 2 ea + sin. 2ex

= cos. (—ea) + sin. (—ea)V—1 = cos.ea =+ sin.ear/—1.

= cos.ea + sin.ea/—1 =

Thus equation (9) is established when m is
negative.

But if we extract the m'" root of each
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number of equation (9), the result is

1
(cos.ma + sin.mav—1)m = cos.a + sin.av—1. (10)
And if we suppose m equals any fraction,
either positive or negative; say, q%’ then

r
(cos.a + sin.av/—1) ™ = (cos. a + sin. av—1) @ = (cos.pa + sin.pay — 1) %.

It has been shown in equation (10) that this

is one of the roots.

Hence the equation becomes general and can
be written

CoS. %aisin. %a—l.

Thus we have completely established equation (9)
whatever be the value of m. It yet remains

for us to integrate the value and

generality of this equation when a¢ assumes
different values.

. i1 v
So long as a remains less than = the sign

values of cos. @ and sin. a remain unchanged,
and also for any integral multiplier of 211.
Hence, to make equation (9) complete, we must
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in place of the varying angle «, insert
2nll + a, and the equation becomes

P
(cos. a+sinav—1)a = cos.g(ZnH +a) + sin.g(ZnH + a)Vv-1.

which completely establishes.

De Moivre's Formula.
The preceding method of demonstration
is only one among many, and it is probably
more complete than some that will be shown
hereafter. The method by Vector Equations is
the simplest of any yet discovered.

But the exponent % shows there are q

different values to the expression
Ccos. S(Znﬂ + a) + sin.g-(ZnH + av-—1.

These roots are either real or of the form

of the general imaginary, a + gv—1.
This theorem can be usefully employed
in extracting roots of imaginary expressions

of the form of a + fv—1.
Assume
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a = pcos.0,and f = psin. 0.
Then

pi=a’*+pB%tan. 0 =§; and
a + fV—1 = p(cos.0 + sin. 6vV—1).
Therefore
1 1 1
(a + pV—1) zm = pam(cos. O + sin. 6+/—1) mm.
Different roots can be extracted from this

expression by assigning compounding values to m.
But by De Moivre’s Theorem, one of the roots

IS cos. i + sin. i\/—1; the other roots are
2m 2m
determined from
cos. g Qnll + 6) + sin. § nll + 0)V—1,
by assigning proper values to p, q, and n.

1
The values of (a + fv—1) zm obtained by this
method agree with the values given in Art. 26.

Let it be required to express the complete
values of

a+ V-1, and a — B/—1,

where they are derived respectively from
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(@ +pV-1)" and (@ — gvV-1) "

Assume
a

V=T M= G f+ﬁ zy:
which bear the same relation as cos. and
sin. of an angle.

Then

VT =2 BT
y+4 = (a2+ﬁ2)+ T and

Y — V=T = e — BT

J@*+B2) J@2+?)

It follows, then, that
a+pV—1=[(a?+B2) (y+8Vy-1), and
a—pV-1=(a?+B32)(y—8J-1).

(a+ V=D "=[J(a?+ B2 +6Vy-1)]", and
(@—pV-D"=[/(@2+ B2y —-V-D]".

And now if we replace y and § by their
respective trigonometrical functions, cos. 6

Hence




€Y

and sin. 8, and consider according to
De Moivre’s Theorem, we get

@+BV-D"=(@?+8? g(cos. né + sin.né/—1),

and

(@—pV-D"=(@?+p3? g(cos. né + sin.nOV—1).

The nth root of each equation is respectively

a+ pvV—1 = /(@ ? + B 2)(cos.nf + sin.nG/—1) 1/,

and

a—pBV=1=./(a?+ B 2)(cos.nd — sin.ng/—1) /"
Again, let it be required to find the
complete values of

(@+pV-1)"+ (a— V-1 ™ and
@+pV=D"~(a-pv-D)"
From Art. 37, we get
(a+pV=D)"+ (a—py-D)" =
(@2+82)2 ((cos. né + sin.ndv—1) + (cos.nf — sin. nem) =
2@2+B82 2c0s.n0 ,

(¢ +BV-1)"—(a—pV-1)" =
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n
(@?+ B %) Z(cos.nb + sin.nfv—1) — (cos.nd — sin.nOV-1)) =
2@?+82?) Zsin.novV—T .

If we make

a*? = cos. 8 + sin.6+/—1, in De Moivre’s Formula,
we can derive some important exponential
functions.
Then

a*? = cos. 6 + sin. 6v/—1 ,

a~f = cos. 0 — sin.6/—1; and
a "0 = cos.nb + sin.nOV—1 ,
a0 = cos.nf — sin.nG—1 .

From these four equations, we deduce

a*+a—f
cos.0 = =

+0 4 , -0
. at@+a-9
a 10 4q 16

cos.nf = —_—%

i 0 a +né +a -né
Sin.no = 2 \/-_1
Hence

sin.?20 +cos.?0 = (a e )2 (&) =1, awell

known trigonometrical relatlon.
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But we learn in Algebra, that
at? =1+6(og.a) + 92—2(log. a)?+ eTs(log. a)d+ %(log. a)* &c,

And
a®=1-0(og.a)+ 2;(log. a)? —-o—z;(log. a)3 +§£-(log. a)* — &c.

Therefore --
+6_p—0

e
co0s.0 = =

= +-2—2(log. a)? +9;(log. a)* +-ozt(log. a)*+ &c,,

and
8_,—0
sin.@ = %—:fi— = \/'i—_I [6(log.a) + 6?3(109. a) 3+ 9?5 (log. a) 5&c.].
And again, if log.a = av/—1, these
trigonometrical functions become

. a30?  a a
sin. 0 = af —T-l"T—T&C.
Ifa=1,thenlog.a = v—1.
By passing to exponentials
a=etV L g0 = e*0VT; gng g9 = e 91
Hence --
atf-q—0 +OV=1_p-0v-1

sin. @ = N i T




(34)

at94q -9 e +O=T_ o —~1

co0s. 0 = =
2 2

we can then, determinate, and indeterminate
exponential expressions for sin. 8, and cos. 6.

But as we have shown that o *¢ = ¢ +6V-1
we may write the exponential equation

e ¥0V=1 = (0s. 0 + sin. 0v—1.
Let us make 8 = % m being any even

integral number; the equation becomes
2mliIl
/= 2mil .. 2l
et e V7l = cos.%+sm.%—1.

By a judicious manipulation of this formula

We can secure a general solution for the equation
K= +1,

It will be found that the number of

roots thus obtained will occur in rega-

order, each order containing n roots, as

217 451
indicatedine *¢. e TVt etV .
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If sin. @be divided by cos. 8 the quotient is
e OV —0V-1
V=1(e +6V-14¢ —6V-1y’ o

tan. 0 =

e tOV=1_p —6v=1
e =L = T

Therefore

1+tangy=1 _ e+0V1 _ o +203T
1-tan.Oy=1 e-6v-1 '

Take logarithms of both numbers: the result is
26V—1 =log. (1 + tan. 0+/—1) — log.(1 — tan.6v—1) =
2v—1(tan.0 — 1/3tan. 36 + 1/5tan.5 6 &c.).
Hence
6 = tan. — 1/3tan. 36 + 1/5tan. °0 &c.,
which gives 6 in terms of powers of tan. 6.
This is known as Gregory’s Series.
It may be usefully employed in computing

the numerical value of I, by making 6 = %.

But this series is generally quite unsatisfactory
because it does not limit the extent to
which it may be relied on as arithmetically
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true, and a large number of terms would
have to be taken to secure a close
approximation.

If we have given

sin. f = n sin. (f + @),
p can be expressed in terms of n and sine-
functions of a, by means of exponentials.
In Art. 40, it was shown that

atB —q B = +BV-1 _ o -BV-1

and by Art. 39, this equals 2sin. fvV—1.
Replace sin. § by its equivalent, n sin. (f + @),
and then pass to exponentials according to
Art. 39; the result is
e tBV-1 _ o —pV-1 — n(e +H(B+a)V-1 _ , -(ﬁ+a)\/—_1)_
Multiply the last equation by e tAV-1:
the result is
et2BV-1_ 1 = n(e +2B+a)V-1 _ , —a\/—_l),

or
e ¥2PV=I(] _ e +aV=T) = | — pe —aVT,
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Therefore

—me V=1
e +2pV-1 = lL_
1_ne +aJ—_1'

Take logarithms of both sides of the last equation,
and the result is

2BV—1 = log. (1 —ne '“‘/-—1) — log. (1 i +aJ:1') .
) T

Hence

. n* ., n3
B=nsina+ — sin. 2a + 5 Sin. 3a + &c..
the desired series.
This series is given in circular functions.
By means of this series, we are often

able to solve certain triangles.
In trigonometry we have

sin.ff = %sin. 0= %sin (B +C).
Hence by the formula,
2 3
B =2sin.C + 2 sin. 2C + = sin. 3C + &c.
a 2a 3a
If 1 be less than a the series is
convergent; and if % be a small fraction,
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a few terms of the series will suffice for a
close degree of approximation. But as the
series given the circular measure of B, we
must find the relation between circular
function, and centesimal or sexagesimal
functions.

Let X = numbers of degrees in any given
angle, and @ the circular measure of the
same angle. But as there are 180 sexigesimal

degrees in two right angles, % denotes

the ratio of the given angle to two right
angles. And since I denotes the circular

: 6
measure of two right angles, — expresses the

ratio of the given angle to two right
angles.
Hence
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If we have given

tan. f = n tan. «a,
B can be expressed in powers of n and
sine-functions of a, by means of exponentials.
The given trigonometrical relation combined

with Art. 42 gives
o BBV=L o —Pi—1 e tavV=1_, —av-1

e = Mot v
Multiply numerator and denominator of the
left hand number, by e +BV=1: and numerator
and denominator of right hand number, by
e *@V=1- the result is

e T2B8V-1_1 e t2aV-1_4
Therefore

= (1+n)e*t2eV-141— n_

(1-n)et?=T414n

1-1n  —2ay-1
+_
e+2a ( 1+ )

1n, +2av=1
1+me

e +28
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Take logarithm of both numbers; the result is

1= 1=
2pV—1 = 2av—1 +log. (1 4 T ‘2“‘/—) —log. (1 + T i +2“‘/_)

2av/—1 — (1+n)( +2aV-1 _ 5 —2av=1 ) 1/2 (1;2) ( +aa-1 _ p —4aV-1 ) &c.
Hence

n 1—~9 L—n
— i ; _ 2 sy i — 3¢ ,
B=a (1+n)sm.2a+1/2(1+n) sin.4a 1/3(1+n) sin.6a + &c
the series sought.

In equation (11), let us replace a by
B+vy.

Then
e YBHIV=T = o +BV=1 x o +VV=1 = o5, (B + ) + sin. (B + Y)V—1 =
(cos. B + sin. B—l)(cos. Y +sinyVv-1) =

(cos. Bcos.y — sin. Bsin.y) = (sin. fcos.y + cos. Bsin.y)V—=1.  (12).
But by principles of Undetermined Coefficients
cos. (B +vy) = cos.fcos.y + sinf sin v,
and
sin. (B +vy) = sin. Bcos.y + cos. B sin.y.
If we replace 6 by f —y, in equation (11),
the result is
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cos. (B —vy) = cos. Bcos.y + sin.p sin.y.

and

sin.(f —y) = sin. B cos.y — cos. f sin.y.
These are the four fundamental formulas.
From these all other trigonometrical
formulas can be derived.
Let § =y, in equation (12); then

cos. 2 + sin. 2—1 = (cos. B + sin. fv—1) 2.
If we continue this operation n times,
the result is

cos.nf + sin.nBvV—1 = (cos. f + sin. f/=1) *
which is another denomination for

DeMoivre’s Formula.
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(42)
LOGARITHNIC IMAGINARIES.

In any system, the logarithm of 1 is 0, and
the logarithm of O is +« or -«, being + if the
base is less, and - if the base is greater
than unity.

All positive numbers between 0 and «, when
used as bases of systems will include
among the logarithms all possible numbers
between -« and +«.

It thus appears that if negative numbers
have logarithms, they must be imaginary.

Let e tY = x.
Take the logarithm; then
log. ex =1y.

But as there is only one real value of vy,
there can be only one arithmetical logarithm,

and if we admit v—1into the
system, there may be an infinite number
of logarithms, only one of which will be real:
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the others will be of the general imaginary

form, a + fV—1.
A quantity of the form a + fv—1, may have
no real logarithm, and can have only one

in a system whose base is A + wv—1, unless

the modules, /(a ? + B ?), and the base are each
equal to 1. In this case the number

of real logarithms will be infinite, as is
apparent. If only one real logarithm exist,

it will be the ratio of the logarithm of the
[modulus?] of the quantity, and the base.

In equation (11), let 8 be equivalent to m IT;
m being any even whole number.

Then

cosmlIl=1, andsinmIl =0,
and the expression becomes
e +mIlv-1 = 1.

This curious equation involves vV—1 as an
arithmetical impossibility,-- for log. 1 = 0.

(13).
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But if we take the log. of equation (13), we have
mIIv—1 = log. 1; hence mII/—1 = 0.

If we ascribe any value to m according to

previously mentioned conditions; say, z, we

may deduce a series, true to any desired

accuracy, for e TMIV-1

Each series will be of the form 1 + +/—1x0.
If y be the true logarithm of x, in

equation e Y = x; and e +mIV=1 = 1 pe combined
with it, the series is

e TOAmIN=1) _ .
Hence

log.x = y +mIlv/—1; m being positive or
negative as before.
If the real logarithm of x be denoted
by log. X, and the general logarithm by

log. X, the general expression for logarithms
becomes

log.x =log.x + mIllN—1.
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So for any other number;

Log.z = log.z + nllV—1.
Then

Log.xz = log.xz + (m + n)IIV—1,
and

Log.-’zf = log.-ﬁ- + (m —n)IIV-1.

From this we readily see the relation
between numbers and their logarithms.
The sum or difference of two logarithms
indicates that their corresponding numbers
are respectively multiplied or divided.

Make 6 = g in equation (11); then

2150 = V—1.

Take the logarithm, and the result is
g —1 = log.\/—1,

which is a symbolic equation showing

that imaginary arcs are logarithms.
But we must not consider these functions
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unreal, for according to the modern
interpretation of imaginaries the left hand
number is simply the logarithm of a

unit line perpendicular to the axis

of reference. We should also remember
that expressions of this kind are not made
the basis of computation, and it is only in
cases where the symbols are capable

of being interpreted that we can conceive
of the relation between them, and the
specific numerical values they denote.
Again, in equation (11), let 8 be represented

by (m + 1)II; m being any even whole
number, either positive or negative.
The equation becomes

e YOWtDV=1 = co5 (m + DT + sin. (m + DIV=1 = 1.

Hence
log.(—1) = (m+ DIIV—1, or

log.(—-1
%2=(m+1)11.
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If we assume different values of m to
be introduced, according to conditions, the
expression becomes

I1,311,511,711,911, &c.
This shows there might be an infinite
number of ratios between the

log. (—1), and v—1,

which agrees with what was [promised?] in Art. 43.
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QUATERNION IMAGINES.

In the Introduction, we notice some of the
historical changes which occurred in the
interpretation of the imaginary, through all the
stages of its development till the invention
of Quaternions.
Monsieur Argand founded his interpretation
on results derived from multiplication of
imaginaries, as did subsequent investigators,
till the time of Hamilton.
These results will now be investigated.
Let it be required to find a geometrical
mean between +1 and -1.
If x denote this mean; then

+1:x%::x:—1, or

x= +V-1. (14)
But in this consideration we encounter
a difficulty in ascribing the meaning
to the notation used. If +1 denote
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a geometrical magnitude, there can be no
geometrical interpretation of -1.
But the +1 and -1 are here used only as
Indications of direction, and hence they will
only be considered as such.
In coordinate geometry of two dimensions,
the axes may be taken as double-unit
lines, to which the other transformations
can be referred.
In Fig. |, let O be the
origin, with a radius
[Figure] OA=unity. Draw from
diameters so as to divide
the circumference
iInto equal parts; also,
bisect the arcs AE and EC.
We may denote the direction OA by +, and
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OB by -1; hence, when 0OA revolves about O till
it coincides in direction with OB, the point

A descrives are all whose circular measure

Is IT; or in passing through an angle of

180°, the sign is changed from + to -.

And if the revolution continue from OB around
to OA, the line will revolve through another
angle of 180°, or will change the sign of
direction from - to +. But as the two

radii whose directions are indicated by

+ and - are in the same straight line,

and of equal length, the mean proportion

iIndicated in equation (14) must be perpendicular

to their common point of union,
and of the same length as either.

Hence we see that ++—1and —/—1 simply
indicate a unit vector line perpendicular

to the axis of reference. The coefficient

1, In either case limits its length, and
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the sign +v—1 indicates its direction.
In the powers of vV—1, we have 1,V/—1, -1, -v/—1.
These four forms are repeated by a continued
multiplication and recur in a cycle
of four. The formulas,
4n, 4n+1.,4n+2, and 4n+3,
Include all the changes that occur
In the different positions of the right-
angled vectors. And as these must coincide
with the relations deduced by the
mean proportion, 4n, 4n+1, 4n+2, 4n+3,
must correspond respectively with
1,v—1, -1, and -+/—1.
The expression v = my/—1 represents a
vector perpendicular to the given
direction line.
If m =1, v = +v/—1, which, by the preceding
geometric interpretation, indicates that
the vector line revolves through an
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angle of 90°, around an axis perpendicular

to the plane of rotation.

OC is a mean proportion between

OA and 0B; and 0D between OB and OA.

And so again OE is a mean proportion between
OA and 0C; and 0G between OC and OB, or
between OA and OD; OF between OB and 0D,
or between OA and 0C; OH between 0D and 0A,
or between OF and OE.

Similarly, we might insert any number

of mean proportions between two given
direction vector lines.

The proportions [will?] be thus:
OA:0Ol::0l:0E::0E:0J::0J:0C:: &c., and

by this proportion the angle included

between the vectors must necessarily be
equal.

But the preceding relations between

the vectors do not necessarily originate
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from the origin 0. They can be taken

from any origin, as is indicated by the

general imaginary a + fvV—1.

Thus the general imaginary may be taken

to represent the vector from the origin to

the point, «, £, implicitly indicating the
direction.

By operating on a + v/—1, by v/—1, the origin
of vectors may be changed through each

quadrant, and thus given a quadruple
series of coordinates, but the length

remains the same = /(a ? + B 2) = the modulus.
Every equation can be separated into

real factors of the first or second

degree, and whose roots are of the same

form as a + fv/—1; B being positive or negative.
If the root be real, it can be represented

by the ordinary graphics of

Cartesian Geometry; if imaginary, by the
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preceding geometrical methods.
The preceding interpretation is only of a

special case, and v—1 indicates an operation
of rotation , or of position only.
But if « indicate any geometrical line,

used as a direction line, +5v—1 represents
a vector perpendicular to the direction line.
And finally all other coplanar vectors,

not indicated by +a, and +8v—1 must be
In one of the quadrants and be

indicated by a + 8vV—1.

But lines represented by functions
containing imaginaries are real as
the direction lines themselves, and
should be considered as absolute as
lines indicated in a negative direction.

If we write +8+v/—1 and —v/—1, we have simply
indicated the direction of rotation, when
it is referred to the perpendicular unit
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vector v—1.

In indicating the position of a point

In a plane, we may denote the distance
from the origin to the projection of the point
of the abscissa, by «a; the length of the
projection line, by £; and the angle which
the vector makes with the direction line,

by 8; then instead of writing any of the

four above given expressions, we may write

the quaternion, C(cos. 8 + sin. 6+/—1).
But as v—1 turns a vector through the circular
measure of g the quaternion expression turns

it through an angular point of a quadrant,

represented by
6 26

T= -
2
Hence
20
C(cos.0 + sin.Ov—1) = (vV—1) 1.

But v—1 was shown by Hamilton to be a
geometrical reality, being restricted to no
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particular direction in space. He showed

that all directions can be represented

by the imaginary, thus enabling mathematicians
to represent any line or point equally well.

We are already using terms which should

now be explained. But as the preceding
discussions are only a review of those

previous to the invention of Quaternions, it

has been thought desirable to give an explanation
of all the terms together,

as long as those already used are generally
understood.

Quaternions form a System of Analytical
Geometry, the name of which was given by
Hamilton, on account of four quantities

that enter every true quaternion.

A quaternion is the product of a tensor

and a versor

A versor is the sum of a vector and a
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scalar.
Hence we have the quantities
vector (V); tensor (T); versor (U) and scalar(S).
But we saw in Art. 58 that a quaternion
can also be represented by

C(cos. 8 + sin.6/-1).
Hence there are two ways of representing
any true quaternion:

Q=T xU=C(cos.0 + sin.6/—1)
A vector is any line parallel to a given
direction line, and if the line be a
unit in length, it is called a unit-
vector line.
A tensor is a multiplier, or literally
that which stretches, one vector line
till it coincides in length with another
vector.
A tensor is a quantity which turns
one vector, about its origin, till it
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coincides in direction with another vector
and if the angular space between the
vectors be 90°, the vector iIs called a
quadrantal versor
But in equation (15) we saw a quaternion
can be made up of a real, numerical
part, and an imaginary. The numerical
part is called a scalar.
Vector Equations:
In Fig. Il, let ABC be any
triangle. Denote the side
AB by a: the BC by g;
and the side AC by y.
Suppose the arrows indicate the direction
that the sides of the triangle are generated.
If a magnitude by transferred from
A to C, there are two ways by which

[Figure]
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It may be accomplished; one is by going
directly along the line AC; the other,

by going from A to B and thence from B to C.

This may be represented by a + f =y, or
a+p—y=0,
which is known as the vector equation of
the triangle. But the signs + and -, and
= here, do not have the same limited
signification they do in Algebra.
In general language the above equation
may be read, “a transformer expressed
by vector «a, followed by a transformer
expressed by vector g, is equivalent to a
transformer expressed by vector y.”

The fundamental formulas of trigonometry
can be easily deduced by
means of a vector equation.
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In Fig. lll, let AM be the arc
of a circle whose radius
is OA. Let the angles AOC=a,
[Figure] ACD=g, and DOB=q; then,
as the series of the angles
will be perpendicular to OA, which we
will use for a direction line, they will

all be accompanied by v—1.
Therefore
CB = OE + EB = cos. (a + B) + sin. (a + p)V—1.
0D = OF + FD = cos. § + sin. fv/—1.
0C = 0G + GC = cos. @ + sin. a/—1.
But we saw in Art. 54 that
OA:0C::0D:0B, or
0A x 0B=0C x OD.
The line OA is the unit radius and is
the direction line; hence OA = 1.

The equation becomes
0B = 0C x OD.
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In this equation replace the values of 0B,
0C, and 0D, by trigonometrical functions as
found on page 60;
the result is
cos. (@ + B) + sin. (@ + PIW—1 = (cos. a + sin.av/—1)(cos. B + sin. f+/—1). (17).
By expanding and applying the principles of
undetermined Coefficients, we get

cos. (a + f) = cos.a cos. f — sin. a sin. 3,
and

sin. (e + B) = sin.a cos. B + cos. a sin. f5.
If (a + B)be replaced by (a — ), we get

cos.(a — ) = cos.a cos. § + sin. a sin. 3.
and

sin. (@ — B) = sin.a cos. f — cos. a sin. f5.
If « = B, in equation (17), we have

cos. 2a + sin. 2aN—1 = (cos. a + sin. av—1).
If this operation be continued m times, we get

cos. ma + sin.mav—1 = (cos. a + sin.ay—1) ™;
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which is another demonstration of
De Moivre's Formula.
63. In Fig. IV, let Ol, OJ,

and OK be three mutually
[Figure[ perpendicular unit-

vectors. Prolongue these
lines in the opposite direction, a unit’s distance,
and then draw arcs of circles as
iIndicated in the figure.
Let the line OJ revolve about Ol as an
axis until it coincides with the line OK.
So for all the other lines. The factors which
turn these lines through the quadrant
angle are the quadrantal versors, mentioned
iIn Art. 60.
If we simply use the letters, |, J, and
K to denote the rectangular vectors
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0Ol, 0J, and OK, we have the following
relations:

K52 ] _ g
]—I,K—],andI—K,or

K=1J, | =JK, and J = KI.

If we use the negative vectors as axial
lines, we have the following relations:

J _ K __ I 5.
== 1'1_ ],and]— K; or

K
J=-IK, K=l and | = -KJ.

The minus sign occurs here for two

reasons; first, because the axis is considered

negative, and second, because the

rotation is contrary to that given in the

first case, whose revolution was assumed

positive.

These two cases give

K=1],l=]JK,and ] = KI

And
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K=-]LLI =—K],and ] = —IK. (19).
In both of these sets of equations, we have
used the axis vectors |, J, and K as axes.
But these are quadrantal versors, and are
generally denoted by i, | and k.

Hence a unit vector may be employed

as a quadrantal versor, having a plane
perpendicular to the vectors; and the
product or quotient of two perpendicular
vectors is a vector perpendicular to both.
In algebraic multiplication, we have
learned that the product does not depend
upon the order of the factors, and hence

is called the Commutative Principle.

But we saw in equations (18) and (19) that
quaternion multiplication changes the sign
of the product by changing the order of
the factors, and hence is called the
Non-Commutative Principle.



(69)

The Associative Principle consists of
maintaining the cyclical order of the
factors. If | j kK be any known order
of factors, then the associative law is
ljk=jki=kji=&c.
But if this order be changed and the
new cyclical order be used, the signs
will be changed.
In equation (18), let J, K, and | be
replaced by J, K, and | of equation (19).
The result is
1?=-1,]%2=—-1, andK? =
I2=]2=K*=i?=j2=F*=-1.
Then

i =j=k= +V—1, which is the
relation between the |, j, k, of Quaternions.
We must not consider a line and
a vector as synonymous.

A vector designated by « is equivalent to a
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line ai, i being a unit vector along the
direction line; hence (ai)(ai) = a ?i ?
as a vector. But by Art. 66,
= —1.

Then
a?-————-asaline=—a? as a vector; or the
square of a line is equivalent to minus the
square of the corresponding vector.
The square of a unit vector regarded
as a quaternion is sometimes called an
inversor, and hence it can be written

a?=-1.
And as a = 1,the tensorof a, Ta = 1, or

T %a =

T?a=—a?
Then any unit vector or quadrantal versor
is a true representative of V—1, and has an
infinite number of values, but they are

all different from the symbolic scaler, v—1,




<7/

(67)
W T e b el . _ _ _ _ _
| = — fraeT which occurs in this convection algebraic
Erus o analysis.
/..274(/4 T i M e D ra But to discriminate this function in Quaternions
s o ot iinny ST, o —— from the ordinary v—1, Hamilton

called quaternions, vectors, and scalars, containing

el - MW e, A <zt <o, < - : : <
yé == = = i v—1, biquaternions, bivectors, and

/7

Ec«‘? /=, m//c@émo—/ é'//zw\ra, zel biscalars.
e T e o . Therefore a biquaternion becomes
Frfre 2 dipuailiiin Aecorco q=9q,+q.~V-1,

iIn which g , and q ,, are real quaternions.

F= 2l It appears that these discriminations are

e éz.//z% Z, %&/ﬂ 2o el /WW.

unnecessary, for v—1 must be involved in the

L e o o production of these scalar functions.
ittt cocw g, frrm ST Al b cEelTEErA low .~ — ©69. If we have any quaternions, as,

v o pd s JBDL Bl oEme s Rnar q—‘g = nll, n being any even integer;
| frraec ot alae fricicciizes
bz oI iz e 447 S et W W then a will be parallel to g and will

ﬁ have the same or opposite direction.

i Ly e i e i e Hence g becomes a positive or negative

% a iz /‘- v j/ 2o sreic real number and is a scalar, but this

Loz e Fliiie W/zo& ST -

| R S
‘/&cz_“ /% éZW G /4244&2;, =2~ %"ﬁwb__.
il sriiiie oz kD L e Sralen , Lol Lliig



(68)

scalar is one of revolution while the
preceding is one of ratio.

These scalars and tensors can be applied
to any line in space, and can occur

in any quaternion.

From the nature of scalars, their product
must be a scalar; and their conjugate,
which considers the rotation in the
opposite direction, is the identical

scalar itself.

But as the imaginary, v—1, is a scalar
in the biquaternion

q= q,+q ”—1: then
T(q., +‘IH)"'1)2 =[S(q,+qN-1)+V(q,+q,~V-D][S@q,+q.,V-1)-V(q,+q.,~V-1)]=
T2q,—T?3q,+2Vy-15q ,Kq ,

Ifq ,=q.,,and Sq,Kq ,= 0, the whole tensor
of the biquaternion reduces to 0.
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The reciprocal of a quaternion is the
quaternion is the quaternion of its reciprocal.

Thus q%=qu‘1 =1

If %=q;then-§=%=q‘1.

Suppose —a? = —axa =1, or

1
—a =-.
a

1 [ — —
Thenﬁ— v—1

If we take the tensor of these equations,
we see that the tensor of the reciprocal
of a quaternion is the reciprocal of its
tensor.

The versor has changed the direction
of its angle, and to denote this negative
movement, the conjugate quaternion

IS used.

The Pythagorean Theorem can be
easily demonstrated by Quaternions.
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Let ABC, Fig. V, be a right-
angled triangle, right angled
at B. Denote the sides, AB by
a, BC by 8, and AC by y.
Then by Art. 61,

as a vector.

By squaring,
v =a?+2af+ B2

But by Art. 63, aff equals another vector
perpendicular to the plane of rotation.
Hence, in the above equation,

20 =0,andy?=a?+ 52

But in Art. 67, we saw that « 2as a vector

equals —a ? as a line.

Then the above equation becomes
—y%2=—qa?-p72 aline, or
e =a%+p82.

Hence the theorem.
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73. Let ABC, Fig. VI, be any
triangle.
[Figure] Then by Art. 61,
AC=AB+BC, or
AC? = S(ACXAC)= S(AC)(AB+BC).

Hence
b?=Db cos. A.C +b cos. C.A, or
b=ccos. A+acos. C, awell known
plane trigonometrical relation.

AB = AB,
AC = AB + BC,
Hence
AB + AC = AB (AB+BCQC).
Take the vectors, and the results is
V(ABXAC)=V AB(AB+BC) =
cb sin. A=casin. B, or
a:b::sin. A: sin. B.
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