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Cyclic Loading Response of Cohesive Soils Using A 
Bounding Surface Plasticity Model 
Y. F. Dafalias 

Associate Professor of Civil Engineering, University of California, Davis, CA 

L. R. Herrman, Professor, and A. Anandarajah, Graduate Student 
University of California, Davis 

SYNOPSIS The concept of the bounding surface in plasticity theory has been used to develop a general three-dimensional constitutive 
model for cohesive soils within the framework of critical state soil mechanics. The present work focuses on the response of the 
above model under cyclic loading conditions. It is shown mainly qualitatively and partially quantitatively, that the model predicts 
in detailed form a material response which does agree with observed experimental behavior under undrained and drained loading 
conditions at any overconsolidation ratio and for different cyclic deviatoric stress amplitudes. 

INTRODUCTION 

A common weakness of many stress-strain laws in soil 
mechanics is that they are pertinent to loading conditions of 
a very specific nature. If, however, the soil constitutive 
relations are to be of value for the analysis of earth structures 
under complex and interchangeable loadings, they must be 
equally applicable to monotonic or cyclic, drained or undrained 
or any other form of loading conditions, which necessitates 
their development within a more fundamental framework. 

The classical mathematical theory of plasticity provides such 
a framework, but still some very important aspects of soil 
behavior such as the response to cyclic loading cannot be 
adequately described. The main reason for this deficiency is 
that plastic irreversible deformation cannot occur within the 
yield surface, which defines a purely elastic range of the 
material response, contrary to the observed behavior. For 
example, consider the cyclic deviatoric loading with fixed 
deviatoric stress amplitude under undrained conditions. A 
classical yield surface plasticity model will predict a pore­
water pressure built-up only during the first half cycle as a 
result of the interchange between elastic and plastic volumetric 
strain, while the total volumetric strain remains constant. 
Subsequently, the cyclic stress oscillates within the expanded 
yield surface unable to cause any additional plastic strain and, 
therefore, any additional pore-water pressure, contrary to the 
observed experimental fact. If such important phenomena of 
the cyclic soil response are to be modeled, new concepts must 
supplement the classical approach. 

The Bounding Surface in stress space (henceforth referred as 
B.S. for abbreviation) represents such a new concept; it was 
originally developed for cyclic metal plasticity by Dafalias 
(1975), Dafa!ias and Popov (1974,1975,1976) and independently 
by Krieg (1975). Its salient and novel feature is that plastic 
deformation can occur for a stress state within the surface by 
rendering the plastic modulus an increasing function of the 
"distance" between the actual stress point and an "image" stress 
point on the B.S., defined by a proper mapping rule. When 
the actual stress point reaches the B.S. (the "distance" is zero), 
it becomes indentical with its "image". Then, the B.S. plays 
the role of a classical yield surface. Upon unloading-reloading 
the plastic response is always defined by the above "distance" 
dependent value of the plastic modulus for any point within 
or on the B.S. A corresponding constitutive model for clays 
has been already formulated within the framework of critical 
state soil mechanics in a series of papers by Dafa!ias 
(1979a, 1979b), Oaf alias and Herrmann ( 1980a,in press, 19&0b) 
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with the most recent formulation (19&0b) being expressed in 
terms of the three stress invariants for general three dimensional 
loading. The model has been numerically implemented in 
computer codes. Its application to monotonic, drained and 
undrained, normally consolidated, lightly and heavily 
overconsolidated states of loading has shown very good 
agreement with corresponding experimental data. 

This presentation focuses on the predictive capabilities of the 
same bounding surface model under cyclic loading conditions. 
More specifically, the model can predict: 

a) The cyclic positive pore-water pressure built-up, axial strain 
accumulation and reduction of effective stress under 
undrained cyclic loading, and the cyclic volumetric and 
deviatoric strain accumulation under drained cyclic loading 
in compression, extension or both, for normally consolidated 
or lightly overconsolidated states. 

b) The negative pore-water pressure build-up (undrained), 
dilative volumetric strain accumulation (drained), and axial 
strain accumulation under cyclic loading of heavily 
overconsolidated states. 

c) The stabilization of the cyclic stress-strain loops if the 
cyclic deviatoric amplitude is small, or the progressive 
evolution of the material state towards the critical state, 
where failure is imminent, if the amplitude is large. 

It is important to emphasize that the model predicts a detailed 
stress-strain history response as cyclic loading is applied, in 
contrast to an overall estimation of strain accumulation or 
pore-water pressure built-up versus number of cycles which 
traditionally, and most often empirically, has been used in soil 
dynamics. Cyclic loading is considered as nothing else but a 
sequence of monotonic steps for which the model has been 
proved so successful. This success is mainly due to the capability 
of the bounding surface formulation to describe realistically the 
material response at any overconsolidation ratio, combined with 
the fact that any cyclic loading brings normally consolidated 
samples to overconsolidated states. Most predictions are 
qualitative due to the lack of corresponding detailed 
experimental data. Particular emphasis is given to the concept 
of the "Elastic Nucleus" and the associated stabilization factor 
s which controls the development of cyclic response up to full 
stabilization before failure, if necessary. A few new material 
parameters are introduced, in addition to those of the critical 
state soil mechanics, which can be easily calibrated from 
conventional triaxial experiments. Future trends and 
improvements are finally discussed. 



BRIEF PRESENTATION OF THE MODEL 

Subsequently, effective stress components a .. are considered 
IJ 

which are taken positive if compressive. A bar over a stress 
quantity implies a state on the bounding surface. The strain 
E: .. is decomposed into an elastic and a plastic part, indicated 

IJ 
by one and two primes, respectively. A dot indicates rate and 
the sum rna tion convention over repeated indices is employed. 
The deviatoric stress and strain components are denoted by s .. 

IJ 
and e .. , respectively. For isotropic material, the elastic stress-

IJ 
strain rate relations are given as usual in terms of the bulk 
modulus K and the shear modulus G (or Poisson's ratio v). The 
B.S. equation depends on the plastic rate of change of the 

total void ratio given by e~ ~=-(! +eo)Skk (eo is the void ratio 

of the reference configuration), and three stress invariants 
defined by: 

I = akk' J 
I I I 2 

(- s .. s .. ) ' s 
2 I J IJ 

(I) 

Instead of S, it is convenient to introduce the "Lode" angle a: 

1T 

6 (2) 

where a = + 1T 16 corresponds to triaxial compression and 
extension, respectively. 

Assuming that the origin lies always within a convex B.S., 
Dafalias (1979b) introduced a simple "radial" mapping rule 
defining the "image" stress point as the intersection of the 
B.S. with the straight line connecting the origin with the a~tual 
stress point. This can be expressed analytically by aij = 

f3 (a , e~ ~)a.. with the radial factor I < f3 < co determined 
k.Q. IJ - -

from the equation of the B.S.: 

0 (3) 

where we have r f3I, j = f3J, s as and (l a. 

The plastic strain rate is now given by: 

~~~ ClF L aF . ClF 
< L > akR. ak.Q. IJ aa .. K aokR. R P aokR. IJ p 

where Kp is the plastic modulus associated with the actual 

stress rate and R is the "bounding" plastic modulus associated 
p 

with the "image" stress rate. The < > denotes the 
operation < * > = * H (*) with H the heavyside step function. 
Plastic loading, unloading and neutral loading is defined 
by L > 0, L < 0 and L = 0 respectively, w!_!h L called the 
loading function. The inclusion of Kp or Kp in L treats 

simultaneously stable (hardening) response when the moduli are 
positive and unstable (softening) response when they are non­
positive. 

From the consistency condition F 0 one has: 

(5) 

where a comma followed by the symbol of an invariant as a 
subscript indicates partial differentiation with respect to this 
invariant. Observe from Eq. (5) that with a F I a e~ ~ > o, 
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the bounding plastic modulus R is positive (consolidation), 
p 

negative (dilatation), or zero (unrestricted shear flow), according 
to the value of F,1 . Correspondingly, the bounding surface 

expands, contracts, or does not harden. 

The functional dependence of K on R and the distance o 
p p 

between a .. and a .. in invariant stress space is assumed to be 
given by: IJ 11 

K 
p 

R +H-0--
P <r-so> 

(6) 

where H is a proper material hardening shape function, r is the 
distance between the "image" stress point and the origin and s 
is a material constant called the "stabilization factor". When 
o = 0 + K R and for all o > rls the < > becomes p p 
zero rendering K = co, thus defining indirectly a purely elastic 

p 
domain within the B.S. which is called the "Elastic Nucleus" or 
E.N. for abbreviation. The E.N. is congruent to the B.S. and its 
size depends on s. For s = 1 the E.N. degenerates into a point, 
the origin. It must be emphasized that the concept of the E.N. 
as introduced by Dafalias (1980) and Dafalias and Herrmann 
(I980a) is not equivalent to that of a yield surface (no consistency 
condition required etc.) and the stress point can always cross 
the E.N. and move outside with a smooth elasto-plastic 
transitiOn. The value of s is very important in relation to the 
cyclic response as it will be seen shortly. Undrained behavior 
can be obtained on the ba.sis of the above equations by imposing 
the internal constraint E:kk = 0 on the total volumetric strain 
rate. 

THE BOUNDING SURFACE 

Extending the ideas of the critical state soil mechanics (Schofield 
and Wroth (1968)) from the triaxial to the invariant stress space, 
a meridional section of the bounding surface is eloquently shown 
in Fig. I. The quantity N can be identified as the slope of the 
projection CSL of the critical state line in invariant stress space 
which intersects the bounding surface at c where ( a F I a f) = 0. 
For triaxial conditions N is related to the triaxial CSL slope M 
by M _= _313 N. The radial rule associating the "image" stress 
point I, J to the stress point I, J is illustrated. The projection 
of C on the I axis is denoted by I 

1 
and is given by I 

1 
= 

I
0

IR with I
0 

being the intersection of F = 0 with the 

hydrostatic axis I. The dependence of F = 0 on the third 
stress invariant is introduced through N, which is assumed to 
be a proper function of a (Dafa!ias and Herrmann ( 1980b)). The 
functional dependence of N on a requires the determination of 
the values of N in triaxial compression: N c' and extension: 

N e. The dependence of F = 0 on e ~ ~ is introduced through 

I
0

, where di 0Ide~~ =- I
0

I(A -wK}, w = I
0

I(<I
0

- I,Q,> + I,Q,) 

with A, K representing the slopes of the normal consolidation 
and swelling-rebound lines in the e - R.np plot and I ,Q, the value 

of I = 3p at which this logarithmic relation changes to linear 
to avoid excessive elastic stiffness softening around I = 0. 

For further reference let us introduce the quantities 8=Jil and 
X=8IN. For 0 < e < N the bounding surface is the ellipse I' 
Fig. 1, defined by means of a single parameter R. Extension 
of the ellipse in the range N < e < "' did not yield satisfactory 
results for heavily overconsolldated states. Instead, a hyperbola 
is proposed, as shown in Fig. I, defined by means of the parameter 
A, which positions the hyperbolic asymptote with respect to 
CSL by means of D = AI

0
• A varies with a in the same way 



J 
N(a) 

HYPERBOLA 

\F 

F,i 

0 

Fig. 1. Schematic illustration of the Bounding Surface and the 
"radial" mapping rule in invariant stress space. 

as N does, with A and A being the values of A in triaxial 
extension and comepression, crespective!y. Finally, extension in 
the tension regime for -oo < 6 < 0 is obtained by an ellipse 2, 
Fig. I, as discussed by Dafa!ias and Herrmann (l980a). The 
intersection It of ellipse 2 with the I axis measures the tensile 

strength of the soil. 

Finally, the form of the shape hardening function H entering 
Eq. (6) is given by: 

(7) 

where Pa is the atmospheric pressure providing the proper 

stress units, m = 0.2 is satisfactory for most clays rendering 
K = oo when J = 0 except when o = 0. The second bracket 

p 
is introduced in association with a unit normal formulation in 
the triaxial space. The shape hardening parameter h is the 
most important and can be considered a function of a. 

CYCLIC RESPONSE 

Subsequently a sequence of different cyclic loading histories 
in triaxial compression and extension is applied, and the soil 
response according to the B.S. constitutive model is eloquently 
shown. For all histories the following material constants are 
used: :>.. = 0.055, K = 0.02, \1 = 0.3, Me = 313Nc = I .I I, 

M = 3/3N = 1.0, R = 2, A = A = 0.10, m = 0.20, h = 30, e e c e 
and s = 1, 1.5. The initial void ratio was taken to be e = 1.6. 
In order to appreciate the importance of the pararReter s, 
co1.sider first the response under undrained cyclic deviatoric 
loading in triaxial compression of a normally consolidated 
sample at p

0 
= 57 psi. The response for 14 cycles is shown 

with dashed Jines for s = 1 and with solid lines for s = 1.5 in 
Figs. 2a, b, c, for the same amplitude of the deviatoric stress 
q. Observe that the undrained stress path loops in the p - q 
space move towards the CSL as the pore-water pressure u 
increases. A classical yield surface plasticity model would 
have only shown the first loop with immediate stabilization. 
If s = 1, the progress towards the CSL will continue for any 
amplitude of q. Recent experiments by Sangrey et al 0969) 
showed that this is not true and that the amplitude of q plays 
an important role. For small amplitude full stabilization 
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Fig. 2a,b,c. 
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Cyclic undrained response for s = 1 (dashed line) 
and s = 1.5 (solid line) showing the effect of the 
Elastic Nucleus. 
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Fig. 3a,b,c. Cyclic undrained response of normally consoli­
dated sample for s = 1.5 and two amplitudes of q. 
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(b) 

Cyclic drained response of normally consolidated 
sample for s = 1.5 and two amplitudes of q. 

occurs before reaching the CSL which implies, in terms of the 
present formulation, that a fully elastic range has been 
developed. This is the Elastic Nucleus which is defined by 
means of s > 1. The initial and final positions of the B.S. and 
E.N. are sh~wn _in Fi& 2a for s = 1.5. Point X is such 
that o = XX = r/s = OX/1.5. It is evident that as the cyc!Jc 
p - q loops enter progressively the E.N. fully elastic response 
is assumed and full stabilization is obtained (hence the name 
of s : stabilization factor) as shown by the solid lines in 
Figs. 2a,b,c. 

A similar senario is repeated in the following. But now instead 
of using two values of s and the same q amplitude, the value 
s = 1 .5 is fixed and com par is on is made between responses for 
two cyclic loadings of different q amplitudes in both compression 
and extension. The larger q amplitude response is shown by a 
solid line and the smaller by a dashed. The smaller q amplitude 
always shows a tendency for full and faster stabilization as the 
stress moves inside the E.N., more so than for the larger q. 
Figs. 3a, b, c show the response under undrained conditions and 
Figs. 4a, b under drained for a normally consolidated soil at 
p = 57 psi. (e: represents volumetric strain). 

0 p 
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Cyclic undrained response of heavily over­
consolidated sample for s = 1.5 and two amplitudes 
of q. 
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Fig. 6a,b. Cyclic drained response of heavily overconsolidated 
sample for s = 1.5 and one amplitude of q. 

Figs. 5a, b, c show the results of cyclically loading under 
undrained conditions a heavily overconsolidated sample, with 
OCR = l 1.40 and preconsolidation at p

0 
= 57 psi. Observe 

the negative cyclic pore-water pressure development and the 
stabilization for the smaller q amplitude again. Finally Figs. 
6a, b show the response at OCR = 11.40 under drained conditions 
for one only q amplitude bringing the stress path beyond the 
CSL in both compression and extension and indicating after 2 
cycles a large dilation and critical failure with large e: 

1
• It is 

interesting to note, for the normally consolidated sample, that 
although the stress reaches the CSL, the model shows a failure 
due to progressive accumulation of the strain e: 

1 
rather than an 

abrupt critical failure. The latter can be achieved only if the 
q amplitude is increased at the end of the cyclic loading. 

Finally, a comparison with an actual experiment is shown in 
Fig. 7, with the material constants reported on this figure. The 
experimental data are taken from Wroth and Loudon (1967) and 
provide only the p - q undrained cyclic stress path. The 
stabilization factor s was taken equal to 1. 
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Fig. 7. Theory 
loading. 
(196 7). 

versus experiments for undrained cyclic 
Experimental data from Wroth and Loudon 

CONCLUSION 

This presentation focuses on the cyclic response of cohesive 
soils, as predicted by a general bounding surface plastic 
constitutive model within the framework of critical state soil 
mechanics, which has been already proved very successful in 
predicting the soil response under monotonic loading. A cyclic 
loading is treated as a sequence of monotonic ones, which 
brings a normally consolidated state towards increasing 
overconsolidation and a heavily overconsolidated state towards 
decreasing overconsolidation within the bounding surface. The 
material response is obtained in detailed form during the cyclic 
loading. The concepts of the elastic nucleus and the 
stabilization factors are defined and shown to play an important 
role in the stabilization of cyclic processes associated with 
different deviatoric stress amplitudes. Important features of 
the model are its fundamental character, the ease of its 
numerical implementation and its calibration in terms of the 
results of conventional triaxial experiments. 

Because the model is equally valid for both cyclic and monotonic 
loading conditions and has been formulated for general three­
dimensional behavior, it provides a powerful tool for 
characterizing the constitutive behavior of cohesive soils for 
stress analysis purposes. The predicted results do agree with 
qualitative observation of cyclic behavior of cohesive soils. 
Detailed experimental data are Jacking, which are necessary 
to assert the quantitative cyclic predictive capability of the 
model and allow a further investigation of the cyclic parameter 
s (stabilization factor), especially its relation to the amplitude 
of q and its dependence on the past cyclic loading history as 
described by the accumulated volumetric and deviatoric plastic 
strains. 
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