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MODEL VALIDATION OF RECENT GROUND MOTION PREDICTION 
RELATIONS FOR SHALLOW CRUSTAL EARTHQUAKES IN ACTIVE TECTONIC 

REGIONS 
 

James Kaklamanos   Laurie G. Baise 
Tufts University    Tufts University 
Medford, Massachusetts-USA 02155 Medford, Massachusetts-USA 02155 
 
 
 
ABSTRACT 
 
Recent earthquake ground motion prediction relations, such as those developed from the Next Generation Attenuation of Ground 
Motions (NGA) project in 2008, have established a new baseline for the estimation of ground motion parameters such as peak ground 
acceleration (PGA), peak ground velocity (PGV), and spectral acceleration (Sa).  When these models were published, very little was 
written about model validation or prediction accuracy.  We perform statistical goodness-of-fit analyses to quantitatively compare the 
predictive abilities of these recent models.  The prediction accuracy of the models is compared using several testing subsets of the 
master database used to develop the NGA models.  In addition, we perform a blind comparison of the new models with previous 
simpler models, using ground motion records from the two most recent earthquakes of magnitude 6.0 or greater to strike mainland 
California: (1) the 2004 M 6.0 Parkfield earthquake, and (2) the 2003 M 6.5 San Simeon earthquake.  By comparing the predictor 
variables and performance of different models, we discuss the sources of uncertainty in the estimates of ground motion parameters and 
offer recommendations for model development.  This paper presents a model validation framework for assessing the prediction 
accuracy of ground motion prediction relations and aiding in their future development. 
 
 
INTRODUCTION 
  
The purpose of ground motion prediction equations (GMPEs; 
also called “ground motion prediction relations” or 
“attenuation relationships”) is to predict the ground motion at 
a given location as a function of earthquake magnitude, 
distance from the earthquake source, and other source, path, 
and site characteristics.  The typical response variables in 
ground motion prediction relations are peak ground 
acceleration (PGA), peak ground velocity (PGV), and 5%-
damped elastic pseudo-response spectral acceleration (Sa). 
 
A typical ground motion prediction relation has the form 
 

),,,(ˆln ∑∑= ii SiteSourceRfY M , (1)
 

where lnY  is the natural logarithm of the ground motion 
parameter of interest, M is the moment magnitude of the 
earthquake, R is a measure of distance representing the path of 
seismic energy from the earthquake source to the site of 
interest (often the closest distance to the zone of rupture, 
R

ˆ

RUP), ∑Sourcei are other variables relating to the earthquake 
source (such as type of faulting, rupture width and depth, and 
fault dip), and ∑Sitei are variables relating to the site of 
interest (such as average shear wave velocity, geologic 

characteristics, or depth to bedrock) (Kramer, 1996; 
Abrahamson et al., 2008).  Source parameters are generally 
constant for a given earthquake and do not vary from location 
to location; site parameters are generally constant for a given 
location and do not vary from earthquake to earthquake. 
 
Peak values of ground motion parameters are assumed to 
follow a lognormal distribution; therefore, the logarithms of 
the ground motion parameters follow a normal distribution.  
To maintain normally-distributed residuals, regression is 
typically performed on the logarithm of the ground motion 
parameter of interest (Kramer, 1996).  Ground motion 
prediction relations are developed for specific tectonic 
environments using multivariate regression on ground motion 
databases, and the relationships are updated as more 
earthquake data are obtained.  However, Douglas (2003) and 
Strasser et al. (2009) show that although GMPEs have become 
increasingly more complex over time, there has not been a 
marked improvement in the uncertainty of the ground motion 
prediction estimates. 
 
After a five-year effort, the Next Generation Attenuation of 
Ground Motions (NGA) project was completed in 2008.  The  
project, sponsored by the Pacific Earthquake Engineering 
Research Center (PEER), established five new GMPEs that 
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predict ground motion parameters for shallow crustal 
earthquakes in active tectonic regions (such as California).  
These models are the first large-scale update of GMPEs for 
this tectonic environment since 1997, when the previous 
generation of GMPEs was released.  Table 1 lists the new 
NGA models and each model’s predecessor (Abrahamson and 
Silva, 1997; Abrahamson and Silva, 2008; Boore et al., 1997; 
Boore and Atkinson, 2008; Campbell, 1997; Campbell and 
Bozorgnia, 2003; Campbell and Bozorgnia, 2008; Chiou and 
Youngs, 2008a; Idriss, 1991; Idriss, 2002; Idriss, 2008; Sadigh 
et al., 1997). 
 
The NGA models will have serious consequences, as they are 
beginning to serve as the basis for seismic hazard assessment 
in many applicable regions.  In the most recent update to the 
national seismic hazard maps released by the United States 
Geological Survey (USGS), the NGA models are included in 
the hazard calculations (Petersen et al., 2008).  However, there 
have not been many published quantitative comparisons of the 
models.  Ghasemi et al. (2008) compare and rank several 
GMPEs for seismic hazard analysis in Iran.  Stafford et al. 
(2008) compare the NGA models with European models for 
seismic hazard analysis in the Euro-Mediterranean region.  
Star et al. (2008) and Stewart et al. (2008) compare the NGA 
models for simulated ground motions for various scenarios in 
southern California. 
 
In this paper, we attempt to make a contribution to the 
geotechnical earthquake engineering literature by objectively 
comparing the models in a statistical validation framework.  
From the NGA flatfile, we develop testing databases of 
ground motion records that meet the requirements of the 
models.  By calculating objective goodness-of-fit statistics, we 
compare the model predictions to the actual ground motion 
records to assess the predictive capabilities of the models.  We 
test the models under different conditions, for soil and rock 
sites at various distances for both mainshocks and aftershocks.  
Based on the results, we discuss which GMPEs offer the most 

successful predictions in various situations, and the manner in 
which model development decisions influence model 
performance. 
 
In addition, to assess the level of improvement that has 
occurred over time, we compare the new generation of models 
with the previous generation of models.  We perform blind 
comparison tests by implementing the new and old models on 
recent earthquakes that were not present in any of the 
regression databases used for model development.  In our 
comparisons, we utilize ground motion records from the two 
most recent earthquakes of magnitude 6.0 or greater to strike 
mainland California: (1) the 2004 M 6.0 Parkfield earthquake, 
and (2) the 2003 M 6.5 San Simeon earthquake.  The results 
of these two tests are examples of how these GMPEs may 
perform when predicting ground motion for future 
earthquakes.   
 
 
DATA 
 
The NGA database
 
For use in developing the NGA models, researchers compiled 
an extensive data set of 3551 ground motion records from 173 
shallow crustal earthquakes (Chiou et al., 2008).  A 
spreadsheet of the entire database, called the “NGA flatfile,” is 
publicly available on the PEER NGA project web site (Pacific 
Earthquake Engineering Research Center, 2008).  The 
researchers utilized subsets of this database in their 
regressions for model development.  The research teams 
generally excluded records that were not representative of 
free-field conditions (e.g., records from basements, tall 
structures, or dam crests), records from locations not within 
the models’ range of applicability, records lacking key 
information, and records with identified problems, although 
the specific decisions of each team varied (Power et al., 2008). 
 
The teams made various assumptions in selecting their final 
datasets for regression.  One of the most significant decisions 
for the researchers was whether or not to include aftershocks 
in their regression subsets.  Three teams (AS08, CY08, and 
I08) opted to include aftershocks (Abrahamson et al., 2008).  
Chiou and Youngs (2008a) only included records within 70 
km of the earthquake source in order to avoid bias in the 
dataset, and they made assumptions on attenuation 
characteristics to extend their model to larger distances.  Idriss 
(2008) only included rock sites (locations with VS30 > 450 m/s) 
in his model; this significant difference isolates the I08 model 
from the others because it can only be applied to rock sites.  
As we will demonstrate, these dataset selection decisions 
greatly influence the models’ prediction accuracy. 
 
 
Explanatory variables 
 
A summary of the explanatory variables used in the GMPEs is 
presented in Table 2.  There is a wide range of model 
complexity, but as a whole the NGA models are much more 

Table 1. GMPEs tested in this study 
   

NGA models  Previous models 

Team Year Abbrev.  Team Year Abbrev.

Abrahamson 
and Silva 2008 AS08  Abrahamson 

and Silva 1997 AS97 

Boore and 
Atkinson 2008 BA08  Boore, Joyner, 

 and Fumal 1997 BJF97 

Campbell and 
Bozorgnia 2008 CB08  Campbell 1997 C97* 

Chiou and 
Youngs 2008 CY08  Sadigh, Chang, Egan, 

Makdisi, and Youngs 1997 SCE97 

Idriss 2008 I08  Idriss 1991 I91* 

NOTE: 
* In the early 2000s, Campbell and Bozorgnia released an update to their 

1997 model (Campbell and Bozorgnia, 2003) and Idriss developed an 
unpublished update to his 1991 model (Idriss, 2002).  However, to 
maintain consistency in the comparison between the set of new and old 
models, we use all the GMPEs from the 1990s as the baseline for 
comparison. 
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complicated than their previous counterparts.  Based on the 
number of input parameters, I08 has the simplest formulation 
of the NGA models, followed by BA08, CB08, CY08, and 
AS08.  Three of the NGA models (AS08, CB08, and CY08) 
include two or three different distance measures in the same 
model, whereas previous models generally incorporated just 
one per model.  Four of the NGA models utilize the time-
averaged shear wave velocity over the top 30 meters of the 
subsurface (VS30) as the primary site characteristic; Idriss 
(2008) does not quantitatively incorporate site characteristics 
into his model, although he provides separate coefficients for 
soft and hard rock sites.  The first researchers to quantitatively 
incorporate shear wave velocity in a GMPE were Boore et al. 
(1997).  Other previous models utilize dummy variables (flags 
that take on a value of “0” or “1”) to incorporate site 
conditions (Abrahamson and Silva, 1997; Campbell, 1997), or 
provide completely different sets of regression equations for 
soil and rock sites (Sadigh et al., 1997).  Furthermore, three of 
the NGA relations (AS08, CB08, and CY08) incorporate a 
depth parameter (Z1.0 or Z2.5) as a secondary site characteristic 

in addition to VS30, where Z1.0 is the depth to VS = 1 km/sec, 
and Z2.5 is the depth to VS = 2.5 km/sec.  One of the previous 
models (Campbell, 1997) includes a parameter D for depth to 
basement rock. 
 
An extensive set of explanatory variables is necessary to 
implement the ten GMPEs in this study.  For the records in the 
NGA flatfile, many of the necessary parameters are explicitly 
included as columns, whereas others (such as the site 
coordinate, RX) needed to be calculated from the available 
information in the flatfile.  Although VS30 is included for 
nearly every record in the flatfile, the depth parameters Z1.0 
and Z2.5 are not present for many records.  When the values 
were absent, we estimated Z1.0 or Z2.5 from available 
information using recommendations from each of the research 
teams (Abrahamson and Silva, 2008; Chiou and Youngs, 
2008a; Campbell and Bozorgnia, 2007).  These procedures 
and their implications will be discussed later in this paper. 
 
 

Table 2. Explanatory variables of the GMPEs in this study 
     

  NGA models Previous models 

 Parameter AS08 BA08 CB08 CY08 I08 AS97 BJF97 C97 SCE97 I91

Moment magnitude, M ● ● ● ● ● ● ● ● ● ● 

Depth to top of rupture, ZTOR ●  ● ●       

Down-dip rupture width, W ●          

Fault dip, δ ●  ● ●       

Style-of-faulting flag (function of rake angle, λ) ● ● ● ● ● ● ● ● ● ● So
ur

ce
 p

ar
am

et
er

s 

Aftershock flag ●   ●       

Closest distance to the rupture plane, RRUP ●  ● ● ● ●   ● ●

Horizontal distance to the surface projection of the 
rupture (Joyner-Boore distance), RJB

● ● ● ●   ●    

Horizontal distance to the top edge of the rupture 
measured perpendicular to the strike, RX

●   ●       

Closest distance to the rupture plane within the zone 
of seismogenic rupture (seismogenic distance), RSEIS

       ●   

Hypocentral distance, RHYP          ● 

D
is

ta
nc

e 
an

d 
pa

th
 p

ar
am

et
er

s 

Hanging wall flag ●   ●  ●     

Time-averaged shear wave velocity over the top 30 
meters of the subsurface, VS30

● ● ● ●   ●    

Depth to bedrock or specific shear wave velocity 
horizon (Z1.0, Z2.5, or D) 1

●  ● ●    ●   

Site conditions flag 2      ●  ● ●  

Si
te

 p
ar

am
et

er
s 

PGA (or Sa) on rock, as baseline for nonlinear site 
response 

● ● ● ●  ●     

NOTES: 

1.  AS08 and CY08 use depth to Vs = 1.0 km/s (Z1.0), CB08 uses depth to Vs = 2.5 km/s (Z2.5), and C97 uses depth to basement rock (D). 

2.  AS97 and SCE97 differentiate deep soil sites from sites composed of rock or shallow soil.  C97 has separate categories for soil, soft rock,

     and hard rock. 
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For the Parkfield and San Simeon earthquakes, which are not 
present in the NGA flatfile, we determined the explanatory 
variables from a variety of sources.  Source characteristics 
such as depth to top of rupture, down-dip rupture width, and 
fault dip were determined by selecting a finite fault model for 
the Parkfield (Dreger, 2004) and San Simeon (Rolandone et 
al., 2004) earthquakes.  The distance measures were calculated 
directly from the source-to-site geometry for each location.  
Some of the stations that recorded the Parkfield and San 
Simeon earthquakes also recorded other earthquakes in the 
NGA flatfile; site characteristics for these stations were 
determined directly from the flatfile.  For the other locations, 
site characteristics were determined from measured shear 
wave velocity data if available (Kayen, 2007; Real, 1988).  
For locations without measured VS profiles, site characteristics 
were inferred from surficial geologic units (California 
Geological Survey, 2007; Shakal et al., 2005) using the 
classification scheme of Wills and Clahan (2006), which the 
NGA research team also used to estimate VS30 for many 
records in the flatfile (Chiou et al., 2008). 
 
 
Response variables
 
The response variables for the GMPEs are peak ground 
acceleration (PGA), peak ground velocity (PGV), and 5%-
damped elastic pseudo-response spectral acceleration (Sa).  
All models have equations for PGA and Sa, although the 
spectral periods with defined coefficients vary from model to 
model, especially for the older models.  Four of the NGA 
models (AS08, BA08, CB08, and CY08) and one of the 
previous models (C97) have equations for PGV.  In this study, 
we analyze PGA and Sa for the six spectral periods 
represented in the USGS national seismic hazard maps:  0.1, 
0.2, 0.3, 0.5, 1.0, and 2.0 seconds (Petersen et al., 2008).  
Being represented in the national seismic hazard maps, these 
spectral periods have significant engineering consequences.  
Furthermore, all ten GMPEs have defined coefficients for 
these periods, so cross-comparisons can easily be made.  The 
previous GMPEs offer predictions for Sa to maximum periods 
of 2 to 5 seconds, whereas the new GMPEs offer predictions 
up to 10 seconds.  Although the new GMPEs can predict Sa at 
long periods, the database of ground motions at long periods is 
small (Abrahamson and Silva, 2008), and the computed values 
of Sa for long periods are more sensitive to noise (Boore and 
Atkinson, 2007).  Accordingly, in this paper, we focus our 
analysis on periods of 2 seconds and smaller. 
 
The observed ground motions for records in the NGA database 
were obtained directly from the flatfile.  To calculate the 
observed ground motions for the Parkfield and San Simeon 
earthquakes, which are not present in the flatfile, we first 
obtained the acceleration time histories and response spectra 
from various agencies with strong motion stations (California 
Geological Survey, 2004; United States Geological Survey, 
2004).  The new and old GMPEs differ on how the two 
horizontal, orthogonal components of ground motion are 
combined to obtain a single value for a location.  The previous 
GMPEs utilize the simple geometric mean of the as-recorded 

two horizontal components, whereas the new GMPEs utilize 
GMRotI50, the geometric mean independent of the orientation 
of the instruments used to record the horizontal motion (Boore 
et al., 2006).  We utilized a FORTRAN procedure provided in 
Boore (2008) to compute GMRotI50 from the recorded 
acceleration time histories. 
 
 
Ranges of applicability of the models
 
Each model is applicable only within specific ranges of 
magnitude, distance, and other variables.  Table 3 presents the 
ranges of applicability of the five NGA models, which have 
specific requirements for magnitude, distance, and VS30.  
Campbell and Bozorgnia (2008) specify some additional 
requirements regarding the depth parameter Z2.5, depth to top 
of rupture ZTOR, and fault dip δ.  At the bottom of Table 3 is a 
summary of the requirements that an earthquake ground 
motion record must meet in order to be applicable to all five 

Table 3. Ranges of applicability of the NGA models 
     

Model Magnitude Distance 
[km] 

VS30  
[m/sec] 

Additional 
requirements 

AS08 5.0 < M < 8.5 RRUP < 200 No specification − 

BA08 5.0 < M < 8.0 RJB < 200 180 < VS30 < 1300 − 

CB08 4.0 < M < 7.5 (N*), 
8.0 (R), 8.5 (SS) RRUP < 200 150 < VS30 < 1500 

Z2.5 < 10 km 
ZTOR < 15 km
15° < δ < 90°

CY08 4.0 < M < 8.0 (N 
and R), 8.5 (SS) RRUP < 200 150 < VS30 < 1500 − 

I08 4.5 < M < 8.0 RRUP < 200 VS30 > 450 − 

ALL 

Normal faulting:  
5.0 < M < 7.5 

 

Reverse and strike-
slip faulting: 
5.0 < M < 8.0 

RRUP < 200 
and 

RJB < 200 

Excluding I08: 
180 < VS30 < 1300 

 

Including I08: 
450 < VS30 < 1300 

Z2.5 < 10 km 
ZTOR < 15 km
15° < δ < 90°

NOTE: 
* For CB08 and CY08, different maximum magnitudes are specified for 

normal (N), reverse (R), and strike-slip (SS) faulting mechanisms. 

Table 4. Ranges of applicability of the previous models 
    

Model Magnitude Distance [km] Spectral Period [sec]

 Min Max Type Max Min Max
AS97 − 1 8.5 RRUP − 0.01 5.0 
BJF97 5.5 7.5 RJB 80 0.10 2.0 
C97 5.0 − RSEIS 60 0.05 4.0 

SCE97 4.0 − RRUP 100 0.07 4.0 
I91 − − RRUP, RHYP 

2 − 0.03 5.0 

NOTES: 
1.  An en dash (−) means that the model does not explicitly specify a 

minimum or maximum. 
2.  I91 specifies RHYP for M < 6 and RRUP for M > 6. 

Paper No. 3.05a  4 



models; we followed these requirements when developing our 
testing subsets. 
 
Table 4 presents the ranges of applicability of the five 
previous models.  In addition to the smaller range of spectral 
periods with defined coefficients, the most notable difference 
between the previous models and the new models is the 
smaller range of distances to which the previous models may 
be applied.  Although some of the previous models do not 
specify maximum distances explicitly, 100 km is generally 
viewed as a reasonable limit.  Campbell and Bozorgnia (2003) 
suggest that even the models with specific distance limits 
(such as BJF97 and C97) may be reasonably extrapolated to 
100 km. 
 
 
Testing subsets
 
In order to perform a quantitative comparison of the predictive 
abilities of the NGA models, the first logical step is to test the 
models on the NGA database, upon which the new models 
were developed.  The NGA database contains many records 
that do not meet the criteria specified in Table 3.  As a result, 
we needed to generate testing subsets of the NGA database 
containing records that met all the requirements of the models.  
Figure 1 is a flowchart illustrating the testing subsets and the 
number of ground motion records in each of the subsets.  We 
made a distinction between mainshocks and aftershocks 
because some of the NGA model developers (BA08 and 
CB08) did not include aftershocks in their regression 
databases.  Thus, the testing of the BA08 and CB08 on the 
aftershocks subset serves as a blind test for these models.  In 
order to test the I08 model, each subset was further subdivided 
into soil sites (180 < VS30 < 450 m/sec) and rock sites (450 < 
VS30 < 1300 m/sec, where I08 is applicable).  Because of the 
differing assumptions made by the developers, the final testing 
subsets do not perfectly match the regression datasets of any 
of the developers, but they provide a useful basis for 
comparison. 
 

We also compare the effect of distance on prediction accuracy, 
using subdivisions of small (RRUP < 10 km), medium (10 < 
RRUP < 100 km), and large distances (100 < RRUP < 200 km) 
for subsets with sufficient data in each category.  Ground 
motion often displays little attenuation at distances less than 
10 km (hence the first boundary), and the 100 km boundary 
separates the ranges of applicability of the previous and new 
models.  The previous models cannot be tested on the large-
distance subset. 
 
The blind comparison using the new and old models was 
performed using the database of new earthquakes.  In order to 
test both the new and old models on the Parkfield and San 
Simeon earthquakes, we restricted records to distances no 
greater than 100 km from the earthquake source.  Most of the 
records for the Parkfield earthquake are near-source, but most 
of the records for the San Simeon earthquake are at distances 
greater than 100 km.  Because the database for the San 
Simeon earthquake was reduced to only 8 records, we did not 
subdivide this dataset.  We did not compare the previous 
models with the new models using the NGA testing subsets.  
Because the NGA models were exposed to larger portions of 
these testing subsets during model development, the NGA 
models would have an unfair advantage. 
 
In developing the final testing subsets, we deleted non-
applicable records from the NGA flatfile if they did not meet 
the criteria in Table 3 (since only the new models are tested), 
and we deleted records from the database of new earthquakes 
if they did not meet the combined criteria in Tables 3 and 4 
(since both the new and old models are tested).  We also 
deleted records not representative of free-field conditions, 
records without finite fault models (which did not have values 
for RRUP, RJB, W, or ZTOR), records missing other important 
information (such as VS30 or Sa), and records with identified 
problems.  Boore and Atkinson (2007) provide a useful 
record-by-record summary of reasons for excluding records 
from the NGA flatfile. 
 
 
METHODS 
 
Implementation of the models
 
For each earthquake ground motion record in each of the 
testing subsets, we computed median estimates of PGA and Sa 
at periods 0.1, 0.2, 0.3, 0.5, 1.0, and 2.0 sec.  We consider 
PGA to be part of the acceleration response spectrum with a 
period of 0.01 sec, because most of the models (CB08, CY08, 
and I08) have identical coefficients for PGA and Sa(0.01 sec).  
Idriss (2008) notes that the values of PGA and Sa(0.01 sec) in 
the flatfile are generally within 2% of each other. 
 
A median prediction represents a model’s best estimate of the 
expected ground motion at a site.    Thus, a comparison of 
different models’ median ground motion estimates with the 
observed values allows us to quantify the various models’ 
goodness of fit.  To perform our computations, we utilized the Fig 1. Flowchart of the subset delineation process, 

along with the sample size of each final subset. 
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open-source statistical language and environment R (R Core 
Development Team, 2009). 

Table 5.  Coefficients of efficiency for mainshocks 

 
 
Goodness-of-fit measures
 
Goodness-of-fit statistics are utilized to quantify the 
comparison of the model predictions with the observed ground 
motion records.  The primary statistic we use as our basis of 
comparison is the Nash-Sutcliffe model efficiency coefficient 
(E), a commonly used statistic in hydrology (Nash and 
Sutcliffe, 1970).  The coefficient of efficiency is calculated by 
the equation 
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where m is the number of periods under consideration (for this 
study, m = 7), n is the number of ground motion records in the 
dataset, the observed values (PGA, Sa, etc.) are denoted by Yij, 
predicted values are denoted by , and the mean of the n×m 

matrix of observed values is denoted by 
jiŶ

Y .  This calculation 
weights contributions from each of the seven periods equally.  
The value of E may vary between −∞ and 100%; when E is 
less than 0, the arithmetic mean of the observed values has 
greater prediction accuracy than the model itself.  Compared 
to other goodness-of-fit statistics (such as the correlation 
coefficient, r), the coefficient of efficiency is more sensitive to 
additive and multiplicative differences between the model 
predictions and observations, and thus is a better indicator of 
goodness of fit (Legates and McCabe, 1999).  We computed E 
using the observed and predicted values in real space (as 
opposed to logarithmic space, in which the models were 
developed), since seismic hazard assessment is concerned with 
the real values of the response variables (not the logarithms of 
the values). 
 
 
RESULTS 
 
Mainshocks 
 
Table 5 presents the NGA models’ prediction accuracy for 
PGA and Sa, when testing the models on mainshocks from the 
NGA database, the largest subset in this study.  The 
coefficients of efficiency for the subdivisions of VS30 and R are 
presented, in addition to the total coefficient of efficiency on 
the entire mainshocks subset.  In the total sense, the values of 
E are generally between 40 and 60 percent.  All models 
perform more poorly at small and large distances than at 
intermediate distances.  In two cases (CY08 for small 
distances and AS08 for large distances), we find E to be less 
than zero, indicating that the mean of the observed motions is 
a better predictor than the GMPEs in these cases.  Quite 
interestingly, the two models with the highest prediction 
accuracy, BA08 and CB08, are two of the simpler NGA 

models.  The more complicated models, AS08 and CY08, do 
not perform as well.  When included in the testing subset for 
rock sites, the I08 model ranks fourth of five. 
 
 
Aftershocks
 
The models’ prediction accuracy for aftershocks is less than 
that of mainshocks, as seen in Table 6.  The ranges of E are in 
the 40- to 50-percent range when the whole subset is analyzed.  
Most models suffer a considerable decrease in E from soil to 
rock, most noticeably the AS08 model.  Only the AS08, 
CY08, and I08 model teams included aftershocks in their 
regression datasets.  The CB08 model tends to over-predict 
ground motion for aftershocks, and thus has a lower 
coefficient of efficiency.  However, the BA08 model, having 
not been influenced by any of the values in this subset during 
model development, performs surprisingly well. 
 
 
Blind comparison test 1:  Parkfield earthquake
 
The M 6.0 Parkfield earthquake of 2004 generated an 
unprecedented amount of near-source ground motion records.  
Of the 85 records with RRUP < 100 km that we tested, 58 
records (68%) are located within 10 km of the ruptured area.  
As noted by Shakal et al. (2005), the ground motions near the 
fault were highly variable in the Parkfield earthquake.  The 
high near-source variability in the observed ground motions is 
manifested in the models’ relatively low prediction accuracy 
for this earthquake, presented in Table 7.  When the analysis is 

in the NGA database 
   

  NGA models 
  AS08 BA08 CB08 CY08 I08 

Soil 57.7 59.5 60.4 53.7 − Subdivision 1 
Rock 49.7 55.6 57.2 23.5 43.4 

Small R 22.6 34.8 35.4 −11.8 − 
Medium R 45.5 45.4 47.2 36.7 − Subdivision 2 

Large R −6.5 15.3 23.8 3.5 − 
Total E 54.8 58.1 59.3 42.7 − 

Model rankings 
based on total E 3 2 1 4 − 

Table 6.  Coefficients of efficiency for aftershocks 
in the NGA database 

   

  NGA models 
  AS08 BA08 CB08 CY08 I08 

Soil 51.2 49.8 44.6 45.8 − Subdivisions 
Rock 25.6 39.2 28.6 30.9 37.4 

Total E 47.9 47.6 41.2 43.1 − 
Model rankings 
based on total E 1 2 4 3 − 
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separated into categories by distance, the coefficients of 
efficiency for the NGA models at small distances are similar 
to the values in mainshocks subset (E less than 30%).  At 
medium distances, all models—new and old—have relatively 
high values of E (above 65%), with the CY08 model 
performing best.  When the analysis is separated by VS30, the 
models’ performance at soil sites is better than their 
performance at rock sites. 
 
For some—but not all—of the cases, the NGA models 
outperform their previous counterparts.  When comparing the 
total dataset, the CB08 relationship has the highest coefficient 
of efficiency, followed by the BJF97 model, and then two of 
the NGA models (AS08 and BA08).  Interestingly, the BJF97 
model performs at a level similar to that of to its contemporary 
(BA08), and noticeably better than the other models in the 
previous generation.  One difference between BJF97 and the 
other previous models is that Boore et al. (1997) were the first 
team to quantitatively incorporate site characteristics into a 
GMPE, perhaps giving the model greater prediction accuracy. 
 
 
Blind comparison test 2:  San Simeon earthquake
 
As Table 8 illustrates, the prediction accuracy of the models is 
much better for the San Simeon earthquake than for the 
Parkfield earthquake, most likely because highly variable 
near-source ground motions no longer dominate the database.  
The coefficients of efficiency are within a narrow range for 
the four NGA models (hovering near 70%), with the CY08 
model performing best.  Unlike the Parkfield earthquake, there 
is a clear difference between the new and previous models for 
the San Simeon earthquake.  All four NGA models have 
higher values of E than their previous counterparts, with an 
average increase of 17.2%. 
 
 
 
 

DISCUSSION 
 
Incorporation of aftershocks in model development
 
As already explained, each NGA modeling team made 
different decisions when selecting their regression datasets 
from the NGA flatfile, but one of the most significant 
decisions was whether or not to include aftershocks.  The 
aftershock records of the 1999 M 7.6 Chi-Chi, Taiwan, 
earthquake, comprise 83% of the aftershock records in the 
flatfile and 97% of the aftershock records in our subset.  (The 
reason why the proportion in our subset is so large is because 
finite fault models were only developed for 7 aftershocks in 
the NGA flatfile, four of which were aftershocks of the 
widely-recorded Chi-Chi earthquake.)  The AS08, CY08, and 
I08 model teams included aftershocks in their regression 
datasets, most of which were from the Chi-Chi sequence.  One 
potential problem with including such a high proportion of 
records from a single event is that the model may become 
over-fit toward the characteristics of that event, and the 
model’s ability to generalize to other situations is lowered.  
This could be one potential reason why the BA08 and CB08 
models outperformed the AS08, CY08, and I08 models on the 
mainshocks subset, which comprised more earthquakes (50) 
than any other subset in this study. 
 
In assessing seismic hazards, the greatest hazard contribution 
comes from mainshocks, not aftershocks.  For a given 
magnitude, aftershocks tend to generate smaller ground 
motions than mainshocks of same magnitude, and the spectral 
scaling is different (Boore and Atkinson, 2008; Boore and 
Atkinson, 1989; Atkinson 1993).  Mainshocks are more likely 
to generate greater ground motions at a site.  We do not intend 
to discount the importance of aftershocks, as aftershocks 
generate potentially devastating stresses and strains on 
already-fatigued systems, but we argue that mainshocks are 
more important from the point of view of seismic hazard map 
generation.  Thus, the most important testing subset in this 
study is the mainshocks subset. 

Table 8. Coefficients of efficiency for the San Simeon dataset 
             

  NGA models Previous models 
   AS08 BA08 CB08 CY08 I08 AS97 BJF97 C97 SCE97 I91 

Total E 66.2 67.0 66.2 70.3 − 58.8 58.8 49.2 34.0 − 

Model rankings based on total E 3 (tie) 2 3 (tie) 1 − 5 (tie) 5 (tie) 7 8 − 

Table 7. Coefficients of efficiency for the Parkfield dataset 
             

  NGA models Previous models 
   AS08 BA08 CB08 CY08 I08 AS97 BJF97 C97 SCE97 I91 

Soil  36.6 34.7 42.0 24.3 − 32.4 40.0 32.7 31.6 − Subdivision 1 
Rock  43.1 44.7 41.1 30.3 40.9 8.7 44.4 19.1 15.1 26.8 

Small R  23.0 20.7 26.7 5.2 − 8.4 25.6 11.4 9.1 − 
Subdivision 2 

Medium R  65.0 70.5 74.9 75.9 − 73.0 75.6 73.8 74.3 − 
Total E 38.1 36.9 42.0 25.8 − 27.7 41.1 30.1 28.4 − 

Model rankings based on total E 3 4 1 8 − 7 2 5 6 − 
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The AS08, CY08, and I08 model teams included aftershocks 
in their regression datasets, but only the AS08 and CY08 
models include an aftershock dummy variable that reduces the 
ground motion estimate when the earthquake is an aftershock.  
Because aftershocks are associated with smaller ground 
motions than mainshocks for a given magnitude, the AS08 and 
CY08 teams utilize the aftershock dummy variable to alert the 
model to decrease its estimated ground motion when the 
GMPE is being used for an aftershock.  The inclusion of 
aftershocks in the regression subset for the I08 model without 
an appropriate dummy variable effectively treats aftershocks 
as equivalent to mainshocks, even though the ground motion 
and spectral scaling is known to differ.  As a result, the ground 
motion predictions for mainshocks are more prone to 
underprediction.  We recommend that model developers 
utilize aftershock dummy variables when they choose to 
include aftershocks in their regression datasets; however, our 
results suggest that aftershocks should not be included in 
model development. 
 
 
Uncertainty of site parameters 
 
Of the model parameters, the greatest contribution to 
epistemic uncertainty comes from VS30 (Abrahamson and 
Silva, 2008).  One of the major problems of shear wave 
velocity data is that actual measurements are sparse.  Only 
about 30% of the stations in the NGA database have measured 
values of VS30 (Power et al., 2008); the remainder are inferred 
using correlations of VS30 with surficial geology, such as those 
published by Wills and Clahan (2006).  However, Scott et al. 
(2004) find that shear wave velocity correlates poorly with 

geologic units.  In Fig. 2, we explore the accuracy of inferring 
VS30 from surficial geology.  For the 258 California stations in 
the flatfile with measured VS profiles, we utilize the 
correlations in Wills and Clahan (2006) to estimate VS30 from 
surficial geology.  In addition to the measured stations in the 
flatfile, we include 55 stations in the Parkfield, California, 
vicinity with measured VS profiles provided by Kayen (2007).  
There is a huge amount of scatter to this plot, and the discrete 
categories based on surficial geologic unit are clearly visible.  
The coefficient of efficiency for this VS30 estimation procedure 
is 52.9%.    Although the NGA flatfile has estimated values of 
VS30 for almost every recording station, we suspect that many 
of the VS30 estimates are inaccurate. 
 
Even more difficult to estimate than VS30 are the depth 
parameters, Z1.0 (used in AS08 and CY08) and Z2.5 (used in 
CB08).    The preferred method of determining the depth 
parameters is using a site-specific measured VS profile that 
extends to the 1.0 km/sec and 2.5 km/sec horizons.  
Unfortunately, only 54 sites in the NGA flatfile have 
measured VS profiles that reach 1.0 km/sec (Chiou and 
Youngs, 2008a), and even fewer reach 2.5 km/sec.  If the site 
is located in an area where a regional velocity model is 
available (such as San Francisco or Los Angeles), then the 
depth parameters may be determined from the regional 
velocity model.  If a measured VS profile or regional velocity 
model is unavailable (which is the most common case), the 
depth parameters are determined by the recommendations of 
the model developers. 

Fig. 2. Measured VS30 versus the corresponding values of VS30 
inferred from surficial geology using Wills and Clahan (2006), 

for sites in California with measured VS profiles. 

 
Abrahamson and Silva (2008) recommend using the following 
median relationship to estimate Z1.0 from VS30: 
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Chiou and Youngs (2008a) recommend using the following 
equation to estimate Z1.0 from VS30: 
 

( .7.378ln
8
82.35.28exp 88

300.1 ⎥⎦
⎤

⎢⎣
⎡ +⋅−= SVZ )  (4)

 
In order to estimate Z2.5, Campbell and Bozorgnia (2007) offer 
guidelines for extrapolating the estimates of Z1.0 or Z1.5 if these 
values are available.  If neither Z1.0 nor Z1.5 is known, and if 
basin depth is not known to be particularly shallow or deep, 
then Campbell and Bozorgnia recommend assigning Z2.5 to the 
“default value” of 2 km.  In this case, VS30 will solely represent 
the site characteristics in the ground motion calculation.  
Campbell (2000) offers advice and clarifications for the depth 
to basement rock D found in his 1997 relationship. 
 
Graphs of the two median relationships for Z1.0 are presented 
in Fig. 3, along with data from the 448 sites in the NGA 
flatfile with specified values of Z1.0.  The considerable amount 
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of scatter in Fig. 3 is even more apparent when comparing 
plots of measured versus calculated Z1.0 (Fig 4).  For each of 
the 448 sites in the flatfile with specified values of Z1.0, we 
calculate Z1.0 from VS30 using Equations 3 and 4.  The 
coefficients of efficiency are only 25.6% for the AS08 
equation and −7.7% for the CY08 equation, indicating that the 
median equations suggested by Abrahamson and Silva (2008) 

and Chiou and Youngs (2008a) fare poorly when estimating 
Z1.0 from the flatfile.  Moreover, the Z1.0 estimates are 
numerically bounded at maximums of 849.8 m for Equation 3 
and 337.5 m for Equation 4.  Abrahamson and Silva (2008) 
developed Equation 3 from analytical site response models.  
Chiou and Youngs (2008b) describe how they utilized an 
updated velocity model for southern California when they 
developed Equation 4, which has smaller depth parameters 
than the previous velocity model reflected in the flatfile.  
Therefore, it is not surprising that there is some disagreement 
between Equations 3 and 4 and the values in the flatfile, but 
the discrepancies demonstrate that the depth parameters are 
fraught with uncertainty. 
 
The key problem with site characteristics in GMPEs is a lack 
of measurements.  For the majority of cases, site-specific VS30 
measurements are unavailable; therefore, VS30 is inferred from 
surficial geology or site conditions.  Then, the depth 
parameters are estimated from VS30.  When this happens, 
information about the ground surface (i.e., surficial geology) is 
being used to estimate a parameter that involves 30 m of depth 
(VS30), which in turn is used to estimate a parameter that 
typically involves depths much greater than 30 m (Z1.0 or Z2.5).  
It is widely agreed that site characteristics should be 
incorporated into GMPEs.  In our results, we find that models 
with quantitative site parameters (i.e., AS08, BA08, CB08, 
CY08, BJF97, and C97) generally perform better than models 
that do not include site parameters, or models that only include 
a dummy variable.  However, to improve the prediction 
accuracy of the models, we argue that there must be a greater 
emphasis on site-specific data collection.  An increased 
database of site characteristics would reduce the scatter in 
Figs. 3 and 4, and would ultimately lead to more reliable 
ground motion predictions. 

Fig. 3. Z1.0 versus VS30 for records in the NGA flatfile having 
specified values of Z1.0.  Also shown are the median equations 
employed by the AS08 and CY08 models for estimating Z1.0 as 

a function of VS30. 

 
 
Effect of distance on prediction accuracy 
 
As seen in Tables 5 and 7, the GMPEs perform best at 
intermediate distances, where the largest amount of data is 
available.  In addition to the lack of data, ground motion is 
highly variable at small distances, and the estimation of 
ground motion at large distances raises other complications, 
such as Moho bounce effects.   As a result, ground motions at 
small and large distances are more difficult to predict than 
ground motions at intermediate distances.  The CY08 model 
performs poorly in several of the subsets, but performs 
superiorly in the blind comparison tests in the intermediate 
distance range.  One of the key differences in model 
development is that Chiou and Youngs (2008a) only included 
sites within 70 km of rupture in their regression dataset, while 
the other NGA research teams included sites within 200 km.  
Perhaps the over-fitting of the CY08 model to intermediate 
distances gives it increased predictive capabilities within that 
range, and decreased predictive capabilities outside of that 
range. 

Fig. 4. Comparison of Z1.0 calculated from VS30 using the 
median equations versus the corresponding values of Z1.0 from 

the flatfile, for Equation 3 (AS08) and Equation 4 (CY08). 
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Improving prediction accuracy
 
In this paper, we have focused our comparisons on the 
models’ median estimates of PGA and Sa.  The median 
equations are the models’ best estimates of the expected 
ground motion, and they are the key focus of the model 
development efforts.  However, we must emphasize the 
importance of the uncertainties of the median estimates.  
Ground motion variability has often been disregarded or 
discounted in the application of GMPEs (Bommer and 
Abrahamson, 2006).  Strasser et al. (2009) present a good 
discussion of the contributions to uncertainty and the 
challenges in reducing them.  They claim that reductions in 
uncertainty are not necessarily brought by increasing the 
number of explanatory variables in the models or increasing 
the quantity of ground motion records in the regression 
datasets.  Kuehn et al. (2009) warn about the dangers of over-
fitting using the current approaches to model development, 
and propose an alternative method for the development of 
GMPEs that uses generalization error minimization 
techniques. 
 
Table 9 is a summary of the model rankings for all the testing 
subsets.  The excellent performance of the simpler models 
(BA08 and CB08) on the mainshocks subset and their 
generally high rankings on the blind comparison subsets lends 
credence to the suggestion that more complicated models do 
not necessarily offer more accurate predictions.  A higher-
quality regression dataset (not necessarily higher-quantity) 
with greater measurements of site characteristics, coupled with 
simple functional forms in the GMPEs, may yield the best 
solution. 
 
 
CONCLUSION 
 
Using the Nash-Sutcliffe model efficiency coefficient (E) as 
the primary goodness-of-fit statistic, we have compared the 
prediction accuracy of the five ground motion prediction 
relations released as part of the NGA project.  The coefficient 
of efficiency, commonly used in hydrology, is a superior 
goodness-of-fit statistic to many other statistics found in the 
literature, and it works well as a framework for validating 
alternative predictions.  First, we tested the NGA models on 
subsets of the database upon which they were developed.  
Then, we compared the performance of the new models with 

the previous generation of models by implementing a blind 
comparison test on two recent California earthquakes (the 
2004 M 6.0 Parkfield earthquake, and the 2003 M 6.5 San 
Simeon earthquake), which were not present in any of the 
databases used to develop the models.  The newer models 
generally perform better than their previous counterparts in 
these blind tests, but all models had difficulty predicting the 
highly variable near-source ground motions of the Parkfield 
earthquake. 
 
We find that the decisions that model developers make when 
selecting their regression datasets greatly influence the 
models’ predictive capabilities.  Allowing a model to be 
extrapolated to distances far beyond the range found in the 
regression dataset may be detrimental from a prediction 
standpoint.  Especially on the blind comparison test, the CY08 
model (developed only with data from distances no greater 
than 70 km from the earthquake source) performs relatively 
well at intermediate distances, but it performs more poorly 
than the other models at small and large distances.  Including 
aftershocks in the regression dataset may lead to 
unconservative ground motion predictions if they are not 
properly dealt with through the use of an aftershock dummy 
variable, and in general do not appear to help in model 
prediction accuracy.  Including large numbers of records from 
single earthquakes (such as the high number of records from 
the Chi-Chi mainshock and aftershocks) can result in over-
fitting the data to those particular scenarios, thus reducing the 
models’ ability to generalize to other situations.  High model 
complexity, whether through large numbers of explanatory 
variables or convoluted functional forms, can also lead to 
over-fitting.  We find that two of the models with simpler 
functional forms and explanatory variables, BA08 and CB08, 
have the highest prediction accuracy when tested on a 
comprehensive subset of mainshocks from the NGA database, 
and also perform well in blind situations.  These results 
suggest that increasing the complexity of GMPEs does not 
necessarily increase their prediction accuracy.  Instead of 
increasing the models’ complexity, an increased emphasis on 
the measurement of site parameters would lead to a higher-
quality regression dataset, which would ultimately lead to 
better ground motion predictions in the future. 
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