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Toyoaki Nogami 
Professor of Civil Engineering, University of Cincinnati, 
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Hsiao-Lian Chen 
Senior Engineer, M.W. Kellog Company, Houston, Texas 

SYNOPSIS A rational and yet convenient approach is presented to account for the dynamic soil-pile interaction in the vertical vibration 
analysis of a nonlinear pile foundation. Once elastic soil properties and static complex unit load transfer curves are provided, the approach 
is capable of reproducing the dynamic and nonlinear conditions mutually coupled. The concept of the approach is verified by numerical 
analyses. The proposed approach is demonstrated for the prediction of vibration response of a selected pile foundation in the field. Both 
static load tests and vibration tests were conducted previously on this pile foundation. Inputs for the analysis are obtained from the 
previous static test results. The comparison of the predicted responses with those observed indicates that the proposed approach appears 
to be reasonable. 

INTRODUCTION 

Various methods have been developed to compute the dynamic 
response of pile foundations. Among them, those simplifying soil with 
a Winkler model are most convenient and practical for computation. 
However, a soil medium is continuous and therefore a great difficulty 
arises in defining the parameters of this model. In the static condition, 
such a treatment of a continuous medium is totally illogical therefore 
the model parameters are defined empirically, simply to fit the target 
response. In the dynamic condition, however, it is logical from the 
wave propagation mechanism point of view (Nogami and Novak, 1980) 
and thus the model parameters can be defined from the logical 
treatment. 

Traditionally, nonlinear pile response is analyzed by using a 
Winkler model defined by a unit load transfer curve such as so-called 
p-y and t-z curves (e.g. Matlock, 1970). For the linear elastic or visco­
elastic condition, Novak (1974) defined the parameter of a dynamic 
Winkler soil-pile interaction model, which can produce the pile 
responses amazingly close to those computed by using a three­
dimensional continuous model (Sanchez Salinero, 1982). Rational 
reasoning for Novak's definition of model parameters is provided in 
view of the mechanism of wave propagation (Nogami and Novak, 
1980). Combining the traditional approach with the above rational 
approach for a linear elastic model, the first author has proposed 
nonlinear dynamic soil-pile interaction models both for the time­
domain and frequency-domain (e.g. Nogami and Konagai, 1986, 
Nogami et al., 1992). This paper deals with a frequency domain model 
for the vertical response. 

SOIL-PILE INTERACTION FORCE 

Soil around the pile shaft is divided into the near field and far 
field. The near field represents the soil in the close vicinity of the pile 
shaft, where strong nonlinearity is induced by large pile shaft 
displacement. The far field represents the soil outside the near field 
soil. The soil in this region is assumed to be located at a distance from 
the pile far enough to behave more or less elastically even if the shaft 
displacement is large. The energy exerted on soil by pile motion must 
pass through the near field before reaching the far field. The 
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nonlinearity in the near field interferes this energy transmission to the 
far field, resulting in coupling between the dynamic condition and 
nonlinear condition. This coupling can be reproduced rationally by a 
subgrade model in which the near field model (near field element) is 
connected to the far field model (far field elemt:.;t) in series as shown in 
Fig. I. 

PILE SHAFT 

NEAR FIELD ELEMENT 

FAR FIELD ELEMENT 

Fig. I Soil-pile interaction model made of 
near field and far field elements 

For the steady state cyclic environment, the relationship 
between the pile shaft displacement and soil reaction force at a given 
depth draws a hysteresis loop during one cycle of motion as shown in 
Fig. 2. The maximum values of force and displacement are amplitudes. 
The enclosed area is related with damping defined herein through the 
relation 

D= I AREA 
21t Pmax W max 

(1) 

where AREA= enclosed area in the loop; Pmax and Wmax = force and 
displacement amplitudes, respectively; and D = damping factor. The 
force amplitude and damping in a hysteresis loop are dependent on 
displacement amplitude and frequency. The soil stiffness for a 
hysteresis behavior is conveniently defined in the frequency domain by 
a complex number such that 

Real k = Pmax 

wmax 
and 

2Dp 
Imag. k =--...!!!!!.. 

wmax 
(2) 



p Backbone 
Curve 

Fig. 2 Hysteresis loop in cyclic motion 

Therefore, if two curves as shown in Fig. 3 are available, the complex 
soil stiffness can be obtained as secant slopes of these curves. A set of 
these curves is called herein a complex unit load transfer curve (CULT 
curve), in which the real and imaginary parts define respectively the 
real and imaginary parts of the stiffness. The CULT curve is dependent 
on frequency and its real part is a backbone curve of hysteresis loops at 
various displacement amplitudes. In a conventional cyclic response 
analysis with a Winkler subgrade model, so called cyclic unit load 
transfer curves are provided as inputs. These are the real parts of the 
static CULT curves. In the present approach, both the real and 
imaginary parts of the static CULT curve are assumed to be provided as 
input information. 

p 

w 
2Dp 

w 

Fig. 3 Complex unit load transfer curve made of real and imag. parts 

(a) Far Field Element 

The far field element is modeled as a complex spring to 
reproduce the linear elastic behavior of a far field at the outer edge of a 
near field of size R. Its stiffness is, therefore, assumed to be defined 
from the vertical vibration of a rigid massless circular cylinder with a 
radius R, vertically embedded in an infinite medium. The stiffness for 
such conditions was formulated previously as (Novak et a!., 1978) 

(3) 

where kc = stiffness of the far field element; a~ = Rro I v: ; 

v: = ~G' I p ;G' = G(l+i2D); G, D and p =shear modulus, damping 
factor and unit mass of soil, respectively; R = radius of the cylinder; 
and ro = circular frequency. Eq. 3 fails to produce a reasonable value 
for the frequencies lower than the fundamental frequency of ground and 
thus the stiffness computed by Eq. 3 is modifies as shown in Fig. 4. 
The static kc, kc(O), in Fig, 4 is yet to be defined. 
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Fig. 4 Corrections in variation of stiffness with frequency 

A pile of a radius r0 is assumed to be subjected to a static axial 
load. Pile displacement at a given depth, w, can be written as 

(4) 

where wR = soil displacement at a radial distance R; l'l.w ,,,R = difference 

between the soil displacements at R and r0• In the stati~< condition, the 
integration of the vertical shear stress around the circle of a radius R, 
PR• is equal to the soil reaction force at the soil-pile interface p. 
Therefore, dividing Eq. 4 by the soil reaction force, p, and using a 
continuum solution for the second term, Eq. 4 is rewritten as 

I l ( I R) 
k(O) = kr (0) + 27tG log. r0 

or 

kr (0) = (-1-- (-?-tog. R)) -I 
k(O) 27tG r0 

(5) 

where plw = k(O); plwR = PRiwR = kt(O); and l'l.w ,,.R lp = 

loge(R!r0)1(27tG), formulated for an infinitely long rigid cylinder with 
radius r0, vertically embedded in an infinite medium. k(O) is the elastic 
stiffness defined by the initial secant slope in the real part of input static 
CULT curve. 

With kr given by either Eq. 3 or 5, the dynamic force­
displacement relationship of the far field is expressed as 

(6) 

where PR = the resultant force of the integration of the vertical shear 
stress around the circle of a radius R. 



(b) Near Field Element 

A near field element represents the soil in the close vicinity of a 
pile, where a strong nonlinearity is induced. This element consists of a 
frequency independent nonlinear complex spring and a consistent mass. 
The latter is for taking into account the dynamic condition in a near 
field. In the static condition, the stiffnesses of near field and far field 
elements (len and kt(O), respectively) and the stiffness of a subgrade 
model made of these elements (k(O)) are related through 

1 1 1 
--=-+--
k(O) k. kr(O) 

or 

k = kr(O)k(O) 
n kr(O)- k(O) 

(7) 

kt(O) is previously given by Eq. 5, and k(O) is defined by the secant 
slope in the input static CULT curve at an appropriate displacement 
amplitude. 

Assuming a linear variation of soil displacement with a radial 
distance from the pile, a consistent mass matrix at r0 and R is expressed 
as 

m,.R J 7tpr~ ( l R I r0 + 3 3R I r0 + 1] =-- Rlr0 -1 
mR 6 3R I r0 + 1 R I r0 + 1 

(8) 

With k0 given in Eq. 7 and a consistent mass given in Eq. 8, the 
dynamic force-displacement relationship of the near field element is 
expressed as 

(9) 

(c) Soil-Pile Interaction Force and Pile Response 

Combining Eqs. 6 and 9, the following expression is obtained: 

{::} = [[:~. (10) -k ] 2[m, n (I) " 

k. +kr(ro) m,.R 

External force acting on the interaction model is the soil-pile interaction 
force, p, only (i.e. P,. = p and pR = 0) and w ,., is equal to the pile shaft 

displacement (i.e. w,., = w). Solving Eq. 10 for w,., with these 

conditions, the soil-pile interaction force is expressed as 

p = k(ro)w (11) 

where 

(12) 

Therefore, if a CULT curve is provided for the static condition, the 
dynamic soil stiffness, k(ro), can be completely defined at any 
frequency at any displacement amplitude. 

Vertical vibration of a pile foundation is governed by 
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(13) 

where EP, mP and A= Young' modulus, mass per unit length and cross 
section area of pile, respectively. Solving Eq. 13 with Eq. 11 for given 
boundary conditions of the pile shaft, the dynamic response of a pile 
foundation is formulated. In the development of formulation, the pile 
shaft is divided into a number of segments and the values of soil 
properties and stiffness, k(ro), are assumed to be uniform within an 
individual segment. Since k0 is dependent on the displacement 
amplitude which in tum is dependent on k0 , an iteration scheme is used 
to find the values of k0 and displacement mutually compatible. 

VERIFICATION OF CONCEPT 

An important feature of the present approach is that, if a CULT 
curve is provided only for the static condition, the dynamic nonlinear 
soil stiffness can be determined with the approach above explained. 
Its main concept is verified by using the finite element method (FEM) 
and the finite-boundary element method (FEM-BEM). The conditions 
considered for the verification are an infinitely long rigid circular 
cylinder which is vertically embedded in an infinite nonlinear 
medium. 

First, the CULT curve is constructed for the static cyclic 
condition by using the finite element method. The stress-strain and 
damping-strain relations used are those proposed by Hardin and 
Dreinovich (1972). They are 

G = Gmax 
Y /y r 

and D = Dmax y ly, 
1+y /y, 

(14) 

where G and D = strain dependent shear modulus and damping of soil, 
respectively; Gmax and Dmax = maximum values of G and D, 
respectively; andy,= •max/Gmax with •max = c + cr'tancj> and cr' =effective 
normal stress. Gmax, Dmax• and 'tmax are defined for typical soil 
conditions at a depth 7 feet below the ground surface at the UH pile 
load test site (i.e. Gmax = 24. 37 ksi; Dmax = 0.3; OCR= 10; Ko = 2; c = 
0.4 ksf; cj> = 26°). The fixed boundary condition is assumed at a radial 
distance 50r0• Given a displacement amplitude with a real number at 
the cylinder, the static complex interaction force is computed. This 
procedure is repeated for various displacement amplitudes to construct 
a CULT curve. 

Using the above obtained CULT curve as input, variations of 
the dynamic soil stiffness with displacement amplitude are computed at 
frequencies ao (= r0rolv.) = 0.01 and 0.1 by using Eq. 12. Sizes R used 
in the analyses are 1.5r0, 2r0 and 3r0• They are also computed by the 
FEM-BEM, in which the BEM is applied at the outer edge of the finite 
element mesh area to reproduce the behavior of a medium laterally 
extending to infinity. This FEM-BEM method can directly simulate the 
behavior affected by both the nonlinear and dynamic conditions 
simultaneously. The computed results by these two methods are 
compared in Fig. 5. The figure indicates that the stiffness computed by 
the present method is very little affected by the difference in size R. It 
is seen that the present approach can reproduce very well the dynamic 
behavior in the nonlinear environment or nonlinear behavior in the 
dynamic environment. 

PREDICTION OF VIBRATION RESPONSE 

Both static monotonic load tests and vibration tests were 



- - - PRESENT APPROACH 
UVr0 = 1.5) 

-- PRESENT APPROACH 
UVr0 = 3.0) 

e 0 FEM-BEM 

0.01 
DISPLACEMENT 

0.1 

Fig. 5 Nonlinear dynamic soil stiffnesses 
computed by proposed approach and FEM-BEM 

conducted on a common pile at the UH site (O'Neill et al., 1981). The 
input CULT curves are obtained from the static tests. With these 
curves, the responses of the pile during the vibration test are predicted 
by the present approach. The predicted responses are compared with 
the observed responses in the field. 

(a) Site and Test Conditions 

Detailed properties and characterization of the test site soil are 
described by O'Neill et al. ( 1981 ). Figs. 6, 7 and 8 are reproduced from 
this reference to show the stratigraphy, undrained shear strength and 
Young's modulus of soil at the test site, respectively. In general, the 
soil is very stiff, saturated clay preconsolidated by desiccation in the 
order of 6 tsf. The water table at the site is located at a depth 7.5 ft, 
below the ground surface. The layers depicted in Fig. 6 become 
generally less plastic, less compressible, and sandier with depth. 
Stratum C is silty and presents a zone of weathering on the prehistoric 
surface of a Pleistocene terrace. Soils above this stratum are 
slickensided, and those below that depth contain numerous sand seams. 

A set up of pile vibration test is shown in Fig. 9. The pile is a 
closed end steel tubular pile of 20.75 in. O.D. with a 0.365 inch thick 
wall. It was driven to a penetration depth 43 ft. and tested statically to 
failure in compression before the vibration test. Following the static 
tests and before the dynamic tests, the pile was redriven to a final 
penetration of 44 ft. in order to establish the conditions at the soil-pile 
interface that would have existed before the static tests. A rigid cap 
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F. VERY STIFF RED AND LIGHT BRAY CLAY CCL) 

Fig. 6 Stratigraphy of soil at test site 
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Fig. 7 Distribution of undrained shear strength of soil at test site 

mass, weighed 13,825 lb., was attached to the pile top. Strain gages 
were attached on the interior of the pile wall at intervals of 5 ft. from 
the base of the cap to the pile tip. In addition, the pile and cap-mass 
were instrumented with accelerometers and geophones. A linear 
inertia-mass vibrator, weighed 11,075 lb., was mounted on the cap­
mass. Load cells were placed between the vibrator and the cap-mass. 



Frequency downsweep load was applied from 50 Hz to 5 Hz 
during 30 sec. The load amplitude was held constant during each 
sweep at a level of 400, 4000 or 8000 lb. 

YOUNG'S MODULUS (psi) 

50 

60 • 

60000 100000 

UU TRIAXIAL 
COMPRESSION ( e) 

PRESSUREMETER ( A ) 

CROSSHOLE ( C:. ) 
(COMPUTED FROM 
SHEAR MODULUS) 

USED IN THE ANALYSIS 

Fig. 8 Distribution of Young's modulus of soil at test site 

STEEL 

273 mm O.D. 
11.3 mm WALL 

THICKNESS 

INERTIAL MASS VIBRATOR 
(WGT. • 73.2 kN) 

(MASS NOT USED IN 
MATHEMATICAL MODELS) 

CAP-MASS (WGT. • 55.3 kN) 

e PIEZOELECTRIC 
ACCELEROMETER 

0 GEOPHONE 
(ALSO ON SURFACE 
AT 3.1, 8.1 AND 
12.2 m FROM PILE fi) 

Fig. 9 Test pile and instrumentation system 

(b) Inputs for the Analysis 

The elastic (visco-elastic) parameters of soil are shear modulus 
(G), Poisson's ratio(v) and damping factor (D). Poisson's ration 0.5 
was assumed. The distribution of Young's modulus with depth varies 
widely depending on a test method as shown in Fig. 8. The previous 
investigation on pile groups at the site (Nogami and Paulson, 1984) 
found the proper distribution as indicated in the figure. The damping 
factor, D, in the far field is that corresponding to small strain levels. 
Resonant column tests results indicate these values at depths 6.6, 16.7 
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and 31.7 ft to be in the range of2-5% (Blaney and O'Neill, I986). A 
uniform value of2% is assumed along the depth. 

Unit load transfer curves of the pile considered herein were 
defined in the previous study on the static response (Nogami and 
Paulson, I984). They were generated from a formulation proposed by 
Vijayvergiya (I977) but with some modification. This modified 
formulation is 

(I5) 

where Pmax = 0.5cu with Cu = undrained shear strength; 13 = scaling 
factor (13 = I in the original expression); and we = displacement 
corresponding to Pmax· The values of undrained shear strength, Cu, to 
define Pmax are determined from the information given in Fig. 7, which 
is shown in Fig. IO. The values of we were computed from the 
following expression, originally proposed by Randolph and Wroth 
(I978) and later modified by O'Neill et al. (I982): 

W c = Pmax [0.67 +log. _2_G_L_,_(I_-_v....<.)] 
21tG r0 

(I6) 

where L = pile length; G = G at the mid-depth of the pile divided by G 
at the pile tip; and v =Poison's ratio of soil. It was found that the above 
unit load transfer curve with 13 = 0.3 produced the computed static 
response very close to the response observed in the static load test 
(Nogami and Paulson, I984). The initial slopes in the unit load transfer 
curves (elastic soil stiffnesses) were separately obtained from the initial 
slope of the load-settlement curve observed in the static load test, in 
order to correct the curves in the elastic range (Nogami and Paulson, 
1984). The above procedure to obtain the elastic stiffness of Winkler 
subgrade model was previously developed by Nogami and Chen 
( 1984 ). Assuming these developed curves as backbone curves of a 

4.0 

14FT 

Cu = 3.52 KSF l 
Cu • 3.00 T 

KSF 10FT 
.J._ 

2.0 0.0 

Fig. I 0 Undrained shear strength of soil used in computation 

hysteresis behavior, input CULT curves are developed: the real parts 
are backbone curves and the imaginary parts are obtained after 
constructing the hysteresis loops with these backbone curves and 
Masing' s rule. 



(c) Prediction of Response and Comparison with Observed Response 

Using the above defined input information, pile responses 
during the vibration test were predicted by the proposed approach. In 
the computation, the shaft is divided into twenty 2 ft. long segments 
plus a 3 ft long segment at the bottom. 

~ 4 

3 

-PREDICTED 
-- - OBSERVED 

40 
FREQUENCY (HZ) 

Fig. 11 Variations of displacement amplitude at rigid cap with 
frequency for various loading amplitudes 

0 

10 

30 

40 

DISP.AMP. FORCE AMP. 

DISP. AMP. AT CAP FORCE AMP. AT SURFACE 

0 0.5 1.0 
0 

0 0.5 1.0 

- COMPUTED AT 35HZ 
--- OBSERVEDAT35HZ 

40 

Fig. 12 Distributions of amplitudes of 
pile displacement and axial force along shaft 

The predicted and observed responses are shown in Fig. 11 for 
variations of displacement amplitude with frequency at the cap. They 
are also plotted in Figs. 12 and 13 for distributions of displacement and 
force along the shaft. The peak displacement and its location are 
reasonably well predicted for the loading amplitude 400 lbs., while the 
peak displacements are overestimated for higher loading amplitudes. 
The distribution of the axial force amplitude in the field (Fig. 12) 
indicates the loose contact between pile and soil within a depth about 7 
ft, which might have been caused during pile installation by driving. 
Although the loose soil-pile contact makes the distribution of the force 
amplitude in the field somewhat different from the predicted one within 
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a shallow depth, the predicted force and displacement amplitudes along 
the shaft appear to be reasonable in general. However, the 
displacement phase shifts (Fig. 13) are overestimated, particularly for 
those at 24-36Hz. When the soil-pile contact is tight, the energy 
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Fig. 13 Distributions of phase shifts of 
pile displacement and axial force along shaft 

dissipates into soil while it travels along the shaft. Thus, the phase shift 
at a one depth results from the accumulation of the energy loss along 
the depth from the ground surface through that depth. The analysis did 
not consider the loose soil-pile contact within a shallow depth. This 
situation may be corected roughly in the computed phase shift by 
subtracting the difference, between the phase shifts at 7 ft depth and at 
the ground surface, from the phase shift at any depth below 7 ft (i.e. 
shift the curve below 7 ft to the left by the above difference). The 
corrected phase shifts in this manner are much closer to the observed 
ones. 

CONCLUSIONS 

A rational model for a soil-pile interaction is explained for the 
vertical vibration response analysis of a nonlinear pile foundation. The 
model parameters are defined by the elastic constants of soil and static 
CULT cueve. The real part of the CULT curve is a conventional cyclic 



unit load transfer curve and the imaginary part is related with the 
hysteresis damping in the static cyclic condition. If the proposed model 
is defined by the proposed procedure, it can reproduce very well the 
nonlinear behavior and dynamic behavior mutually coupled and thus 
the nonlinear dynamic soil-pile interaction force. Both static load tests 
and vibration tests were conducted on a common pile at the UH site. 
Pile response during the above vibration tests are predicted by using the 
proposed model and procedure. Inputs for defining the model 
parameters are obtained from the static pile load test. The predicted 
response tends to overestimate the displacement amplitudes for higher 
loading amplitudes. The displacement phase shift along the pile shaft 
is particularly overestimated. The discrepancy between the estimated 
and observed responses appears to be mainly due to the loose soil-pile 
contact within a shallow depth. In view of the complexity of the 
conditions, the predicted responses appear to be reasonable. 
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