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SYNOPSIS Layering and geometry effects on ground response of two-dimensional sedimentary valleys under 
oblique seismic excitation are investigated. The seismic wave has the shape of a half cycle incoming 
pulse with sv-wave characteristics. Vertical and oblique incoming signals of varying duration are 
used. The analysis is performed using finite element techniques, an equivalent effective force method 
to prescribe the free field motion within the domain of computation, and an artificial boundary to 
absorb the scattered motion. Simple examples are presented confirming the validity of this 
methodology. It is shown that surface waves generated at the valley edges propagate through the basin 
producing an increased ground response. Horizontal and vertical displacements are affected 
significantly by valley geometry, particularly by the inclination of the valley sides. Layering and 
inclined waves contribute to producing amplification and very long duration of ground motion. 

INTRODUCTION 

Soft surface layers laterally confined in the 
form of sediment-filled valleys or basins are 
oftentimes the cause of large amplifications and 
variations of seismically induced ground motion. 
Two- or three- dimensional models are frequently 
required tu apprehend the effects o~ geometric and 
material irregularities on ground response and to 
effectively predict the observed motion. 

The authors have previously presented results of 
two-dimensional analysis of homogeneous and layered 
valleys subjected to sv-waves (1994a, and 1994b). 
These studies focused on the effects of layering 
and material damping on ground response. It was 
shown that the edge of the valley generates surface 
(Rayleigh) waves which are trapped between the two 
edges and increase the amplitude of the motion as 
well as its duration. These effects are more 
pronounced for layered valleys. Damping has the 
effect of reducing surface wave effects in 
homogeneous valleys. However, damped response of 
layered valleys is still characterized by increased 
ground response, especially if the angle of 
incidence is nearly critical. At this angle, the 
horizontal component of slowness of s-waves matches 
the P-wave slowness, and a strong coupling occurs, 
including the generation of surface waves and large 
amplitudes of the ground surface. 

several methods have been used for analyzing the 
seismic response of sedimentary valleys. These 
include finite differences, finite elements, ray 
techniques, Aki-Larner, discrete wavenumber, and 
boundary integral methods as summarized by Aki 
(1988). In this work we make use of the finite 
element method, which has the important feature of 
enabling one to model valleys of arbitrary shape 
with regular or irregular layers and arbitrary 
inclusions. The material can be heterogeneous, and 
even nonlinear (elastic or inelastic). An absorbing 
boundary is used to render finite the domain of 
computation, and an effective force method to 
prescribe the free field motion within the finite 
element mesh. 

our methodology is first illustrated with two 

examples. The first one portrays sv-wave 
propagation through homogeneous halfspace, whereas 
the second one validates the performance of the 
absorbing boundary. The role that geometry and 
layering within a valley play on surface ground 
motion under oblique sv-wave excitation is explored 
subsequently. 

FINITE ELEMENT MODELLING 

Two important issues must be addressed if one is 
to use finite elements for modeling seismic motion 
in unbounded domains. One concerns the need to 
limit the domain of computation. A great deal of 
attention has been given in recent years to 
developing efficient artificial boundaries. In this 
work we shall use, for convenience, the simple 
dashpots proposed by Lysmer and Kuhlemeyer (1969). 
As will be seen, these dashpots give satisfactory 
results for the cases considered here. 

The second point that requires attention is how 
to incorporate the excitation into the model if the 
earthquake source is located outside the domain of 
computation. To solve this problem by the finite 
element method we introduced a modified version of 
a procedure developed for treating soil-structure 
interaction systems subjected to arbitrary 
excitation. The problem was formulated by Bielak 
and Christiano (1984) and implemented by Cremonini 
et al (1988) using a domain decomposition technique 
in which the interior and exterior regions were 
considered separately. The interior is allowed to 
behave nonlinearly and represents the valley which 
may be layered and contain irregularities. The 
exterior representing the halfspace is constrained 
to be elastic or viscoelastic. In this application 
we consider only the linear case. The problem is to 
determine the total (plane) displacement field due 
to the incident wave, both inside the valley and 
ona small portion of the exterior region in the 
immediate vicinity of the valley. 

In order to introduce the free-field excitation 
into the formulation, the problem is treated as one 
of diffraction in which the total displacements are 
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regarded as the unknowns within the valley, while 
only relative displacements, measured with respect 
to the free-field displacements, are the unknowns 
in the truncated halfspace. The model has been 
rendered finite by the introduction of an absorbing 
boundary characterized by appropriate viscous 
damping matrices. It is important to emphasize that 
the artificial boundary is only needed to absorb 
the scattered waves. Viscous damping may also be 
assigned to simulate material damping in the valley 
and the halfspace. 

our procedure consists in first writing the 
discretized equations of motion for the valley and 
the surrounding medium separately; one then uses 
the conditions of continuity of displacements and 
tractions across the halfspace-valley interface, 
together with the equations of motion for the nodal 
free-field displacements within the original 
halfspace to arrive at the final governing 
equations for the complete system. Details of the 
derivation are given in Loukakis (1988) and 
summarized in Loukakis and Bielak (1994a, and 
1994b). Our methodology, can be applied equally 
well if the interior region is nonlinear since only 
the exterior is required to remain linear, and the 
effective seismic forces are applied only on the 
valley-halfspace interface and on exterior nodes 
immediately adjacent to this interface. 

NUMERICAL EXAMPLES 

Five models are selected to illustrate the 
effects of valley geometry and layering on the 
seismic response of shallow valleys due to 
transient oblique incident sv-waves. The valley 
models are shown in Figure 1. In Cases 1, 3, and 5 
the valleys are filled with homogeneous material. 
In Cases 2 and 4 the model is subdivided into four 
homogeneous layers of equal ·thickness, and the 
shear wave velocity of each layer is such that the 
average shear wave velocity across the midsection 
is the same as the shear wave velocity of the 
homogeneous valley. Valleys of cases 1 and 2 have 
horizontal base and sides inclined at 16.7 degrees, 
whereas in Cases 3 and 4 the sides are vertical. 
Case 5 has base sloping at 1.7 degrees and sides 
inclined at 16.7 degrees. The material properties 
for all five cases are listed in Table 1. In this 
table, p, v, c., and H, represent respectively, the 
density, Poisson's ratio, shear wave velocity, and 
thickness of each layer. Radiation damping in the 
system is taken into consideration by means of the 
absorbing boundary. Effects of material damping are 
neglected in this study. 
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Figure 1. Valley Models 
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In all our examples the incident wave is defined 
by means of a single half cycle displacement pulse 

with duration T, unit amplitude, and shape defined 
by Equation 1, which is transmitted as an oblique 
incident plane SV-wave, at an angle 8

0 
with respect 

to the vertical. 

Table 1. Material Properties 
Units: p in Kns2;m4 ; C

5 
in mjs; and H in m 

Layer I Layet 2 Layer 3 Layet 4 Hal!spoc:e 

Case p c H p v c 

1,3,5 25 0.4 70 36 

H p p c . 
2.8 0.3 400 

1.4 2.2 0.4 30 9 2.4 0.4 56.7 9 26 0.4 83.3 9 2. 7 0.4 110 9 2.8 0.3 400 

1 = (2t-T)/T I o=o;t=o;T (1) 

The total free field motion consists of the 
incident wave plus the reflected wave. Detailed 
expressions, are given in Loukakis (1988), for 
angles of incidence 8 , less than the critical value 
ecr' for which there

0 
is total conversion of the 

incident sv-wave into a P reflected wave. 8 
depends exclusively on v, and for the valu~ 
considered here (v=0.3), 8 =32.3°. For angles 
greater than 8

0 
a dispersf~e surface wave is 

generated in the" halfspace, except for e =45° I in 
which case the incident wave is reflected ~s a pure 
SV wave. 

The finite element mesh used to solve the wave 
propagation problem within the valley and a finite 
portion of the surrounding halfspace, together with 
the standard lumped viscous dampers used as an 
absorbing boundary, are shown on Figure 2. 

For clarity, different scales have been used for 
the horizontal and vertical directions. The mesh 
consists of quadratic isoparametric a-node 
rectangular and 6-node tri<:,ngular elements. The 
excitation is applied at the nodes of the interface 
strip of triangular elements, as explained in the 
previous section. Calculations are extended over an 
interval of 20s or 30s, depending on the response 
of the valleys, with a time step of 0.025s for a 
pulse duration of o. 5s, and of o. 05s for longer 
pulses. The particular values of T considered 
herein were chosen so that the duration 2T 
corresponding to a full cycle pulse would be near 
one of the lower resonant periods of the one­
dimensional flat model corresponding to the middle 
part of the valley. 

Before discussing the response of the different 
valleys, we verify the validity of our methodology. 
We consider first the wave propagation of an 
inclined SV-wave through a homogeneous halfspace 
for the pulse defined by Equation 1, for different 
durations (T=0.5, 1, 2.5s) and angles of incidence 
(8

0
=0°, 15°, 32.3°, and 45°). The halfspace is 

modelled by the finite element mesh shown in Figure 
2, in which all the elements are assigned the 
values of the mass density, shear wave velocity, 
and Poisson's ratio corresponding to the halfspace 
of Table 1. The resulting displacement histories at 
selected surface nodal points corresponding to an 
incident pulse of 1s duration are shown on Figure 3 
for two different angles of incidence. 

Throughout this paper, solid lines denote 
horizontal displacements while vertical 
displacements are presented by dotted 1 ines. The 
nodes are numbered consecutively from west to east 
as shown on Figure 2. It can be verified that the 
wave travels along the surface with an apparent 
velocity c.p=C

8
/sin8 0 , as expected, i.e., 1545 m;s 

and 800 m;s for 8
0
=15° and 30°, respectively. The 
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Figure 3. N~dal Displacement on Halfspace surface 

amplitude of the exact horizontal and vertical 
surface displacements are listed in Table 2, for 
several angles of incidence. For a halfspace, these 
displacements are independent of the duration of 
the pulse and of the shear wave velocity of the 
material. Values obtained from the finite element 
simulations for the various combinations of eo and 
pulse duration of T=1s differed by less than 1 
percent from the exact solutions, with the largest 
errors corresponding to the shortest pulses, as 
expected. Notice, that the amplitude of the 
displacement varies significantly with the angle of 
incidence e . The horizontal component reaches a 
maximum amplification of 4.35 at the free surface 
with respect to the amplitude of the incoming wave, 
for the critical angle, as opposed to a value of 2 
for vertical incidence, while the vertical 
component vanishes for vertical incidence and 
increases at first with e0; the largest value occurs 
for e =30°, it is small at critical incidence, and 
vanishes for 45° incidence. 

Table 2. Peak Nodal Displacements Halfspace surface 

Horizontal 
Vertical 

2 
0 

Angle of Incidence 
15° 30° 32.3° 

1.99 2.41 4.35 
-0.56 -0.91 -0.15 

1. 41 
0 

It should be noted that in these examples the 
absorbing boundaries remain inactive since there is 
no scattered motion. 

To illustrate the performance of the absorbing 
boundaries we consider next the response of the 
layered valley with stepped shear wave velocity 
(Case 2) depicted in Figure 1. Figure 4b shows the 
displacement history due to a vertically incident 
pulse of 1s duration. Figure 4a shows the 
corresponding records obtained by ignoring the 
effects of the lateral edges, that is for the 
corresponding one-dimensional system consisting of 
flat layers. Displacements at nodes below the 
valley bottom are not shown in this case. Notice 
that due to symmetry, motion occurs only in the 
horizontal direction, and that the difference 
between the two sets of records is due exclusively 
to the surface wave generated by the lateral edges. 
Surface wave effects will be discussed further 
separately. Now we concentrate on the response at 
the bottom of the valley and points below. Recall 

that within the exterior region the displacements 
represent only the relative (scattered) motion with 
respect to the free-field displacement. Figure 4b 
shows that these relative displacements are small, 
indicating that the valley has only a small effect 
on the halfspace motion (e.g., Nodes 1112, 1229, 
1346, 1463). The absence of noise in these records 
clearly indicates that the absorbing boundary is 
effective in transmitting this outgoing motion 
without generating spurious reflections. 

~ 
~ 
~ 

~------------------

l.O:j: :;_.0 .......;__......;.........:;..._t--+-8 _,_:;10'--+-'1:,:.2_,....:,14'-+-'1+-6......:+18__..._...20 
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(a) 1D-response (b) 2D-response 
Figure 4. Nodal Displacements, Case 2, T=1s, e

0
=0° 

We now turn to the free-surface response of the 
sedimentary valleys under study for various angles 
of incidence and durations of the incoming pulse. 

Figure 5 shows the response of Case 2 valley 
(shear wave velocity increasing stepwise with 
depth) to a 0.5s pulse at critical incidence. 
Figure 5a depicts the free surface profile at 
various times while the displacement traces at 
selected nodal points appear on Figure 5b. The 
profile includes the total valley free-surface as 
well as the part of the halfspace included within 
the domain of computation, for a total of 1140 m. 
Surface waves are generated at the valley western 
confluence as soon as the incident wave travelling 
through the halfspace reaches the free surface. The 
total response at points near the confluence (e.g., 
nodes 35, and 89) has a peak horizontal 
displacement that is of the same size or greater 
than the initial peak displacement due to the 
direct refracted waves even after 6s of motion. 
Near the center of the valley significant 
horizontal displacements are observed even after 
16s of motion. The response on the left side of the 
valley is much greater than on the opposite side. 
This is an example of how seismic excitation moving 
in the direction of increasing layer thickness can 
lead to constructive interference, while the 
opposite is true if the seismic propagation is in 
the direction of decreasing layer thickness. The 
extremely large peak value of the horizontal 
displacement at node 29 for the case of critical 
incidence represents the most dramatic feature of 
the response. This peak horizontal displacement of 
18.0 is 65 percent greater than the corresponding 
value at mid-valley (or flat-layered valley) , which 
in turn is 2.5 times greater than the 4.35 
amplitude in the free-field. Vertical displacements 
near the left confluence are particularly 
prominent. The spatial variation of the response 
near the valley confluences is especially 
pronounced; this variation can make long structures 
resting on multiple supports, such as bridges and 
pipelines, highly susceptible to damage during 
strong earthquakes. 

The response of Case 2 valley to pulses of 
different duration and angles of incidence at two 
nodes, one in the middle of the valley (node 59) 
and the other near an edge (node 29) is shown on 
Figure 6. The free-surface displacement of the 
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corresponding flat layered system due to a 
vertically incident pulse is also shown on Figure 
6. 

(a) Surface Profile(sec) (b) 
Figure 5. Case 2 Valley, 
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Figure 7. Geometry Effects, different T and eo 

Increased duration and amplitude of response are 
the two most obvious effects due to lateral 
confinement. While surface wave effects are 
apparent at all angles of incidence 1 these are 
stronger for the critical angle. 

Geometric effects on seismic response of two­
dimensional valleys are illustrated on Figure 7. 
Ground motion at nodes 29 and 59 is presented for 
different pulse durations, and angles of incidence. 
A number (1 through 5) is assigned to each 
displacement history referring to the corresponding 
valley case of Figure 1. The horizontal component 
of the ground response of both homogeneous and 
layered valleys generally increases with increasing 
inclination of valley sides. Sloping valley base 
produces an increase in vertical ground response. 
The response of the valley with vertical sides at 
critical incidence is characterized by more 
pronounced surface wave effects. Near the 
confluence the valley response includes secondary 
horizontal and vertical peaks of the same 
amplitude. 

CONCLUDING REMARKS 

Finite element method provides an efficient tool 
for the analysis of the earthquake response of 
shallow sediment filled valleys. Effects of 
layering and geometry on seismic response of 
valleys to a single half cycle SV pulse are 
investigated using an effective seismic excitation. 
Horizontal and vertical displacements are affected 
significantly by valley geometry. Valley edges give 
rise to surface waves that propagate into the 
basin, generally producing an increase in response. 
In addition inclined waves and layering contribute 
to produce significant and sometimes dramatic, 
amplification and very long duration of the 
resulting surface motion. Near the confluence, the 
amplitude of the horizontal displacement can be 
four times as large as that of the corresponding 
flat system. Very large vertical displacements are 
also observed. Such effects are smaller, though 
still noticeable further from the confluences. 
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