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A Proceedings: Second International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics, 
~ March 11-15, 1991, St. Louis, Missouri, Paper No. 7.36 

Response of Earth Dams in Canyons Subjected to Asynchronous 
Base Excitation 
Panos Dakoulas 
Assistant Professor, Department of Civil Engineering, Rice 
University, Houston, Texas 

Humayun Hashmi 
Graduate Student 

SYNOPSIS: A mathematical solution is presented for steady-state lateral response of earth and rock fill dams in canyons subjected to asynchronous 
excitation consisting of obliquely incident SH waves. The dam is idealized with a 2-dimensional shear wedge and the canyon is considered rectangular 
and consisting of flexible rock. A parametric study is undertaken to investigate the influence of (a) the angle of incidence, (b) the impedance ratio and 
(c) the canyon narrowness on the steady-state response, by considering in a simplifying way the effects of the dam-canyon interaction. 

The results demonstrate that the above factors may have a significant effect on the lateral response of the dam. For relatively flexible canyon 
rock, the effect of radiation damping is very important and, consequently, the assumption of rigid base may be very unrealistic. Due to interference 
phenomena, the response is not maximum for vertically propagating waves, but for waves incident at a certain angle. For obliquely incident waves 
travelling from left to the right, a gradual shift of the location of the peak response is observed from the mid-crest to the right side of the dam as the 
angle of incidence increases. Also, for very long dams subjected to high frequency obliquely incident waves, there is no amplification of the motion by 
the dam and, at a certain frequency of excitation, the presence of standing waves is indicated. 

INTRODUCfiON 

Earthquakes can pose a serious threat to the safety of earth and rock fill 
dams and cause extensive life loss and property damage. In the last 
decade significant progress has been made in understanding the dynamic 
characteristics and seismic behavior of earth and rock fill dams and new 
analytical models have been developed for the evaluation of their 
response during strong earthquakes (Martinez and Bielak, 1980; 
Ohmachi, 1981; Makdisi eta), 1982; Gazetas, 1982; Abdei-Ghaffar et 
al, 1982; Mejia et al, 1982 and 1983; Dakoulas and Gazetas, 1985, 
1986 and 1987; Dakoulas, 1990). A comprehensive review on recent 
developments was given by Gazetas ( 1987). Despite this significant 
progress, a number of potentially quite important aspects of the seismic 
behavior of dams are yet to be fully understood. The effect of the spatial 
variation of the earthquake excitation along the dam-canyon interface is 
one of them. 

Seismic waves travelling through different paths with varying material 
and geometric characteristics are already incoherent, when they arrive at 
the dam site. This incoherence may be more pronounced in the case of a 
dam close to an extended earthquake source, where waves may originate 
from different locations. Moreover, local geological characteristics may 
force the propagating waves into a series of reflections and refractions, 
resulting in motions which may be longer than the original earthquake 
motion, may have new frequency and amplitude characteristics and 
attack the dam at various angles. It is expected that, in general, due to 
destructive interference caused by the spatial variability of the excitation, 
the overall response of such a dam will tend to be smaller than the 
response of a dam subjected to synchronous excitation (such as the 
excitation enforced by the rigid canyon assumption). 

The effects of a spatial variability of ground excitation may be studied 
either with a simplified deterministic approach, in which the excitation 
may be idealized with a steady train of SH waves propagating at an 
arbitrary angle 6 to the vertical, or with a stochastic approach, which is 
more suited for describing the random nature of the spatial variation, but 
it is mathematically more involved. The present study concentrates on 
the deterministic approach. 

Even in its simplified deterministic form, the problem of a dam in a 
rectangular canyon subjected to inclined SH waves is a complex 
boundary value problem. This is because the amplitude and phase of the 
reflected waves are unknown and vary along the dam-canyon interfaces. 
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Also, for inclined waves propagating from the left to the right, the right 
vertical boundary is in a "shadow" with respect to the directly incident 
waves, but it is attacked by waves transmitted through the dam. 
Consequently, the evaluation of the total motion along the entire dam
canyon interface must be computed as part of the solution by 
considering the dam-canyon interaction. The objective of this study is to 
investigate the effect of the spatial variation of the ground excitation 
combined with the influence of the aforementioned factors and provide a 
better understanding of their importance. Such understanding will assist 
in improving the design of new dams and in evaluating more realistically 
the safety of thousands of earth fill and rockfill dams built in seismic 
regions. Moreover, it could assist in interpreting the spatial variation of 
recorded motions, which may be impossible to explain using models 
that assume a synchronous base excitation. Although there is no similar 
study known to the authors addressing this problem, some aspects of 
the problem have been studied by researchers investigating the response 
of soil layers and alluvial deposits in canyons (Trifunac, 1973, 1977; 
Wong and Trifunac, 1974; Roesset, 1977; Aki, 1988). 

In this study, the 3-dimensional dam structure is assumed to respond 
mainly in shear and thus, it may be idealized with a 2-dimensional shear 
wedge, while the canyon is assumed rectangular and consisting of 
flexible rock. 

THE MODEL 

Figure Ia portrays a perspective view of the geometry of the dam in a 
rectangular canyon. Although the canyon shape is idealized as a 
rectangle solely for mathematical convenience, in many actual canyons 
an equivalent rectangle offers a reasonable approximation. The dam has 
a triangular cross-section and consists of a uniform and linearly 
hysteretic soil with mass density, p5 , shear modulus, G5 , and hysteretic 

damping ratio, [3 5 • Similarly, the canyon consists of a uniform and 

linearly hysteretic rock with mass density, Pr, shear modulus, G., and 

hysteretic damping, i3r. 

The incident excitation consists exclusively of steady-state harmonic SH 
waves of a constant amplitude, U1, and a frequency, w, travelling from 
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Figure l.(a) Perspective View of Dam Geometry; (b) Incident, Reflected 
and Transmitted Waves at the Dam -Canyon Interfaces. 

the left to the right along the dam in a upward direction forming an angle 
8 to the vertical (see Fig. I b). Its displacement, u 1, is only in the 
upstream-downstream ( or y) direction and has the form 

X + ~) 
Yx Yz 

( I ) 

in which V x and V z are the phase velocities along the x and z directions 
given by 

v, v = -
x sin 8 

and 

v, 
Vz=-

COS 8 

( 2 ) 

( 3 ) 

The unknown displacement, U!b = U!b(Z), along the left vertical 
boundary is the summation of the incident and reflected waves and may 
be written as 

where Uz = Uz( z) and U1b = Ulb(z) are the amplitudes of the reflected 
and total motion, respectively. It should be noted that Uz is a complex 
number and therefore a phase difference may exist between the incident 
and reflected wave. In fact the term amplitude is exact only for the 
incident wave, U J, while for the reflected waves and the response 
within the dam the term is used only in a relative sense. This particular 
form for the motion is adopted only for mathematical convenience and 
without any loss of generality. 

Similarly, the unknown displacement, ub, at the dam base is 

1106 

H 

B 

(a) 

~I 
(b) 

Figure 2.(a) Dam Cross-Section and (b) Infinitesimal Element witt 
Shear Stresses acting at its faces. 

iw(t.~+.!!_) iw(t·~· H) · 
U V V V- IWI ub= 1 e x z +U 3 e Yx z-Ube (S) 

in which U3 = U3(x) and Ub = Ub(x) are the displacement amplitudes ot 
the reflected and total motion at the base, respectively. The right vertical 
boundary is in "shadow" with respect to the incident SH waves. 
Nevertheless, it is subjected to harmonic motion, Urb = Urb(z), due to the 
response of the right side of the canyon to its base excitation and to the 
waves which propagate through the dam reflecting on and transmitting 
through this boundary. The unknown displacement Urb is written as 

i w t 
= u,be 

( 6) 

where Urb = U,b(z) is the amplitude of the total motion along the vertical 
boundary. Consequently, the total excitation along the three interfaces 
varies from point to point in both amplitude and phase and will be 
determined as part of the solution of the problem by considering the 
dam-canyon interaction. It should be noted that the above is an 
idealization representing an approximation of the actual transmission and 
reflection of inclined harmonic SH waves. In reality, the presence of 
vertical boundaries of the canyon induces some additional reflections 
along the surface of the half space near the canyon. The effect of these 
additional reflections is considered secondary and is neglected in this 
model for mathematical simplicity. 

The response of the dam to the above asynchronous excitation applied 
along its three boundaries is assumed to be only in horizontal lateral 
shear deformation with the upstream-downstream displacements, u, 
uniformly distributed across the width of the dam. In other words, the 
dam is idealized as a "shear beam", which extends in the vertical and 
longitudinal directions and assumes either uniform or average response 
values for the upstream-downstream direction. Indeed, the uniformity 
of displacements, u, across the width of the dam has been confirmed by 
a series of seismic analyses of the earth dams represented with 
consistent finite-element and shear beam models (Dakoulas and Gazetas, 



_ 985a, 1986b). Fig. 2b shows an infinitesimal element bAxAz and the 

~orresponding average (across the width b) shear stresses Tyz and Tyx 
1pplied on the horizontal and vertical sides, respectively. In reality, the 

:listributions of the T yz and T yx are almost uniform for most of the width 
~. except near the two slopes of the dam where the shear modulus is 
ess due to the smaller confining pressure. Nevertheless, by considering 
:he average shear stresses and the average shear modulus across the 
width, no assumption regarding their exact distribution is required. 

The response of the dam to longitudinal and vertical ground motion may 
.Je considered independently using similarly simplified beam models. 
'\!though only lateral horizontal base motion is considered in this study, 
:some longitudinal and vertical response would indeed take place, but 
being much less than the lateral response, it is neglected. Finally, 
hydrodynamic effects are not taken into account, because they are of 
little importance for the lateral response of the earth dams. 

'Steady-State Response 

By considering the dynamic equilibrium of an infinitesimal soil element 
of the dam shown in Fig. 2 and the stress-strain relationships, the 
equation of motion may be written as 

( 12) 

where u1=ut(x,z,t) is the lateral total displacement and 0 5 *= 0 5 ( I +2if35), 

in which 0 5 is the shear modulus of soil, f3s is the linear hysteretic 
damping of soil and i=-1-1. For harmonic steady-state vibration of 

frequency w, the total displacement, u1 , in the dam may be written as 

u 1 ( x, z, t) = u( x, z, t) + ub ( x, z, t) ( 13 ) 

where u = U(x, z) eiWijs the motion of the dam relative to the motion of 
base and Ub = Ub(X, z) eiwt is the motion at the base rock given in 
equation (5). Substituting equation ( 13) and introducing dimensionless 
variables, equation ( 12) may be rewritten as 

2 

(ntf 

2 

(:~)' U· 
au I au au 
-~+ --~+ + 

2 2 

all '1 all a~ 

d
2
ubm 

----
2 

The continuity of displacements along the dam base and the left and 
right vertical boundaries yields, respectively, the following conditions: 

at the dam base ('1 = 1), 

u ( ~. I ) = 0 ( 19 ) 

at left vertical boundary (~ = 0), 

where 

and at the right vertical boundary(~= n), 

Finally the continuity of shear stresses Tyz at the dam base and Tyx at the 
left and right vertical boundaries provides three more equations: 

at the dam base ('1 = 1), 

G;iwH(u iwHIVz U -iwHIVJ -iw~LirrVx 
• I e - 3e 7e 

G, Vz 

at left vertical boundary (~ = 0), 

and at the right vertical boundary(~= JT), 

au 

a~ 

( 22) 

( 23) 

( 24) 
( :~)' u, - (• ~)' 

d~ ( 14 ) By taking Finite-Cosine Transform with respect to ~. the equation of 
motion ( 14) becomes, 

where 

z 
'1 = H ( 15 ) 

XlT 

T ( 16) 

=Jf: ( 17 ) 

The solution of equation (14) must satisfy the boundary condition of 

zero shear stress Ty2 at the dam crest ('1 = 0), i.e., 

( 18 ) 
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d

2

u
2 
+*~+((:~)

2

-(nnLH-f) u+((-l(a~~~=JT) _ a~?~2)= 
d'l d'l s 

·(l""LH l'-(:~)') 1., •• ,1• •u:;'""l ·(-l)n dUb(~=JT) 
d~ 

( 25) 

where the bold characters denote the Finite-Cosine Transform of U 
given by 

( 26) 



-f""u iw(I-W.-~urrv,) ( ~)d~ u 1 - 1 e COSO<,<, 

0 ( 27) _ f ""u -iw(I-W. + eurrv,) ( ~) d~ u 3 - 3 e cos n., ., 

0 ( 28) 

Substituting the boundary conditions from equations (23) and (24) and 
cancelling the common terms, equation (25) yields, 

in which, 

"·(:7)' ( 30) 

a2=(n~Ht 
and ( 31 ) 

~2 = (~~t 
( 32) 

Moreover, by taking the Hankel Transform with respect to 11 and by 
using the boundary conditions in equations ( 18) and ( 19), equation (25) 
becomes, 

( 2 2)~ J1(JJ)[ J( 2 2) + k -a u (n,JJ i) = --- u 1 + u 3 a - k + 
JJj 

[ D 2 (JJi)- D 1 (JJi) +(-I)" D4 (JJi>] 

( 33) 

where u (n, JJj) is the Hankel transform of u, J 1 (JJj) is the Bessel 

function of first kind and order I, evaluated at the J.!j root of the equation 

J I(JJj)=O. 

U~ f 1 U iwi']I-W • J ( ) d 1 = 1 e 11 o JJi 11 11 
0 

~ f I iwi']I-W, 
U 2 = U 2 e 11Io(JJi11)d11 

0 

D4 = flu4e-iwUV,I1 Io(JJil1) dl1 

0 

Solving for u (n, JJj) the transformed solution is obtained 

( 34) 

( 35) 

( 36) 

( 37 ) 

-1-'i'U,J) 
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Taking the inverse Hankel Transform of equation ( 37 ), 

~ u ( n , JJJ· )J 0 ( JJJ· 11 ) 
u = 2 I --~2 ----'---~ 

j-1 J1(JJj) 

Finally taking the inverse Finite-Cosine Transform yields, 

( 3 

Note that u (n, JJj) involves three unknowns, namely, u3, U3, a; 

U4, which can be found by using the remaining three bound<> 
conditions. Enforcing the boundary condition in equation (20), 

(u 1+u 2) eiw11HN, _ (u 1eiwHN•+U 3 (e=O)e·iwHN,)= 

( 4(. 

and taking the Hankel Transform of equation (40) with respect to 
leads to 

Dl +U2 -(u1e;wHN,+UJ <e=o)e-iwi-W.} JI(JJ) 

JJj 

Similarly, enforcing the boundary condition in equation (21) 

=2 +~~ J J 
. 2 /...., 2 

( 41 

L~ (u (O,JJ J.) J 0(JJJ. 11) 2 +~ u(n,JJ .)J 0 ( JJ. 11) cos (n ~)) 
J - I ~ J 1 (JJ .) ~ n • I J I (JJ .) 

J J ( 42 

and taking the Hankel Transform of equation (42) with respect to 
leads to 

D 4 - ( u I e iwHN ' + u 3 ( e = ~ ) e- iwHN ') e -iwlN • J I ( JJ j ) = 

JJj 

=ll<o.JJj> + 

~ 

2 I u(n,JJj)cos<n~> 
~ n• I 

Finally, enforcing the boundary condition in equation ( 22 ), 

2 I 
~ n• I 

(43 



and taking the Finite- Cosine Transform with respect to I; one has, 

( 4S) 

Equations (41), (43) and (4S) can be solved simultaneously to get u3, 

U2, and U4, whereas the two other unknowns, U3(/;=0) and U3(/;=rr) 
involved in equations (41) and (43) can be found by equating shear 

stresses, T xy. in the rock and dam at points A 1 and A2 in Fig. I b 
(Hashmi, 1989). Hence, the steady-state solution for total displacements 

Ut = Ut(ll, /;, t) is given by, 

It is of interest to compute the amplification function, AF, defined as the 
ratio of the amplitude of the acceleration at any given point within the 
dam divided by the amplitude of the acceleration at the outcrop rock. 
For harmonic motion, the acceleration amplification is identical to the 
absolute displacement amplification and may be computed using 
equation (46) as 

AF= U,/2Ut ( 47) 

where U1 is the absolute value of u1• Figure 3 illustrates a perspective 
view of the AF along the dam crest versus a dimensionless frequency 

wH/Vs fora dam with L/H = 3, Vr/V5 = 3, [3 5 = 0.1, 13.= 0 and SH 

waves incident at e = 30°. Equation (4 7) is utilized in a series of 
parametric studies aimed at evaluating the effect of the asynchronous 
base motion on the response of the dam-canyon system. Some results 
from these studies are presented in the following. 

5 

5 

4 

3 

2 

0 

Figure 3. Amplification along the Dam Crest versus a Dimensionless 
Frequency. 

PARAMETRIC STUDY AND DISCUSSION 

AF 

A parametric study is undertaken to investigate the influence of three 
parameters on the steady-state response of a dam subjected to steady 
train of propagating SH waves, by considering the effect of dam-canyon 
interaction. In particular, the study focuses on the effects of: (a) the 
angle of incidence (b) the impedance ratio (c) the canyon narrowness. 
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The results are presented in the form of amplification functions ( AF) of 
absolute acceleration. AF is computed with reference to the acceleration 
of the outcrop rock having an amplitude which is twice the amplitude of 
the incident waves. 

Effect of angle of incidence 

To investigate the effect of the angle of incidence, a dam is considered 
with a length to height ratio L/H = 3, an S-wave velocity ratio Vr/V5 = 

3, a mass density ratio Prl Ps = l.S and material damping (35 = 0.1 and 

f3r = 0 for the soil (s) and the rock (r), respectively. Figure 4 plots the 
amplification function, AF, evaluated along the length of the dam crest 

for five values of the angle of incidence e = S0
' 300' 4S0

' 60°' and 7 S0
• 

The frequency of the input excitation is selected equal to the fundamental 
natural frequency of the dam in the flexible canyon. 

The most important observation from Figure 4 is that all response values 
are considerably less than those of a similar dam built in a rigid canyon, 
yielding a mid-crest amplification at first resonance slightly above I 0. 
This is mainly due to the presence of the flexible rock canyon base 
resulting in significant radiation damping of the system. The effect of 
the spatial variability of the motion, depending on the angle of incidence 

e. is also important, especially for large values of e. Figure 4 suggests 
that the latter factor should be considered for a more realistic 
interpretation of recorded acceleration at existing dams. Notice that the 
maximum response does not occur for vertical waves, but for waves 

forming an angle e"' 3S0 • This may be explained by the fact that the 
response depends on the interference of waves transmitted through the 

base and the vertical abutments: fore = 00 the motion is synchronous at 

the base and asynchronous at the vertical abutments, but as e increases, 
the motion becomes more asynchronous at the base and less 
asynchronous at the left vertical boundary, resulting in a maximum 

response ate"' 3S0 • Also, as expected, the response of the right vertical 
boundary is less than the response of the left boundary. 

Another interesting observation in Figure 4 is the gradual shift of the 

amplification peaks to the right side of the dam crest, except for e2: 7 S0 • 
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Figure 4.Crest Amplification at the First Natural Frequency of a Dam 

Subjected to SH waves Incident at e ~ S0 , 300, 4S0 , 600, and 7 S0 • 
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Figure S. Mid-Crest Amplification versus Dimensionless Frequency of a Dam Subjected to SH Waves ate equal to (a) 0°, S0 , I 00, 200 and (b) 30°, 
4S0 , 60°, and 7S0 • 

Of course, for vertical waves the distribution of amplification is 
symmetric with a peak value at the mid-crest. But as B increases, waves 
travelling from the left to the right along the dam reflect mostly on the 
right side of the dam crest and part of them returns to the canyon, while 
the rest of them continue with a series of reflections within the dam 
boundaries. For e 2: 7 S0 , the motion at the base becomes more 
asynchronous while the motion at the left boundary more synchronous 
and, thus, more important resulting in a stronger response at the left side 
of the dam. As shown later in this parametric study, the above are true 
for "A /LS2, where "A is the wavelength of the input motion. For AIL 2:4, 
the dam appears as a small detail in the half space and is practically 
ignored by the propagating waves. In that case, the dam-canyon system 
tends to vibrate like a half-space excited by SH waves, showing little 
variation of response along the crest of the dam. 

It is interesting to note that the above results are in complete agreement, 
in a qualitative manner, with results published by Trifunac (1977, 1973) 
on the amplification of motion of a semi-cylindrical valley, as well as at 
the surface of an alluvial deposit in a semi-cylindrical valley, both 
subjected to incident SH waves at various angles e. 

Figure S plots the amplification at mid-crest versus a dimensionless 
frequency k =wlWs for various values of e. The variation of the 
amplification for the entire range ore values is from 3.S to s (for 
VriVs = 3 and LIH = 3 ). 

Figure 6 plots the crest amplification AF evaluated along the length of 
the dam for e = 30° and for five ratios of "A I L = 0.2S, O.S, I, 2 and 4, 
where "A is the wavelength of the incident motion and L is the dam 
length. The maximum response is obtained for a frequency f= Vri"A 
equal to the first natural frequency of the dam, corresponding to AI L=2. 
Notice that for decreasing A I L ratios ("A I L < 2) the high frequency 
motion at the dam-canyon boundaries excites high-frequency vertical 
and longitudinal modes of vibration, displaying a larger number of 
peaks along the dam crest. A very high-frequency input excitation, (i.e. 
"A 1 L = 0.2S), causes an overall deamplification of the response at the 
crest due mainly to a very asynchronous motion at the boundaries. On 
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Figure 6. Crest Amplification versus a Dimensionless Frequency for 
8=300 and AIL= 0.2S, O.S, I, 2 and 4. 

the other hand, for increasing AIL ratios (N'L>2) the response decreases 
again, since large wavelength SH waves hardly "feel" the irregularity 
caused by the presence of the dam and, therefore, the response of the 
latter tends to approach the response of the elastic half-space. 

Effect of the impedance ratio 

The impedance ratio is expressed here as the S-wave velocity ratio 
V riV 5 • To investigate the effect of the impedance ratio on the response of 
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Figure 7. Mid-Crest Amplification versus a Dimensionless Frequency 
fore= 30°, and v IVs = 1.5, 3, 5, 10, and 250. 

the dam, five ~ams are considered all having L I H = 3, mass density 
ratio Prl Ps = 1.5, material damping 13s = 0.1 for the soil and l3r = 0 for 
the canyon rock, and corresponding to five different S-wave velocity 
ratios Vr!Vs = 1.5, 3, 5, 10,250. The angle ofincidence B for the SH 
waves is taken equal to 30°. 

The mid-crest amplification functions for the five dams are plotted 
versus a dimensionless frequency in Fig. 7. The results indicate a 
dramatic effect of the S-wave velocity ratio on the response. Indeed, the 
maximum crest amplification varies from about AF = 3 for VriVs 
= 1.5 to AF"' 9.2 for VriV 5 = 250. This suggests that the simplifying 
assumption of a rigid canyon, which ignores the effect of the radiation 
damping, may be very misleading. 

During an earthquake ground shaking the ratio ofVr/ V s may increase 
significantly at severe acceleration pulses, because of the degradation of 
soil stiffness with increasing shear strain and return to its original value 
during the weak parts of the excitati~n. This results to smaller rad~ation 
damping during strong acceleration pulses a?d ther~fore ht~her 
amplification values. By contrast, the hysteretic matenal dampmg, 
which depends also on the level of <:ycli_c shear strain, incre~es ~uring 
the strong acceleration pulses resultmg mto a reduced amphficatlon of 
the motion. A realistic evaluation of the response of the dam should 
account for the opposing effects of both the material and radiation 
damping variation during an earthquake shaking. 

A comparison between mid-crest a~pli~cation results de;ived from the 
flexible canyon solution presented tn thts study and the tndepe_nden_tly 
derived rigid canyon solution showed that, as V IV 5 approaches mfimty, 
the flexible canyon solution approaches the that of the rigid canyon. 
This agreement can also be seen in Figure 6, in which the AF for 
v IV 

5
=250 approaches the rigid canyon amplification, which has a peak 

value about I 0. 

Effect of canyon narrowness 
For a given canyon shape, the canyon narrowness maybe expressed by 
using the ratio of the length over the height of the dam, L I H. To 
investigate the effect of the ~nyon narrowness ~n the _response, _four 
dams are considered, all havmg an S-wave veloctty ratio V rl V s - 3, a 
mass density ratio Prl Ps z 1.5, material damping 13s = 0.1 for the soil 
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Figure 8. Mid-Crest Amplification versus a Dimensionless Frequency 
fore= 300 and LJh = 1.5, 3, 5, and oo. 

and 13r = 0 for the rock, and corresponding to four different values of 

L I H = 1.5, 3, 5 and oo. Again, the angle of incidence B for the SH 
waves is taken equal to 30°. 

The mid-crest amplification functions for the four dams are plotted 
versus a dimensionless frequency in Figure 8. As expected, increasing 
canyon narrowness results into higher amplification for the high
frequency part of the spectra in Figure 8. This "stiffening" effect of the 
canyon narrowness is due to the increasing proximity of the stiffer 
boundaries of the canyon and is even more pronounced in rigid canyons 
(Dakoulas and Gazetas, 1987). 

Notice for L I H = 125, there is no crest amplification fork = w HI V 5 

larger than 5. This is hardly surprising, since, for high frequency 
excitation, the wave length A is very small and, therefore, there is 
significant constructive interference along the very long base of the dam 
resulting into AF= I. For lower frequency, however, there is 
considerable amplification with a peak value AF "' 4. Note that peak 
amplification derived from the plane strain shear beam solution for 
similar dam on flexible rock, subjected to synchronous base excitation, 
is also AF "' 4.1 at first resonance, but the overall amplification spectra 
of the synchronous and asynchronous analyses are apparently quite 
different. An interesting feature of the asynchronous amplification curve 
in Figure 8 is the sharp decay to the a value close to zero for wH/V5 = 4. 
This may imply standing waves, generated as a result of wave 
interference, in which the crest becomes a node point, being almost 
stationary at that frequency. This is also observed by Trifunac (1973) in 
his study for the response of both a semi-cylindrical alluvial valley and a 
semi-cylindrical canyon ( 1977) to SH waves. 

CONCLUSIONS 

This study has developed a new mathematical solution for evaluating the 
lateral response of earth and rockfill dams in flexible canyons subjected 
to asynchronous excitation consisting of SH waves incident at an 
arbitrary angle. The conclusions derived from the presented parametric 
studies are summarized as follows: 



l.The flexibility of the canyon rock has a dramatic effect on the 
response of the dam, as it affects the amount of energy radiated back 
to the canyon. The presence of a flexible base rock tends to reduce 
the amplification peaks at the resonance, particularly at weak 
excitation in which there is little degradation of soil stiffness. For 
example, for the dam considered in the parametric study and for 
vertically propagating waves, the mid-crest amplification, AF, at first 
resonance is about I 0 for rigid canyon rock and about 4 for flexible 
canyon rock with V r IV s = 3. This clearly demonstrates that the 
simplifying assumption of a rigid base may be very conservative. 

2. For obliquely incident waves travelling from left to the right, as 
the angle of incidence 8 increases, the motion tends to become more 
asynchronous along the base and less asynchronous along the vertical 
boundary. The response of the dam depends significantly on the 
interference of the waves transmitted through base and the left vertical 
boundary. For the cases examined, the maximum response is 
obtained at an angle 8 "' 35° and is about 25% higher than the 
response caused by vertically propagating waves (which result in a 
maximum spatial variability of the excitation along the vertical 
boundary). Moreover, for a large range of 8, a gradual shift of the 
location of the peak response is observed from the mid-crest to the 
right side of the dam as 8 increases. The angle of incidence 8 affects 
also significantly the variation in amplitude and in phase of the total 
motion along the base and the two abutments of the dam. (This 
motion is initially unknown and is computed as part of the solution, 
by considering the dam-canyon interaction.) 

3. For either synchronous or asynchronous excitation, as the canyon 
narrowness increases, the lateral response of the dam for the high 
frequency motion increases. In practical terms, this results in higher 
accelerations and smaller displacements and shear strains within the 
dam. This is because accelerations depend on many more modes 
(about 10 or more) compared to displacements and strains which 
require only about 4. However, for very long dams, high frequency 
asynchronous excitation results in no amplification of the excitation 
(AF = I) while synchronous excitation induces much higher 
amplification (AF = 2 to 5, for the studied examples). Also, for long 
dams subjected to asynchronous motion, standing waves are 
indicated at a dimensionless frequency wlW5=4, as a result of wave 
interference, in which the crest becomes an almost stationary node 
point. 

4. For low-frequency SH excitation, the response of the dam shows 
little variation along the crest and approaches the response of the 
elastic half-space. In this case, the dimensions of the dam are small 
compared with the wavelength and, therefore, the presence of the 
dam has only a small effect on the site response. 

5. The above results are qualitatively in agreement with results from 
the response of semi-cylindrical canyons and of alluvial deposits in 
semi-cylindrical and semi-elliptical canyons subjected to obliquely 
incident SH waves obtained by Trifunac ( 1973, 1977). Finally, as 
the stiffness of the canyon rock increases, the solution of the 
presented model approaches the independently derived solutions for 
dams built in rigid canyons. In the latter case, for UH = oo, the 
presented model approaches the solution for a very long dam on rigid 
foundation. 
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