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R-Wave Dispersion Analysis in Transversely Isotropic Stratum
Paper No. 10.13

Shiming Wu and Lizhong Wang
Professor and Ph.D Candidate, Civil Engineering Department, Zhejiang University, China

SYNOPSIS With dynamic stiffness of elastic half-space. the Rayleigh wave dispersiqn in trunsversgly isotropic s&»_il is
unalysed by Finite-layer and Semi-infinite layer method. Only 13 matrix eigenvalue involved. avoiding the‘ti‘d‘f\.ﬂatl()l'l
pro(:.edure encounted in analytical method. Two examples prove the deduction correctly. :md ‘show tah:u" soil anizotropy
influences dispersion dramaticaly. It is possible to study soil anisotropy and characteristics of its dynumical

responces from its surface wave dispersion.

INTRODUCTION

Dispersion characters of surface waves including
Rayleigh wave and Love wave are widely applied to
engineering test. In earthquake engineering.site
responces and foundation vibrations are closely
linked with surface wave dispersion. The classical
method for Rayleigh wave dispersion analysis, Haskell
(1953) . wasg mmepreved by Dunkin(1965) greatly, with
which Crumpin (1970) studied the layeved trunsversly
isotropic deposit . So far, the classicn]l methuds are
still  faced with the problems of high-frequency
overflow and lost of accuracy.

Lysmer and Waas (1970) (1972) put forward Finite-layer
method to dispersion analyses, developed by kausel (
1986) for anisotropic solid in the case of rock base ¢
Fig.1). Hossain (1884)applied FEM and Infinite element
to calculate the surface wave dispersion of the model
as shown in Fig. 2. Xia(1992) et al improved demi-
infinite layer in isotropic deposit layered system.
It is possible to modify Lysmer’s method for layered
anisotropic system, so that transersely isotropic
niodel is suggested. In fact, for semi-infinite layer,
it is just a problem of

stiffness matrix of surface wave in transversely
isotropic half-space. This problem is solved by Kausel
(1891) in form of vibration. The authors solve it
combining with Finite-layer method in form of surface
wave.
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Fig.1 System Model TFig.2 System Model With
With Rock Base Elastic Half-space

PLANE WAVES IN TRANSVERSELY
ISOTROPIC DEPOSIT SYSTEM

The matrix of the elastic constants for medium with
transversely isotropic symmetry is

€1z Ciz Cia

, Caz Cia  Cas

iCia Uiz Cas

. Cia

Caq
(Cr1m12) /2

b

For isotropic, there are:
C115Csa= A2 b, (C11-C12) [2=Coe= jt. C1g= A

For plane waves prupagated in a direction specified
by direction cosines(n;, n,, ns).let

(u, v. wi=(U, V, W) ei™t, exp[-ik(nix+naytn,z) ]

Substitute it into equations of motion. by setting
the determinant of coefficients to zero. one can
obtain velocity egnation. Two special cases may be
considered immediately:

{a) For transmission ulong the unique axis. ng=1 and n
l‘_=112=0. C®=cas/ ¢ and ¢2=c 4/ are solutions.The
first term corresponds to a vertically travelling
pure compression Wave(PV)and the second is a double
root corresponding to a vertically travelling shear
wave with horizontal particle motion. The degeneracy
is caused by the SV and SH waves becoming
indistinguishable.

(b) For transmission along the direction
perpendicular to the z axis, that i3 in x -y plane, n
s=0, the solutions are as following:

c®=Ca1f p compression PH

C2=Cyqfp shear Sy
C11-C12

R shear SH

2p



The anisotropic factors are introduced for convience:
$=C1a/Cas, N =(C11-2¢C4s) [C1a

$=n=1 for isotropic case.

FINITE LAYER ANALYSIS

The displacements of Rayleigh wave,
propagation are shown:

an in-plane

exp [-ik(x—ct)] (2)

where k wave number, ¢ phase velocity, i=</-1.

For isotropic solid, Lysmer and Waas gave the
solution which can be modified for travsversely
igotropic case. The stiffness matrix of rectangular

element can be obtained according to virtual work
theorem.
—_ ! L
5 i 3 x
l— 3 Lo @ |2

z z
Fig.3 Discrete Element and System

In Fig.3, the element () and @ both have the same
stiffness matrix [kJ*,and[k]? Because of the
displacements of element () and (2, force acting on
point 1 in x direction is

Fiw=Kiiu12+Kizu;.+Kisu2x+Kiuz,
+KisusxtKieuax+tKizu x+tKisuaz
+KZ1UsxtkB2UpstkEslax KB Uax
+K36“11+K§e“11+Kg’7u 2:+K§8“ 2

(3a)

where m.1,j in k™3, represent the numbera of element,
row and column number. According to equation 2, the
displaments of point 3,4,5,6,can be expressed in form
of the displacements of point 1 and 2. Equation (3a)

will be condensed as following while 1—0,

Fiamu1aUse=KaolU 4Ky sUen—ka(dUa, (3b)
Similar solutions can be obtained for Fi., Fz., Faa,
which results in following matrix:

S r W= 7
| -iFi. e[kl | -iua, (48)
i Fax i Uax i
- -iFox L o-lug, -
where [kle=
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© C11k%h/3Hcec/h cask/2-cok/2
i Caa/h+C44k2h / 3
L symmetry

C12k>h/6Cee/h  —Cisk/2-Cask/2 =

C1alk/24Ceak/2 —Cos/h4Cesk®h/6 | X 1
C11k®h/3+Cae/h  —Cisk/24Cask/2 |

Cas/h 4+Cesk?h/3 J 4X4

(4b)

There exits a common factor ”1” in matrix [kl.,, which
will be deleted as global matrix is formed. This
matrix can be degenerated to the isotropic case (
Chen ,1991) as well as mass matrix.

SEMI-INFINITE LAYER ANALYSIS

Biot carried out the propagator matrix for layered
anisotropic system, and kausel developed it in
different way and obtained the stiffness matrix of a
transversely isotropic half-space subjcted to dynamic
loads (Kausel, 1881). The authors deduce this matrix
in form of surface wave for dispersion analysis. It
is apparent that we just follow the steps of kausel
with different emphasis.

The quations of In-plane motion are

3°u o2u a%u 2w
P = Cla— ~ Cag—— = {CagtCy —— =0
it o x* 922 =3 >} 4
(6a)
2w J%u Fw Fw
p ~ (CistCeq) — — Cqq——— — Cga—— = 0
atz ava ;xa aza
(6b)

Assuming the form of Rayleigh wave
e,p- ei(w@—kx) (7)

Substitution of equation (7) into (6a) ., (6b)leads to
an eigenvalue problem
— P W2+kZ€11-pCas 1KP(Cis+Cas) 7 a —

© =0

|
{
i
[

[

; '

Hkpieis,cas) —~ P WEkZc(pZcs b
(8)

One can obtain the equation about p from the

determinant of matrix.

tp*+mp2+n=0 (9)
where

t=Css * Cuq



m=m,k?, n=n;k+
My =(Cya+Cee) 2—(Ca1 * CaatCEe) + P *(Cieteas)
Ny=(C11~ P €2) (Caa— P €?)

Considering radiation condition, Re(p)<0

rkepy ";
R —
P= ; i =k * /-m, £/m3-4tn, (10)
‘ k - p= }
L A 2t
Solving next for ‘b’ from equation (8), with the

arbitrary value, say a=l, it comes out

Cy1~ P €®-picaa .
by=i —————— =12 (11)
Pi(CiatCas)

Following kausel’s step (1991), it gives following

matrix:
r1XZ ru
; ! ]
L | =[k’] | | (12a)
oz - z=0 L w220
where [k’]=

rcae{kpiba—kpabi)  ceel(Pa—pi) - k+ik(bi-bs)] _‘
|

| ) .
Lcasbibak(P1-pa) +ikeis(bi-b2) Caaf bzkpa‘bikpx)J
(12b)

Matrix [k’] 1s just the transversely isotropic
elagtic half-space stiffness matrix in form of
surface wave.It is proved that matrix [k’] is
consistant with that obtained by kausel under dynamic
loading. By setting its determinant tozero, one can
obtain the Rayleigh equation for transversely
isotrpic half-space, while kausel explained this

matrix anti-symmetric, so

!" 1X2 r u —’
| w
L doz- z=0 —iw 20 (138)

where [k’] X

ba-by

Cas (p:_b,t—pr:.) iCaa[(pa-P1) +i(bi-b2) }1’

¢
t
'
i
1

;Lsymmetry ¢33(bap2-b,p,)

This matrix can be degenerated to isotrpic case(xia,
1892). The stress on the half-space surface is equal
to the boundary stress of upper layer with opposite

sign, there are

1,01 1 1
FNx="‘J 1x2+dx , FNZ='— [ ozdx

27-1 2 1
(14)
on the half-space surface, the displacements
- u Urn
i 1 =exp(-ikx) [ i
L w L WNI (15)

Substitution of equation (13), (15) into (14),as 1—0
, it gives

[‘FN)G r U
i ‘ =—[k’] o] i (18)

i
[ .
~iFp —iW

where factor ”17 in equation (16) will be deleted in
global matrix.

EIGENVALUE MATRIX OF RAYLEIGH WAVE

Because of the special structure of the matrix,one
can separate the matrix into quadratic equation about

wave number k:

[ATk>+[Blk+[E]=0 (17)

The wave speed is supposed to be real for realism
Hossain, 1984).

For finite layer:

[Al=



- cub L NUMERICAL RESULTS
— 0 — 0
8 cah & cuch A two-layered road pavement structure and a three-
0 — (18a) layer soil stratum are analyzed numerically. Their
8 cuh 6 characters together with subsoil are listed in table
— 0 1 and 2 as isotropic case. Fix values of c¢11 and Cu««
3 cah with variation of ¢ and 17, one can obtain for
symmetry - anisotropy.
3
—
[B] o n :
- C13—Cqs C19tCaa
0 — 0o -
’ 2 CistCas 2 Fig.4 Two-layer Road Fig. 5 Three-layer
0 — 0 Pavement system Soil Stratum
2 CisCaa
symmetry 0 - (a) Two -layer Road Pavement System
0 table 1
= - i i H T
(18b) layer NO C1afCls | Cas/Cle | CasfCla | CusfCla | pfp* | H/H?
EF A B
 Ces Ces ﬁl 1 i 2. 4964 0. 4964 2. 4964 ; 1.0 *;1.0 ! 1.0
— -0 2 ;To.me 0.08m | 049 | w6 10 | oo
h cas h Cas i i ! |
T 0 - The superscript is reffered to as number of layer, and
h Cea h B x/m-
symmtry -—— 0
h Coa Knoppof (Xia, 1882) calculated its 1isotropic case
T I analyticaly. Figs. 6 and 7 show the dispersion
L h J curves fit the analytical solution well as ¢=1 and 7
=1. Under the condition of anisotropic subsoil, at
(18¢) lower frequency range,the factor ¢ and 7 both
predominate in dispersion analysis, while at higher

Mass matrix separation can be found ( Chen,1991).The

frequency range ., only factor ¢ does.
semi-infinite layer:

2/HY 1 T T

[Bl=-

X
2—Dy 3
[‘c“(lhbrpﬂbﬂ iic«[(pi—p,)l-i(b;—b,)[—[ . g:::z ;:42 |
G—o=1.0 n=1.0 7

Cas(baDa -b1p,) J
(18d)

L symmetry

e @ @8

@®—g=1.0 n=-0.8 7

1 z X i

"8 Y] ':‘5

Fig.6 Parameter Study With
Variation of Factor 7
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C—g=0.8
@E—o=1.0 n=101
@—o=1.2 n=1.01

@—a=1.4 n=1.04
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Fig.7 Parameter Study With

Variation of Factor ¢

(b)Three-layer soil stratum, Fig.5 .

Table 2
’ o Lo T
layer Nd Cufcte CiafCle | Casfcle Cad/Cia ? olp* H/H*
!
]
1 2.7 0.71 | 2.7 1.0 1.0 1 1.0
:f i
2 3.92 .32 | 3.92 1. 30 1. 075 i 0.6
3 | 7.29 ; 3un , 1.29 2.09 128 | 00
! i | 1 Sl
Table 3 shows anisotropy layers.
Table 3
. ! i
| Layer Curve O Curve @ ! Curve 2
i
' NO. ; ‘
! ]
|
! = 09 l4= 10 o= 09
7 1= 1.0 = 1.0 n= 1.0
2 = 10 = 1.0 = 1.0
n= 1.0 1= 1.0 n= 10
3 = 11 = 1.0 o= 1.1
| n= 1.0 n= 10 1= 1.0 ,'

Simmilar conclusion for ¢ and 1 can be seen from
Fig. 8,

dispersion analysis in soil deposit even though the

Anisotropy is important in Rayleigh wave

deposit is normally consolidated.
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Fig. 8 Parameter Study with

Variation of Factors ¢ and 1

CONCLUSIONS

1. The authors provide a reliable method for Rayleigh
wave dispersion analysis for transversely isotropic
deposit, The deduction is fit for Love wave analysis
too.

2.The Semi-infinite layer analysis is just the
problem of dynamic stiffness matrix in surface wave
form.So this deduction is suitable for other
anisotropic model.

3.The amnisotropy influnces Rayleigh wave dispersion
dramatically, it is neccessary to consider anisotropy
for SASW method in order to get shear wave velocity

of stratum.
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