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R-Wave Dispersion Analysis in Transversely Isotropic Stratum 
Paper No. 10.13 

Shiming Wu and Lizhong Wang 
Professor and Ph.D Candidate, Civil Engineering Department, Zhejiang University, China 

SYNOPSIS With dynamic stiffne5~ of elastic half-space. the Rayleigh wave di~per~wn in transver~ely i.;otropic S<.•_il i~ 
analy::~ed by Fmite-layer and Semi-infinite lay.,r method. Only 1::1 matrix eigenvalue IIIVolvt.'\.\. avm<.hng the cak-ulat1on 
proeedure encounte-d in analytical method. Two example:; prove the deduction n•rredly. and. 5how t_hat S<..nl amc•otrt•PY 
influences didpersion dramaticaly. It id pOSdlble to study so1l am:>otropy and char:u:tenstlcd ot 1t:> dynamu:al 
responces from its surface wave dispersion. 

INTRODUCTION 

Dispersion characters of surface waves induding 
Rayleigh wave and Love wave are widely applied to 
engineering test. In earthquake engineering. :lite 
responces and foundation vibrations are closely 
linked with surface wave disper;>ion. The cla::!sical 
method for Rayle1gh wave di::!persion analy::~is. Ha~kell 

(Hl50) . wa::1 Improved by Dunkint1965) greatly. with 
wt,idl Crampin \1970) ;;;tudit>d the lnYl'r.:ci traHs·:;.·:·.dy 
i::~otropic depo::~it . So far. the da::~t\it:>tl method<~ are 
still faced with the problem5 of high-freque-ncy 
overflow and lost of accuracy. 
Lysmer and Waas \ 1970) \ 1972) put forward Finite-layer 
method to di::~persion ano.ly~es. developed by kau5el ( 
1986) for an i~e>tropic ~olid in the case of rock base t 
Fig. 1). Hossain {1984) applied FEM and Infinite element 
to calculate the ~urface wave dispersion of the model 
as shown in Fig. 2. Xiat1992) et al improved ::~emi­

infinite layer in isotropic deposit layered ;>ystem. 
It is possible to modify Lysmer's method for layered 
anisotropic system, so that transersely isotropic 
model id sugge;>ted. In fact, for :;emi-infinite layer. 
it is just a problem e>f 
stiffness matrix of surface wave in transve-rt\e-ly 
isotropic half-space. This problem is solved by Kausel 
\1991) in form of vibration. The auth.ors :>olve it 
combining with Finite-layer method in form of surface 
wave. 

N-1 

. . .. 
z 

Fig. 1 System Model 
With Rock Base 

---, 

z 

Fig.2 System Model With 
Elastic Half-space 

X 
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PLANE WAVES IN TRANSVERSELY 
ISOTROPIC DEPOSIT SYSTEM 

The. matrix of the elastic constant::~ for medium with 
transversely isotre>pic ;>ymmetry is 

- <.'~~~ c1.2 C1.:t 

I cl.~ c:11. t:1.3 

1 t•l.3 L"-1.3 l-"33 

C L4. 

~ , .. j 1"""1. 12) /2 

For isotropic. there are: 

Ft•r plane waves propagated in a direction specified 
by direction <:e>t~ine~t n~. n 2 , n 3 ). let 

Substitute it into equations of motion. by setting 
the determinant of <:oefficients to zero. one can 
obtain velocity eqnation. Two special ca;:es may be 
wnsidered immediately: 
\a) For transmi:>sion ~tlong the unique axis. n3 -1 and n 
~~n2~o. C2

=Caa/ p and C
2 =c,.. ... / p rue solutions. The 

fir;>t term correspond~ to a vertically travelling 
pure compre-ssion Wave{PV)and the second is a double 
root t:orresponding to a vertit:ally travelling shear 
wave with horizontal particle motion. The degeneracy 
IS caused by the SV and SH waves becoming 
indistingui:>hab I e. 
(b) For transmission along the direction 
pe-rpendicular to the z axis, that is in x -y plane, n 
s=O, the solution;> are as following: 

c2=<:~1/ p 
C2=C,.,...f P 

Cu-Cl.2 

C2=-----

2p 

compression 
shear 

~hear 

PH 
sv 
SH 



The anisotropic factors are introduced for convience: 

:jJ = n =1 for isotropic case. 

FINITE LAYER ANALYSIS 

The displacements of Rayleigh wave, 
propagation are shown: 

an in-plane 

r- U l 1 f(z) l 
1 • :::: I exp [ -ik ( x-ct) ] 
L w J L g(z) J 

~2) 

where k wave number, c phase velocity, i=v'-1. 
For isotropic solid, Lysmer and Waas gave the 
solution which can be modified for travsversely 
isotropic case. The stiffness matrix of rectangular 
element can be obtained according to virtual work 
theorem. 

~ 
~ .J 

it'd • , 

1 
!i > ~ 

3 & 

X 

z z 

Fig.3 Discrete Element and System 

In Fig. 3, the element (J) and (]; both have the same 
stiffness matrix [k}1, and[k}2

• Because of the 
displacements of element CD and (b>, force acting on 
point 1 in x direction is 

F1x=Khu1x+Ki,.u:u+Kku,.,.+Ki..,u,.,. 
+Ki8u~h.+Kiaus,.+Ki7u..,,.+Kieu..,,. 
+K~1Ue,.+k~,.u1h:+kLua,.+KLua,. 
+Kit,ub+K&,u1.+Ki7u,.,.+K~eu2x 

~Sa) 

where m, 1, J 1n k~, represent the num ber6 of element, 
row and column number. According to equation 2, the 
displaments of point 3, 4, 5, 6, can be expressed in form 
of the displacements of point 1 and 2. Equation (3a) 
will be condensed as following while 1-0, 

F 1x-1<11 u1 .. -kuoiU1a+k1sU,.,.-k1..,iu,.,. ~ 3b) 
Similar solutions can be obtained for F1., F,.,., F,.., 
which results in following matrix: 

F1,. ] 
-iF:u. =[k].. 

F,.,. 
-iF,.,. 

where [k}ea 

u1,. 
-iul.a 

u,.x 
-iu2a 

(4a) 
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c11k"h/S+c..,..,{h c18k/2-c..,..,k/2 
cMfh+c..,..,k2 h/3 

symmetry 

Cu~h/6-c ...... /h 
C:~.stk/2+C'"k/2 

Cuk2h/~••/h 

-c:Lak/2-<:.., ... k/2 1 
-c..a{h+c......k"'h/6 : X 1 
~Cuk/2fC••k/2 i 

CM/h +C~~k'"h/3 j 4X4 
~4b) 

There exits a common factor "]" in matrix [kJ,., which 
will be deleted as global matrix is formed. This 
matrix can be degenerated to the isotropic case ( 
Chen , 1991) as well as mass matrix. 

SEMI-INFINITE LAYER ANALYSIS 

Biot carried out the propagator matrix for layered 
anisotropic system, and kausel develope.! it 1n 

different way and obtained the stiffness matrix of a 
transversely isotropic half-space subjcted to dynamic 
loads (Kause1,1991). The authors deduce this matrix 
in form of surface wave for dispersion analysis. It 
is apparent that we just follow the steps of kausel 
with different emphasis. 
The quations of In-plane motion are 

<c:LS+c ...... f~-- c o 
axaz 

~6a) 

~:; d2u ;Tw ;Tw 
p -- - ( C:~.s+c..,..,) -- - c..,..,-- - c83-- = 0 
~t" d~Z ;}X" ;} z"' 

Assuming the form of Rayleigh wave 

~u-
1 I 

L w_j 

~a i 
I e-P• ei<-'t.-ka.> 

L b J 

(6b) 

(7) 

Substitution of equation ~ 7) into ~ 6a) , ~ 6b) leads to 

an eigenvalue problem 

i 
. =0 

Likp( c18 +c44) - p w"'+k"c44-p"'c,.~ 

~8) 

One can obtain the equation about p from 

determinant of matrix. 

tp4 +mp2 +n•O 

where 

(9) 

the 



m-m1k 2
, n•n1k4 

m1•(c,8-k44)
2-(Cn • C1s+<:!...>+ P c"(c ...... +<:ss) 

n1•(eu- pc")(c.....,- p c") 

Considering radiation condition, Re(p)<O 

P= 
k. p,., 

2t 

Solving next for 'b' from equation ( 8), with the 

arbitrary value, say a=1, it comes out 

b,-i j-1. 2 (11) 

Following kausel's step (1991), it gives following 

matrix: 

rul :' xz l I . 

Loz J z=O 

I , 
1 t 

(12a) =[k'] 

L w_j z=O 

where [k']= 

c44 [(p2 -p1) ·k+ik(bl.-b,.)]l rc ...... (kp'l.b,.-kp,.,b].> 

I 
lcaab1 b 2 k(p1-p2 )+ikc,s(bl.-b,.) 

I 

c88( b,.kp,.-b1kpl.~ 

Matrix [k '] 1s just the transversely 

elastic half-space stiffness matrix in 

(12b) 

isotropic 

form of 

surface wave. It is proved that matrix [k'] is 

consistant with that obtained by kausel under dynamic 

loading. By setting its determinant tozero, one can 

obtain the Rayleigh equation for transversely 

isotrpic half-space, while kausel explained this 

matrix anti-symmetric, so 

- 't xz J 
l_i o z z=O 

=[k'] 

k 

where [k'] -X 

b,.-b]. 

(13a) 
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; c....., (p1 b2-p2b11 i c ...... [(p,.-p].) +i( b1-b,.) }l 

i 
Lsymmetry 

! 

(13b) 

This matrix can be degenerated to isotrpic case( xia. 

1992). The stress on the half-space surface is equal 

to the boundary stress of upper layer with opposite 

sign, there are 

1 J I 
FNx=--

2 -1 

'xz • dx . FNz=-~ f o zdx 

2 -1 

(14) 

on the half-space surface. the displacements 

i u l I UN'l 
i =exp( -ikx) • I I 
L wJ L wJ ( 15) 

Substitution of equation (13), (15) into (14), as 1-0 

. it gives 

I FNXl 
I I =-[k'] 

L-iFNJ 

(16) . I . 

where factor "l" m equation (16) will be deleted m 

global matrix. 

EIGENVALUE MATRIX OF RAYLEIGH WAVE 

Because of the special structure of the matrix, one 

can separate the matrix into quadratic equation about 

wave number k: 

(17) 

The wave speed is supposed to be real for realism 

Hossain, 1984). 

For finite layer: 

[A]= 



r cl.l.h Cub 

0 0 

3 c~h t! c~h 

0 (18a) 

3 Cuh 6 

0 

3 CM,h 

I symmetry 

I 3 
I 
L 

[BJ-

lo 
C:!.s-c~ C>.s+c.,.,l 

--- 0 

2 C:!.s+c~ 2 

0 0 

2 C1s-c.,., 

I symmetry 0 - --··--

l 2 

0 

(18b) 

[E)= 

c ...... c., ... 

0 0 

h Css h Css 

0 

h c~ h 

symmtry 0 

h Css 

h I 
J 

(18c) 

Mass matrix separation can be found ( Chen, 1991). The 

semi-infinite layer: 

1 
[B)=- --X 

b,.-b, 

t c .. (lh b,.-p,.b1) i.e..,.[ (p1-p,.)+Hb>.-b,.)l-l 

l symmetry J 
(18d) 
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NUMERICAL RESULTS 

A two--layered road pavement structure and a three­

layer soil stratum are analyzed numerically. Their 

characters together with subsoil are listed in table 

1 and 2 as isotropic case. Fix values of Cu and c.,., 

with variation of ¢ and 11, one can obtain for 

anisotropy. 

Fig. 4 Two--layer Road 

Pavement system 

Fig. 5 Three-layer 

Soil Stratum 

{a) Two -layer Road Pavement System 

table 1 

----~' f ! ' 

laye~~ C1~Cl4+: C1a/Cl4-L~:~Cl4 j__C44/Cl4 L~~~L~~ 
j I l ' ' 

1 i 2. 4964 o. 4964 2. 4964 : 1. o : 1. o I 1. o 
I I 

---~- I 

2 0.4389 0.0877 o. 4389 I o. 1756 : 1. o , 0:;, 

__l ___ _;__ ___ _j ___ _ 

The superscript is reffered to as number of layer, and 

/3 '-=._/Ch/ p ,_. 

Knoppof (Xia, 1992) calculated its isotropic case 

analyticaly. Figs. 6 and 7 show the dispersion 

curves fit the analytical solution well as ¢ =1 and 11 

=1. Under the condition of anisotropic subsoil, at 

lower frequency range, the factor ¢ and 11 both 

predominate in dispersion analysis, while at higher 

frequency range , only factor ¢ does. 

(i)-<r~l.O 

(j\1-q·~l.o 

w !;\) @ 
(l)-q>~I.O 

@-q>~l.O 

Fig. 6 Parameter Study With 

Variation of Factor 11 

.,~1.1 

Tl=!. 2 

q~l. 0 

O"- 0. R 



'1=1.0 

(i:-(Jl= I. 0 '1= I. 0 

(;~-q>=I.2 '1=1.0 

@";-<r= t. 1 "= 1. 0 

··~ 

Fig. 7 Parameter Study With 

Variation of Factor ~ 

(b) Three-layer soil stratum, Fig. 5 . 

Table 2 

rl :----1 1 i 1 1 i 1 .-:-1 HIH~ 
layer N.._, c11/c!.. ! C1a/c:J.. ! c,...lq.. i c •• Cl• i P ~ i 

--- --+----t-----t---+----t-----1-----
1 I 2. 71 I 0. 71 I 2. 71 I 1. 0 : 1. 0 ! 1. 0 

: t---r---:---t----1--
2 

l
i 3 92 1.32 i 3.92 , 1.30 11.075 I 0.5 

• ' I I ! --+ +-----t---t---,-----
1 I I I 00 

3 7.29 3.ll 7.29 1 2.09 ;1.283 , 
_ _[__ ___ L__ ___ L_ __ L____ j_ - -

Table 3 shows anisotropy layers. 

Table 3 

~--·--------~-------T-·---··--·-·--!---- -------·--

i Layer :
1

• Curve Q) [ Curve (~) : Curve C~' 
I i I 

NO. ! I l 

r------1---- --t-------r--------1 
1 ¢ = o 9 I ¢ = 1. o ! ¢ = o. 9 i 

1 I n = 1: o j n = 1. o I n = 1. o j 

~-+- ~-------l 
I 

z ! ¢ = 1. o 1 ¢ = 1. o i ¢ = 1. o 1 

' I n = 1. 0 s· 1. 0 I n ::: 1. 0 I I I : ! r 3 i ¢ = 1. 1 --~~-----r-~ = 1~~ ---l 
\ n = 1.0 j n = 1.0 j_:_~~o_J 

Simmilar conclusion for ¢ and n can be seen from 

Fig. 8, Anisotropy is important in Rayleigh wave 

dispersion analysis m soil deposit even though the 

deposit is normally consolidated. 
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c/~' t.f ,...--~------------

LU 

'·' '----~--~-~-~~-~----' 
10 21 •• .. u •• 

'./II' 

Fig. 8 Parameter Study with 

Variation of Factors ¢ and n 

CONCLUSIONS 

1. The authors provide a reliable method for Rayleigh 

wave dispersion analysis for transversely isotropic 

deposit, The deduction is fit for Love wave analysis 

too. 

2. The Semi-infinite layer analysis is just the 

problem of dynamic stiffness matrix in surface wave 

form.So this deduction 1s suitable for other 

anisotropic model. 

3. The anisotropy influnces Rayleigh wave dispersion 

dramatically, it is neccessary to consider anisotropy 

for SASW method in order to get shear wave velocity 

of stratum. 
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