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Area of Compaction to Prevent Uplift by Liquefaction Paper No. 3.34 

Yukihisa Tanaka, Hideo Komine, Jun-ichi Tohma, Keizo Ohtomo, and Hitoshi Tochigi 
Central Research Institute of Electric Power Industry 

Hidenori Abo and Satoyuki Fukuda 
Tokyo Electric Power Company 

SYNOPSIS In this study, shaking table tests, upper seepage flow tests and numerical analyses were 
conducted to determine the condition of improvement by the compaction method, including the extent of 
area and the density, to prevent uplift of underground pipes by liquefaction. Based on the results of 
these investigations, a procedure to determine the improvement conditions was proposed. 

INTRODUCTION 

In Japan, since underground pipes are often laid 
in liquefiable sand deposits, remedial treatment 
of the surrounding ground is necessary and the 
compaction method is usually used. For this, it 
is important to determine the extent as well as 
the target density of the improved area because 
of restrictions on the area and cost of earth 
work. In this study, upper seepage flow tests, 
shaking table tests and numerical analyses were 
conducted to determine the conditions of 
improvement. 

EXPERIMENT 

Upward Seepage Flow Test 

Upward seepage flow tests were conducted using a 
one-tenth model to investigate the effect of 
hydraulic gradient and density of the model 
ground on uplift behavior of the underground 
pipe. Figure 1 shows the schematic view of the 
upward seepage flow test. For accurate 
measurement, pore pressure for evaluating the 
average pore water pressure ratio in the ground 
was measured using a pore pressure meter 
installed at the bottom of the sand layer. 
Sengenyama sand with a grain size distribution as 
shown in Fig. 2 and physical properties as shown 
in Table 1 was used in this series of tests. 
Table 2 lists the conditions of the experiments. 

Figure 3 shows the relationship between the 
amount of uplifting and average pore pressure 
ratio of the ground obtained by the upward 
seepage flow test. The amount of uplift was 
measured after transient movement of the 
underground pipe, which was triggered by 
increasing the hydraulic gradient, ceased. Thus 
the relationship was thought to be obtained under 
drained condition. The amount of uplifting 
increases with increasing average pore pressure 
ratio in Fig. 3. - The threshold value of the 
average pore pressure ratio corresponding to 
uplift seems to be 0. 7-0.8. If the average pore 
pressure ratio increases beyond the threshold 
values, the amount of uplift becomes unlimited 
until the underground pipe rises up to the ground 
surface. The solid symbols approximate the upper 
limit of the pore pressure ratio inside which the 
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Fig.1. Schematic View of Upward Seepage Flow Test 
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amount of uplift doesn't become very large(Komine 
and Tanaka, 1991). 

Shaking Table Test 

Figure 4 shows a cross section of 
ground, using a one-fifth scale model. 
underground pipes of 12cm diameter are 
the compacted area near the center of 
container at a depth of 30cm. 

the model 
The model 
buried in 
the model 



Table 1. Physical Properties of Sands 

Physical Properties Sengen-yama Sand Tonegawa Sand 

Maximum Grain Size 
2.00 2.00 

Dmax (nun) 

Average Grain Size 
0.285 0.32 Dso (mm) 

Uniformity Coefficient. U c 2.116 2.500 

Specific Gravity, Gs 2.703 2.718 

Maximum Dry Density 
1.702 1.652 

Pdmaxf:l/cm3) 

Minimwn Dry Density 
1.395 1.329 P drrrin (!l/cm3) 

Minimwn Void Ratio, c;,;0 0.588 0.645 

Maximum Dry Density, c;,.x 0.938 1.045 

Table 2. Test Conditions 

Upward SeepageF1ow Test Shaking Table Test 

Dry density Relative Width of the Relative Density, 
Cases p d(g/ density Cases Improved Part, Dr(%) of the 

cm2 Dr(%) B (em) Improved Part 

A 1.483 33 1 
0 (Un-improved 

30 ground) 

B 1.533 50 2 60 69 

c 1.591 68 3 90 87 ----- 4 120 66 

Table 2 lists the conditions of the experiments. 
In this series of tests, the effect of the extent 
of the improved area on the behavior of the 
underground pipe model was investigated. 
Tonegawa sand, with a grain size distribution as 
shown in Fig. 2, was used in this series of 
tests. 

Figure 5 shows the relationship between the 
amount of uplifting of the buried pipes and pore 
pressure ratio, ru, acting on the bottom of the 
pipes immediately after seismic excitation. It 
should be noted that pore pressure at the bottom 
of the underground pipe was interpolated by the 
pore pressures measured in the surrounding ground 
because the pore pressure measured at the bottom 
of the underground pipe is affected by movement 
of the pipe and locality of the distribution of 
pore pressure around the pipe. 

The amount of uplifting in Case-3 and Case-4 is 
very small, while that in Case-1 and Case-2 
increases with increasing pore pressure ratio. 
The threshold value of the average pore pressure 
ratio corresponding to uplift seems to be 0. 7-
0. 8, which is the same as the threshold value 
obtained in the upward seepage flow test 
described previously(Tochigi, et al. 1991). 

PORE PRESSURE RATIO OF UPLIFT 

Mechanism of Uplifting 

To investigate the mechanism of uplift of the 
underground pipe, we assume that the slip 
surfaces due to uplift as shown in Fig. 6, which 
are similar to the Japanese standard, "Design 
Manual for Common Utility Ducts" to investigate 
uplift of rectangular common utility ducts. 

Assuming that the pore water pressure ratio is 
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constant throughout the ground, the uplift force 
due to pore water pressure acting on the bottom 
of the buried pipes is given by: 

U=L· rc (Z+~in O)·(Yw+ru"f)_Dp sin O·dO lo 2 2 

D2 
=n____f_·(Yw+r uY)·(2Z-r2I-Dp) 

2 4 
(1) 

Where, 
)W: Unit weight of water 
y•: Submerged unit weight of surrounding sand 
Dp: Diameter of the underground pipe 
Z: Buried depth 
n: L/Dp (L:Length of underground pipe) 
ru:Excess pore water pressure ratio in the ground 

The self-weight of the underground pipe, Wl, is 
given by: 

3 
WI =n~DpGPYw <2 l 

Where, 
Gp: Apparent specific gravity of underground 

pipe, which is unity in this series of tests. 

Gp= 1 (3) 

Assuming that the failure surfaces by uplifting 
is as shown in Fig. 6, the self-weight of the 
soil surrounded by four failure planes , W2, is 
given by: 

(4) 

The shear resistance force along the vertical 
failure planes and both sides of the underground 
pipe model, T, is given by: 

T=(l+n)DpZ2"(K(l-ru)tan <P' (5) 

Where, 
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K: Coefficient of earth pressure (= ah'/crv', Oh': 
Horizontal earth pressure, crv': Vertical earth 
pressure) 

For equilibrium of the forces acting on the 
underground pipes then: 

U=WI+W2+T (6) 

Substituting Eqs. (1), (2), (4) and (5) into Eq .. (6), 
we get the following equation: 

n~Gp-1)~ + n(t- 21.) + (l+n)2Ktan <P' 
ruld- 4 "( 8 

n(t~) + (1 +n)t2Ktan f 
8 (7) 

ruld in Eq. (7) corresponds to the pore pressure 
ratio causing large amount of uplift because 
shear resistance of the ground was taken into 
account in Eq. (7). In the early stage of uplift, 
since the shear resistance acting on the vertical 
slip planes is not mobilized, Eq. (7) is rewritten 
as follows: 

rucr 

~Gp-l)'Yw +(t- 21.) 
4 i 8 

t~ 
8 (8) 

The relationship between internal friction angle, 
~·, and relative density, Dr, is assumed to be 
given by(Shimobe and Miyamori, 1991): 

cp '=33.5+(0.041Dr2 + 6.13Dr) XlQ-2 (9) 

where, 
$ ' : internal friction angle (deg) 
Dr: relative density (%) 

In Fig. 7, the results of calculation by Eq. (7) 
with Gp=1, n=3.58, t=3.33 and K=O.S, is shown by 
the dotted line. The observed ruld values, which 
correspond to solid symbols in Fig.3, increases 
sharply with increasing relative density, Dr, 
whereas the calculated value increases slightly. 
This difference may be attributed to localization 
of shear failure in loose sand deposit. 

The observed value of ruld becomes unity or more 
if the relative density exceeds 50%. This is 
due to the heterogeneous distribution of excess 
pore water pressure in the model ground. The 
presence of the underground pipe reduces the 
excess pore water pressure above the underground 
pipe than that at the same depth. 

To model the heterogeneous distribution of excess 
pore water pressure and locality of failure, 
parameters a. and ~ are introduced. The average 
pore pressure ratio above the underground pipe is 
assumed to be a. times the average pore pressure 
ratio in the ground. The failure planes are 
assumed to occur from depth Z, while the vertical 
length .of the failure plane is expressed as l3z, 
where the value of 13 is assumed to be a function 
of the relative density. Using a. and 13, Eq. (7) 
is rewritten as follows: 
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n~Gp-l)~+n(t- K) + J3(2 -J3)(1+n)t2Ktan <!>' 
ruld 1_ 8 

n(t-rK) + cxJ3(2 -13)(1 +n)t2Ktan $' 
8 (10} 

Substituting 13=1 and the observed ruld value of 
Case-C which corresponds to a solid square in 
Fig. 3 into Eq. (10}, a.=O. 67 was obtained. Since 
the value of a. seems independent of the relative 
density of the ground, a.=O. 67 can be used to 
calculate the values of 13 of Cases A and B. 

According to the result of seepage flow analysis 
which was conducted to know the pore pressure 
distribution in the improved part when the the 
un-improved part completely liquefied, pore 
pressure ratio along the axis of symmetry in 
Fig.9 does not change so much if z/H is less than 
0.6(Komine and Tanaka, 1991}. Thus it is 
reasonable to assume CX.=1.0 in the region of z/H< 
0. 6. Substituting a.=l. 0 and the values of l3 
calculated above into Eq. (10} with Gp=1, the 
corrected values of ruld of Cases A, B and C were 
calculated. These results are plotted in Fig. 7 
as open triangles. 

Since the parameters, 13 and <I>' are functions of 
Dr, 13(2-l3)tancl>' in Eq. (10} is a function of Dr. 
Figure 8 shows the relationship between 13(2-f3)Ktan 
<I>' with K=O.S and the relative density of the 
ground, Dr. 

Apprqpriateness of rucr and ruld for Uplift 
during Shaking 

The calculated ruld and rucr values using ~qs. (7} 
and (8} with Gp=1 and Fig. 8 are plotted as 
vertical lines in Fig. 5. Although in the 
shaking table tests the uplift occurred only 
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Fig.9. Schematic View of Improved Ground 

during shaking, the ruld and rucr values seem to 
correspond to the threshold uplift and large 
amount of uplift, respectively. 

NUMERICAL ANALYSIS 

The generation and dissipation of pore water 
pressure was analyzed using a computer program 
modified from GADFLEA(Booker, et al. 1976}, the 
basic equation of which is a consolidation 
equation similar to the equation of heat 
conduction. 

Figure 9 shows a cross section of the ground used 
for the numerical analysis. As shown in Fig. 9 , 
the presence of underground pipes were not 
considered for the numerical analysis in order to 
enhance the generality of the calculated results. 
For simplicity, the permeability and the 
volumetric compressibility of the improved part 
and the un-improved part are assumed to be 
constant in each part. 

Simplification of the Problem 

The basic equations of the analysis are as 
follows: 

(lla}, (llb} 

Where, 
Cvox, CVLx: Coefficient of consolidation in the X 

direction of the improved part and the 
un-improved part, respectively. 

Cvoz, CvLz: Coefficient of consolidation in the Z 
direction of the improved part and the 
un-improved part, respectively. 

uo,uL: Excess pore water pressure in the 
improved part and the un-improved part, 
respectively. 

ugo, ugL: Excess pore water pressure generated by 
cyclic shear in the improved part and 
the un-improved part, respectively. 

The boundary conditions are as follows: 

auo/ax=O at x=O (12a} 
auL/ ax=O at x=oo (12b} 

a UD/ a z= a UL/ a z=O at z=H (12c} 
uo=uL=O at z=O (12d} 

uo=uL at x=B/2 (12e} 

The initial conditions are as follows: 

uo=uL=O at t=O (13} 



The problem defined by Eqs. (11), (12) and (13) can 
be divided into the following two problems. 

I. Excess pore pressure by cyclic shear 
is generated only in the un-improved part. 

ll. Excess pore pressure by cyclic shear 
is generated only in the improved part. 

The basic equations governing problem-! above 
are as follows: 

(14a), (14b) 
The boundary conditions are as follows: 

auc1l a x=O at x=O (15a) 
a ULll a x=O at x=oa (15b) 

auc1l a z=au11l a z=O at z=H (15c) 
UDl=ULl=O at z=O (15d) 

UDl=ULl at x=BI2 (15e) 

The initial value as follows: 

UD1=u11=0 at t=O (16) 

On the other hand, the basic equations governing 
problem-IT above are as follows: 

(17a), (17b) 
The boundary conditions are as follows: 

auc2l a x=O 
au12l ax=O 

a UD21 a z= a UL21 a z=O 
UD2=UL2=0 

UD2=UL2 

at x=O 
at x=oo 
at z=H 
at z=O 
at x=BI2 

The initial conditions are as follows: 

UD2=UL2=0 at t=O 

(18a) 
(18b) 
(18c) 
(18d) 
(18e) 

(19) 

Adding Eq. (14) to Eq.(l7), we obtain the 
following equations. 

d(UDI+UD2) _ dUgD2 

at at 
()(uu+uL2) _ ougLI 

dt dt 
(20a), (20b) 

For the boundary conditions, we obtain 
following equations by adding Eqs. (15) 
Eqs. (18). 

the 
to 

a (UDl+UD2) I a x=O 
a (ULl+UL2)1 a x=O 

a(uol+UD2) I a z=a(u1l+UL2) I a z=O 
UDl +UD2=UL1 +UL2=0 

UDl +UD2=UL1 +UL2 

at x=O 
at x=00 

at z=H 
at z=O 
at x=BI2 

(2la) 
(2lb) 
(2lc) 
(2ld) 
(21e) 

The following equation can also be obtained as an 
initial condition by adding Eqs. (16) to Eqs. (19). 
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UDl +UD2=UL1 +UL2=0 at t=O (22) 

By comparing Eqs.(ll),(l2) and (13) to 
Eqs.(20),(21) and (22), replacing uo1+uc2 for uc 
and uLl+UL2 for UL, these equations appear to be 
the same. However, one should note that the 
terms of pore pressure generation are generally 
different as shown below because the pore 
pressure generated per unit time is assumed to be 
affected by the total pore pressure ratio in 
GADFLEA(Booker, et al. 1976). 

augol at=f= augc21 at 
augLI at=f= augLll at 

(23a) 
(23b) 

However, we can make Eqs. (20a) and (20b) exactly 
the same as Eqs. (lla) and (llb) by assuming that 
the pore pressure generated per unit time is 
independent of the total pore pressure ratio, as 
shown below: 

auglat=NciNt (24) 

Where, 
Nc: Number of cycles 
Nt:Number of cycles required to reach 

liquefaction 

The solution of the problem expressed by 
Eqs. (11), (12), (13) can thus be approximately 
obtained as the sum of the solutions of problem
! and problem-IT (Komine and Tanaka. 1991: Tanaka. et al. 
1991). 

Maximum Pore Pressure in Imoroved Part after 
Termination of Seismic Motion 

According to the results of the shaking table 
tests conducted in this study, the underground 
pipe is uplifted only during shaking because in 
the scale model test the distance between the 
underground pipe and the liquefied part is rather 
small. However, in actual ground, liquefaction 
is thought to occur under almost undrained 
conditions and dissipation to occur only after 
termination of seismic motion. Therefore it is 
very important to consider uplift of the 
underground pipe after earthquake motion. 

To investigate the effect of seepage flow from 
the liquefied un-improved part into the non
liquefied improved part, numerical analysis using 
the computer program GADFLEA was conducted. The 
initial conditions of the analysis are as 
follows: 

ru=O for the improved part at t=O 
ru=l for the un-improved part at t=O 

In reality, even in the improved part of the 
ground, pore pressure generation occurs to some 
degree by cyclic shear during earthquake motion 
and by increase in horizontal earth pressure due 
to liquefaction of the un-improved ground. 
However, it dissipates more quickly than that 
generated in the un-improved part of the ground 
because the coefficient of volumetric 
compressibility and the drainage length of the 
improved part are much smaller than those of the 
un-improved part. 

Analysis Results 

Figure 10 shows the effect of kozlkLz and mvclmv1 

on the maximum pore pressure ratio at X=O, 
z=0.4H. The pore pressure ratio increases as the 
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ratio mvo/mvt decreases, whereas the pore pressure 
ratio has a maximum when the ratio koz/ktz varies 
from 0.125 to 8. These values are almost the 
minimum and maximum values of mvo/mvL, 
respectively(komine and Tanaka, 1991). Figure 11 
shows the maximum pore pressure at X=O when 
mvo/mvt=O .125 plotted against B/H. In laboratory 
cyclic shear tests, 0.125 seems to be almost the 
smallest value of mvo/mVL. Thus the maximum pore 
pressure in Fig. 11 seems to be the maximum value 
of each B/H. In Fig.ll, observed values from the 
shaking table tests are also plotted as solid 
symbols. Though the un-improved part liquefied 
completely in the shaking table tests, all the 
observed pore pressure ratios are smaller than 
the calculated values. Thus the calculated 
values in Fig. 11 can be used for safer design. 

PROCEDURE TO DETERMINE B/H VALUE 

We can determine the area of compaction to 
prevent uplift of underground pipes due to 
liquefaction using Eqs. (8) and (10) with a=l and 
Figs.8 and 11 ~hen the values of Gp, n, t, .Dr are 
given as design conditions. 
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CONCLUSIONS 

In this study, shaking table tests, upper seepage 
flow tests and numerical analyses were conducted 
to determine the conditions of improvement, 
including the extent of the remedial area and the 
density of the remedial area, to prevent uplift 
of underground pipes due to liquefaction. Based 
on the results of these investigations. a 
procedure to determine the improvement area was 
proposed. The proposed method is expected to be 
helpful for rough estimation in practical design. 
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