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1\ Proceedings: Third International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamics 
~ Apri12-7,1995, Volume I, St. Louis, Missouri ' 

Seismic Response of Embankment Dams Paper No. 6.01 

L. Caldeira, P. Seco e Pinto and J. Bile Serra 
Laborat6rio Nacional de Engenharia Civil (LNEC), Lisboa, Portugal 

SYNOPSIS: This study is intended as a contribution towards a better understanding of the seismic response of embankment 
dams. Laboratory tests for the determination of static and dynamic mechanical properties of the material are described. A 
parametric study is performed varying the main source of earthquakes, the height of the dam, the type of the materials and 
the core position (central and upstream sloping core). The dynamic analyses have made possible the identification of hazard 
scenarios and particularly the evaluation of stability and residual deformation of the dams. 

INTRODUCTION 

The purpose of the present study is to improve the state of 
knowledge on the key factors of the seismic behaviour of 
embankment dams. In order to achieve a comprehensive as 
well as enlarged picture of the subject, three zoned earth 
dams are analyzed: Borde Seco Dam, Las Cuevas Dam and 
Alvito Dam. The dams properties such as geometry and 
constitutive materials and the corresponding seismic 
environment were selected to get a broad and representative 
picture of the subject. 

Borde Seco Dam, located in Venezuela, is a 122 m high 
dam with a thick central core. Upstream and downstream 
shells, a filter, a drain and a protection zone of the upstream 
shell consist essentially of granular materials (Figure 1). 

Las Cuevas Dam, located in Venezuela, is a 92 m high 
dam, with a thin upstream sloping clay core and shells and 
a draining zone of granular materials (Figure 2). 

Alvito Dam, constructed in Portugal, is a 40 m high dam 
with a cohesive central core, and shells of decomposed schist 
materials (Figure 3). 

The static and dynamic geotechnical characterization of the 
main materials were based in triaxial monotonic compression 
tests, simple shear cyclic tests and cross-hole tests. 

Due to some limitations of the simple shear device (Seco e 
Pinto, 1990), as far as more elaborated modelling is 
concerned, and to the extent of the present study, the linear 
equivalent model was used in a finite element analysis of 
plane strain equilibrium (Bile Serra, 1991). The stresses prior 
to the earthquake analysis were calculated using the 
hyperbolic model. 

A detailed comparison of the dams behaviour under a post
reservoir filling earthquake is performed and the conclusions 
related with the key factors of the seismic behaviour are 
drawn. Limitations of space do not allow to show all the 
results, which are presented in Caldeira (1994). 
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Fig. 1. Cross section of Borde Seco Dam 

Fig. 2. Cross section of Las Cuevas Dam 
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Fig. 3. Cross section of Alvito Dam 

STATIC ANALYSES 

The static analyses after the first reservoir filling were 
carried out using the hyperbolic model. The hyperbolic 
parameters were determined from undrained unconsolidated 
triaxial compression tests. 

Table 1 shows the maximum horizontal, vertical and total 
cumulated displacements, as well as the maximum vertical 
stresses at the end of the construction and after the first 
filling of the reservoir of the studied dams. 

Due to the soil nature (only granular materials are 
incorporated) Borde Seco Dam has smaller deformability. 
The maximum vertical stresses are directly related to the 
height of the dams. 



Table 1. Maximum static displacements and vertical stresses of Borde Seco Dnm, Lus Cuevas 

Dam and Alvito Dam 

Borde Seco Dam Las Cuevas Dam 

Maximum horizontal 

displacement (m) 0.183 0.267 0.132 

Maximum vertical 

displacement (m) 0.262 0.418 0.640 

Maximum total 

displacement (m) 0.286 0.418 0.640 

Maximum vert1cal stress 

(kPa) 2000 1589 950 

Max1mum honzontal 

d1splacement (m) 0.256 0.372 0.158 

Max1mum vert1cal 

displacement (m) 0.269 0.415 0.621 

Maximum total 

displacement lml 0.347 0.451 0.623 

Max1mum vertical stress 

(kPal 2390 1600 940 

At Las Cuevas Dam and Alvito Dam, the vertical stress 
isolines show a stress transfer from the clay core to the shell 
materials (Figures 5 and 6). This arching effect is very slight 
in Borde Seco Dam that exhibits a behaviour of an 
homogeneous dam (Figure 4). 
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Fig. 4. Vertical stress isolines (kPa) after the first reservoir 
filling at Borde Seco Dam 

Fig. 5. Vertical stress isolines (kPa) after the first reservoir 
filling at Las Cuevas Dam 
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Fig. 6. Vertical stress isolines (kPa) after the first reservoir 
filling at Alvita Dam 
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DYNAMIC ANALYSES 

Seismic input 

The horizontal seismic input is defined by three synthetic 
accelerograms generated for nearby sources and faraway 
sources. These accelerograms were used also in the vertical 
direction after being scaled by a convenient correction factor. 
Combining independent accerelograms in both horizontal and 
vertical directions a total of six pairs for each type of seismic 
action were obtained. 

As the dams are located in different seismic areas, the 
associated seismic risk is also different. Therefore, the 
generation of accelerograms is based in different data and 
parameters, according to the seismic risk studies made for 
the purpose. 

For Borde Seco Dam and for Las Cuevas Dam, a life time 
of 100 years and exceedance probability of 10% were 
considered. For each seismic input type (nearby and faraway 
sources) the maximum horizontal movements at bedrock 
were estimated and the duration is computed by the Trifunac 
and Brady (1975) relation. The elastic response spectra are 
determined using the Newmark and Hall (1982) equations 
and the power spectral density functions were computed. 
Compatible horizontal acceleration time histories were 
obtained by superposition of harmonic components. Finally, 
the Jennings et al (1968) intensity function allows one to 
model the acceleration time histories in order to obtain 
pseudo non stationary accelerograms. 

For AI vito Dam, the Portuguese Safety Code (RSA ( 1983)) 
was followed. This code presents power spectral density 
functions of the horizontal acceleration and seismic durations 
as a function of the structural site and the seismic action 
type. According to RSA, the seismic inputs are gaussian 
stochastic stationary processes. The correspondent 
accelerograms are also generated by superposition of 
harmonic components. 

Table 2 synthetizes the peak values of bedrock horizontal 
acceleration, the duration of accelorograms and the corrective 
factor used to scale the vertical component of acceleration 
from the horizontal one for each dam and each seismic action 
type. 

Table 2.Muin accclcrogrmn chnmctcristicH of Borde Scco , L;as Cuevas and Alvito Dams 

Borde Seco Dam Las Cuevas Dam AIVItO Dam 

Nearby Faraway Nearby Faraway Nearby Faraway 

act1on act1on act1on act1on actiOn 

Bedrock maximum horiZOntal 
4.2 2.3 4.61 2.94 2.2 1.1 

acceleration (m/s .. ) 

Duration !sec) 35 55 20 55 10 30 

Vertical acceleration I 
0.75 0.75 0.75 0.75 0.66 0.66 

horizontal acceleration 

Dynamic soil properties 

The dynamic soil properties needed for the application of the 
linear equivalent model are: maximum shear modulus (Gm..J, 



variation of ratio between the current shear modulus (G) and 
the maximum shear modulus (Gm..J with the shear strain ('y) 
and variation of the damping ratio (D) with the shear strain. 

For evaluating the dynamic soil properties constant volume 
cyclic simple shear tests (with a NGI equipment) were 
conducted. The vertical stress and the amplitude of the shear 
stress was varied from test to test. The cyclic evolution of 
the shear strain and of the pore pressure (assumed opposite 
to the vertical stress variation) was recorded. From the 
hysteretic loops of shear stress versus shear strain, the shear 
modulus and the damping ratio were computed for different 
shear strain levels. Unfortunately, the shear strain range 
obtained with NGI type equipments is limited and the strain 
range likely to occur during the seismic analysis is not fully 
covered, namely Gmax can not be determined. 

The extrapolation of the test results for different shear 
strain levels was based on empirical relations established for 
Gmax (Goto et al (1987)), on cross-hole tests results available 
for similar materials, on empirical curves of G/Gma.C'Y) and 
of D(-y) obtained by others researchers (Sun et al (1988)). 
For each soil, a comparison between the simple shear cyclic 
test results and the available empirical curves was made and 
the best estimated Gmax value and curves were adopted. For 
Gmnx the following general equation was followed: 

( 1) 

where <1.;. represents the effective mean principal stress, Pa is 
the atmospheric pressure, F(e) is a void ratio function and A 
and n are soil parameters. The adopted curves G/Gmnx and D 
versus 'Y are illustrated in Figure 7. 

~· -+-Borde Seco core and shell 

0.8 

_._Borde Seco, Las Cuevas and 
0.7 Alvito gravel materials 

0.6 0.15 
....._Las Cuevas core 

l 0.5 -M-Las Cuevas shell 

0.4 0.1 -Alvita core 

0.3 
-+-Borde Seco, Las Cuevas and 

0.2 0.05 
Alvita granular materials 

-+-Las Cuevas and Atvito core 
01 

1.E-os 1.E-05 1.E-04 1.E-03 1.E-02 

Fig. 7. Dynamic soil properties 

Dominant frequencies 

The dominant frequencies that were achieved for the most 
participant modes are shown in Table 3. Those were obtained 
after iterating the soil properties so as to achieve the 
compatibility between computed shear strains and shear 
modulus and damping ratio values. 

The dominant frequencies are related with the height of the 
studied dams, being minimum at Borde Seco and maximum 
at Alvita. 

Table 3. Dominant frequencies of the first two most participative modes of Borde Seco Dam, Las 

Cuevas Dam and Alvito Dam 

Borde Seco Dam las Cuevas Dam Alv1to Dam 

Most 
Nearby action Faraway action Nearby action Faraway actton Nearby act1on Faraway action 

participative 

modes Mode Freq. Mode Freq. Mode freq. Mode Freq. Mode freq. Mode Freq. 

1Hz) 1Hz I 1Hz I 1Hz I 1Hz) 1Hz) 

First 0.29 0.39 0.71 0.73 1.18 1.19 

Second 0.54 3 0.70 1.05 1.03 1.92 2.04 

Accelerations 

The maximum horizontal (ahmax) and vertical (avmax) 
accelerations at the base, at the contour, and in three profiles 
crossing the upstream shell (profile Pl), the downstream 
shell (profile P2) and the core (profile P3) of each dam are 
presented in Table 4. 

In general, the maximum accelerations of upstream shell 
are lower than those observed in other profiles, as a 
consequence of lower initial stresses due to the water effect. 
The maximum accelerations took place at Las Cuevas Dam, 
due to the major stiffness associated to the larger seismic 
intensity. Comparing the base acceleration with the crest 
acceleration, it may be conducted that the amplification 
factor is maximum at Las Cuevas Dam and Alvita Dam for 
the faraway earthquake. 

Table 4. Maximum horizontal and vcrticnl nccelcmtions of Borde Scco Dam, Las CuevnN Dam 
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and Alvito Dam 

Borde Seco Dam las Cuevas Dam Alv1to Dam 
Stnsm1c 

localization a..·~- a;n- a,,'" .. ay•n•· a,,m- av"'-
act• on 

(m/s .. } lm/s1 l (m/s]l (m/sJ) (mlsJI lmlsJl 

Profile nearby 2.9 3.1 5.1 5.5 2.8 1.7 

P1 faraway 2.0 1.8 7.2 4.6 2.5 1.5 

Prof1le nearby 3.5 3.2 6.8 6.3 3.4 3.0 

P2 faraway 2.4 1.9 5.2 4.8 2.8 1.6 

Profile nearby 5.0 3.1 6.4 3.7 3.6 1.7 

P3 fill away 3.8 1.8 9.1 5.1 3.0 1.2 

nearby 5.0 4.1 8.8 5.2 3.9 2.8 
Contour 

faraway 4.2 2.6 9.1 3.7 3.3 2.0 

nearby 4.2 3.15 4.61 3.46 2.2 1.45 
Base 

faraway 2.3 1.73 2.94 2.21 1.1 0.73 

Seismic shear stresses 

The maximum seismic shear stresses evolution along the Pl, 
P2 and P3 profiles for all combinations of each seismic 
action type are described in Tables 5, 6 and 7, respectively. 

The following trends may be observed: (i) for increasing 
height of the dam the peak shear stress value decreases; (ii) 
for the same height the seismic shear stresses are larger in 
the stiffer materials; and (iii) the faraway earthquake 
produces maximum shear stress values lower than the 
correspondent values due to the nearby earthquake. 



Table 5. Maximum shear stresses (kPa) in profile PI produced hy earthquake I in Borde Seen 

Dam, Las Cuevas and Alvito Dam 

Borde Seco Dam Las Cuevas Dam Alvita Dam 

Nearby act1on Faraway action Nearby act1on Faraway act1on Nt~arby act1on Farway act1on 

147 114 176 156 41 44 

119 94 100 115 40 46 

105 83 91 102 36 41 

88 68 72 77 27 29 

76 62 56 52 12 9 

32 27 

Table 6. Maximum shear stresses (kPa) in profile P2 pmduccd hy earthquak1..- I in Borde Sceo 

Dam, Las Cuevas Dam and Alvito Dam 

Borde Seco Dam Las Cuevas Dam Alv1to Dam 

Nearby action Faraway action Nearby action Faraway act1on Nearby act1on Faraway act1on 

151 102 176 156 48 51 

145 115 161 147 44 50 

137 96 145 143 37 47 

125 72 103 111 35 37 

80 70 65 60 27 22 

29 27 

Table 7. Maximum shear stresses (kPa) in profile P3 produced by earthquake I in Borde Seen 

Dam, Las Cuevas Dam and Alvito Dam 

Borde Seco Dam Las Cuevas Dam Alvita Dam 

Nearby act1on Faraway action Nearby action Faraway act1on Nearby action Faraway act1on 

168 120 214 193 99 74 

139 103 155 160 92 89 

129 89 133 136 63 82 

121 83 120 120 56 63 

91 79 90 82 36 32 

49 43 29 30 

Equivalent number of uniform cycles 

The equivalent number of uniform cycles of all finite 
elements of each dam was computed from the shear stress 
time histories by using Seed et al (1975) approach. A 
summary of the maximum (Nmax> and minimum (Nmin) values 
calculated at three horizontal sections, whose vertical 
position is shown, is displayed at Table 8. 

Alvito Dam shows a higher value because of the stationary 
nature of the prescribed seismic action. The faraway 
earthquake generates a larger number cycles than the nearby 
one, since it lasts longer. Comparing the behaviour of Borde 
Seco and Las Cuevas Dam one may conclude that, due to the 

Table 8. Maximum and minimum number of unifonn equivalent cycles of Borde Scco Dam, Las 

Cuevas Dam and Alvito Dam 

Borde Seco Dam Las Cuevas Dam Alv1tO Dam 

Height Nearby action Faraway actior Height Nearby action Faraway action Hetght Nearby actmn Farway act1on 

246.3 12 637.7 10 4 16 179.5 4 15 4 26 

281.1 12 566.5 15 191.5 14 31 

316.2 10 694.5 13 4 16 200.5 16 10 28 

greater energy dissipation and lower stiffness of its materials 
Borde Seco Dam shows a lower value of equivalent uniform 
cycles. 
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SEISMIC BEHAVIOUR ANALYSIS 

According to Seed et al ( 1975) methodology, the Jam 
stability evaluation is based in the comparison between the 
shear stresses results, determined in the dynamic analysis, 
and the shear stresses obtained in simple shear tests, capable 
to produce in a specimen a prescribed level of strain in a 
specified number of uniform cycles. So, the dam seismic 
behaviour must be evaluated not only by the dynamic 
analysis results but also by considering the cyclic strength of 
the material (Seco e Pinto, 1993). 

Cyclic material strength 

Based in cyclic simple shear test results, equations relating 
the cyclic shear stress with the vertical stress (a'J, and with 
the strain level, for a selected number of uniform cycles, 
were interpolated. The pore pressure ratio (i.e. the current 
pore pressure divided by the initial vertical stress) showed to 
be a function of the shear strain level only. 
Tables 9 and 10 present maximum (determined with 

maximum vertical stress of each dam, valid at the dam base) 
and minimum (determined with zero vertical stress, valid at 
the crest) laboratory cyclic shear stress amplitudes and pore 
pressure ratios developed in 12 uniform cycles capable to 
induce I, 2, 5 and 10% of shear strain. These were obtained 
in the most representative geotechnical materials in the dams. 

Table 9. Lahomtory cyclic shear stress amplitudes (kPa) cnpahlc to induce strHin levels of I, 2, 

5 and 10% in Borde Seen Dam, Las Cllcvas Dam and Alvito Dam materials 

Borde Soco Dam Las Cuevas Dam 

Upstream Downstfeam 
Core material Core material Shell matew1l Core matenal Shell matenal 

l%1 shell material shell material 

Crest Base Crest Base Crest Base Crest Base Crest Base Crest Base Crest Base 

15 197 11 196 256 22 175 15 141 15 132 16 106 

18 220 13 231 12 305 30 209 17 166 18 154 18 130 

21 264 16 278 14 371 40 255 20 200 21 184 21 160 

10 24 297 18 313 17 421 48 290 22 225 24 206 23 184 

Tnhle 10. Lnhumtory pnre pressure ratios(%) for shear stmin levels of I, 2, 5 and 10% in Bonk 

Seco Dam, Las Cuevas Dam and Alvitu Dnm malet·ials 

Bordo Soco Dam Las Cuev<~s D<~rn Alv1to Dam 

(%) Core Upstream Oownstrean1 Core Shell Core Shell 

material mater tal malt~nal mater1al rnater1al mater1al rnater1al 

46.5 46.2 41.9 34.5 55.9 31 .4 37.3 

59.6 60., 57.4 45.5 68.5 46.6 50.2 

77.1 78.5 78.0 60.0 85.3 66.8 67.2 

10 90.3 92.4 93.5 71.0 98.0 82.0 80.0 



The cyclic shear stresses are maximum at Borde Seco Dam 
and minimum at Alvito Dam for the same shear strain level 
and for the maximum vertical stress. The pore pressure ratios 
are smaller in the cohesive type materials (Las Cuevas core 
and Alvita materials). 

Stability evaluation 

The initial liquefaction state may be achieved locally or 
globally causing excessive deformations to occur and the soil 
to weaken. The deformation values may be estimated by 
considering the potential strain values. Those are obtained in 
laboratory tests performed under a constant cyclic stress 
equal to 65% of the maximum seismic shear stress, after a 
convenient number of uniform cycles has been applied. 

The pore pressure level is evaluated by associating a pore 
pressure ratio to each of the finite elements. Initial 
liquefaction occurs when the pore pressure ratio is equal to 
unity. All the materials in study were used in a dense state. 
Therefore, the expected deformations should be small and the 
probability of liquefaction occurrence is null. Nevertheless, 
the initial liquefaction condition is useful to predict a 
deterioration of the materials strength, within a situation of 
limited deformations occurrence. 

The deformation analysis is based in the potential strain 
calculations. Potential strains less than 5% do not endanger 
the seismic stability of the dams. Potential strains between 5 
and 10% are considered to be moderate and it is necessary 
to have its spatial distribution to estimate the dam potential 
risk. Potential strains greater than 10% are considered to be 
intense. 

Tables 11 and 12 describe the maximum (dPmaJ and 
average (dPav) potential deformations and the maximum pore 
pressure ratios (R" max) computed in each representative 
material and in the overall dam, respectively. The cyclic 

Table II. Potential defonnntions of Borde Seco Dam, Las Cuevas Dam and Alvito Dnm 

Borde Seco Dam Las Cuevas Dam Alv1to Dam 

Nearby Faraway 
Nearby action Faraway act1on Nearby action Faraway action 

act1on act10n 

Locai1ZBt1on 
dpm• dpov dpm .. dp •• dp,,_ dp,., •• dp,_ dP •• dp,.,.,. dp •• 

1%1 1%1 (%1 1%1 1%1 1%1 1%1 1%1 1%1 1%1 

Upstream shell 5.3 2.00 2.2 0.78 >10 >10 0.6 0.23 0.8 0.28 

Core 3.8 0.8 1.4 0.40 3.5 3.9 1.3 0.63 3.1 0.52 

Downstream 
6.8 , .05 2.6 0.54 >10 >10 0.3 0.21 0.4 0.24 

shell 

Overall 6.8 1.45 2.6 0.63 1.3 0.25 3.1 0.32 

Table 12. Maximum po["e pressure ratios of Borde Seco Dam, Las Cuevas Dam and Alvito Dam 

Borde Seco Dam Las Cuevas Dam Alv1to Dam 

Localization Nearby action Faraway action Nearby actwn Faraway act•on Nearby act1on Farwey act•on 

f\ max t%1 R., max(%) F\ max(%) Au maxi%) Au max 1%) A~ max t%) 

Upstream shell 80 62 27 34 

Core 72 53 54 56 36 56 

Downstream 
85 64 17 19 

shell 
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simple shear tests preclude meaningful results for shear 
strains greater than 10%. So, if the cyclic shear stresses from 
the dynamic analysis surpass the laboratory shear stresses 
corresponding to a shear strain of 10%, only the indication 
of "> 10" is placed. 

Figures 8, 9 and 10 show the potential deformation 
distribution along Borde Seco Dam, Las Cuevas Dam and 
Alvita Dam. 

Fig 8a. Potential deformation distribution along Borde Seco 
Dam (nearby action) 

Fig 8b. Potential deformation distribution along Borde Seco 
Dam (faraway action) 

Fig 9a. Potential deformation distribution along Las Cuevas 
Dam (nearby action) 

Fig 9b. Potential deformation distribution along Las Cuevas 
Dam (faraway action) 

Fig lOa. Potential deformation distribution along Alvita 
Dam (nearby action) 



c=:Jm 0,_,,, o~-5)( 

Fig lOb. Potential deformation distribution along Alvito 
Dam (faraway action) 

CONCLUSIONS 

The present study was intended to contribute towards a better 
understanding of the seismic response of embankment dams. 

The following conclusions can be pointed out: 
1) The dominant frequencies are related with the height of 

the dam, with minimum values at Borde Seco Dam and 
maximum values at Alvito Dam. 

2) The maximum accelerations were calculated at Las 
Cuevas Dam and are associated with the larger seismic 
intensity. 

3) The shear stresses present the following path: (i) 
decrease with the increasing of the height of the dam; (ii) for 
the same height of the dam the shear stresses increase with 
the stiffness of the materials; (iii) the maximum shear 
stresses are lower for the faraway earthquakes in comparison 
with the nearby earthquakes. 

4) The equivalent number of uniform cycles shows the 
following trends: (i) it increases for the faraway earthquakes 
in comparison with the nearby earthquakes as a consequence 
of its higher durations; (ii) it increases with the duration of 
the stationary range of the acceleration time histories. 

5) The seismic action plays an important role on the 
seismic behaviour of the dams. For similar heights one may 
conclude that the type of the materials and the core position 
have a second order importance. 

ACKNOWLEDGMENTS 

The work reported herein is a part of a long-range research 
programme "Dynamic Analysis of Embankment Dams" 
carried out at the Laborat6rio Nacional de Engenharia Civil 
(LNEC). Permission to publish this paper has kindly been 
given by the Director. 

REFERENCES 

Bile Serra, J. P., "Seismic Analysis of Geotechnical 
Structures by Stochastic Process Theory", 5th 
International Conference on Soil Dynamics and 
Earthquake Engineering, 1991. 

Caldeira, L., "Dynamic Behaviour of Embankment Dams
Evaluation Methods" (in portuguese), PhD thesis, LNEC, 
1994. 

450 

Goto, S., Syamoto, Y. and Tamaoki, K., "Dynamic 
Properties of Undisturbed Gravel Samples Obtained by the 
In-Situ Freezing Method", 8th Asian Regional Conference 
on Soil Mechanics and Foundation Engineering, Kyoto, 
1987' pp. 223-236. 

Jennings, P. C., Housner, G. W. and Tsai, N. C., 
"Simulated Earthquake Motions", Earthquake Engineering 
Research Laboratory Report, California Institute of 
Technology, 1968. 

Newmark, N. and Hall, W. S., "Earthquake Spectra and 
Design", EERI Monograph Series, Berkeley, 1982. 

RSA , "Regulamento de Seguran<;a para Estruturas de 
Ediffcios e Pontes", 1983. 

Seco e Pinto, P. S., "Dynamic Characterization of Soils. 
Natural Hazards and Engineering Geology - Prevention 
and Control of Landslides and other Mass Movements", 
European School of Climatology and Natural Hazard 
Course, 1990, pp. 53-68. 

Seco e Pinto, P. S., "Dynamic Analysis of Embankment 
Dams", Proceedings of the Seminar on Soil Dynamics and 
Geotechnical Earthquake Engineering, Editor Seco e 
Pinto, P. S., 1993, A. A. Balkema, pp. 159-269. 

Seed, H. B., Idriss, I. M., Makdisi, F. and Benerjee, N., " 
Representation of Irregular Stress Time 
Equivalent Uniform Stress Series in 
Analyses", Report No. UCB/EERC 75-29, 

Histories by 
Liquefaction 

1975. 

Sun, J., Golesorkhi, R. and Seed, H., "Dynamic Moduli and 
Damping Ratios for Cohesive Soils", Report No. 
UCB/EERC-88115, 1988. 

Trifunac, M. D. and Brady, A. G., "Corrections of Peak 
Acceleration, Velocity and Displacement with Earthquake 
Magnitude, Distance and Site Conditions", Earthquake 
Engineering and Structure Dynamics, Vol. 4, 1975, pp. 
455-471. 


	Seismic Response of Embankment Dams
	Recommended Citation

	Page0085
	Page0086
	Page0087
	Page0088
	Page0089
	Page0090

