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ABSTRACT 
 
From the earliest studies of soil behavior under cyclic loading, it is found that the cyclic stress required for liquefaction onset is 

strongly affected by the relative density ( rD ) and initial effective overburden pressure of the soil. In this paper, relative state 

parameter index ( R ), which accounts for both relative density and effective stress, is used to evaluate the likelihood of liquefaction 

initiation in field condition. Two comprehensive databases of field case histories based on SPT and CPT are incorporated in the 
analyses. Logistic regression method is employed to derive a probabilistic expression that yields the probability of liquefaction 

initiation in terms of R . The most advantage of this expression is its consistency with both field SPT and CPT data. In addition, 

relative state parameter index has been evolved from dilatancy concept which has a reasonable consistency with liquefaction 
phenomenon. The boundary curve that obtains 20% likelihood of liquefaction initiation is found to be the most conservative boundary 

and is recommended as a deterministic R -based liquefaction criterion. Finally, a relationship is proposed to correlate liquefaction 

probability to the factor of safety against liquefaction triggering.           
 
 
INTRODUCTION 
 

Earthquake is one of the most catastrophic phenomena that 
could have direct and indirect effects on structures. 
Liquefaction can resulted in a great impact on structure’s 
foundation and lead to considerable settlements. Thus, 
evaluating liquefaction potential and considering the 
liquefaction effects in design procedure is crucial. Use of field 
and laboratory tests for the assessment of liquefaction is 
prevalent but cyclic laboratory testing on granular materials 
include some limitation such as sample disturbance. 
Accordingly, employing simplified method that was originally 
proposed by Seed and Idriss (1971) based on empirical 
evaluation of field observations has been state of the practice 
in liquefaction evaluation. This procedure that was frequently 
updated by researchers (e.g. Youd et al. 2001; Cetin et al. 

2004; and Moss et al. 2006) is the most accepted approach 
among geotechnical engineers. 

Common field tests for liquefaction evaluation could be 
divided into four major categories including Standard 
Penetration Test (SPT), Cone Penetration Test (CPT), Shear 
Wave Velocity (Vs) and Becker Penetration Test. Among 
these site characterizing techniques, SPT and CPT-based 
correlations are the most popular due to their simplicity and 
also the larger number of case histories. These methods that 
have been proposed and modified by various researches are 
based on the relation between liquefaction resistance of the 
soil (i.e. penetration resistance) and seismic demand (i.e. 
representative of earthquake loading action). Although earliest 
SPT and CPT based correlations of liquefaction assessment 
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were deterministic, more recent studies have include 
probability in their analyses.  

As an accepted deterministic approach, Youd et al. (2001)’s 
deterministic criterion has been recommended in different 
codes and guidelines. Although, the probabilistic approaches 
are still out of the mainstream of standard practice, developing 
of this procedure in the recent years is appealing. Use of 
probabilistic concept for the assessment of liquefaction firstly 
recommended by Liao et al. (1988) for SPT based data 
through logistic regression model. Using a larger database, 
Youd and Nobel (1977) and Topark et al. (1999) employed the 
same method and also considered the effect of fines content to 
propose other relations. The same logistic regression 
methodology was carried out by Lai et al. (1990), Topark et al. 
(1999), Juang et al. (2002), and Lai et al. (2006) for 
developing CPT based probabilistic models. Furthermore, 
some other researchers such as Cetin et al. (2004) and Moss et 
al. (2006) implemented a higher-order probabilistic tool 
(Bayesian Updating) and developed new correlations 
respectively for SPT and CPT. Although they indicated that 
the new approach greatly reduce overall uncertainty, it 
possesses its own disadvantages and limitations, like any 
analytical and statistical method. 

A probabilistic model can be affected by probabilistic 
regression method, number and quality of data, and also 
method of interpretation (i.e. choice of representative variable 
for regression). In the present paper, relative state parameter 

index ( R ) is employed in place of SPT and CPT data in order 

to achieve a larger database. Relative state parameter index 

( R ) that was gradually introduced by Been and Jeffries 

(1985), Bolton (1986), and Boulanger (2003) has been found 
to be useful for this purpose because this parameter can be 
obtained using the existing correlations between soil relative 
density and standard or cone penetration resistances. 
Therefore, use of this parameter improves the sufficiency 
condition of the database and can obtain a more generalized 

probabilistic model. On the other hand, R  considers the 

effect of relative density and initial overburden stress at the 
same time because it was derived from dilatancy concept that 
has close consistency with liquefaction phenomenon. This can 

be an important advantage of a R –based probabilistic model 

over the previously proposed probabilistic SPT and CPT based 
models that consider initial overburden pressure statistically. 
Two comprehensive and high quality field databases of SPT 
and CPT based liquefaction case histories reported by Cetin et 
al. (2004) and Moss et al. (2006) have been used to derive the 

R -based probabilistic model. Logistic regression method has 

been employed because of its frequent usage in field 
liquefaction assessment and wide popularity among 
researchers.  

 

 

LOGISTIC REGRESSION 

Logistic regression is a statistical procedure which allows 
assigning degrees of belief (i.e. probability levels) in a multi-
dimensional space of independent variables (explanatory), by 
means of a derived empirical model.  

The scope of logistic regression is to establish an expression 

for conditional probability of liquefaction ( LP ) as a function 

of explanatory variables ( X ), which are factors that affect the 
occurrence of liquefaction, by identifying the best-fitting for 
regression model to describe the unknown relationship 
between an outcome variable and a set of variables. 
Explanatory variable vector ( X ) should represent seismic 

loading, soil properties and in-situ stresses. The LP  function 

is derived from binary or dichotomous regression analyses 
because each case in liquefaction catalog is represented by a 
binary variable which indicates whether or not liquefaction is 
occurred (0 for non-liquefaction, 1 for liquefaction). 

Logistic regression may be preferred over other distribution 
functions available for analyzing dichotomous outcome 
variables due to its simplicity, flexibility and interpretability 
(e.g. Cox and Snell 1989; Hosmer and Lemeshow 2000). Liao 
et al. (1988) initially applied logistic regression framework to 
consider the uncertainties involved in deterministic criteria 
and to estimate the likelihood of liquefaction triggering in 
terms of SPT resistance and the other factors implemented in 
the simplified shear stress-based method. 

The probability function that should be fitted by employing 
field observation data can be defined as follows (Cox 1970 
and Liao et al. 1988): 
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Where LP = likelihood of liquefaction occurrence and 

0 1LP  , n = total number of explanatory variables, 

1 2[  , ,  . . . . , ]nX x x x = vector of explanatory variables, 

0 1[  , ,  . . . . , ]n    = regression coefficients that are 

determined from logit analysis. 

LP  can be mapped into LQ  so that LQ  varies from  to 

  while LP  varies from 0 to 1 (Liao et al. 1988, Lai et al. 

2006): 
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Eqs. (1) and (2) are the basis of a logistic regression analysis. 

 

ESTIMATION OF REGRESSION COEFFICIENTS 

Least squares regression or maximum likelihood of estimation 
can be utilized to determine the vector of regression 

coefficients, 0 1[  , ,  . . . . , ]n    , by fitting the 

probability function to field observation data. Method of 
maximum likelihood is one of the best methods to estimate a 
point estimator of a parameter and has received more attention 
among statisticians due to its desirable advantages. As the 
name implies, the estimators are the values that maximizes the 
likelihood function and are known as maximum likelihood 
estimators (i.e.   vector). The likelihood function for m  

independent observations that correlates explanatory variable 
vector X  with   vector is: 

 
 1

1

( ; ) [ ] 1
j

j

ym
y

L L
j

L X P P




                                     (3)                        

Where ( ; )L X  =likelihood function with explanatory 

variable vector X  that is maximized with respect to   

vector, jy =binary indicator for case j , which is 1 in 

liquefied and 0 in non-liquefied cases, and m =total number 

of cases. The vector of maximum likelihood estimators (  ) 

corresponding to the maximum of the likelihood function is 

the best fit of LP . Maximum likelihood estimators would be 

found by equating the first partial derivatives of likelihood 
function to zero and solving the resulting system of equations. 
To avoid the computations of large values and large amount of 
multiplications, the first derivatives of the natural logarithm of 
the likelihood function, ln[ ( ; )]L X  , are computed instead 

of ( ; )L X  .  

As indicated by Liao et al. (1988) and Lai et al. (2006), one of 
the procedures that can be used to evaluate the adequacy of a 
binary regression model and determine its goodness-of-fit is 
the modified likelihood ratio index (MLRI) proposed by 

Horowitz (1982). The MLRI was denoted by 2  as follows: 

2
ˆ( ) ( 1) / 2

1
(0)

L m

L

  
                                               (4)                

Where ˆ( )L  = the log-likelihood function evaluated using 

the values of maximum likelihood estimators,  ; (0)L = 

value of the maximum likelihood function assuming 0i  ; 

and m =total number of explanatory variables. In theory, 

values of 2  vary between 0 and 1 and a regression model is 

said to be sufficiently well fitted when 2  is larger than 0.4 

(Hensher and Johnson 1981).  

More details about the logistic regression can be found in Liao 
(1986) and Liao et al. (1988). 

 

MODEL DEVELOPING 

Development of a probabilistic model for liquefaction 
assessment needs the following steps: 

1) Collecting a suitable database  

2) Selecting explanatory variable  

3) Analyzing the binary data with selected explanatory 
variables  

The mentioned procedure is presented as follows. 

Data base 

As mentioned above, quality and sufficiency of input data has 
a great impact on the generalization of a probabilistic model. 
In fact, a model with poor generalization cannot obtain 
reasonable estimation for the future unseen data. Cetin et al. 
(2004) and Moss et al. (2006) presented two dependable 
liquefaction case history catalogs, respectively, based on SPT 
and CPT data recorded in the field condition. They performed 
a reasonable procedure to classify numerous data based on 
their quality and compiled the final databases (201 SPT and 
188 CPT data) with the data possessing the greater ranks.  

In this study, thanks to use of relative state parameter index, 
both of these databases have been employed and therefore the 
number of data has been duplicated. 

In the database, liquefied cases are significantly more than 
non-liquefaction cases and may affect the result by producing 
an undesirable bias in logistic regression. Similar to the 
countermeasure used in Mayfield (2007), Moss et al. (2006), 
and Cetin et al. (2004), this bias is reduced by a prior 
probability assigned to each liquefied or non-liquefied class 
such as the proportion of class's population in the database. 
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Explanatory variable 

An explanatory variable in a logistic regression would be 
considered as a qualified variable if satisfy certain 
presumptions. Statisticians, however, have no complete 
agreement on the details of these presumptions. For example, 
Anderson (2003) and Johnson and Wichern (2002) described 
that all explanatory variables in a statistical analysis of 
classification must be independent of each other, normally 
distributed, linearly dependent with the expected value, and 
the expected value [i.e., PL(X) in Eq. (1)] must be normally 
distributed. In addition, Johnson and Wichern (2002) 
suggested that even though PL(X) is not normally distributed, 
the logistic transformation of PL(X) (i.e., QL(X) in Eq. (2)) still 
must be normally distributed and there must be a linear 
relationship between QL(X) and the explanatory variables. On 
the other hand, Garson (2003) declared that the expected value 
in a logistic regression analysis should neither be strictly 
normally distributed nor be linearly dependent with the 
expected value, however its distribution must still be within 
the domain of the family of exponential distributions, such as 
normal, Poisson, binomial, or gamma distributions (Lai et al. 
2006).  

In summary, the current feeling among many statisticians is 
that logistic regression is more versatile and better suited for 
most situations than the other analyses method because it does 
not assume that the independent variables are normally 
distributed. However, this fact should be considered that 
selecting explanatory variable with normal distribution could 
lead to more logical results. 

To be introduced in logistic regression, some explanatory 
variables that satisfy the mentioned statistical properties and 
suitably represent soil characteristics should be selected.  
Since, this study is presented based on the simplified method, 
the seismic disturbance induced by earthquakes is represented 
as equivalent cyclic stress ration (CSReq). On the opposite 
side, soil characteristics is captured by relative state parameter 

index ( R ), which accounts for both relative density and 

effective stress. The reduction of liquefaction resistance with 
increasing initial effective overburden at constant CSR  is 

directly considered by R . Thus, the common laboratory 

based correction for overburden pressure ( K ) is not 

necessary to be considered in this study. 

Relative density of each case history in both SPT and CPT 
databases should be determined to calculate their 

corresponding R . For this purpose, existing relations 

between rD  and penetration resistance (i.e. N1,60 and qc1n) 

have been used. Because of increasing uncertainties in 
determining the relative densities of sands containing high 
fractions of fines content, this study is only limited on clean 
sands and silty sands having up to 15% silts.  

Boulanger and Idriss (2006) indicated that mixed soils with 
plasticity index less than 7 (i.e. 7PI  ) exhibit sand-like 
behavior. Therefore, it is reasonable to expect that sand 
sample containing up to 15% fines exhibit sand-like behavior 
even though they contain a small fraction of clay.  

Regression model consists of 3 variables including 

R , eqCSR
 

and wM  (moment magnitude) that represent 

measures of soil properties and seismic loading. All of these 
parameters are described as follows.  

Relative state parameter index ( R ) From the earliest studies 

of soil behavior under cyclic loading condition, it has been 
deduced that the cyclic stress required to develop liquefaction 

are profoundly influenced by the relative density ( rD ) of the 

soil (Seed 1979). Convenient determination of rD
 
for sands 

and silty sands in laboratory and also its reasonable 
consistency with the field SPT and CPT tests are the most 
important advantages of this parameter that has been widely 
used to correlate laboratory and field studies (e.g. Yoshimio et 
al. 1994 and Suzuki et al. 1995). On the other hand, several 
researchers showed the influence of initial effective confining 
pressure on liquefaction resistance (e.g. Lee and Seed 1967). 
At a given small effective confining pressure, dense sands 
show dilative response under shearing while loose sands 
behave contractively. Increasing initial effective confining 
pressure can reverse the dilative behavior of the dense sand to 
contractive behavior. Been and Jeffries (1985) indicated that 
properties of sands cannot be expressed in terms of relative 
density alone and a description of effective stress level must 
also be included. As they showed, sands and silty sands 
behave similarly if test conditions assure an equal initial 
proximity to the steady state line. This proximity was 
identified by Been and Jeffries (1985) as the “state 
parameter”, which was defined as the difference between the 
initial and steady state void ratios at the same mean effective 
stress (Eq. 5). This parameter appropriately reflects the 
combined effects of density and confining pressure in granular 
materials. 

max min ,( )( )cs r cs re e e e D D                               (5)                  

Where e  = void ratio of the soil, cse = void ratio of the soil on 

critical state line at the same effective stress, maxe  and mine = 

maximum and minimum void ratios, ,r csD = relative density 

on critical state line at the same effective stress, and rD = 

relative density.    

Bolton (1986) studied an extensive database including the 
strength and dilatancy of 17 sands at different densities and 
confining pressures and introduced relative density index as a 
measure to reflect dilatancy potential of granular soils with 
reasonable accuracy:  
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100 '
( ln ) 1R r

a

p
I D Q

P
                                                    

(6)               

Where, rD =relative density, 'p =mean effective confining 

pressure, (1+2k0)v0/3, aP = atmospheric pressure, and Q =an 

empirical constant dependent to the mineralogy and breakage 
of soil (for example 10Q   for quartz sands).  

Since 0RI   describes critical state condition, relative 

density at this condition can be obtained as follows: 

,

1
100 '

ln( )
r cs

a

D
p

Q
P




                                                   (7)                      

Eq. (7) can be substituted into Eq.(5) to obtain  value for any 
given granular soil. Konrad (1988) and Boulanger (2003) 
normalized the state parameter ( ), Eq. (5), with respect to 

max mine e  and proposed relative state parameter index ( R ) 

as a parameter that is more useful and applicable than   in the 

field condition. Konrad (1988) indicated that the 
normalization of state parameter is required because a given 
negative   may correspond closely to the densest state in a 

uniform well-rounded soil, whereas it would only explain the 
behavior of a well-graded angular sand in a medium-dense 
state. The need for such normalization of   was also 

recognized by Been and Jefferies (1986). Konrad (1988), also, 
reevaluated the data of several sands presented by Been and 

Jefferies (1985) and found that peak dilation rate ( v ad / d  ) 

shows more proportionality to R  than  . Accordingly, 

relative state parameter index ( R ) is obtained as: 

1
 -

100 '
- ln

R r

a

D
p

Q
P

                                                    (8)                       

It is suggested that R  can be a useful parameter reflecting 

liquefaction resistance of soils, since it inherently considers 
the influence of both void ratio and initial effective stress.  

For determining R  of field SPT and CPT data, correlations 

between penetration resistance and rD  have been used. Over 

the past decades, several researchers have tried to correlate 
field penetration resistance (i.e. SPT and CPT resistances) to 
relative density of granular soils. The common form of the 

relationship between 1,60N and rD  is: 

2
1,60 d rN C D                                                                 (9)                

Skempton (1986) suggested dC  values equal to 44 for relative 

densities varying between 30% and 90%. Cubrinouski and 
Ishihara (1999) proposed a more comprehensive 

recommendation for dC  and indicated its dependence on 

basic properties of soil. Idriss and Boulanger (2004) proposed 

that considering 46dC   for clean sands can be more 

realistic because it obtains a relative density of 81% for a 

corrected SPT blow counts of 30 ( 1,60 30N  ). In the present 

study, Skempton (1986)’s recommendation is used that yields 

a reasonable rD  of 80% at 1,60 30N  . Using Skempton 

(1986)’s recommendation, Eq. (8) is rearranged in terms of 

1,60N : 

1,60
R

1
100 ' 44ln( )

a

N
p

Q
P

  


                                          

(10)                                                       

Boulanger (2002) and Idriss and Boulanger (2004) 
summarized Salgado et al. (1997a,b) works on CPT and 

proposed the following equation to obtain rD  from corrected 

values of CPT tip resistance ( 1C Nq ) for clean sands: 

10.478 -1.063r C ND q                                                  

(11)                                                                                         

This relationship can be used to result in a relative density of 

about 80% at the limiting value of 1C Nq  of 175 

( 1 lim( ) 175C Nq  ). 

Eq. (11) was proposed for clean sands that can quickly 
dissipate the excess pore water pressure developed during 
sounding. Carraro et al. (2003) studies on calibration 
chambers, however, shows that the sounding procedure of 
cone remains in drained condition even by increasing silts 
content up to 15%. Accordingly, application of Eq. (11) is 
generalized to silty sands containing up to 15% silts. The 
following equation is resulted by substituting Eq. (11) into Eq. 
(8). 

0.264
R 1

1
0.478 1.063

ln( )
C N

a

q
p

Q
P

   


                (12)                  
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In order to be in conservative side, the value of Q  in Eqs. 

(10) and (12) is assumed to be equal to 10 according to 
Boulanger (2003)’s assumption. 

Cyclic Resistance Ratio (CSR) For considering the earthquake 

action, cyclic stress ratio ( eqCSR ) has been used as 

recommended in the simplified shear stress approach. 

 d
v

v
eq r

g

a
CSR ..max














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







                                            

(13) 

Where maxa = peak horizontal ground acceleration,  v  and 
'

v
  = total and effective vertical overburden stress and dr = 

depth reduction factor. 

To account the random nature of earthquake excitation, 
Duration Weighting Factor has been introduced through 
laboratory studies and based on this factor, equivalent CSR 
has been recommended as follows: 

 meq DWFCSRCSR
eq

/* 
                                               

(14) 

Whereas, in some probabilistic recommendations such as 
Cetin et al. (2004) and Moss et al. (2006), earthquake 
magnitude is considered as an explanatory variable beside 

eq
CSR .  

The proposed model 

The experiences gathered during previous studies (e.g. Liao et 
al. 1988; Cetin et al. 2004; and Moss et al. 2006) reveals that 

)ln( eqCSR  is more naturally distributed than eqCSR . Thus, 

in this study, R , moment magnitude, wM , and natural 

logarithm of eqCSR , i.e. )ln( eqCSR , are selected as 

explanatory variables.  

The following expression is obtained by fitting LP  function to 

the 202 SPT and CPT data: 

 *
w

3
1

1 exp [ 2.562 + 1.835M  + 4.704ln( ) + 26.393 ]
L

eq R

P
CSR 


  

                                                                                                
(15) 

Moreover, the R -based cyclic resistance ratio for a given 

liquefaction probability is obtained as:   

w
31

ln( 1)  1.835M   26.393   2.562

exp
 4.704R

R
LP

CRR

     
 

 
 
 

 

(16)                               

Where; 
R

CRR stands for cyclic resistance ratio at various 

levels of liquefaction risk.  

Figure 1 shows probabilistic five family curves that are 
produced by Eq. (16) and denote on the contours of equivalent 

liquefaction probability at 7.5wM  . In contrast to the limit 

state curves obtained from deterministic approach, any 
probabilistic curve individually reflects a uniform level of risk. 
Eqs. (15) and (16) can be used to evaluate probabilistic 
liquefaction potential of sands and silty sands (up to 15% silt) 

in terms of R  parameter. This R -based probabilistic 

criterion has been originated from critical state concept and 
considers the influence of SPT and CPT resistances together 
with effective overburden pressure. According to Fig. 10, the 
boundary curve representing 20% probability of liquefaction is 
sufficiently conservative and is suggested to be considered as 
a deterministic boundary curve that guarantees required 
safeties.  

 

Fig. 1. Probabilistic R -based liquefaction criterion 

developed by logistic regression method applied on SPT and 
CPT data, only for clean and silty sands containing up to 15% 

silts 
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RELATIONSHIP BETWEEN SAFETY FACTOR AND 
PROBABILITY OF LIQUEFACTION 

The conventional factor of safety ( sF ) is considered as a 

reliability index (Juang et al. 2006, Lai et al. 2006) to obtain a 
probability-safety factor relationship for estimating 
liquefaction probability for a given factor of safety. This 
relationship provides a proper estimation of the level of 
uncertainty behind the factor of safety that is obtained from 
deterministic analysis. The factor of safety against liquefaction 
is obtained by dividing cyclic resistance ratio at 20% 

liquefaction probability ,20%R
CRR  by *

eqCSR . Figure 3 

illustrates probability of liquefaction (obtained from Eq. 15) 
versus conventional factor of safety for all the SPT and CPT 
cases. This relation indicates that increase in factor of safety 
does not decrease the probability of liquefaction linearly. The 
following relationship is derived by nonlinear regression and 
Fig. 2 shows how it fits the field data: 

 4.735

1

1 5.13L
s

P
F




                                                           

(17)                 

Figure 11 also compares Eq. (17) with the relations proposed 
by Juang et al. (2000) for SPT data and Lai et al. (2006) for 
CPT data. Note that these researchers considered 50%LP   as 

liquefaction failure (i.e. 1sF  ), as seen in Fig. 11. The trend 

of the proposed S-type curve is logical and has consistency 
with the previous suggestion but the proposed curve is more 
conservative. 

 

Fig. 2. Factor of safety versus liquefaction probability and the 
fitted curve 

 
 

CONCLUSION 

Probabilistic model for evaluating field liquefaction potential 
based on relative state parameter index is developed. The 
advantage of this parameter is considering relative density and 
effective stress at the same time. Logistic regression is used 
for proposing the probabilistic model. It has been found that 

using of 3
R  leads to a better logistic model rather than R . 

The resulted probabilistic capacity curves have a logical trend 
and enough consistency with the previous studies. It has been 
shown that the probabilistic curve corresponding to 20% 
probability (PL=20%) provides required conservatism and 
shows successful behavior in the classification of liquefied 
and non-liquefied data to be proposed as a deterministic curve. 
Finally, a relation between safety factor against liquefaction 
and liquefaction probability is proposed.  
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