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INVESTIGATION OF NON-UNIFORM PILE BEHAVIOUR UNDER  
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Tehran, Iran, E-mail: ghazavi_ma@kntu.ac.ir.                      Ghaemshahr, Iran, E-mail: mobin_afzalirad@yahoo.com 
 

  
 
ABSTRACT 

  
Pile foundations for machines and structures are often subjected to horizontal or vertical harmonic vibrations. However, in some 
situations, piles also experience torsional harmonic vibrations. While there are some research work on tapered piles imposed to 
horizontal or vertical harmonic vibrations, the response of such piles till now is lacking. In this study, the elasto-dynamic theory has 
been used to derive the governing differential equation on a tapered pile experiencing torsional harmonic vibration. In this approach, 
the pile is assumed the pile has circular cross sectional area and consists of elastic material. It is further assumed that there is sufficient 
connection between the pile and the soil, so that the slippage cannot occur at the pile-soil contact surface. By using the developed 
method, the effect on the pile dynamic torsion amplitudes of the taper angle has been investigated. It has been found that the twist 
angle of the pile decreases with increasing the taper angle while the length and volume of the pile is kept constant. This reveals that 
the use of tapered piles leads to a better performance for foundations compared with the case of using straight-sided piles of the same 
length and volume. 

 
 

INTRODUCTION 
 
Pile foundations of machines and structures are usually under 
horizontal and vertical harmonic loads. They can also be 
subjected to torsional harmonic around their vertical axis. 
Although it has been paid some attention to the response 
results in horizontal and vertical axis, no investigation has 
been made to discover the torsional response of piles. Such 
foundations normally reduce permanent settlement and 
increase the foundation bearing capacity, therefore they can 
transfer machine vibration to high volume of soil. As a result, 
researchers basically focus on dynamic analysis of piles 
[Ghazavi and Bidgoli 2004]. 
 
Poulos (1975) has provided a theoretical analysis for torsional 
static response. Stole (1972) has performed static torsional 
tests on piles [Novak and Howell 1997]. By using analytical 
method based on liner elastic, Novak & Howell (1977) have 
gained some relations as mathematical closed form to 
calculate the pile torsional stiffness. Novak & Howell (1978) 
have extended his method for layered soil and with different 
characteristics. Rajapakse & Saha (1987) have expressed an 
elastic cylindrical harmonic response of bar with definite 
length in a half space, elastic and isotropic soil [Wang et al. 
2008]. Militano & Rajapakse (1999) have reviewed a pile 

under torsion loadings and vertical harmonic [Cai et al. 2006]. 
Using taper piles has better performance than vertical piles 
which under dynamical loads has the same martial volume and 
its bearing capacity is much more too, but there is a little 
research on taper pile and diverse section especially under 
harmonic torsion loads. 
 
Saha and Ghosh (1986) and Xie and Vaziri (1991) studied 
these kinds of piles under harmonic vertical loads. Ghazavi et 
al. (1997, 2004) have investigated the response of piles under 
vertical harmonic vibrations using finite element methods. 
 
To the best knowledge of the authors, there is no research 
work on taper piles subjected to torsional vibration. This paper 
may be the first attempting to investigate this subject. 
 
SUBJECT HYPOTHESIS  
 
To investigate the torsional vibration effect on isolated pile, 
there are some assumptions: 
1. Half space isotropic and liner viscoelastic soil are 
accompanied by hysterics damping. 
2. Pile has been connected to soil perfectly. 
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3. Vertical pile is elastic and circular section, and section 
radius is considered across longitude variation. 
 
 
PILE TORSION VIBRATION EMBEDDED IN SOIL 
 
Based on the Newton second law, the governing differential 
equation for an element of the pile with size dz under torsional 
vibration (Fig. 1) is expressed as: 
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where r is the pile radius, T is torque, is pile martial density, 
V is pile volume, m is pile mass, c is damping coefficient, J is 
the polar moment of circular section and is the amplitude of 
pile rotation at depth z 
The above equations have been derived considering torsional 
moment equilibrium around the vertical axis of the pile. 
 
Using Eq. (3) instead of Eq. (2) gives: 
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The torque-twist correlation under torsional loading is 
expressed as: 
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Fig 1: A pile element subjected to torque  

 
 

Substituting Eq. (5) into Eq. (2) yields: 
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where p is pile martial density, GP: is pile material elastic 
shear module. 
Novak (1974) and Novak & Howell (1978) suggested the 
following expression for the soil response to the torsional 
motion of a pile length of dz: 
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where G: is shear modules of the soil, S: is reaction stiffness 
parameter, S2: soil reaction damping parameter and S, S2 
parameters are explained by: 
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where: a0 is the dimensionless frequency,: is circular 
frequency, GVS   shear wave velocity, )a(Jand)a(J 0100  

are Bessel functions of the first kind of order zero and one, 
respectively. )a(Yand)a(Y 0100  are Bessel functions of the 

second kind of order zero and one, respectively. Considering 
the damping hysterics, Eq. (7) can be written as: 
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where: 
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where G1 is real part and G2 is imaginary part of shear 
modulus; G complex soil shear modulus, is loss angle, 

and 1i . 
Liner hysterics model is common in mathematical and 
analytical calculations. By substituting Eq. (11) into Eq. (6), 
one can get: 
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              (15)  
The above expressions presented so far are valid cylindrical 
piles with constant cross sections. Therefore, they must be 
modified for tapered piles. 
 
 
TORSIONAL VIBRATION OF NON-UNIFORM PILES 
 
Suppose a pile element with a size of dz size of a taper pile 
embedded in soil and subjected to the torsional vibration as 
shown in Fig. 2. The equilibrium equation for torsion around 
the pile vertical axis gives: 
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Eq. (16) is derived using the Newton second law. 
Eq. (2) is used herein for taper piles. This gives: 
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where for taper pile, the polar moment section at a given point 
of the pile shaft is 2/4

)( zrj   where r(z) is the pile radius at z 

from the pile head as shown in Fig. 2 and given by: 
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Substituting Eq. (17) into Eq. (5) gives: 
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where L is the length of pile, r1 is the pile toe radius, r2 is the 
pile head radius, is the tape angle with respect to the vertical 
axis, and rm is the pile radius at Z =L/2). 
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Fig 2: Non-uniform pile under torque  

 
 

Substituting Eqs. (11) and (12) into Eq. (4) gives: 
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The angle of twist of the pile can be decomposed as: 
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where zis the complex amplitude of pile rotation at depth 
z, is circular frequency and t represents time. Considering 
Eq. (23) gives: 
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Eqs. (24) to (27) can further give: 
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This equation may be solved using numerical approach such 
as finite difference. 
 
SOLUTION OF DIFFERENTIAL EQUATION BY FINITE 
DIFFRENCE METHOD 
 
The finite difference technique is used to solve Eq. (31). This 
method replaces partial differential equation supervisor and 
equations which defines limited situations with finite 
differential equations [Smith 1978, Chapra 1998]. The use of 
finite difference method gives partial derivations as: 
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Eqs. (32) and (33) can be substituted into Eq. (31). It is also 
assumed that the end part of the pile is embedded in a stiff 
layer, thus the end condition should be considered fixed. This 
situation is simulated by assuming: 
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PARAMETRIC ANALYSIS 
 
Two piles having slenderness ratios of 20 and 100 are 
considered in this section. Figs. 3 to 12 show the results. The 
slenderness ratio, L/rm, is defined as the pile length divided by 
the pile average radius. Table 1 presents the soil and pile 
characteristics. 
 

 
Table 1. Soil and pile characteristics 

 

Damping coefficient
 of pile (c) 

Pile density 
(

p ) (kg/m3)  
Soil density 

(
s ) (kg/m3) 

0.052500 1800 

Damping coefficient 
of soil tag  

Circular 
frequency  

Average 
radius 
rm (m)  

0.00 2 0.50 
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Fig. 3. Variation of pile rotation amplitude with 
depth for various shear wave velocity ratio VS/VP 
(slenderness ratio=20, taper angle = 1, 

tan =0.0). 
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Fig. 5. Variation of pile rotation amplitude with 
depth for various VS/VP (slenderness ratio=100, 
taper angle = 1, tan =0.0) 

Fig. 6. Variation of pile rotation amplitude with 
depth for various taper angle (VS/VP=0.1, 
slenderness ratio=20, tan =0.0) 

Fig. 7. Variation of pile rotation amplitude with 
depth for various taper angle (VS/VP=0.05, 
slenderness ratio=20, tan =0.0) 

Fig. 4. Variation of pile rotation amplitude with 
depth for various shear wave velocity ratio VS/V 

(slenderness ratio=20, taper angle = 3, 
tan =0.0. 
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Fig. 9. Variation of normalized amplitude of pile rotation with 
taper angle (slenderness ratio=20m, 0.0tan  ) 
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Fig. 10. Variation of pile rotation amplitude with 
depth for various taper angle (VS/VP=0.10, 
slenderness ratio=100, tan =0.0) 

Fig. 11. Variation of amplitude of pile rotation 
with depth for various delta (VS/VP=0.10, 
slenderness ratio=20, tan =0.0, 0.40) 

Fig. 8. Variation of pile rotation amplitude with 
depth for various taper angle (VS/VP=0.02, 
slenderness ratio=20, tan =0.0) 
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Fig. 12. Variation of amplitude of pile rotation with depth for 
various delta (VS/VP=0.05, slenderness ratio=20, tan =0.0, 
0.40) 
 
Figs. 3 to 5 show the variation of amplitude with velocity ratio 
(soil stiffness). It can be seen that the pile twist amplitude 
quickly diminishes with increasing the depth. It also varies 
with velocity ratio and the taper angle. The amplitude of the 
pile rotation decreases with increasing the wave velocity ratio. 
 
Figs. 6 to 10 illustrate the variation of the pile rotation 
amplitude with depth, VS/VP, slenderness ratio, taper angle, 
and . The amplitude is considerably dependent on the taper 
angle. As seen, the rotation amplitude of the pile decreases 
with increasing the taper angle. The effect of taper angle on 
the pile rotational amplitude is shown Fig 9, as well 
 
Figs. 5 and 10 indicate that for a pile having a slenderness 
ratio of 100, if the pile toe is fixed, the pile head twist for Z/L 
greater than 0.4 tends to approach zero, whereas in for a pile 
having a slenderness ratio of 20, the pile head twist angle 
approaches zero at Z/L greater than 0.6 (Figs. 3 to 6). 
 
The effect of the material damping of the soil is shown in Figs. 
11 and 12. As observed, with increasing the soil damping, the 
twist amplitude of the pile decreases. 
 
CONCLUSIONS 
 
A simple approach has been presented for tapered piles 
subjected to torsional harmonic vibrations. The main 
conclusions may be summarized as follow: 
- Taper piles offer less twist angle under torsional harmonic 
vibration than straight sided piles of the same volume and 
length. 

- With increasing the shear wave velocity of the soil, the 
tapered pile twist angle decreases. 
- With increasing the soil damping, the pile twist angle 
decreases. 
- With increasing the taper angle, the pile torsion decreases. 
- For a pile having a slenderness ratio of 100, if the pile toe is 
fixed, pile head twist angle for Z/L greater than 0.4 tends to 
approach zero, whereas in for a pile having a slenderness ratio 
of 20, the pile head twist angle approaches zero at Z/L greater 
than 0.6. 
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